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Abstract In this work, we present a new numerical frame-
work for the efficient solution of the time-harmonic elastic
wave equation at multiple frequencies. We show that mul-
tiple frequencies (and multiple right-hand sides) can be
incorporated when the discretized problem is written as a
matrix equation. This matrix equation can be solved effi-
ciently using the preconditioned IDR(s) method. We present
an efficient and robust way to apply a single precondi-
tioner using MSSS matrix computations. For 3D problems,
we present a memory-efficient implementation that exploits
the solution of a sequence of 2D problems. Realistic exam-
ples in two and three spatial dimensions demonstrate the
performance of the new algorithm.
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1 Introduction

The understanding of the earth subsurface is a key task in
geophysics, and Full-Waveform Inversion (FWI) is a com-
putational approach that matches the intensity of reflected
shock waves (measurements) with simulation results in a
least squares sense; cf. [44] and the references therein
for an overview of state-of-the-art FWI algorithms. From
a mathematical point of view, the problem of matching
measurements with simulation results leads to a PDE-
constrained optimization problem where the objective func-
tion is defined by the respective FWI approach, and the
constraining partial differential equation (PDE) is the wave
equation. Since the earth is an elastic medium, the elastic
wave equation needs to be considered. In order to design an
efficient optimization algorithm, a fast numerical solution
of the elastic wave equation is required at every iteration of
the optimization loop. This so-called forward problem is the
focus of this work.

More recently, FWI has been considered for an equiva-
lent problem formulated in the frequency-domain [22, 28].
The frequency-domain formulation of wave propagation has
shown specific modeling advantages for both acoustic and
elastic media. For the efficient FWI, notably the waveform
tomography [27, 44], a fast numerical solution of the respec-
tive time-harmonic forward problem is required. More pre-
cisely, the forward problem requires the fast numerical solu-
tion of the discretized time-harmonic elastic wave equation
at multiple wave frequencies and for multiple source terms.
In this context, many efficient numerical solution methods
have been proposed mostly for the (acoustic) Helmholtz
equation [23, 25, 26, 33]. In this work, we present an effi-
cient solver of the time-harmonic elastic wave equation that
results from a finite element discretization, cf. [11, 15].
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Especially for large 3D problems, the efficient numeri-
cal solution with respect to computation time and memory
requirements is subject to current research. When an iter-
ative Krylov method is considered, the design of efficient
preconditioners for the elastic wave equation is required.
In [1] a damped preconditioner for the elastic wave equa-
tion is presented. The authors of [34] analyze a multi-grid
approach for the damped problem. Both works are exten-
sions of the work of Erlangga et al. [33] for the acoustic
case. The recent low-rank approach of the MUMPS solver
[2] makes use of the hierarchical structure of the discrete
problem and can be used as a preconditioner, cf. [3, 46].
When domain decomposition is considered, the sweeping
preconditioner [42] is an attractive alternative.

In this work, we propose a hybrid method that combines
the iterative Induced Dimension Reduction (IDR) method
with an efficient preconditioner that exploits the multi-
level sequentially semiseparable (MSSS) matrix structure of
the discretized elastic wave equation on a Cartesian grid.
Moreover, we derive a matrix equation formulation that
includes multiple frequencies and multiple right-hand sides,
and present a version of IDR that solves linear matrix equa-
tions at a low memory requirement. The paper is structured
as follows: In Section 2, we derive a finite element dis-
cretization for the time-harmonic elastic wave equation with
a special emphasis on the case when multiple frequencies
are present. Section 3 presents the IDR(s) method for the
iterative solution of the resulting matrix equation. We dis-
cuss an efficient preconditioner in Section 4 based on the
MSSS structure of the discrete problem. We present differ-
ent versions of the MSSS preconditioner for 2D and 3D
problems in Sections 4.2 and 4.3, respectively. The paper
concludes with extensive numerical tests in Section 5.

2 The time-harmonic elastic wave equation
at multiple frequencies

In this section, we present a finite element discretization
of the time-harmonic elastic wave equation with a spe-
cial emphasis on the mathematical and numerical treatment
when multiple frequencies (and possibly multiple right-
hand sides) are present.

2.1 Problem description

The time-harmonic elastic wave equation describes the dis-
placement vector u : Ω → C

d in a computational domain
Ω ⊂ R

d , d ∈ {2, 3}, governed by the following partial
differential equation (PDE),

−ω2
kρ(x)uk − ∇·σ(uk) = s, x ∈ Ω ⊂ R

d , k = 1, ..., Nω.

(1)

Here, ρ(x) is the density of an elastic material in the
considered domain Ω that can differ with x ∈ Ω (inhomo-
geneity), s is a source term, and {ω1, ..., ωNω} are multiple
angular frequencies that define Nω problems in Eq. 1.
The stress and strain tensor follow from Hooke’s law for
isotropic elastic media,

σ(uk) := λ(x) (∇·uk Id) + 2μ(x)ε(uk), (2)

ε(uk) := 1

2

(∇uk + (∇uk)
T) , (3)

with λ,μ being the Lamé parameters (6). On the boundary
∂Ω of the domain Ω , we consider the following boundary
conditions,

iωkρ(x)Buk + σ(uk)n̂ = 0, x ∈ ∂Ωa, (4)

σ(uk)n̂ = 0, x ∈ ∂Ωr, (5)

where Sommerfeld radiation boundary conditions at ∂Ωa

model absorption, and we typically prescribe a free-surface
boundary condition in the north of the computational
domain ∂Ωr , with ∂Ωa ∪· ∂Ωr = ∂Ω . In Eq. 4, B is a
d × d matrix that depends on cp and cs , B ≡ B(x) :=
cp(x)n̂n̂T + cs(x)t̂t̂T + cs(x)ŝŝT, with vectors {n̂, t̂, ŝ} being
normal or tangential to the boundary, respectively; cf. [1]
for more details. Note that the boundary conditions (4)–(5)
can naturally be included in a finite element approach as
explained in Section 2.2.

We assume the set of five parameters {ρ, cp, cs, λ, μ} in
Eqs. 1–5 to be space-dependent. The Lamé parameters λ

and μ are directly related to the density ρ and the speed of
P-waves cp and speed of S-waves cs via,

μ = c2s ρ, λ = ρ
(
c2p − 2c2s

)
. (6)

All parameter functions are assumed inL1(Ω). More speci-
fically, we interpolate data points using Q1 basis functions.

2.2 Finite element (FEM) discretization

For the discretization of Eqs. 1–5, we follow a classical
finite element approach using the following ansatz,

uk(x) ≈
N∑

i=1

ui
kϕi (x), x ∈ Ω ⊂ R

d , ui
k ∈ C. (7)

In the numerical examples presented in Section 5, we
restrict ourselves to Cartesian grids and basis functions ϕi

that are B-splines of degree p as described for instance
in [10, Chapter 2]. The number of degrees of freedom is,
hence, given by

N = d
∏

i∈{x,y,z}
(ni − 1 + p), d ∈ {2, 3}, p ∈ N

+, (8)
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with ni grid points in the respective spatial direction (in
Fig. 1 we illustrate the case where d = 2 and nx = 7,
ny = 5).

Definition 1 (Tensor notation, [14]) The dot product
between two vector-valued quantities u = (ux, uy), v =
(vx, vy) is denoted as, u · v := uxvx + uyvy . Similarly,
we define the componentwise multiplication of two matrices
U = [uij ], V = [vij ] as, U : V := ∑

i,j uij vij .

A Galerkin finite element approach applied to Eq. 1
yields the following weak form: Find ϕi ∈ [H 1(Ω)]d such
that,

−ω2
k

N∑

i=1

ui
k

∫

Ω

ρ(x)ϕi · ϕj dΩ−
N∑

i=1

ui
k

∫

Ω

∇·σ(ϕi ) · ϕj dΩ

=
∫

Ω

s · ϕj dΩ, for all ϕj ∈ [H 1(Ω)]d ,

j = 1, ..., N , and for all source functions s ∈ [L1(Ω)]d .
We exploit the boundary conditions (4) –(5) in the following
way,

∫

Ω

∇·σ(ϕi ) · ϕj dΩ

=
∫

∂Ω

σ(ϕi )ϕj · n̂ d	 −
∫

Ω

σ(ϕi ) : ∇ϕj dΩ

= −iωk

∫

∂Ωa

ρ(x)Bϕi · ϕj d	 −
∫

Ω

σ(ϕi ) : ∇ϕj dΩ

Note that the stress-free boundary condition (5) can be
included naturally in a finite element discretization by
excluding ∂Ωr from the above boundary integral.

We summarize the finite element discretization of the
time-harmonic, inhomogeneous elastic wave equation at
multiple frequencies ωk by,

(K + iωkC − ω2
kM)xk = b, k = 1, ..., Nω, (9)

Fig. 1 Boundary conditions and source term for d = 2. For d = 3,
the source is for instance located at (Lx/2, Ly/2, 0)T

with unknown vectors xk := [u1k, ..., uN
k ]T ∈ C

N consisting
of the coefficients in Eq. 7, and mass matrix M , stiffness
matrix K and boundary matrix C given by,

[K]ij =
∫

Ω

σ(ϕi ) : ∇ϕj dΩ, [M]ij =
∫

Ω

ρϕi · ϕj dΩ,

[C]ij =
∫

∂Ωa

ρBϕi · ϕj d	, [b]j =
∫

Ω

s · ϕj dΩ.

In a 2D problem (see Fig. 1), the unknown xk contains the
x-components and the y-components of the displacement
vector. When lexicographic numbering is used, the matrices
in Eq. 9 have the block structure

K =
[

Kxx Kxy

Kyx Kyy

]
, C =

[
Cxx Cxy

Cyx Cyy

]
, M =

[
Mxx Mxy

Myx Myy

]
,

as shown in Fig. 3 (left) for d = 2, and Fig. 2 (top left) for
d = 3. When solving (9) with an iterative Krylov method,
it is necessary to apply a preconditioner. Throughout this
document, we consider a preconditioner of the form

P(τ ) = (K + iτC − τ 2M), (10)

where τ is a single seed frequency that needs to be chosen
with care for the range of frequencies {ω1, ...ωNω}, cf. the
considerations in [6, 38]. The efficient application of the
preconditioner (10) for problems of dimension d = 2 and
d = 3 on a structured domain is presented in Section 4, and
the choice of τ is discussed in Section 5.2.

2.3 Reformulation as a matrix equation

We next describe a new approach to solve (9) at multi-
ple frequencies. Therefore, we define the block matrix X
consisting of all unknown vectors, X := [x1, ..., xNω ] ∈
C

N×Nω , and note that (9) can be rewritten as,

A (X) := KX + iCXΣ − MXΣ2 = B, (11)

where Σ := diag(ω1, ..., ωNω), and with block right-hand
side B := [b, ..., b]. In Eq. 11, we also define the linear
operatorA (·)which defines the matrix Eq. 11 in short-hand
notation as A (X) = B. This reformulation gives rise to use
an extension of the IDR(s) method to solve linear matrix
equations [4].

Note that an alternative approach to efficiently solve (9)
at multiple frequencies (Nω > 1) leads to the solution
of shifted linear systems as presented in [6, Section 4.2]
and the references therein. The memory-efficient approach
followed by [6] relies on the shift-invariance property of
the Krylov spaces belonging to different frequencies. Some
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Fig. 2 A spy plot of Eq. 10 for a 3D elastic problem when lin-
ear basis functions (p = 1) are used: In the top row, we show the
discretized problem for lexicographic (top left) and nodal-based order-
ing (top right). Appropriate zooming demonstrates the hierarchically

repeating structure of the matrix on level 2 (bottom left) and level 1
(bottom right). For level 1, we indicate the SSS data structure used in
Section 4.1. Here, the rank of U2 equals one

restrictions of this approach like collinear right-hand sides
in Eq. 9 and the difficulty of preconditioner design are,
however, not present in the matrix equation setting (11).

3 The induced dimension reduction (IDR) method

Krylov subspace methods are an efficient tool for the iter-
ative numerical solution of large-scale linear systems of
equations [20]. In particular, the matrices K, C, M that
typically are obtained from a discretization of the time-
harmonic elastic wave Eq. 9 are ill-conditioned and have

very large dimensions, especially when high frequencies
are considered. For these reasons, the numerical solution is
computationally challenging, and factors like memory con-
sumption and computational efficiency have to be taken into
account when selecting a suitable Krylov method.

The Generalized Minimum Residual (GMRES) method
[37] is one of the most widely used Krylov method because
of its rather simple implementation and optimal conver-
gence property. Nevertheless, GMRES is a long-recurrence
Krylov method, i.e., its requirements for memory and
computation grow in each iteration which is unfeasible
when solving linear systems arising from the elastic wave
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equation. On the other hand, short-recurrence Krylov meth-
ods keep the computational cost constant per iteration; one
of the most used method of this class is the Bi-conjugate
gradient stabilized (BiCGStab) method [45].

In this work, we propose to apply an alternative short-
recurrence Krylov method: the Induced Dimension Reduc-
tion (IDR) method [16, 41]. IDR(s) uses recursions of depth
s + 1, with s ∈ N

+ being typically small, to solve linear
systems of equations of the form,

Ax = b, A ∈ C
N×N, {x, b} ∈ C

N, (12)

where the coefficient matrix A is a large, sparse, and
in general non-Hermitian. We mention some important
numerical properties of the IDR(s) method: First, finite
termination of the algorithm is ensured with IDR(s) com-
puting the exact solution in N + N

s
iterations in exact

arithmetics. Second, BiCGStab and IDR(1) are mathemat-
ically equivalent [39]. Third, IDR(s) with s > 1 often
outperforms BiCGStab for numerically difficult problems,
for example, for convection-diffusion-reaction problems
where the convection term is dominating, or problems
with a large negative reaction term, cf. [41] and [16],
respectively.

3.1 IDR(s) for linear systems

We present a brief introduction of the IDR(s) method that
closely follows [41]. In Section 3.2, we explain how to
use IDR(s) for solving (11) for multiple frequencies in a
matrix equation setting. We introduce the basic concepts of
the IDR(s) method. The IDR(s) algorithm is based on the
following theorem.

Theorem 1 (The IDR(s) theorem) Let A be a matrix in
C

N×N , let v0 be any non-zero vector in C
N , and let G0 be

the full Krylov subspace, G0 := KN(A, v0). Let S be a
(proper) subspace of CN such that S and G0 do not share a
nontrivial invariant subspace ofA, and define the sequence:

Gj := (I − ξjA)(Gj−1 ∩ S ), j = 1, 2, . . . , (13)

where ξj are nonzero scalars. Then it holds:

1. Gj+1 ⊂ Gj , for j ≥ 0, and,
2. dim(Gj+1) < dim(Gj ), unless Gj ≡ {0}.
Proof Can be found in [41].

Exploiting the fact that the subspaces Gj are shrinking
and Gj = {0} for some j , IDR(s) solves the problem (12)

by constructing residuals rk+1 in the subspaces Gj+1, while
in parallel, it extracts the approximate solutions xk+1. In
order to illustrate how to create a residual vector in the space
Gj+1, let us assume that the space S is the left null space
of a full rank matrix P := [p1, p2, . . . ,ps], {xi}ki=k−(s+1)
are s + 1 approximations to Eq. 12 and their corresponding
residual vectors {ri}ki=k−(s+1) are in Gj . IDR(s) creates a
residual vector rk+1 in Gj+1 and obtains the approximation
xk+1 using the following (s + 1)-term recursions,

xk+1 = xk + ξj+1vk +
s∑

j=1

γjΔxk−j ,

rk+1 = (I − ξj+1A)vk, vk = rk −
s∑

j=1

γjΔrk−j ,

where Δyk is the forward difference operator Δyk :=
yk+1−yk . The vector c = (γ1, γ2, . . . , γs)

T can be obtained
imposing the condition rk+1 ∈ Gj+1 by solving the s × s

linear system,

P H[Δrk−1, Δrk−2, . . . , Δrk−s]c = P Hrk.

At this point, IDR(s) has created a new residual vector rk+1

in Gj+1. However, using the fact that Gj+1 ⊂ Gj , rk+1 is
also in Gj , IDR(s) repeats the above computation in order to
create {rk+1, rk+2, . . . , rk+s+1} in Gj+1. Once s + 1 resid-
uals are in Gj+1, IDR(s) is able to sequentially create new
residuals in Gj+2.

3.2 Preconditioned IDR(s) for linear matrix equations

The IDR(s) Theorem 1 can be generalized to solve linear
problems in any finite-dimensional vector space. In particu-
lar, IDR(s) has recently been adapted to solve linear matrix
equations [4]. In this work, we use this generalization of
the IDR(s) method to solve the time-harmonic elastic wave
equation at multiple frequencies. Using the definition of the
linear operator A (·) in Eq. 11 yields a matrix equation in
short-hand notation, A (X) = B, which is close to Eq. 12.
Here, the block right-hand side B equals

B := b[1, 1, . . . , 1]Nω or B := [b1, b2, . . . , bNω ]

depending whether we consider a constant source term for
each frequency as in Eq. 1 or allow variations.

IDR(s) for solving (11) uses the same recursions
described in Section 3.1 acting on block matrices. The
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main differences with the original IDR(s) algorithm of
[41] are the substitution of the matrix-vector product Ax
by the application of the linear operator A (X), and the
use of Frobenius inner products, see Definition 2. Note
that two prominent long-recurrence Krylov methods have
been generalized to the solution of linear matrix equa-
tions in [17] using a similar approach. In Algorithm 1,
we present IDR(s) for solving the matrix Eq. 11 with
biorthogonal residuals (see details in [4, 16]). The precon-
ditioner used in Algorithm 1 is described in the following
Section.

Definition 2 (Frobenius inner product, [17]) The Frobe-
nius inner product of two real matrices A, B of the same
size is defined as 〈A, B〉F := tr(AHB), where tr(·) denotes
the trace of the matrix AHB. The Frobenius norm is, thus,
given by ‖A‖2F := 〈A, A〉F .

4 Multilevel sequentially semiseparable
preconditioning techniques

Semiseparable matrices [43] and the more general con-
cept of sequentially semiseparable (SSS) matrices [8, 9]
are structured matrices represented by a set of generators.
Matrices that arise from the discretization of 1D partial dif-
ferential equations typically have an SSS structure [31], and
submatrices taken from the strictly lower/upper-triangular
part yield generators of low rank. Multiple applications from
different areas can be found [12, 18, 32] that exploit this
structure. Multilevel sequentially semiseparable (MSSS)
matrices generalize SSS matrices to the case when d >

1. Again, discretizations of higher-dimensional PDEs give
rise to matrices that have an MSSS structure [29], and
the multilevel paradigm yields a hierarchical matrix struc-
ture with MSSS generators that are themselves MSSS of
a lower hierarchical level. This way, at the lowest level,
generators are SSS matrices. The advantages of Cartesian
grids in higher dimensions and the resulting structure of
the corresponding discretization matrices depicted in Fig. 2
is directly exploited in MSSS matrix computations. For
unstructured meshes we refer to [47] where hierarchically
semiseparable (HSS) matrices are used. MSSS precondi-
tioning techniques were first studied for PDE-constrained
optimization problems in [29] and later extended to com-
putational fluid dynamics problems [30]. In this work, we
apply MSSS matrix computations to precondition the time-
harmonic elastic wave equation. Appropriate splitting of the
3D elastic operator leads to a sequence of 2D problems in
level-2 MSSS structure. An efficient preconditioner for 2D
problems is based on model order reduction of level-1 SSS
matrices.

Algorithm 1 Preconditioned IDR(s) for linear matrix equa-
tions [4]

1: procedure PIDR(s)
2: Input: A as defined in Eq. 11, B ∈ C

N×Nω, tol ∈
(0, 1), s ∈ N

+, P ∈ C
N×(s×Nω), X0 ∈ C

N×Nω ,
preconditioner P

3: Output: X such that ‖B − A (X)‖F /‖B‖F ≤ tol

4: G = 0 ∈ C
N×s×Nω, U = 0 ∈ C

N×s×Nω

5: M = Is ∈ C
s×s , ξ = 1

6: R = B − A (X0)

7: while ‖R‖F ≤ tol · ‖B‖F do

8: Compute [f]i = 〈Pi, R〉F for i = 1, . . . , s

9: for k = 1 to s do
10: Solve c from Mc = f, (γ1, . . . , γs)

T = c
11: V = R − ∑s

i=k γiGi

12: V = P−1(V ) � Apply preconditioner, see
Section 4

13: Uk = Uc + ξV

14: Gk = A (Uk)

15: for i = 1 to k − 1 do
16: α = 〈Pi, Gk〉F /[M]i,i
17: Gk = Gk − αGi

18: Uk = Uk − αUi

19: end for
20: [M]ik = 〈Pi, Gk〉F
21: β = [f]k/[M]k,k

22: R = R − βGk

23: X = X + βUk

24: if k + 1 ≤ s then

25: [f]i = 0 for i = 1, . . . , k

26: [f]i = [f]i −β[M]i,k for i = k+1, . . . , s

27: end if

28: Overwrite k-th block of G, U by Gk , Uk

29: end for
30: V = P−1(R) � Apply preconditioner, see

Section 4

31: T = A (V )

32: ξ = 〈T , R〉F /〈T , T 〉F
33: ρ = 〈T , R〉F /(‖T ‖F ‖R‖F )

34: if |ρ| < ρ0 then � ρ0 = 0.7 recommended in

[40]

35: ξ = ρ0 × ξ/|ρ|
36: end if
37: R = R − ξT

38: X = X + ξV

39: end while
40: return X ∈ C

N×Nω

41: end procedure
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4.1 Definitions and basic SSS operations

We present the formal definition of an SSS matrix used on
1D level in Definition 3.

Definition 3 (SSS matrix structure, [8]) Let A be an n×n

block matrix in SSS structure such that A can be written in
the following block-partitioned form,

Aij =
⎧
⎨

⎩

UiWi+1 · · · Wj−1V
H
j , if i < j,

Di, if i = j,

PiRi−1 · · · Rj+1Q
H
j , if i > j.

(14)

Here, the superscript ‘H’ denotes the conjugate transpose of
a matrix. The matrices {Us , Ws , Vs , Ds , Ps , Rs , Qs}ns=1 are
called generators of the SSS matrix A, with their respective
dimensions given in Table 1. As a short-hand notation for
Eq. 14, we use A = SSS(Ps, Rs, Qs, Ds, Us, Ws, Vs).

The special case of an SSS matrix when n = 4 is
presented in the Appendix.

In general, every matrix can be represented in SSS for-
mat. In Fig. 2 (bottom right) we show that the 1D level
of the elastic operator is tridiagonal if p = 1. Therefore,
diagonal blocks Di are copies of the 1D operator, and off-
diagonal blocks can, for instance, be represented by the
product of rank-p matrices, U2V

H
3 , where the last element

of U2 is identical to the respective entry of the 1D oper-
ator and V3 is the first unit vector. Basic operations such
as addition, multiplication, and inversion are closed under
SSS structure and can be performed in linear computational
complexity if ki and li in Table 1 are bounded by a con-
stant. The rank of the off-diagonal blocks, formally defined
as the semiseparable order in Definition 4, plays an impor-
tant role in the computational complexity analysis of SSS
matrix computations.

Definition 4 (Semiseparable order, [13]) LetA be an n×n

block matrix in SSS structure satisfying Definition 3. We
use a colon-style notation: A(i : j, k : �) selects rows of
blocks from i to j and columns of blocks from k to � of the
SSS matrix A, i.e. A(2 :2, 3 :3) = U2V

H
3 . Let

rankA(s+1 :n, 1 :s)=: ls , s =1, 2, . . . , n−1, and let further,
rank A(1 :s, s + 1 :n)=: us, s = 1, 2, . . . , n − 1.

Setting rl := max{ls} and ru := max{us}, we call rl the
lower semiseparable order and ru the upper semiseparable
order of A, respectively.

If the upper and lower semiseparable order are bounded
by say r∗, i.e., {rl, ru} ≤ r∗, then the computational cost
for the SSS matrix computations is of O((r∗)3n) complex-
ity [8], where n is the number of blocks of the SSS matrix as

introduced in Definition 3. We will refer to r∗ as the maxi-
mum off-diagonal rank. Matrix-matrix operations are closed
under SSS structure, but performing SSS matrix computa-
tions will increase the semiseparable order, cf. [8]. We use
model order reduction in the sense of Definition 5 in order
to bound the semiseparable order.

Using the aforementioned definition of semiseparable
order, we next introduce the following lemma to compute
the (exact) LU factorization of an SSS matrix.

Lemma 1 (LU factorization of an SSS matrix) Let
A = SSS(Ps, Rs, Qs, Ds, Us, Ws, Vs) be given in genera-
tor form with semiseparable order (rl, ru). Then the factors
of an LU factorization of A are given by the following
generators representation,

L = SSS(Ps, Rs, Q̂s, D
L
s , 0, 0, 0),

U = SSS(0, 0, 0, DU
s , Ûs, Ws, Vs).

The generators of L and U are computed by Algorithm 2.
Moreover, L has semiseparable order (rl, 0), and U has
semiseparable order (0, ru).

Algorithm 2 LU factorization and inversion of an SSS
matrix A [9, 43]

1: procedure INV SSS(A)
2: Input: A = SSS(Ps, Rs, Qs, Ds, Us, Ws, Vs) in

generator form
3: // Perform LU factorization
4: D1 =: DL

1 DU
1 � LU factorization on generator

level
5: Let Û1 := (DL

1 )−1U1, and Q̂1 := (DL
1 )−HQ1

6: for i = 2 : n − 1 do
7: if i = 2 then
8: Mi := Q̂H

i−1Ûi−1

9: else
10: Mi := Q̂H

i−1Ûi−1 + Ri−1Mi−1Wi−1

11: end if
12:

(
Di − PiMiV

H
i

) =: DL
i DU

i � LU factorization
of generators

13: Let Ûi := (DL
i )−1(Ui − PiMiWi), and

14: let Q̂i := (DU
i )−H(Qi − ViM

H
i RH

i )

15: end for
16: Mn := Q̂H

n−1Ûn−1 + Rn−1Mn−1Wn−1

17:
(
Dn − PnMnV

H
n

) =: DL
n DU

n � LU factorization of
generators

18: // Perform inversion
19: L := SSS(Ps, Rs, Q̂s, D

L
s , 0, 0, 0)

20: U := SSS(0, 0, 0, DU
s , Ûs, Ws, Vs)

21: A−1 = U−1L−1 � SSS inversion (Appendix A)
& matrix-matrix multiplication (Appendix B)

22: end procedure
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Table 1 Generators sizes for
the SSS matrix A in
Definition 3

Ui Wi Vi Di Pi Ri Qi

mi × ki ki−1 × ki mi × ki−1 mi × mi mi × li li−1 × li mi × li+1

Note that, for instance, m1 + ... + mn equals the dimension of A

Definition 5 (Model order reduction of an SSS matrix)
Let A = SSS(Ps, Rs, Qs, Ds, Us, Ws, Vs) be an SSS
matrix with lower order numbers ls and upper order
numbers us . The SSS matrix Ã = SSS(P̃s, R̃s, Q̃s,

Ds, Ũs, W̃s, Ṽs) is called a reduced order approximation of
A, if ‖A − Ã‖2 is small, and for the lower and upper order
numbers it holds, l̃s < ls, ũs < us for all 1 ≤ s ≤ n − 1.

4.2 Approximate block-LU decomposition using MSSS
computations for 2D problems

Similar to Definition 3 for SSS matrices, the generators
representation for MSSS matrices (level-k SSS matrices) is
given in Definition 6.

Definition 6 (MSSS matrix structure, [29]) The matrix A

is said to be a level-k SSSmatrix if it has a form like (14) and
all its generators are level-(k −1) SSS matrices. The level-1
SSS matrix is the SSS matrix that satisfies Definition 3 We
call A to be in MSSS matrix structure if k > 1.

Most operations for SSS matrices can directly be
extended to MSSS matrix computations. In order to perform
a matrix-matrix multiplication of two MSSS matrices in lin-
ear computational complexity, model order reduction which
is studied in [8, 29, 30] is necessary to keep the compu-
tational complexity low. The preconditioner (10) for a 2D

elastic problem is of level-2 MSSS structure. We present
a block-LU factorization of a level-2 MSSS matrix in
this Section. Therefore, model order reduction is necessary
which results in an approximate block-LU factorization.
This approximate factorization can be used as a precondi-
tioner for IDR(s) in Algorithm 1. On a two-dimensional
Cartesian grid, the preconditioner (10) has a 2 × 2 block
structure as presented in Fig. 3 (left).

Definition 7 (Permutation of an MSSS matrix, [29]) Let
P(τ ) be a 2×2 level-2 MSSS block matrix arising from the
FEM discretization of (10) using linear B-splines (p = 1),

P(τ ) =
[

P11 P12

P21 P22

]
∈ C

2nxny×2nxny , (15)

with block entries being level-2 MSSS matrices in generator
form,

P11=MSSS(P 11
s , R11

s , Q11
s , D11

s , U11
s , W 11

s , V 11
s ), (16a)

P12=MSSS(P 12
s , R12

s , Q12
s , D12

s , U12
s , W 12

s , V 12
s ), (16b)

P21=MSSS(P 21
s , R21

s , Q21
s , D21

s , U21
s , W 21

s , V 21
s ), (16c)

P22=MSSS(P 22
s , R22

s , Q22
s , D22

s , U22
s , W 22

s , V 22
s ), (16d)

where 1 ≤ s ≤ nx . Note that all generators in Eqs. 16a–16d
are SSS matrices of (fixed) dimension ny . Let {ms}ns=1 be
the dimensions of the diagonal generators of such an SSS

Fig. 3 A spy plot of P(τ ) for the wedge problem (left) and Ψ TP(τ )Ψ (right) for d = p = 2, and nnz=100,587 in both cases. Clearly, the
permutation leads to a reduction in bandwidth, and the permuted matrix is block tri-diagonal
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matrix, cf. Table 1, with
∑n

s=1 ms = ny . Then, there exists
a permutation matrix Ψ , Ψ Ψ T = Ψ TΨ = I , given by

Ψ =
[
Inx ⊗

[
Ψ1D

0

]
Inx ⊗

[
0

Ψ1D

]]
, (17)

where

Ψ1D :=
[
blkdiag

([
Ims

0

])n

s=1
blkdiag

([
0

Ims

])n

s=1

]
,

such that P2D(τ) = Ψ TP(τ )Ψ is of global MSSS level-2
structure.

We illustrate the effect of the permutation matrix Ψ in
Fig. 3. For a matrix (10) that results from a discretization
of the 2D time-harmonic elastic wave equation, P2D is of
block tri-diagonal MSSS structure.

Corollary 1 (Block tri-diagonal permutation) Consider
in Definition 7 the special case that the block entries in
Eq. 15 are given as,

P11 = MSSS
(
P 11

s , 0, I, D11
s , U11

s , 0, I
)

, (18a)

P12 = MSSS
(
P 12

s , 0, I, D12
s , U12

s , 0, I
)

, (18b)

P21 = MSSS
(
P 21

s , 0, I, D21
s , U21

s , 0, I
)

, (18c)

P22 = MSSS
(
P 22

s , 0, I, D22
s , U22

s , 0, I
)

, (18d)

with rectangular matrix I = [I, 0]. Then the matrix
Ψ TP(τ )Ψ is of block tri-diagonal MSSS structure.

Proof This result follows from formula (2.13) of Lemma
2.4 in the original proof [29] when generatorsR

ij
s = W

ij
s ≡ 0

for i, j ∈ {1, 2}.
If the matrix (15) is sparse, it is advisable to use a sparse

data structure on generator-level for Eqs. 18a–18d as well.

Because of Corollary 1, the permuted 2D preconditioner can
be written as,

P2D = Ψ TP(τ )Ψ =

⎡

⎢⎢⎢⎢
⎣

P1,1 P1,2

P2,1 P2,2 P2,3
. . .

. . .
. . .

. . . Pnx,nx

⎤

⎥⎥⎥⎥
⎦

(19)

with block entries Pi,j in SSS format according to
Definition 3, compare Fig. 3 (right). We perform a block-
LU factorization of the form P2D = LSU , with

Li,j =
{

I if i =j

Pi,j S
−1
j if i =j+1 , Ui,j =

{
I if j = i

S−1
i Pi,j if j = i + 1

,

(20)

and Schur complements given by

Si =
{

Pi,i if i = 1
Pi,i − Pi,i−1S

−1
i−1Pi−1,i if 2 ≤ i ≤ nx.

(21)

The Schur complements in Eqs. 20–21 are SSS matrices
and inverses can be computed with Algorithm 2. From Lem-
ma 1, we conclude that this does not increase the respective
off-diagonal ranks. However, in Eqs. 20–21, we also need
to perform matrix-matrix multiplications and additions of
SSS matrices which lead to an increase in rank, cf. [8]
and Appendix B. Therefore, we apply model order reduc-
tion in the sense of Definition 5 at each step i of the
recursion (21) in order to limit the off-diagonal rank. An
algorithm that limits the off-diagonal ranks to a constant,
say r∗, can be found in [29]. This leads to approximate
Schur complements and, hence, an inexact LU factoriza-
tion. In Experiment 1, we show that for small off-diagonal
ranks, this approach results in a very good preconditioner
for 2D elastic problems.

Fig. 4 Nodal-based discretization of P3D(τ) in 3D for different degrees p of FEM basis function
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4.3 SSOR splitting using MSSS computations for 3D
problems

For 3D problems, we consider a nodal-based FEM dis-
cretization of Eq. 10 with nz being the outermost dimension,
as shown in Fig. 4 for different order of B-splines. In order
to derive a memory-efficient algorithm for 3D problems, we
consider the matrix splitting,

P3D(τ) = L + Ŝ + U, Ŝ = blkdiag(Ŝ1, ..., Ŝnz ), (22)

where L and U are the (sparse) strictly lower and strictly
upper parts of P3D(τ), and Ŝ is a block-diagonal matrix
with blocks Ŝi being in level-2 MSSS structure. This data
structure is illustrated in Fig. 5a.

According to [36, Section 4.1.2], the SSOR precondi-
tioner based on the splitting (22) is given by,

P3D(τ) = 1

η(2 − η)
(η L + Ŝ)Ŝ−1(η U + Ŝ)

which for η = 1 equals,

P3D(τ) = (LŜ−1 + I )Ŝ(Ŝ−1U + I ). (23)

In Eq. 23, we note that this decomposition coin-
cides with the 2D approach (20)–(21) when the term
“Pi,i−1S

−1
i−1Pi−1,i” in the Schur complements (21) is

neglected. This choice avoids a rank increase due to mul-
tiplication and addition, but yields a worse preconditioner
than in 2D. The block entries Ŝi ,i = 1, .., nz, are in level-
2 MSSS structure and, hence, formula (20)-(21) can be
applied sequentially for the inverses that appear in Eq. 23. In
order to invert level-1 SSS matrices that recursively appear
in (21), we use Algorithm 2. On the generator level, we use
suitable LAPACK routines; cf. Table 2 for an overview of
the different algorithms used at each level.

We illustrate the data structure of the preconditioner (23)
in 3D for the case of linear B-splines (p = 1) in Fig. 5. On
level-3, we use a mixed data format that is most memory-
efficient for the splitting (22). Since only diagonal blocks

Table 2 Overview of algorithms applied at different levels for the
(approximate) inversion of the preconditioner (23)

Level Algorithm for (·)−1 Datatype

3D MSSS SSOR decomposition (23) sparse + L2 SSS

2D MSSS Schur (20)-(21) & MOR tridiag. L2 SSS

1D SSS Algorithm 2 L1 SSS (14)

generator LAPACK routines set of sparse matrices

need to be inverted, we convert those to level-2 MSSS for-
mat, and keep the off-diagonal blocks of L and U in sparse
format.

For p > 1, we apply the permutation of Definition 7 on
each diagonal block of Ŝ, cf. Fig. 6. This way, the Schur
decomposition described in Section 4.2 can be applied for
inverting block tri-diagonal level-2 MSSS matrices.

4.4 Memory analysis for 2D and 3D MSSS
preconditioner

We finish our description of MSSS preconditioners with
a memory analysis of the suggested algorithms described
for 2D problems in Section 4.2, and for 3D problems in
Section 4.3, respectively. The following Corollary 2 shows
that in both cases, we obtain linear memory requirements in
terms of the problem size (8).

Corollary 2 (Linear memory requirement) Consider
p = 1 and a three-dimensional problem of size nx ×ny ×nz.
For simplicity, we assume on the generator-level mi ≡ m,
and the off-diagonal ranks of the inverse Schur comple-
ments Si in Eq. 21 being limited by ki = li ≡ r∗. The
grid size in y-direction on level-1 implies n generators via
n = dnym

−1, with m being a constant and d ∈ {2, 3}. The
memory requirement of the preconditioners P2D and P3D

presented in Sections 4.2 and 4.3, respectively, is linear in
the respective problem dimension (8).

Proof Consider the preconditioner P2D = LSU given
by Eqs. 20–21. Besides blocks of the original operator, an

Fig. 5 Nested data structure for
the preconditioner (19) after
permutation for d = 3 and
p = 1. With ’coo’ we
abbreviate the coordinate-based
sparse data structure as used, for
instance, in [35]

(a) (b) (c)
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(a) (b)

Fig. 6 Permutation on level-2 leads to a block tri-diagonal level-2 MSSS matrix for p > 1

additional storage of nx inverse Schur complements S−1
i in

SSS format is required,

mem(P−1
2D, r∗) = mem(P2D) +

nx∑

i=1

mem(S−1
i , r∗) ∈ O(nxny).

The approximate Schur decomposition described in
Section 4.2 allows dense, full rank diagonal generators
Di, 1 ≤ i ≤ n, of size m × m, and limits the rank of all
off-diagonal generators by r∗ using model order reduction
techniques:

mem(S−1
i , r∗) = n · m2

︸ ︷︷ ︸
∼Di

+ 4(n −1)mr∗
︸ ︷︷ ︸
∼{Ui,Vi ,Pi ,Qi }

+ 2(n − 2)r∗r∗
︸ ︷︷ ︸

∼{Wi,Ri }
∈ O(ny).

Concerning the memory requirement for storing P2D in
MSSS format, we first note that the permutation described
in Corollary 1 does not affect the memory consumption.
Since we use sparse generators in Eqs. 18a–18d, the mem-
ory requirement is of the same order as the original, sparse
matrix (10) obtained from the FEM discretization.

For 3D problems, we suggest the usage of P3D as in
Eq. 23 based on the splitting (22). For the data structure, we
keep the strictly lower and upper diagonal parts in sparse
format and convert the diagonal blocks to level-2 MSSS
format, cf. Fig. 7,

mem(P−1
3D, r∗) =nz · mem(P−1

2D, r∗)+nnz(L) + nnz(U)

∈ O(nxnynz).

Note that the case p > 1 also yields a linear memory
requirement but is, for simplicity, not addressed here.

5 Numerical experiments

We present numerical examples1 for the two-dimensional,
elastic Marmousi-IImodel [21] as well as for a three-di-
mensional elastic wedge problem which has been inspired
by the well-known acoustic test case introduced in [19,
26] for 2D and 3D, respectively. In the examples, we
restrict ourselves to Cartesian grids with fixed discretiza-
tion size h ≡ hx = hy = hz. Depending on the specific
problem parameters, the maximum frequency we allow is
restricted by,

fmax <
minx∈Ω{cp, cs}

ppw · h
, ppw = 20,

where in the following experiments a minimum of 20 points
per wavelength (ppw) is guaranteed, and ωk = 2πfk .

All numerical examples presented in this section
have been implemented in FORTRAN 90 using the
GNU/gfortran compiler running over GNU/Debian Linux,
and executed on a computer with 4 CPUs Intel I5 with 32
GB of RAM.

1All test cases are publicly available from the author’s github reposi-
tory [5].

https://github.com/ManuelMBaumann/elastic_benchmarks
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Fig. 7 Schematic illustration:
The diagonal blocks of Ŝ in Eq.
22 correspond to a sequence of
nz 2D problems in the
xy−plane. This algebraic
decoupling affects the
propagation of information
along the z-axis and, hence, the
quality of the preconditioner in
3D. Note that this effect is much
less severe in the presence of
damping, cf. [7]

Ŝ1

Ŝ2

Ŝ3

Ŝnz

5.1 Parameter studies

We begin our numerical tests with a sequence of experi-
ments performed on an academic two-dimensional wedge
problem described in Fig. 8. The aim of these first exper-
iments is to prove the following concepts for the 2D
algorithm introduced in Section 4.2:
– Demonstrate the dependency of the iterative solution

method on the maximum off-diagonal rank, r∗ =

max{rl, ru}. In Experiment 1 we show that a small
value of r∗ leads to a very good preconditioner in terms
of number of Krylov iterations.

– Show that the 2D algorithm yields linear computational
complexity when all problem parameters are unchanged
and the grid size doubles (Experiment 2).

– In Experiments 3 and 4, we evaluate the frequency
dependency of the MSSS-preconditioner (10) when
τ �= ω. This is in particular important when multiple

Fig. 8 2D elastic wedge
problem used for parameter
study: Speed of S-waves in m/s

(left) and real part of
z-component of displacement
vector at f = 16 Hz (right)
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frequencies in a matrix equation framework are consid-
ered in Section 5.2.

We perform parameter studies on a two-dimensional slice
(xz-plane) of the wedge problem described in Fig. 14. The
values of ρ, cp and cs in the respective layers are given in
Table 3, and the considered computational domain Ω =
[0, 600] × [0, 1000] meters is shown in Fig. 8.

In the first set of experiments, we restrict ourselves to
the single-frequency case, Nω = 1. The discrete problem is,
thus, given by,

(K + iωC − ω2M)x = b,

with a preconditioner that approximates the original opera-
tor, P(τ ) ≈ (K + iτC − τ 2M), τ = ω, by taking low-rank
approximations in the block-LU factorization.

Experiment 1 (Off-diagonal rank) This experiment evalu-
ates the performance of the MSSS-preconditioner (19) for 2D
problemswhen themaximal off-diagonal rank r∗ is increased.

In Experiment 1, we apply the approximate block-LU
decomposition (20)–(21) as described in Section 4.2 to the
2D wedge problem at frequencies f = 8 Hz and f = 16
Hz. The maximum off-diagonal rank r∗ = max{rl, ru} of
the Schur complements (21) is restricted using model order
reduction techniques, cf. [29]. The dimension of the diago-
nal constructors has been chosen to be mi = 40, cf. Table 1.
Figure 9 shows the convergence behavior of preconditioned
IDR(4) (Algorithm 1 with Nω = 1) and preconditioned
BiCGStab [45]. We note that even in the high-frequency
case, an off-diagonal rank of r∗ = 10 leads to a very
efficient preconditioner, and an (outer) Krylov method that
converges within at most 40 iterations to a residual tolerance
tol=10e-8. Moreover, we observe that IDR(s) outper-
forms BiCGStab in the considered example when the same
preconditioner is applied. For a rank r∗ > 15, we observe
convergence within very few iterations.

Experiment 2 (Computational complexity in 2D) The
inexact block-LU factorization yields linear computational
complexity when applied as a preconditioner within MSSS-
preconditioned IDR(s), demonstrated for the 2D wedge
problem.

Table 3 Parameter configuration of the elastic wedge problem

Parameter Layer #1 Layer #2 Layer #3

ρ[kg/m3] 1800 2100 1950

cp[m/s] 2000 3000 2300

cs [m/s] 800 1600 1100

The Lamé parameters can be computed via (6)

Fig. 9 Number of Krylov iterations when the maximum off-diagonal
rank of the inverse Schur complements is restricted to r∗

In our second numerical experiment, the maximum off-
diagonal rank is fixed to r∗ = 15 such that very few
IDR iterations are required, and the computational costs
in Fig. 10 are dominated by the MSSS preconditioner. We
solve the 2D wedge problem at frequency 8 Hz for different
mesh sizes and a finite element discretization with B-splines
of degree p = {1, 2}. In Fig. 10, the CPU time is recorded
for different problem sizes: The mesh size h is doubled in
both spatial directions such that the number of unknowns
quadruples according to Eq. 8. From our numerical exper-
iments we see that the CPU time increases by a factor of
∼ 4 for both, linear and quadratic, splines. This gives strong
numerical evidence that the 2D MSSS computations are
performed in linear computational complexity.

Experiment 3 (Constant points per wavelength) Conver-
gence behavior of MSSS-preconditioned IRD(s) when
the problem size and wave frequency are increased
simultaneously.

In the previous example, the wave frequency is kept con-
stant while the problem size is increased which is of little

Fig. 10 Linear computational complexity of preconditioned IDR(4)
for the 2D wedge problem at f = 8 Hz



Comput Geosci

Table 4 Performance of the MSSS preconditioner when problem size
and frequency are increased simultaneously such that ppw = 20 and
tol=10e-8: O(n3) complexity

f h[m] r∗ MSSS IDR(4) Total CPU time

4 Hz 10.0 5 0.6 s 16 iter. 0.7 s

8 Hz 5.0 7 2.9 s 33 iter. 4.2 s

16 Hz 2.5 10 15.3 s 62 iter. 31.8 s

32 Hz 1.25 16 95.4 s 101 iter. 242.5 s

practical use due to oversampling. We next increase the
wave frequency and the mesh size simultaneously such that
a constant number of points per wavelength, ppw = 20, is
guaranteed.

In Table 4, we use the freedom in choosing the maximum
off-diagonal rank parameter r∗ such that the overall precon-
ditioned IDR(s) algorithm converges within a total number
of iterations that grows linearly with the frequency. This
particular choice of r∗ shows that the MSSS preconditioner
has comparable performance to the multi-grid approaches
in [24, 34] where the authors numerically prove O(n3)

complexity for 2D problems of size nx = ny ≡ n.
The off-diagonal rank parameter r∗ can on the other hand

be used to tune the preconditioner in such a way that the
number of IDR iterations is kept constant for various prob-
lem sizes. In Table 5, we show that a constant number of
∼ 30 IDR iterations can be achieved by a moderate increase
of r∗ which yields an algorithm that is nearly linear.

Experiment 4 (Quality of P2D(τ) when τ �= ω) Single-
fre- quency experiments when seed frequency differs from
the original problem.

This experiments bridges to the multi-frequency case. We
consider single-frequency problems at f ∈ {2, 3, 4, 5} Hz,
and vary the parameter τ of the preconditioner (19). The
off-diagonal rank r∗ is chosen sufficiently large such that
fast convergence is obtained when τ = ω. From Fig. 11 we

Table 5 Performance of the MSSS preconditioner when problem size
and frequency are increased simultaneously such that ppw = 20 and
tol=10e-8: Constant number of iterations

f h[m] r∗ MSSS IDR(4) Total CPU time

4 Hz 10.0 3 0.5 s 29 iter. 0.8 s

8 Hz 5.0 7 2.9 s 33 iter. 4.2 s

16 Hz 2.5 11 16.9 s 27 iter. 24.5 s

32 Hz 1.25 18 107.1 s 33 iter. 163.2 s

Fig. 11 Number of iterations of preconditioned IDR(s) when τ �= ω

in (19). We perform the experiment for different frequencies, and keep
a constant grid size h = 5m and residual tolerance tol = 10e-8

conclude that the quality of the preconditioner heavily relies
on the seed frequency, and a fast convergence of precon-
ditioned IDR(4) is only guaranteed when τ is close to the
original frequency.

5.2 The elastic Marmousi-IImodel

We now consider the case when Nω > 1, and the matrix
equation,

KX + iCXΣ − MXΣ2 = B, X ∈ C
N×Nω, (24)

is solved. Note that this way we can incorporate mul-
tiple wave frequencies in the diagonal matrix Σ =
diag(ω1, ..., ωNω), and different source terms lead to a block
right-hand side of the form B = [b1, ..., bNω ]. When multi-
ple frequencies are present, the choice of seed frequency τ is
crucial as we demonstrate for the Marmousi-II problem
in Experiment 6. We solve the matrix Eq. 24 arising from
the realistic Marmousi-II problem [21]. We consider a
subset of the computational domain, Ω = [0, 4000] ×
[0, 1850]m, as suggested in [34], cf. Fig. 12.

Experiment 5 (Marmousi-II at multiple right-hand
sides) Performance of the MSSS-preconditioned IDR(s)
method for the two-dimensional Marmousi-II problem
when multiple source locations are present.

We consider the Marmousi-II problem depicted in
Fig. 12 at h = 5m and frequency f = 2 Hz. We present
the performance of MSSS-preconditioned IDR(4) for Nω e-
qually-spaced source locations (right-hand sides) in Table 6.
The CPU time required for the preconditioner as well as
the iteration count is constant when Nω > 1 because
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Fig. 12 Speed of S-waves in
m/s (top), and real part of the z-
component of the displacement
vector in frequency-domain at
f = 4 Hz (middle) and f = 6
Hz (bottom) for the
Marmousi-II model, cf. [21]
for a complete parameter set.
The source location is indicated
by the symbol ’�’. In the
present setting, the water layer
of the Marmousi-II model
has been removed, and we place
the source term at Lx/3

we consider a single frequency. The overall wall clock
time, however, scales better than Nω due to the efficient
implementation of block matrix-vector products in the IDR
algorithm. The experiment for Nω = 20 shows that there

Table 6 Numerical experiments for the Marmousi-II problem at
f = 2 Hz using a maximum off-diagonal rank of r∗ = 15

# RHSs MSSS factorization PIDR(s = 4)

1 60.2 s 8.2 s (8 iter.)

5 60.2 s 25.0 s (8 iter.)

10 60.1 s 43.5 s (8 iter.)

20 60.3 s 108.3 s (8 iter.)

is an optimal number of right-hand sides for a single-core
algorithm.

Experiment 6 (Marmousi-II at multiple frequen-
cies) Performance of MSSS-preconditioned IDR(s) for
the two-dimensional Marmousi-II problem at multiple
frequencies.

In Experiment 6, we consider a single source term located
at (Lx/2, 0)T and Nω frequencies equally-spaced in the
intervals fk ∈ [2.4, 2.8] Hz and fk ∈ [2.0, 4.0] Hz. The
seed frequency is chosen at τ = (1 − 0.5i)ωmax for which
we recorded optimal convergence behavior. When the num-
ber of frequencies is increased, we observe an improved
performance compared to an extrapolation of the Nω = 2
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Fig. 13 Total CPU times of MSSS-IDR(4) for Nω > 1 frequencies
equally-spaced within a fixed range. Additional scaling (dashed lines)
following [7] improves convergence, and allows for larger frequency
ranges

case. We also observed that the size of interval in which the
different frequencies range is crucial for the convergence
behavior. In [7], we describe how the convergence of global

GMRES [17] can be improved by scaling the k-th column
of the block unknown X by e−iϕk . Spectral anlysis shows
that the angles ϕk can be chosen such that the spectrum
of the preconditioned operator is rotated and convergence
is improved, cf. [7]. In the present case of global IDR(s)
(Algorithm 1) combined with an inexact MSSS precondi-
tioner (19), we record a reduction to 60% of the CPU time
when spectral rotation is applied to the Nω = 10 case, cf.
Fig. 13.

5.3 A three-dimensional elastic wedge problem

The wedge problem with parameters presented in Table 3
is extended to a third spatial dimension, resulting in Ω =
[0, 600] × [0, 600] × [0, 1000] ⊂ R

3.

Experiment 7 (A 3D elastic wedge problem) A three-dim-
ensional, inhomogeneous elastic wedge problem with phys-
ical parameters specified in Table 3 is solved using the
SSOR-MSSS preconditioner described in Section 4.3.

Similar to Experiment 3, we consider a constant number
of 20 points per wavelength, and increase the wave fre-
quency from 2Hz to 4Hz while doubling the number of grid
points in each spatial direction (in Fig. 14 we exemplify
setup and numerical solution at 4 Hz). In Fig. 15 we observe
a factor of ∼ 4 which numerically indicates a complexity of

Fig. 14 Left: Parameter configuration of the elastic wedge problem for d = 3 according to Table 3. Right: Numerical solution of �(uz) at
f = 4Hz
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Fig. 15 Convergence history of different Krylov methods precondi-
tioned with the SSOR-MSSS preconditioner (23) for the 3D wedge
problem of Fig. 14. We indicate (approximate) slopes based on a linear
fit of the convergence curves

O(n5) for 3D problems. Moreover, we note that IDR out-
performs BiCGStab in terms of number of iterations. The
corresponding CPU times are presented in Table 7: From
the previous analysis, a factor of ∼ 32 for the overall CPU
times is expected since the number of unknowns in three
spatial directions is doubled (linear complexity yields a fac-
tor of 8), and Fig. 15 motivates an additional factor of 4 in
iteration numbers.

Table 7 Total CPU times in seconds corresponding to the conver-
gence plots in Fig. 15

frequency BiCGStab IDR(4) IDR(16)

f = 2 Hz 144.5 95.5 91.3

f = 4 Hz 4430.7 3536.4 3100.5

Note that BiCGStab at f = 4 Hz is stopped after 1,000 iterations, cf.
Fig. 15

6 Conclusions

We present an efficient hybrid method for the numerical
solution of the inhomogeneous time-harmonic elastic wave
equation. We use an incomplete block-LU factorization based
onMSSSmatrix computations as a preconditioner for IDR(s).
The presented framework further allows to incorporate mul-
tiple wave frequencies and multiple source locations in a
matrix equation setting (11). The suggested MSSS precon-
ditioner is conceptional different for 2D and 3D problems:

– We derive an MSSS permutation matrix (17) that trans-
forms the 2D elastic operator into block tridiagonal
level-2 MSSS matrix structure. This allows the appli-
cation of an approximate Schur factorization (20)-(21).
In order to achieve linear computational complexity,
the involved SSS operations (level-1) are approximated
using model order reduction techniques that limit the
off-diagonal rank.

– A generalization to 3D problems is not straight-forward
because no model order reduction algorithms for level-2
MSSS matrices are currently available [29]. We there-
fore suggest the SSOR splitting (23) where off-diagonal
blocks are treated as sparse matrices and diagonal
blocks resemble a sequence of 2D problems in level-2
MSSS structure.

We present a series of numerical experiments on a 2D
elastic wedge problem (Fig. 8) that prove theoretical con-
cepts. In particular, we have numerically shown that a small
off-diagonal rank r∗ ∼ 10 yields a preconditioner such that
IDR(s) converges within very few iterations (Experiment 1).

Further numerical experiments for 2D elastic problems
are performed on the realistic Marmousi-II data set. The
newly derived matrix equation approach shows computational
advantages when multiple right-hand sides (Experiment 5) and
multiple frequencies (Experiment 6) are solved simultaneously.

In Corollary 2, we prove that the MSSS preconditioner
has linear memory requirements for 2D and 3D problems.
The overall computational complexity is investigated for the
case of a constant number of wavelength, i.e., the num-
ber of grid points n in one spatial direction in linearly
increased with the wave frequency. Numerical experiments
show O(n3) complexity for 2D (Experiment 3) and O(n5)

complexity for 3D (Experiment 7) problems. The 3D pre-
conditioner solves a sequence of 2D problems and can be
parallelized in a straight forward way.
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Appendix

The appendix serves two purposes: We illustrate two basic
SSS matrix operations used at 1D level by means of an
example computation. At the same time, we complete Algo-
rithm 2. For simplicity, we consider the case n = 4 in
Definition 3,

A =

⎡

⎢⎢
⎣

D1 U1V
H
2 U1W2V

H
3 U1W2W3V

H
4

P2Q
H
1 D2 U2V

H
3 U2W3V

H
4

P3R2Q
H
1 P3Q

H
2 D3 U3V

H
4

P4R3R2Q
H
1 P4R3Q

H
2 P4Q

H
3 D4

⎤

⎥⎥
⎦ ,

and refer to standard literature for the more general case.

A Inversion of a lower/upper diagonal SSS matrix

A lower diagonal SSS matrix in generator form is given by

L = SSS(Ps, Rs, Qs, Ds, 0, 0, 0), 1 ≤ s ≤ n, (25)

and we denote L−1 via,

L−1 = SSS(Ps ,Rs ,Qs ,Ds , 0, 0, 0), 1 ≤ s ≤ n.

Clearly, for n = 4, the matrix (25) yields,

L =

⎡

⎢⎢
⎣

D1 0 0 0
P2Q

H
1 D2 0 0

P3R2Q
H
1 P3Q

H
2 D3 0

P4R3R2Q
H
1 P4R3Q

H
2 P4Q

H
3 D4

⎤

⎥⎥
⎦ ,

and we immediately conclude Ds = D−1
s , s = 1, ..., 4, for

all diagonal generators of L−1. In Lemma 1, we claim that
L−1 can be computed without increase of the off-diagonal
rank, and we illustrate this fact by computing the generators
at entry (2, 1):

P2Q
H
1 D1 + D2P2Q

H
1 = 0 ⇔ P2Q

H
1 ≡

(
−D−1

2 P2

) (
D−H

1 Q1

)H
.

The computation of U−1 in Algorithm 2 can be done
analogously, and we refer to [9, Lemma 2] for the complete
algorithm and the case n �= 4.

B Matrix-matrix multiplication in SSS structure

In the final step of Algorithm 2, we perform the matrix-
matrix multiplication A−1 = U−1 · L−1 with U−1 and L−1

given in upper/lower diagonal SSS format, cf. Appendix A.
In this section, we illustrate how to perform the SSS

matrix-matrix multiplication C = A · B when n = 4 and A

and B are given as,

A =

⎡

⎢⎢
⎣

DA
1 U1V

H
2 U1W2V

H
3 U1W2W3V

H
4

0 DA
2 U2V

H
3 U2W3V

H
4

0 0 DA
3 U3V

H
4

0 0 0 DA
4

⎤

⎥⎥
⎦ , and

B =

⎡

⎢⎢
⎣

DB
1 0 0 0

P2Q
H
1 DB

2 0 0
P3R2Q

H
1 P3Q

H
2 DB

3 0
P4R3R2Q

H
1 P4R3Q

H
2 P4Q

H
3 DB

4

⎤

⎥⎥
⎦ .

The SSS matrix C can then be computed by appropri-
ate block multiplications of the respective generators. For
example, the (3, 2) entry of the product yields,

C32 = 0 · DB
2 + DA

3 P3Q
H
2 + U3V

H
4 P4R3Q

H
2

=
(
DA

3 P3 + U3V
H
4 P4R3

)
QH

2 ≡ P C
3

(
QC

2

)H

The above computation illustrates on the one hand
that the off-diagonal rank does not increase due to the
lower/upper diagonal SSS structure of the matricesA andB.
On the other hand, we note that in general the off-diagonal
rank of C will increase due to the non-vanishing term
that contains the full-rank generator DB

2 . Matrix-matrix
multiplication in SSS form is presented in [9, Theorem 1].
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