

Delft University of Technology

Defining Name Accessibility Using Scope Graphs

Zwaan, Aron; Poulsen, Casper Bach

DOI
10.4230/LIPIcs.ECOOP.2024.47
Publication date
2024
Document Version
Final published version
Published in
38th European Conference on Object-Oriented Programming (ECOOP 2024)

Citation (APA)
Zwaan, A., & Poulsen, C. B. (2024). Defining Name Accessibility Using Scope Graphs. In J. Aldrich, & G.
Salvaneschi (Eds.), 38th European Conference on Object-Oriented Programming (ECOOP 2024) Article 47
(Leibniz International Proceedings in Informatics, LIPIcs; Vol. 313). Schloss Dagstuhl- Leibniz-Zentrum fur
Informatik GmbH, Dagstuhl Publishing. https://doi.org/10.4230/LIPIcs.ECOOP.2024.47
Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.4230/LIPIcs.ECOOP.2024.47
https://doi.org/10.4230/LIPIcs.ECOOP.2024.47

Defining Name Accessibility Using Scope Graphs
Aron Zwaan #

Delft University of Technology, The Netherlands

Casper Bach Poulsen #

Delft University of Technology, The Netherlands

Abstract
Many programming languages allow programmers to regulate accessibility; i.e., annotating a decla-
ration with keywords such as export and private to indicate where it can be accessed. Despite
the importance of name accessibility for, e.g., compilers, editor auto-completion and tooling, and
automated refactorings, few existing type systems provide a formal account of name accessibility.

We present a declarative, executable, and language-parametric model for name accessibility,
which provides a formal specification of name accessibility in Java, C#, C++, Rust, and Eiffel. We
achieve this by defining name accessibility as a predicate on resolution paths through scope graphs.
Since scope graphs are a language-independent model of name resolution, our model provides a
uniform approach to defining different accessibility policies for different languages.

Our model is implemented in Statix, a logic language for executable type system specification
using scope graphs. We evaluate its correctness on a test suite that compares it with the C#, Java,
and Rust compilers, and show we can synthesize access modifiers in programs with holes accurately.

2012 ACM Subject Classification Software and its engineering → Compilers; Software and its
engineering → Language features; Theory of computation → Program constructs

Keywords and phrases access modifier, visibility, scope graph, name resolution

Digital Object Identifier 10.4230/LIPIcs.ECOOP.2024.47

Related Version Extended Version: https://doi.org/10.48550/arXiv.2407.09320 [36]

Supplementary Material Software (ECOOP 2024 Artifact Evaluation approved artifact):
https://doi.org/10.4230/DARTS.10.2.27

Acknowledgements We thank Friedrich Steimann for challenging us to specify and formalize access
modifiers using scope graphs, and the anonymous reviewers for their helpful comments.

1 Introduction

Many programming languages, especially object-oriented ones, support information hiding,
i.e., regulating from which positions in a program a declaration can be accessed. Information
hiding is used to enforce invariants of particular code units, implement design patterns (e.g.
the singleton pattern), improve modularization, limit public APIs to offer guidance to library
users and guarantee forward compatibility. Support for information hiding is usually provided
using access modifier keywords1 (access modifiers for short), such as public, protected,
internal and private. Each of these corresponds with a particular accessibility policy that
is validated by the type checker.

Although recent research has not paid much attention to access modifiers, there are still
good reasons to study their semantics. First, understanding access modifiers is required to
implement (alternative) compilers and editor services correctly. In particular, disregarding
accessibility may result in incorrect name binding, and hence incorrect program behavior.
Second, formalizing access modifiers enables reasoning about the meaning of programs.

1 Other common names include “access specifier” or “visibility modifier”.

V1.1

A
rt
ifa

cts Available

ECOOP

Functional V

1.
1

A
rt
ifa

cts Evaluated

ECOOP

© Aron Zwaan and Casper Bach Poulsen;
licensed under Creative Commons License CC-BY 4.0

38th European Conference on Object-Oriented Programming (ECOOP 2024).
Editors: Jonathan Aldrich and Guido Salvaneschi; Article No. 47; pp. 47:1–47:29

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:a.s.zwaan@tudelft.nl
https://orcid.org/0000-0002-1818-4245
mailto:c.b.poulsen@tudelft.nl
https://orcid.org/0000-0003-0622-7639
https://doi.org/10.4230/LIPIcs.ECOOP.2024.47
https://doi.org/10.48550/arXiv.2407.09320
https://doi.org/10.4230/DARTS.10.2.27
https://doi.org/10.4230/DARTS.10.2.27
https://doi.org/10.4230/DARTS.10.2.27
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

47:2 Defining Name Accessibility Using Scope Graphs

package p1;
class A {

int x;
}

package p2;
class B extends p1.A { }

package p1;
class C extends p2.B {

int y = x;
}

(a) Inheritance through Packages.

package p;
class A {

protected int x;
}

class B extends A {
private int x;

}

class C extends B {
int y = x;

}

(b) Inaccessible or Shadowed?

package p;
class A {

private int x = 0;
protected int y = 1

}
class B {

int x = 3;
int y = 4;
class C extends A {

int z = x + y
}

}

(c) Accessibility and Shadowing.

Figure 1 Examples of intricate Access Modifier semantics. Classes are assumed to be public.

Finally, program transformation tools, such as automated refactorings, must handle the
semantics of accessibility correctly. This is especially relevant for research on large-scale
automated transformations, aimed at dealing with large (legacy) codebases. It is often
infeasible to check transformations performed with such tools manually. Thus, the correctness
of these transformations must be guaranteed through other means.

The meaning of access modifiers can be intricate in corner cases. We illustrate that using
the examples in Figure 1. In Figure 1a, there is an inheritance chain, where class C extends
class B, which itself extends A. Classes A and C reside in package p1, while B is in p2. Class A
defines a package-accessible field x, which is accessed in C. The question here is whether
that access is actually allowed. One could reason that it is correct, as the access occurs in
the same package as the declaration, so a package-level declaration should be visible. On
the other hand, one could consider x not inherited by B [11, §8.2], and thus not inherited
by C either. In fact, the Java language designers chose the second option, rejecting this
program [23, §4.2]. Using ((A) this).x is accepted however.

Something similar happens in Figure 1b. Here, one can consider the reference x in class C
to be invalid, as the field in class B is inaccessible. Alternatively, under the assumption
that B.x is out of scope, the reference can be valid, pointing to A.x. In this case, Java
checks accessibility after shadowing, so this program is again rejected. However, in Figure 1c,
accessibility does influence the binding. The reference x binds to the field of the enclosing
class B, as the field inherited from class A is inaccessible. However, reference y binds to the
field inherited from A. Thus, in this case, the accessibility of the inherited fields determines
the resolution of x and y; i.e., accessibility is checked before shadowing. This shows that
specifying accessibility is essential to defining the name binding of a language correctly.

Unintuitive semantics of accessibility occurs in non-object-oriented languages as well.
For example, the accessibility scheme of Agda seems simple: definitions are either public or
module-private, and imported definitions can be re-exported. However, issue #54612 reports
that re-exports in a private block are still exposed to the outside world. While this intuitively
seems wrong to most commenters, an argument is made that this is actually the intended
behavior. The discussion stalls shortly after a remark that talking about intended behavior
is “meaningless without a specification”.

2 https://github.com/agda/agda/issues/5461

https://github.com/agda/agda/issues/5461

A. Zwaan and C. Bach Poulsen 47:3

These examples show that the meaning of access modifiers is not always obvious. Hence,
language designers should define their semantics unambiguously. Ideally, that is done through
specifications containing inference rules. Inference rules allow unambiguous interpretation of
the meaning of programming language constructs, including name binding. However, perhaps
surprisingly, a general model for defining access modifiers has never been proposed.

Perhaps closest is the work of Steimann and Thies [25] (later incorporated in the JRRT
refactoring tool [23]). They propose a constraint-based approach to automating refactorings
in Java, by collecting and solving accessibility constraints. These constraints are generated
using constraint generation rules, which cover the access rules the Java compiler enforces. By
solving these constraints, changes in accessibility implied by the refactoring can be inferred,
yielding type- and behavior-preserving refactorings.

Steimann and Thies’ work solves the problem of making refactorings in Java sound
regarding accessibility. However, it does not yet give a high-level explanation of the meaning
of access modifiers. This is partly because the constraint generation rules need several
low-level details to catch some intricate corner cases, but also because the function that
computes the minimal required accessibility level is not given, as it was “unpleasant to
specify” and “of no theoretical interest” [25, §5.2]. Therefore, their work cannot easily be
adapted to a different language or a different application (e.g., a type checker).

To advance the state of the art, we pursue the following goals:
Explain the meaning of access modifiers.
Explain the (subtle) differences between access modifiers in different languages.
Provide a framework for experimenting with feature combinations that do not (yet) exist
in other languages.

To this end, we do not fully formalize one particular language, but rather define a toy
language that incorporates and combines a large number of accessibility features. To abstract
over low-level name resolution details, we use scope graphs [18, 27, 22, 38]. In this paper,
we demonstrate this is a natural fit, because accessibility can be expressed as a predicate
over paths in a scope graph. The specification is written in the logic language Statix [27, 22],
which has a well-defined declarative semantics and also supports generating executable
type-checkers automatically.

We compare these executable type checkers with reference compilers of Java, C#, and
Rust, showing that we accurately captured the semantics of access modifiers in some real-
world languages. Moreover, using Statix/scope graphs as a basis for (language-parametric)
refactorings is an active topic of research [16, 29, 15, 3]. We envision that this will provide
accessibility-aware refactorings similar to Steimann et al., without requiring significant
additional effort. This is substantiated by the fact that Statix-based code completion [19]
proposes an access modifier if and only if it would not cause accessibility errors elsewhere in
the program.

In summary, the contributions of this paper are as follows:
We provide a systematic classification of accessibility features (Section 2);
we apply our taxonomy to Java, C++, C#, Rust, and Eiffel (Section 2);
we present a specification of (various versions of) accessibility on modules (Section 5),
subclasses (Section 6), and their conjunctive and disjunctive combination (Section 7);
we extend our specification with accessibility-restricting inheritance (Section 8);
we prove some theorems about our model, showing it is well-behaved (Section 9); and
we implement our specification in Statix, and compare it with the standard compilers of
Java, C#, and Rust. Moreover, we show access modifiers can be synthesized accurately
using Statix-based Code Completion [19] (Section 10).

This paper comes with an artifact that allows reproducing the evaluation [35], and appendices
containing a full specification of the access modifiers and proofs of the stated theorems [36].

ECOOP 2024

47:4 Defining Name Accessibility Using Scope Graphs

2 Access Modifiers in Real-World Languages

In this section, we explore the design space of access modifiers as they occur in real-world
languages. We first motivate why languages have access modifiers (Section 2.1). After that,
we discuss common accessibility features (Section 2.2), summarizing them in a feature model
(Section 2.3).

2.1 Why Accessibility?
Most programming languages allow programmers to define entities (variables, functions, types,
etc.), and assign a name to them. That name can then be used to refer to the introduced
entity from other positions in the program. However, as there is typically a large number of
entities within a software project, most languages offer a notion of modularization to group
related definitions. Equally named definitions in different modules can be distinguished by
qualifying them with the name of the module in which they reside. Unqualified (or partially
qualified) names by default resolve within their enclosing module, or imported modules.
Details of this scheme differ from language to language, but generally aim to make definitions
easy to refer to (e.g., by minimizing the number of required qualifiers), while trying to be
unambiguous to the compiler and the programmer.

However, these rules may often be too lenient with respect to the intention of the
programmer. A definition may be accessible from scopes where it is not intended to be used.
This can have detrimental effects on the quality of a software artifact. For example, exposing
all internal definitions of a library makes it (1) less intuitive to its users, (2) prone to forward
compatibility issues and technical dept (e.g. strong coupling).

For these reasons, many programming languages provide constructs that give the pro-
grammer control over the regions of code where a definition can be accessed. For example, in
many object-oriented languages, a class can access fields from its ancestor classes by default
(language-controlled). However, if the programmer does not want a field to be accessible from
subclasses, they can add a private access modifier. This modifier prevents access from all
other classes (programmer-controlled). Although many constructs that provide access control
to the programmer can be envisioned, most languages settle on a limited set of keywords
that can be attached to a definition. In practice, this relatively simple scheme has proven
powerful enough to cover most use cases.

2.2 Accessibility in Practice
Next, we explore how languages typically provide modularization and accessibility features.

Modules. A common feature that provides modularization is modules (also called “package”
or “namespace”). A module is a syntactic construct that introduces a named collection of
definitions. Members of modules can be accessed using the name of the module, for example
in a preceding import statement, or as a qualifier to the name of the member that is accessed.

Hiding a definition from other modules is the simplest accessibility restriction that can be
applied with respect to modules. For example, Java declarations without an access modifier
can only be accessed within the same package. Rust items without a modifier behave similarly,
except that declarations can still be accessed from submodules.

Some languages have multiple notions of modularization. For example, C# has assemblies,
namespaces, and files, where a namespace can comprise multiple files, and/or a file can
contain multiple namespaces. The internal keyword in C# restricts accessibility to the
assembly, and the file keyword (introduced in C# 11 [32]) to the current file. Similarly,
Java 9 introduces modules [21], with features to restrict access from external modules.

A. Zwaan and C. Bach Poulsen 47:5

mod outer {
mod inner {

pub x = 42;
}
pub use inner ::x;

}

fn main () {
// ERROR: inner is inaccessible :
// let x = outer :: inner ::x;
let x = outer ::x;
println! ("{x}")

}

Figure 2 Re-exports can change Accessibility.

Some languages give some more control over which modules a declaration can be accessed
from. For example, Rust has the pub(in path) access modifier, where path refers to some
enclosing module. This enables programmers to expose items to an arbitrary ancestor.

Imports usually do not affect the visibility of a declaration. A notable exception to this
rule is re-exporting (e.g., as implemented in Rust), which can actually change the visibility
of a declaration, as shown in Figure 2. In this program, the module inner is accessible in
outer, but not in its parent (the root scope). Therefore, the function main cannot access its
field x. However, outer re-exports inner::x, which gives rise to a new definition outer::x.
As outer is accessible in the root scope, so is this definition. Hence, via the re-export, main
can access x, although the original declaration was hidden.

From an accessibility point of view, re-exporting can typically be considered as a combi-
nation of an import and a declaration, where the declaration always points to the imported
member. The re-exported item (inner::x in the example) should be accessible from the
location of the re-export. References to the re-export should have access to the location of
the re-export, but not necessarily to the location of the original declaration. In fact, for any
access path, it does not matter whether the declaration is a re-export or not.

Classes. A special modularization concept is the notion of classes, which represent composite
data types with associated operations (methods). Where simple modules only have a static
interpretation, an arbitrary number of class instances can exist at runtime.3 While modules
can implicitly be related to each other by their relative position, such a relation does not exist
for classes. However, classes can extend other classes, ensuring the subclass inherits the fields
of its parent class. This creates an inheritance hierarchy orthogonal to the module hierarchy.

Object-oriented languages usually provide modifiers to control accessibility over the
inheritance chain. For example, Java and C# have a private keyword, which prevents
access outside the defining class. Additionally, the protected keyword allows access from
subclasses, but prevents access from any other location.

In Java and C#, the accessibility level is inherited with the field. That means, if a field
in the superclass is protected, it will be protected in the subclass as well. However, C++

allows restricting the accessibility of members of the parent class. A private modifier on
extends-clauses will make all inherited public/protected members private on instances of the
subclass. Similarly, a protected modifier will make all inherited public members protected.

Finally, some languages allow specifying “friend” classes, which grant the friend access to
its members. This enables fine-grained access control, independent from module and class
hierarchies. While discouraged in C++, Eiffel provides only this access control mechanism.

3 At this point, we slightly over-simplify the reality. For example, neither parameterized modules (ML)
nor objects (e.g. Scala/Kotlin) fit in this scheme. We made this choice deliberately, to cover the most
prevalent cases. We conjecture that the techniques we develop for classes can be applied to parameterized
modules (and vice versa for modules and objects) but leave explicating that to future work.

ECOOP 2024

47:6 Defining Name Accessibility Using Scope Graphs

Interaction. Accessibility restrictions on modules and classes be combined. This is very
explicit in C#, which has protected internal and private protected as additional
modifiers. The former permits access from within the assembly (similar to internal) and
to subclasses (similar to protected), even if they live outside the assembly. Analogously,
private protected grants access to subclasses in the same assembly only, which is equivalent
to the conjunction of internal and protected.

2.3 Classification

These concepts are organized and related in the feature model in Figure 3. Following the
previous discussion, the main features are modules and classes. We have only a single feature
for modules, because the different variants are (apart from C#s files and namespaces) typically
not mutually nested. The internal keyword can either relate to the containing module
(Direct) or an arbitrary parent module (Ancestor). We explore this further in Section 5.

Programming Language

Modules

internal

Direct Ancestor

Classes

Friends

Subclass Access
Modifiers

private protected protected OR internal protected AND internal

Extends Clause
Access Modifier

private protected

«requires»

Optional

Or

Alternative (xor)

Legend

Figure 3 Feature Model for Access Control.

Table 1 Languages classified according to the feature model in Figure 3.

Java C# C++ Eiffel Rust

Modules
Internal Direct Direct4 Direct Ancestor
Classes
Friends
Subclass Acc. Mod.
private
protected
protected | internal
protected & internal

Extends Clause Acc. Mod.
private
protected

A. Zwaan and C. Bach Poulsen 47:7

In the Classes category, the three subfeatures denote the three mechanisms for access
control: Friends allow access to other classes by name, Subclass Access Modifiers are
access modifiers on definitions that determine how it is accessible within the class hierarchy
(Sections 6 and 7), and Extends Clause Access Modifiers (Section 8) are access modifiers on
extends clauses, as seen in C++. The latter two have subfeatures for each concrete keyword
associated with the access control mechanism. For that reason, private and protected
occur twice: once on definitions and once on extends clauses. Table 1 classifies several
languages according to this scheme. In the remainder of this paper, we develop AML (Access
Modifier Language), a language that covers all features. To this end, we first introduce scope
graphs (Section 3), and a base language for AML (Section 4).

3 Using Scope Graphs to Model Name Binding in Programs

In the previous section, we sketched the landscape of access modifiers. This discussion was
based largely on prose specifications as well as experiments with compiler implementations.
No language specification we are aware of provides a more rigorous model of accessibility (or
even non-lexical name binding). In this section, we introduce scope graphs [18, 27, 22, 38],
and argue that they provide a suitable framework for such a model. Section 4 introduces
AML (Access Modifier Language), a toy language with a type system defined using scope
graphs. Sections 5–8 will extend this language with all accessibility features from Figure 3.

3.1 Scope Graphs as A Model for Name Binding

From a name binding perspective, classes and modules have some similarities. Each of
these constructs can be thought of as introducing a “scope” (region of code), in which
declarations live, and in which names can be resolved. Scopes are related to each other in
various ways. First, modules are related according to their relative position in the abstract
syntax tree. In addition, imports and extends clauses relate arbitrary modules and classes,
respectively. Resolving a reference corresponds to finding a matching declaration in a scope
that is reachable from the scope of the reference. For example, a reference may resolve to a
declaration if it lives in a lexically enclosing scope, or in a module that is imported in an
enclosing scope.

Scope graphs [18, 27, 22, 38] make this more precise. In this model, the name binding
structure of a program is represented by a graph. Figure 4 (adapted from Poulsen et al. [20,
Fig. 1]) gives an example program and its corresponding scope graph. A scope is represented
by a circular node in the graph. For example, s0 represents the global scope, and sA, sB and sC

represent the bodies of modules A, B, and C, respectively. Scopes are related using labeled,
directed edges. For example, sA is lexically enclosed by s0, and thus the graph contains an
edge from sA to s0 with label LEX. Similarly, sB imports sA, and thus the graph contains an
edge sB

IMP sA. Finally, scope graphs contain declarations. For example, a declaration of i
in scope sC is represented by the sC

VAR i : int edge/node pair. Similarly, the modules are
declared in the root scope (e.g., s0

MOD A ∼ sA). The language specification determines which
data is included in the declaration. Similarly, the labels for edges and declarations can be
chosen to match the (binding) constructs of the language.

4 Either the most direct enclosing file (file), or most directly enclosing assembly (internal), possibly
bypassing some namespaces.

ECOOP 2024

47:8 Defining Name Accessibility Using Scope Graphs

module A {
var i = 5

}
module B {

import A
}
module C {

import B
var j = i

}

s0A ∼ sA MOD

B ∼ sB

MOD

C ∼ sCMOD

sB

LEX

sA

LEX

sC

LEX

IMP IMPi : int VAR j : intVAR

sC
LEX∗IMP?VAR

isVari

Figure 4 Reachability example. The IMP? part in the regular expression prevents traversal over
the second IMP edge.

module D {
var x = 3
module E {

import F
var y = x

}
}
module F {

var x = 4
}

s0D ∼ sD MOD F ∼ sFMOD

sD

LEX

sF

LEX

x : intVAR x : intVARE ∼ sE MOD

sE

LEX IMP

y : int VAR sE
LEX∗IMP?VAR

isVarx / VAR < IMP < LEX

Figure 5 Shadowing example. The highlighted label order causes the edge to sF to have priority.

Reachability. To resolve a reference, a query is executed to find a valid path in the scope
graph from the scope of the reference to a matching declaration. Queries give specification
writers several options to filter paths, to retain only valid paths. First, a unary predicate
selects valid declarations. Usually, this predicate matches declarations with the name of the
reference. Second, a regular expression over labels is used to select valid paths. This regular
expression can, for example, be used to prevent transitive imports, or accessing members in
a lexical parent of an imported module.

Figure 4 illustrates this with the query for i in module C (dashed blue box). The
parameter on the arrow (LEX∗IMP?VAR), is a regular expression that defines which paths to
declarations are valid. The LEX∗ indicates that a path may traverse an arbitrary number of
LEX-edges. This corresponds to looking for variables in enclosing scopes. Next, the IMP? part
indicates that zero or one IMP-edges can be traversed. Finally, the regular expression ends
with VAR to ensure all paths resolve in variable declarations only, excluding e.g. modules. The
isVari parameter matches all variable definitions with name i (isVar is defined in the next
section). The candidate path (shown as blue edges) does not match this regular expression.
Because IMP-labeled edges may only be traversed one time, the step to sA cannot be made.
In other words: the declaration of i in A is not reachable from C.

Visibility. Not every declaration that is reachable (i.e., for which a valid access path exists)
can actually be referenced, due to shadowing. For example, in most languages, local definitions
have higher priority than imported ones. We call reachable declarations that are not shadowed
by any other declaration visible.

In scope graphs, visibility can be encoded using a partial order on labels. For example,
an order VAR < IMP encodes that (local) variable declarations shadow imported declarations.
This is illustrated in Figure 5. The reference x in module F can refer to the declaration in

A. Zwaan and C. Bach Poulsen 47:9

module D as well as the one in module E. Because the label order (third argument) indicates
that imports shadow lexically enclosing scopes (IMP < LEX). Thus, the variable resolves to the
declaration in sF. Alternatively, if LEX < IMP, it would resolve to x in sD. Finally, if neither
LEX ̸< IMP nor IMP ̸< LEX, both paths would be included in the query result.

In summary, scope graphs model the name binding structure of a program using nodes
for scopes and declarations, and edges for relations between those. Queries can be used to
model reference resolution. A query selects a declaration when (1) it matches some predicate,
and (2) there exists a path to it of which the labels match a regular expression, and (3) no
other paths that traverse labels with higher priority exist. The result of a query is a set of
paths that lead to these matching declarations.

Accessibility. We can model extensibility using plain scope graphs by including accessibility
information in the declaration. In other words, a declaration of a variable in a scope graph
contains not only a name and a type, but also its accessibility level. After resolution, we
check if the path that the query returns is actually valid according to the accessibility level
of the declaration. For example, if a variable is private, but an EXT-edge (for class extension)
is traversed, an error is emitted. With this pattern, we can model all accessibility features.

Notation. Figures 4 and 5 introduce the graphical notation of scope graphs. In text,
variable s ranges over scopes, and S over sets of scopes. Moreover, we use the following
notation for assertions on scope graphs: s1

L s2 ∈ G means “scope graph G has an L-labeled
edge from s1 to s2”, and s D d ∈ G means that G has a declaration with data d under
label D in scope s. Moreover, we write queries in the following way:

queryG s
R P / O 7→ R

where G is the scope graph in which the query is resolved, s is the scope in which the resolution
starts, R is the regular expression that paths must adhere to, and P is the predicate that
declarations must match. O is the strict partial order on labels used for shadowing. It is
usually written as L1 < L2 < · · · < Ln. We omit the label order when there is no shadowing.
R is the result set containing tuples of paths and declarations. When we expect a single
result, we use {⟨p, d⟩} to match on the value in the set. Paths are alternating sequences of
scopes and labels, written as s1

L1 s2 · · · sm. Paths do not include the declaration it resolved
to, but stop at the scope in which the declaration occurs. The functions src(p), tgt(p) refer to
the source and target scope of a path, respectively. scopes(p) denotes all scopes in a path.

4 AML: The Base Language

In the next sections, we show how scope graphs support intuitive formalization of accessibility.
We will do so by defining AML (Access Modifier Language). The base syntax (which will
be extended later) is given in Figure 6. In AML, a program consists of a list of modules.
Each module can define other modules, import other modules, and contain class definitions.
A class can optionally extend another class, and contains a list of field declarations. Each field
has an access modifier, and is initialized by some expression. Possible expressions include
references, integer constants, class instance creation, field access, and binary operations.

At the right-hand side of Figure 6, the scope graph parameters are shown. There are
three labels that connect scopes. LEX denotes lexical scoping, IMP denotes imports, and EXT

class extension. The other three labels are used for declarations. MOD is used for module
declarations, CLS for classes, and VAR for variables/fields. Next, we assume that each module

ECOOP 2024

47:10 Defining Name Accessibility Using Scope Graphs

⟨prog⟩ ::= ⟨mod⟩∗

⟨mod⟩ ::= module ⟨x⟩ { ⟨md⟩∗ }

⟨md⟩ ::= ⟨mod⟩ | import ⟨x⟩ | ⟨cls⟩

⟨cls⟩ ::= class ⟨x⟩ (: ⟨acc⟩ ⟨x⟩)? { ⟨cd⟩∗ }

⟨cd⟩ ::= ⟨acc⟩ var ⟨x⟩ = ⟨e⟩ | ⟨cls⟩

⟨acc⟩ ::= public | . . .

⟨e⟩ ::= ⟨n⟩ | ⟨x⟩ | new ⟨x⟩ () | ⟨e⟩ . ⟨x⟩ | . . .

⟨l⟩ ::= LEX | IMP | EXT

| MOD | CLS | VAR

| THISM | THISC

⟨d⟩ ::= mod ⟨x⟩ : ⟨s⟩
| cls ⟨x⟩ : ⟨s⟩
| var ⟨x⟩ : ⟨T ⟩ @ ⟨A⟩
| ⟨s⟩

⟨T ⟩ ::= int | inst ⟨s⟩
⟨A⟩ ::= PUB | . . .

Figure 6 Syntax of AML. The highlighted positions indicate extensions in later sections. The
syntax of the complete language can be found in Appendix A [35].

Data Matching Predicates P(d)

isModx(mod x′ : s) ⇐ x = x′ isClsx(cls x′ : s) ⇐ x = x′

isVarx(var x′ : T @ A) ⇐ x = x′ isScopes(s′) ⇐ s = s′

Class Members s ⊢G cd ok

D-Def
s ⊢G e : T s ⊢G acc ⇒ A s

VAR (var x : T @ A) ∈ G
s ⊢G acc var x = e ok

Type of Expression s ⊢G e : T

T-Var
queryG s

LEX∗EXT∗VAR isVarx / VAR < EXT < LEX 7→ {⟨p, var x : T @ A⟩} s ⊢G p ! A

s ⊢G x : T

T-Fld

s ⊢G e : inst sc

queryG sc
EXT∗VAR isVarx / VAR < EXT 7→ {⟨p, var x : T @ A⟩}

s ⊢G p ! A

s ⊢G e.x : T

Access Modifier s ⊢G acc ⇒ A

A-Pub
s ⊢G public ⇒ PUB

Access Policy s ⊢G p ! A

AP-Pub
s ⊢G p ! PUB

Module and Class References s ⊢G x M
⇝ sm s ⊢G x C

⇝ sc

Q-Mod
queryG s

LEX∗MOD isModx / MOD < LEX 7→ {⟨p, mod x : sm⟩}

s ⊢G x M
⇝ sm

Q-Cls
queryG s

LEX∗IMP?CLS isClsx / CLS < IMP < LEX 7→ {⟨p, cls x : sc⟩}

s ⊢G x C
⇝ sc

Figure 7 Typing Rules of AML. Accessibility is integrated at the highlighted positions. The full
type system specification can be found in Appendix A [35].

A. Zwaan and C. Bach Poulsen 47:11

scope has a THISM edge pointing to itself, and similarly, each class has a THISC scope pointing
to itself. This will be used to resolve enclosing classes or modules. The sort ⟨d⟩ denotes the
data that can be associated with scopes. Modules and classes are characterized by their name
and the scope of their body. A field has a name, a type ⟨T ⟩, and an accessibility level ⟨A⟩.
Scopes that are not declarations implicitly map to themselves. To query declarations, we
use the four predicates shown at the top of Figure 7, which each match a single kind of
declaration. Depending on the type of access control we formalize, different access modifiers
will be used. Therefore, we have left the ⟨acc⟩ and ⟨A⟩ productions partially unspecified.
Each section will instantiate those appropriately.

Typing Rules. Figure 7 presents some typing rules of AML. The rules are written in a
declarative style, where a scope graph G that models the program is assumed. Constraints
over the scope graph are used as premises. The highlighted premises show where accessibility
is integrated into the type system. We now discuss each of the presented rules.

The D-Def rule asserts a declaration is well-typed if the initialization expression e

has some type T (first premise), the access modifier acc corresponds to some accessibility
policy A (second premise), and an appropriate declaration exists in the scope graph (third
premise). The accessibility policy is included in the declaration, which enables us to validate
accessibility when type checking references.

Next, rule T-Var defines how references are type checked in a current scope s. First,
it performs a query that looks into the lexical context (LEX∗), parent classes (EXT∗), and
eventually resolves to a variable declaration (VAR). It matches only variables with the same
name as the reference (isVarx). Regarding shadowing, it prefers local variables over variables
from a parent class (VAR < EXT), and variables from parent classes over variables from enclosing
classes (EXT < LEX). The query should return a single result, as the name would otherwise
be ambiguous. From this result, the access path p, type T , and accessibility policy A are
extracted. The path and the accessibility policy are used in the second (highlighted) premise
(s ⊢G p ! A), which asserts that “accessibility policy A grants access via path p in scope s”. In
future sections, we will define new accessibility policy rules, that may prohibit access of a
variable, even if the query premise resolved properly.

Note that, by having accessibility separated from the resolution, we do not capture the
interaction between accessibility as shown in Figure 1c. We made this choice because the
place where accessibility is integrated does not influence the access rules themselves, and this
presentation allows more concise derivations, which makes the explanations more accessible.
Appendix A.1 [35] shows how to integrate accessibility in the shadowing policy of a query,
and is incorporated in the evaluation (Section 10).

For this base language, we only have the public access modifier. The A-Pub rule shows
that this keyword corresponds to the PUB policy. The meaning of this policy is that access is
allowed from any location, with any access path. This is encoded in the AP-Pub rule, which
has no premises.

Finally, the last two rules define how references to classes and modules are resolved.
Rule Q-Mod indicates that module reference x resolves to scope sm if that scope is included
in the closest module declaration with name x in the lexical context. Similarly, a class
reference resolves to the scope of the closest class declaration sc, preferring (non-transitively)
imported classes over classes in the lexical context (Q-Cls).

Example. The example in Figure 8 shows two classes A and B. Both classes have a THISC-edge
pointing to itself. Class B extends class A, which is represented by the sB

EXT sA edge in the
scope graph. Class A has a public field i with type int. The type as well as the corresponding

ECOOP 2024

47:12 Defining Name Accessibility Using Scope Graphs

class A {
public var i = 42

}
class B : public A {

public var j = i
}

sATHISC

sBTHISC

EXT

var i : int @ PUBVAR

var j : int @ PUBVAR

sB
LEX∗EXT∗VAR

isVar(i) / VAR < EXT < LEX

(a) Example program and (partial) scope graph.

queryG sB
... isVari / . . . 7→ {⟨sB

EXT sA, var i : int @ PUB⟩} sB ⊢G sB
EXT sA ! PUB

sB ⊢G i : int
(b) Part of typing derivation that shows how access is granted by the PUB accessibility policy.

Figure 8 Example AML program demonstrating the scope graph structure and name resolution
with accessibility checking.

Enclosing Modules ⊢G s ↠M S ⊢G s ↑M s

Enc-M
queryG s

LEX∗THISM ⊤ 7→ R SM = {sm | ⟨pm, sm⟩ ∈ R}

⊢G s ↠M SM

Enc-MI
queryG s

LEX∗THISM ⊤ / THISM < LEX 7→ {⟨p, sm⟩}
⊢G s ↑M sm

Enclosing Classes ⊢G s ↠C S ⊢G s ↑C s

Enc-C
queryG s

LEX∗THISC ⊤ 7→ R SC = {sc | ⟨pc, sc⟩ ∈ R}

⊢G s ↠C SC

Enc-CI
queryG s

LEX∗THISC ⊤ / THISC < LEX 7→ {⟨p, sc⟩}
⊢G s ↑C sc

Figure 9 Auxiliary relations for AML scope graphs.

PUB access policy are included in the scope graph declaration. Similarly, class B has a field j.
The initialization expression of j references i, which is represented with the query shown in
the dashed box.

Figure 8b shows the part of the typing derivation that checks the highlighted reference.
Reference i is type checked in scope sB, and has type int. The first premise repeats the
query shown in the scope graph, with the parameters and result made explicit. In particular,
the resolution path is sB

EXT sA. The validity of this path is checked by the second premise,
which is satisfied by the AP-Pub rule.

Auxiliary Relations. Finally, Figure 9 presents some auxiliary relations that we will use
later. First, the ⊢G s ↠M SM relation asserts that SM is the set of scopes of the enclosing
modules of s. It is defined as a query that looks for a THISM edge in the lexically enclosing

A. Zwaan and C. Bach Poulsen 47:13

scopes. There is no shadowing, so R can contain multiple results in the case of multiple
nested modules. The result R is translated to the set of module scopes by discarding the
access paths.

This relation is inhabited for any enclosing module scope. The second relation ⊢G s ↑M sm

is only inhabited for the innermost enclosing module sm. The query in its definition finds
the closest THISM-edge, which is enforced by the shadowing policy THISM < LEX. Thus, the
query returns only one result, from which the module scope sm is extracted. Analogously,
⊢G s ↠C SC relates s to all enclosing class scopes SC , and ⊢G s ↑C sc is satisfied if sc is the
innermost enclosing class of s.

5 Defining Module Visibility

Some languages have access modifiers that regulate the visibility of a declaration in other
modules. For example, in Rust, it is possible to write pub(in ...) to indicate in which
module a declaration is visible. Similarly, some languages support giving particular classes
access to an item. It is the primary accessibility mechanism for Eiffel, and C++’s friend
modifier enables this as well. Less flexible approaches, such as Java’s package visibility
and C#’s internal keyword can be seen as special instances of this mechanism.

To demonstrate how these access policies can be encoded using scope graphs, we extend
our base language as follows. Figure 10a introduces an additional modifier keyword internal,
which can contain references to modules. The declaration is visible in these modules only.
The corresponding accessibility policy MOD has a set of scopes, each corresponding to a name
given in the keyword argument.

Next, we explain how this keyword is interpreted. An internal declaration is accessible
if the reference occurs in a module that the arguments to the internal modifier give access
to. This is formalized in the rules given in Figure 10b. Rule A-Int translates an internal
access modifier to the MOD policy. Each module name argument to the modifier (xi) is
resolved relative to the current scope s. This yields a collection of module scopes si, which

⟨acc⟩ ::= . . . | internal (⟨x⟩∗) ⟨A⟩ ::= MOD S

(a) Syntax of internal keyword.

A-Int
S =

{
s′

∣∣∣ xi ∈ x0...n, s ⊢G xi
M
⇝ s′

}
s ⊢G internal(x0...n) ⇒ MOD S

AP-Int
⊢G s ↠M SM sm ∈ SM sm ∈ S

s ⊢G p ! MOD S

(b) Semantics of internal keyword.

A-Int’

⊢G s ↠M SM

S =
{

s′
∣∣∣ xi ∈ x0...n, s ⊢G xi

M
⇝ s′, s′ ∈ SM

}
s ⊢G internal(x0...n) ⇒ MOD S

(c) Variant 1: Ancestor module only.

AP-Int’
⊢G s ↑M sm sm ∈ S

s ⊢G p ! MOD S

(d) Variant 2: Innermost module.

AP-Int’’
· · ·

[
⊢G s ↠M SMi s′

m ∈ SMi s′
m ∈ S

]
s′∈(scopes(p)\{tgt(p)})

s ⊢G p ! MOD S

(e) Variant 3: Definition exposed to all classes in path.

Figure 10 Extending AML (Figure 7) with module-level visibility.

ECOOP 2024

47:14 Defining Name Accessibility Using Scope Graphs

class A {
internal (M) var x = 42

}
module M {

module N {
class B {

public var y =
new C().x

}
}
class C : public A { }

}

s0THISM

sA

LEX

var x : int @ MOD {sM }VAR

sM

THISM
LEX

sC

LEX

EXT

sN

THISM

LEX sBLEX

cls A : sA

CLS

mod M : sM

MOD

(a) Example program and partial scope graph demonstrating the internal access modifier.

A-Int
sA ⊢G M M

⇝ sM

sA ⊢G internal(M) ⇒ MOD {sM }
(b) Part of typing derivation that shows how accessibility policy is derived.

AP-Int

· · ·
⊢G sB ↠M {s0, sM, sN } sM ∈ {s0, sM, sN } sM ∈ {sM }

sB ⊢G
(
sC

EXT sA
)

! MOD {sM }
(c) Part of typing derivation that shows how access is granted by the MOD accessibility policy.

Figure 11 Example program demonstrating the meaning of the internal access modifier.

are included in the resulting policy. The AP-Int rule encodes that accessing an internal
variable is valid if sm, the scope of some enclosing module of s (the scope of the reference),
is in the list of scopes to which access is granted.

Example. Figure 11 gives an example of an internal variable. Class A has a field x that
can be accessed from module M. In the scope graph, this is indicated with the access policy
MOD {sM } on the corresponding declaration in sA. The derivation of this policy is shown
in Figure 11b. Module M contains a nested module N, which contains a class B. In class B, the
field x is accessed on an instance of A. The (partial) typing derivation in Figure 11c shows
this access is allowed by the AP-Int rule. The first premise asserts that s0, sM and sN are the
enclosing modules of sB. This can be seen in the scope graph, as those scopes are reachable
via paths with regular expression LEX∗THISM (Figure 9). As sM occurs both in the enclosing
modules and in the access policy, access is allowed.

Variant 1. Several variations on this scheme are conceivable. For example, languages
can restrict the modules to which an internal modifier may expose a declaration. For
example, Rust has the pub(in ⟨path⟩) visibility modifier, similar to how we defined internal.
However, at the ⟨path⟩ position, only “an ancestor module of the item whose visibility is
being declared” is allowed [7, §12.6]. This is encoded in Figure 10c. Compared to A-Int,
this rule adds premises (highlighted) that guarantee that the arguments of the internal
modifier (xi) resolve to an enclosing module (si ∈ SM).

Note how these premises would make the example fail to type-check. Only s0 is an
enclosing module of sA. In particular, the derivation in Figure 11b would have an additional
premise sA ∈ {s0 }, which is clearly unsatisfiable.

A. Zwaan and C. Bach Poulsen 47:15

class A {
private int x = 42;
public int accessX (B b) {

return b.x; // ERROR!
}

}
class B extends A { }

class A {
private int x = 42;
public int AccessX (B b) {

return b.x; // fine
}

}
class B : A { }

Figure 12 Difference in private member access of subclass instances between Java and C#.

Variant 2. Next, consider the example in Figure 11a again. In the system above, x is
accessible in B, because x is exposed to one of its enclosing modules (M). However, sM is not
its innermost enclosing module. Such a more lenient accessibility scheme might be desirable
(e.g., Rust has this behavior), but languages such as Java do not allow this. To model these
languages, we instead use the premise that asserts sm is the innermost enclosing module
scope. The rule for this variant is given in Figure 10d.

With this addition, the example would fail to type-check as well. The access validation
(Figure 11c) would now have to satisfy ⊢G sB ↑M sM, which is impossible, as sN is the innermost
enclosing module.

Variant 3. Finally, consider example Figure 1a from the introduction again. In this example,
the reference to x in class C was not valid, as B (by virtue of residing in a different package),
did not inherit x. The (partial) rule in Figure 10e covers this case. For each scope in the path
(apart from the target), it adds premises that assert that the definition is exposed to that
scope (similar to s in Figure 10b).5 The target is excluded because it is not inheriting the
accessed field, but rather defining it. (Recall that paths move from reference to declaration,
so the target is the scope of the defining class.) For that reason, there is no need to assert it
inherits the field.

When adding this rule fragment to the derivation in Figure 11c, there will be additional
premises that validate that class C inherits x. This is the case, as C resides in module M.

6 Defining Subclass Visibility

Next, we consider how to define access modifiers that regulate access from other classes: the
private modifier (Section 6.1), and the protected keyword (Section 6.2).

6.1 Private Access
The private access modifier is slightly challenging to define, as languages implement it
differently. For example, C# allows accessing private variables on instances of subclasses,
whereas Java does not. Consider the example programs in Figure 12. In the Java case, the
access b.x is invalid, because it only allows access on instances of A.

On the other hand, Java exposes private members to the outermost enclosing class6,
while C# only exposes members to the defining (i.e., innermost enclosing) class (including
nested classes), as shown in Figure 13.

5 Alternatively, the premises of Figure 10d can be used when direct exposure is required.
6 “[When] the member or constructor is declared private, (...) access is permitted if and only if it

occurs within the body of the top level class [sic!] that encloses the declaration of the member or
constructor.” [11, §6.6.1]

ECOOP 2024

47:16 Defining Name Accessibility Using Scope Graphs

class A {
class B {

private int x = 42;
}
int accessX (B b) {

return b.x; // fine
}

}

class A {
class B {

private int x = 42;
}
int AccessX (B b) {

return b.x; // ERROR!
}

}

Figure 13 Difference in private member access from enclosing class between Java and C#.
⟨acc⟩ ::= . . . | private⟨A⟩ ::= . . . PRV

(a) Syntax of private keyword.

A-Priv
s ⊢G private ⇒ PRV

(b) private to PRV access policy.

AP-Priv
⊢G s ↠C SC tgt(p) ∈ SC

s ⊢G p ! A

(c) Semantics of private keyword.

AP-Priv’
. . . p ∼ LEX∗

s ⊢G p ! A

(d) Prevent access on instances of subclasses.

AP-Priv”
⊢G s ↠C SCref ⊢G tgt(p) ↠C SCdecl sc ∈ SCref sc ∈ SCdecl

s ⊢G p ! A

(e) Allow access from enclosing classes.

Figure 14 Extending AML (Figure 7) with private visibility.

We start with modeling the C# semantics in Figures 14a–14c. Rule AP-Priv states that
the class in which the field is declared (which is the target of the path tgt(p)) should be an
enclosing class of the scope in which the access occurs. This permits access from nested
classes of tgt(p), but does not expose it to enclosing classes. On the other hand, access on
instances of subclasses is allowed, as there are no constraints on the structure of the path.

Note that we did not specify that this rule matches on the PRV policy specifically, but
rather applies to any access policy A. This is a deliberate choice; it adds the possibility of
using this rule as a fallback in case no other rule works. This ensures other accessibility
policies will never be more strict than PRV, which corresponds to general intuition. By
matching on an arbitrary A in AP-Priv, we simplify the definition of the other policies, as
they otherwise would need to define special rules for private-like access.

Current Instance. Now, we adapt these rules to match the Java semantics. First, Figure 14d
shows how to prevent access to the private field on instances of subclasses (Figure 12). It
uses a new type of constraint, p ∼ R, which holds when the sequence of labels in path p is in
the language described by the regular expression R. In this case, we assert that the access
path p must adhere to the regular expression LEX∗. This prevents access from instances of
subclasses of the defining class, as that requires traversing an EXT edge. For example, the
access path in Figure 12 would be sB

EXT sA ∼ LEX∗, which is not satisfiable.

Outermost Class. Finally, Figure 14e shows how to expose private fields to the outermost
enclosing class. In this rule, the set SCref contains the scope of the enclosing classes of the
reference location, and SCdecl contains the scope of the enclosing classes of the class in which
the declaration occurs. These sets should share a scope sc, which represents the shared
enclosing class of the reference and the declaration.

A. Zwaan and C. Bach Poulsen 47:17

⟨acc⟩ ::= . . . | protected ⟨A⟩ ::= . . . | PRT

(a) Syntax of protected keyword.

A-Prot
s ⊢G protected ⇒ PRT

AP-Prot
⊢G s ↠C SC sc ∈ SC sc ∈ scopes(p)

s ⊢G p ! PRT
(b) Semantics of protected keyword.

Figure 15 Extending AML (Figure 7) with protected visibility.

class A {
protected var x = 42

}
class B : public A {

class I {
public int f(b: B) {

return b.x;
}

}
}

sATHISC var x : int @ PRTVAR

sB

EXT

THISC sILEX

THISC

sfLEX

var b : inst sB @ PUB

VAR

(a) Example program and partial scope graph demonstrating the protected access modifier.

· · ·
⊢G sf ↠C {sI, sB } sB ∈ {sI, sB } sB ∈ scopes

(
sB

EXT sA
)

sf ⊢G
(
sB

EXT sA
)

! PRT

(b) Part of typing derivation that shows how access is granted by the PRT accessibility policy.

Figure 16 Example program demonstrating the meaning of the protected access modifier.

Note how this rule enables type-checking the program in Figure 13. Using AP-Priv does
not work, as ⊢G sA ↠C {sA }, which does not include tgt(p) = sB. However, we can check it
with AP-Priv”, as ⊢G tgt(p) ↠C {sB, sA }, which includes the shared enclosing class sA.

6.2 Protected Access
The protected access modifier (Figure 15a) grants access to subclasses of the defining class,
including classes nested in subclasses. For field access expressions (⟨e.x⟩), e must be an
instance of a class that encloses the reference [11, §6.6.2.1]. This semantics (Figure 15b) can
be modeled by asserting that there should be some class sc that is both (a) an enclosing scope
of the reference location (⊢G s ↠C SC), and (b) occurs in the in the access path (sc ∈ scopes(p)).
The last condition implies that the enclosing class sc is a subclass of the defining class, which
is the intuitive understanding of the protected keyword.

Figure 16 demonstrates how this rule works. In this program, there is a class A which
has a subclass B. Class B has a nested class I, which has a method f with a parameter b of
type B. The body of f accesses field x on the instance of B. On the right-hand side of the
picture, a part of the corresponding scope graph is shown. The scopes for classes A and B are
connected by an EXT-edge again. The fact that class I is nested in class B is represented by
the sI

LEX sB edge, similar to other lexically nested constructs. Likewise, scope sf, which
represents the body of the method f, has a LEX-edge to sI.

Figure 16b shows how the access to b.x is validated. The first premise states that sI

and sB are the enclosing classes of sf. The other premises assert that sB is in the enclosing
classes as well as in the access path. Together, this allows access to the protected member.
Note how access to an instance of A in sf would not be allowed. In that case, the access path
would have been just sA, which is not an enclosing class of sf.

ECOOP 2024

47:18 Defining Name Accessibility Using Scope Graphs

⟨acc⟩ ::= . . . | protected internal (⟨x⟩∗) | private protected (⟨x⟩∗)

⟨A⟩ ::= . . . | SMD S | SMC S

(a) Syntax of policy interaction keywords.

A-PProt
S =

{
s′

∣∣∣ xi ∈ x0...n, s ⊢G xi
M
⇝ s′

}
s ⊢G private protected(x0...n) ⇒ SMC S

A-PInt
S =

{
s′

∣∣∣ xi ∈ x0...n, s ⊢G xi
M
⇝ s′

}
s ⊢G protected internal(x0...n) ⇒ SMD S

(b) Translation of composite keywords to their policies.

AP-SMC
s ⊢G p ! MOD S s ⊢G p ! PRT

s ⊢G p ! SMC S

AP-SMD-Prot
s ⊢G p ! PRT

s ⊢G p ! SMD S
AP-SMD-Mod

s ⊢G p ! MOD S(∗)

s ⊢G p ! SMD S

(c) Semantics of interaction policies.

Figure 17 Extending AML (Figure 7) with keywords to combine module-level and subclass-level
accessibility.

7 Combining Subclass and Module Visibility

Access modifiers regulating both the module and subclass dimensions occur in real-world
languages as well. For example (as noticed earlier), Java’s protected keyword also exposes
a definition in the same package, similar to C#’s protected internal. In addition, C# has
a private protected modifier, which allows access to subclasses in the same assembly only.
In fact, those two keywords denote the two main ways in which access modifiers can interact.
First, protected internal denotes disjunctive interaction, where a declaration is accessible
from the subclasses or the same module. Second, private protected denotes conjunctive
interaction, where a declaration is accessible from the subclasses in the same module only.
These interactions are straightforward to define, with one intricate case discussed below.

Figure 17a defines the syntax of the two new keywords (based on their name in C#)
and policies. We add SMD (Subclass/Module, Disjunctive) and SMC (Subclass/Module,
Conjunctive) policies, which each contain a list of module scopes to which they are exposed.
The translation from keyword to policy is given in Figure 17b. Both rules resolve their module
arguments, similar to A-Int. The SMC policy has one rule (AP-SMC), which simply asserts
that access is granted by the module (MOD) and protected (PRV) policies. There are two
rules for the SMD policy. The first one simply delegates to the PRT access policy, permitting
access wherever a protected member would have been accessible. The other rule delegates
to the MOD policy, but more careful attention must be paid here (hence the (∗) mark). Recall
that the semantics of this policy has a variant that asserts that the whole inheritance chain
has access to the declaration (Figure 10e). However, this extension should not be applied
here, because the protected part of this modifier already grants access, regardless of the
module-level exposure.

A. Zwaan and C. Bach Poulsen 47:19

P-Pub
p ∼ LEX∗EXT∗

s ⊢G p

! P-Priv-Prot

⊢G s ↠C SC sc ∈ SC split-at(sc, p) = ⟨p1, p2⟩
p1 ∼ LEX∗EXT∗ p2 ∼ EXTPRV

?(EXT|EXTPRT)∗

s ⊢G p

!

Figure 18 Extending AML (Figure 7) with path-level visibility.

8 Defining Extends-Clause Accessibility Restriction

Until now, we have only considered inheritance as it exists in Java and C#. In this section,
we shift our focus to C++, in particular the access modifiers on extends clauses. In C++, it
is possible to add a private modifier to an extends clause, which reduces the accessibility of
public and protected members to private in the derived class. Similarly, the protected
keyword can be used to reduce the accessibility of public members to protected. For
qualified accesses, C++ imposes the additional constraint that the inheritance chain leading
to class in which the variable is declared should be accessible from the class in which the
access occurs [8, §11.9.3 (4)].

Setup. In contrast to the previous sections, we cannot encode inheritance-imposed access
control in our accessibility policy A. Instead, we encode it in the scope graph directly. For
that purpose, we introduce two new labels: EXTPRV and EXTPRT, which model private and
protected extension, respectively. Similar to the previous sections, EXT will model public
extension; i.e. inheritance without access restriction.

Fortunately, we can validate path access independently from the declaration-level access
policy.7 We require two adaptations to the rules T-Var and T-Fld (Figure 7). First, the
regular expressions of the queries must be changed to also traverse these new edges. Thus,
in T-Var, LEX∗EXT∗VAR must be changed to LEX∗(EXT|EXTPRT|EXTPRV)∗

VAR. Similarly, T-Fld
now has (EXT|EXTPRT|EXTPRV)∗

VAR as regular expression instead of EXT∗VAR. Second, we add a
premise s ⊢G p

! to both rules. This premise asserts that the labels in the path p do not hide
the accessed definition in scope s.

Path accessibility can be captured in two rules, shown in Figure 18. First, P-Pub asserts
that a path is valid when there is only public inheritance. With this rule, the semantics of
the programs that do not use private or protected inheritance has not changed. Second, rule
P-Priv-Prot covers the other two cases. This rule looks intricate, but the intuition behind
it is not too complicated. Similar to the private and protected modifiers (Sections 6.1
and 6.2), access must occur within the class where the member is private/protected. This
is now not necessarily the defining class, but rather the last class in the inheritance chain
that has a non-public modifier on the extends clause. In the rule, this is encoded as follows.
The first two premises introduce a scope sc, which is an enclosing scope of the reference
location s. The third premise asserts that the path p can be split into two segments at
scope sc. That is, p consists of two segments: a part p1 from s1 to sc and a part p2 from sc

to sn. This implies that sc is in the access path. To validate that all subclasses of sc in
the path have public inheritance, p1 should match regular expression LEX∗EXT.8 The path
leading from the current class to the declaration (p2) may start with a private inheritance
step (EXTPRV

?), but may have only public and protected inheritance higher in the access path.

7 That also holds for the subtle interaction between internal and protected discussed in Section 7.
protected or private inheritance in subclasses of the reference class can still compromise these access
modes, and must therefore be validated.

8 Alternatively, one can encode the requirement that the instance type must be sc itself by using LEX∗,
similar to Figure 14d.

ECOOP 2024

47:20 Defining Name Accessibility Using Scope Graphs

class A {
public var x = 42

}
class B : private A {

public var y = new C().x
}
class C : public B { }

sATHISC

var x : int @ PUB

VAR

sBEXTPRV

THISC

sCEXT

THISC

(a) Example program and partial scope graph demonstrating path access restrictions.

· · ·
⊢G sB ↠C {sB } sB ∈ {sB }

split-at(sB, sC
EXT sB

EXTPRV sA) = ⟨sC
EXT sB, sB

EXTPRV sA⟩(
sC

EXT sB
)

∼ LEX∗EXT∗ (
sB

EXTPRV sA
)

∼ EXTPRV
?(EXT|EXTPRT)∗

sB ⊢G
(
sC

EXT sB
EXTPRV sA

) !

(b) Part of typing derivation that shows how access is granted by the P-Priv-Prot rule.

Figure 19 Example program demonstrating path accessibility.

Figure 19 gives an example that uses this rule. There is a class A with a field x. Class A
is inherited privately by class B, which makes x private in B. Next, class C extends B publicly.
In class B, x is accessed on an instance of C. This access should be allowed, as class B is the
class in which x is private as well as the class in which the reference occurs. The partial
derivation in Figure 19b asserts this. sB is the scope that encloses the reference. Splitting
the access path from sC to sA at that sB yields two segments of a single step. The segment
leading up to sB (sC

EXT sB) does indeed match the regular expression LEX∗EXT∗. Likewise,
the other segment also matches its regular expressions, showing that this access is valid.
Note that, when class C would have extended class B with protected or private visibility
instead, the premise on the first section would not hold anymore. This corresponds with the
behavior in Section 6 (the field must be accessible as if it was defined on the instance type)
as well as the specification of C++ cited above.

9 Analysis

A comprehensive model of accessibility can be made by composing the system fragments
we discussed so far (Figures 7, 10, 14, 15, 17, and 18). In this section, we discuss a few
properties that our system adheres to.

9.1 Soundness of Access Policies
First, we claim some soundness theorems for private, protected and internal access.
There is no soundness theorem for public, as access is allowed unconditionally. Soundness
theorems for private protected and protected internal are easily derived from Theo-
rems 2 and 3, and hence omitted. In the theorems, PG ranges over valid typing derivation
for an AML program with scope graph G, xr over references, and xd over declarations.
Appendix D [35] defines the predicates used in these theorems, and proves them.

A. Zwaan and C. Bach Poulsen 47:21

First, soundness for private access is stated as follows:

▶ Theorem 1 (Soundness of private member access).

resolvePG (xr) = xd ∧ privatePG
(xd) ⇒

∃sd. definingClassPG
(xd) = sd ∧ enclosingClassPG

(xr, sd)

This should be read as “when xr resolves to xd, and xd is private, then xr must occur in the
class sc that defines xd”.

Likewise, soundness for protected access is stated as:

▶ Theorem 2 (Soundness of protected member access).

resolvePG (xr) = xd ∧ protectedPG
(xd) ⇒

∃sc, sd. definingClassPG
(xd) = sd ∧ enclosingClassPG

(xr, sc) ∧ subClassPG (sc, sd)

Compared to Theorem 1, this theorem states that xr can occur in some arbitrary subclass sc

of sd if xd is protected.
Finally, internal access is specified correctly when:

▶ Theorem 3 (Soundness of internal member access).

resolvePG (xr) = xd ∧ internalPG (xd, x) ⇒
(∃x, sm. enclosingModPG

(xr) = sm ∧ x ∈ x ∧ resolveMod(x) = sm) ∨
(∃sd. definingClassPG

(xd) = sd ∧ enclosingClassPG
(xr, sd))

This theorem states that references to declarations with modifier internal are valid if the
enclosing module of the reference sm is referred to in the arguments of the access modifier x,
or if it is accessed as a private variable.

9.2 Equivalence of Access Policies
The access policy language ⟨A⟩ we defined is not minimal. It is possible to define equivalent
policies in multiple ways. To analyze that, we define equivalence of access policies as follows:

▶ Definition 4 (Equivalence of Access Policies).

∀G, s, p. (s ⊢G p ! A) ⇔ (s ⊢G p ! A′)
A ≡ A′

That is, two accessibility policies are equivalent when, for any scope s, path p, scope graph G,
either both policies admit access, or neither does.

The equivalences that hold in our model are: PRT ≡ SMD ∅ and PRV ≡ SMC ∅ ≡ MOD ∅. This
follows from the fact that module access grants nothing if no module parameters are given.
Thus, the SMD ∅ policy reduces to PRT, while SMC ∅ and MOD ∅ do not elevate accessibility
beyond PRV. Appendix B [35] gives proofs for each of these equivalences. Because of these
equivalences, we did not include PRT and PRV in our implementation (Section 10).

9.3 Order of Access Policies
Intuitively, there exists an ordering between accessibility policies, where PRV is the bottom
most restrictive, and PUB is the least restrictive. This order is partial, as the module-exposure
dimension and subclass-exposure dimension are orthogonal. Assuming a subset relation on
scope sets (S ⊂ S′), we can define a strict partial order A <A A′ as follows:

ECOOP 2024

47:22 Defining Name Accessibility Using Scope Graphs

PRV SMC S0 SMC S1
S0 ⊊ S1

MOD S1 MOD S2
S1 ⊊ S2

PRT SMD S2 SMD S3
S2 ⊊ S3 PUB

where the edges indicate instances of the <A-relation. The edges with a condition indicate
that SMC, MOD, and SMD become more permissive when more scopes are added to the policy.

The intuition behind this order is not arbitrary. In fact, we claim the following:

▶ Theorem 5 (The order on access policies <A is well-behaved).

(A <A A′) ⇒ ∀G, s, p. (s ⊢G p ! A) ⇒ (s ⊢G p ! A′)

That is, when A is more restrictive than A′, and A permits access in scope s via a path p,
then A′ will permit that access too. A proof of this theorem can be found in Appendix C [35].

10 Evaluation

So far, we have motivated our specification with examples from real-world languages such as
Java and C#, and stated some generic properties of our model. However, for our specification
to be usable as a basis for practical tools, it must correspond with the behavior of the
actual languages. To validate that, we evaluated our specification in two ways. First, we
systematically compared our specification with reference compilers of Java, C#, and Rust.
Second, we validated the compatibility of our framework with recent work on language-
parametric code completion [19].

10.1 Comparison with Reference Compilers: Implementation
The comparison to compilers of real-world languages is implemented as follows:
1. Apply our type system on an AML program (the test case).
2. Translate the AML program to the target language.
3. Compile the translated program using a compiler of the target language.
4. Compare results: either both analyses should succeed, or both should give errors.
We discuss these steps in more detail below.

AML Type Checker. To compare our model with real-world compilers, we need a way to
type check concrete AML programs. To that end, we implemented AML in the Spoofax
language workbench [13, 31]. The actual type system is implemented using the Statix
specification language [27, 22]. Statix is a suitable choice, as its declarativity allows an
overall straightforward translation from our inference. For example, the Statix encoding
of rule T-Var in Figure 20a strongly corresponds to the original (Figure 7). Using this
implementation, we can systematically check accessibility in concrete AML programs.

Compiling with Reference Compiler. Next, we implemented source-to-source translations
from AML to each of Java, C# and Rust. This translation was straightforward by design,
as otherwise the results of the type checkers can be different due to semantic differences
introduced by the translation. For that reason, we do not support AML features that have
no direct counterpart in the target language. For example, the translation to Java will
error when the AML program uses the private protected access modifier, as Java does
not support that accessibility policy. This way, we know that correspondence between the
programs is guaranteed when the translation succeeds.

A. Zwaan and C. Bach Poulsen 47:23

typeOfExpr : scope * Expr -> TYPE

typeOfExpr (s, Id(x)) = T :- {p A}
query var

filter LEX* EXT*
and { x’ :- x’ == x }
min $ < EXT , EXT < LEX
in s |-> [(p, (x, T, A))],

accessOk (s, p, A),
pathOk (s, p).

(a) Encoding of rule T-Var in Statix.

test private - nested [[
class A {

private var x = 42
class B {

public var y = x
}

}
]]
analysis succeeds
run java - compat

(b) Example test case.

Figure 20 Overview of Approach to Comparison with Reference Compilers.

After translating, we invoke the reference compiler, observe its output (success or failure),
and compare the given output with the result from our own type checker (step 1). If those
are different (i.e., our type checker accepts the program, while the reference compiler emits
errors, or vice versa), the test fails.

10.2 Comparison with Reference Compilers: Test Cases

To the best of our knowledge, there exists no test suite specifically aimed at verifying the
semantics of access modifiers. For that reason, we manually created an extensive test suite.
Each test contains a class Def, that defines some variable x with some access modifier A.
Furthermore, each test contains a class Ref, in which a reference to x occurs. Def and Ref
can be related in two different ways at the same time:

By inheritance: either (1) Def and Ref are actually the same class, (2) have no mutual
inheritance, (3) Ref inherits Def, or (4) Def inherits Ref.
By module position: either Def and Ref (1) occur in the same module, or (2) Ref occurs
in a parent/sibling/child module of Def.
By class nesting: either (1) Def and Ref are top-level classes, (2) Ref is nested in Def,
(3) Def is nested in Ref, or (4) Def and Ref have a shared enclosing class.

In addition, tests for member accesses (i.e., recv.x) have a receiver type Recv. This type
must either be equal to Def, or inherit from it. However, it can be related in all possible
other ways to Def and Ref. By systematically exploring all options, we derived our test suite.

We excluded cases that are (1) impossible (e.g., Ref cannot be nested in Def and live in
a different module at the same time), (2) use features not supported by the target language,
(3) invalid for another reason (i.e., inheriting from a nested class is not allowed by Java),
or (4) do not bind properly (i.e., lexical access where Ref and Def do not inherit from each
other, and are not nested in each other), To reduce the number of test cases, we restricted
the cases that involved nested classes to have one module only. Additionally, we only used
private, protected and protected internal as access modifiers in these cases. Table 2
summarizes the results of the test suite generation.

Figure 20b shows an example test case written in the Spoofax Testing Language (SPT) [12].
This test validates that a private field is accessible from a nested class. The test consists of a
program (between double square brackets), and some expectations. In this case, we expect
the (Statix-based) analysis to succeed. Moreover, we expect the java-compat transformation
to succeed. This transformation is executing the steps in Section 10.1.

ECOOP 2024

47:24 Defining Name Accessibility Using Scope Graphs

Table 2 Summary of Test Suite.

Java C# Rust Manual

Acc. Mods. public Same as Java, and public All
protected internal protected internal

internal, private private protected
Features class inheritance class inheritance structs, advanced modules

class nesting, and class nesting, and modules inheritance visibility
packages assemblies

#Cases 433 522 60 168
Compiler javac 11.0.20.1 dotnet 7.0.401 rustc 1.73.0 —

Results. There are several features present in AML that were not covered by any of the
reference compilers, most notably private/protected inheritance, and module visibility
beyond what Rust supports. To validate we cover these features to some extent, we have
written 168 additional test cases. While initially exposing a lot of edge cases, in the end all
test cases succeeded. This shows that our specification covers the languages it set out to
model rather accurately.

10.3 Code Completion
One of our future goals is to use our framework to implement refactoring tools that are sound
with respect to accessibility. The most recent work in this area is done by Pelsmaeker et
al. [19]. They show how Statix specifications can be used to generate editor auto-completion
proposals language-parametrically. We applied auto-completion to the access modifiers in the
C#/Java and Rust tests (152, after deduplication), and validated soundness and completeness.
That is, when the analysis succeeded, code completion should propose the current modifier
at that position. Otherwise, if the access was invalid, the modifier should not be proposed,
as only less restrictive ones are valid at that position.

We consider the fact that all completion tests pass a good indication that our specification
can be applied with refactoring tools in the future. Apparently, the code completion framework
is sound and complete with respect to our encoding of access modifiers. Accessibility errors
introduced by a refactoring can be fixed by generating proposals for that position, and using
the ordering from Section 9.3 to pick the most restrictive one.

10.4 Threats to Validity
In Section 4, we briefly mentioned that the specification as presented in the paper did
not model the interaction between shadowing and accessibility correctly. Doing so would
require a full path order, instead of ordering paths by a lexicographical order on labels.
Appendix A.1 [35] explains how we think that could be done. However, Statix does not
support full path orders. To work around that, we emulated this behavior using a few helper
predicates. Our test suite gives confidence we modeled it correctly, but we did not prove
that the specification in Statix and the full path order are semantically equivalent.

Finally, we might have modeled incorrect/unspecified behavior if the reference compilers
were incorrect. Examples such as Figure 12 were derived from actual compiler behavior.
However, we could not find our interpretation of the implementation behavior explicitly
specified in the JLS [11, §6.6.1].

A. Zwaan and C. Bach Poulsen 47:25

11 Related Work

In this section, we discuss previous work related to access modifiers and scope graphs.

11.1 Access Modifier Semantics and Implementations
The origin of access modifiers dates back to at least Simula 67, which around 1972 introduced
protected and hidden access modifiers [4, §8] (the latter being equivalent to our private).
Later, languages such as Java and C++ incorporated these keywords, making them well-known
and often used. Design principles and patterns [9] using these keywords were developed,
making contemporary software development heavily reliant on accessibility features the
programming language provides.

Giurca and Savulea (2004) [10] apply object-oriented notions of public, protected and
private to logic programs, with the purpose of better knowledge distribution and run time
optimization. Moreover, Apel et al. [2, 1] introduce access modifiers in feature-oriented
programming. Where we define accessibility for module nesting and class inheritance, they add
the “feature refinement” dimension to this. In particular, the feature keyword restricts access
to the “current feature” only (comparable to private in the class inheritance dimension), the
subsequent keyword grants access to the current feature and later refinements (comparable
to protected), and the program modifier allows access from any position (similar to public).
In our terminology, their model supports “conjunctive” combination of the class and feature
dimensions. As Section 7 shows that combining the module and class dimensions conjunctively
is straightforward, we expect that integrating their work in our model will not pose major
challenges (apart from a combinatorial explosion of policies).

Semantics. As access modifiers mainly originated from practical needs, it is not very
surprising that little attention to them was paid from a more theoretical perspective. A few
attempts to create a more formal account have been performed, however. In 1998, Yang [33]
presented a formalization of Java access modifiers using attribute grammars. At that time,
attribute grammars still lacked several convenience features, such as default attributes [30] and
collection attributes [14]. For that reason, all members must be propagated explicitly to the
scopes where they are accessible, which makes the specification rather verbose. Additionally,
since fields and methods are not treated equally (shadowing vs. overriding), they are treated
separately, doubling the specification size. In contrast, we specify the propagation of members
queries in scope graphs, which is more concise. The additional requirements on methods
(not explicitly discussed), can be handled at the definition site. Furthermore, we cover
more features than just the Java ones. Fharkani et al. [6] present a generalized model of
accessibility, where accessibility is modeled as a set of rules granting access of a member to
another member (similar to Eiffel/friends in C++). In addition, rules can deny access to
the named member, or apply to all members except the named ones.

Tools. Steimann et al. [25] observe that disregarding accessibility can result in a lot of
subtle mistakes. For example, a method may silently fail to override another method when it
is moved to a different package, which results in different dynamic dispatch. To capture these
errors, they present nine constraint generation rules that model the accessibility semantics of
Java. Refactoring tools can use these constraints to detect where the accessibility level of a
member must be elevated. This work was incorporated in the JRRT refactoring tool [23],
which was evaluated on a large number of real-world Java projects, showing the accuracy of
their implementation. While their work also covers overriding-specific constraints, which our

ECOOP 2024

47:26 Defining Name Accessibility Using Scope Graphs

specification treats rather superficially, we think our model is more comprehensible, and also
gives insight in the differences between languages. Moreover, their work is applied in real
refactoring implementations, while the quest for Statix-based refactorings is still ongoing.
Meanwhile, a similar approach was applied to Eiffel accessibility [24, §6.3].

While these tools elevate accessibility if needed, a different line of research aims to restrict
accessibility if possible [5, 17, 34]. The purpose of these tools is to detect access modifiers
that are more lenient than needed, and restrict those. This is claimed to improve readability,
enable optimizations, and increase modularity [17]. The exact underlying model is not the
topic of these publications, and hence remains unclear. Despite that, the tools appear to
be useful in practice. Zoller and Schmolitzky mention some challenges in porting their tool
to other object-oriented languages [34, V.B]. A language-parametric model such as ours
helps in that regard by (1) making differences between languages explicit, and (2) make
implementations of these (kind of) tools language-parametric.

11.2 Scope Graphs
Scope Graphs (Section 3) have been introduced by Neron et al. [18], and later refined by
Van Antwerpen et al. [27] and Rouvoet et al. [22]. In order to bridge the gap between
language specification and implementation, scope graphs have been embedded into the
NaBL2 constraint language [26]. Later, the Statix logic language was introduced [27, 22],
which is more expressive than NaBL2. Both languages allow specifying type checking as
constraint programs, giving the language a declarative appeal, but also yielding an executable
type checker. Scope graphs are also available in a framework for concurrent and incremental
type checkers [28, 39] and an embedded DSL in Haskell [20]. Finally, Statix specifications
have been used for language-parametric code completion [19] and refactorings [16, 29]. Zwaan
and Van Antwerpen provide a detailed overview of the development history of scope graphs,
their embeddings in type system specification DSLs, and their applications [38].

12 Conclusion

Access modifiers occur in many real-world languages. To implement high-quality tooling
for these languages, a good understanding of access modifiers is required. In this paper, we
presented a model for access validation based on scope graphs. Our model covers the most
important accessibility features in contemporary languages, including module accessibility,
and inheritance accessibility, both on declarations and extends-clauses. Variations between
different languages, both in supported features and their semantics, are made explicit in
our model. Our specification is quite declarative, partly because scope graphs abstract over
low-level name resolution and scoping details. Our model was validated using an extensive
test suite, using Java, C#, and Rust compilers as oracles. This test suite was also used
to show that we can synthesize access modifiers accurately using previous work on code
completion [19].

Our main motivation for this work is twofold. First, we aim to provide a “language-
transcendent” model for accessibility that enables comparison of different languages regarding
accessibility. To this end we identify and formalize differences in the semantics of several
access modifiers. In addition, we formulate soundness theorems of several access modifiers,
and prove them. As such, we consider our specification accurate enough to serve as a reference
for future tool implementations. Second, we aim to use our model in language-parametric
refactorings, ensuring they respect accessibility properly. As these refactoring tools are still
in development, actual validation of this application is still future work.

A. Zwaan and C. Bach Poulsen 47:27

References
1 Sven Apel, Sergiy S. Kolesnikov, Jörg Liebig, Christian Kästner, Martin Kuhlemann, and

Thomas Leich. Access control in feature-oriented programming. Science of Computer Pro-
gramming, 77(3):174–187, 2012. doi:10.1016/j.scico.2010.07.005.

2 Sven Apel, Jörg Liebig, Christian Kästner, Martin Kuhlemann, and Thomas Leich. An orthog-
onal access modifier model for feature-oriented programming. In Sven Apel, William R. Cook,
Krzysztof Czarnecki, Christian Kästner, Neil Loughran, and Oscar Nierstrasz, editors, Proceed-
ings of the First International Workshop on Feature-Oriented Software Development, FOSD
2009, Denver, Colorado, USA, October 6, 2009, ACM International Conference Proceeding
Series, pages 27–33. ACM, 2009. doi:10.1145/1629716.1629723.

3 Casper Bach Poulsen, Xulei Liu, and Luka Miljak. Towards a Language-parametric
DSL for Refactoring (Short Paper), 2024. URL: https://popl24.sigplan.org/details?
action-call-with-get-request-type=1&c9432bfaa61a48fb852237f9e99a821daction_
1742650661080820307cb713fc2d28c30ae360b0bed=1&__ajax_runtime_
request__=1&context=POPL-2024&track=pepm-2024&urlKey=8&decoTitle=
Towards-a-Language-parametric-DSL-for-Refactoring-Short-Paper-.

4 Andrew P. Black. Object-oriented programming: Some history, and challenges for the next
fifty years. Inf. Comput., 231:3–20, 2013. doi:10.1016/j.ic.2013.08.002.

5 Philipp Bouillon, Eric Großkinsky, and Friedrich Steimann. Controlling Accessibility in Agile
Projects with the Access Modifier Modifier. In Richard F. Paige and Bertrand Meyer, editors,
Objects, Components, Models and Patterns, 46th International Conference, TOOLS EUROPE
2008, volume 11 of Lecture Notes in Business Information Processing, pages 41–59. Springer,
2008. doi:10.1007/978-3-540-69824-1_4.

6 Toktam Ramezani Farkhani, Mohammadreza Razzazi, and Peyman Teymoori. Eam: Expansive
access modifiers in oop. In 2008 International Conference on Computer and Communication
Engineering, pages 589–594, 2008. doi:10.1109/ICCCE.2008.4580672.

7 The Rust Foundation. The Rust Reference. Accessed 25-09-2023. URL: https://doc.
rust-lang.org/reference/.

8 The Standard C++ Foundation. Working Draft, Standard for Programming Language
C++. Online version from https://github.com/cplusplus/draft/releases/tag/n4868 was
consulted. Per release notes, ‘only editorial changes compared to C++20’ were made.

9 Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. Design Patterns: Abstraction
and Reuse of Object-Oriented Design. In Oscar M. Nierstrasz, editor, ECOOP’ 93 — Object-
Oriented Programming, pages 406–431, Berlin, Heidelberg, 1993. Springer Berlin Heidelberg.
doi:10.1007/3-540-47910-4_21.

10 Adrian Giurca and Dorel Savulea. Logic programs with access modifiers. In 4th International
Conference on Artificial Intelligence and Digital Communication, AIDC, pages 22–31, 2004.

11 James Gosling, Bill Joy, Guy Steele, Gilad Bracha, and Alex Buckley. The Java Language
Specification - Java SE 8 Edition, February 2015. URL: https://docs.oracle.com/javase/
specs/jls/se8/html/.

12 Lennart C. L. Kats, Rob Vermaas, and Eelco Visser. Integrated language definition testing:
enabling test-driven language development. In Cristina Videira Lopes and Kathleen Fisher,
editors, Proceedings of the 26th Annual ACM SIGPLAN Conference on Object-Oriented
Programming, Systems, Languages, and Applications, OOPSLA 2011, part of SPLASH 2011,
Portland, OR, USA, October 22 - 27, 2011, pages 139–154. ACM, 2011. doi:10.1145/2048066.
2048080.

13 Lennart C. L. Kats and Eelco Visser. The Spoofax language workbench: rules for declarative
specification of languages and IDEs. In William R. Cook, Siobhán Clarke, and Martin C.
Rinard, editors, Proceedings of the 25th Annual ACM SIGPLAN Conference on Object-
Oriented Programming, Systems, Languages, and Applications, OOPSLA 2010, pages 444–463,
Reno/Tahoe, Nevada, 2010. ACM. doi:10.1145/1869459.1869497.

ECOOP 2024

https://doi.org/10.1016/j.scico.2010.07.005
https://doi.org/10.1145/1629716.1629723
https://popl24.sigplan.org/details?action-call-with-get-request-type=1&c9432bfaa61a48fb852237f9e99a821daction_1742650661080820307cb713fc2d28c30ae360b0bed=1&__ajax_runtime_request__=1&context=POPL-2024&track=pepm-2024&urlKey=8&decoTitle=Towards-a-Language-parametric-DSL-for-Refactoring-Short-Paper-
https://popl24.sigplan.org/details?action-call-with-get-request-type=1&c9432bfaa61a48fb852237f9e99a821daction_1742650661080820307cb713fc2d28c30ae360b0bed=1&__ajax_runtime_request__=1&context=POPL-2024&track=pepm-2024&urlKey=8&decoTitle=Towards-a-Language-parametric-DSL-for-Refactoring-Short-Paper-
https://popl24.sigplan.org/details?action-call-with-get-request-type=1&c9432bfaa61a48fb852237f9e99a821daction_1742650661080820307cb713fc2d28c30ae360b0bed=1&__ajax_runtime_request__=1&context=POPL-2024&track=pepm-2024&urlKey=8&decoTitle=Towards-a-Language-parametric-DSL-for-Refactoring-Short-Paper-
https://popl24.sigplan.org/details?action-call-with-get-request-type=1&c9432bfaa61a48fb852237f9e99a821daction_1742650661080820307cb713fc2d28c30ae360b0bed=1&__ajax_runtime_request__=1&context=POPL-2024&track=pepm-2024&urlKey=8&decoTitle=Towards-a-Language-parametric-DSL-for-Refactoring-Short-Paper-
https://popl24.sigplan.org/details?action-call-with-get-request-type=1&c9432bfaa61a48fb852237f9e99a821daction_1742650661080820307cb713fc2d28c30ae360b0bed=1&__ajax_runtime_request__=1&context=POPL-2024&track=pepm-2024&urlKey=8&decoTitle=Towards-a-Language-parametric-DSL-for-Refactoring-Short-Paper-
https://doi.org/10.1016/j.ic.2013.08.002
https://doi.org/10.1007/978-3-540-69824-1_4
https://doi.org/10.1109/ICCCE.2008.4580672
https://doc.rust-lang.org/reference/
https://doc.rust-lang.org/reference/
https://github.com/cplusplus/draft/releases/tag/n4868
https://doi.org/10.1007/3-540-47910-4_21
https://docs.oracle.com/javase/specs/jls/se8/html/
https://docs.oracle.com/javase/specs/jls/se8/html/
https://doi.org/10.1145/2048066.2048080
https://doi.org/10.1145/2048066.2048080
https://doi.org/10.1145/1869459.1869497

47:28 Defining Name Accessibility Using Scope Graphs

14 Eva Magnusson, Torbjorn Ekman, and Gorel Hedin. Extending Attribute Grammars with
Collection Attributes–Evaluation and Applications. Source Code Analysis and Manipulation,
IEEE International Workshop on, 0, 2007. doi:10.1109/SCAM.2007.13.

15 Luka Miljak, Casper Bach Poulsen, and Flip van Spaendonck. Verifying Well-Typedness
Preservation of Refactorings using Scope Graphs. In Aaron Tomb, editor, Proceedings of the
25th ACM International Workshop on Formal Techniques for Java-like Programs, FTfJP 2023,
Seattle, WA, USA, 18 July 2023, pages 44–50. ACM, 2023. doi:10.1145/3605156.3606455.

16 Phil Misteli. Renaming for Everyone: Language-parametric Renaming in Spoofax. Master’s
thesis, Delft University of Technology, May 2021. URL: http://resolver.tudelft.nl/uuid:
60f5710d-445d-4583-957c-79d6afa45be5.

17 Andreas Müller. Bytecode analysis for checking java access modifiers. In Work in Progress
and Poster Session, 8th Int. Conf. on Principles and Practice of Programming in Java (PPPJ
2010), Vienna, Austria, pages 1–4, 2010.

18 Pierre Néron, Andrew P. Tolmach, Eelco Visser, and Guido Wachsmuth. A Theory of Name
Resolution. In Jan Vitek, editor, Programming Languages and Systems - 24th European
Symposium on Programming, ESOP 2015, Held as Part of the European Joint Conferences on
Theory and Practice of Software, ETAPS 2015, London, UK, April 11-18, 2015. Proceedings,
volume 9032 of Lecture Notes in Computer Science, pages 205–231. Springer, 2015. doi:
10.1007/978-3-662-46669-8_9.

19 Daniël A. A. Pelsmaeker, Hendrik van Antwerpen, Casper Bach Poulsen, and Eelco Visser.
Language-parametric static semantic code completion. Proceedings of the ACM on Programming
Languages, 6(OOPSLA):1–30, 2022. doi:10.1145/3527329.

20 Casper Bach Poulsen, Aron Zwaan, and Paul Hübner. A Monadic Framework for Name
Resolution in Multi-phased Type Checkers. In Coen De Roover, Bernhard Rumpe, and Amir
Shaikhha, editors, Proceedings of the 22nd ACM SIGPLAN International Conference on
Generative Programming: Concepts and Experiences, GPCE 2023, Cascais, Portugal, October
22-23, 2023, pages 14–28. ACM, 2023. doi:10.1145/3624007.3624051.

21 Mark Reinhold. Java platform module system, August 2017. URL: https://jcp.org/en/
jsr/detail?id=376.

22 Arjen Rouvoet, Hendrik van Antwerpen, Casper Bach Poulsen, Robbert Krebbers, and Eelco
Visser. Knowing when to ask: sound scheduling of name resolution in type checkers derived from
declarative specifications. Proceedings of the ACM on Programming Languages, 4(OOPSLA),
2020. doi:10.1145/3428248.

23 Max Schäfer, Andreas Thies, Friedrich Steimann, and Frank Tip. A Comprehensive Approach
to Naming and Accessibility in Refactoring Java Programs. IEEE Trans. Software Eng.,
38(6):1233–1257, 2012. doi:10.1109/TSE.2012.13.

24 Friedrich Steimann, Christian Kollee, and Jens von Pilgrim. A Refactoring Constraint
Language and Its Application to Eiffel. In Mira Mezini, editor, ECOOP 2011 - Object-Oriented
Programming - 25th European Conference, Lancaster, UK, July 25-29, 2011 Proceedings,
volume 6813 of Lecture Notes in Computer Science, pages 255–280. Springer, 2011. doi:
10.1007/978-3-642-22655-7_13.

25 Friedrich Steimann and Andreas Thies. From Public to Private to Absent: Refactoring Java
Programs under Constrained Accessibility. In Sophia Drossopoulou, editor, ECOOP 2009
- Object-Oriented Programming, 23rd European Conference, Genoa, Italy, July 6-10, 2009.
Proceedings, volume 5653 of Lecture Notes in Computer Science, pages 419–443. Springer,
2009. doi:10.1007/978-3-642-03013-0_19.

26 Hendrik van Antwerpen, Pierre Néron, Andrew P. Tolmach, Eelco Visser, and Guido
Wachsmuth. A constraint language for static semantic analysis based on scope graphs.
In Martin Erwig and Tiark Rompf, editors, Proceedings of the 2016 ACM SIGPLAN Workshop
on Partial Evaluation and Program Manipulation, PEPM 2016, St. Petersburg, FL, USA,
January 20 - 22, 2016, pages 49–60. ACM, 2016. doi:10.1145/2847538.2847543.

https://doi.org/10.1109/SCAM.2007.13
https://doi.org/10.1145/3605156.3606455
http://resolver.tudelft.nl/uuid:60f5710d-445d-4583-957c-79d6afa45be5
http://resolver.tudelft.nl/uuid:60f5710d-445d-4583-957c-79d6afa45be5
https://doi.org/10.1007/978-3-662-46669-8_9
https://doi.org/10.1007/978-3-662-46669-8_9
https://doi.org/10.1145/3527329
https://doi.org/10.1145/3624007.3624051
https://jcp.org/en/jsr/detail?id=376
https://jcp.org/en/jsr/detail?id=376
https://doi.org/10.1145/3428248
https://doi.org/10.1109/TSE.2012.13
https://doi.org/10.1007/978-3-642-22655-7_13
https://doi.org/10.1007/978-3-642-22655-7_13
https://doi.org/10.1007/978-3-642-03013-0_19
https://doi.org/10.1145/2847538.2847543

A. Zwaan and C. Bach Poulsen 47:29

27 Hendrik van Antwerpen, Casper Bach Poulsen, Arjen Rouvoet, and Eelco Visser. Scopes
as types. Proceedings of the ACM on Programming Languages, 2(OOPSLA), 2018. doi:
10.1145/3276484.

28 Hendrik van Antwerpen and Eelco Visser. Scope States: Guarding Safety of Name Resolution
in Parallel Type Checkers. In Anders Møller and Manu Sridharan, editors, 35th European
Conference on Object-Oriented Programming, ECOOP 2021, July 11-17, 2021, Aarhus, Den-
mark (Virtual Conference), volume 194 of LIPIcs. Schloss Dagstuhl – Leibniz-Zentrum für
Informatik, 2021. doi:10.4230/LIPIcs.ECOOP.2021.1.

29 Loek Van der Gugten. Function Inlining as a Language Parametric Refactoring. Master’s
thesis, Delft University of Technology, June 2022. URL: http://resolver.tudelft.nl/uuid:
15057a42-f049-4321-b9ee-f62e7f1fda9f.

30 Eric Van Wyk, Oege de Moor, Kevin Backhouse, and Paul Kwiatkowski. Forwarding in
Attribute Grammars for Modular Language Design. In R. Nigel Horspool, editor, Compiler
Construction, 11th International Conference, CC 2002, Held as Part of the Joint European
Conferences on Theory and Practice of Software, ETAPS 2002, Grenoble, France, April 8-12,
2002, Proceedings, volume 2304 of Lecture Notes in Computer Science, pages 128–142. Springer,
2002. doi:10.1007/3-540-45937-5_11.

31 Guido Wachsmuth, Gabriël Konat, and Eelco Visser. Language Design with the Spoofax
Language Workbench. IEEE Software, 31(5):35–43, 2014. doi:10.1109/MS.2014.100.

32 Bill Wagner, Manuel Zelenka, and Youssef Victor. C# Reference — Keywords — file, November
2022. URL: https://learn.microsoft.com/en-us/dotnet/csharp/language-reference/
keywords/file.

33 Wuu Yang. Discovering anomalies in access modifiers in java with a formal specification, 1998.
URL: http://dspace.fcu.edu.tw/bitstream/2377/2120/1/ce07ics001998000164.pdf.

34 Christian Zoller and Axel Schmolitzky. Measuring Inappropriate Generosity with Access
Modifiers in Java Systems. In 2012 Joint Conference of the 22nd International Workshop on
Software Measurement and the 2012 Seventh International Conference on Software Process
and Product Measurement, Assisi, Italy, October 17-19, 2012, pages 43–52. IEEE Computer
Society, 2012. doi:10.1109/IWSM-MENSURA.2012.15.

35 Aron Zwaan and Casper Bach Poulsen. Defining Name Accessibility using Scope Graphs
(Artifact), May 2024. doi:10.5281/zenodo.11179594.

36 Aron Zwaan and Casper Bach Poulsen. Defining Name Accessibility using Scope Graphs
(Extended Edition). CoRR, May 2024. doi:10.48550/arXiv.2407.09320.

37 Aron Zwaan and Casper Bach Poulsen. Defining Name Accessibility using Scope Graphs
(Artifact). Software (visited on 2024-08-05). URL: https://zenodo.org/records/11179594.

38 Aron Zwaan and Hendrik van Antwerpen. Scope Graphs: The Story so Far. In Ralf Lämmel,
Peter D. Mosses, and Friedrich Steimann, editors, Eelco Visser Commemorative Symposium,
EVCS 2023, April 5, 2023, Delft, The Netherlands, volume 109 of OASIcs. Schloss Dagstuhl –
Leibniz-Zentrum für Informatik, 2023. doi:10.4230/OASIcs.EVCS.2023.32.

39 Aron Zwaan, Hendrik van Antwerpen, and Eelco Visser. Incremental type-checking for
free: using scope graphs to derive incremental type-checkers. Proceedings of the ACM on
Programming Languages, 6(OOPSLA2):424–448, 2022. doi:10.1145/3563303.

ECOOP 2024

https://doi.org/10.1145/3276484
https://doi.org/10.1145/3276484
https://doi.org/10.4230/LIPIcs.ECOOP.2021.1
http://resolver.tudelft.nl/uuid:15057a42-f049-4321-b9ee-f62e7f1fda9f
http://resolver.tudelft.nl/uuid:15057a42-f049-4321-b9ee-f62e7f1fda9f
https://doi.org/10.1007/3-540-45937-5_11
https://doi.org/10.1109/MS.2014.100
https://learn.microsoft.com/en-us/dotnet/csharp/language-reference/keywords/file
https://learn.microsoft.com/en-us/dotnet/csharp/language-reference/keywords/file
http://dspace.fcu.edu.tw/bitstream/2377/2120/1/ce07ics001998000164.pdf
https://doi.org/10.1109/IWSM-MENSURA.2012.15
https://doi.org/10.5281/zenodo.11179594
https://doi.org/10.48550/arXiv.2407.09320
https://zenodo.org/records/11179594
https://doi.org/10.4230/OASIcs.EVCS.2023.32
https://doi.org/10.1145/3563303

	1 Introduction
	2 Access Modifiers in Real-World Languages
	2.1 Why Accessibility?
	2.2 Accessibility in Practice
	2.3 Classification

	3 Using Scope Graphs to Model Name Binding in Programs
	3.1 Scope Graphs as A Model for Name Binding

	4 AML: The Base Language
	5 Defining Module Visibility
	6 Defining Subclass Visibility
	6.1 Private Access
	6.2 Protected Access

	7 Combining Subclass and Module Visibility
	8 Defining Extends-Clause Accessibility Restriction
	9 Analysis
	9.1 Soundness of Access Policies
	9.2 Equivalence of Access Policies
	9.3 Order of Access Policies

	10 Evaluation
	10.1 Comparison with Reference Compilers: Implementation
	10.2 Comparison with Reference Compilers: Test Cases
	10.3 Code Completion
	10.4 Threats to Validity

	11 Related Work
	11.1 Access Modifier Semantics and Implementations
	11.2 Scope Graphs

	12 Conclusion

