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ABSTRACT

With advancements in Internet and technology, it has become increasingly easy for people to enjoy music.
Users are able to access millions of songs through music streaming services like Spotify, Pandora, and Deezer.
Access to such large catalogs created a need for relevant song recommendations. Music recommender sys-
tems assist users in finding the most relevant songs by consistently matching them with the user’s preference.
Accurately representing these preferences is essential to creating accurate and effective song recommenda-
tions. User preferences are highly subjective in nature and change according to context (e.g., music that is
suitable for running is not suitable for relaxing). Preferences for songs can be based on characteristics of high
level audio features, such as tempo and valence.

This thesis proposes a new contextual re-ranking algorithm, which belongs to the group of contextual
post-filtering techniques, to leverage users’ contextual information. The algorithm uses two models, a global
and personalized model, to model user preferences. These models use audio features to represent user prefer-
ence in specific contextual conditions. The algorithm is able to re-rank any given music recommendation list.
First, we analyze the correlation between audio features and contextual conditions. This analysis shows that
the correlations are significant, thus audio features are suitable for representing user preference in contextual
conditions. Thereafter, we implement and evaluate the re-ranking algorithm using accuracy metrics on the
#NowPlaying-RS and InCarMusic datasets, using various initial recommender algorithms. Results show there
is merit in applying such a re-ranking algorithm to increase recommendation accuracy. The personalized
model, given enough historical data, consistently outperforms the global model.
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1
INTRODUCTION

M usic is a universal language, is sometimes said. Even though people speaking one language do not un-
derstand the lyrics of songs from other languages, they still can enjoy it. For many people, music is one

of the major ways to entertain themselves. In the present day, with advancements in Internet and technology,
music has become increasingly easy to access. Using a smart phone with internet connection, one can sim-
ply utilize streaming services, like Spotify, Pandora and Apple Music, to access millions of artists and songs
from all around the world. With this many options, it has become increasingly difficult for users to discover
new enjoyable songs. Many potentially interesting songs are yet to be discovered. With this trend, it has be-
come increasingly more valuable and relevant for researchers to research music retrieval and recommender
systems.

Recommender systems are systems that help users to deal with an overflow of information and options
through filtering only the most relevant services, content and/or items. Music recommender systems aim to
assist users in finding and discovering new music specifically. These systems require the ability to retrieve
specific songs, that consistently match with the user's preference, from large music databases in an efficient
manner.

1.1. RESEARCH MOTIVATION
Initially, music recommender systems mainly relied on similarity comparisons between songs and users to
create recommendations [5]. These systems model the long-term preferences and provide solutions to long-
term needs of users [6]. Accurately representing users'preferences is essential to the performance of music
recommender systems [7]. Many additional methods have been developed more recently to further improve
representation of user preferences.

One such way is to incorporate contextual information of the user [6]. Understanding user preferences
requires intelligent preference learning techniques that are able to relate user context to concise and context
specific music preference [8]. According to sociological and psychological research of music, people's short-
term needs are often influenced by their current context, e.g. external factors, psychological state and/or the
activities a user is engaged in [9, 10]. People often seek music for specific contextual situations, like events or
emotional states, rather than based on artists or song content [11]. Music preferences of users change through
influences from the physical environment, such as activities or geo-location [12]. People prefer different
music when working out in a gym compared to reading a book on the couch, for example. This led to an
emerging interest in contextual music selection and recommender systems [13].

In this work, we use three definitions to describe context. The first are contextual dimensions, which
refers to specific categories of contexts, e.g. time of day, activity etc. The second are contextual conditions.
A contextual dimension exists of multiple contextual conditions, e.g. morning and afternoon within time of
day. Lastly, there are contextual situations, which refer to a combination of different contextual conditions
that make up a situation of a user, e.g. sunny weather, while jogging in a happy mood.

Recommendation systems that use contextual information can be divided into 3 categories, namely con-
textual pre-filtering, contextual post-filtering and contextual modeling [14]. An in depth description is given
for each in Chapter 2. Both filtering methods have the benefit over contextual modeling that no additional
changes are required to the existing recommender system. For pre-filtering, only the input is adjusted, while

1



2 1. INTRODUCTION

for post-filtering the recommender’s output is altered [15]. Pre-filtering methods have been well developed,
but post-filtering research efforts have been limited [16].

Contextual modeling is the most powerful method of the three [16]. However, it comes with its own chal-
lenges and limitations. For these contextual modeling methods, machine learning (ML) techniques have
gained more focus among researchers recently. Increasingly these techniques have been applied to capture
the relation between contexts and user preference. Examples include a context-aware collaborative music
recommender that uses pre-trained neural networks where semantic tags are used as input by Liang et al. [17],
a listening sequence-based context-aware music recommender that learns low dimensional representations
of music through neural networks by Wang et al. [18] and a short-term music recommender built using a
knowledge-based attentive recurrent neural network by Lin et al. [19].

There are two challenges when machine learning approaches are used to create recommendations. The
first is the explainability of these recommendations to users. It is important to be able to explain why a
certain song was recommended when users ask about it. The second one is regarding the explainability to
the designers of the recommenders themselves. It is often complex, if not impossible, to fully understand how
the model uses factors and weights, since many of them are created using black box algorithms [20]. These
recommenders do not provide any insights in the relation between contextual information and user music
preferences.

In this work, we propose a post-filtering approach: a contextual re-ranking algorithm, which ranks higher
songs that are more suitable to a user’s current contextual condition. It can be applied to any existing mu-
sic recommender’s output, is easily understandable and explainable, and works with any contextual dimen-
sion. Users like or dislike songs based on the characteristics of audio features, like tempo, vocal, instrument
etc [21]. Significant correlations exist between music preferences expressed in audio features and personality
traits [22]. Since user preferences are closely related to audio features, it should be a good predictor for user
preferences in order to create accurate recommendations. Therefore, we use audio features to model user
preferences for specific contextual conditions. To the best of our knowledge, our approach is novel, since
it uses audio features to models users’ context specific preferences. It is also important to realize that mu-
sic preference is highly subjective; while one person may experience two songs as dissimilar, a second one
may feel a high resemblance [8]. Moreover, the music one user may prefer in a given context may be differ-
ent from what another user prefers in the same context (i.e., what is considered good morning music differs
across users). That is why we compare a global preference model with personalized user preference models
for the re-ranking algorithm.

1.2. RESEARCH QUESTIONS
We focus on re-ranking music recommendations by representing user preferences in contextual conditions
through the usage of audio features. The goal of the re-ranking is to give songs which are more suitable to
a given contextual condition relatively higher positions. In order to do this, we propose the following main
research question:

• Main Research Question: How can the relation between audio features and contextual factors be used
to improve music recommendation accuracy through re-ranking?

In order to answer the main research question, we propose the following three sub-research questions:

• sub-RQ1: How are contextual conditions of different contextual dimensions related to audio features?

The first sub-research question aims to give us more insight into how and which contextual conditions are re-
lated to specific audio features. This helps us to get a general idea of which audio features to include and how
significant they will be when representing user preferences. Our hypothesis here is that there exists a signifi-
cant correlation between certain audio features and contextual conditions. Since there are a wide spectrum
of audio features and contextual conditions, it is difficult to hypothesize how exactly they are correlated.

• sub-RQ2: How does re-ranking, based on audio feature representations of user preferences in different
contextual conditions, affect music recommendation accuracy?

The second sub-research question looks at the performance of the re-ranking and accuracy of the re-ranked
recommendations compared to initial recommendations. The accuracy of recommendations are measured
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using various ranking based metrics. Our hypothesis here is that if there is a strong enough correlation be-
tween audio features and contextual conditions, such a re-ranking algorithm is able to further increase the
accuracy of recommendations made by existing recommender algorithms.

• sub-RQ3: How do global audio feature representations of user preferences in different contextual con-
ditions affect the re-ranking results compared to personalized audio feature representations of user
preferences in the same contextual conditions?

For the third sub-research question, we use two separate models as input for the re-ranking algorithm. The
personalized model gives more weight to user specific preferences of audio features in certain contexts, while
the global model combines all users'preferences in one model. Here, we expect that the personalized model
will outperform the global model, since different users have different preferences in specific contexts. One
user might enjoy sad music to complement rainy weather, while another user might prefer happy tunes to
compensate it. The personalized model is, in such a case, a more accurate representation of user preference
than the global model.

1.3. CONTRIBUTIONS
To the best of our knowledge, we are the first to create a straightforward re-ranking algorithm based on map-
pings of user context to audio features representing user song preferences. Through this research we con-
tribute the following:

• An increased understanding of the underlying relationship between user contexts and audio features,
especially how they relate to user preference.

• A comparison between global and personalized user preference models for different contextual condi-
tions using audio features.

• A creation of a contextual re-ranking algorithm, belonging to the group of contextual post-filtering
methods, that is easily explainable and is able to re-rank any music recommendation list.

1.4. THESIS OUTLINE
The rest of this thesis report is organized as follows:

Chapter 2 provides an overview of existing research and general background information related to our re-
search. It gives an introduction of recommender systems, audio features and examples of how other re-
searches used contextual information in their works. Furthermore, it compares existing research to our re-
search and illustrates differences.

Chapter 3 presents our analysis and evaluation results of the correlation between audio features and contex-
tual conditions. This chapter aims to address the first sub-research question.

Chapter 4 gives an overview of the methodology that we use to carry out our research. This includes gather-
ing, evaluating and selecting datasets, experiment design and recommendation accuracy evaluation methods
among others.

Chapter 5 presents our proposed re-ranking algorithm and elaborates on the global and personalized models
that will be used in the experiment. The re-ranking algorithm addresses the second sub-research question,
while the two different models are designed to address the third research question.

Chapter 6 elaborates on the whole pipeline of our experiment together with all choices that were made during
this process. It also provides a detailed description of the re-ranking system and the results obtained.

Chapter 7 concludes our work, discusses limitations and provides direction for potential future work.





2
LITERATURE REVIEW

We describe in this thesis how user context can be leveraged through a re-ranking algorithm to increase per-
sonalization and improve recommendation quality. Before doing this, we will first describe the background
and related work of context-aware (music) recommender systems. An introduction into recommender sys-
tems in general will be given first in Section 2.1 together with an overview of traditional recommender algo-
rithms. Section 2.2 elaborates on the definition of context and how it will be used in our research. Thereafter,
Section 2.3 explains what context aware recommender systems are, how they can be grouped and which
context-aware recommender algorithms there are. A variety of context-aware music recommender systems
are given in Section 2.4. Section 2.5 will describe how audio features have been researched and used within
both general and contextual music recommender systems. This chapter concludes with an explanation to-
gether with a general algorithm for re-ranking in Section 2.6.

2.1. RECOMMENDER SYSTEMS
With the exponential increase of online services, tools and their accompanying data, solutions to find the
right or interesting data has never been more relevant. Recommender systems are such search and deci-
sion tools which assist users in finding and discovering information and/or items. They require the ability to
retrieve specific data, that consistently match with users’ preferences, from large music databases in an effi-
cient manner. This way, recommender systems help users overcome information overload [23]. Traditionally,
recommender systems were classified into three categories, based on how the recommendations are made.
Adomavicius et al. describe them as follows [6]:

• Content-based recommendations: Recommendations are based on the similarity of items compared to
the items the user liked previously

• Collaborative recommendations: Recommendations are based on the preferences of users that are most
comparable to the current user

• Hybrid approaches: Any mix of the above mentioned methods

2.1.1. TRADITIONAL RECOMMENDER ALGORITHMS
These traditional systems rely on recommender algorithms based on underlying user and or item similar-
ity/preferences. There are various ways to calculate these similarities and preferences and make recommen-
dations based on the output. A variety of these traditional recommender algorithms is listed below. Some of
them are used to produce the initial recommendation list in our experiments later on.

ITEM/USER AVERAGE

This algorithm is the straightforward, computationally cheap and the most simple one. It basically takes the
average rating within the training set based on a given user or item. Item Average takes the average rating that
all other users have given to a song that needs to be predicted. This average rating will be used as prediction,
independent of the user that it is recommended to. In the same way, User Average uses the average rating

5



6 2. LITERATURE REVIEW

of all items that a user have rated previously, independent of the songs that are recommended. A formal
expression would be:

r̂ui = 1

n

n∑
k=1

rk (2.1)

Where r̂ui represents the predicted rating for song i to user u. n represents the amount of available ratings
in the training set for song i in the case of Item Average and the amount of available ratings in the training
set for user u in the case of User Average. rk then represents each rating given to song i for Item Average and
rating given from user u for User Average.

These algorithms are included here because of their simplicity. If the re-ranked list does not have an
increased accuracy compared to these outputs then the chance is small it will work for outputs on more
sophisticated recommendation algorithms.

USER/ITEM KNN
One of the earliest and more traditional recommendation algorithms are the User and Item k-nearest neigh-
bours algorithms. The UserKNN was first mentioned by Resnick et al. [24]. For a given user, item and context,
this algorithm will look for all users who already rated the test item before. For each of these users, the sim-
ilarity to the given user is calculated. Often a similarity measure, like the Pearson correlation coefficient, is
used based on all the ratings of the users. The algorithm then sorts these users by their similarity. Using a
weighted average rating of the given item for the k, which is a tweakable parameter, most similar users, a
prediction is calculated.

ItemKNN was first mentioned by SarWar et al. [25]. It works in a comparable fashion as the UserKNN al-
gorithm. ItemKNN looks at the set of all items that the test user has rated previously. In this list, the similarity
of previously rated items to the test item is measured. Also here any similarity measure can be used. The
weighted average rating of the k most similar items will then be used as prediction for a given test user and
item.

MATRIX FACTORIZATION

Matrix factorization is an unsupervised learning method that received more exposure recently recently [26,
27]. It uses a user-item interaction matrix where rows are representing users and columns representing items.
User-item pairs can have a value, which represents the rating that has been given by that user to a specific
item. This matrix will then be factored to a joint latent factor space with dimensionality f . This space is often
represented by two sub-matrices , one representing items and the other representing users. Individual items
and users are represented by vectors, which contain the estimated latent factors, in these sub-matrices. The
inner products of user-item vectors from the two matrices model the interactions between them. Say we have
a vector qi ∈ R f representing item i and a vector pu ∈ R f representing user u, the dot product qT

i pu tries to
capture the interaction between user u and item i. The approximated rating in this case is represented by r̂ui

and gives us the following formula:

r̂ui = qT
i pu (2.2)

As we can see from above, obtaining the rating approximation is fairly easy when the two matrix represen-
tations of users and items are known. The biggest challenge is to accurately create them from the user-item
interaction matrix. Singular value decomposition (SVD), a well-established technique, is closely related to
such modelling [28]. However, since the initial user-item interaction matrix is often sparse, applying conven-
tional SVD is rather difficult. It is undefined when input from the matrix is incomplete. Also, the danger of
overfitting arrives when only applied to a few entries. In order to estimate all user vectors pu and item vectors
qi , the regularized squared error for the known entries need to be minimized:

mi n
q,p

∑
(u,i )∈K

(rui −qT
i pu)2 +λ(||qi ||2 +||pu ||2) (2.3)

The set of user-item pairs is represented by K , rui is the known rating of user u to item i and λ controls
the extend of regularization, which is normally determined by cross-validation.

These are the very basic components of matrix factorization based models. We will proceed to describe
three specific matrix factorization models next.
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STOCHASTIC GRADIENT DESCENT BASED MATRIX FACTORIZATION

The first is the so called stochastic gradient descent (SGD), which uses a specific approach to minimize the
error of Equation 2.3. This approach iterates over all given ratings in the training set, predicts rui and com-
putes the prediction error for it by subtracting the prediction from the actual rating. The next step is to adjust
the parameters in the opposite direction of the gradient. The update of the user and item vectors are thus as
follow:

qi ← qi +γ(eui ∗pu −λ∗qi ) (2.4)

pu ← pu +γ(eui ∗qi −λ∗pu) (2.5)

SGD generally is a popular approach [29–31] that is relatively quick. Still, in some situation, it might be
better to use the alternating least squares optimization method, which we will describe next.

ALTERNATING LEAST SQUARES BASED MATRIX FACTORIZATION

Alternating Least Squares (ALS), like SGD, is a method to minimize the error in Equation 2.3. Both qi and pu

are unknowns that need to be optimized. If one of them would be fixed, the problem can be solved optimally.
This is what ALS does, it rotates between optimizing the item vectors and optimizing the user vectors. If item
vector qi is fixed for example, this method will optimize pu by solving the least-squares problem and the
other way around [32]. So alternately, the whole of Equation 2.3 will be optimized until some convergence
criteria is met.

Generally, SGD is faster and easier to use compared to ALS. However, there are two specific scenarios
where ALS is probably a better candidate. The first case is when parallelization is an option and preferred.
Since only one unknown variable is being solved at a time, it gives potential for parallelization of the algo-
rithm [33]. The second case is when implicit feedback, which will be described in more detail later in Sec-
tion 4.1.2, data is used. These datasets are not as sparse explicit feedback datasets. So looping over each given
entry, like SGD does, would not be optimal [34].

BIASED MATRIX FACTORIZATION

A benefit of matrix factorization is that it is flexible when dealing with different data aspects. It is based
on the underlying framework to model users, items and their interactions. However, often the interaction
between users and items alone is not sufficient enough to estimate an accurate rating. There will be variations
in ratings because of specific effects from certain users and/or items, which are known as biases. These
biases are independent of interactions, but dependent on specific users/items instead. Some users tend to
rate items higher generally than others, for example. The same applies to some popular/high quality items
compared to unpopular/low quality items.

So only using the interaction of qT
i pu is not sufficient enough. The accuracy can be increased by identify-

ing and adding these biases to the prediction model. Biased matrix factorization (BiasedMF) is such a matrix
factorization method [28].This method incorporates a first-order approximation of the bias. For a given rating
rui , where u represents a user and i an item, the bias is defined as follows:

bui =µ+bi +bu (2.6)

where µ is the general average rating, bi is the observed deviation of item i and bu the observed deviation
of user u. Here the deviations are measured from the general average. For example the average rating of all
songs of all users is a 3.2. A very popular song has an average rating that is 1 higher than the general average,
but a very critical user tends to rate songs 1.5 lower than the general average. The estimate for this song for
this user would be 3.2 + 1 - 1.5, which results in a 2.7. So in this method Equation 2.2 becomes:

r̂ui = qT
i pu +µ+bi +bu+ (2.7)

Where all the symbols represent the same elements as described previously above. In a similar matter,
Equation 2.3 becomes:

mi n
q,p,b

∑
(u,i )∈K

(rui −pT
u qi −µ−bu −bi )2 +λ(||pu ||2 +||qi ||2 +b2

u +b2
i ) (2.8)
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BAYESIAN PERSONALIZED RANKING

Unlike the methods described above, Bayesian Personalized Ranking (BPR) is a technique that is suitable for
both explicit feedback and implicit feedback datasets. This algorithm is different from the above mentioned
ones since it is optimized for item ranking and not for item prediction [35]. When an implicit feedback dataset
is given, there is no negative feedback in the data, only interactions of users with certain items. This model
assumes that if a user has interacted with an item, he/she prefers it over other not interacted items. When
multiple items have been interacted with by the same user, preference is assumed to be the same. This is also
true for all items that the user has not interacted with.

Furthermore, it uses item pairs as training data and the optimization is based on giving these items pairs
a ranking as correctly as possible. This in contrast to above methods which try to predict ratings for single
items. The models optimization criterion is based on Bayesian analysis using a likelihood function. For a
more detailed description and how it can be applied to both matrix factorization models and kNN, please
see [35].

2.1.2. ADDITIONAL RECOMMENDER SYSTEMS
So traditional recommender systems use algorithms that compare similarities between items, users or a com-
bination of it to create recommendations [5]. These systems model the long-term preferences and provide
solutions to long-term needs of users [6]. However, in order to further increase the relevance of the rec-
ommendations, more data regarding the user and/or items would need to be incorporated [6]. Reviewing
subsequent and more recent research, multiple new types of recommender systems have been developed.
Lu et al. classifies recommender systems into eight types for example. The additional five they identified
are [36]:

• Knowledge-based recommendations: Recommendations are based on knowledge about items, users
and/or how they are related to each other

• Computational intelligence-based recommendations: Recommendation models are based on specific
computational models, e.g. Bayesian models, artificial neural networks, genetic algorithms etc.

• Social network-based recommendations: Recommendations are based on the user's interaction with
other users within the platform

• Context awareness-based recommendations: Recommendations are based on contextual features of
the users, e.g. location, emotions, activity, weather etc.

• Group recommendation techniques: Recommendations are based on a group of users in a situation
where the overall preference is not clear

Our research is closely related to the group of context awareness-based recommender systems, but before
elaborating further on this specific recommender system, we first need to have a clear definition of context.

2.2. DEFINITION OF CONTEXT
In order to be clear about what context exactly is, we need a consistent and overarching definition of "Con-
text". Different researchers have used different definitions. In the earlier days, context was mainly defined by
example. Schilit and Theimer used a combination of location, identity of people nearby, objects and changes
to these objects as context [37]. Ryan et al. used location, environment, identity and time as a user's con-
text [38]. But these are often hard to apply and not general enough.

Other researchers tried to define context as the environment or situation. Some only consider the envi-
ronment of the application, some only of the users and others use a combination of them. Brown defined it
to be all the features of a user's environment that the application knows about [39]. While Hull et al. defined
context to be everything of the current situation, including the whole environment [40]. These definitions in
turn are too general to be used. They provide little guidance on how to use the separate elements of context.

A definition that is useful should not be too general nor too specific. The definition that we will be using
in this research, and is widely cited, is given by Dey et al. [41]:

Context: “Any information that can be used to characterize the situation of entities (i.e., whether a person,
place, or object) that are considered relevant to the interaction between a user and an application, including
the user and the application themselves.”
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For our research, we will be focusing on the situational information of the user. This includes, but is not
limited to, time of day, day of week, season, weather, mood, social company, location, activity etc.

2.3. CONTEXT-AWARE RECOMMENDER SYSTEMS
Now we have a definition of context, it is time to take a closer look at what context-aware recommender
systems are exactly. These systems are different from normal recommenders, since they also incorporate all
kinds of contextual information.

Specifically, traditional recommender systems utilize a prediction function F to estimate ratings:

F : User × I tem → Rati ng (2.9)

where User and Item are input variables for the prediction function F that will output the estimated rating.
This is also known as a 2D approach to recommendations [42].

Since context-aware recommender systems have context as additional input, the function F will become:

F : User × I tem ×Context → Rati ng (2.10)

where Context can represent one more multiple contextual dimensions. For example, the context can just
be (reading) or (Sunday, afternoon, sunny, happy).

We can generalize the above as:

F : User × I tem ×C1 × ...×Cn → Rati ng (2.11)

where n represent the amount of different contextual dimensions used as input and each Ci stands for
the specific value of that contextual dimension. This would bring us a n + 2 dimensional problem.

These new dimensions can be embedded in different ways using different methods. Based on how exactly
context is used, three forms can be distinguished according to Adomavicius and Tuzhilin, namely contextual
pre-filtering, contextual post-filtering and contextual modeling [42].

In the three subsections below we describe each of the different types of contextual recommender sys-
tems together with examples, benefits and drawbacks. The fourth subsection focuses on context-aware rec-
ommender algorithms that are used in these systems.

2.3.1. CONTEXTUAL MODELING
Contextual information is directly being incorporated into the model. This means that the interactions be-
tween the contextual dimensions, users and items are being captured within the recommendation model. An
additional drawback with these models is that it is often hard to explain how or why exactly a recommenda-
tion is made. Multiple recommendation approaches have been proposed using either heuristics or predictive
modeling techniques, which we will describe below.

Matrix factorization is an example of an upcoming approach that has gained attention because of the
Netflix Prize competition [28]. It uses dimensionality reduction techniques to predict the missing ratings
within a given matrix. This is done through transformation of given information to a latent factor space [43].
Karatzoglou et al. used matrix factorization and embedded different contextual factors [44]. They did this by
modelling the User s × I tems ×Context s as a n-dimensional tensor. This would result in a compact model
that can be used to predict contextual ratings. The benefit here is that any amount of contextual dimensions
can be incorporated. This, however, also comes at a cost, for a big amount of contextual dimensions, the
parameters will grow exponentially. It requires the values to be discrete instead of continuous.

There are also other recommendation techniques that have been proposed specifically for context-aware
recommender systems. Oku et al. proposed to embed the contextual features directly into the recommen-
dation space using machine-learning methods [45]. They specifically use support vector machines (SVMs),
which basically splits the items of users into a group of preferred and not preferred items in various contexts.
This n dimensional space is then used to create a separating hyperplane, which is optimized to maximize the
distance between the two sets of items. This plan is then a classified for all future item input.

Twardowski proposed a session-aware recommender system, one where no straightforward user informa-
tion is needed [46]. The recommendations are made based on the current user session, which is represented
as a sequence of events. Interactions between different variables within a session and items are explicitly
modelled using matrix factorization. After that, both Recurrent Neural Network (RNN) and Feed Forward
Neural Network (FFNN) are used to make predictions for a given session. The RNN captures dependencies
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between different events in sessions, while the FFNN estimates ranking scores. It uses the output of the RNN,
which is a representation of a session context, together with the items as input. The final recommendation
list is created through minimizing the loss in the network.

Wu et al. proposed a graph based model that incorporates contextual information in the creation of rec-
ommendations [47]. In this model, the context-aware recommendations are represented by a searching prob-
lem, in which relevant items need to be found for a given user in a given context graph. Within the graph, the
vertex set is divided into sets of users, items, attributes and contexts. Edges represent connections between
different sets. So for example the edges between users and items represent the interactions that users have
had with those items. An adjacent matrix is used to represent the context graph. In the end, recommenda-
tions are made based on a combination of items and users that are closest to the given user. This approach
resembles a combination of item-based and user-based collaborative filtering.

2.3.2. CONTEXTUAL PRE-FILTERING
Contextual information is leveraged by selecting only the relevant set of data for the given context. Only this
relevant data is used as input for the recommender system, other data is discarded. Predictions are still begin
made by the traditional 2D recommender system.

Pre-filtering has the major advantage of being easily integratable with numerous traditional recommen-
dation techniques [42]. This gives the advantage of having a cheap, easy and quick improvement for exist-
ing commercial recommender systems. When applying pre-filters, the selected context basically serves as a
query/filter for selection of the most relevant training data. For example, only the previous ratings for a user
when watching a movie on Friday evening is used when recommending what movie to watch on a Friday
evening for a movie recommender system. This particular example uses an exact pre-filter, since an exact
context has been used as filter.

This also gives some drawbacks. Using an exact context that is too specific can be too narrow. For example,
a movie on Friday evening, with friends, in the cinema. This would be C=(Friday, Friends, Cinema). It is very
probable that the previous rating data of this specific context is very sparse or even non existent. Or perhaps
some contextual factors add more noise than value. In order to tackle this problem, Adomavicius et al. [6]
proposed a generalized pre-filter approach. In this approach, specific contextual situations are being put
together in more general ones. So for example, instead of using Monday to Sunday, one can use Weekday and
Weekend as contextual values for weekday.

As seen in the previous examples, contextual pre-filtering will build more local models, rather than global
models to make predictions based on all available data. Focusing only on data that is relevant to the context
of the current user, a prediction model is created to make more local predictions. Researchers who apply this,
should pay attention whether such a local model outperforms a more general global model.

Baltrunas and Ricci [48] proposed a different way of pre-filtering. Instead of removing data, they used
their so called item-splitting approach, where items in the dataset are split into two or multiple fictitious
sub-items based on the different contexts in which they can be found. This means that the traditional 2D
recommender systems have a more fine grained dataset as input. Similar to this, Baltrunas and Amatriain [49]
proposed microprofiling. The approach is the same as item-splitting, but instead of splitting up items, users
will be split up into several sub-user profiles. Each profile representing the user with his/her preferences in
a specific context. Subsequently, predictions are based on one or multiple of these sub-user profiles and the
given context, instead of one global user model.

2.3.3. CONTEXTUAL POST-FILTERING
Contextual information is leveraged by either removing or re-ranking the resulting recommendations based
on their relevance for the given context. So initially, the whole dataset and the traditional 2D recommender
systems are still being used. Here we have the same advantages as with the pre-filter approaches. No change
is needed to the traditional recommender systems. Post-filtering just makes adjustments to the obtained rec-
ommendation list. This can be done through either adjusting the order of the recommendations or through
removal of irrelevant recommendations [42]. An example would be that whenever a user is eating dinner he
or she only listens to jazz music, the post-filter can then proceed to remove all non jazz related songs within a
music recommender system. Contextual post-filtering can be classified into model-based and heuristic tech-
niques. For model-based, probabilistic models are created in order to calculate the probability of a user liking
an item within a specific context. This probability is then used to adjust the initial recommendation list. On
the other side, we have heuristic approaches, which looks for similar item characteristics or attributes for a
user in a specific context. These attributes are then used to adjust the ranking [50].
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Panniello et al. [51] carried out an experiment in order to evaluate the performance of exact pre-filtering
against Weight and Filter based post-filtering. Whereas Weight weighs the relevance for each prediction
based on a specific context and adjusts the order, Filter simply removes recommendations based on low-
est relevance. For this, they used data from the e-commerce domain. Their results showed that the Weight
post-filter outperformed the exact pre-filter, which in turn outperformed the Filter post-filter. So the conclu-
sion is that neither post- nor pre-filter is always the dominant approach. The best choice is highly dependent
on the data, application and context.

Taneja and Arora proposed their own clustering based contextual post-filtering approach (Clu-PoF) [52].
T-mean tests have been carried out first to find the most relevant contextual features. Those were then used to
create clusters using a hierarchical clustering approach. Clusters that are contextually similar are combined,
since the ratings in those contexts will also be similar. The prediction is then done through weighted average
of ratings of similar users in the same or most comparable contexts. Movies that are irrelevant or less relevant
in a cluster will be filtered out as last step.

2.3.4. CONTEXT-AWARE RECOMMENDER ALGORITHMS
Above we divided context-aware recommender systems into three approaches with a few examples from
other works for each. These systems have their own context-aware recommender algorithms, which differ
from traditional recommender algorithms since they rely on contextual input for their output. An overview
of these algorithms is given below.

ITEM-CONTEXT/USER-CONTEXT AVERAGE

These algorithms are basically the contextual versions of the Item and User Average algorithms in the initial
recommender algorithms list. Item-context Average will return the average rating per item per context, while
User-context Average does the same but per user and context instead. These algorithms are still fairly simple,
computationally cheap and at the same time use contextual information. Even though all these algorithms
are simple, they still provide the chance to evaluate whether the re-ranking algorithm adds some kind of
performance increase.

CAMF-C/CAMF-CI/CAMF-CC/CAMF-CU
CAMF stands for Context-Aware Matrix Factorization and is an extension of the classical Matrix Factorization
approach [27] in which context is included. Baltrunas et al. [53] came up with different flavors of CAMF
models based on different levels of the interaction of context with ratings.

The first, and most general one, is CAMF-C, where the C stands for context. Here, the assumption is made
that each contextual condition has in some way an influence on the ratings. So it does not matter what item
is being predicted, the same contextual condition will have the same influence on all items. This is done by
introducing one single parameter for each contextual condition and models the deviation for each.

The second, with a more middle complexity compared to the other three, is CAMF-CC, where the CC
stands for context-category. Here parameters are introduced for each contextual condition and item cate-
gory. This means that the assumption here is that specific contextual conditions, e.g. sunny, have a different
influence per item category, e.g. pop songs or piano songs. Thus the parameter here will also be used to
model a deviation like in CAMF-C.

The last two versions are CAMF-CI and CAMF-CU, where CI stands for context-item and CU for context-
user respectively. These two are most granular and thus the most complex models. For both, a parameter is
introduced for each contextual condition and item pair. So sunny would for example have a certain influence
on one song, but can have another on another song. These models both introduce many new parameters
and are therefore computationally more heavy, but it will also give increased performance when the context
directly influences items.

CAMF_LCS/CAMF_ICS/CAMF_MCS
Three other types of context-aware matrix factorization methods are described by Zheng et al. [1]. These
three alternatives use similarity-based contextual modeling to compare the similarity between contextual
situations. They argue that the more similar two conditions are, the more similar the recommended lists of
items should be. In [1] they describe how a similarity-based approach can be applied to matrix factorizations.

The similarity between contextual situations, all of which have at least 1 valid condition, are estimated
based on correlation. The representation or model of these similarities have an impact on the performance.
So it was necessary for the researchers to try and evaluate multiple ways to represent situation similarity.
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Independent Context Similarity (ICS) only measures the similarity between conditions when they are
taken from the same dimension. So for example, the similarity between morning and evening is measured,
but not the similarity between morning and sunny. The former are both taken from the contextual dimension
of time of day, while sunny in the latter comes from the weather dimension. So here an independent relation
between conditions is assumed. Zheng et al. chose to take the product of all similarities per condition to
represent the final similarity between two distinct situations.

Latent Context Similarity (LCS) deals with the sparsity problem of contextual datasets. Contextual situa-
tions often have only a few ratings, especially when they are made up of multiple dimensions. So a situation
may occur where the test set requires a similarity calculation of a new pair of conditions, but where the train-
ing set has not seen this combination. So what Zheng et al. [1] did was to use vectors of weights to represent
each condition, where the weights represent latent factors. In their experiments they chose to use 5 of such
weights for each representation. The dot product is then used between two vectors to represent the similarity
of a pair of conditions. So now, even when a new pair shows up, the weights of the vectors that represent
each of the two unique conditions are learned and updated over existing pairs. So the similarity of this new
pair can easily be calculated by taking the dot product between the two vector representations. This model
introduces extra parameters that needs to be optimized, so it is more computationally expensive than ICS,
but it also provides more flexibility.

Last, but not least, there is Multidimensional Context Similarity (MCS). Here a multidimensional coordi-
nate system is used to represent dimensions. Figure 2.1 shows such an example. Values for each condition
are parameters that needs to be optimized in the learning process. In Figure 2.1, for example, the conditions
of family and kids are assigned a new value. As one can observe, their change of position will also influence
the distance between other conditions. A limiting range of [0,1] is used to make sure that conditional rep-
resentations are comparable. So one can see this representation of situations as a cube, where the length of
each side is 1. The similarity is then calculated through the inverse of distance between two points. Zheng et
al. proceeded to use the Euclidean distance, but other distance measurements can be used as well [1].

Figure 2.1: Representing contextual dimensions through the multidimensional coordinate system [1].

USERSPLITTING/ITEMSPLITTING/USER-ITEMSPLITTING

UserSplitting (US-x) is a type of contextual pre-filtering, first introduced by Said et al. [54], where the context
is used to direct data selection. In this case, context-based user micro-profiles are created for each user and
contextual condition. This technique is based on the idea that different people have different tastes when in-
fluenced by different conditions. That is why separate user profiles are created for each contextual condition.
Since pre-filtering only affects the input data, any traditional recommender algorithm can and needs to be
applied to it afterwards to get a recommendation list as output. The performance generally is shown to be
better because of the more granular input compared to traditional collaborative filtering methods.

ItemSplitting (IS-x) uses exactly the same ideas of UserSplitting, but in this case items are split into item
micro-profiles for each context. Also this is then proceeded to be fed into a regular recommendation algo-
rithm.

Last, but not least, there is User-ItemSplitting (UI-x), in which both users as well as items are split into
micro-profiles. Both splits are based on contextual conditions.
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2.4. CONTEXT-AWARE MUSIC RECOMMENDER SYSTEMS
Multiple context-aware recommender systems have been developed for the task of music recommendation.
This section describes the contextual factors that were taken into account, the exact method and their per-
formance for the ones that have been evaluated. They have been categorized by the contextual factors that
the authors utilized.

TIME BASED

Baltrunas et al. built a time-aware recommender system that is able to recommend accurately a song or
artist for users [49]. The system partitions user profiles into micro profiles, that represent the user in specific
time spans. In their experiment, they used different time spans, ranging from hourly (even and odd hours)
to yearly (cold and hot seasons). The data was gathered from the Last.fm service1, where each track also
contained the time stamp of when the user played this specific track. Recommendations are made based
on multiple micro-profiles for the time span that the user is in, instead of using a general user profile. Their
system outperformed the baseline (context-free) prediction algorithm when evaluated, especially the daily
and hourly time spans gave the best improvements.

Dror et al. modelled music ratings using temporal dynamics and item taxonomy [3]. For their work, they
utilized the Yahoo! Music service to collect user data over a whole decade. This data contained dates and
one-minute resolution timestamps, which allows for temporal analysis. In order to capture the temporal
effects, they incorporated session factor vectors in the user representation. These were learned by fixing all
other factors and making SGD iterations over only the ratings in the current session. Next to this, they also
modelled the user session bias. During the evaluation, embedding the user session bias showed a significant
improvement in lowering the root-mean-square error.

MOOD BASED

Rho et al. used support vector regressions (SVR) in order to classify mood and embed it in a recommender
system [55]. First they created a user mood map based on music that the user listens to. Seven musical
features are extracted and analyzed for each song. A SVR model is then trained and used to determine the
mood of songs. Based on the predicted current mood, an ontology-based recommender, which uses a context
knowledge repository, is used to embed this. In their experiment, they reached 87.8% accuracy when using
their trained mood mapper. Unfortunately no user study was done to evaluate the model.

Andjelkovic et al. created MoodPlay, a hybrid recommender system that uses an interactive interface
which integrates user mood and music content [56]. Their model works as follows, first, an offline compu-
tation is done to calculate artist similarity, based on both audio content as well as mood. For the mood of
artists, the Rovi mood metadata was used2 and for the distance metric the Euclidean distance was used. Dur-
ing a user session, a general mood is calculated for each user based on recent artists that users listened to.
Then, artists that are closest to the general mood, ranked by distance, are recommended. Last, but not least,
users have freedom to move through their affective space within MoodPlay. The system keeps track of this
and applies a decay function to the preference trail when new recommendations are made. Also here, no
evaluation regarding recommendation quality or user satisfaction was done.

Shan et al. built an emotion-based recommender system based on an emotion model extracted from
film music [57]. First, film segments are analyzed for both audio features as well as emotion. Emotions are
detected using a mix of caption, speech, sound effect and visual features. Then, specific audio features are
extracted and used to represent the emotion. This was done through affinity discovery. For this, Mixed Media
Graph (MMG) was adopted and modified, an affinity graph algorithm. The original MMG was proposed by
Pan et al. [58] and was used to find correlations between different media in a collection of multimedia objects.
For their experiment, they took 20 animation films and built an emotion model based on it. After that, a set
of top 10 of songs were created for each test song, based on the affinity graph that was constructed from the
training set. Performance was measured based on the similarity of the emotions of the returned songs and
the emotion of the test song. According to their proposed metric, the model performs well. However, also
here no evaluation regarding user satisfaction was done.

LOCATION BASED

Kaminskas et al. built a location-aware recommender system to recommend suitable songs for places of
interest (POIs) [59]. They manually gathered 3 songs per each of the 123 artists for 25 POIs of 17 major cities

1https://www.last.fm/
2Rovi API: http://developer.rovicorp.com/docs
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through their knowledge-based technique. In their experiment, they compared five different approaches to
recommend music for specific POIs. These approaches are the regular genre based recommender, a manual
and automatic tag-based recommender, a knowledge-based recommender and a hybrid recommender that is
a combination of the knowledge-based and auto-tag-based recommenders. Both tag-based and knowledge-
based methods outperformed the straightforward genre-based method, however the clear winner was the
hybrid method.

Cheng and Shen built Just-for-me, an adaptive location-aware social music recommender [7]. They ex-
tended the three-way model of Yoshii et al. [60] to incorporate location context and music popularity as well.
The model uses a set of latent topics to model music content, under specific user's preferences, to location
context. For their experiment, they used a mix of datasets that were extracted from different sources (Twit-
ter, Youtube, Grooveshark and Last.fm). Whenever the location was missing, so called pseudo-observations
were used. Machine learning methods inferred context for each user-item observation, by using a classifier
that has been trained on existing location data. They compared their system against two other systems, one
which recommends tracks randomly and the other is a simple contextual post-filter approach, described by
Adomavicius et al. [42]. Evaluations showed that the Just-for-me system greatly outperformed both systems.

Schedl et al. created six different recommender systems, of which four used geospatial data of users [61].
For training and evaluation purposes, they used a data set of listening activities inferred from microblogs, the
so called MusicMicro dataset. This dataset contains also longitude, latitude, country-id and city-id, next to the
regular songs and users. Their GEO model solely uses the geospatial distance of users to calculate proximity.
Afterwards, artists of the user's closest neighbors are recommended. Next to this, they also have the GEO-
CF, CF-GEO-LIN and CF-GEO-GAUSS models. GEO-CF simply takes the union of the GEO and a standard
collaborative filtering (CF) model. The other two models are based on CF and weigh users using either a
linear or exponential geospatial distance measure over their geospatial distances. During their evaluation,
the GEO-CF model appeared superior to all other five models.

WEATHER BASED

Sen and Larson uses Fuzzy Logic models together with raw contextual sensor data in order to recommend
music [62]. Their idea is to model the user's context through data gathered from sensors and to create rec-
ommendations based on it without using any previous listening behavior. The sensors measure location, in-
door/outdoor, activity, date, time and weather among others. The weather information in this case is mainly
used to determine the mood of a user. The objective is to get a general idea depending on the impact of the
weather on a user's mood. Subsequently, two categories are created, atmospheric-based and situation-based
metrics. Queries are generated for each and expanded using the Last.fm API. These tags are being used as
queries to retrieve songs from SoundCloud, which are then uploaded to EchoNest to do audio analysis and
pick the right songs to recommend. In their future work they state to develop the system and evaluate it,
however to the best of our knowledge, it has not been evaluated yet.

Baltrunas et al. built a context-aware music recommender that is specifically adapted to users traveling
by car [63]. For this purpose, they have built a mobile application (Android) that recommends items based
on initial input of the users through a Web based application. For each of their contextual factors, including
weather, they did an evaluation for impact to different music genres using a probability distribution based on
the user inputs. After this, they selected the most relevant contextual factors and these were embedded into a
matrix factorization model. For their test data, their personal MF proved to give an improvement of 7% over
the baseline model and 3% over the personalized model.

ACTIVITY BASED

Dias et al. built Improvise, a model that recommends personalized songs based on user input and feedback
regarding their activities [64]. First, they associated specific genres and songs with activities through a user
study. After that, the audio features are extracted with help of EchoNest. The generic model then proceeds
to use the top 100 songs for each activity and their median 20% of standard deviation for the audio features
in order to create hyper-rectangles. This means recommendations can created for users in certain situations,
even without having any historical behavior. The personalized model works the same way as the global,
except that the top 100 songs are continuously updated based on the new songs played by the current user.
In their evaluation they showed that users tend to select more songs from the personalized model compared
to the generic model. Also, the user satisfaction generally is higher for the personalized model.

Wang et al. created a music recommender system using a probabilistic model based on collected sensor
data of mobile phones [65]. The first part is inferring the context of a user based on the sensed data. For this
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they used a probabilistic distribution over all possible contexts. The second part models how suitable a song
is for a given context. This adaptive model is based on the relationship between audio features and context
and evolves accordingly with the user's behavior, e.g. listening the full song means positive feedback.

2.5. AUDIO FEATURES IN RECOMMENDER SYSTEMS

Since our research will be focused on how audio features are related to contextual factors, it is important to
understand which and how audio features are used in existing research. This section will describe what and
how specific audio features are used in both existing general music recommender systems and context-aware
music recommender systems.

2.5.1. AUDIO FEATURES IN TRADITIONAL MUSIC RECOMMENDER SYSTEMS

Li et al. [66] used a combination of lower-level audio features in order to capture a more accurate similar-
ity comparison between items, which further improves the recommendation accuracy. As lower-level audio
features they considered mel-frequency cepstral coefficients (MFCC), Centroid, Roloff, sum of scale factor
(SSF), Flux, Pitch and Rhythmic. In the end, a combination RollOFf, Rhythm and MFCC showed the best per-
formance. Li et al [67] proposed a new collaborative music recommender system (CMRS) based on clustering
of audio features. As audio features, two feature sets are used, rhythmic content and timbral texture. Tim-
bral texture features contain the spectral centroid, flux, rolloff point, SSF and the first five MFCC coefficients,
while rhythmic content features contain six features that are extracted from the beat histogram using Gorge's
method [68]. Bogdanov et al. [69] use semantic music similarity models to create improved recommenda-
tions. In order to do this, they calculated low-level audio features for each track using their in-house audio
analysis tool called Essentia. Over 60 features were extracted, including inharmonicity, tristimuli, spread,
skewness, kurtosis, crest, MFCCs, key strength, pitch, BPM etc. These are used to infer semantic descriptors,
which are used again for the classifiers. For a full list, please see the paper. Lu and Tintarev [70] used a total of
six attributes, of which the two audio features key and tempo, in their approach of re-ranking recommenda-
tions to adjust for more diversity and improve accuracy using personality traits. They used Spotify to gather
all attributes. A brief explanation is given about the mixed composition of the audio features energy, which
makes it unsuitable for their research since it is unclear how different personalities impacts each sub feature
within energy.

2.5.2. AUDIO FEATURES IN CONTEXT-AWARE MUSIC RECOMMENDER SYSTEMS

Cheng and Shen [7] created a novel recommender system called Just-for-me that uses a unified recommenda-
tion model that integrates audio features together with contextual factors. For the analysis of audio features,
tracks are represented by bag of audio words. These so called audio words are generated using a combination
of the first 13 MFCCs, the zero-crossing rate (ZCR) and pitch. Kaminskas et al. built a location-aware recom-
mender system to recommend suitable songs for places of interest (POIs) [71]. One of the used models was an
automated tag-based recommender system. The auto-tagger in this model uses a set of audio features that
are defined by the block-level framework (BLF) [72], which uses overlapping blocks of the Cent spectrum au-
dio representation. Chen et al. [73] analyzed the relation between emotions, through user-generated text, and
music through factorization machines. They embedded 53 audio features, including loudness, mode, tempo
and danceability that were extracted using the EchoNest API. Schedl et al. [61] combined music context and
music content in a hybrid model. For their audio features, they used various rhythmic patterns that are ex-
tracted from the audio signal. These include onset patterns and coefficients, timbral features like MFCCs and
two custom descriptors for attackness and harmonicness. These are used to estimate similarities between
songs.

Novelty. Our work belongs to the group of contextual post-filtering approaches, as explained in Subsec-
tion 2.3.3. Similarly to previous approaches, our approach uses a similar weighing function as Weight PoF [51].
However, instead of using a rating probability of relevance based on similar users, we use context specific au-
dio feature representations to measure similarity. Where Lamche et al. [74] create context models around
items, we do the opposite by creating audio feature models around contexts. Furthermore, unlike [7, 73], our
representation does not use any matrix factorization techniques or create any other latent spaces. Instead, we
use a simple vector representation which allows for straightforward distance measurements when compar-
ing songs to contexts. Our novel approach gives an interesting performance comparison to the more complex



16 2. LITERATURE REVIEW

latent models. Also, unlike Cheng et al. [7], we use readily available and standard audio features of Spotify 3

instead of creating our own based on low-level audio analysis. This makes it easier for other researchers to
use the exact same audio features for other research by just calling the Spotify API.

2.6. RE-RANKING
As mentioned in Section 2.3, traditional recommender systems output a list R of top-N recommended items
for a given user u based on predicted ratings. Often N is a relatively small number (<100), since real world
users are typically only interested in several most relevant items. These items are selected and ranked ac-
cording to some measurement. In a more formal notation, item ix is ranked higher than item i y (ix Â i y ) if
r ank(ix ) < r ank(i y ), where r ank : I → R is a function that represents the measurement as ranking criterion.

Given such a list and ranking, re-ranking approaches will change the order of the top-N recommended
items by traditional recommender systems by calculating new measurements and determining a new rank.
For such a re-ranking algorithm, R will be used as input. For each item i ∈ R, a function f will be applied
to calculate the new rank. The last step is to iteratively go through R and insert them, based on their new
ranks, in the final recommendation list RL. See Algorithm 1. This also means that an existing conventional
recommender algorithm (baseline algorithm) is needed. Chapter 4 will further describe which ones we will
be using and explain why.

Algorithm 1 General re-ranking algorithm

Input R, a set of recommended items for user u
Output RL, the same set of items as R, but in a different order

1: O ← []
2: while |R| > 0 do
3: i ← arg maxi∈R f (i ,RL)
4: delete i from R
5: append i to RL
6: return O

Function f (i ,RL) here represents a general scoring function for item i from R that will be put into O. The
re-ranking algorithm will iteratively go over all items and maximize or minimize function f . Adomavicius
and Kwon [75] for example compared five different re-ranking methods. In their Item Popularity re-ranking
approach, rank f (i ,RL) would be based on the amount of ratings for item i relative to the amount of ratings
for other items in list RL. Or for their Item Absolute Likeability re-ranking approach, rank f (i ,RL) is based
on how many users liked item i relative to how many users liked the other items in RL. Chidlovskii et al. [76]
re-ranked search results based on user feedback. The importance of keywords in the query would be re-
calculated based on user and community profiling.

In this chapter we have elaborated on existing and related research on (contextual) recommender sys-
tems, audio features usage and re-ranking. This gives us enough knowledge to take into account and use
during this research. In the next chapter, we analyze the relation between audio features and contextual
conditions. This relation is crucial for the re-ranking, since these audio features are used to represent user
preference for contextual conditions and based on this a new suitability score for each song in the initial
recommendation is calculated.

3https://developer.spotify.com/documentation/web-api/reference/tracks/get-audio-features/
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CONTEXT-AUDIO FEATURE CORRELATION

ANALYSIS

In this chapter, we analyze the distinctiveness of audio features in different contextual dimensions and con-
ditions. The goal is to answer the first sub-research question, which has been defined in Chapter 1 as:

sub-RQ1: How are contextual conditions of different contextual dimensions related to audio features?

The answer to this question indicates whether it is useful to carry-on with the current research question.
If there is no correlation, either positive or negative, between audio features and context, re-ranking based
on contextual audio features would be useless. In this analysis, audio features related to specific contexts
are gathered through the Spotify API 1. The higher the degree of correlation, the greater the confidence in
potential effectiveness of audio features as re-ranking input later on.

Section 3.1 elaborates on the used audio features and where they are extracted from. After that, an elabo-
ration of the chosen contextual dimensions is given in Section 3.2, followed by the visualizations of the results
in Section 3.3. Section 3.4 concludes this chapter by summarizing the findings and answering the first sub-
research question.

3.1. AUDIO FEATURES FROM SPOTIFY
Through the Spotify API, developers are able to retrieve different audio features for any given tracks that
is available on Spotify. Spotify is a music streaming service created in 2006. Today the day, Spotify supply
users with a low-latency library of over 50 million unique songs. Spotify has over 200 million monthly active
listeners and more than 3 billion playlists in their database [77].

The audio features endpoint from the Spotify API provides low-level audio analysis. Some features, like
’danceability’ are proprietary. In March 2014, Spotify acquired ’The Echo Nest’ with intents to further extend
their music discovery expertise. The technical underlying for the discovery engine is sustained by The Echo
Nest [78].

All audio features are precise for the input track. Most audio features are represented by a value between
the 0 and 1, often representing the confidence of that feature. Only loudness and tempo have different ranges
of values. These two are normalized so their values are also in between 0 and 1. This way, they can be con-
sistently visualized together with the other audio features. A brief description for each of the audio features
that are used in this analysis is given below. The audio features key and mode are left out, since they are not
continuous and are therefore not descriptive enough to distinguish different contexts.

ACOUSTICNESS

Measures whether a track is acoustic or not. An acoustic song is a song where solely or mainly instruments are
used that through acoustic means. This is the opposite of songs where electric or electronic means are used to
produce them. A value of 0.0 indicates that a song is is probably not acoustic, while 1.0 gives high confidence
of a song being acoustic. The overall distribution, measured over all songs in the Spotify database, is skewed
to 0.0.
1https://developer.spotify.com/documentation/web-api/
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DANCEABILITY

Describes how suitable a track is to dance to. It is a proprietary combination created by Spotify from other
musical elements, e.g. overall regularity, beat strength, tempo, rhythm stability etc. A value of 0.0 indicates
that a song is not suitable to dance to, while 1.0 indicates a very danceable song.

ENERGY

Represents the measurement of activity and intensity of a song. Energetic tracks tend to feel faster, louder
and more noisy. For example, death metal would be classified as a genre with many high energy song, while
classical piano music tend to be of lower energy. Also this feature is calculated by Spotify itself. It uses a
combination of dynamic range, timbre, general entropy, onset rate and perceived loudness. The closer to 1.0,
the more energetic a song is.

INSTRUMENTALNESS

Predicts whether a song contains vocals or not. Only spoken words and rap are in this case counted as vocals.
So sounds made by mouth, like "ooh" or "aah", are not treated as vocals. The closer a value is to 1.0, the
higher the confidence for a track containing no vocals. Generally, all songs with a value above 0.5 should be
instrumental. The overall distribution, measured over all songs in the Spotify database, is highly skewed to
0.0.

LIVENESS

Detects whether a song has been recorded in a setting where there is an audience present. The closer the
value is to 1.0, the higher the confidence of a song being recorded with audience. Everything higher than 0.8
indicates a strong likelihood of a track being live. Also here the overall distribution has a skew to 0.0.

LOUDNESS

Measures the overall loudness of a track in decibels (dB). These values are average over the full duration of a
track, so it is the relative loudness. It indicates the physical strength of a song (amplitude). Values are between
-60 and 0 dB, with a strong overall skew to 0.0. Within our own analyses we normalized these values in such a
way that they all fall between 0.0 and 1.0. Where 0.0 stands for -60 dB and 1.0 stands for 0 dB.

SPEECHINESS

Detects the presence of spoken words. The closer the value is to 1.0, the more speech there is exclusively,
e.g. audio books, podcasts or talk shows. Between 0.66 and 1.0 indicates tracks probably made up entirely of
spoken words. Tracks between 0.33 and 0.66 have both music and speech, either layered or in different parts
of the track, e.g. rap music. Values below 0.33 indicate music and other non-speech tracks. Also here the
distribution, measured over all songs in the Spotify database, is skewed towards 0.0.

VALENCE

Measures the positivity conveyed by a song. Values are between 0.0 and 1.0 and the higher the valence value,
the more positive a song is, e.g. happy, euphoric, cheerful etc. Songs closer to the 0.0 are more negative, e.g.
sad, angry, depressing. Valence shows an equal distribution, measured over all songs in the Spotify database,
generally.

TEMPO

Represents the overall beats per minute (BPM) for a song. It is the speed or pace of a song and is directly
calculated from the average beat duration. It has a normal distribution, measured over all songs in the Spotify
database, with an average around 125-130 BPM.

3.2. CONTEXTUAL DIMENSIONS AND CONDITIONS
Knowing which audio features are going to be used, the next step is to select specific contextual dimensions
together with their conditions. For this initial analysis three contextual dimensions are used, namely activity,
time of day and mood.

The reasons for choosing these three contextual dimensions are threefold. Firstly, as seen in Chapter 2,
these dimensions have been studied and used in previous research. Researchers have shown that these di-
mensions affect the listening behavior and preferences of users [55–57]. When incorporating them into rec-
ommendation algorithms, often the performance would increase [64, 65] [3, 49]. Secondly, these contextual
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dimensions exists of conditions that are straightforward and people tend to agree on songs that represent
them. For example, the mood ’sad’ or the activity ’sleeping’ have public Spotify playlists with many follow-
ers. Higher follower count indicates that more people enjoy the playlist and agree with the selection of songs
representing the specific playlist. This also imposes a limitation for certain contextual dimensions. In the
datasets that are used later on, there is, for example, a contextual dimension road type. This dimension in-
dicates the type of road the user is currently driving on, which Spotify do not have public playlists for. Last,
but not least, these are contextual dimensions that are also available in some the datasets, that are described
later on, which are used for training, validation and offline evaluation purposes. Knowing which of these con-
textual dimensions and conditions are most descriptive will help selecting the right ones for the re-ranking
algorithm.

Each contextual dimension has multiple conditions that can be applicable to a user at a specific moment.
For time of day, each user can only have one specific condition at a time. A user is either listening to music
in the morning or afternoon and not in both. For the dimensions activity and mood this is not necessarily
the case. A user can for example be walking and sightseeing at the same time, or sad and angry. When two
contextual conditions are closely related, it is not clear which condition and how it impacts user preferences.
That is why for this analysis, only distinctive and often opposite conditions are used, e.g. sad and happy for
mood or running and sleeping for activity.

Two contextual dimensions exist out of 4 conditions, while the last one has only 2 conditions. For the
activity dimension, running, walking, sleeping and focus are used as conditions. Focus here represents all ac-
tivities where a deep focus is needed, e.g. studying and reading. Time of day has been divided into four con-
ditions, namely morning, afternoon, evening and night. Morning represents roughly the moment between
6:00 and 11:59, afternoon 12:00-17:59, evening 18:00-23:59 and night 00:00-05:59. For the mood dimension
only happy and sad are used, since they are clear moods, opposites and there are many playlists available for
both.

3.3. ANALYSIS & VISUALIZATIONS
After selecting the provider, audio features and contextual dimensions, it is time to do the analysis and vi-
sualize the results. For each available contextual condition, the same approach is used in order to analyze
its audio features. The first step is to look up and select publicly available playlists that are either created by
Spotify or one of its users. These playlists all are related to the given condition, e.g. "Songs for sleeping" for
sleeping or "Sad Beats" for sad. Since everyone can just create public playlists, only playlists with at least 1000
followers are selected. This increases the confidence that the songs in these playlists are actually representa-
tive for the specific contextual condition, since so many other users agree.

For each contextual dimension a total of at least 500 unique songs are gathered, extracted from at least 4
different playlists. Table 3.1 shows the exact number of songs for each contextual condition. After collecting
these songs, all audio features are extracted, as described above, for each of the songs. These audio features
are then used to perform an independent t-test, which are described in more detail in the sub-section below.
The average value for each audio feature, based on these 500+ songs, are used in the visualizations.

The implementation of pulling data from Spotify and carrying out the analysis have been done using
Python 3 on a Windows machine. The code is publicly available on GitHub.2

3.3.1. INDEPENDENT T-TESTS
T-tests are specific hypothesis tests that are designed to compare means of two groups, which can be related
for given features. These tests tell us whether those differences might have happened because of chance or
whether they are statistically significant.

When a t-test has been carried out in Python, it returns three results. It returns the t-score, p-value and
the degrees of freedom parameter. The t-test assumes a null hypothesis where the two means are equal to
each other. The test uses the sample size and variability of both samples in order to test it against the null
hypothesis. If the t-score is 0, it means the null hypothesis is validated and that the two groups are identical.
The larger the t-score, the more different the two groups are. It basically is the ratio of difference between
the mean of the two groups and the difference that exists within those two groups. The p-value on the other
hard represents the probability of the results of the sample data happening by chance. This value is always in
between the 0 and 1. Where 0.05, for example, means that there was a 5% chance that the results happened by
chance. The lower the p-value, the more certain one can be about the results. We apply Bonferroni correction,

2https://github.com/boninggong/ContextAudioFeaturesAnalysis
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Contextual
Factor

#Songs #Playlists

Running 553 6
Walking 502 5
Sleeping 632 6
Focus 559 4
Morning 568 7
Afternoon 524 7
Evening 548 7
Night 545 4
Happy 511 5
Sad 516 5

Table 3.1: All contextual conditions together with how many songs and playlists were used for the analysis of their audio features.

since we apply many independent t-tests. 3 The last parameter is the degrees of freedom, which refers to the
sample values and their freedom to vary. This basically is essential when assessing the validity of the result
about the null hypothesis.

For each possible combination of contextual conditions within each dimension such a t-test has been
carried out. The results can be found in the tables at the end of this chapter. Audio features that show a
significant correlation (as measured using the Bonferroni corrected p-value threshold) have been made bold.
All audio features, including key, have been tested. The first and most remarkable observation is that key, as
predicted, is the worst audio feature in terms of descriptiveness. In most cases, the p-value is greater than 0.5,
which means there is a significant chance that key is not significant enough to represent specific conditions.
Below we point out the results for each contextual dimension separately.

ACTIVITY

Table 3.8 to Table 3.14 show the results for all combinations of contextual conditions within the activity di-
mension. An interesting observation is that relaxing and sleeping are relatively similar to each other, which
also applied to running and walking. On the other side, when comparing sleeping with running or walking,
the audio features are more descriptive. The same applies when comparing relaxing with walking or running.
Most audio features of these conditions have a p-value that is lower than 0.0001. This means the chance is
smaller than 0.01% that these significant differences happened by chance. When looking at the more compa-
rable pairs, like relaxing-sleeping and running-walking, we see that different audio features are descriptive.
For relaxing-sleeping for example, liveness is not a good audio feature to keep them apart. The same applies
for audio features valence and tempo for the running-walking pair.

TIME OF DAY

Table 3.2 to Table 3.7 show the results for all combinations of contextual conditions within the time of day
dimension. The first observation is that audio features for these conditions are relatively less descriptive than
they are for the conditions within activity. When looking at the comparison between morning and night for
example, once can see that for the audio features danceability, liveness, speechiness and tempo the p-value is
higher than 0.05. For loudness it is close to 0.03. This means the difference of these audio features in context
of morning as condition versus the night condition might be due to chance. Surprisingly the comparison
between morning and afternoon shows that audio features are more descriptive there. The highest p-value
there, after key, is 0.0187 for liveness. Another observation is that different comparisons between two contex-
tual conditions leads to different significance levels for the audio features. An example would be the audio
feature danceability, which is a very descriptive when comparing afternoon to evening, afternoon to night or
morning to afternoon, but not at all when trying to distinguish morning from night. This gives more uncer-
tainty when using these audio features, since there might be noise depending on which condition is being
modelled.

3There are a total of 117 tests, so we divide the usual p-value significance threshold of 0.05 by 130, resulting in a p-value threshold of
0.000385.
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MOOD

Table 3.14 shows the results of the t-test applied to the contextual conditions of happy and sad within the
mood dimension. When distinguishing happy from sad, six audio features are useful, namely acousticness,
danceability, energy, liveness, loudness and speechiness. It can be seen that valence, tempo, instrumentalness
and key are not good audio features to use when trying to distinguish these two conditions.

3.3.2. VISUALIZATIONS

For each contextual dimension there are two separate plots, one radio plot and one line plot. Each of those
two plots shows for each contextual condition the average audio features. So every condition has nine corre-
sponding audio features in each plot. They have been put in the appendix, because of their size. If the plots
would be made smaller, the distinctions between average audio features would not be clear enough anymore.
We proceed by giving a description of each plot.

Figure 3.1: Radar plot of the average audio features for each of the four possible conditions within the activity dimension.

Figure 3.2: Line plot of the average audio features for each of the four possible conditions within the activity dimension.
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ACTIVITY

The first two figures 3.1 and 3.2 are two different plots that visualize the average audio feature values for the
activity dimension with running, walking, sleeping and focus as possible conditions. A few things stand out in
these plots. Songs associated with running have higher danceability and energy levels than songs associated
with walking. However, the audio feature tempo is about the same for both. Next to this, focus songs have
significant higher instrumentalness values compared to the other three activities. A hypothesis here can be
that high instrumentalness is less distracting for the user, so it is more suitable for activities that require focus.
Focus songs also tend to have lower energy and danceability values. Songs suitable for focus and sleeping
have higher acousticness than songs for walking or running. Furthermore, the audio feature speechiness is not
a good indicator to differentiate between the conditions within activity.

Figure 3.3: Radar plot of the average audio features for each of the four possible conditions within the time of day dimension.

Figure 3.4: Line plot of the average audio features for each of the four possible conditions within the time of day dimension.

TIME OF DAY

The next plots in figures 3.3 and 3.4 are two different plots that visualize the average audio feature values for
the time of day dimension with morning, afternoon, evening and night as possible conditions. The average
audio feature value differences are smaller here compared to the results of the activity dimension, but are still
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clearly present. It can be seen that songs related to night playlists tend to be more instrumental than during
the other times. Afternoon playlists tend to be more energetic, danceable and having a positive vibe. It can
also be seen that speechiness, tempo and loudness are not very descriptive for the time of day. So even though
the difference between average audio features is smaller, time of day is a contextual dimension that is still
able to provide useful information.

MOOD

Last, but not least, the two figures 3.5 and 3.6 are two different plots that visualize the average audio feature
values for the happy and sad mood conditions. We can see that sad songs have higher acousticness, whereas
happy playlists have higher values for valence, danceability and energy. Furthermore, tempo, speechiness,
liveness and instrumentalness are not very descriptive for these two moods. The audio features of the happy
and sad conditions show a strong difference in general, which means they are suitable contextual conditions
to consider later on in the research.

Figure 3.5: Radar plot of the average audio features for each of the two possible conditions within the mood dimension.

Figure 3.6: Line plot of the average audio features for each of the two possible conditions within the mood dimension.
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3.4. CONCLUSION
The goal of this chapter was to answer the first sub-research question, which is defined as:

sub-RQ1: How are contextual conditions of different contextual dimensions related to audio features?

As can be seen from the analysis in this chapter, we can conclude that certain audio features are strong
descriptive factors to distinguish between different contextual conditions. The degree of correlation and thus
descriptiveness, is dimension and even condition dependent. The audio feature valence, as example of con-
textual dimension dependence, is significantly different enough to distinguish between all specific condi-
tions within the time of day dimension, whereas it works less well within the sad and happy condition of the
mood dimension. An example of condition dependence would be the audio feature tempo within the activ-
ity dimension. It is useful to distinguish between all possible combinations of conditions within the activity
dimension, except when trying to distinguish the running and walking conditions.

If a t-value is positive, it means that the audio feature of the first contextual condition of the pair is greater
than the same audio feature for the second mentioned condition. Also the opposite is true when the t-value
is negative. A higher t-value means indicates that the audio feature is more suitable for describing a spe-
cific condition. So some audio features are better predictors than others. Instrumentalness works relatively
well across all pairs of conditions within the time of day dimension, except when comparing afternoon with
evening. For activity it can be seen that energy is the best audio features to describe each specific condition.

Since (some) audio features are significantly correlated to certain contextual conditions, it means that it
makes sense to continue with our research by finding answer to the second and third sub-research questions
in order to answer the main research question.

Table 3.2: T-test result for all au-
dio features when comparing afternoon-
evening songs.

afternoon-evening t p

acousticness -9.78 0.0000
danceability 8.63 0.0000
energy 10.87 0.0000
instrumentalness -0.77 0.4411
key 0.18 0.8560
liveness 0.51 0.6111
loudness 8.46 0.0000
speechiness 6.99 0.0000
tempo 0.21 0.8356
valence 10.06 0.0000

Table 3.3: T-test result for all au-
dio features when comparing morning-
afternoon songs.

morning-afternoon t p

acousticness 9.59 0.0000
danceability -6.33 0.0000
energy -11.37 0.0000
instrumentalness 9.31 0.0000
key 0.24 0.8122
liveness -2.36 0.0187
loudness -11.04 0.0000
speechiness -2.54 0.0112
tempo -2.91 0.0036
valence -5.15 0.0000

Table 3.4: T-test result for all audio fea-
tures when comparing afternoon-night
songs.

afternoon-night t p

acousticness -3.47 0.0005
danceability 6.05 0.0000
energy 5.24 0.0000
instrumentalness -24.94 0.0000
key 0.05 0.9624
liveness 0.53 0.5986
loudness 13.04 0.0000
speechiness 4.00 0.0001
tempo 1.96 0.0507
valence 14.12 0.0000

Table 3.5: T-test result for all audio fea-
tures when comparing morning-evening
songs.

morning-evening t p

acousticness 0.14 0.8910
danceability 1.74 0.0824
energy -1.36 0.1726
instrumentalness 9.30 0.0000
key 0.44 0.6601
liveness -1.90 0.0573
loudness -6.34 0.0000
speechiness 5.71 0.0000
tempo -2.81 0.0050
valence 5.37 0.0000

Table 3.6: T-test result for all audio fea-
tures when comparing morning-night
songs.

morning-night t p

acousticness 4.98 0.0000
danceability -0.34 0.7336
energy -4.08 0.0000
instrumentalness -13.01 0.0000
key 0.30 0.7629
liveness -1.74 0.0820
loudness 2.19 0.0286
speechiness 1.69 0.0915
tempo -1.16 0.2462
valence 9.47 0.0000

Table 3.7: T-test result for all audio
features when comparing night-evening
songs.

night-evening t p

acousticness -4.95 0.0000
danceability 2.11 0.0347
energy 3.10 0.0020
instrumentalness 25.73 0.0000
key 0.14 0.8862
liveness -0.05 0.9626
loudness -8.71 0.0000
speechiness 4.80 0.0000
tempo -1.79 0.0732
valence -3.78 0.0002
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Table 3.8: T-test result for all audio fea-
tures when comparing relaxing-sleeping
songs.

relaxing-sleeping t p

acousticness 3.99 0.0001
danceability -5.64 0.0000
energy -4.04 0.0001
instrumentalness 5.70 0.0000
key -0.54 0.5907
liveness -0.19 0.8467
loudness -7.14 0.0000
speechiness -3.97 0.0001
tempo -2.73 0.0065
valence -4.50 0.0000

Table 3.9: T-test result for all audio fea-
tures when comparing relaxing-walking
songs.

relaxing-walking t p

acousticness 21.41 0.0000
danceability -17.32 0.0000
energy -23.79 0.0000
instrumentalness 19.07 0.0000
key -2.67 0.0078
liveness -6.48 0.0000
loudness -20.29 0.0000
speechiness -8.00 0.0000
tempo -8.46 0.0000
valence -21.43 0.0000

Table 3.10: T-test result for all audio fea-
tures when comparing running-relaxing
songs.

running-relaxing t p

acousticness -45.53 0.0000
danceability 24.24 0.0000
energy 49.48 0.0000
instrumentalness -17.03 0.0000
key 1.96 0.0501
liveness 9.13 0.0000
loudness 28.69 0.0000
speechiness 12.03 0.0000
tempo 10.40 0.0000
valence 23.95 0.0000

Table 3.11: T-test result for all audio fea-
tures when comparing running-sleeping
songs.

running-sleeping t p

acousticness -35.88 0.0000
danceability 20.20 0.0000
energy 41.98 0.0000
instrumentalness -10.43 0.0000
key 1.55 0.1218
liveness 9.65 0.0000
loudness 20.21 0.0000
speechiness 8.46 0.0000
tempo 7.10 0.0000
valence 22.32 0.0000

Table 3.12: T-test result for all audio fea-
tures when comparing running-walking
songs.

running-walking t p

acousticness -13.67 0.0000
danceability 7.84 0.0000
energy 15.57 0.0000
instrumentalness 3.09 0.0021
key -0.67 0.5018
liveness 2.63 0.0087
loudness 12.52 0.0000
speechiness 2.82 0.0050
tempo 0.45 0.6515
valence 1.14 0.2531

Table 3.13: T-test result for all audio fea-
tures when comparing walking-sleeping
songs.

walking-sleeping t p

acousticness -16.96 0.0000
danceability 12.73 0.0000
energy 19.89 0.0000
instrumentalness -12.37 0.0000
key 2.29 0.0224
liveness 6.79 0.0087
loudness 12.34 0.0000
speechiness 4.81 0.0000
tempo 5.77 0.0000
valence 19.73 0.0000

Table 3.14: T-test result for all audio fea-
tures when comparing happy-sad songs.

happy-sad t p

acousticness -25.56 0.0000
danceability 14.76 0.0000
energy 26.92 0.0000
instrumentalness -1.28 0.2026
key 0.25 0.7999
liveness 6.04 0.0000
loudness 18.52 0.0000
speechiness 7.14 0.0000
tempo 0.71 0.4784
valence 22.37 0.2531
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METHODOLOGY

Chapter 3 showed us that there exists a significant correlation between audio features and contextual con-
ditions. This means we can carry on addressing sub-research questions 2 and 3. This chapter describes our
research methodology and how it is designed in order to answer our questions. Section 4.1 starts by giving an
overview of existing datasets together with a detailed description of the evaluation and the selection process.
Next, Section 4.2 describes the selection process of the initial recommender algorithms to be used in our ex-
periment. The idea of the experiment is briefly described in Section 4.3. Last, but not least, we explain which
evaluation metrics there exists in Section 4.4.

4.1. DATASETS EVALUATION & SELECTION
In order to answer the research questions, a solid recommender system and re-ranking model need to be
build. An important aspect to consider is the quality of the data that goes in the system. It does not matter
how superb an algorithm or system might be, if the data does not meet some minimal quality requirements,
the output is still meaningless.

4.1.1. CRITERIA FOR THE DATASETS
In our research music recommendations in specific contexts are the focus, thus useful datasets would be
ones containing songs, users, contexts and, not least important, interactions between users and songs. Next
to these factors, it would be preferable to have datasets that are both dense and contain a proper amount of
songs and users. Both are needed in order to do meaningful analysis. Suppose a dataset contains 1000 users
and 1000 songs, but every user only has rated 1 unique song. This dataset would be useless, since it is too
sparse to extract any useful information. Now suppose the opposite situation, having a dataset with 10 users
and 50 songs, where each user has rated 10 unique songs. This would be slightly better, since it is possible
to build initial user and song models. Still, the dataset itself is so small that the obtained results could have
easily be influenced by some random factors.

Regarding contexts, it would be nice to have multiple contextual dimensions with even more conditions.
The re-ranking algorithm, which will be described in Chapter 5, is a general algorithm that work with any type
of contextual input. So having different contexts, e.g. time, activity, weather etc., would be useful for three
reasons. First, it would allow for comparison across dimensions, for relevance as well as impact. Second,
it would show that the re-ranking algorithm is able to work with any context. Last, but not least, it would
increase the robustness and certainty of the results, since it is based on different contexts from different
datasets.

The interactions of users with specific songs can be divided into two types, explicit and implicit feedback.
The next section describes each more in depth. Existing baseline recommender systems can deal with both
types of data. However, explicit feedback data is preferred, since it provides more information and certainty
regarding how much a user likes a song.

4.1.2. EXPLICIT VS IMPLICIT FEEDBACK DATA
The main distinction between explicit and implicit feedback is what the data represents. Explicit feedback
exists of explicitly indicated preferences by users regarding their interaction with/interests in certain items.

27
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An example would be a user who gives a movie a rating between 1 and 10 on IMDB. In our context of music,
an example would be a user who rates a song between 1 and 5 after listening to it. Implicit feedback, on
the other hand, only indirectly reflects the preference of a user through observations of the behavior of that
user [34]. The domains from which these reflections can be gathered are diverse, e.g. viewing history, click
history, duration of interaction etc. An example would be a user who keeps buying books from the same
author on Amazon, without giving the books an explicit rating. An example in the context of music would be
a user who tweets about a song he or she is listening to at this moment. Table 4.1 gives a compact overview of
the characteristics of both.

Explicit Implicit
Accuracy High Low
Availability Scarce Abundant
Context-sensitive Yes Yes

User Expression
Positive, neutral
and negative

Positive only

Measurement reference Absolute Relative

Numerical interpretation User preference
User preference
confidence

Evaluation metrics
Prediction accuracy,
decision support and
ranking based

Only decision support
and ranking based

Table 4.1: Characteristics of both explicit as well as implicit feedback dataset.

The greater part of previous research are surrounded around processing explicit feedback. This is proba-
bly because explicit feedback is less noisy, thus more accurate, and more practical to use [34]. Implicit feed-
back is based on interpretations of tracked user behavior. These interpretations can, in most cases, only be
guessed. If a user listens to a full song for example and tweets about it, we interpret this as positive feedback.
The user, however, could have tweeted about it because he or she found the lyrics controversial or have some
other negative remarks about the song. The same applies to the example where user purchases are tracked,
what if the purchase was a present or if the user did not like the item after receiving it?

This also brings us to the different degrees of expressivity of the types of feedback. Whereas in explicit
feedback systems, a rating of 1 out of 10 indicates a negative user experience, in an implicit feedback system
we only identify positive user experiences. So explicit datasets have the benefit of containing clear positive
and negative user preferences. On the other hand, implicit data can be measured relatively from little positive,
where there is only 1 historic interaction, to positive extremity, where a user, for example, listened to a song
100 times before. Explicit feedback is in this case absolute, since an absolute scale is used, independent
whether a user listened to a song 1 time compared to 100 times. It also means that the numerical values for
both types of feedback have to be interpreted differently. Explicit feedback indicates to what extend a user
likes or dislikes an item, whereas the number in implicit feedback indicates how confident we are that (and
to some some extend also how much) a user actually liked an item.

Even though explicit feedback is more accurate, it is not more readily available compared to implicit feed-
back [79]. To collect explicit data, users need to actively interact with a system, indicating their explicit prefer-
ence with each item that they have interacted with. For implicit data, the system needs to track user metrics,
from which preference is deducted. Gathering implicit feedback, thus, forms less of a barrier for users.

The music datasets that we have to our availability contain a mix of explicit and implicit feedback. Despite
all the above-mentioned differences, both are sensitive to the context of a user [79]. Since our research is fo-
cused on how contextual information, together with audio features, can be included in a re-ranking algorithm
to impact recommendations, it means that both types of datasets are suitable for our experiment.

4.1.3. OVERVIEW AND ANALYSIS OF POTENTIAL DATASETS
Ideally, we would have multiple datasets meeting all of our requirements described previously. However,
realistically, it is already very hard to find one such high quality dataset fulfilling all requirements. After thor-
oughly searching the internet and reaching out to relevant researchers in comparable fields, five (semi-)public
datasets were found that all contain users, songs, interactions and contextual information. Table 4.2 gives an
overview of these datasets together with the source and some properties. Below we give an in-depth anal-
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ysis and evaluation of these datasets. We also elaborate on the final selection of datasets to be used in the
re-ranking experiment.

Dataset #Ratings #Users #Songs
#Contextual

factors Source
#NowPlaying-RS [80] 11,639,541 4,150,615 346,273 7 Twitter + Spotify API
MMTD [2] 1,086,808 215,375 133,968 11 Twitter
InCarMusic [63] 4012 66 139 8 Own experiment
Yahoo! Music [3] 262,810,175 1,000,900 624,961 2 Yahoo! Music Radio Service
MMG [81] 8370 70 ∼4000 10 Own experiment

Table 4.2: Overview and comparison of existing music recommendation datasets that contain contextual factors

#NOWPLAYING-RS
This dataset is created by Poddar et al. [80]. This dataset is an enriched version of a subset of the underlying
#NowPlaying dataset, which was originally compiled by Zangerle et al. [82]. The listening events (LEs), which
are a combination of user-song pairs, in this dataset were crawled from Twitter, each LE being extracted from
individual unique tweets. Listening events were identified using the NowPlaying hashtag that users used to
tweet about songs. The original #NowPlaying dataset only contained basic LE information, like timestamp,
track, artist.

Poddar et al. used the subset of all LEs of the year 2014. They used the Twitter API1 to add additional
information of the user of the tweet, like tweet language, geolocation and time zone (when they are available).
Also, the hashtags within each tweet got extracted, these could serve as contextual indicators for example.
They then proceeded to extract affective contextual information using these hashtags. This was done through
application of an unsupervised sentiment dictionaries. Multiple dictionaries were used, like AFINN [83],
Opinion Lexicon [84] among others. Next to this, they also extracted the audio features for each unique track
through the Spotify API. The track API was first used to match the right track and artist, from which they took
the Spotify-ID to then extract the audio features. The audio features instrumentalness, liveness, speechiness,
danceability, valence, loudness, tempo, acousticness, energy, mode and key were included.

Initial analysis of the hashtags within the dataset showed that most tags do not provide any additional
information regarding the user's context. The top 10 most frequent occurring tags are depicted in Table 4.3.
We can see that none of them are context related. When looking at contextual hashtags, the occurrences are
very volatile, ranging from only 10 occurrences to 1852. They are depicted in Table 4.4.

Tag Occurrence
nowplaying 11,089,013
listenlive 2,794,285
music 166,242
np 114,115
radio 111,469
chicagomusic 87,660
tunein 87,647
hitmusic 68,374
anghami 63,483
kiss92 56,546

Table 4.3: Top 10 most frequent occurring tags within the
#NowPlaying-RS dataset

Context related tag Occurrence
morning 1750
afternoon 5
evening 2
night 1852
happy 147
sad 27
workout 40
running 10
working 35
gaming 1657

Table 4.4: Random 10 contextual tags and their frequency within
the #NowPlaying-RS dataset

Next to the scarcity of contextual information within this dataset, we’re also missing any explicit user
feedback. The dataset, gathered from tweets, only indicates that a user is listening to a specific track at the
moment of tweeting about it. It does not say whether a user likes it or not, let alone to which extent. Metrics
like listening duration are also not present, which limits the type of recommendation algorithms that can be
used as baseline. One way to use this implicit feedback dataset is with the assumption that listening events
indicate positive user feedback.

1https://developer.twitter.com/en/docs/tweets/search/api-reference
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MILLION MUSICAL TWEETS DATASET (MMTD)
MMTD has been put together by Hauger et al. [2]. They crawled the Twitter Streaming API2 from Septem-
ber 2011 to April 2013. This API radonmly gives 1% of all tweets. Within these tweets, only tweets contain-
ing music-related hashtags were kept. Hashtags like #nowplaying, #itunes, #thisismyjam etc. were used.
This means that also this dataset, like the #NowPlaying-RS dataset, is based on implicit feedback. Tracks,
timestamp and artists were extracted from the content of the tweet as well. They also extracted the genre
by querying Last.fm using the artist and song information. Next to these, Mapquest3 was used to map the
geo coordinates of the tweets to cities and countries and GeoNames4 to get the time zones based on these
coordinates. Figure 4.1 shows the statistics of the countries created by Hauger et al.

Since this dataset has been gathered in a comparable way to #NowPlaying-RS, it is very similar. Both
contain enough listening events, unique users and tracks, but MMTD contains less contextual information.
It does not have the audio features and affective representation that the #NowPlaying-RS dataset contains.
This is the reason we decided not to look further into and analyze this dataset.

Figure 4.1: Top 20 countries measured by user frequency on the left and amount of tweets on the right [2].

INCARMUSIC

Baltrunas et al. [63] created a context-aware mobile music player as well, but with a more specific focus for
users that are in a car. They have created InCarMusic, an Android application offering song recommenda-
tions based on current contextual (driving) conditions. Since it is hard to collect user ratings while driving,
they created a separate Web application that users had to use beforehand to collect ratings during certain
driving situations. During this process, users had to imagine being in a certain contextual situation and give
ratings based on this situation. The interesting part of this dataset is the type of contextual dimensions and
conditions. Most of them are driving related, e.g. driving style, road, landscape, traffic etc. This dataset has
both benefits as well as drawbacks. An advantage is that these conditions might be able to show new under-
lying relations between audio features and user preferences. One drawback is that the ratings are obtained
in a simulation environment, which might be slightly off from real world scenarios. Another drawback is that
since most contextual dimensions and conditions are very different from the contextual factors of the other
datasets, the results can not be directly compared to each other. Also, this dataset is relatively sparse, so it
might be hard to extract strong underlying relationships.

After obtaining this dataset, we proceeded to do some initial analysis. When only taking ratings and users
that actually had at least one contextual factor, we were left with 42 users, 139 songs and 1742 ratings in

2https://dev.twitter.com/docs/streaming-apis
3http://www.mapquest.com
4http://geonames.org



4.1. DATASETS EVALUATION & SELECTION 31

total. There were a total of 8 context dimensions, namely weather, trafficconditions, sleepiness, roadtype,
naturalphenomena, mood, landscape and drivingstyle. These 8 dimensions have a total of 26 conditions,
with each dimension having between 2 and 4 unique conditions. Table 3.1 shows all dimensions with their
respective conditions. The average rating is 2.6, with a standard deviation of 1.4. The rating distribution is as
follows: 487 x 1.0, 372 x 2.0, 360 x 3.0, 283 x 4.0, 196 x 5.0.

Contextual Dimension Contextual Conditions
Weather sunny, snowing, rainy, cloudy
Traffic condition traffic jam, lots of cars, free road
Sleepiness sleepy, awake
Roadtype city, serpentine, highway
Natural phenomena night, morning, day time, afternoon
Mood sad, lazy, active, happy
Landscape urban, mountains, country side, coast line
Driving style relaxed driving, sport driving

Table 4.5: All the contextual dimensions with their conditions of the InCarMusic dataset.

This dataset has a nice wide variety of contextual dimensions and conditions so we decided to further
analyze how suitable it would be for testing the personalized model later in the experiment. As described in
Section 4.3, in order to accurately answer the third sub-research question a dataset with enough individual
user ratings is needed. This means that in a good dataset each user should have at least a few positive ratings
for different conditions in multiple dimensions. For this evaluation we calculated the average amount of pos-
itive ratings for each contextual condition per user. The results are shown in Table 4.6. The average amount is
of ratings per user per condition is in 10 out of 26 cases even under 1. Some dimensions, like drivingstyle and
landscape, have conditions with a value higher than 1, but these are still under 2, which means that probably
a few users have multiple ratings in these conditions but many have only 1 or none at all. So it would be hard
to test the personalized model accurately with this dataset.

Contextual Condition Avg #ratings/user Contextual Condition Avg #ratings/user
sunny 1.14 traffic jam 0.74
snowing 0.95 lots of cars 1.38
cloudy 1.14 free road 1.31
rainy 0.95 sleepy 0.64
night 1.24 awake 0.94
morning 1.10 sad 0.83
afternoon 1.12 lazy 0.86
day time 0.88 active 0.93
city 1.31 happy 1.07
urban 1.10 sport driving 1.62
mountains 1.33 relaxed driving 1.62
country side 0.90 serpentine 1.31
coast line 1.33 highway 1.70

Table 4.6: The average amount of ratings per user for each contextual condition measured over the whole InCarMusic dataset

YAHOO! MUSIC

Dror et al. describes the KDD-Cup 2011 challenge as an open community challenge to predict user music
preference using the Yahoo! Music dataset [3]. The competition is of less relevance to us. The dataset however,
is more interesting. For the context, two datasets were created, namely Track1 and a smaller dataset Track2.
They are similar except that Track2 omits times and dates. We proceed to describe Track1, other research also
primarily describes.

The dataset was created from the Yahoo! Music online music radio stations by gathering user data be-
tween 1990 and 2010. It was one of the earlier music streaming services available online. The service was free
with advertisements in between, users could remove them by upgrading to a premium membership. Users
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were also able to give ratings to songs and artists based on a five star system. The system behind Yahoo! Music
would then use this information to create more suitable recommendations. In the end, a total of more than
260 million ratings, 600 thousand songs and 1 million users were collected. They made sure that each user
and song have at least 20 ratings in this set. Figure 4.2a and Figure 4.2b, obtained from the paper by Dror et
al. [3], show the distribution of how many ratings users gave and how many times songs have been rated. As
can be seen, they follow a power-law distribution where a few very popular songs have exponentially more
ratings and a few users who use the service a lot and giving out many ratings.

(a) Song Distribution. (b) User Distribution.

Figure 4.2: Both the distribution of users as well as songs show a power-law distribution [3]

Since users had to give rating ranging from 1 to 5, this dataset is made up of high quality explicit feedback.
However, contextual factors in this dataset are more limited. As far as we know, only the timestamp is available
as contextual factor. We were not able to get our hands on the full dataset. A request to the relevant Yahoo
department has been made, together with a reminder, but without any success.

MOBILE MUSIC GENIUS (MMG)
Schedl et al. [81] created a context-aware mobile music player, namely Mobile Music Genius (MMG) for
their research into context-aware music recommendations. It is an Android application which uses a SQLite
database to store data. In the background the application unobtrusively gathers several contextual attributes
of users during usage. Next to these automatically gathered factors, users also have the option to enter their
activity and mood for each track that is currently being played.

Through their own experiment, they harvested contextual data regarding users context for two months. A
total of 70 people signed up, foremost students from the Johannes Kepler University Linz. Out of these 70, 42
actually produced contextual data. 8000 listening events were recorded during this time. During this time,
students were allowed to use their own music collection in order to minimize artificial adaptation of music
listening behavior of users. Contextual factors that were gathered include date, time, weather, activity, mood
and all kinds of factors related to the state of the phone, e.g. wifi, battery, bluetooth status etc. The top 10
of most frequent contextual factors, as they are classified by Schedl et al., are depicted in Table 4.7. Some
contextual conditions like relaxing and traveling have a good amount of occurrences. However, they differ
quite a lot, studying only has 128 for example, this would make a direct comparison unfair.

The contextual values would suite our needs. However, also this dataset does not contain any explicit
feedback of users regarding the songs they listened to. They did keep track of and provide listening duration,
but on closer inspection, only a fraction of the listening events actually have it. The top 10 most frequent
listening durations are shown in Table 4.8. As can be seen, the occurrences decrease significantly when going
down the list. Actually, close to 90% of all the data does not contain any listen duration at all. On even closer
inspection, the listening events containing duration only comes from 2 specific users, users with ID 3 and 5.

4.1.4. SELECTION OF DATASETS
The previous sections presented five different datasets and elaborated on the creation of them and which
properties they have.

For our research we strongly focus on building models that use contextual conditions to re-ranking rec-
ommendations. So in that sense, high quality and diverse contextual information is important when selecting
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Context Occurrence
unspecified 3842
relaxing 950
traveling 916
working 813
sports 608
shopping 209
eating 147
studying 128
partying 111
falling asleep 58

Table 4.7: Top 10 most frequent occurring contextual factors within
the MMG dataset.

Listening duration Occurrence
unspecified 7372
100 495
0 80
1 54
2 34
3 25
4 18
9 16
7 13
5 12

Table 4.8: Top 10 most frequent occurring listening durations
within the MMG dataset.

datasets. Preferably having a big enough amount of listening events, users and songs that give more confi-
dence in the underlying relations in the dataset. In the end, we selected to use the InCarMusic by Baltrunas
et al. [63] and the #NowPlaying-RS datasets by Schedl et al. [81] for our research.

When selecting the most suitable datasets, we took all the requirements described in Section 4.1 into
account. One of the most preferred features is that the dataset has explicit user feedback, e.g. a rating between
1 and 5. This would allow us to run a much bigger group of recommendation algorithms, which would in turn
give us more insights in the performance of our re-ranking algorithm. From the five datasets described, only
the Yahoo! Music [3] and InCarMusic datasets have explicit user feedback.

The Yahoo! Music dataset is the most comprehensive dataset, but is limited to only time and day of week
as contextual dimensions. This is not too big of a problem, but we were also not able to get it from Yahoo
or other sources, so we decided to leave this and move on to the other accessible datasets. The InCarMusic
dataset has a wide variety of contextual dimensions which can be valuable to our research. The one main
drawback of this dataset is that it is sparse. Having only 42 users with contextual information, it would not be
too reliable to model underlying relationships. So for the second dataset we would need one with significantly
more users, songs and listening events.

We’re left with the MMTD, MMG and #NowPlaying-RS datasets. The MMG dataset includes a wide variety
of contextual dimensions. However, the lack of consistency of occurrences for specific contextual conditions
is concerning. This would not form a stable foundation for running a re-ranking algorithm on. The amount
of users, songs and listening events here are slightly better than the InCarMusic dataset, but still not good
enough for our needs. So this dataset is discarded as viable option. The MMTD dataset used the same extrac-
tion and creation method as the #NowPlaying-RS dataset. Both of them scraped tweets and used hashtags to
determine whether the tweets represented a listening event. The #NowPlaying-RS dataset has been enriched
with sentiment values and audio features and is in itself more comprehensive compared to MMTD. MMTD
has been created from tweets between 2011 and 2013, while the underlying tweets in #NowPlaying-RS were
gathered in 2014. That is why we decided to include the #NowPlaying-RS dataset. Even though it is an im-
plicit feedback dataset, with limited contextual dimensions, it can still be valuable by providing underlying
relations that can be modelled in our re-ranking algorithm. The size of the dataset also makes the relationship
mapping and thus the re-ranking results more reliable.

4.2. INITIAL RECOMMENDER ALGORITHM SELECTION
In order to use and compare our re-ranking algorithm, initial recommender algorithms are needed. In the
literature review (see Chapter 2) an extensive list of both traditional as well as contextual recommender algo-
rithms was given. Traditional algorithms are used to create initial recommendation lists, which are input for
our re-ranking algorithm. Contextual algorithms have two purposes. The first is the same as the traditional
algorithms to create input for the re-ranking algorithm. The second is that they act as baseline comparison
for our re-ranking results. Since they already include context, it is interesting how our audio features based
contextual re-ranking compares against contextual algorithms. One might argue why we would contextually
re-rank a contextual recommender algorithm. Here we can say that our re-ranking algorithm is different since
our re-ranking uses underlying audio features of contextual information.

The selection of the recommender algorithms to be used is dependent on three factors. First and most
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important, there needs to be an implementation of the algorithm that can be easily run with custom data. To
implement all the algorithms ourselves is not feasible and lies outside of the scope of this research. Second,
the algorithm needs to be compatible with the type of feedback in the dataset. Some recommender algo-
rithms only work with explicit feedback, running an implicit feedback dataset using it would not make any
sense. Last, the selection should be based on the general performance of the algorithm. Comparing the re-
ranking output to only the worst performing algorithms would not provide much information. On the other
hand, only comparing to best in class algorithms can marginalize the actual performance of the re-ranking
algorithm.

So in the ideal situation, we would have multiple recommender algorithms, both traditional as well as
contextual. It should be easily available for usage (there is an existing implementation), be suitable for the
type of dataset (explicit or implicit feedback) and have a decent performance. Chapter 6 describes which
algorithms are used for the experiment in the end.

4.3. EXPERIMENT
After having selected the most suitable datasets and initial recommender algorithms, the next step is to de-
sign and implement the re-ranking algorithm. The previous chapter has shown us that there is a correlation
between audio features and contextual conditions and is something to take into account when designing the
re-ranking algorithm. An example would be that the re-ranking algorithm uses the degree of correlation to
give weights to specific conditions and/or audio features, since not all of them are significant. Chapter 5 gives
a detailed description of the re-ranking algorithm that we created to answer our research questions.

The next step after designing the algorithm is to actually implement it and evaluate its performance. There
are many programming languages available out there, but are using Python 3 to implement the whole exper-
iment pipeline, including the re-ranking algorithms and any data preprocessing if necessary. There are two
main reasons for this choice. The first is that it is our most proficient language. Second, because of its growing
usage and popularity, there are many ready to use libraries. The pandas5 library, for example, is very useful for
processing and analyzing data. Next to this, it is also a good language to handle big amounts of data, which is
useful if one of the bigger datasets are used.

The output of the initial recommendation is used as input for the re-ranking algorithm. Depending on the
libraries/framework used, the output might have different structures. Here we make sure to use open-source
libraries as much as possible. This gives the flexibility to make our own changes and tweaks to the underlying
code, in order to have the output in the desired structure. Having a consistent initial recommendation list
makes it much easier to implement the re-ranking system.

All previously mentioned steps create and output the initial recommendation list together with its re-
ranked version. The last step is to evaluate all the recommendation lists based on some kind of evaluation
metrics. The next section gives a detailed description of which evaluation metrics are commonly used and
how they work exactly. This evaluation we will also implement using Python 3, since the re-ranked recom-
mendation list are given as output by the re-ranking system already.

4.4. EVALUATION
It is important to measure the quality of both the re-ranked recommendation list as well as the initial rec-
ommendation list to get an idea of how the re-ranking algorithm is performing. This can be done through
several metrics that measure accuracy or relevance. Many metrics exists, each with their own benefits and
drawbacks in specific situations. This section proceeds to describe some of the most common ones that are
found in literature.

4.4.1. PREDICTION ACCURACY METRICS

The mean average error (MAE) is a straightforward way to measure prediction accuracy. It measures the
average magnitude of errors in a given set of predictions. The formula is the average of all absolute differences
between the actual value and the predicted value, where each difference has the same weight. The MAE is
defined as follows:

M AE = 1

|R|
∑

rui∈R
| f (u, i )− rui | (4.1)

5https://pandas.pydata.org/
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R stands for the test set. Each item within the test set contains user u, item i and the actual rating rui of this
user for the given item. Furthermore, f (u, i ) is the prediction function that outputs a predicted rating of user
u for item i .

Another common metric is the root mean squared error (RMSE), it is a metric that is usually used to
evaluate regression problems. It is very similar to the MAE, except that it does not weigh each difference
equally. The RMSE gives relatively high weight to larger errors, which means that it is more useful when large
errors are undesirable. The RMSE is defined as follows:

RMSE =
√

1

|R|
∑

rui∈R
( f (u, i )− rui )2 (4.2)

Here the symbols refer to the same data as with the MAE. MAE and RMSE are examples of statistical accu-
racy metrics. In those metrics, actual ratings are needed. However, those ratings are not in all cases available.
If a ranking based recommendation algorithm is used, in the case of a dataset that does not contain any
rating information for example, then the output will give arbitrary numbers and create a recommendation
sorting these numbers. These numbers do not represent any rating prediction. Thus, there is no prediction
to calculate the prediction accuracy.

4.4.2. DECISION SUPPORT ACCURACY METRICS
Luckily, there are decision-support accuracy metrics, which measure how well a recommender system can
predict which items are relevant [6]. These metrics do not look at how accurate the prediction is, instead
they only look at whether the items are relevant and how they are classified by the output. The following four
classifications are used for prediction results:

Recommended Not recommended
Relevant True Positive (TP) False Negative (FN)
Not relevant False Positive (FP) True Negative (TN)

Table 4.9: Overview of possible results for made recommendations regarding an item for a specific user

In the ideal situation, one would have 100% TPs and TNs, without any FPs and FNs. In pratice, there
are almost always FPs and FNs. The goal then is to try to minimalize FPs and FNs and maximalize TPs and
TNs. Accuracy, precision and recall are such decision-support accuracy metrics that uses this classification
to measure the prediction accuracy. The three of them are defined as follows:

Accur ac y = (#T P +#T N )

(#T P +#T N +#F P +#F N )
(4.3)

Accuracy is the most general metric of the three, measuring how many right predictions are made relative
to the amount of predictions.

Pr eci si on = #T P

(#T P +#F P )
(4.4)

Precision measures how many right predictions are made out of all the positive predicted items.

Recal l = #T P

(#T P +#F N )
(4.5)

Recall measures how well the model does in terms of not leaving out items that should have been classified
as relevant.

As can be seen from the given equations above, precision and recall influence each other. F-measure is a
metric that summarizes the two into one equation:

Fβ = (1+β2)∗ pr eci si on × r ecal l

(β2 ×pr eci si on)+ r ecal l
(4.6)

Here, β is used to control the importance of precision compared to recall. A β of 0.5 means precision is
more important, 1 means equally important and 2 means recall is more important.

Two other popular decision-support accuracy metrics are the hit-rate and hit-rank. Hit-rate evaluates
how many items that are pre-defined as relevant to the user, were also found in the final recommendation
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list [85]. However, the hit-rate is insensitive to ranking and permutations. Which means that a hit in the first
position is treated equally well as a hit that occurs in the nth position. This is undesirable, since earlier hits of
recommended items have more impact on users. Therefore, the hit-rank is created to deal with this limitation
of the hit-rate [86]. It is defined as follows:

hi t − r ank = 1

m

h∑
i=1

1

pi
(4.7)

Here, m stands for the total number of users and h represents the number of hits within the final recom-
mendation list, which occurred at positions p1, p2, ..., pn

So the first two focus on the accuracy of the predictions made by the recommendation algorithm. The
decision-support accuracy metrics following them look at relations between whether items are relevant and
whether they are predicted as relevant. Those two fall short when dealing with recommendations where the
rank is of importance.

4.4.3. RANKING BASED ACCURACY METRICS
This third category of measurements focus on how highly ranked relevant items relatively are. These are the
so-called ranking based metrics. We describe the mean reciprocal rank (MRR), mean average precision (MAP)
and normalized discounted cumulative gain (NDCG) below [87].

MEAN RECIPROCAL RANK

MMR is the simplest of the three. It measures the accuracy based on the position of the first relevant item.
Given a recommendation list where the first relevant item is located at position k, then the MRR for that query
is 1

k . It only looks at the first found relevant item and ignores subsequent relevant items in the recommen-
dation list. The MRR over several recommendation lists is given by taking the average of all individual MRR
scores. It is formally defined as follows:

MRR = 1

|U |
∑

u∈U

1

ku
(4.8)

Where ku stands for the rank of the first relevant item in recommendation list u. U is the set that contains
all recommendation lists.

MEAN AVERAGE PRECISION

Before the MAP can be defined, precision at position k (Prec@k) and average precision (AP) needs to be
defined.

Pr ec@k(u) = #{r elevant i tems i n top k posi t i ons}

k
(4.9)

Here u stands for a given recommendation list. So Prec@k looks at relatively how many relevant items
there are in the top k items. After having this definition, the AP is defined as:

AP (u) =
∑m

k=1 Pr ec@k(u)∗ lk

#{r elevant i tems}
(4.10)

Where m indicates the total amount of items, lk is a binary value for whether the item is relevant (1) or
not (0) and u represents the recommendation list. The MAP can then be defined as the mean value of all APs
over all recommendation lists. Both the AP and MAP can also be calculated at position k. To do this, the AP
only measures over the top k items instead of all m items and the denominator uses the amount of relevant
items in the top k items instead of all relevant items.

MAP is different from MRR that it looks at the rank of all or multiple relevant items relatively to their
positions instead of only the first relevant item.

NORMALIZED DISCOUNTED CUMULATIVE GAIN

Before defining NDCG, the discounted cumulative gain (DCG) needs to be defined. The online blog by Taifi [4]
has a nice and elaborate illustration, which is depicted by Figure 4.3, of all the components that build up to
the NDCG.

The goal of NDCG is similar to the MAP metric. Both of them give higher scores when relevant items are
ranked higher in the recommendation list. The main differnce is that NDCG further tweaks this by looking
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Figure 4.3: The different parts of which the NDCG is made up [4].

at how relevant items are. High relevance items should be higher ranked than low relevance, but still rele-
vant, items, which should again be higher than not relevant items. So the NDCG is a particularly good fit for
datasets that contain indications of how relevant items are.





5
PROPOSED RERANKING STRATEGY

In Chapter 1, the following two sub-research questions were defined:

sub-RQ2: How does re-ranking, based on audio feature representations of user preferences in different con-
textual conditions, affect music recommendation accuracy?
sub-RQ3: How do global audio feature representations of user preferences in different contextual conditions
affect the re-ranking results compared to personalized audio feature representations of user preferences in
the same contextual conditions?

We design a re-ranking algorithm together with global and personalized user preference models to adress
the questions above. In this chapter, we start by describing the global model in Section 5.1 and the personal-
ized model in Section 5.2. We describe the design of our re-ranking algorithm in Section 5.3, while Section 5.4
describes all adjustable parameters. Section 5.5 describes an opposite version of our re-ranking algorithm
to strengthen our experiment and evaluation results. Finally, Section 5.6 occludes this chapter by stating
potentially interesting ideas to test in the future.

5.1. GLOBAL MODEL
The first of the two models is called the global model. It’s called global, since it utilizes all user ratings within
the whole dataset to create user preference representations. These representations are created for each con-
textual condition using vectors of audio features.

For each unique contextual condition, the model goes through historical ratings in the training set for all
users that previously have listened to a song while in this condition. In the case of explicit feedback data, a
certain threshold is set to only include positively rated songs, e.g. if the ratings are on a scale from 1 to 5,
only ratings higher than or equal to 3 are included. In the case of implicit datasets, all listening events are
included. Here the assumption is made that whenever a user fully listened to a song, he/she likes that song.
The decision to only including positively interacted songs is done to ensure that the model represents what
users like in a specific condition. This also reduces noise, since the audio features of negatively interacted
songs are excluded.

After extracting each positively interacted songs per condition, we gather all audio features of these songs.
If the dataset does not already include the audio features or has missing values, we add them through usage
of the Spotify API. In the, rather unlikely, case where the song can not be found through the Spotify API, we
leave it out completely in our experiment. The audio features that are used to model the condition are the
same ones as described in Section 3.1. For each audio feature, the average is calculated by taking the sum
of all audio features of the selected songs and dividing it by the amount of selected songs. Thus, the global
model can be represented as follows:

~GMck = [a1, a2, . . . , an] = 1

|Sck |
· ∑

s j ∈Sck

~s j , (5.1)

where ~GMck is a vector representing the global model for contextual condition ck , and computed by using
the songs from set Sck that contains all |Sck | positively interacted songs in condition ck . ~GMck is simply the

39
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centroid of the vectors of the all songs s ∈ Sck . To make everything described above more concrete, we provide
an example. Let’s say the 3 audio features of energy, tempo and acousticness are used to model user prefer-
ences. We could have ~GMc1 = mor ni ng = [0.32,0.44,0.82] and ~GMc2 = eveni ng = [0.78,0.66,0.21]. What this
example tells us is that, based on all users, there is a preference for more energetic songs with a higher tempo
in the evening than morning, but higher accousticness songs are preferred during the morning. Since we are
using the audio features described in Section 3.1, we will have user preference vectors consisting of 9 values.

5.2. PERSONALIZED MODEL
The idea of the personalized model is comparable to the global model. Also here, vectors of audio feature
values are used to represent user preferences in unique contextual conditions. In the personalized model,
however, instead of using positively interacted songs of all users to create the vectors, only the positively
interacted songs of one unique user is used for each model. This means that an audio features based vector
is created for each condition for each user.

The idea behind this model is that when specific user interactions are used, the audio features that repre-
sent a certain condition are more specific to what that individual prefers for any given condition. For example,
person A might prefer to have calm piano music in the morning during breakfast, while person B prefers to
have energetic dance music to get more awake in the morning. This personalized model is more granular,
but is also more computationally expensive compared to the global model. It can be represented as follows:

~P Mck ,u = [a1, a2, . . . , an] = 1

|Sck ,u |
· ∑

s j ∈Sck ,u

~s j , (5.2)

where ~P Mck ,u is a vector representing the personalized model for contextual condition ck and user u ∈ U ,
and computed by using the songs from set Sck ,u that contains all |Sck ,u | positively interacted songs in con-
dition ck by user u. As an example we use the 3 audio features of energy, tempo and acousticness again for
user 1 and user 2. User 1 prefers to listen to calm piano music during breakfast, while user 2 likes to use
energetic dance music to get more awake in the morning. Possible personalized models would be ~P Mc1,u1 =
mor ni ng , user 1 = [0.1,0.16,0.98] and ~P Mc1,u2 = mor ni ng , user 2 = [0.88,0.76,0.18].

5.3. RE-RANKING SCORING CALCULATION
Now that we have two different models that represent contextual conditions each in their own way, the next
step is to use these two models to determine how songs in the initial recommendation list should be re-
ranked. The idea is to calculate how similar a given song is compared to the condition in which it is recom-
mended. This similarity is measured between the two audio feature vectors of the song and the user prefer-
ence within the contextual condition, respectively. In order to compare the performance of the re-ranking
algorithm to the initial recommendation algorithm, a balancing parameter, λ, is introduced in this formula
as well. The resulting function takes both the newly calculated contextual similarity as well as the original
recommendation score as input:

new_scor e =λ∗Si m(~s j , ~GMck )+ (1−λ)∗Rec(u, s j ,ck )′, (5.3)

whereλ is a balancing parameter, ranging from 0 to 1, that let us control the weight of the contextual similarity
score relative to the weight of the initial recommendation score, Si m(~s j , ~GMck ) is the similarity between the
audio features vector of song j , ~s j , and the audio feature vector, which can be either the global or personal-

ized model representation, ( ~GMck or ~P Mck ,u), of contextual condition ck and Rec(u, s j ,ck )′ is the normalized
recommendation score for user u generated by an initial recommender, song s j and condition ck if a context-
aware recommender is used.

One factor to consider is which similarity measurement to use. In this research we only consider the
Euclidean distance. It is a widely used method to calculate the similarity between two vectors, which are the
two lists of audio features in our case. The normalized Euclidean distance (d) is defined as follows:

d(~s j , ~GMck )′ =
√

n∑
i=1

(ai ,s j −GMck ,ai )2, (5.4)

where ai ,s j represents audio feature ai for song s j and GMc,ai is the average audio feature ai within the global
(or personalized) model for contextual condition ck , as calculated by either Equation 5.1 or 5.2. This gives us
the distance between the song and condition, so in order to obtain a similarity value between 0 and 1 we use:
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Si m(~s j , ~GMck ) = 1−d(~s j , ~GMck )′. (5.5)

Both d(~s j , ~GMck ) and Rec(u, s j ,ck ) are normalized through min-max normalization. This is done in order
to have a similarity score between 0 and 1, where 1 means that the two vectors are exactly identical (indicating
a suitable match of a song and a condition) and 0 that they are completely opposite (which indicates that a
song is not suitable for a condition). Min-max normalization is defined as follows:

xnor m = x −xmi n

xmax −xmi n
, (5.6)

where, in our case, x represents the similarity value that is being normalized, xmi n the smallest not normal-
ized similarity value in the set of all calculated similarities and xmax the largest similarity value in the same
set.

As can be derived from Formula 5.3 to Formula 5.6, a more similar song to a contextual condition (simi-
larity value closer to 1 than 0) gets assigned a higher score than a less similar song (distance closer to 0 than
1). This also depends on the value of λ of course. The Rec score is normalized through the same min-max
normalization as well. This is to make sure that when λ has a value of 0.5, the 2 scores are actually equally
weighted.

5.4. TWEAKABLE VARIABLES
Previous sections have explained the global and personalized model and how it is used to calculate the re-
ranking score. What is missing is an overview of the various variables and parameters that are involved and
how they are adjusted. Moreover, since the re-ranking algorithm uses the recommendation lists of the initial
recommendation system, the final re-ranked results are also affected by parameters like the amount of re-
ranked top songs in the initial recommendation list. This section gives an overview of all these variables in
different parts of the pipeline, how they impact the results and how we adjust them.

5.4.1. INITIAL RECOMMENDATION RELATED

These parameters are related to the initial recommendation system and the recommendations that it outputs.
This output of recommendations is subsequently used as input for the re-ranking system. Also the accuracy
of the re-ranked recommendation will be compared to the accuracy of these initial recommendations, so it is
important to consider all variables that influence the output.

RECOMMENDATION ALGORITHM SPECIFIC PARAMETERS

The very first choice that impacts the re-ranking results is selecting which initial recommender algorithms
are used in the experiments, as described in Chapter 4. Each recommender algorithm has its own specific
parameters that will influence how recommendations are created and thus the recommendation output. For
the k-nearest neighbour algorithms, for example, the amount of nearest neighbours must be selected. For
matrix factorization based algorithms, the amount of latent factors, also known as dimensionality, needs
to be selected for the rating matrix decomposition. All iterative recommender algorithms need to have an
amount of iterations or a specific threshold that will tell when the iterations need to be stopped etc.

RECOMMENDATION LIST SIZE

Another variable that needs to be determined is the size of the initial recommendation lists. In the case of
the InCarMusic (see Chapter 4 dataset, there are only 139 songs in total. For these amounts of songs, it is no
problem to include all 139 for each recommendation to be re-ranked. The #NowPlaying-RS dataset, however,
is significantly larger. It is necessary to use a limit for the amount of songs in each recommendation to re-
rank. The largest recommendation list size we use here is 200.

Next to re-ranking all 139 and 200 songs for each initial recommendation, it is interesting to take smaller
recommendation list sizes and see how the list size influences the re-ranked results. Only ranking the top 25
songs for each recommendation list might give a better or worse performance than re-ranking the top 200
songs. Therefore, we use recommendation list sizes of 25, 50 and 139 for the InCarMusic dataset and 25, 50,
100 and 200 for the #NowPlaying-RS dataset.
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5.4.2. RE-RANKING RELATED
These parameters are related to how the re-ranking system models contextual conditions and calculates the
re-ranking scores that will be combined with the initial recommendation scores. These directly influence the
new scores of the songs and thus their rank and ultimately the accuracy of the re-ranked recommendation
list.

CONTEXTUAL DIMENSION

The re-ranking algorithm calculates similarity scores based on the audio features of a song and the audio fea-
tures representation of a contextual condition. The algorithm can take in any condition as input, provided
that there are enough historical ratings available in that specific condition to build an accurate representa-
tion. One thing to consider here is which conditions and thus which dimensions the algorithm should use.
Some conditions might have a stronger impact on user preference than others. Or perhaps some conditions
in the dataset have limited historical ratings available, which make their representations less trustworthy. It
is essential here to not randomly pick conditions to use, but rather to select them based on logical reasoning.

To keep things simple, we only use one dimension for each re-ranking execution. We will be running the
re-ranking algorithm with different dimensions for the InCarMusic dataset to compare them, but these will
be independently run. The last section in this chapter will give some suggestion on how to run the re-ranking
algorithm with multiple dimensions, but for this research we only use one dimension at a time.

λ COEFFICIENT

As explained in Chapter 5.3, the λ value balances the the initial scoring with the re-ranking scoring. The goal
of this parameter is to measure how the added value of the re-ranking scoring compares to the value of the
initial recommender score. The value of λ ranges from 0 to 1. Where for a value of 0, the re-ranking algorithm
will only use the initial recommender algorithm’s score and for a value of 1 only the re-ranking score is used.
In our evaluation we want to compare different values ranging from low importance of the re-ranking score
to using the re-ranking score exclusively. To do this we use lambda from 0 to 1 using steps of 0.1 in our
experiment.

5.5. OPPOSITE RE-RANKING SCORING CALCULATION
Section 5.3 explained how exactly the re-ranking algorithm works. In this section we introduce an alternative
version that does the opposite of the re-ranking algorithm. The formula for this opposite re-ranking algorithm
is as follows:

opposi te_scor e =λ∗d(~s j , ~GMck )′+ (1−λ)∗Rec(u, s j ,ck )′, (5.7)

where all variables are the same as described previously. The main difference is that here d(~s j , ~GMck )′ is used
directly instead of using the similarity by subtracting it from 1. So in this version of the algorithm, songs that
are highly similar to a contextual condition get a low score, which results in a lower ranking than songs that
are less similar. All other variables and evaluation configurations are kept the same to have a fair comparison
with the normal re-ranking algorithm.

The goal of this opposite version is to support the original hypothesis of the re-ranking algorithm. In
this case, our hypothesis is that the re-ranking performance goes down compared to the original re-ranking
algorithm. Also we expect that the performance is worse compared to the initial recommender algorithm. If
this is the case, it shows two things. The first being that the results of our re-ranking algorithm did not happen
by chance. The second is that the performance does not always increase because of additional information,
audio features in our case, that has been introduced in the recommendation process. In our experiment we
test this algorithm and compare the results as well.

5.6. OTHER IDEAS
This section provide additional ideas for the re-ranking algorithm that are interesting to test and might im-
prove performance. However, since we already have quite some features to implement, variables to tweak
and a limited scope, we leave these here for interested readers.

WEIGHTED AUDIO FEATURE REPRESENTATION

With both current re-ranking models, the average of all audio features of songs that have been listened to in
a certain contextual condition is taken to represent that condition. For an implicit dataset not much else can
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be done here. For a explicit dataset, however, it might be interesting to look at a weighted version. Since in
explicit datasets, the positive songs can be divided again into how positive they are. A song that has been
rated with 5 stars out of 5 is more positive than a song that has been rated with a 4, but both are still positive
songs. In such a case, the model can use a weighted audio features representation based on how positive
songs were rated in a given condition.

AUDIO FEATURE SELECTION

As seen in Chapter 3 not all audio features are equally descriptive for specific contextual conditions. For
example, the audio feature energy is a good in differentiating between happy and sad songs, but the audio
feature tempo is, surprisingly, not. Since we saw in the analysis that key and liveness are generally bad differ-
entiators, we left the out. For the eight other audio features, however, we do not distinguish between them.
This idea is like the previous idea, except that in some situations it might be better to leave an audio feature
out completely.

AVERAGING INDIVIDUAL SIMILARITY SCORES

This model basically operates the same as the global-model average audio features, but with 1 distinct dif-
ference. Whereas the previously mentioned model averages all the audio feature of songs that have been
positively rated in a certain context, this method will not average these values. Instead of averaging the val-
ues and then calculating the distance between the given song audio features and the average audio features
of a context, this method first calculates the distances between the song audio features and the audio features
for the positively rated songs for all positively rated songs in a given context. After having all these separate
distances, we take the average distance to use as representation for the re-ranking part. Although this gives
much more overhead, we expect this method to be more accurate.

DIFFERENT SIMILARITY/DISTANCE METRICS

Another interesting change can be to use a different similarity or distance measurement than the Euclidean
distance. One other distance metric is the Cosine similarity. Qian et al. [88] has shown through both theoreti-
cal analysis and experiments that the Euclidean distance and Cosine similarity are very similar when used in
high dimensional settings. Increasing the dimensionality from 2 to 8 makes the two measurements signifi-
cantly more similar. So here we do not expect the differences to be significant. However, the Cosine similarity
is not the only alternative out there. Other potential metrics include the Chebyshev distance, Manhattan
distance and the Jaccard distance, among others.





6
EXPERIMENT

Having defined the methodology, re-ranking algorithm and two user preference models, it is time to carry
out the experiment. This chapter describes all steps within the experiment, elaborates on choices made and
evaluates the re-ranked results. First, Section 6.1 gives a complete overview of all steps that are taken in the
experiment. Section 6.2 gives an overview of how the data is processed and formatted before it can be used
as input for the initial recommendation algorithms. The system that is used to execute these algorithms is
described in Section 6.3, while Section 6.4 gives an in depth description of the structure of the output, which
forms the input for the re-ranking system. Section 6.5 describes all steps within the re-ranking system and
Section 6.6 motivates the selected evaluation metrics. Section 6.7 concludes this chapter by describing and
evaluating the experimental results.

6.1. PIPELINE
Figure 6.1 shows the whole pipeline of the experiment. The selected datasets are the starting point. First
they are gathered and cleaned before they can be used as input to the initial recommender system. Different
recommendation methods can be used in this system. This recommender system proceeds to output initial
recommendation lists, which is used as input for the re-ranking system. Next to this, also the initial contextual
data and audio features of the songs in these datasets are used as input for the re-ranking. The re-ranking sys-
tem then produces the final recommendation lists, which are evaluated against the initial recommendation
lists. Next sections describe the different components within the pipeline in more details.

Figure 6.1: An overview of the experiment pipeline from input data to the re-ranked recommendation list.

6.2. INPUT DATA PREPROCESSING
As elaborated in Chapter 4, the #NowPlaying-RS and InCarMusic datasets are the most suitable datasets that
could be found for our research. Both datasets were supplied in completely different formats and contain a
lot of metadata. The InCarMusic dataset contains a diverse list of phone variables, while the #NowPlaying-RS
contains hashtags and tweet language for example. Before these dataset can be used as input for both the
initial recommender as well as the re-ranking system, they need to be properly filtered and formatted. All the
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following steps described in this section have been performed using Python 3.7 on a Windows machine. The
full code can be found on GitHub.1

#NOWPLAYING-RS
The full #NowPlaying-RS dataset contains more than 11 million listening events and 4 million users, which
is too much for our experiment to handle. The whole file is bigger than 2.3 GB, which means that loading
it already takes many minutes, let alone running algorithms on it. Next to this, not all tweets include time
stamps or user location. Also, not all song in the dataset have a complete list of audio features. So it makes
sense to filter out the missing data points and take a subset that is suitable for our experiment needs.

So first what we did is only keep users that have at least 3000 listening events in total and songs that have
been listened to at least 300 times. These filters make sure that the users and songs that are selected have
enough interactions to be used in the initial recommendation and re-ranking system. Not all information
within the dataset is required, so we only take the user, song, created_at, time_zone and audio features for
each listening event. When looking up the Twitter API, it says that the all the created_at values are GMT
values to avoid issues with clock changes in different regions. Luckily the tweets also contain the time_zone
variable. Based on the time zone of the user, the local time of the tweet can be calculated by either adding or
subtracting the amount of hours that the time zone differs to the GMT. In this step we also group the times
of the tweets to either morning, afternoon, evening or night. Morning represents all tweets that have been
created between 6:00 and 11:59, afternoon between 12:00 and 17:59, evening between 18:00 and 23:59 and
night between 00:00 and 5:59.

Now we have a subset of the dataset with the relevant variables and right creation times grouped in the
contextual condition time of day. Users often listened and tweeted about the same song during the same
contextual conditions. Since we do not make any distinction between on which date users have listened
to songs (only to the time within a day), we remove all duplicate listening events. All listening events that
contain songs of which the audio features are empty are excluded as well. Next to this, we map all the user
and song ids that are left to a regular number. The #NowPlaying-RS dataset used long strings for song ids and
large numbers for users. We saved the mapping in CSV files so later on in the pipeline we can refer back to
the original users and songs if necessary.

Figure 6.2: An overview of the input data processing pipeline for the #NowPlaying-RS dataset from raw data to more structured ready as
input data.

After all the processing and filtering, the final subset of the #NowPlaying-RS dataset that is used as input
contains 333 users, 7304 songs and 108,202 unique contextual interactions. The average amount of ratings
per user per contextual condition, like Table 4.6 gives for the InCarMusic dataset, is shown in Figure 6.1 for
this subset. This subset should be a fair representation of the whole dataset. In Section 6.5 we describe
how multiple folds are used in order to fully utilize the subset and reduce bias and variance. The full data
processing pipeline of the #NowPlaying-RS dataset is shown in Figure 6.2.

INCARMUSIC

Luckily the InCarMusic dataset is more manageable, mostly because of its size compared to the #NowPlaying-
RS dataset. One drawback here is that the dataset itself does not contain any audio features of the songs
that have been rated. So the biggest challenge is to extract the right audio features for each song. For this
we used the search function in the Spotify API. It can take both song author as well as title as input. So

1boninggong/DataPreProcess
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Contextual Condition Avg #ratings/user
morning 213.16
afternoon 216.16
evening 215.3
night 201.7

Table 6.1: The average amount of ratings per user in a given contextual condition for each condition.

we took all song authors and titles, formatted them as consistent as possible, and used it to extract audio
features. For the ones that did not return any results, we manually looked them up on Spotify, noted their
Spotify id and looked up the audio features separately. Next to extraction of the audio features, we made sure
that all contextual conditions from the eight dimensions are consistent. The specific dimensions and their
conditions are described in Section 4.1.

Now after having all the right data in a consistent format, the next step is to format the data to be suitable
as input for the initial recommender system. Table 6.2 shows the input format that is accepted by this system,
which is described more in-depth in the next section. Under the hood, it converts the input to a binary format
for quicker and more efficient processing. After all the pre-processing we proceeded to format both filtered
input datasets in the loose format so it is ready to be used for the initial recommender system.

(a) The loose input data format

User Item Rating Dimension Condition
1 item_1 2 Activity Working
1 item_1 2 Time_of_day Morning
2 item_2 5 Activity Running
2 item_2 5 Time_of_day Evening

(b) The compact input data format

User Item Rating Activity Time_of_day
1 item_1 2 Working Morning
1 item_2 4 Reading Evening
2 item_2 5 Running Evening
2 item_3 1 Working Evening

Table 6.2: The two possible data input formats for the recommender system.

6.3. INITIAL RECOMMENDATION SYSTEM
In order to use the re-ranking system, an initial recommendation list is needed as input. For our research
the CARSKit2 by irecsys on GitHub is used to create the initial recommendation lists. CARSKit is a recom-
mendation engine that has been created in Java and is open-source. It can be used, modified and distributed
under the GNU General Public License. It contains both context-aware as well as traditional recommenda-
tion algorithms, but the focus of it is on context-aware recommendations. The traditional recommendation
algorithms within CARSKit are taken from LibRec-V1.3.3

As described in the previous section, CARSKit takes input datasets in specific formats, either in the loose
format or the compact format. It does not matter which format is used, as long as the data is consistent. See
figure 6.3 below for a complete overview of how exactly CARSKit is designed.

CARSKit also has the option to use a simple k-fold cross validation. When this is enabled, the system
divides the dataset in k approximately equal sized subsets. When training a model, it is trained on (k-1)
subsets and the performance is evaluated on the last subset that has not been used for training. This can
be done k times, where each time another subset is left out of the training phase, but is used as test set.
The average results of all these k executions is subsequently averaged to get a general performance for the
model. This is especially useful to increase the robustness of results for sparse and smaller datasets, like
the InCarMusic dataset. When computational duration is significant and there is a large enough dataset,
e.g. more than 10,000 data points and > 1 hour of runtime, it is encouraged to use 5-fold or 10-fold cross
validation [89]. Since our main dataset contains over 100,000 listening events, we will be using 5-fold cross
validation during our experiment.

In our research we have made some small modifications to the original CARSKit system to fit our needs.
These include the following:

• Added a Random recommendation algorithm, where items are assigned a random integer between 1
and 1000 and are ranked based on this number.

2https://github.com/irecsys/CARSKit
3https://www.librec.net/
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Figure 6.3: An overview of the architecture of the CARSKit library as described in [1]

• Added a ItemPopularity recommendation algorithm, where items are ranked based on the amount of
ratings/interactions that they have had.

• Modified that the first line of any output recommendation list contains an integer, which represents
the amount of recommended items for each user-song(-context) combination.

• Modified that the header of the recommendation lists contains unique column names for each recom-
mended item, e.g. ’p1’ for the recommended item on position 1, ’p2’ for the second etc.

• Modified that the system also outputs the fold that has been left out in each iteration over all the folds.
Our re-ranking system needs to know for each iteration which ratings/listening events are used for
evaluation of performance.

• Modified that next to the specific fold, the system also outputs another file containing the index of all
positive items across all recommendation lists. This data is used to visualize the distribution of positive
items for the initial recommender algorithm to get a general idea about the recommendation accuracy.

Besides the above mentioned modifications, no other changes were made. All the recommendation algo-
rithms are used as is, in their original forms. The modified version that we created and used in our research
is accessible through GitHub.4

ALGORITHMS USED

Many types of both traditional as well as context-aware recommendation algorithms are available in the
CARSKit library. A subset of them are shown in Figure 6.3. Since the InCarMusic dataset contains explicit
feedback, we are able to select any initial recommendation algorithm. However, this is not the case for the
#NowPlaying-RS dataset, since it only exists of implicit feedback. So that is why different initial recommen-
dation algorithms are used for each dataset. For each dataset, we have selected three algorithms to create the
initial recommendation list. We proceed to elaborate on the selected algorithms for each dataset.

The algorithms that are selected are a mix of context-aware and non-context aware recommender algo-
rithms. The reason for using using a mix of the two types was explained in Section 4.2. In summary, both
are used to create baseline recommendation lists and for the context-aware recommendation it is interest-
ing to compare how our context and audio features based re-ranked recommendation compares to existing
context-aware recommender algorithms. Each of them have been described more in-depth in the literature
review.

The following three initial recommendation algorithms were used for the #NowPlaying-RS dataset to cre-
ate the initial recommendation list:

1. BPR: A simple ranking based algorithm using Bayesian probabilities [35].

4https://github.com/boninggong/CARSKitModified
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2. UserSplitting-BPR (US-BPR): A contextual algorithm that first splits users in sub profiles based on
contextual conditions and then executes the BPR algorithm [54].

3. CAMF_ICS: A specific type of ranking based matrix factorization that takes context into account based
on underlying similarities of conditions within the same dimension [90].

All three of them are ranking based algorithms, which do not require explicit ratings to create recommen-
dations. BPR does not use context, while the other two do. The subset that we are using has thousands of
songs that can be recommended. It would be too computational expensive and useless to output every rec-
ommended song for each user-song-(condition) combination. So for each initial recommendation we limit
the output to the top 200 songs per each user-song(-context) combination. The re-ranking system, described
later on, splits these lists of 200 songs to subsets with smaller amount of recommendations. Each of those
is re-ranked separately. Since we are using 5-fold cross validation, we have 5 separate files containing initial
recommendations for each row that is made up of 200 recommended songs each.

Since the InCarMusic dataset has explicit feedback, we are free to choose any initial recommender al-
gorithms. The following three initial recommendation algorithms were used for the InCarMusic dataset to
create the initial recommendation list:

1. UserKNN: A simple collaborative filtering algorithm based on user similarity [24].

2. BiasedMF: A specific type of matrix factorization that takes a bias into account [28].

3. CAMF_CU: A specific type of matrix factorization that takes context into account based on their influ-
ence on users [53].

These three initial algorithms are selected based on their varying mechanisms and characteristics associ-
ated. UserKNN is the most simplistic one that is re-ranked and compared. This gives use insights into what
kind of impact the re-ranking has on simplistic collaborative filtering methods. Matrix factorization is more
complex form of collaborative filtering, so it would be interesting to see how it will be impacted by the re-
ranking and how it compares to the results of the more simplistic form of collaborative filtering. Last, but not
least, we have included an initial recommendation algorithm that uses context itself. In this case, we output
the full recommendation lists, because the dataset only contains 139 songs in total. These lists will also be
split into smaller subsets to be re-ranked individually.

6.4. INITIAL RECOMMENDATION LIST
Table 6.3 shows the format of the initial recommendation lists. The outputs start with just an integer in the
first row. This integer indicates how many recommendations are given on each row and is used by the re-
ranking system to correctly process the input. The second row contains the header. The first column exists
of our simplified user identifiers. The second column contains all positive or ’correct’ songs for a given user
in a given context. These positive songs are gathered from the test set and thus are not used in training the
recommender model.

The correct songs are connected by a semicolon in between each. After that, the contextual situation is
described in the third column. Since we limit our research to only one condition at a time, it only outputs
one dimension followed by one of its conditions. The contextual column is followed by all columns of rec-
ommended songs. For each song, the prediction/score is appended to the song identifier with a semicolon in
between.

200

userId correctItems contexts p1 p2 ... p200

12 1106;1650;2248;293 daytime:morning 118;9.113 544;8.830 ... 1583;6.958
12 91;1554;293;140 daytime:night 118;9.113 544;8.830 ... 1583;6.958
... ... ... ... ... ... ...
702 3287;2549 daytime:afternoon 167;9.367 1127;9.208 ... 3287;7.232

Table 6.3: Format of the initial recommendation lists that the initial recommendation system gives as output.
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6.5. RE-RANKING SYSTEM
Figure 6.4 gives an overview of the main components and processes within the re-ranking system. The blue
boxes indicate CSV files while white boxes represent certain components/processes. In our experiment we
ran the whole re-ranking system for each initial recommendation algorithm and each of the sizes of the initial
recommendation lists. So in our case with the 3 algorithms of BPR, UISplitting-BPR and Random and 4 list
sizes of 25, 50, 100 and 200, we have run this a total of 12 times. The system has been built using Python 3.7
on a Windows machine. The implementation is publicly available on GitHub.5

The starting point for the re-ranking system is by reading in the output, the initial recommendation list, of
the initial recommender system and use it as input. Next to this, the system also takes the song audio features
and formatted version of the original dataset as inputs. In order to reduce the total run-time, differently
formatted versions of the formatted dataset are also used as input. For example, there is a file filtered on
user-contextual condition pair, where each user-contextual condition pair is followed by all the songs that
that user has listened to while in the specific condition. These additional input files are all based on the
original dataset, no new data has been introduced.

The first step is of the system is to create the different re-ranking models. Since we are using 5-fold cross
validation, where each fold has different training and test data, we have to create the models separately for
each fold. For the global model, for example, we go through all the known listening events in the training data
for each fold. Based on the songs that have been listened to in the specific conditions, a global model is made
through an representation of audio features as described in more detail in Section 5.1. For the personalized
model, the same is done for each user for each fold. A more detailed description was given in Section 5.2.
The required amount of calculations grow exponentially with the amount of users, ratings and contextual
conditions. That is another reason where the pre-processed files, as described in the previous paragraph,
come handy.

After having the models ready, it is time to calculate the D I ST (Ia f ,Ca f ) part of Equation 5.3. For this,
the Euclidean distance is applied to measure the distance between the audio feature vector for each song
and the audio feature vector representation of a given contextual condition. In the case of the personalized
model, the audio feature vector representation of a given contextual condition for a given user is used. These
resulting scores represent the re-ranking scores.

Now we have the initial recommendation score and our newly calculated re-ranking score based on the
underlying audio features and context in which they are rated. The re-ranking equation combines them and
output a new score for each song for a given user-contextual condition pair. Since both the initial recommen-
dation score as well as the re-ranking scores can have greatly varying values, we normalize them separately
using also Equation 5.6. So now both scores are in a range between 0 and 1 and they have an equal weight
when combining them using the balancing parameter λ. The initial recommendation list is then ordered in
an ascending order based on this new combined score. These newly ordered lists form the re-ranked/final
recommendation list.

Figure 6.4: An overview of the main steps that happens within the re-ranking system.

6.6. EVALUATION METRICS
Now that we have the re-ranked recommendation lists, it is time to evaluate them. Section 4.4 gave an

extensive list of evaluation metrics that can be used for this. Since the #NowPlaying-RS dataset is the more

5https://github.com/boninggong/Re-rankSystem
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reliable of the two, we decide based on its properties. The dataset contains implicit feedback data, which
means that prediction accuracy metrics can not be used. So we are left with the decision support accuracy
metrics and the ranking based accuracy metrics groups. We decided to use the precision at k (Prec@k) and
mean average precision at k (MAP@k) metrics for our experiment. The ranking of positive songs within a
recommendation list matters. These two metrics take the ranking into account by measuring the top k songs
instead of the full recommendation list. Precision is the more simple metric and looks at how many songs in
the top k are positive songs. The mean average precision does the same, but also takes the relative position
of the positive songs into account.

Having selected two different evaluation metrics, the next step is to decide on a useful number for k. This
number should not be too small, but neither too big. If a k value of 3 is used, for example, the evaluation
scores will be very close to 0. The #NowPlaying-RS subset that we use has thousands of songs that are con-
sidered for the recommendation. For a given user-song-condition triplet there are only tens of positive songs
in the test set. If only the top 3 songs of each recommendation list are evaluated, the chance is very high
that none of the top 3 recommended songs are a positive song. On the other hand, a k value of 50 does not
make much sense either. The lower a song is ranked in a recommendation, the smaller the chance that users
will interact with it in practice. Spotify, for example, recommends 20 songs based on your previous listening
behavior. They show only 6 at a time. Users can use a small arrow to browse further through the other songs if
they do not like the first 6. Figure 6.5 shows how this looks like in their user interface. Based on these factors,
we have decided to evaluate the top 10 and top 25 recommended songs for both the precision as well as mean
average precision metrics. The precision evaluated over the top 10 songs is from now on denoted as Prec@10
and mean average precision over the top 25 as MAP@25 etc. So in the end we evaluate each configuration
using MAP@10, MAP@25, MAP@al l , Prec@10 and Prec@25.

Figure 6.5: An example of recommendations made by Spotify based on your previous listening behavior.

6.7. RE-RANKING RESULTS
This section presents and elaborates on the results of the experiments described in the sections above. First
the results of the InCarMusic dataset are presented, which are then followed by the #NowPlaying-RS re-
ranking results.

6.7.1. INCARMUSIC
Section 4.1.3 outlined the rationale behind using the InCarMusic dataset [63]. Even though it is limited in
size and data of individual ratings, it does provide a wide variety of contextual dimensions that can com-
pared be used to compare to one another. The wide variety of variables (initial recommendation algorithm,
global/personalized mapping, initial recommendation list size, contextual dimension etc.) yield many re-
sults. So that is why the full results have been put into the appendices. Appendix A contains various results
that were obtained from re-ranking recommendation lists that were created using the InCarMusic dataset as
input.

The first thing that is noticeable when looking at these results is that the precision and mean average
precision scores all are relatively low. Normally a low performance score is a bad result. In our case, however,
the re-ranking performance score itself does not matter too much. It is the re-ranking performance score
relative to the initial recommendation list performance score that is important. We do not have control over
the performance of our baseline, the initial recommendation performance, except for some model specific
parameters. An explanation for the low score is that there are often only one or two positive songs for a given
user-song-condition triple. The recommendation algorithm has to rank those higher than the other 100+
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songs that it can choose from in this case. In many cases the positive song(s) are not placed in the top 10 or
top 25 recommended songs, which gives a MAP and Prec score of 0. This in turn lowers the average MAP/Prec
score over all recommendation lists.

Figure 6.6: InCarMusic driving-style dimension based re-ranking results measured using Prec@25 over the top 50 songs.

Figure 6.7: InCarMusic driving-style dimension based re-ranking results measured using MAP@25 over the top 50 songs.

There are many different results for different variables, so we visualized a selection of them for more clar-
ity. Figures 6.6 and 6.7 are such visualizations and show the performance of the initial recommendation list
(dotted line), the re-ranked recommendation list using the global model (dash-dotted line) and the re-ranked
recommendation list using the personalized model (solid line) measured using the Prec@25 and MAP@25
metrics respectively.

The first noticeable observation in these visualizations is that the re-ranked results measured using Prec@25
give an increase in performance compared to the initial recommendation list, while the results when mea-
sured using MAP@25 decreases with increasing lambda values. This means there are more positive songs in
the top 25 songs after re-ranking, but they are not necessarily placed higher. So what happens is that positive
songs that are placed in spots 26 to 50 are re-ranked to one of the top 25 spots, but the rank for these positive
songs are not necessarily higher.

Another noticeable observation is that the global mapping based re-ranking algorithm outperforms the
personalized mapping based algorithm. At first sight, this contradicts our hypothesis regarding the last sub-
research question. However, if we go back to Table 4.6, we see that there are very little ratings per user per
contextual condition available. This means that the personalized models, for the users that have enough
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historical rating data, were only based on a few ratings and thus highly unreliable. The global model, on the
other hand, uses all previous ratings of all users for each condition, so the representation is more accurate.
This explains the observed results.

For comparison we have also plotted the same results for the roadtype and weather contextual conditions.
They are shown in Figures 6.8, 6.9, 6.10 and 6.11. The main reason for using this sparse dataset is to find out
how different contextual dimensions influence the re-ranking results. We chose to use roadtype since it has
the second highest average amount of ratings per user, as seen in Table 4.6, which might provide some insight
for the personalized model. Weather is included, because we were interested in its potential influence and it
has a decent amount of historical ratings available.

Figure 6.8: InCarMusic weather dimension based re-ranking results measured using Prec@25 over the top 50 songs.

Figure 6.9: InCarMusic weather dimension based re-ranking results measured using MAP@25 over the top 50 songs.

The re-ranking visualizations for the weather and roadtype dimensions show different results compared
to the driving-style based re-ranking. Both re-ranking results show a decrease when measured using Prec@25.
This means that generally there are less positive songs in the top 25 songs after re-ranking. Which gives an
opposite effect compared to the driving-style dimension. There are two main reasons that can explain these
results. The first is that both the weather as well as roadtype dimensions have a very occurrences within the
ratings. As shown in Table 4.6, the weather conditions have an average of 1.05 ratings per person over all
conditions, while the roadtype dimension only has 1.31 per person. Both are lower than the driving-style
dimension, which has an average of 1.62 ratings per user. The second possible explanation is that these
contextual dimensions might just not be representative for user preference.
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Figure 6.10: InCarMusic roadtype dimension based re-ranking results measured using Prec@25 over the top 50 songs.

Figure 6.11: InCarMusic roadtype dimension based re-ranking results measured using MAP@25 over the top 50 songs.

Another interesting observation is the fact that all personalized model based re-ranking recommenda-
tions outperform the global model based ones. This is also opposite of the results of the driving-style di-
mension based re-ranking, even though roadtype and weather have a lower average amount of ratings per
user.

Since the InCarMusic dataset is so sparse, it is hard to draw sound and reliable conclusions. So we decided
to limit the number of experiments that use it and focused more on testing with the #NowPlaying-RS dataset.
The next section shows and elaborate on results that were gathered from re-ranking the recommendations
obtained from the #NowPlaying-RS dataset, which is a significantly larger dataset, but more limited regarding
contextual dimension variety.

6.7.2. #NOWPLAYING_RS
The #NowPlaying-RS dataset is significantly larger than the InCarMusic dataset. Here however, there is only
one clear contextual dimension, namely time of day/daytime. For this dataset we have run more configura-
tions compared to the InCarMusic dataset, because the amount of data gives more robust results. All regular
re-ranking results can be found in Appendix B, while Appendix C depicts all opposite re-ranking results.

Also here we visualized the results in the appendices for a more clear overview. A selection of these visu-
alization is used and discussed. An overview of all visualizations for each result can be found on my GitHub.6

6https://github.com/boninggong/Re-rankSystem/tree/master/res/nprs
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First we give an explanation on how to read the visualizations, because they contain so much information.
Each visualization shows the results of all three initial recommendation algorithms that have been used as
input. These are Bayesian Personalized Ranking (BPR), UserSplitting-based BPR (US-BPR) and Independent
Context Similarity based Context Aware Matrix Factorization (CAMF_ICS). They can be distinguished by their
colors, which are red, blue and purple respectively. For each of these algorithms there are three line plots. The
flat dotted line represents the performance score of the initial recommendation list, without any re-ranking.
The dash-dotted line represents the score of the global model based re-ranking recommendation list, while
the solid line represents the score of the personalized model based version. The x-axis represents the tested
lambda values, which ranges from 0 to 1 in steps of 0.1, while the x-axis represents the performance evaluation
score, so either the Prec or MAP score. How this can be interpreted in layman terms is that the more to the
right you go, the more the final recommendation list has been influenced by the re-ranking algorithm. A
lambda value of 1 means only the re-ranking scoring is used to create recommendations, while a value of 0
means only the initial recommender algorithm has been used. The higher the value on the y-axis, the better
the performance of the recommendation list.

Figure 6.12 shows the results of the same evaluation metrics that have been shown in the previous section
for the InCarMusic dataset. Figure 6.13 shows the same evaluation, but this time for the results of the opposite
re-ranking algorithm. Many things are noticeable and each of them is described below.

Figure 6.12: #NowPlaying-RS re-ranking results evaluated using MAP@25 over the top 50 recommended songs.

Figure 6.13: #NowPlaying-RS opposite re-ranking results evaluated using MAP@25 over the top 50 recommended songs.

The first observation is that the baseline performance of BPR and US-BPR differs significantly from the
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performance of CAMF_ICS. BPR performs more than 4 times as well and US-BPR even almost 5 times. US-
BPR, which uses the contextual data as extra information in the recommendation process, performs better
than BPR only. This is in according to what we expect, since the input is more granular after applying User-
Splitting techniques.

Another of them is that the recommendation accuracy of the personalized model generally beats the rec-
ommendation quality of the initial recommendation, especially for the CAMF_ICS algorithm. The CAMF_ICS
personalized model re-ranking results even outperforms all three BPR results using the same lambda value.
An explanation here could be that CAMF_ICS placed relatively more positive songs in spots 26 to 50 than BPR
did. The re-ranking algorithm then proceeded to place them in the top 25 songs, which greatly improved
the MAP@25 score. That would also explain why the initial MAP@25 score is relatively low. The personalized
model, furthermore, consistently beats the performance of the global model, which varies widely for each
recommender algorithm. This is in line with our hypothesis that the personalized model is a more accurate
model than the global one.

We can also observe that in the opposite ranking, the personalized model greatly underperforms and
creates a worse recommendation list than both the initial recommender algorithm and global model. This
further strengthens the value of the re-ranking algorithm, since re-ranking on opposite scores yields opposite
performance. The global model decreases the accuracy for the BPR and US-BPR algorithms, but, surprisingly,
increases accuracy when utilizing the CAMF_ICS algorithm. This increase is relatively high for lambda values
between 0.3 and 0.5. We do not have a clear explanation why this is happening and more research would be
needed to explain this phenomenon.

Last, but not least, a higher lambda value does not always result in increased accuracy, even for the well
performing personalized model re-rankings. It also differs per initial recommender algorithm. For the per-
sonalized model of CAMF_ICS a higher lambda value does provide a better performance, but for BPR we
observe that the accuracy actually goes down with lambda values higher than 0.3. This means that if this
re-ranking algorithm would be implemented in practice, it should be tweaked based on the underlying rec-
ommender algorithm. There is no lambda value that always give the best re-ranking results.

Figure 6.14 and Figure 6.15 show the same algorithms, but evaluated using MAP@10 over the top 25 songs.
As explained in Section 6.6, there is a higher chance that users interact with songs that are placed in the top
spots in a recommendation. Having positive songs in the top 25 is good, but in the top 10 rankings is even
better.

These results are fairly comparable to the MAP@25 evaluation of recommendation lists consisting of 50
songs. Here the personalized model results consistently outperform the initial baseline with every lambda
value. The global model based re-ranking results for BPR and US-BPR are relatively better than the MAP@25
evaluations. Also the opposite re-ranking results show a steep decrease in accuracy for BPR and US-BPR and
again show an unexpected increase for the global model for CAMF_ICS.

Figure 6.14: #NowPlaying-RS re-ranking results evaluated using MAP@10 over the top 25 recommended songs.

All previous four figures showed the MAP@k evaluations, which tells both how many positive songs can be
found within the top k recommendations as well as how they are ranked relatively to each other. Looking at
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Figure 6.15: #NowPlaying-RS opposite re-ranking results evaluated using MAP@10 over the top 25 recommended songs.

the scores, however, it does not tell whether the amount of positive songs in the top k positions have increased
or decreased. That is why the precision evaluation metric has been included in our experiments.

Figures 6.16 and 6.17 show the same experiments evaluated using the Prec@10 metric. These results differ
a bit from the MAP@10 results. One of the observations here is that BPR itself is actually performing slightly
better than US-BPR. So when looking at the amount of positive songs in top 10 positions, the UserSplitting
did not manage to rank more positive songs there. On the contrary, it decreased it slightly. Another obser-
vation is that both global and personalized model based re-ranking results for BPR are showing generally
decreasing accuracy. In Figure 6.14 we saw that for the MAP@10 metric, these gave an improvement. Com-
bining these two figures, we know that there are actually less positive songs in the top 10 recommendations
after re-ranking, but the songs that are there do get a higher position. Also here in the opposite re-ranking
results we can observe that the performance decreases for all re-ranking results for both the BPR and US-
BPR algorithms. One interesting and different result is the opposite performance for CAMF_ICS. Here, the
global model based opposite-re-ranking performance is not improving like it does in the cases of Figures 6.13
and 6.15. This tells us that apparently the amount of positive songs does not change compared to the baseline
when running the opposite re-ranking algorithm. However, positive songs are placed relatively higher.

Figure 6.16: #NowPlaying-RS re-ranking results evaluated using Prec@10 over the top 50 recommended songs.
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Figure 6.17: #NowPlaying-RS opposite re-ranking results evaluated using Prec@10 over the top 50 recommended songs.



7
CONCLUSION & FUTURE WORK

This chapter gives a wrap-up of our research on contextual re-ranking of music recommendations through
audio features based user preference models. In Section 7.1 we give a brief recap of the research questions and
conclude our work by answering each. Next, we discuss some limitations of the research and decisions we
have made in our work in Section 7.2. The chapter ends with Section 7.3, which points to potential directions
for future work.

7.1. CONCLUSION
Before concluding this research, we first recap the goal, which was to answer the following research question:

• Main Research Question: How can the relation between audio features and contextual factors be used
to improve music recommendation quality through re-ranking?

In order to answer this main research question, we defined three sub-research questions. During this research
we carried out multiple analysis and experiments to address these questions. Each of the the sub-research
questions are stated below together with a recap of our findings.

• sub-RQ1: How are contextual conditions of different contextual dimensions related to audio features?

In Chapter 3 we describe the extraction, visualization and analysis of audio features for various contextual
dimensions and their respective conditions. Generally, audio features show a significant correlation when
comparing conditions. This means that they are suitable for representing user preferences for different con-
textual conditions.

Even though a majority is significantly correlated, many differences exists among different dimensions
and audio features. Some audio features are strong descriptors to distinguish between two conditions, while
others are weaker, dependent on which two contextual conditions are compared to each other. For all the
conditions that we analyzed, we conclude that the audio feature key is not a good descriptor and liveness
only in a few cases. The effectiveness of the other audio features differ per condition. Table 3.4, for example,
shows that instrumentalness is the audio feature that distinguishes afternoon and night strongest. A low value
means it is more suitable to an afternoon condition, while a higher value suits night conditions better. Also in
the comparison between night and evening in Table 3.7 a low instrumentalness value is more representative
of the evening condition. Low instrumentalness both suits afternoon as well as evening conditions, so it is
not a good audio feature to use when comparing afternoon to evening conditions, as can be seen in Table 3.2.
In this case, energy, valence, danceability and acousticness are better. Another observation is that since the
audio feature representation of conditions differ greatly, it is easier to compare some conditions than oth-
ers. Table 3.8, for example, shows that the audio features of relaxing and sleeping are relatively similar. This
makes it harder to distinguish between these two conditions. On the other hand, there is the happy and sad
comparison, depicted in Table 3.14. Here, there are multiple audio features which are strong descriptors that
can be used to distinguish between sad and happy moods.

• sub-RQ2: How does re-ranking, based on audio feature representations of user preferences in different
contextual conditions, affect music recommendation accuracy?
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We designed and evaluated a re-ranking algorithm that uses audio feature representations of user pref-
erence in contextual conditions, as described in Chapters 5 and 6. The re-ranking results differ strongly for
different user preference models and initial recommender algorithms. Generally, after choosing the right
models and parameters, the re-ranking algorithm is able to increase the recommendation accuracy. We pro-
ceed by pointing out a few examples from the results.

Figure 6.12 shows that the personalized model based re-ranking algorithm, with a lambda value of 1,
managed to get a evaluation score that is more than 4 times as accurate than the initial algorithm did. On
the other hand, if we take the same parameters and apply it to the BPR algorithm, the re-ranking results
actually are less accurate than the initial recommendation’s results. When comparing various Prec@k and
MAP@k results, we observe that the Prec scores are relatively lower than the MAP scores for the re-ranked
recommendations. This indicates that the re-ranking results rank positive songs relatively higher in a given
recommendation lists, but it does not necessarily place more positive songs in the top 10 or top 25.

The opposite re-ranking results, as depicted in Figures 6.13, 6.15 and 6.17, also supports the same conclu-
sion. The personalized model based opposite re-ranking results consistently underperforms the global model
version and the initial recommendation lists for the BPR and US-BPR algorithms. This further strengthens the
positive results of the regular re-ranking algorithm. CAMF_ICS forms a curious case, where the personalized
model based opposite re-ranking decreases performance, but the global model increases performance. Al-
together these experimental results, based on various initial recommender algorithms, show that there is
merit in re-ranking recommendations using audio features as user preference representations in contextual
conditions to increase the accuracy of music recommendations.

• sub-RQ3: How do global audio feature representations of user preferences in different contextual con-
ditions affect the re-ranking results compared to personalized audio feature representations of user
preferences in the same contextual conditions?

We defined a global and personalized model to represent user preferences in contextual conditions in
Chapter 5 and evaluated them in Chapter 6. From the results we can conclude that the personalized model
clearly outperforms the global model. It does this consistently across different initial recommender algo-
rithms. In the opposite re-ranking results, the personalized model consistently performs worse than the
global model. This further strengthens the accuracy of such a personalized user preference representation.
All performance evaluations can be found in the appendices and a selection has been visualized in Chapter 6.

These results confirm our hypothesis that contextual conditions represented using audio features based
on previously listened songs are more accurate when they are created for each user individually. Global rep-
resentations using all historical listening events is less effective. One trade-off to consider is the significantly
higher computational costs to create these personalized models. Where the global model creates preference
models for each contextual condition, the personalized model does this for every user and condition. Fortu-
nately, this only needs to be done once at the beginning for every user. Afterwards, the model only needs to be
updated with new user-song interactions. Based on this and the great difference of re-ranking performance,
we think it is a trade-off worth making.

Putting all answers and insights from above together, it is time to come back to the main research ques-
tion, provide a final answer and conclude our work. The main research question was defined:

• Main Research Question: How can the relation between audio features and contextual factors be used
to improve music recommendation quality through re-ranking?

First, we showed that audio features are significantly correlated to contextual conditions. Thus, they can
be used to distinguish different conditions and represent user preferences. Based on this, we created a re-
ranking algorithm that uses these audio features based user preference models to re-rank any given recom-
mendation list. We have evaluated two of such user preference models, a global and personalized model. We
re-ranked songs based on the similarity between their audio features and the audio feature representation
of user preferences in a given contextual condition. The re-ranking algorithm has been evaluated using the
#NowPlaying-RS and InCarMusic dataset using the precision at k and mean average precision at k accuracy
metrics. Initial results show that such a re-ranking algorithm is able to increase recommendation accuracy.
Especially the personalized model shows promising results and consistently outperforms the global model.
This is further substantiated by the opposite re-ranking algorithm, where opposite results were obtained.
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7.2. DISCUSSION & LIMITATIONS
Since our re-ranking algorithm uses audio features to represent contextual conditions, its use is limited to the
musical domain. This would be a major limitation when looking from the high-level domain of recommender
systems. The re-ranking algorithm would, for example, not be useful when trying to recommend books on an
e-commerce platform to users, since books do not have audio features that can be used to represent them in
specific conditions. It is also dependent on the presence of contextual information in the historical ratings.
Without historical contextual information, the user preference models can not be created, thus the re-ranking
algorithm would not function.

Another limitation in our study regarding audio features is that the audio features that we used in our
analysis and experiment are defined by Spotify and were retrieved from the Spotify API. Even though they are
formed based on low-level audio analysis, we are still dependent on how Spotify defines and creates each au-
dio feature. Any conclusion that includes any audio feature is under assumption that the method that Spotify
uses to create them is representative and accurate. We expect our re-ranking algorithm to be working with
audio features created by other providers as well. As long as the audio features are created in a representative
and consistent way. However, more research is needed to validate this.

The experiment is carried out on two existing datasets, which means only offline evaluation has been
carried out. An online evaluation next to these offline evaluations would further strengthen the results. Car-
rying out such an online experiment with a significant amount of participants is complex and requires proper
preparation. Especially since users would need to actively use an app and most probably indicate what con-
textual conditions they are in each time they interact or rate a song.

The #NowPlaying-RS and InCarMusic datasets also have their own limitations. The InCarMusic dataset is
very sparse. Both re-ranking results are therefore not too reliable, especially the personalized model based re-
ranking. Many users did not rate any songs in multiple conditions, so for many conditions no personalized
models or unreliable models were built. The #NowPlaying-RS dataset does not have sparsity problem, but
it only contained one consistent contextual dimension, time of day. It provided valuable for evaluating the
re-ranking algorithm for that dimension, but did not allow us to evaluate the re-ranking algorithm for other
contextual dimensions. #NowPlaying-RS is also an implicit feedback dataset, which greatly limits the amount
of initial recommender algorithms that could be used to create initial recommendation lists.

The re-ranking algorithm uses all contextual conditions within a selected dimension. It is limited to only
one dimension at a time. Combining multiple dimensions quickly becomes increasingly complex with each
additional dimension. That is why we left it out of scope for this research. Furthermore, all audio features and
all conditions are given an equal weight when calculating the audio feature similarities. We have seen in the
analysis preceding the experiment that some audio features are more descriptive than others. So this might
not be the most optimal set-up. Also, one can imagine that some conditions have a stronger influence on the
preference of users than others. Despite these limitations in our research, the results are still significant and
promising.

7.3. FUTURE WORK
This section gives suggestions for potential directions of future work to gain more insights on this research
topic. Each subsection describes a specific direction and how it builds on top of our work.

OFFLINE EVALUATION

In our research we evaluated the two re-ranking models using the InCarMusic and #NowPlaying-RS datasets.
As can be seen from the results of the InCarMusic dataset, various contextual conditions yield different re-
sults. One possible direction is to further research how various conditions impacts the re-ranking perfor-
mance. This can be done by running a comparable experiment on a large enough contextual music dataset
that contains a variety of dimensions and conditions. Furthermore, it would be interesting to try to under-
stand why some conditions have a stronger or more positive influence on the results than others. This can be
done by carrying out a correlation analysis between these conditions and the audio features of the songs that
have been classified to be suitable or unsuitable for example.

Unfortunately, to the extent of our knowledge, no such dataset of considerable size exists. Another idea is
to create such a dataset by setting up and running a closely monitored user study. This would require massive
effort and monitoring of users for multiple months. We believe that the insights that can be extracted from
such a study will make it worthwhile, which brings us to the next direction of online evaluations.
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ONLINE EVALUATION

As described in the previous subsection, the creation of a dataset with the right properties will also create
a valuable opportunity to carry out online evaluations. This would mean that different versions of the re-
ranking algorithm will be run for different users, while some users will only get the initial baseline recom-
mendations. After some time, when there has been enough data generated by the users to be used by the
re-ranking algorithm, user satisfaction can be measured. This can be done by using a user survey, for exam-
ple. This will give the added benefit of feedback from actual users, instead of relying on the feedback from
pure offline data evaluations. This suggestion is easier said than done, since user studies music recommen-
dation approaches is rare, let alone contextual music recommendations [91]. Challenges involved in such a
study include:

• The cold-start problem, where it is very hard or even impossible to make recommendations when a
new user is using the system without having previously listened to any song. This is especially trouble-
some for the personalized mappings based re-ranking algorithm, since it requires significant historical
personalized user interactions in different contextual conditions.

• To gather a group of users that is big enough while also making sure that diversity is not being nullified
in the process. A user study with tens of people is doable and has been done before, like the user study
from the InCarMusic dataset. But to gather hundreds of thousands or even millions of listening events,
it would require a large number of active users that are willing to participate for a long time.

• Deciding on which contextual dimensions and conditions to include and gather from the users. For
many dimensions, explicit permission of the user is needed to gather the data. For weather, for exam-
ple, the application would need to know the location of the user. For other dimensions like activity and
mood, it is even much harder to gather this data without the need of users to constantly input their
current conditions. This is one of the main reasons why only small controlled user studies have been
carried out regarding context-aware recommender systems.

COMBINING CONTEXTUAL DIMENSIONS

Another direction that can be looked into is how to deal with contextual situations that consists of a multitude
of conditions from different dimensions. In our research, the re-ranking algorithm only has been run using
conditions from a specific contextual dimension. This was done to keep keep a clear overview of how different
dimensions impacted the results and to keep the system and algorithm simple. However, in practice, users
often have multiple conditions that can impact their musical preference. Someone that is running in a happy
mood will probably have different preferences than when running in a sad mood and again prefers different
kind of music when happy or sad while studying.

Since the re-ranking algorithm we have designed is able to work with any dimension, it is easily com-
patible with situations as well. This is a matter of combining the audio feature representation of multiple
unique contextual conditions. The biggest question and most interesting part here is how to combine these
conditions so as to represent user preferences as accurately as possible. Does a linear combination work?
What if one contextual condition has a stronger influence compared to another? To measure these relative
influences, how they impact user preference and what effects they have on the re-ranked results is beyond
the scope of our research. It is, however, an interesting topic to further research.

RE-RANKING ALGORITHM IMPROVEMENTS

Other steps that can be taken are related to improving the design and implementation of the re-ranking algo-
rithm. Section 5.6 presents an overview of ideas and/or improvements that came to our mind when designing
and implementing the algorithm, but we did not have enough time to test them. These include, but are not
limited to:

• Giving audio features weights based on how representative they are to specific conditions and/or users.

• Selecting and including audio features based on whether they have a positive influence on the results.

• Averaging all similarities between the audio features of the song with the most positively rated songs’
audio features instead of using the average of all historical ratings to calculate only 1 similarity.

• Using different similarity/distance measurements for the comparison between the audio features rep-
resentation of the condition and given song.
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PERFORMANCE RESULTS

Driving-style dimension based re-rankings

List size 50
λ = 0.2 λ = 0.4 λ = 0.6 λ = 0.8 λ = 1.0

P@25 MAP@25 P@25 MAP@25 P@25 MAP@25 P@25 MAP@25 P@25 MAP@25
Initial 0.01082 0.04159 0.01082 0.04159 0.01082 0.04159 0.01082 0.04159 0.01082 0.04159
Re-ranked
Global

0.01109 0.04216 0.01103 0.04218 0.01113 0.04141 0.01108 0.04087 0.01118 0.04093

Re-ranked
Personal

0.01092 0.04174 0.01092 0.0417 0.01092 0.04033 0.01097 0.0402 0.01102 0.04036

Re-rank results for the UserKNN initial recommendation for both global and personal model, evaluated over the top 25 songs in the
recommendation list using the driving-style contextual dimension

List size 50
λ = 0.2 λ = 0.4 λ = 0.6 λ = 0.8 λ = 1.0

P@25 MAP@25 P@25 MAP@25 P@25 MAP@25 P@25 MAP@25 P@25 MAP@25
Initial 0.01179 0.064 0.01179 0.064 0.01179 0.064 0.01179 0.064 0.01179 0.064
Re-ranked
Global

0.01201 0.06403 0.0121 0.064 0.01217 0.06286 0.01185 0.06204 0.01216 0.06046

Re-ranked
Personal

0.01184 0.06382 0.01185 0.06321 0.01185 0.06167 0.01185 0.06119 0.01185 0.0613

Re-rank results for the BiasedMF initial recommendation for both global and personal model, evaluated over the top 25 songs in the
recommendation list using the driving-style contextual dimension

List size 50
λ = 0.2 λ = 0.4 λ = 0.6 λ = 0.8 λ = 1.0

P@25 MAP@25 P@25 MAP@25 P@25 MAP@25 P@25 MAP@25 P@25 MAP@25
Initial 0.01158 0.06748 0.01158 0.06748 0.01158 0.06748 0.01158 0.06748 0.01158 0.06748
Re-ranked
Global

0.01217 0.06798 0.01222 0.0689 0.01201 0.06513 0.01206 0.06425 0.01179 0.06324

Re-ranked
Personal

0.0119 0.06803 0.01196 0.06609 0.0118 0.065 0.0118 0.06399 0.01175 0.0636

Re-rank results for the CAMF_CU initial recommendation for both global and personal model, evaluated over the top 25 songs in the
recommendation list using the driving-style contextual dimension
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Weather dimension based re-rankings

List size 50
λ = 0.2 λ = 0.4 λ = 0.6 λ = 0.8 λ = 1.0

P@25 MAP@25 P@25 MAP@25 P@25 MAP@25 P@25 MAP@25 P@25 MAP@25
Initial 0.01082 0.04159 0.01082 0.04159 0.01082 0.04159 0.01082 0.04159 0.01082 0.04159
Re-ranked
Global

0.01061 0.04117 0.01034 0.04047 0.01007 0.04115 0.00985 0.04029 0.01001 0.03998

Re-ranked
Personal

0.01077 0.0416 0.01076 0.04126 0.01076 0.04166 0.0105 0.0414 0.01055 0.04117

Re-rank results for the UserKNN initial recommendation for both global and personal model, evaluated over the top 25 songs in the
recommendation list using the weather contextual dimension

List size 50
λ = 0.2 λ = 0.4 λ = 0.6 λ = 0.8 λ = 1.0

P@25 MAP@25 P@25 MAP@25 P@25 MAP@25 P@25 MAP@25 P@25 MAP@25
Initial 0.01179 0.064 0.01179 0.064 0.01179 0.064 0.01179 0.064 0.01179 0.064
Re-ranked
Global

0.01158 0.06066 0.01142 0.06007 0.01136 0.05764 0.01098 0.05494 0.01066 0.05235

Re-ranked
Personal

0.01168 0.0633 0.01173 0.06293 0.01147 0.06244 0.01142 0.06137 0.01115 0.05935

Re-rank results for the BiasedMF initial recommendation for both global and personal model, evaluated over the top 25 songs in the
recommendation list using the weather contextual dimension

List size 50
λ = 0.2 λ = 0.4 λ = 0.6 λ = 0.8 λ = 1.0

P@25 MAP@25 P@25 MAP@25 P@25 MAP@25 P@25 MAP@25 P@25 MAP@25
Initial 0.01158 0.06748 0.01158 0.06748 0.01158 0.06748 0.01158 0.06748 0.01158 0.06748
Re-ranked
Global

0.01135 0.06572 0.01129 0.06407 0.01102 0.06006 0.01091 0.05894 0.01091 0.05857

Re-ranked
Personal

0.01157 0.06674 0.01147 0.06572 0.01136 0.06524 0.01104 0.06436 0.01109 0.06443

Re-rank results for the CAMF_CU initial recommendation for both global and personal model, evaluated over the top 25 songs in the
recommendation list using the weather contextual dimension
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Roadtype dimension based re-rankings

List size 50
λ = 0.2 λ = 0.4 λ = 0.6 λ = 0.8 λ = 1.0

P@25 MAP@25 P@25 MAP@25 P@25 MAP@25 P@25 MAP@25 P@25 MAP@25
Initial 0.01082 0.04159 0.01082 0.04159 0.01082 0.04159 0.01082 0.04159 0.01082 0.04159
Re-ranked
Global

0.01066 0.03985 0.01045 0.03998 0.01035 0.03903 0.01029 0.03764 0.01019 0.03713

Re-ranked
Personal

0.01077 0.04124 0.01066 0.04128 0.01056 0.04141 0.01066 0.04267 0.01066 0.04235

Re-rank results for the UserKNN initial recommendation for both global and personal model, evaluated over the top 25 songs in the
recommendation list using the roadtype contextual dimension

List size 50
λ = 0.2 λ = 0.4 λ = 0.6 λ = 0.8 λ = 1.0

P@25 MAP@25 P@25 MAP@25 P@25 MAP@25 P@25 MAP@25 P@25 MAP@25
Initial 0.01179 0.064 0.01179 0.064 0.01179 0.064 0.01179 0.064 0.01179 0.064
Re-ranked
Global

0.01174 0.06408 0.01158 0.06353 0.01121 0.06076 0.01093 0.05508 0.01078 0.05307

Re-ranked
Personal

0.01168 0.06382 0.01174 0.06328 0.01158 0.06334 0.01136 0.06072 0.0112 0.05803

Re-rank results for the BiasedMF initial recommendation for both global and personal model, evaluated over the top 25 songs in the
recommendation list using the roadtype contextual dimension

List size 50
λ = 0.2 λ = 0.4 λ = 0.6 λ = 0.8 λ = 1.0

P@25 MAP@25 P@25 MAP@25 P@25 MAP@25 P@25 MAP@25 P@25 MAP@25
Initial 0.01158 0.06748 0.01158 0.06748 0.01158 0.06748 0.01158 0.06748 0.01158 0.06748
Re-ranked
Global

0.01141 0.06647 0.0113 0.06423 0.01114 0.06072 0.01108 0.05897 0.01109 0.05786

Re-ranked
Personal

0.01152 0.06696 0.01152 0.06676 0.01152 0.06565 0.01152 0.06442 0.01147 0.06493

Re-rank results for the CAMF_CU initial recommendation for both global and personal model, evaluated over the top 25 songs in the
recommendation list using the roadtype contextual dimension
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PERFORMANCE RESULTS

Daytime dimension based re-rankings

List size 25
λ = 0.2 λ = 0.4 λ = 0.6 λ = 0.8 λ = 1.0

P@10 MAP@10 P@10 MAP@10 P@10 MAP@10 P@10 MAP@10 P@10 MAP@10
Initial 0.02684 0.0116 0.02684 0.0116 0.02684 0.0116 0.02684 0.0116 0.02684 0.0116
Re-ranked
Global

0.02616 0.01116 0.02507 0.01072 0.02477 0.01034 0.02465 0.01008 0.02424 0.00985

Re-ranked
Personal

0.02742 0.01229 0.02698 0.01226 0.02709 0.01191 0.02674 0.01176 0.02621 0.01131

Re-rank results for the BPR initial recommendation for both global and personal model, evaluated over the top 10 songs in the
recommendation list consisting of 25 songs using the daytime contextual dimension

List size 50
λ = 0.2 λ = 0.4 λ = 0.6 λ = 0.8 λ = 1.0

P@10 MAP@10 P@10 MAP@10 P@10 MAP@10 P@10 MAP@10 P@10 MAP@10
Initial 0.02684 0.0116 0.02684 0.0116 0.02684 0.0116 0.02684 0.0116 0.02684 0.0116
Re-ranked
Global

0.02614 0.01116 0.02491 0.01067 0.02475 0.01036 0.02386 0.01003 0.0233 0.00979

Re-ranked
Personal

0.02742 0.01229 0.02705 0.0123 0.02749 0.01198 0.02633 0.01187 0.02609 0.01178

Re-rank results for the BPR initial recommendation for both global and personal model, evaluated over the top 10 songs in the
recommendation list consisting of 50 songs using the daytime contextual dimension

List size 100
λ = 0.2 λ = 0.4 λ = 0.6 λ = 0.8 λ = 1.0

P@10 MAP@10 P@10 MAP@10 P@10 MAP@10 P@10 MAP@10 P@10 MAP@10
Initial 0.02684 0.0116 0.02684 0.0116 0.02684 0.0116 0.02684 0.0116 0.02684 0.0116
Re-ranked
Global

0.02614 0.01116 0.02491 0.01067 0.0247 0.01036 0.02361 0.00997 0.02191 0.00896

Re-ranked
Personal

0.02742 0.01229 0.02705 0.0123 0.02744 0.01196 0.02656 0.01196 0.02589 0.0115

Re-rank results for the BPR initial recommendation for both global and personal model, evaluated over the top 10 songs in the
recommendation list consisting of 100 songs using the daytime contextual dimension
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List size 200
λ = 0.2 λ = 0.4 λ = 0.6 λ = 0.8 λ = 1.0

P@10 MAP@10 P@10 MAP@10 P@10 MAP@10 P@10 MAP@10 P@10 MAP@10
Initial 0.02684 0.0116 0.02684 0.0116 0.02684 0.0116 0.02684 0.0116 0.02684 0.0116
Re-ranked
Global

0.02614 0.01116 0.02491 0.01067 0.0247 0.01036 0.02352 0.00994 0.01896 0.00729

Re-ranked
Personal

0.02742 0.01229 0.02705 0.0123 0.02744 0.01196 0.02661 0.01196 0.02377 0.01065

Re-rank results for the BPR initial recommendation for both global and personal model, evaluated over the top 10 songs in the
recommendation list consisting of 200 songs using the daytime contextual dimension

List size 25
λ = 0.2 λ = 0.4 λ = 0.6 λ = 0.8 λ = 1.0

P@25 MAP@25 P@25 MAP@25 P@25 MAP@25 P@25 MAP@25 P@25 MAP@25
Initial 0.0242 0.01036 0.0242 0.01036 0.0242 0.01036 0.0242 0.01036 0.0242 0.01036
Re-ranked
Global

0.0242 0.01005 0.0242 0.00976 0.0242 0.00949 0.0242 0.00928 0.0242 0.00918

Re-ranked
Personal

0.0242 0.01092 0.0242 0.01075 0.0242 0.01052 0.0242 0.01047 0.0242 0.01011

Re-rank results for the BPR initial recommendation for both global and personal model, evaluated over the top 25 songs in the
recommendation list consisting of 25 songs using the daytime contextual dimension

List size 50
λ = 0.2 λ = 0.4 λ = 0.6 λ = 0.8 λ = 1.0

P@25 MAP@25 P@25 MAP@25 P@25 MAP@25 P@25 MAP@25 P@25 MAP@25
Initial 0.0242 0.01036 0.0242 0.01036 0.0242 0.01036 0.0242 0.01036 0.0242 0.01036
Re-ranked
Global

0.02439 0.01001 0.02409 0.00955 0.02375 0.00925 0.02337 0.00896 0.0229 0.00867

Re-ranked
Personal

0.02489 0.01102 0.0254 0.01103 0.02511 0.01086 0.02515 0.01084 0.02475 0.0107

Re-rank results for the BPR initial recommendation for both global and personal model, evaluated over the top 25 songs in the
recommendation list consisting of 50 songs using the daytime contextual dimension

List size 100
λ = 0.2 λ = 0.4 λ = 0.6 λ = 0.8 λ = 1.0

P@25 MAP@25 P@25 MAP@25 P@25 MAP@25 P@25 MAP@25 P@25 MAP@25
Initial 0.0242 0.01036 0.0242 0.01036 0.0242 0.01036 0.0242 0.01036 0.0242 0.01036
Re-ranked
Global

0.02439 0.01001 0.02409 0.00955 0.02387 0.00923 0.02249 0.00868 0.02144 0.0077

Re-ranked
Personal

0.02489 0.01102 0.02545 0.01106 0.02538 0.01097 0.02526 0.01096 0.02414 0.01031

Re-rank results for the BPR initial recommendation for both global and personal model, evaluated over the top 25 songs in the
recommendation list consisting of 100 songs using the daytime contextual dimension

List size 200
λ = 0.2 λ = 0.4 λ = 0.6 λ = 0.8 λ = 1.0

P@25 MAP@25 P@25 MAP@25 P@25 MAP@25 P@25 MAP@25 P@25 MAP@25
Initial 0.0242 0.01036 0.0242 0.01036 0.0242 0.01036 0.0242 0.01036 0.0242 0.01036
Re-ranked
Global

0.02439 0.01001 0.02409 0.00955 0.02387 0.00923 0.0224 0.00865 0.0191 0.00619

Re-ranked
Personal

0.02489 0.01102 0.02545 0.01106 0.02538 0.01097 0.02529 0.01098 0.02292 0.00989

Re-rank results for the BPR initial recommendation for both global and personal model, evaluated over the top 25 songs in the
recommendation list consisting of 200 songs using the daytime contextual dimension



69

List size 25
λ = 0.2 λ = 0.4 λ = 0.6 λ = 0.8 λ = 1.0

P@all MAP@all P@all MAP@all P@all MAP@all P@all MAP@all P@all MAP@all
Initial NA 0.01036 NA 0.01036 NA 0.01036 NA 0.01036 NA 0.01036
Re-ranked
Global

NA 0.01005 NA 0.00976 NA 0.00949 NA 0.00928 NA 0.00918

Re-ranked
Personal

NA 0.01092 NA 0.01075 NA 0.01052 NA 0.01047 NA 0.01011

Re-rank results for the BPR initial recommendation for both global and personal model, evaluated over the top all songs in the
recommendation list consisting of 25 songs using the daytime contextual dimension

List size 50
λ = 0.2 λ = 0.4 λ = 0.6 λ = 0.8 λ = 1.0

P@all MAP@all P@all MAP@all P@all MAP@all P@all MAP@all P@all MAP@all
Initial NA 0.01122 NA 0.01122 NA 0.01122 NA 0.01122 NA 0.01122
Re-ranked
Global

NA 0.01088 NA 0.01052 NA 0.01032 NA 0.0101 NA 0.00987

Re-ranked
Personal

NA 0.0118 NA 0.0117 NA 0.01158 NA 0.0116 NA 0.01151

Re-rank results for the BPR initial recommendation for both global and personal model, evaluated over the top all songs in the
recommendation list consisting of 50 songs using the daytime contextual dimension

List size 100
λ = 0.2 λ = 0.4 λ = 0.6 λ = 0.8 λ = 1.0

P@all MAP@all P@all MAP@all P@all MAP@all P@all MAP@all P@all MAP@all
Initial NA 0.01276 NA 0.01276 NA 0.01276 NA 0.01276 NA 0.01276
Re-ranked
Global

NA 0.01243 NA 0.01202 NA 0.01171 NA 0.01129 NA 0.01036

Re-ranked
Personal

NA 0.01338 NA 0.01333 NA 0.01329 NA 0.01331 NA 0.01284

Re-rank results for the BPR initial recommendation for both global and personal model, evaluated over the top all songs in the
recommendation list consisting of 100 songs using the daytime contextual dimension

List size 200
λ = 0.2 λ = 0.4 λ = 0.6 λ = 0.8 λ = 1.0

P@all MAP@all P@all MAP@all P@all MAP@all P@all MAP@all P@all MAP@all
Initial NA 0.0147 NA 0.0147 NA 0.0147 NA 0.0147 NA 0.0147
Re-ranked
Global

NA 0.01437 NA 0.01395 NA 0.01359 NA 0.01298 NA 0.01045

Re-ranked
Personal

NA 0.01533 NA 0.01532 NA 0.01535 NA 0.01543 NA 0.01436

Re-rank results for the BPR initial recommendation for both global and personal model, evaluated over the top all songs in the
recommendation list consisting of 200 songs using the daytime contextual dimension

List size 25
λ = 0.2 λ = 0.4 λ = 0.6 λ = 0.8 λ = 1.0

P@10 MAP@10 P@10 MAP@10 P@10 MAP@10 P@10 MAP@10 P@10 MAP@10
Initial 0.02508 0.01125 0.02508 0.01125 0.02508 0.01125 0.02508 0.01125 0.02508 0.01125
Re-ranked
Global

0.02545 0.01077 0.02437 0.01011 0.02351 0.00991 0.02338 0.0097 0.02331 0.00957

Re-ranked
Personal

0.02633 0.01198 0.02611 0.01222 0.02584 0.01211 0.02552 0.01202 0.02529 0.01164

Re-rank results for the UserSplitting-BPR initial recommendation for both global and personal model, evaluated over the top 10 songs
in the recommendation list consisting of 25 songs using the daytime contextual dimension
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List size 50
λ = 0.2 λ = 0.4 λ = 0.6 λ = 0.8 λ = 1.0

P@10 MAP@10 P@10 MAP@10 P@10 MAP@10 P@10 MAP@10 P@10 MAP@10
Initial 0.02508 0.01125 0.02508 0.01125 0.02508 0.01125 0.02508 0.01125 0.02508 0.01125
Re-ranked
Global

0.02545 0.01077 0.0243 0.01003 0.02317 0.00974 0.02268 0.00947 0.02189 0.00893

Re-ranked
Personal

0.02633 0.01198 0.02601 0.01244 0.02666 0.01252 0.02612 0.01251 0.02566 0.01201

Re-rank results for the UserSplitting-BPR initial recommendation for both global and personal model, evaluated over the top 10 songs
in the recommendation list consisting of 50 songs using the daytime contextual dimension

List size 100
λ = 0.2 λ = 0.4 λ = 0.6 λ = 0.8 λ = 1.0

P@10 MAP@10 P@10 MAP@10 P@10 MAP@10 P@10 MAP@10 P@10 MAP@10
Initial 0.02508 0.01125 0.02508 0.01125 0.02508 0.01125 0.02508 0.01125 0.02508 0.01125
Re-ranked
Global

0.02545 0.01077 0.0243 0.01003 0.02321 0.00974 0.02261 0.00939 0.02038 0.00841

Re-ranked
Personal

0.02633 0.01198 0.02601 0.01244 0.02664 0.01255 0.02654 0.01268 0.02515 0.0112

Re-rank results for the UserSplitting-BPR initial recommendation for both global and personal model, evaluated over the top 10 songs
in the recommendation list consisting of 100 songs using the daytime contextual dimension

List size 200
λ = 0.2 λ = 0.4 λ = 0.6 λ = 0.8 λ = 1.0

P@10 MAP@10 P@10 MAP@10 P@10 MAP@10 P@10 MAP@10 P@10 MAP@10
Initial 0.02508 0.01125 0.02508 0.01125 0.02508 0.01125 0.02508 0.01125 0.02508 0.01125
Re-ranked
Global

0.02545 0.01077 0.0243 0.01003 0.02321 0.00974 0.02261 0.00938 0.01782 0.00715

Re-ranked
Personal

0.02633 0.01198 0.02601 0.01244 0.02664 0.01255 0.02656 0.01271 0.02374 0.01064

Re-rank results for the UserSplitting-BPR initial recommendation for both global and personal model, evaluated over the top 10 songs
in the recommendation list consisting of 200 songs using the daytime contextual dimension

List size 25
λ = 0.2 λ = 0.4 λ = 0.6 λ = 0.8 λ = 1.0

P@25 MAP@25 P@25 MAP@25 P@25 MAP@25 P@25 MAP@25 P@25 MAP@25
Initial 0.02455 0.01 0.02455 0.01 0.02455 0.01 0.02455 0.01 0.02455 0.01
Re-ranked
Global

0.02455 0.00952 0.02455 0.00898 0.02455 0.00896 0.02455 0.00894 0.02455 0.00883

Re-ranked
Personal

0.02455 0.01071 0.02455 0.01093 0.02455 0.0108 0.02455 0.01076 0.02455 0.01039

Re-rank results for the UserSplitting-BPR initial recommendation for both global and personal model, evaluated over the top 25 songs
in the recommendation list consisting of 25 songs using the daytime contextual dimension

List size 50
λ = 0.2 λ = 0.4 λ = 0.6 λ = 0.8 λ = 1.0

P@25 MAP@25 P@25 MAP@25 P@25 MAP@25 P@25 MAP@25 P@25 MAP@25
Initial 0.02455 0.01 0.02455 0.01 0.02455 0.01 0.02455 0.01 0.02455 0.01
Re-ranked
Global

0.02441 0.00937 0.02369 0.00863 0.02369 0.00852 0.02312 0.00835 0.02294 0.00797

Re-ranked
Personal

0.02503 0.0108 0.0249 0.01123 0.02512 0.01119 0.02482 0.01119 0.02465 0.01079

Re-rank results for the UserSplitting-BPR initial recommendation for both global and personal model, evaluated over the top 25 songs
in the recommendation list consisting of 50 songs using the daytime contextual dimension
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List size 100
λ = 0.2 λ = 0.4 λ = 0.6 λ = 0.8 λ = 1.0

P@25 MAP@25 P@25 MAP@25 P@25 MAP@25 P@25 MAP@25 P@25 MAP@25
Initial 0.02455 0.01 0.02455 0.01 0.02455 0.01 0.02455 0.01 0.02455 0.01
Re-ranked
Global

0.02441 0.00937 0.02367 0.00861 0.02334 0.00846 0.02206 0.00807 0.02085 0.00721

Re-ranked
Personal

0.02503 0.0108 0.02493 0.01125 0.02509 0.0113 0.02513 0.01139 0.02433 0.01026

Re-rank results for the UserSplitting-BPR initial recommendation for both global and personal model, evaluated over the top 25 songs
in the recommendation list consisting of 100 songs using the daytime contextual dimension

List size 200
λ = 0.2 λ = 0.4 λ = 0.6 λ = 0.8 λ = 1.0

P@25 MAP@25 P@25 MAP@25 P@25 MAP@25 P@25 MAP@25 P@25 MAP@25
Initial 0.02455 0.01 0.02455 0.01 0.02455 0.01 0.02455 0.01 0.02455 0.01
Re-ranked
Global

0.02441 0.00937 0.02367 0.00861 0.02334 0.00846 0.02199 0.00806 0.01879 0.00608

Re-ranked
Personal

0.02503 0.0108 0.02493 0.01125 0.02509 0.0113 0.02511 0.01144 0.02307 0.0098

Re-rank results for the UserSplitting-BPR initial recommendation for both global and personal model, evaluated over the top 25 songs
in the recommendation list consisting of 200 songs using the daytime contextual dimension

List size 25
λ = 0.2 λ = 0.4 λ = 0.6 λ = 0.8 λ = 1.0

P@all MAP@all P@all MAP@all P@all MAP@all P@all MAP@all P@all MAP@all
Initial NA 0.01 NA 0.01 NA 0.01 NA 0.01 NA 0.01
Re-ranked
Global

NA 0.00952 NA 0.00898 NA 0.00896 NA 0.00894 NA 0.00883

Re-ranked
Personal

NA 0.01071 NA 0.01093 NA 0.0108 NA 0.01076 NA 0.01039

Re-rank results for the UserSplitting-BPR initial recommendation for both global and personal model, evaluated over the top all songs
in the recommendation list consisting of 25 songs using the daytime contextual dimension

List size 50
λ = 0.2 λ = 0.4 λ = 0.6 λ = 0.8 λ = 1.0

P@all MAP@all P@all MAP@all P@all MAP@all P@all MAP@all P@all MAP@all
Initial NA 0.01082 NA 0.01082 NA 0.01082 NA 0.01082 NA 0.01082
Re-ranked
Global

NA 0.01029 NA 0.00962 NA 0.00949 NA 0.00943 NA 0.0091

Re-ranked
Personal

NA 0.01158 NA 0.01203 NA 0.01195 NA 0.01195 NA 0.01159

Re-rank results for the UserSplitting-BPR initial recommendation for both global and personal model, evaluated over the top all songs
in the recommendation list consisting of 50 songs using the daytime contextual dimension

List size 100
λ = 0.2 λ = 0.4 λ = 0.6 λ = 0.8 λ = 1.0

P@all MAP@all P@all MAP@all P@all MAP@all P@all MAP@all P@all MAP@all
Initial NA 0.01234 NA 0.01234 NA 0.01234 NA 0.01234 NA 0.01234
Re-ranked
Global

NA 0.0118 NA 0.01107 NA 0.01083 NA 0.01053 NA 0.00974

Re-ranked
Personal

NA 0.01313 NA 0.01363 NA 0.01364 NA 0.01369 NA 0.01263

Re-rank results for the UserSplitting-BPR initial recommendation for both global and personal model, evaluated over the top all songs
in the recommendation list consisting of 100 songs using the daytime contextual dimension
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List size 200
λ = 0.2 λ = 0.4 λ = 0.6 λ = 0.8 λ = 1.0

P@all MAP@all P@all MAP@all P@all MAP@all P@all MAP@all P@all MAP@all
Initial NA 0.01415 NA 0.01415 NA 0.01415 NA 0.01415 NA 0.01415
Re-ranked
Global

NA 0.0136 NA 0.01287 NA 0.01258 NA 0.01209 NA 0.0101

Re-ranked
Personal

NA 0.01495 NA 0.01548 NA 0.01556 NA 0.01573 NA 0.01407

Re-rank results for the UserSplitting-BPR initial recommendation for both global and personal model, evaluated over the top all songs
in the recommendation list consisting of 200 songs using the daytime contextual dimension

List size 25
λ = 0.2 λ = 0.4 λ = 0.6 λ = 0.8 λ = 1.0

P@10 MAP@10 P@10 MAP@10 P@10 MAP@10 P@10 MAP@10 P@10 MAP@10
Initial 0.00419 0.00121 0.00419 0.00121 0.00419 0.00121 0.00419 0.00121 0.00419 0.00121
Re-ranked
Global

0.0033 0.00115 0.00391 0.00098 0.00385 0.00118 0.00391 0.00156 0.00391 0.00159

Re-ranked
Personal

0.00467 0.00276 0.0061 0.00342 0.0064 0.00475 0.00606 0.00502 0.00606 0.00516

Re-rank results for the CAMF-ICS initial recommendation for both global and personal model, evaluated over the top 10 songs in the
recommendation list consisting of 25 songs using the daytime contextual dimension

List size 50
λ = 0.2 λ = 0.4 λ = 0.6 λ = 0.8 λ = 1.0

P@10 MAP@10 P@10 MAP@10 P@10 MAP@10 P@10 MAP@10 P@10 MAP@10
Initial 0.00419 0.00121 0.00419 0.00121 0.00419 0.00121 0.00419 0.00121 0.00419 0.00121
Re-ranked
Global

0.0033 0.00115 0.00505 0.0012 0.00628 0.00245 0.00542 0.0029 0.00542 0.00291

Re-ranked
Personal

0.00467 0.00276 0.00729 0.00402 0.00901 0.00648 0.00959 0.00783 0.00987 0.00906

Re-rank results for the CAMF-ICS initial recommendation for both global and personal model, evaluated over the top 10 songs in the
recommendation list consisting of 50 songs using the daytime contextual dimension

List size 100
λ = 0.2 λ = 0.4 λ = 0.6 λ = 0.8 λ = 1.0

P@10 MAP@10 P@10 MAP@10 P@10 MAP@10 P@10 MAP@10 P@10 MAP@10
Initial 0.00419 0.00121 0.00419 0.00121 0.00419 0.00121 0.00419 0.00121 0.00419 0.00121
Re-ranked
Global

0.0033 0.00115 0.00505 0.0012 0.00658 0.00255 0.00851 0.00354 0.00961 0.00396

Re-ranked
Personal

0.00467 0.00276 0.00729 0.00402 0.0096 0.00721 0.01395 0.0129 0.01359 0.01458

Re-rank results for the CAMF-ICS initial recommendation for both global and personal model, evaluated over the top 10 songs in the
recommendation list consisting of 100 songs using the daytime contextual dimension

List size 200
λ = 0.2 λ = 0.4 λ = 0.6 λ = 0.8 λ = 1.0

P@10 MAP@10 P@10 MAP@10 P@10 MAP@10 P@10 MAP@10 P@10 MAP@10
Initial 0.00419 0.00121 0.00419 0.00121 0.00419 0.00121 0.00419 0.00121 0.00419 0.00121
Re-ranked
Global

0.0033 0.00115 0.00505 0.0012 0.00658 0.00255 0.00851 0.00354 0.00817 0.00256

Re-ranked
Personal

0.00467 0.00276 0.00729 0.00402 0.0096 0.00721 0.01454 0.0131 0.01704 0.01276

Re-rank results for the CAMF-ICS initial recommendation for both global and personal model, evaluated over the top 10 songs in the
recommendation list consisting of 200 songs using the daytime contextual dimension
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List size 25
λ = 0.2 λ = 0.4 λ = 0.6 λ = 0.8 λ = 1.0

P@25 MAP@25 P@25 MAP@25 P@25 MAP@25 P@25 MAP@25 P@25 MAP@25
Initial 0.00509 0.00192 0.00509 0.00192 0.00509 0.00192 0.00509 0.00192 0.00509 0.00192
Re-ranked
Global

0.00509 0.0019 0.00509 0.00187 0.00509 0.002 0.00509 0.00208 0.00509 0.00209

Re-ranked
Personal

0.00509 0.00337 0.00509 0.00391 0.00509 0.00493 0.00509 0.00526 0.00509 0.00536

Re-rank results for the CAMF-ICS initial recommendation for both global and personal model, evaluated over the top 25 songs in the
recommendation list consisting of 25 songs using the daytime contextual dimension

List size 50
λ = 0.2 λ = 0.4 λ = 0.6 λ = 0.8 λ = 1.0

P@25 MAP@25 P@25 MAP@25 P@25 MAP@25 P@25 MAP@25 P@25 MAP@25
Initial 0.00509 0.00192 0.00509 0.00192 0.00509 0.00192 0.00509 0.00192 0.00509 0.00192
Re-ranked
Global

0.00575 0.00205 0.0053 0.00207 0.00541 0.00276 0.00551 0.00326 0.0053 0.00328

Re-ranked
Personal

0.00689 0.00377 0.00733 0.00476 0.00665 0.00657 0.00686 0.00771 0.00686 0.00896

Re-rank results for the CAMF-ICS initial recommendation for both global and personal model, evaluated over the top 25 songs in the
recommendation list consisting of 50 songs using the daytime contextual dimension

List size 100
λ = 0.2 λ = 0.4 λ = 0.6 λ = 0.8 λ = 1.0

P@25 MAP@25 P@25 MAP@25 P@25 MAP@25 P@25 MAP@25 P@25 MAP@25
Initial 0.00509 0.00192 0.00509 0.00192 0.00509 0.00192 0.00509 0.00192 0.00509 0.00192
Re-ranked
Global

0.00575 0.00205 0.00551 0.00208 0.00666 0.003 0.00687 0.00377 0.00658 0.00376

Re-ranked
Personal

0.00689 0.00377 0.008 0.00497 0.00905 0.00779 0.01032 0.01305 0.01019 0.01466

Re-rank results for the CAMF-ICS initial recommendation for both global and personal model, evaluated over the top 25 songs in the
recommendation list consisting of 100 songs using the daytime contextual dimension

List size 200
λ = 0.2 λ = 0.4 λ = 0.6 λ = 0.8 λ = 1.0

P@25 MAP@25 P@25 MAP@25 P@25 MAP@25 P@25 MAP@25 P@25 MAP@25
Initial 0.00509 0.00192 0.00509 0.00192 0.00509 0.00192 0.00509 0.00192 0.00509 0.00192
Re-ranked
Global

0.00575 0.00205 0.00551 0.00208 0.00666 0.003 0.00701 0.00363 0.00714 0.00257

Re-ranked
Personal

0.00689 0.00377 0.008 0.00497 0.00917 0.00782 0.01047 0.01329 0.01258 0.01313

Re-rank results for the CAMF-ICS initial recommendation for both global and personal model, evaluated over the top 25 songs in the
recommendation list consisting of 200 songs using the daytime contextual dimension

List size 25
λ = 0.2 λ = 0.4 λ = 0.6 λ = 0.8 λ = 1.0

P@all MAP@all P@all MAP@all P@all MAP@all P@all MAP@all P@all MAP@all
Initial NA 0.00192 NA 0.00192 NA 0.00192 NA 0.00192 NA 0.00192
Re-ranked
Global

NA 0.0019 NA 0.00187 NA 0.002 NA 0.00208 NA 0.00209

Re-ranked
Personal

NA 0.00337 NA 0.00391 NA 0.00493 NA 0.00526 NA 0.00536

Re-rank results for the CAMF-ICS initial recommendation for both global and personal model, evaluated over the top all songs in the
recommendation list consisting of 25 songs using the daytime contextual dimension
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List size 50
λ = 0.2 λ = 0.4 λ = 0.6 λ = 0.8 λ = 1.0

P@all MAP@all P@all MAP@all P@all MAP@all P@all MAP@all P@all MAP@all
Initial NA 0.00221 NA 0.00221 NA 0.00221 NA 0.00221 NA 0.00221
Re-ranked
Global

NA 0.0023 NA 0.0024 NA 0.00299 NA 0.00349 NA 0.00356

Re-ranked
Personal

NA 0.0039 NA 0.00478 NA 0.00658 NA 0.00769 NA 0.00893

Re-rank results for the CAMF-ICS initial recommendation for both global and personal model, evaluated over the top all songs in the
recommendation list consisting of 50 songs using the daytime contextual dimension

List size 100
λ = 0.2 λ = 0.4 λ = 0.6 λ = 0.8 λ = 1.0

P@all MAP@all P@all MAP@all P@all MAP@all P@all MAP@all P@all MAP@all
Initial NA 0.0027 NA 0.0027 NA 0.0027 NA 0.0027 NA 0.0027
Re-ranked
Global

NA 0.00281 NA 0.00296 NA 0.00368 NA 0.00437 NA 0.00459

Re-ranked
Personal

NA 0.00449 NA 0.00564 NA 0.00825 NA 0.0133 NA 0.01487

Re-rank results for the CAMF-ICS initial recommendation for both global and personal model, evaluated over the top all songs in the
recommendation list consisting of 100 songs using the daytime contextual dimension

List size 200
λ = 0.2 λ = 0.4 λ = 0.6 λ = 0.8 λ = 1.0

P@all MAP@all P@all MAP@all P@all MAP@all P@all MAP@all P@all MAP@all
Initial NA 0.00318 NA 0.00318 NA 0.00318 NA 0.00318 NA 0.00318
Re-ranked
Global

NA 0.0033 NA 0.00344 NA 0.00417 NA 0.00483 NA 0.00383

Re-ranked
Personal

NA 0.005 NA 0.00619 NA 0.00893 NA 0.01443 NA 0.01406

Re-rank results for the CAMF-ICS initial recommendation for both global and personal model, evaluated over the top all songs in the
recommendation list consisting of 200 songs using the daytime contextual dimension



C
#NOWPLAYING-RS DATASET OPPOSITE

RE-RANKING PERFORMANCE RESULTS

Daytime dimension based opposite re-rankings

List size 25
λ = 0.2 λ = 0.4 λ = 0.6 λ = 0.8 λ = 1.0

P@10 MAP@10 P@10 MAP@10 P@10 MAP@10 P@10 MAP@10 P@10 MAP@10
Initial 0.02684 0.0116 0.02684 0.0116 0.02684 0.0116 0.02684 0.0116 0.02684 0.0116
Re-ranked
Global

0.0253 0.01069 0.02417 0.0101 0.02382 0.01002 0.02326 0.00986 0.02336 0.00968

Re-ranked
Personal

0.02381 0.00965 0.02249 0.00878 0.02179 0.00847 0.02154 0.00841 0.02126 0.00821

Opposite re-rank results for the BPR initial recommendation for both global and personal model, evaluated over the top 10 songs in the
recommendation list consisting of 25 songs using the daytime contextual dimension

List size 50
λ = 0.2 λ = 0.4 λ = 0.6 λ = 0.8 λ = 1.0

P@10 MAP@10 P@10 MAP@10 P@10 MAP@10 P@10 MAP@10 P@10 MAP@10
Initial 0.02684 0.0116 0.02684 0.0116 0.02684 0.0116 0.02684 0.0116 0.02684 0.0116
Re-ranked
Global

0.02495 0.01058 0.02262 0.00938 0.02078 0.00869 0.02033 0.00844 0.01989 0.00793

Re-ranked
Personal

0.02355 0.00957 0.0207 0.00806 0.01942 0.00748 0.0184 0.00722 0.01824 0.00674

Opposite re-rank results for the BPR initial recommendation for both global and personal model, evaluated over the top 10 songs in the
recommendation list consisting of 50 songs using the daytime contextual dimension

List size 100
λ = 0.2 λ = 0.4 λ = 0.6 λ = 0.8 λ = 1.0

P@10 MAP@10 P@10 MAP@10 P@10 MAP@10 P@10 MAP@10 P@10 MAP@10
Initial 0.02684 0.0116 0.02684 0.0116 0.02684 0.0116 0.02684 0.0116 0.02684 0.0116
Re-ranked
Global

0.02495 0.01058 0.02183 0.00912 0.01912 0.00779 0.01805 0.00707 0.01753 0.00646

Re-ranked
Personal

0.02355 0.00957 0.02024 0.00796 0.01761 0.00678 0.01682 0.00617 0.01602 0.00568

Opposite re-rank results for the BPR initial recommendation for both global and personal model, evaluated over the top 10 songs in the
recommendation list consisting of 100 songs using the daytime contextual dimension
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List size 200
λ = 0.2 λ = 0.4 λ = 0.6 λ = 0.8 λ = 1.0

P@10 MAP@10 P@10 MAP@10 P@10 MAP@10 P@10 MAP@10 P@10 MAP@10
Initial 0.02684 0.0116 0.02684 0.0116 0.02684 0.0116 0.02684 0.0116 0.02684 0.0116
Re-ranked
Global

0.02495 0.01058 0.02183 0.00912 0.01865 0.0077 0.01754 0.00661 0.01524 0.00536

Re-ranked
Personal

0.02355 0.00957 0.02024 0.00796 0.01714 0.00668 0.01591 0.00559 0.01373 0.00442

Opposite re-rank results for the BPR initial recommendation for both global and personal model, evaluated over the top 10 songs in the
recommendation list consisting of 200 songs using the daytime contextual dimension

List size 25
λ = 0.2 λ = 0.4 λ = 0.6 λ = 0.8 λ = 1.0

P@25 MAP@25 P@25 MAP@25 P@25 MAP@25 P@25 MAP@25 P@25 MAP@25
Initial 0.0242 0.01036 0.0242 0.01036 0.0242 0.01036 0.0242 0.01036 0.0242 0.01036
Re-ranked
Global

0.0242 0.00967 0.0242 0.00945 0.0242 0.00941 0.0242 0.00941 0.0242 0.00924

Re-ranked
Personal

0.0242 0.00905 0.0242 0.00835 0.0242 0.00825 0.0242 0.00828 0.0242 0.00817

Opposite re-rank results for the BPR initial recommendation for both global and personal model, evaluated over the top 25 songs in the
recommendation list consisting of 25 songs using the daytime contextual dimension

List size 50
λ = 0.2 λ = 0.4 λ = 0.6 λ = 0.8 λ = 1.0

P@25 MAP@25 P@25 MAP@25 P@25 MAP@25 P@25 MAP@25 P@25 MAP@25
Initial 0.0242 0.01036 0.0242 0.01036 0.0242 0.01036 0.0242 0.01036 0.0242 0.01036
Re-ranked
Global

0.02398 0.00962 0.02383 0.00898 0.02341 0.00863 0.02304 0.0084 0.0228 0.00795

Re-ranked
Personal

0.02367 0.00891 0.02269 0.00762 0.02178 0.00711 0.02134 0.00694 0.02099 0.00646

Opposite re-rank results for the BPR initial recommendation for both global and personal model, evaluated over the top 25 songs in the
recommendation list consisting of 50 songs using the daytime contextual dimension

List size 100
λ = 0.2 λ = 0.4 λ = 0.6 λ = 0.8 λ = 1.0

P@25 MAP@25 P@25 MAP@25 P@25 MAP@25 P@25 MAP@25 P@25 MAP@25
Initial 0.0242 0.01036 0.0242 0.01036 0.0242 0.01036 0.0242 0.01036 0.0242 0.01036
Re-ranked
Global

0.02396 0.00962 0.0233 0.00874 0.02111 0.00767 0.01986 0.00693 0.01872 0.0063

Re-ranked
Personal

0.02365 0.0089 0.02238 0.0075 0.01968 0.00631 0.01783 0.00554 0.01686 0.00501

Opposite re-rank results for the BPR initial recommendation for both global and personal model, evaluated over the top 25 songs in the
recommendation list consisting of 100 songs using the daytime contextual dimension

List size 200
λ = 0.2 λ = 0.4 λ = 0.6 λ = 0.8 λ = 1.0

P@25 MAP@25 P@25 MAP@25 P@25 MAP@25 P@25 MAP@25 P@25 MAP@25
Initial 0.0242 0.01036 0.0242 0.01036 0.0242 0.01036 0.0242 0.01036 0.0242 0.01036
Re-ranked
Global

0.02396 0.00962 0.02328 0.00874 0.02036 0.00751 0.01713 0.00613 0.01596 0.00519

Re-ranked
Personal

0.02365 0.0089 0.02238 0.0075 0.01909 0.00617 0.01557 0.0048 0.01413 0.00386

Opposite re-rank results for the BPR initial recommendation for both global and personal model, evaluated over the top 25 songs in the
recommendation list consisting of 200 songs using the daytime contextual dimension
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List size 25
λ = 0.2 λ = 0.4 λ = 0.6 λ = 0.8 λ = 1.0

P@all MAP@all P@all MAP@all P@all MAP@all P@all MAP@all P@all MAP@all
Initial NA 0.01036 NA 0.01036 NA 0.01036 NA 0.01036 NA 0.01036
Re-ranked
Global

NA 0.00967 NA 0.00945 NA 0.00941 NA 0.00941 NA 0.00924

Re-ranked
Personal

NA 0.00905 NA 0.00835 NA 0.00825 NA 0.00828 NA 0.00817

Opposite re-rank results for the BPR initial recommendation for both global and personal model, evaluated over the top all songs in the
recommendation list consisting of 25 songs using the daytime contextual dimension

List size 50
λ = 0.2 λ = 0.4 λ = 0.6 λ = 0.8 λ = 1.0

P@all MAP@all P@all MAP@all P@all MAP@all P@all MAP@all P@all MAP@all
Initial NA 0.01122 NA 0.01122 NA 0.01122 NA 0.01122 NA 0.01122
Re-ranked
Global

NA 0.01059 NA 0.00998 NA 0.00967 NA 0.0095 NA 0.00909

Re-ranked
Personal

NA 0.0099 NA 0.0088 NA 0.00844 NA 0.00834 NA 0.00792

Opposite re-rank results for the BPR initial recommendation for both global and personal model, evaluated over the top all songs in the
recommendation list consisting of 50 songs using the daytime contextual dimension

List size 100
λ = 0.2 λ = 0.4 λ = 0.6 λ = 0.8 λ = 1.0

P@all MAP@all P@all MAP@all P@all MAP@all P@all MAP@all P@all MAP@all
Initial NA 0.01276 NA 0.01276 NA 0.01276 NA 0.01276 NA 0.01276
Re-ranked
Global

NA 0.01214 NA 0.01136 NA 0.01048 NA 0.00978 NA 0.0092

Re-ranked
Personal

NA 0.01142 NA 0.01013 NA 0.00915 NA 0.00844 NA 0.00789

Opposite re-rank results for the BPR initial recommendation for both global and personal model, evaluated over the top all songs in the
recommendation list consisting of 100 songs using the daytime contextual dimension

List size 200
λ = 0.2 λ = 0.4 λ = 0.6 λ = 0.8 λ = 1.0

P@all MAP@all P@all MAP@all P@all MAP@all P@all MAP@all P@all MAP@all
Initial NA 0.0147 NA 0.0147 NA 0.0147 NA 0.0147 NA 0.0147
Re-ranked
Global

NA 0.01407 NA 0.01328 NA 0.01223 NA 0.01093 NA 0.00974

Re-ranked
Personal

NA 0.01333 NA 0.01199 NA 0.01077 NA 0.00926 NA 0.00793

Opposite re-rank results for the BPR initial recommendation for both global and personal model, evaluated over the top all songs in the
recommendation list consisting of 200 songs using the daytime contextual dimension

List size 25
λ = 0.2 λ = 0.4 λ = 0.6 λ = 0.8 λ = 1.0

P@10 MAP@10 P@10 MAP@10 P@10 MAP@10 P@10 MAP@10 P@10 MAP@10
Initial 0.02508 0.01125 0.02508 0.01125 0.02508 0.01125 0.02508 0.01125 0.02508 0.01125
Re-ranked
Global

0.02422 0.0105 0.02387 0.00985 0.02366 0.00965 0.02331 0.00933 0.02327 0.00926

Re-ranked
Personal

0.02311 0.00961 0.02228 0.00874 0.02205 0.00853 0.02182 0.00836 0.02184 0.00832

Opposite re-rank results for the UserSplitting-BPR initial recommendation for both global and personal model, evaluated over the top
10 songs in the recommendation list consisting of 25 songs using the daytime contextual dimension
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List size 50
λ = 0.2 λ = 0.4 λ = 0.6 λ = 0.8 λ = 1.0

P@10 MAP@10 P@10 MAP@10 P@10 MAP@10 P@10 MAP@10 P@10 MAP@10
Initial 0.02508 0.01125 0.02508 0.01125 0.02508 0.01125 0.02508 0.01125 0.02508 0.01125
Re-ranked
Global

0.02387 0.01036 0.02221 0.00907 0.02112 0.00844 0.02021 0.008 0.01979 0.00782

Re-ranked
Personal

0.02294 0.00956 0.02091 0.00814 0.01944 0.00744 0.01846 0.00697 0.0181 0.0069

Opposite re-rank results for the UserSplitting-BPR initial recommendation for both global and personal model, evaluated over the top
10 songs in the recommendation list consisting of 50 songs using the daytime contextual dimension

List size 100
λ = 0.2 λ = 0.4 λ = 0.6 λ = 0.8 λ = 1.0

P@10 MAP@10 P@10 MAP@10 P@10 MAP@10 P@10 MAP@10 P@10 MAP@10
Initial 0.02508 0.01125 0.02508 0.01125 0.02508 0.01125 0.02508 0.01125 0.02508 0.01125
Re-ranked
Global

0.02387 0.01036 0.02178 0.00891 0.0194 0.00788 0.01808 0.00694 0.01767 0.00697

Re-ranked
Personal

0.02294 0.00956 0.02063 0.00805 0.018 0.00696 0.01673 0.00601 0.01594 0.00572

Opposite re-rank results for the UserSplitting-BPR initial recommendation for both global and personal model, evaluated over the top
10 songs in the recommendation list consisting of 100 songs using the daytime contextual dimension

List size 200
λ = 0.2 λ = 0.4 λ = 0.6 λ = 0.8 λ = 1.0

P@10 MAP@10 P@10 MAP@10 P@10 MAP@10 P@10 MAP@10 P@10 MAP@10
Initial 0.02508 0.01125 0.02508 0.01125 0.02508 0.01125 0.02508 0.01125 0.02508 0.01125
Re-ranked
Global

0.02387 0.01036 0.02178 0.00891 0.01908 0.00772 0.01649 0.00617 0.01499 0.00544

Re-ranked
Personal

0.02294 0.00956 0.02063 0.00805 0.01777 0.00689 0.01558 0.00548 0.01392 0.00442

Opposite re-rank results for the UserSplitting-BPR initial recommendation for both global and personal model, evaluated over the top
10 songs in the recommendation list consisting of 200 songs using the daytime contextual dimension

List size 25
λ = 0.2 λ = 0.4 λ = 0.6 λ = 0.8 λ = 1.0

P@25 MAP@25 P@25 MAP@25 P@25 MAP@25 P@25 MAP@25 P@25 MAP@25
Initial 0.02455 0.01 0.02455 0.01 0.02455 0.01 0.02455 0.01 0.02455 0.01
Re-ranked
Global

0.02455 0.00959 0.02455 0.00916 0.02455 0.00904 0.02455 0.00882 0.02455 0.0088

Re-ranked
Personal

0.02455 0.0089 0.02455 0.00828 0.02455 0.00818 0.02455 0.00807 0.02455 0.00807

Opposite re-rank results for the UserSplitting-BPR initial recommendation for both global and personal model, evaluated over the top
25 songs in the recommendation list consisting of 25 songs using the daytime contextual dimension

List size 50
λ = 0.2 λ = 0.4 λ = 0.6 λ = 0.8 λ = 1.0

P@25 MAP@25 P@25 MAP@25 P@25 MAP@25 P@25 MAP@25 P@25 MAP@25
Initial 0.02455 0.01 0.02455 0.01 0.02455 0.01 0.02455 0.01 0.02455 0.01
Re-ranked
Global

0.0244 0.00952 0.02361 0.00861 0.02295 0.00821 0.02256 0.00798 0.02217 0.00783

Re-ranked
Personal

0.02401 0.00873 0.02263 0.00747 0.02132 0.00689 0.02091 0.00657 0.02047 0.00652

Opposite re-rank results for the UserSplitting-BPR initial recommendation for both global and personal model, evaluated over the top
25 songs in the recommendation list consisting of 50 songs using the daytime contextual dimension
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List size 100
λ = 0.2 λ = 0.4 λ = 0.6 λ = 0.8 λ = 1.0

P@25 MAP@25 P@25 MAP@25 P@25 MAP@25 P@25 MAP@25 P@25 MAP@25
Initial 0.02455 0.01 0.02455 0.01 0.02455 0.01 0.02455 0.01 0.02455 0.01
Re-ranked
Global

0.02438 0.00951 0.02306 0.00846 0.02137 0.00772 0.02001 0.0069 0.01911 0.00695

Re-ranked
Personal

0.024 0.00873 0.02214 0.00732 0.01978 0.00627 0.01801 0.00543 0.01678 0.0051

Opposite re-rank results for the UserSplitting-BPR initial recommendation for both global and personal model, evaluated over the top
25 songs in the recommendation list consisting of 100 songs using the daytime contextual dimension

List size 200
λ = 0.2 λ = 0.4 λ = 0.6 λ = 0.8 λ = 1.0

P@25 MAP@25 P@25 MAP@25 P@25 MAP@25 P@25 MAP@25 P@25 MAP@25
Initial 0.02455 0.01 0.02455 0.01 0.02455 0.01 0.02455 0.01 0.02455 0.01
Re-ranked
Global

0.02438 0.00951 0.02305 0.00845 0.02055 0.00746 0.01799 0.0061 0.01603 0.00531

Re-ranked
Personal

0.024 0.00873 0.02214 0.00732 0.01903 0.0061 0.01598 0.00484 0.01424 0.00384

Opposite re-rank results for the UserSplitting-BPR initial recommendation for both global and personal model, evaluated over the top
25 songs in the recommendation list consisting of 200 songs using the daytime contextual dimension

List size 25
λ = 0.2 λ = 0.4 λ = 0.6 λ = 0.8 λ = 1.0

P@all MAP@all P@all MAP@all P@all MAP@all P@all MAP@all P@all MAP@all
Initial NA 0.01 NA 0.01 NA 0.01 NA 0.01 NA 0.01
Re-ranked
Global

NA 0.00959 NA 0.00916 NA 0.00904 NA 0.00882 NA 0.0088

Re-ranked
Personal

NA 0.0089 NA 0.00828 NA 0.00818 NA 0.00807 NA 0.00807

Opposite re-rank results for the UserSplitting-BPR initial recommendation for both global and personal model, evaluated over the top
all songs in the recommendation list consisting of 25 songs using the daytime contextual dimension

List size 50
λ = 0.2 λ = 0.4 λ = 0.6 λ = 0.8 λ = 1.0

P@all MAP@all P@all MAP@all P@all MAP@all P@all MAP@all P@all MAP@all
Initial NA 0.01082 NA 0.01082 NA 0.01082 NA 0.01082 NA 0.01082
Re-ranked
Global

NA 0.01038 NA 0.00954 NA 0.00922 NA 0.00902 NA 0.00892

Re-ranked
Personal

NA 0.00964 NA 0.0086 NA 0.00818 NA 0.00787 NA 0.00785

Opposite re-rank results for the UserSplitting-BPR initial recommendation for both global and personal model, evaluated over the top
all songs in the recommendation list consisting of 50 songs using the daytime contextual dimension

List size 100
λ = 0.2 λ = 0.4 λ = 0.6 λ = 0.8 λ = 1.0

P@all MAP@all P@all MAP@all P@all MAP@all P@all MAP@all P@all MAP@all
Initial NA 0.01234 NA 0.01234 NA 0.01234 NA 0.01234 NA 0.01234
Re-ranked
Global

NA 0.01189 NA 0.01094 NA 0.01027 NA 0.00958 NA 0.00961

Re-ranked
Personal

NA 0.01112 NA 0.00989 NA 0.00895 NA 0.00812 NA 0.00783

Opposite re-rank results for the UserSplitting-BPR initial recommendation for both global and personal model, evaluated over the top
all songs in the recommendation list consisting of 100 songs using the daytime contextual dimension
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List size 200
λ = 0.2 λ = 0.4 λ = 0.6 λ = 0.8 λ = 1.0

P@all MAP@all P@all MAP@all P@all MAP@all P@all MAP@all P@all MAP@all
Initial NA 0.01415 NA 0.01415 NA 0.01415 NA 0.01415 NA 0.01415
Re-ranked
Global

NA 0.01369 NA 0.01273 NA 0.01181 NA 0.01051 NA 0.00961

Re-ranked
Personal

NA 0.0129 NA 0.01162 NA 0.01041 NA 0.00893 NA 0.0077

Opposite re-rank results for the UserSplitting-BPR initial recommendation for both global and personal model, evaluated over the top
all songs in the recommendation list consisting of 200 songs using the daytime contextual dimension

List size 25
λ = 0.2 λ = 0.4 λ = 0.6 λ = 0.8 λ = 1.0

P@10 MAP@10 P@10 MAP@10 P@10 MAP@10 P@10 MAP@10 P@10 MAP@10
Initial 0.00419 0.00121 0.00419 0.00121 0.00419 0.00121 0.00419 0.00121 0.00419 0.00121
Re-ranked
Global

0.00428 0.00271 0.00541 0.00374 0.00541 0.00286 0.00513 0.00262 0.00513 0.00283

Re-ranked
Personal

0.00257 0.00102 0.00285 0.00107 0.00315 0.00101 0.00339 0.00084 0.00339 0.00084

Opposite re-rank results for the CAMF-ICS initial recommendation for both global and personal model, evaluated over the top 10 songs
in the recommendation list consisting of 25 songs using the daytime contextual dimension

List size 50
λ = 0.2 λ = 0.4 λ = 0.6 λ = 0.8 λ = 1.0

P@10 MAP@10 P@10 MAP@10 P@10 MAP@10 P@10 MAP@10 P@10 MAP@10
Initial 0.00419 0.00121 0.00419 0.00121 0.00419 0.00121 0.00419 0.00121 0.00419 0.00121
Re-ranked
Global

0.00424 0.00277 0.00473 0.00384 0.00448 0.00274 0.00449 0.00257 0.0053 0.00297

Re-ranked
Personal

0.00309 0.00111 0.00365 0.00138 0.00309 0.00101 0.00367 0.00088 0.00367 0.00085

Opposite re-rank results for the CAMF-ICS initial recommendation for both global and personal model, evaluated over the top 10 songs
in the recommendation list consisting of 50 songs using the daytime contextual dimension

List size 100
λ = 0.2 λ = 0.4 λ = 0.6 λ = 0.8 λ = 1.0

P@10 MAP@10 P@10 MAP@10 P@10 MAP@10 P@10 MAP@10 P@10 MAP@10
Initial 0.00419 0.00121 0.00419 0.00121 0.00419 0.00121 0.00419 0.00121 0.00419 0.00121
Re-ranked
Global

0.00424 0.00277 0.00478 0.00389 0.00506 0.00316 0.00536 0.00294 0.00479 0.00279

Re-ranked
Personal

0.00309 0.00111 0.00311 0.00133 0.00309 0.00099 0.0031 0.00081 0.00194 0.00056

Opposite re-rank results for the CAMF-ICS initial recommendation for both global and personal model, evaluated over the top 10 songs
in the recommendation list consisting of 100 songs using the daytime contextual dimension

List size 200
λ = 0.2 λ = 0.4 λ = 0.6 λ = 0.8 λ = 1.0

P@10 MAP@10 P@10 MAP@10 P@10 MAP@10 P@10 MAP@10 P@10 MAP@10
Initial 0.00419 0.00121 0.00419 0.00121 0.00419 0.00121 0.00419 0.00121 0.00419 0.00121
Re-ranked
Global

0.00424 0.00277 0.00478 0.00389 0.0053 0.00324 0.00533 0.00305 0.0054 0.00532

Re-ranked
Personal

0.00309 0.00111 0.00311 0.00133 0.00333 0.00107 0.00328 0.00082 0.0031 0.0021

Opposite re-rank results for the CAMF-ICS initial recommendation for both global and personal model, evaluated over the top 10 songs
in the recommendation list consisting of 200 songs using the daytime contextual dimension
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List size 25
λ = 0.2 λ = 0.4 λ = 0.6 λ = 0.8 λ = 1.0

P@25 MAP@25 P@25 MAP@25 P@25 MAP@25 P@25 MAP@25 P@25 MAP@25
Initial 0.00509 0.00192 0.00509 0.00192 0.00509 0.00192 0.00509 0.00192 0.00509 0.00192
Re-ranked
Global

0.00509 0.00315 0.00509 0.00402 0.00509 0.00321 0.00509 0.00311 0.00509 0.00334

Re-ranked
Personal

0.00509 0.00159 0.00509 0.00161 0.00509 0.00159 0.00509 0.00149 0.00509 0.00148

Opposite re-rank results for the CAMF-ICS initial recommendation for both global and personal model, evaluated over the top 25 songs
in the recommendation list consisting of 25 songs using the daytime contextual dimension

List size 50
λ = 0.2 λ = 0.4 λ = 0.6 λ = 0.8 λ = 1.0

P@25 MAP@25 P@25 MAP@25 P@25 MAP@25 P@25 MAP@25 P@25 MAP@25
Initial 0.00509 0.00192 0.00509 0.00192 0.00509 0.00192 0.00509 0.00192 0.00509 0.00192
Re-ranked
Global

0.00509 0.00305 0.00481 0.00382 0.00526 0.00299 0.00516 0.00276 0.00514 0.00301

Re-ranked
Personal

0.00456 0.00133 0.00381 0.00098 0.0039 0.00076 0.00368 0.00066 0.00358 0.00063

Opposite re-rank results for the CAMF-ICS initial recommendation for both global and personal model, evaluated over the top 25 songs
in the recommendation list consisting of 50 songs using the daytime contextual dimension

List size 100
λ = 0.2 λ = 0.4 λ = 0.6 λ = 0.8 λ = 1.0

P@25 MAP@25 P@25 MAP@25 P@25 MAP@25 P@25 MAP@25 P@25 MAP@25
Initial 0.00509 0.00192 0.00509 0.00192 0.00509 0.00192 0.00509 0.00192 0.00509 0.00192
Re-ranked
Global

0.0052 0.00307 0.0051 0.00406 0.00546 0.00343 0.00496 0.00317 0.00485 0.00324

Re-ranked
Personal

0.00456 0.00133 0.00384 0.00095 0.00331 0.00071 0.00304 0.0006 0.00316 0.00056

Opposite re-rank results for the CAMF-ICS initial recommendation for both global and personal model, evaluated over the top 25 songs
in the recommendation list consisting of 100 songs using the daytime contextual dimension

List size 200
λ = 0.2 λ = 0.4 λ = 0.6 λ = 0.8 λ = 1.0

P@25 MAP@25 P@25 MAP@25 P@25 MAP@25 P@25 MAP@25 P@25 MAP@25
Initial 0.00509 0.00192 0.00509 0.00192 0.00509 0.00192 0.00509 0.00192 0.00509 0.00192
Re-ranked
Global

0.0052 0.00307 0.0051 0.00406 0.00511 0.00331 0.00535 0.00332 0.00543 0.0059

Re-ranked
Personal

0.00456 0.00133 0.00384 0.00095 0.0034 0.00073 0.00373 0.00067 0.00361 0.00204

Opposite re-rank results for the CAMF-ICS initial recommendation for both global and personal model, evaluated over the top 25 songs
in the recommendation list consisting of 200 songs using the daytime contextual dimension

List size 25
λ = 0.2 λ = 0.4 λ = 0.6 λ = 0.8 λ = 1.0

P@all MAP@all P@all MAP@all P@all MAP@all P@all MAP@all P@all MAP@all
Initial NA 0.00192 NA 0.00192 NA 0.00192 NA 0.00192 NA 0.00192
Re-ranked
Global

NA 0.00315 NA 0.00402 NA 0.00321 NA 0.00311 NA 0.00334

Re-ranked
Personal

NA 0.00159 NA 0.00161 NA 0.00159 NA 0.00149 NA 0.00148

Opposite re-rank results for the CAMF-ICS initial recommendation for both global and personal model, evaluated over the top all songs
in the recommendation list consisting of 25 songs using the daytime contextual dimension
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List size 50
λ = 0.2 λ = 0.4 λ = 0.6 λ = 0.8 λ = 1.0

P@all MAP@all P@all MAP@all P@all MAP@all P@all MAP@all P@all MAP@all
Initial NA 0.00221 NA 0.00221 NA 0.00221 NA 0.00221 NA 0.00221
Re-ranked
Global

NA 0.00329 NA 0.00406 NA 0.00322 NA 0.00315 NA 0.00337

Re-ranked
Personal

NA 0.00167 NA 0.00145 NA 0.00131 NA 0.00121 NA 0.00119

Opposite re-rank results for the CAMF-ICS initial recommendation for both global and personal model, evaluated over the top all songs
in the recommendation list consisting of 50 songs using the daytime contextual dimension

List size 100
λ = 0.2 λ = 0.4 λ = 0.6 λ = 0.8 λ = 1.0

P@all MAP@all P@all MAP@all P@all MAP@all P@all MAP@all P@all MAP@all
Initial NA 0.0027 NA 0.0027 NA 0.0027 NA 0.0027 NA 0.0027
Re-ranked
Global

NA 0.00376 NA 0.00466 NA 0.00402 NA 0.00387 NA 0.00388

Re-ranked
Personal

NA 0.00206 NA 0.00164 NA 0.0014 NA 0.00129 NA 0.00126

Opposite re-rank results for the CAMF-ICS initial recommendation for both global and personal model, evaluated over the top all songs
in the recommendation list consisting of 100 songs using the daytime contextual dimension

List size 200
λ = 0.2 λ = 0.4 λ = 0.6 λ = 0.8 λ = 1.0

P@all MAP@all P@all MAP@all P@all MAP@all P@all MAP@all P@all MAP@all
Initial NA 0.00318 NA 0.00318 NA 0.00318 NA 0.00318 NA 0.00318
Re-ranked
Global

NA 0.00424 NA 0.00514 NA 0.00452 NA 0.00454 NA 0.00706

Re-ranked
Personal

NA 0.00252 NA 0.00206 NA 0.00171 NA 0.00157 NA 0.00298

Opposite re-rank results for the CAMF-ICS initial recommendation for both global and personal model, evaluated over the top all songs
in the recommendation list consisting of 200 songs using the daytime contextual dimension
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