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a b s t r a c t

Every day the number of devices interacting through telecommunications networks grows resulting
into an increase in the volume of data and information generated. At the same time, a growing number
of information security incidents is being observed including the occurrence of unauthorized accesses,
also named intrusions. As a consequence of these two developments, Information and Communications
services providers require automated processes to detect and solve such intrusions, and this should
done quickly in order to keep the related cybersecurity risks at acceptable levels. However, the
presence of large volumes of data negatively interferes with the performance of classifiers used in
intrusion detection tasks, which limits their applicability in practical cases. The research reported in
this paper focuses on proposing a novel feature selection algorithm for intrusion detection scenarios.
To this end, an extensive literature review was executed to first discover issues in the feature
selection algorithms reported. Based on the insights obtained, the new multi-measure feature selection
algorithm was designed that uses qualitative information provided by multiple feature selection
measures, and reduces the dimensionality of the training data set. The algorithm proposed was next
extensively tested using various data sets. It provides greater efficacy than other feature selection
algorithms used for intrusion detection purposes. We finalize by providing some ideas on future
research in order to further improve the algorithm.

© 2021 Elsevier B.V. All rights reserved.
1. Introduction

The proliferation of smart devices in the last decade brought
massive increase in the data streams generated by all kind of
uman activities and transmitted over the telecommunications
etworks [1]. According to a report about Internet of Things from
isco, almost 7 smart devices are expected to be connected to
he Internet by every person in the world during 2020 [2]. This
ncreases the possibilities for committing malicious activities,
specially intrusions in the telecommunications networks, which
s one of the industries that report most economic losses every
ear [3].
Recent studies show that global losses caused by cyber-attacks

an reach $6 trillion USD annually by 2021 [3]. Besides, compa-
ies take approximately 46 days, spending an average of $32,000
SD per day, to correct the consequences of a cyber-attack [4].

∗ Corresponding author.
E-mail addresses: vherrera@cenatav.co.cu (V. Herrera-Semenets),

bustio@inaoep.mx (L. Bustio-Martínez), rhernandez@cenatav.co.cu
R. Hernández-León), j.vandenberg@tudelft.nl (J. van den Berg).
ttps://doi.org/10.1016/j.knosys.2021.107264
950-7051/© 2021 Elsevier B.V. All rights reserved.
In this sense, many companies choose to have intrusion de-
tection systems that guarantee protection against the eventual
occurrence of an attack.

From the data classification perspective, the main goal of
building an Intrusion Detection System (IDS) is to build a clas-
sification model by applying a learning algorithm that learns the
model from a given, labeled data set (see Fig. 1) [5]. The model
learned can be used to predict, given a new input, the classifica-
tion class (the output of the model). It is important to notice that
the accuracy of the classification model not only depends on the
classifier used, but also on the quality of the training data.

In practice, the characteristics of an intrusion detection sce-
nario (such as the presence of redundant information and/or
noise, and the enormous amount of data generated) can neg-
atively affect the classifiers performance. This is why a pre-
processing stage is often used to obtain a better quality data set
in order to improve the performance of the classifier, measured in
terms of efficiency (given by spatial or temporal complexity) and
efficacy (given by accuracy) [6]. Considering the characteristics
of the intrusion detection scenarios, described above, the pre-
processing stage in the context of our research mainly focuses

https://doi.org/10.1016/j.knosys.2021.107264
http://www.elsevier.com/locate/knosys
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Fig. 1. General scheme for intrusions detection from the data classification perspective.
Fig. 2. Taxonomy of the main features selection measures.
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n a data reduction process [7]. The main goal of such process
s to obtain a reduced representation of the original data while
aintaining its statistical characteristics and integrity.
Feature selection is a pre-processing technique frequently

sed in intrusion detection tasks. However, one specific aspect of
hese feature selection algorithms usually negatively affects the
fficacy of the later classifiers; i.e., the use of a single measure
sually leads to a biased result of the classification process [8–10].
n other words, given the qualitative information that a measure
stimates, some features may be favored over others. This fact
ay lead to discarding features that are relevant in the data set
nd, if included, would improve the performance of the learned
lassifier.
Based on these observations, we decided to design and imple-

ent a new feature selection algorithm that uses the qualitative
nformation provided by different feature selection measures. The
roposed algorithm uses a heuristic for selecting the final feature
et based on relevant features for each measure.
The remainder of this paper is structured as follows. Related

orks are described in Section 2. The proposed algorithm is
ntroduced in Section 3. In Section 4, the experimental results
sing different intrusion detection data sets are discussed. Finally,
he obtained conclusions are outlined in Section 5.

. Related works

The training data sets used for intrusion detection tasks are
haracterized by having large number of instances and features
11]. Not all of these features contribute equally to explain the
nformation retained in the data. Thus, a process to determine
hich features contribute substantially to intrusion detection is
eeded.
Feature selection processes can be categorized in several ways

12], the most popular and used in the revised literature entail
wo categories [13]: (1) Filter and (2) Wrapper.

The features selection algorithms that follow the Filter ap-
proach use a heuristic that assesses the quality or robustness
of the feature subset obtained [14–16]. The main advantages of
2

the Filter approach are noise removal, data simplification and
the improvement in the performance of any learning method
used [13]. Besides, Filter-based approaches are capable of facing
high dimensional input data.

The Wrapper-based approaches use a learning method as a
black box and a statistical validation method for avoiding over-
fitting [17–19]. The criteria used for selecting the better fea-
tures subset is based on the efficacy achieved by the learning
method [17].

After reviewing the literature, it was concluded that the Filter
approach seems most promising. This is because the performance
of the Wrapper-based algorithms is greatly affected, in a negative
sense, when they deal with large data sets [13]. In addition, the
measures used by the Filter-based approaches for selecting the
best subset of features are often less expensive than computing
the efficacy of the learning process, which makes the Filter-based
approaches more efficient than the Wrapper ones. The simplicity
and low time complexity of the measures used by the Filter-based
algorithms make them more suitable for processing large data
sets [13].

In the revised literature we observed several measures for
feature selection. These measures can be categorized into: (1)
Entropy-based measures, (2) Statistical measures and (3)
Instances-based measures [20]. Fig. 2 shows a taxonomy of the
main feature selection measures considering the former cate-
gories.

The measures reviewed in this work assign a score to each
feature in the data set. Then, the features scores are sorted in
descending order, creating a feature ranking. In such ranking,
while higher is the score of a feature, more representative it is in
the data set. The kind of information estimated by each measure
is described below, from a qualitative point of view.

Information Gain (IG) depends on how much information is
vailable before knowing the value of the feature, and how
uch information is available after knowing the value of the

eature [21]. For instance, if the data set is defined by only one
lass, it is possible to know the class label without seeing any of
he feature value and IG = 0. On the other hand, if the classes
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to be predicted are represented in equal quantities in the data
set and the feature separates the data perfectly according to the
classes, then the value of IG = 1.

An extension of Information Gain is the Gain Ratio (GR) mea-
ure, which normalizes IG using as intrinsic value the entropy of a
iven feature a [21]). A drawback of the GR measure is that it can
elect features just because its intrinsic value is very low, favoring
eatures that have few different values in the data set.

Symmetric Uncertainty (SU) is another measure aimed at com-
ensating for the inherent bias of the IG (IG favors features that
ave many different values in the data set) by dividing it by the
um of the entropies of a given class C and feature a [21]. The
core assigned by the SU measure is normalized at [0, 1]. A score
ear 1 indicates a greater correlation between C and a. Similar to

GR measure, SU is biased towards the selection of features with
few values.

GR and SU measures eliminate a limitation of IG that con-
siders features with many different values, this elimination may
be useful in certain scenarios. An example of this is identifying
distinct customer profiles, which is often performed for offering
personalized attention and improving the new customer’s expe-
riences [22]. In this case, the feature ‘‘credit card number’’ will
obtain a high score using IG measure since this feature iden-
tifies unambiguously each customer. Nevertheless, this feature
does not offer any information that contributes to the specific
treatment of any customer profile and does not allows deciding
what treatment to give to a new customer. If this data set were
processed to detect malicious activities or attacks, the feature
‘‘credit card number’’ could indicate the origin of any fraudulent
action or the possible target of an attack; so, this indeed would
have valuable information that would be essential to take preven-
tive actions. Therefore, in intrusion detection scenarios, the use
of the IG measure allows to select features that provide useful
information for malicious activities detection.

Measures described so far were focused on estimating the
difference between the a priori and the a posteriori expected un-
certain using one feature. Nevertheless, there are other measures,
such as the Chi-Square statistic, which estimates the value of a
feature from the value of another feature [23]. The Chi-Square
statistic is a non-parametric statistical measure that computes
the correlation between the distribution of a feature and the
distribution of the class.

Besides the described measures, there exist others such as
Relief (Rf) and ReliefF (RfF) that estimate how well a feature
can differentiate similar instances from different classes [24]. The
ReliefF (RfF) measure is an extension of the Rf measure, and its
goal is to enhance the effectiveness of working on multi-classes
systems, which is a drawback of Relief, that is mainly oriented
to bi-classes problems. Also, RfF incorporates the KNN (k-nearest
neighbor) algorithm [25] for searching the nearest neighbors to
the instances in the training set, whether they are of the same or
different classes.

The previously explained measures have been used in the pre-
processing stage of intrusion detection systems [26,27]. Also, they
have been used as the starting point for several feature selection
algorithms reported for intrusion detection. We now continue
with describing the applied approaches and, after that, with pro-
viding some identified limitations of them, more specifically in
terms of reduced efficacy.

In [28], Anand et al. proposed a feature selection algorithm,
in which the IG measure is computed for the training set. After
creating the ranking, the feature with the higher score is selected.
Then the classification process is conducted using a rules-based
classifier [29]. Those instances that were miss-classified were
used to create a data subset using some clustering criteria. For
each subset created, this classifying process is repeated until each
instance is correctly classified.
 t

3

In [30], the IG measure is used for reducing the dimensionality
for malware detection in the Android OS. The authors select the
top-10 features in the IG-ranking, diminishing the computational
complexity for the classifying process. In [31], Sheen et al. also
were focused on improving the efficacy for malware detection in
Android through features selection. In their paper, the IG, CS and
Rf measures were used independently. Similar to [30], the top-
10 ranked features for each measure were selected. Experiments
conducted demonstrate that for malware detection in Android,
the subset of features selected using the Rf measure allows to
obtain the best efficacy during the classification process. A recent
approach for malware detection is presented by Wang et al.
in [32], where the CS measure is used for features reduction.
In this work, several features subsets were selected varying the
number of features retained in each subset. This fact allowed
to analyze how the performance of the classifiers behaves using
each subset of selected features.

The algorithm proposed in [9] is also based on the entropy for
feature selection in intrusion detection scenarios. In this case, for
each feature, its conditional entropy is calculated and then, it is
divided by the number of attacks in the data set. The obtained
result is considered as a weight that is assigned to each feature
and those features exceeding some threshold value are selected.

The preprocessing stage for intrusion detection tasks proposed
in [8] uses the IG measure for dimensionality reduction. The
features selected at this stage were those whose score exceeded
the threshold value of 0.4, defined by the authors.

The use of statistical measures for feature selection has been
also used in intrusion detection. The work of Thaseen and Ku-
mar [10] includes a pre-processing stage where its first step
is the data normalization, while the second (and last) step is
the feature selection. In their work, the CS measure is used
for discarding those features with a score value less than the
user-defined threshold value. Thaseen and Kumar also worked in
another approach [33] where the CS measure is applied without
any previously normalization step. In this case, the threshold
value is established in the mean value of all features. Features
with values higher than this threshold are selected and regarded
as the subset of the optimum features.

Algorithms based on the combination of several measures,
known as an ensemble, has been also used for intrusion detection.
n algorithm that follows this idea is presented by Li et al. [14],
here the scores obtained using the IG and CS measures are used

or selecting the subset of the final features. The idea followed
y Li et al. [14] is to intersect the top-6 scored features in each
easure.
Another ensemble-based approach is presented by Prati et al.

n [15], which uses 5 of the measures described before (IG, GR, SU,
S, and RfF). The presented algorithm, named Schwartz Sequential
ropping (SSD) consists of generating a new ranking from those
btained from the used measures. To do this, the position of
ach feature ai in the ranking is compared to the position of the
ther features, creating pairs of features (ai, aj). For each pair
reated, the number of positions of ai above of aj and vice-versa
s counted. The feature that has the highest number of positions
ver the other is considered the winner. Using this information,
directed graph is constructed were features are the nodes and
dges are weighted considering the number of positions. The
irection of the edge depends on the winner feature. If ai wins to
j, an edge is added from ai to aj. The graph obtained will always
ave at least one cycle or a single node that is not defeated by
thers. In this case, the node is positioned as first in the new
anking, remove it from the initial set and the graph is rebuilt
or the remaining features. It will be a unique winner in each
teration, and it will be added to the new ranking according to

he sequence in it appears. If there are cycles within the graph,
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the edges of the cycle whose weight has the lowest value are
eliminated.

An ensemble multi-filter feature selection algorithm (EMFFS)
s presented in [16]. This algorithm uses the CS, GR, IG and
fF measures. To select the most important features, the EMFFS
lgorithm selects a subset of features for each measure, which
s one-third of the features of each ranking generated, including
he features with the highest score. Then, a voting process is
erformed where those features that are in three or more subsets
re selected as the most representative.
Some issues were observed in the Filter-based algorithms ana-

lyzed in this section that could limit the efficacy of the classifiers.
This possible limitation in the classifiers will be tested in the
experiments described below. The observed issues are:

1. Most of the algorithms for features selection studied uses
only one of the measures described before. Additionally,
those algorithms that use more than one measure em-
ploy them independently, i.e., the results obtained with
one measure do not affect those obtained with another
measure. In this sense, the advantages that the combina-
tion of different feature selection measures can offer are
not exploited, since each measure can estimate different
qualitative information of features. This issue was observed
in the approaches presented in [8–10,26–28,31,33].

2. Most of the algorithms that use several measures do not
perform an analysis of the information that each mea-
sure provides. In some cases, the authors do not offer
any details, information or evidence for choosing the mea-
sures that compose their ensemble. This issue can be found
in [14–16].

3. Most of the revised algorithms use a predefined threshold
value for selecting the final subset of features. This thresh-
old value is established manually by the authors, and no
evidence is given about how the threshold is selected. This
issue is observed in [15,26,30–32].

Considering issue 1, the combination of several measures al-
lows to select different features, but all of them representative
of the data set. Regarding issue 2, an analysis of the information
provided by each measure could justify the fact that certain
features are favored by some measures and not by others. About
issue 3, in real problems, providing to the specialists a subset of
features automatically selected, not only makes their work more
affordable, but also contributes to build the classification model
more efficiently.

3. The new multi-measure feature selection algorithm

After reviewing the state-of-the-art and identifying the is-
sues that the Filters-based approaches entail, it is hypothesized
that a smart combination of several measures can lead to the
selection of the most representative features in the data set.
The analysis carried out in the previous section allowed us to
define two fundamental aspects that may improve the results of
ensemble-based algorithms. The first aspect consists of defining
the measures that are used in the feature selection algorithm.
For this, it is important to identify and combine measures that
estimate different qualitative information in the features. In this
way, we can deal with issues 1 and 2, described in the previous
section. The second aspect concerns the strategy to select the final
feature set. Using a strategy that allows us to automatically select
the relevant features from the data set will help us deal with issue
3, described in the previous section.

The taxonomy represented in Fig. 2 groups the most used fea-
ture selection measures into three groups: Entropy-based mea-
sures, Statistical-based measures, and Instance-based measures.
 i
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The algorithm proposed in this work uses a representative mea-
sure of each group. This is supported by the fact that each
group evaluates different information in the features. According
to the analysis performed in the previous section, IG is the
most widely used entropy-based measure. There are comparative
studies where IG and CS are reported as the most effective feature
selection measures for classification tasks [34]. From a conceptual
point of view, IG measures the amount of information that a
feature can provide to the process of determining whether an
instance belongs to one class or another.

CS is a non-parametric statistical measure that estimates the
correlation between the distribution of a feature and the distribu-
tion of the class. Conceptually, it can be said that CS measures the
degree of dependence of a feature to its class. Its high efficiency
contributes to its practical application in intrusion detection sce-
narios, being the most used measure of those analyzed in the
previous section.

Finally, from the group of Instance-based measures, RfF is
better suited than Rf to intrusion detection scenarios. The main
cause is due to the fact that the Rf is focused to binary clas-
sification problems, while RfF is better suited for multi-class
problems, which is very common in intrusion detection scenarios.
Conceptually, RfF measures how well a feature can differentiate
instances that belongs to different classes, looking for the closest
neighbors of the same and different classes.

Based on the conceptual information estimated by the IG, CS
and RfF measures, they were used in the Multi Measure Feature
Selection Algorithm (MMFSA) proposed in this work, which is
described in the Algorithm 1.

Algorithm 1: MMFSA(D)
Input: D: Data set
Output: Ď: Reduced data set

1 Ǎ, ǍRfF , ǍCS, ǍIG ← ∅ // Features set
2 processList← [] // List of processes that will be executed in
parallel

3 processList.Add(FeatureSelector(RfF ,D))
4 processList.Add(FeatureSelector(CS,D))
5 processList.Add(FeatureSelector(IG,D))

6 foreach process in processList do
7 process.Start() // Each feature selection process is started
8 end
9 foreach process in processList do
0 process.Join() // When each feature selection process

finished, the results are joined.
1 if process.Measure() == RfF then ǍRfF ← process.Result()
2 else if process.Measure() == CS then ǍCS ←

process.Result()
3 else if process.Measure() == IG then ǍIG ←

process.Result()
4 end
5 Ǎ← ǍRfF ∪ ǍCS ∪ ǍIG

6 Ď← Reduce(D, Ǎ)

7 return Ď

MMFSA receives a data set D as input to reduce its dimension-
lity. In order to not affect the efficiency of MMFSA, the parallel
omputation of the three selected measures was performed, ap-
lying the principle of task parallelism [35]. This process consists
f assigning a task to each processor, i.e., a specific measure of
hose selected, in such a way that each processor carries out
ts own sequence of operations. This procedure provides greater
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Fig. 3. Task parallelism exploited in MMFSA.

fficiency than running each measure sequentially. Fig. 3 depicts
his idea.

The Algorithm 2 performs the features selection process con-
idering a feature selection measure M and a data set D. First,
he scores assigned by M to each feature in D are computed. As
escribed in the previous section, a measure M assigns a score
o each feature in the data set, therefore, for a measure M a set
f scores PM is obtained (line 1 in Algorithm 2). Next, the mean

mM of the scores assigned by M is computed (line 3 in Algorithm
). Following, the scores values in PM are traversed selecting those
eatures whose score ma > mM (lines 4–8 in Algorithm 2). Finally,
the set of selected features ǍM are returned for M (line 9 in
Algorithm 2)

Algorithm 2: FeatureSelector(M,D)
Input: M: Feature selection measure used for determining the

score of each feature, D: Data set
Output: ǍM : Set of features selected by M

1 PM ← Scores(M,D) // Returns the scores assigned by M to
each feature in D.

2 ǍM ← ∅

3 mM ← Mean-Score(PM )
4 foreach ma ∈ PM do
5 if ma > mM then
6 ǍM ← ǍM ∪ {a}
7 end
8 end
9 return ǍM

As it is described in lines 3–5 of Algorithm 1, the
eatureSelector(M,D) algorithm is added to the processes list for
arallel execution of each measure (lines 6–8 in Algorithm 1).
ollowing, Algorithm 1 waits until each process finished (lines
–14 in Algorithm 1), where a set of features are selected by each
easure (lines 11–13 in Algorithm 1). Next, an union operation

s performed among the features set selected by each measure,
btaining the final set Ǎ (line 15 in Algorithm 1). Finally, the

reduced data set Ď is created as a result of representing D with
the features in Ǎ (line 16 in Algorithm 1).

Fig. 4 shows the processing scheme proposed for obtaining
the reduced data set Ď. First, the three measures are executed
in parallel on the data set D. Once the representative features for
each measure have been selected, the union of these features is
performed, obtaining the final set of features Ǎ. Next, the data set
D is reduced using the features selected in Ǎ. As a result of these
operations, a reduced data set Ď is obtained.

4. Experiments

To evaluate the proposed algorithm, several experiments were
carried out using classifiers from different families, which have
been traditionally used in intrusion detection tasks (see Table 1)
[36,37].

The experiments were conducted on a PC equipped with a
2.5 GHz Intel Quad-Core processor, 4 GB of RAM memory running
5

Table 1
Classifiers used for validating the feature selection algorithm (FFMSA) proposed
Classifier Family

Classification and Regression Trees (CART) [38] Tree-basedC4.5 [39]

K-Nearest Neighbors (KNN) [25] Lazy

Support Vector Machine (SVM) [40] Functions-based

Nearest Neighbor with Generalization (NNge) [41]

Rules-based

OneR [42]
PART [43]
RIpple-DOwn Rule (RIDOR) [44]
Decision-Table (DT) [45]
Conjunctive Rule (CR) [46]

Ubuntu 18.04 OS. The data sets used for evaluating MMFSA is
described in the next section.

4.1. Selected data sets

The information processed in the scenarios addressed in this
work usually contains sensitive user data. Therefore, working
with private information of the users implies that the data has
a certain level of confidentiality that does not allow it to be
public. In this sense, it is a complex task to obtain data sets
from intrusion detection scenarios. However, it has been possible
to access some of the most widely used data sets, which are
described below.

KDD’99 [47] is considered as a reference data set and has been
widely used for intrusion detection tasks [48]. This data set is
composed of a wide variety of simulated intrusions in a military
network. The training data set is composed of 22 different types
of intrusions, plus the ‘‘normal’’ class, while the test data set
contains 37 intrusion types, plus the ‘‘normal’’ class. All these
intrusions are associated with 4 categories:

• Probe: Surveillance and others probes.
• DoS: Denial of service.
• U2R: Unauthorized access to local superuser privileges

(root).
• R2L: Unauthorized access from a remote machine.

Similarly to other reviewed works, all the instances in the
KDD’99 data set were classified into two major classes: ‘‘attack’’
and ‘‘normal’’. In consequence, the number of instances that
composes the training set is 494,021, while the test set contains
311,029 instances. Each instance is composed of 41 features, of
which 9 are discrete and 32 are continuous.

From the statistical analysis of the KDD’99 data set, a new
one named NSL-KDD [49] was proposed. The NSL-KDD training
set consists of 125,973 instances, while the test set is made up
of 22,544 instances. Similarly to KDD’99, the NSL-KDD instances
consist of 41 features, 9 discrete and 32 continuous. Each instance
can be labeled ‘‘anomaly" or ‘‘normal’’.

Another popular data set is the CDMC2012 [50], which was
created using several honeypots from five different networks.
Among the instances of CDMC2012, there are some labeled as
‘‘unknown’’ which were discarded retaining only those ones la-
beled as ‘‘attack" or ‘‘normal". Without loss of generality, this data
set was divided into two sets, a training set containing 48,357
instances and a test set with 80,000. Each instance is represented
by 14 features, including the class.

The CDMC2013 [51] data set was created from a real intrusion
detection system. Similarly to CDMC2012 it is necessary to divide
the data into 2 sets. Without loss of generality, CDMC2013 was
divided into a training set which contains 40,000 instances and
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the test set, with 37,959 instances. Each instance is composed of
7 numeric features, plus the class.

The presented data sets have been used in international com-
petitions for evaluating the performance of several classifiers in
intrusion detection tasks. The experimental results were carried
out as follows. For each data set, its training set was reduced using
a feature selection algorithm. The reduced data set is then used by
a classifier to build its classification model, which is evaluated on
the test set. The achieved results on such data sets are presented
in the next section.

4.2. Experimental results

To evaluate the quality of the reduced data set obtained by
MMFSA, a comparison with algorithms using the feature selection
measures individually was performed. Also, the algorithms pro-
posed in [14–16] (which are based on ensemble strategies) were
used as baseline for comparison purposes. The comparison was
performed considering the efficacy achieved by the aforemen-
tioned classifiers, employing the reduced data set obtained by
each feature selection algorithm for training. For this, the accuracy
(Acc) measure was used, which is computed according to Eq. (1),
where T+, T−, F+ and F− represent true positives, true negatives,
false positives, and false negatives respectively.

Acc =
T+ + T−

T+ + T− + F+ + F−
∗ 100. (1)

In addition, an analysis of the effectiveness provided by the
feature selection algorithms to the results achieved in each data
set is included. The effectiveness is given by the false positive rate
(FPR) and the false negative rate (FNR) quality measures, defined
in Eq. (2) and Eq. (3) respectively.

FPR =
F+

T− + F+
∗ 100. (2)

FNR =
F−

T+ + F−
∗ 100. (3)

Those algorithms using the selection measures individually as
well as the algorithm proposed in [15], need a predefined number
of features l. To make a fair comparison, it was established that
l =| Ǎ |, where Ǎ is the set of automatically selected features
whose cardinality provides the best accuracy results to algo-
rithms that require a predefined value of l. For this, an experiment
as conducted with the aim of evaluating the efficacy obtained
6

with these algorithms using the values l = 6, l = 13 and l = 17,
obtained by [14,16] and MMFSA respectively. Table 2 shows that
the efficacy achieved by the classifiers using the reduced data sets
with l = 17 exceeds the efficacy achieved with l = 6 and l = 13.

In this sense, for the KDD’99 training set, the value of l = 17
selected by MMFSA) was used to select the most representa-
ive features of: (1) each measure used individually and (2) the
lgorithm proposed in [15]. The algorithm presented in [14] se-
ected 6 features, while the approach reported in [16] kept 13
eatures. The results achieved by each classifier (concerning the
fficacy) using the different feature selection strategies are shown
n Table 3. From these results, it is noticed that the efficacy
chieved by the classifiers is higher when MMFSA is used as
eatures selector. An exception is the CR classifier, but in this case
he efficacy obtained using MMFSA is the same as that achieved
sing IG and CS. On the other hand, the C4.5 classifier obtains
he best result using the approach reported in [15], while the
IDOR classifier obtains its higher efficacy using GR. Nevertheless,
he other classifiers achieve their best efficacy using MMFSA.
rom this experiment it can be concluded that MMFSA allows an
mprovement in classification accuracy by selecting the relatively
est features subset in the KDD’99 data set.
Considering the same analysis and experiment carried out

reviously, the efficacy achieved by the classifiers using the NSL-
DD reduced data set with l = 19 (which is obtained by MMFSA)
as higher than the reported with l = 6 and l = 14, obtained

using [14,16] respectively (see Table 4). When the NSL-KDD data
set is reduced using the IG and CS, all the evaluated classifiers
obtain the same results since the reduced data sets are the same
for the l value evaluated. Similar behavior is observed for the
CDMC2012 data set (see Table 6).

Table 5 shows the efficacy achieved by classifiers using dif-
ferent features selection algorithms on the NSL-KDD data set.
Considering Table 4, the number of 19 features was selected for
the algorithms that uses single feature selection measure and
for the approach reported in [15]. In NSL-KDD data set, when
CART, NNge and OneR classifiers are applied, a tie is reached with
the best result using different feature selection algorithms, being
MMFSA one of them. Considering the C4.5 classifier, it obtains its
best efficacy using the approach proposed in [15], outperforming
MMFSA by a slight difference. The same behavior is reported with
the CR classifier on the NLS-KDD data set when it is reduced using
GR. The remaining 5 classifiers obtains their best efficacy when
MMFSA is used as a data reduction strategy. In general, MMFSA
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Table 2
Efficacy achieved with algorithms that require a predefined number of features using KDD’99 data set.
Algorithm CART C4.5 KNN NNge OneR PART RIDOR SVM DT CR

CS (l = 6) 90.90 90.11 90.58 90.69 88.69 91.16 91.59 89.77 91.87 89.94
CS (l = 13) 92.19 91.78 91.92 91.58 90.15 92.88 92.37 90.93 93.09 90.39
CS (l = 17) 93.42 92.49 92.63 92.76 90.70 93.27 93.01 91.62 93.90 91.17
GR (l = 6) 91.29 91.03 90.81 90.84 88.32 90.27 91.50 89.85 91.92 89.42
GR (l = 13) 92.82 92.15 92.05 92.74 89.84 92.00 92.83 90.88 93.03 90.22
GR (l = 17) 93.56 93.02 92.70 93.26 90.76 92.58 93.52 91.69 93.87 91.17
IG (l = 6) 90.90 90.11 90.58 90.69 88.69 91.16 91.59 89.77 91.87 89.94
IG (l = 13) 92.19 91.78 91.92 91.58 90.15 92.88 92.37 90.93 93.09 90.39
IG (l = 17) 93.36 92.43 92.59 92.68 90.79 93.30 92.77 91.73 93.87 91.03
RfF (l = 6) 90.49 90.36 90.48 90.61 88.81 90.24 90.63 89.06 91.39 88.77
RfF (l = 13) 91.34 91.31 91.38 91.43 90.11 91.36 91.09 90.96 92.51 89.91
RfF (l = 17) 92.31 92.36 92.57 93.11 90.83 92.59 92.25 91.97 93.50 90.76
[15] (l = 6) 90.82 90.37 90.52 90.59 88.64 91.42 91.48 89.91 91.44 89.34
[15] (l = 13) 92.09 91.98 91.73 91.68 89.92 92.83 92.25 91.12 93.03 89.77
[15] (l = 17) 93.50 93.12 92.41 92.84 90.76 93.18 93.30 91.73 93.87 91.11
Table 3
Efficacy achieved using the KDD’99 data set.
Algorithm CART C4.5 KNN NNge OneR PART RIDOR SVM DT CR

CS (l = 17) 93.42 92.49 92.63 92.76 90.70 93.27 93.01 91.62 93.90 91.17
GR (l = 17) 93.56 93.02 92.70 93.26 90.76 92.58 93.52 91.69 93.87 91.17
IG (l = 17) 93.36 92.43 92.59 92.68 90.79 93.30 92.77 91.73 93.87 91.03
RfF (l = 17) 92.31 92.36 92.57 93.11 90.83 92.59 92.25 91.97 93.50 90.76
[14] 90.90 90.11 90.58 90.69 88.69 91.16 91.59 89.77 91.87 89.94
[15] (l = 17) 93.50 93.12 92.41 92.84 90.76 93.18 93.30 91.73 93.87 91.11
[16] 93.18 92.41 92.57 92.69 90.70 92.88 93.37 91.61 93.87 91.17
MMFSA 93.88 92.53 92.76 93.34 90.88 93.38 93.39 91.99 93.99 91.17
Table 4
Efficacy achieved with algorithms that require a predefined number of features using NSL-KDD data set.
Algorithm CART C4.5 KNN NNge OneR PART RIDOR SVM DT CR

CS, IG (l = 6) 73.28 64.92 63.72 71.48 65.20 63.96 63.23 62.08 60.49 73.53
CS, IG (l = 14) 79.19 73.23 72.84 79.37 74.61 73.97 72.89 70.86 69.11 80.59
CS, IG (l = 19) 82.13 78.77 77.61 82.85 81.38 79.62 78.11 74.31 72.60 83.94
GR (l = 6) 71.76 69.82 68.18 69.98 70.12 67.89 70.01 65.23 62.24 73.35
GR (l = 14) 78.48 74.29 72.55 75.03 75.47 73.06 75.31 70.95 68.41 79.92
GR (l = 19) 81.11 78.87 77.01 81.10 81.38 78.13 80.07 75.10 72.60 84.04
RfF (l = 6) 71.61 64.49 65.37 66.06 65.13 72.12 66.90 64.89 63.82 57.54
RfF (l = 14) 77.54 73.05 73.28 73.74 72.98 77.93 73.72 72.63 71.08 62.44
RfF (l = 19) 79.29 76.02 77.82 78.28 75.50 80.81 76.81 75.16 73.19 66.88
[15] (l = 6) 72.61 66.86 66.22 72.52 72.08 71.82 72.41 66.07 63.39 73.60
[15] (l = 14) 78.13 74.75 73.52 77.93 76.89 76.35 77.00 72.26 70.92 80.04
[15] (l = 19) 81.06 78.92 77.75 81.50 80.97 79.94 81.17 75.10 73.07 83.88
Table 5
Efficacy achieved using the NSL-KDD data set.
Algorithm CART C4.5 KNN NNge OneR PART RIDOR SVM DT CR

CS (l = 19) 82.13 78.77 77.61 82.85 81.38 79.62 78.11 74.31 72.60 83.94
GR (l = 19) 81.11 78.87 77.01 81.10 81.38 78.13 80.07 75.10 72.60 84.04
IG (l = 19) 82.13 78.77 77.61 82.85 81.38 79.62 78.11 74.31 72.60 83.94
RfF (l = 19) 79.29 76.02 77.82 78.28 75.50 80.81 76.81 75.16 73.19 66.88
[14] 73.28 64.92 63.72 71.48 65.20 63.96 63.23 62.08 60.49 73.53
[15] (l = 19) 81.06 78.92 77.75 81.50 80.97 79.94 81.17 75.10 73.07 83.88
[16] 80.91 78.30 78.13 79.06 81.38 73.94 81.40 75.94 73.78 83.94
MMFSA 82.13 78.81 78.21 82.85 81.38 80.92 81.51 75.95 73.88 83.98
contributes to obtain a better efficacy than the other strategies
evaluated on the NSL-KDD data set.

As it is shown in Table 6, the efficacy achieved by the classi-
iers using the reduced CDMC2012 data set with l = 9 (this value
as obtained by MMFSA) is higher than the efficacy achieved by
he same classifiers when the data set CDMC2012 was reduced
ith l = 3 and l = 6, as it is reported by [14,16] respec-
ively. Based on the above, both the individual measures and the

lgorithm proposed in [15] used the value of l = 9 (see Table 7).

7

Table 7 shows the efficacy achieved using CDMC2012 data
set. OneR, CR and PART classifiers achieve their best efficacy
with different feature selection strategies, being MMFSA one of
them. The KNN classifier obtains its best accuracy result using the
CDMC2012 data set reduced by GR. The remaining 6 classifiers
report the highest efficacy using MMFSA as a data reduction
strategy. In general, the classifiers obtain higher efficacy when
they use the training data set reduced by MMFSA.

In the case of the CDMC2013 data set, the same efficacy is
reported using CS, IG, GR and the approach reported in [15], both
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Table 6
Efficacy achieved with algorithms that require a predefined number of features using CDMC2012 data set.
Algorithm CART C4.5 KNN NNge OneR PART RIDOR SVM DT CR

CS, IG (l = 3) 97.37 97.21 96.61 96.14 95.98 97.11 96.84 95.75 95.62 95.98
CS, IG (l = 6) 97.92 98.04 97.17 97.54 97.40 98.29 97.95 97.40 97.24 97.08
CS, IG (l = 9) 99.17 99.12 98.76 98.91 98.52 99.20 99.12 98.38 98.71 98.52
GR (l = 3) 96.87 96.42 95.17 94.79 95.08 96.91 96.91 94.58 95.34 95.74
GR (l = 6) 98.11 97.99 96.83 97.08 97.61 97.76 97.88 96.73 97.23 96.97
GR (l = 9) 99.04 99.08 98.94 98.89 98.52 99.06 99.08 98.07 98.64 98.52
RfF (l = 3) 94.31 94.88 93.86 94.17 93.29 94.52 94.52 92.85 93.56 93.29
RfF (l = 6) 97.24 97.42 96.92 97.01 96.65 97.10 97.10 96.09 96.77 96.65
RfF (l = 9) 99.04 99.11 98.91 99.04 98.52 99.06 99.06 98.42 98.97 98.52
[15] (l = 3) 95.76 96.06 94.37 94.05 93.63 94.96 94.96 93.33 93.57 93.14
[15] (l = 6) 97.33 97.54 95.93 95.61 95.12 97.18 97.18 95.22 95.64 95.70
[15] (l = 9) 99.06 99.09 98.81 98.95 98.50 99.08 99.08 98.20 98.84 98.49
Table 7
Efficacy achieved using CDMC2012 data set.
Algorithm CART C4.5 KNN NNge OneR PART RIDOR SVM DT CR

CS (l = 9) 99.17 99.12 98.76 98.91 98.52 99.20 99.12 98.38 98.71 98.52
GR (l = 9) 99.04 99.08 98.94 98.89 98.52 99.06 99.08 98.07 98.64 98.52
IG (l = 9) 99.17 99.12 98.76 98.91 98.52 99.20 99.12 98.38 98.71 98.52
RfF (l = 9) 99.04 99.11 98.91 99.04 98.52 99.06 99.06 98.42 98.97 98.52
[14] 97.92 98.04 97.17 97.54 97.40 98.29 97.95 97.40 97.24 97.08
[15] (l = 9) 99.06 99.09 98.81 98.95 98.50 99.08 99.08 98.20 98.84 98.49
[16] 97.37 97.21 96.61 96.14 95.98 97.11 96.84 95.75 95.62 95.98
MMFSA 99.20 99.13 98.92 99.05 98.52 99.20 99.13 98.43 99.00 98.52
for l = 4 and for l = 6 (see Table 8). Considering RfF, only the
NN classifier is affected when the data set is reduced with l = 4

instead of l = 6. In this sense, the result reported by RfF (l = 6)
as used in the comparison shown in Table 9.
The CDMC2013 data set is composed of 7 features, and it is

onsidered a small data set. Because of this, different features
election algorithms select the same features. In such way, the
lgorithm proposed in [15], CS, GR, IG and MMFSA selected the
ame 4 features, whereby, the values shown in Table 9 are the
ame. The approach proposed in [14] and RfF selected 6 features,
hile the approach proposed in [16] selected only 3 features. The
lassifiers reach their best efficacy on CDMC2013 data set using
ach one of the feature selection algorithms evaluated, except the
lgorithm proposed in [16].
The Table 10 shows the overall effectiveness achieved with

he feature selection algorithms evaluated on different data sets.
or this, the overall FPR (OFPRD) and the overall FNR (OFNRD)
rovided by each feature selection algorithm for a given data set
are reported. OFPRD and OFNRD are defined in Eqs. (4) and (5)

espectively, where K is the set of classifiers used, FPRi,D/FNRi,D
epresents the FPR/FNR achieved by ith classifier in D.

FPRD =

∑
|K |
i FPRi,D

| K |
. (4)

OFNRD =

∑
|K |
i FNRi,D

| K |
. (5)

The MMFSA algorithm provided the best results, in terms of
effectiveness, in three different data sets (KDD’99, NSL-KDD and
CDMC2012). In the case of the CDMC2013 data set, the best
false positive rate is reported by RfF and [14], with a minimal
difference regarding to that reported by CS, GR, IG, [15] and
MMFSA. These latter algorithms reported the best false positive
rate in the CDMC2013 data set.

As can be seen in Table 10, the worst effectiveness, specifically
in terms of OFPR, is reported in the NSL-KDD data set. Although
the objective of this work is not to obtain the best classifier, but
rather the best quality reduced data set, we consider that a more
in-depth analysis regarding the distribution by classes of interest
could lead to better results. The foregoing is raised considering
 l

8

that the imbalanced data sets are common in intrusion detection
scenarios [52–54]. The imbalanced data set problem occurs when
the size of normal traffic exceeds that of attack traffic. This
fact means that the instances belonging to the attack class are
often ignored as they are poorly represented in the training set
compared to the normal class. In future works, this problem could
be addressed from the perspective of the use of cost-sensitive
classifiers, which contribute to a better result on imbalanced data
sets.

From the experiments conducted it can be noticed that the
difference in the efficacy obtained by the classifiers is apparently
minimal, however in intrusion detection scenarios, this difference
can represent a high number of instances. In the KDD’99 data set a
difference of 0.05 represents 156 incorrectly classified instances.
Such number of instances, in a real scenario and depending on
the type of attack, could be increased [55]. A typical example is
the DoS-type attacks using ICMP packets. In this type of attack,
a large number of ICMP packets are sent to the victim. Its effect
can be multiplied through the use of poorly configured networks
on the Internet. This happens when an attacker spoofs the return
address of the ICMP packet from the command ping,1 replacing it
with the victim’s address and sending it to the broadcast address
of a network. When the servers on such network respond to the
ping request, all responses are directed to the victim, amplifying
the attack. In this sense, any improvement achieved in terms of
efficacy has a high impact in the detection and prevention of
possible attacks.

The results reported by [14] differ strongly from those achieved
by the other feature selection algorithms. This may be condi-
tioned by the limitation of its selection strategy, which restricts
the maximum number of features to be selected to 6. Such
restriction can lead to a drastic reduction in the data set dimen-
sionality, and therefore, the loss of useful information, affecting
the classification process.

The approach proposed in [16] selected fewer features than
MMFSA on most of data sets. However, none of the classifiers

1 Ping is a diagnostic tool that allows verifying the connection status of a
ocal host with at least one remote computer on a TCP/IP network.



V. Herrera-Semenets, L. Bustio-Martínez, R. Hernández-León et al. Knowledge-Based Systems 227 (2021) 107264

o
b
d
a
f
f
f
t
e
p
s

a
c
e
g
a
e
s
p
t
i
b
c
o

t
t
a
c

Table 8
Efficacy achieved with algorithms that require a predefined number of features using CDMC2013 data set.
Algorithm CART C4.5 KNN NNge OneR PART RIDOR SVM DT CR

CS, IG, GR, [15] (l = 3) 98.97 99.06 99.83 98.97 91.27 99.83 99.08 98.74 99.08 86.24
CS, IG, GR, [15] (l = 4) 99.86 99.83 99.83 99.86 92.15 99.83 99.86 99.74 99.86 87.57
CS, IG, GR, [15] (l = 6) 99.86 99.83 99.83 99.86 92.15 99.83 99.86 99.74 99.86 87.57
RfF (l = 3) 98.74 99.02 99.24 98.74 91.96 98.74 98.68 99.05 98.98 86.33
RfF (l = 4) 99.86 99.83 99.77 99.86 92.15 99.83 99.86 99.74 99.86 87.57
RfF (l = 6) 99.86 99.83 99.83 99.86 92.15 99.83 99.86 99.74 99.86 87.57
Table 9
Efficacy achieved using CDMC2013 data set.
Algorithm CART C4.5 KNN NNge OneR PART RIDOR SVM DT CR

CS, IG, GR, [15], MMFSA (l = 4) 99.86 99.83 99.83 99.86 92.15 99.83 99.86 99.74 99.86 87.57RfF, [14] (l = 6)
[16] 98.97 99.06 99.83 98.97 91.27 99.83 99.08 98.74 99.08 86.24
Table 10
Overall effectiveness achieved using different data sets.
Quality measures CS GR IG RfF [14] [15] [16] MMFSA

OFNRKDD′99 8.86 8.72 8.91 9.18 11.17 8.76 8.92 8.58
OFPRKDD′99 7.18 7.07 7.22 7.44 9.06 7.1 7.23 6.95
OFNRNSL−KDD 14.59 14.73 14.59 16.8 23.64 14.45 14.91 14.01
OFPRNSL−KDD 25.62 25.83 25.62 29.49 41.51 25.37 26.18 24.60
OFNRCDMC2012 0.99 1.05 0.99 0.98 2.07 1.02 3.05 0.93
OFPRCDMC2012 1.35 1.41 1.35 1.32 2.79 1.38 4.10 1.26
OFNRCDMC2013 2.14 2.14 2.14 2.22 2.22 2.14 2.89 2.14
OFPRCDMC2013 2.17 2.17 2.17 2.16 2.16 2.17 2.9 2.17
using the approach reported in [16] obtained a higher efficacy
than that achieved using MMFSA. An interesting fact is that the
approach reported in [16] combines 4 features selection measures
(CS, GR, IG and RfF), where 3 of them are included in MMFSA
(CS, IG and RfF). The reason why MMFSA obtains better efficacy
than the other ensemble-based algorithms, considered in this
work, is because MMFSA is oriented to preserve the features
that are relevant (those features above the PM mean) for each
f the measures that it combines. To accomplish this, MMFSA is
ased on the fact that each features selection measure estimates
ifferent information in the data, so the degree of relevance of
feature may differ between the measures. For this reason, the

inal set of selected features may include those that were relevant
or only one measure; contrary to the [16] algorithm where the
inal set is made up of features selected as relevant for at least
hree measures, without considering what kind of information
ach measure estimates. This can lead to discard features that
rovide useful information, but were selected as relevant by a
ingle measure.
In some of the evaluated data sets, the GR measure and the

pproach reported in [15] were more valuable than MMFSA for
ertain classifiers. For example, the C4.5 classifier obtain its best
fficacy, in the KDD’99 and NSL-KDD data sets, using the al-
orithm reported in [15]. On the other hand, the GR measure
llows to the RIDOR, CR and KNN classifiers to achieve their best
fficacy processing the KDD’99, NSL-KDD and CDMC2012 data
ets respectively. Nevertheless, in all other cases, the classifiers
erformed at their best using the MMFSA algorithm. In this sense,
he experimental results show that the MMFSA algorithm makes
t possible to achieve greater efficacy than the measures it com-
ines, when they are used individually. MMFSA also allows to the
lassifiers achieve higher accuracy than that achieved with the
ther ensemble-based algorithms evaluated in this work.
The results obtained by the evaluated algorithms show that

he issues observed, and discussed in Section 2, negatively affect
he efficacy of the classifiers. The main evidence supporting the
bove statement is that MMFSA deals with such issues and makes
lassifiers more efficacious.
9

5. Conclusions

This work introduced a feature selection algorithm based on
the combination of three measures, where each measure esti-
mates different qualitative information in the features. Experi-
mental evidence has been found that the observed issues in the
feature selection algorithms entails a limitation in the classifiers,
specifically in the efficacy achieved. The experiments conducted
show that MMFSA outperforms, in terms of the classifier effi-
cacy, each of the measures that it combines when they are used
individually and the rest of the feature selection algorithms com-
pared. This may be explained by the fact that the observed issues
are dealt by the proposed algorithm. That is, MMFSA uses sev-
eral feature selection measures, that, apparently, helps to select
the more relevant features. In addition, the proposed algorithm
entails a step to select the best features without manually pre-
defining a number x of features, which is not present in most of
the algorithms analyzed.

However, such step does not have a theoretical foundation. In
this sense, we drag a problem present in many proposals that
require the choice of a random parameter value. The optimal
parameter value could have been determined by testing several
thresholds, either according to the score achieved by each mea-
sure or the number of features to select. However, this could
lead to overfitting having as consequence a resulting classification
model with less predictive power. We consider that remaining
limitation could be studied in depth in future work.

Additional future work will be focused on evaluating MMFSA
in other application domains such as wireless sensor networks,
fraud detection in telephony and banking transactions, to further
test its robustness. Furthermore, we intend to compare MMFSA
with other feature selection algorithms that follow a different
approach from the one addressed in this work and have been
applied in these scenarios [56].
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