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Abstract

For trajectory prediction within autonomous vehicle planning and control, conditional varia-
tional autoencoders (CVAEs) have shown promise in accurate and diverse modeling of agent
behaviors. Besides accuracy, explainability is also crucial for the safety and acceptance of
learning-based autonomous systems, especially in autonomous driving. However, the latent
distributions learned by CVAE models are often implicit and thus possess low explainability.
To address this, we propose a semi-supervised generative modeling framework, PrefCVAE,
which utilizes partially and weakly labelled preference pairs to imbue the CVAE’s latent
representation with semantic meaning. This approach enables the system to estimate mea-
surable attributes of the agents, and to generate manipulable predictions under the CVAE
framework. Results show that incorporating our preference loss allows a CVAE-based model
to make conditional predictions using the semantic factor of prediction average velocity. Our
augmented framework also does not significantly degrade the baseline accuracy of prediction.
Additionally, we show that the latent values learned with PrefCVAE better represent the
semantic information contained in the data. Finally, we discuss the potential of this loss
design to extend to other machine learning applications beyond trajectory prediction, as well
as essential tricks for adaptation of human labeling. We hope that our empirical study of-
fers the broader representation learning community a fresh perspective on inductive bias for
disentangled and explainable latent representations in deep generative models. Specifically,
we demonstrate that preference pair supervision, a simple and cost-effective approach, can
effectively aid in learning semantic meanings for sampling-based generative models like the
CVAE.
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Chapter 1

Introduction

Trajectory prediction involves forecasting the behaviors of nearby road participants based on
their recent motions, a critical component of ensuring safe planning in autonomous driving
systems. This task must account for complex and multimodal traffic interactions [1], [2]. Deep
generative models, including variational autoencoders (VAEs) [3], [4], generative adversarial
networks (GANs) [5], [6], and diffusion models [7], [8], are commonly used due to their ability
to generate accurate and diverse prediction in complex scenarios. Among these, conditional
VAEs (CVAEs) stand out in modeling the causal relationship between the future trajectory,
history observation, and the latent generative factors underlying a dataset [9].

Despite their inherent ability to model causality, CVAEs often lack explainability because
they learn implicit latent representations. Most research treats trajectory prediction as a
standard regression task, focusing on reconstructing and predicting trajectories (Figure 1-
1). Typically, the goal is to predict the most likely trajectory based on behavioral patterns
in the dataset, represented by an implicit latent code zi. However, even perfect test set
prediction accuracy is not the ultimate objective of prediction research. Instead, prediction
ultimately serves the purpose of safe planning [10]. For instance, if a vehicle follows an
unseen pattern not present in the dataset, a non-explanatory model trained on limited data
may fail to predict accurately, potentially leading to accidents. This challenge underscores the
need for explanatory generative trajectory prediction, which aims to learn the key semantic
generative factors underlying the data and base predictions on these factors, rather than
relying entirely on implicit ones. This semantic causal inference capability is valuable in
several ways. For example, (i) In highly dynamic and uncertain environments, a safe planner
should consider multiple semantically plausible patterns instead of merely fitting the most
likely case indicated by the data, allowing it to make the safest ego plan; (ii) When perception
and/or scene encoding modules are faulty, the prediction module should rely on semantic
conditions provided by the user or hard-coded into the planner.

Several works have explored causal and semantically meaningful motion representations using
generative models. One notable example is DiversityGAN [5], which learns a low-dimensional
semantic latent space with moderate human annotation, where each dimension can represent
distinct driving maneuvers, such as merging or turning. Similarly, Interpretable Self-aware
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2 Introduction

Training data

Generative predictions

Adjacent 
Vehicle

Predicted 
trajectory ( ෠𝑌)

Ego vehicle

GT trajectory 
(𝑋, 𝑌)

Ego plan

Planning with non-explanatory 
prediction

What is the most 
likely mode?(zi=zML)

What is the most 
likely mode?(zi=zML)

What is the most 
likely mode?(zi=zML)

Planning with explanatory 
prediction

It’s aggressive, so let 
zs be large.

It’s moderate, so let 
zs be medium.

It’s conservative, so 
let zs be small.

Figure 1-1: Motivation of explanatory prediction: Most-likely (ML) prediction is not always the
most accurate one. To account for multimodal futures, explanatory prediction should reason
about the interaction semantically and make corresponding predictions.

Prediction (ISAP) [11] models uncertainty over semantically interpretable latent concepts,
including past behavior, map information, and social context. Another approach, Causal
Motion Representation (CMR) [12], divides the latent space into three categories: domain-
invariant, domain-specific, and non-causal spurious features. Specifically, a contrastive loss
is applied to learn the domain-specific style confounder, enabling discrimination based on
semantic metrics. However, we identify several limitations in these previous works. While
sampling the low-rank latent space of DiversityGAN produces semantically diverse trajecto-
ries, the model lacks a structural understanding of the latent space. As a result, predictions
cannot be manipulated by directly assigning specific latent values. Furthermore, sampling
followed by rejection sampling with additional modules is not efficient enough for practical
safe planning. For ISAP and CMR, their unsupervised frameworks also make it challenging
to learn consistent semantic representations that align with predefined semantics.

Thus, it remains an open challenge to develop an explanatory generative trajectory predic-
tion model that can both explicitly manipulate predictions and interpret trajectories based
on predefined semantic factors—this is the focus of our work. To address this, we introduce
a weakly supervised augmentation to existing CVAE frameworks called Preference CVAE
(PrefCVAE). PrefCVAE leverages partially labeled external data to efficiently learn a seman-
tically meaningful latent space. The core idea is to impose preferences on diverse predictions
conditioned on sampled latent values and use ranking to regularize the CVAE. In our view,
explanatory prediction has two main desiderata (Figure 1-2): (i) The explanatory represen-
tation should enable the understanding of a trajectory concerning specific semantic factors
using the CVAE’s approximate posterior encoder; (ii) It should generate manipulable and
monotonic trajectories with the decoder, conditioned on these known continuous semantic
factors by assigning latent variables.

In summary, we argue that incorporating semantic meanings into the latent generative factors
of CVAEs can enhance the explainability of trajectory prediction and ultimately contribute

Yongxi Cao Master of Science Thesis
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Figure 1-2: Our desiderata of explanatory prediction: (i) Use the latent distribution to give
an estimation regarding the semantic factor; (ii) Generate manipulable predictions that pertain
to latent values. (m(·) represents a generic quantitative semantic metric, and ≻, ≃ denote
magnitude relationships of "greater than" and "approximately equal", respectively)

to safer and more trustworthy planning [13]. With our PrefCVAE framework, we augment
the well-established CVAE-based trajectory prediction model, AgentFormer [4]. The Agent-
Former model trained with our PrefCVAE loss demonstrates the ability to predict using a
monotonic metric when assigning traversed semantic latent values. Additionally, the approx-
imate posterior encoder more accurately encodes a given trajectory to its ground truth latent
value with higher likelihood. These successes indicate that we have achieved a preliminary
explanatory generative prediction model.
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Chapter 2

Related Works

Explanatory trajectory prediction. In the autonomous driving community, explanatory
trajectory prediction is explored from various perspectives. One line of research focuses on
integrating prediction directly into planning by jointly optimizing predicted trajectories and
ego-vehicle plans, rather than employing a cascading approach [14], [15]. For instance, Task-
informed Motion Prediction (TIP) [16] addresses the limitations of task-agnostic predictions
by incorporating ego-vehicle plans through the optimization of a task utility function in addi-
tion to the traditional trajectory fitting loss. Another approach involves learning transferable
motion styles. Inspired by parameter-efficient fine-tuning methods in vision and language
processing [17], [18], [19] and [20] employ low-rank modules to enhance the generalizability
of prediction models. Additionally, recent advancements in foundation models, such as large
language models and vision-language models, have led to the exploration of natural language
encoding for trajectory prediction [21]–[24].

Disentanglement and manipulation of latent representations. Our work aligns with
ongoing efforts in machine learning to disentangle and manipulate latent spaces. We define dis-
entanglement as the process of learning semantically factorized latent representations, which
is a key objective in generative representation learning [25], [26]. In the context of VAEs,
the focus of disentanglement has shifted from unsupervised learning [27] to semi-supervised
approaches [28], [29]. Early works such as FactorVAE [30] and β-TCVAE [31] concentrated on
reducing the total correlation of latent dimensions, thereby maximizing the mutual informa-
tion between latent and data distributions. More recent efforts have explored diverse forms
of inductive biases that can be effectively leveraged to learn semantic latent spaces [32]–[34].
In image synthesis, GAN-based methods have also advanced disentanglement through tech-
niques like subspace projection [35], style channel discovery and identification [36], and other
unsupervised style transfer methods [37], [38]. Our work contributes to the machine learning
community as an empirical study of a novel disentanglement method.

Learning from preference. Our approach is conceptually closest to the idea of learning
from preference. Reinforcement Learning with Human Feedback (RLHF) has proven to be
an effective method for reward approximation and intention alignment. RLHF optimizes a
neural reward function that mimics human preferences based on policy rollouts, as well as the
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policy itself. Initially proposed to learn implicit rewards that are difficult to define in closed
form, RLHF has been successful in applications such as gait generation and Atari games [39],
[40]. It has since become a key fine-tuning technique for large language models, aligning them
with human preferences [41]–[43]. This fine-tuning process can be seen as specifying preferred
domains within a large dataset distribution. Recently, DPO [44] relaxed the requirements of
reinforcement learning by introducing a supervised framework that resembles RLHF, offering
a more stable and data-efficient approach.

Our work differs from the previous works with similar objectives, such as [34], [44], in that
ours is a pure end-to-end CVAE-based approach to explanatory trajectory prediction that
requires no additional learnable modules, and we focus on injection of preference within the
latent distribution of the CVAE. Also, the weak labels our method require are typically much
more efficient to acquire than the latent variables’ ground truth themselves in many tasks
such as imitation learning and data generation [39], [43].

Master of Science Thesis Yongxi Cao



Chapter 3

Background: Trajectory Prediction
with CVAE

3-1 Trajectory Prediction: Problem Formulation

In the context of autonomous driving or mobile robots, the objective of trajectory prediction
is to predict future trajectories of multiple agents in a scene given their past trajectories obser-
vations and other information about the scenario. Consider a multiple agent case, the minimal
unit for data representation is a minibatch. A minibatch contains the past trajectory state of
agents within the scene, defined as X =

[
X1,X2, ...,XTcur

]
, where Xt =

[
xt

1,x
t
2, ...,x

t
N(t)

]
represents the states of time-variant number of N(t) agents at timestep t ∈ {1, 2, ..., Tcur}.
The exact state information xt

n is a versatile design choice, ranging from position, velocity,
and acceleration to additional parameters like heading angles or agent types. Besides agent-
wise statistics, contextual information (C) is considered, encompassing semantic details of the
road (e.g., locations and labels for lanes, sidewalks, etc.). The goal of trajectory prediction is
to infer a prediction Ŷ of a future ground truth Y =

[
Y Tcur+1 ,Y Tcur+2 , ...,Y Tend

]
given X and

optionally C, where Y t =
[
yt

1,y
t
2, ...,y

t
N(t)

]
is the future trajectory consisting of positions and

optionally other information such as velocity and heading angles. For brevity of notation,
we cluster the contextual information C into X, i.e., for following notations X is essentially
{X,C}. Hence, a dataset with K minibatches used for training trajectory prediction models is
of the form D = {Xi,Yi}K

i=1. Specifically, for deep generative model-based methods, the tra-
jectory prediction objective is to learn a plausible conditional distribution Ŷ ∼ pθ(Y|X) from
the dataset, where θ implies that the distribution is parameterized with a neural network.

3-2 CVAE Framework for Trajectory Prediction

Conditional VAE (CVAE) provides a causal inference framework, assuming the existence of
an M -dimensional generative latent factor zi = [zi,0, zi,1, ..., zi,m−1] for the i-th agent in the
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3-2 CVAE Framework for Trajectory Prediction 7

minibatch, in which elements are random variables and are assumed to dominate charac-
teristics of the motion. For clarity, we sequentialize the latent factor for a minibatch as a
vector, z =

[
z1, z2, ..., zN(t)

]
, instead of a matrix. We also denote the minibatch-wise history

observation and future prediction as x and y to indicate they are as well treated as random
variables in the CVAE framework, and can be sequentialized as vectors instead of tensors. As
for the trajectory prediction task, the history observation x is the explicit conditional label
variable, and the future trajectory y is the target data to be reconstructed or predicted.

In the CVAE framework, three modules are learned simultaneously for the tasks of reconstruc-
tion and generation of conditioned data (the prior encoder pθ(z|y), the decoder pθ(y|x, z)),
and recognition of conditioned data (approximate posterior encoder, qϕ(z|x,y)). The encoder
distributions are typically obtained by firstly encoding the history observation to a context
sequence, and then using an MLP to project to parameters of probability distributions, and
decoder distributions are often GMMs or simply a unimodal Gaussian distribution, in which
case max likelihood regresses to an MSE objective. Regarding each trajectory, the basic
single-datapoint Evidence Lower Bound (ELBO) loss for CVAE’s, which is to be minimized
for training the CVAE framework, is defined as the sum of negative log-likelihood (reconstruc-
tion loss) of the future trajectory y and KL-divergence between the prior encoded distribution
pθ(z|x) and approximate posterior encoded distribution qϕ(z|x,y),

LELBO(x,y;ϕ, θ) = −Eqϕ(z|x,y) [log pθ(y|x, z)] + DKL [qϕ(z|x,y)||pθ(z|x)] . (3-1)

A more detailed note on notation and derivation of CVAE can be found in Appendix.A.

Master of Science Thesis Yongxi Cao



Chapter 4

PrefCVAE

In this section, we describe our preference-based CVAE, the PrefCVAE, framework, still
regarding each minibatch. We assume two types of latent variables, P semantically meaningful
and measurable ones zS =

[
zS0, zS1, ..., zS(P −1)

]
, and M − P domain-invariant ones zI =[

zI 0, zI 1, ..., zI (M−P +1)
]
, where each element zSi or zI i is an N -dimensional vector because

there are N agents in the minibatch. Each dimension of zS controls one semantic metric
that could be quantified and evaluated using the trajectory. On the other hand, factors in
zI pertain to noises or abstract factors that does not semantically contribute to the causal
inference. Note that zI may still contain useful but implicit information. The objective
of PrefCVAE is to explicitly learn the latent variables factorised as z = [zS , zI ] with weak
preference labels.

4-1 Weakly Labeling Preference

This section describes the definition of the extra random variables our method uses, and
how they are obtained at training time. For simplicity of notation, we only consider one
semantic latent factor in the following procedures, and assumes all other latent dimensions
to be domain-invariant, i.e., z = zS = {z1, z2, ..., zN } is the only semantic latent factor within
a minibatch of data, consisting of N agents’ interaction. However, the framework could be
easily extended to more than one semantic dimension.

When we want to label preference for different predictions of this agent within the minibatch,
we firstly draw two set of additional latent samples uniformly from the latent domain, namely,
z0 and z1. That is, z0, z1 ∼ U(zS,min, zS,max), where zS,min, zS,max are specific boundaries
that may vary for different semantic factors. Since the position of each term z0

i and z1
i are

symmetrical, we fix all z0
i < z1

i while sampling, to make loss implementation easier without
any compromise. The zI is drawn with the same approach, but we do not need to fix the
magnitude relationship between each pair of elements z0

Iji
and z1

Iji
.

Yongxi Cao Master of Science Thesis



4-2 Preference Loss 9

Secondly, using the CVAE decoder, we make two predictions ŷ0 and ŷ1 by taking expectation
of the predicted distribution given the sampled z0 and z1, implicit latent factors zI , and the
history observation x. That is, ŷj = E

[
pθ(y|x, zS , zj)

]
.

Thirdly, we label the ground truth preference P̂ [ŷ0, ŷ1]. We currently use an oracle program,
m(x, ŷi), to calculate the metric of each prediction ŷ0 and ŷ1, and give a preference over
them. The preference value is essentially an approximation to one of the two weighted latent
samples { z0

i

z0
i +z1

i
, z1

i

z0
i +z1

i
}, and it indicates which of the two generated predictions should have

a larger metric value related to this latent factor.

Assuming the closed-form oracle metric of trajectory (x,yi) to be m̂(x,yi), the agent-wise
preference between two predicted trajectories ŷ0 and ŷ1 is given by

P̂ [ŷ0, ŷ1; z0
i , z1

i ,x] = 1
z0

i + z1
i

[(z1
i − z0

i ) σ(η(m̂(x, ŷ0) − m̂(x, ŷ1))) + z0
i ], (4-1)

or denote as P̂ [ŷ0, ŷ1] for short, where σ(·) is the Sigmoid function, and η is a scaling factor
controlling sensitivity of the oracle preference to difference between two predictions. This is
a soft version of if-else clause that rolls out one estimation from { z0

i

z0
i +z1

i
, z1

i

z0
i +z1

i
}, whose major

purpose is to guarantee differentiability in back-propagation. An important design here is,
we use Sigmoid function to approximate the discrete values of { z0

i

z0
i +z1

i
, z1

i

z0
i +z1

i
}. Otherwise,

the if-else would be required to distinguish the order of magnitude between m̂(x, ŷ0) and
m̂(x, ŷ1), which makes an inconsistency in the gradient flow. The hard version of choosing
from set would make the preference oracle useless. The smoothness of Sigmoid function allow
those comparisons who are not distinctive to be equivocal since the output is close to 1

2 if the
two samples are very close.

While the hats over P and m indicate that they are estimated by the oracle program, it is
nonetheless still regarded as the ground truth since the framework assumes that the oracle is
absolutely correct and noiseless. In this work we show results with preference pairs labelled
with oracle program only, and discuss techniques toward adapting human labels. At inference
time we also use the same oracles for evaluation. It is beyond the scope of this work to consider
wrong or noisy oracles.

4-2 Preference Loss

To fulfill the objective of semantic latent factors, we take an approach that aligns the order
of magnitude of metric values with that of the latent factors. The preference loss is a cross
entropy between the sampled latents’ distribution and the distribution of scores given by the
oracle program. The oracle preference plays a role like a ground truth decoder of the metric,
and the original CVAE’s decoder is like an encoder here. The preference loss is desired to
learn to rank two predictions correctly. With the ground truth preference P̂ [ŷ0, ŷ1] and the
two auxiliary sampled latent factors z0

i and z1
i , the agent-wise preference loss is defined as

Lpref(x, z0
i , z1

i , ŷ0, ŷ1;ϕ, θ) = −[P̂ [ŷ0, ŷ1] log(z0
i ) + (1 − P̂ [ŷ0, ŷ1]) log(z1

i )]. (4-2)

Master of Science Thesis Yongxi Cao



10 PrefCVAE

In this formula, when z0
i < z1

i is fixed, if m(ŷ0) is larger than m(ŷ1), the loss value would
be large. While if m(ŷ0) is smaller, the loss would be small. Hence, the preference loss
encourages the predicted trajectory to align with the latent in a user-given way: the prediction
with smaller latent value is encouraged to have a smaller metric value, and the converse is
punished. Note that by swapping the positions of z0

i and z1
i in the loss function, or fixing

z0
i > z1

i instead of z0
i < z1

i when sampling, we can reverse the way preference aligns with z
value.

Compared to similar loss function designs in [32], [34], the key superiority of ours is that
the ground truth latent factor values z0

GT and z1
GT pertaining to the two predictions ŷ0 and

ŷ1 are not required. Instead, the oracle only informs the loss if the relationship of these
predictions are correct given the sampled latent factors. This form of weak label broadens
the application range of the algorithm. Also, since we leverage preference, it is not assumed
that the distribution boundary of latent factors are determined by the dataset. That is,
due to stochastic sampling and generation procedure, we may generate unseen yet sensible
trajectories in accordance with the latent semantic factors.

For training, we simply use the preference loss alongside the original CVAE ELBO loss, i.e.,

L = LELBO + λLpref, (4-3)

where λ is a weighting factor, and the minibatch-wise loss is an aggregation of the agent-wise
loss.

Yongxi Cao Master of Science Thesis



Chapter 5

Results

Section 5-1 describes the dataset and base model used in our experiments. Section 5-2
presents three major findings and discusses the impact of reducing the use rate, ν, a spe-
cific hyperparameter detailed in that section. We demonstrate the effectiveness of PrefCVAE
in explanatory trajectory prediction, considering both manipulable trajectory prediction and
concentrated latent factor encoding. In Section 5-3, ablation studies confirm that the ob-
served effects are indeed due to the new loss design. We also examine the impact of two other
hyperparameters: the weighting factor λ and the latent dimension nz.

5-1 Experimental Setup

Semantic metrics and latent distribution designs. We conduct experiments focusing on
a simple low-level semantic metric: the average velocity of the predicted trajectory. Although
the plausible range of velocities is not explicitly defined by the dataset, it is assumed that the
average velocity socially acceptable for samples in the dataset is bounded. In other words,
while we do not assign specific ground truth latent values for each sample during training, the
dataset-wise velocity should have an upper bound (speed limit) and a lower bound (static).
Therefore, we adopt a bounded distribution, the Beta distribution, as the latent variable to
learn the low-level semantic. In Appendix B-3, we also explore the potential use of a high-level
semantic, social value orientation (SVO). A brief description of these semantics’ formulations
and the corresponding latent distributions’ formulas is provided in Appendix B-4.

Dataset and base model. Experiments are conducted on the nuScenes trajectory pre-
diction task. We follow the convention of predicting motion for the subsequent 6 seconds
(12 frames) based on observations from the past 2 seconds (4 frames). We adopt a widely
recognized Transformer-based, multi-agent CVAE trajectory prediction model, AgentFormer
[4], as the baseline method. This model is chosen for its effectiveness in capturing multi-agent
spatio-temporal relationships in traffic scenes using a unified transformer architecture, while
strictly adhering to the CVAE probabilistic framework.
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12 Results

Table 5-1: Accuracy and semantic diversity of base β-AgentFormer and the same model trained
with PrefCVAE loss and different use rates. All ADE/FDE’s are obtained without assigning latent
at test time, and the velocity spans are with latent factor traversal from 0.1 to 0.9 with step size
of 0.1.

Use rate, ν
0 (Base) 0.25 1

minADE5 (m) 2.62 2.66 2.64
minFDE5 (m) 5.62 5.76 5.74

Vel. Span (m/s) 3.16 1.87 1.63
(min/max) 3.17 4.38 4.86

Monotonic No Yes Yes

In this work, we use a slightly modified version of AgentFormer. We replace the Gaussian
latent distribution with a Beta distribution, where the concentration parameters α and β
are clipped to be larger than 1 (as discussed in Appendix B-4). This adjustment enables
continuous manipulation of the prediction by traversing within the bounded domain of the
random variable definition, [0, 1]. Additionally, the latent dimension is reduced from 32 to 2
to minimize randomness and clearly demonstrate the effect of our method. For the remainder
of this paper, we refer to this modified version as β-AgentFormer to avoid confusion. A vanilla
β-AgentFormer is trained using the ELBO loss and a variety loss defined in the original work
(base loss). Lastly, to reduce the impact of the trajectory sampler, we do not apply DLow in
the post-training process, as described in the original AgentFormer paper.

All models are trained from scratch using either base loss or PrefCVAE loss for 30 epochs
on the entire nuScenes trajectory prediction dataset, with no pretraining applied. The same
task-specific auxiliary loss terms are applied to all experiments (see Appendix B-2). The base
model used in all results is our modified β-AgentFormer, not the original AgentFormer.

Repeatability. Variational generative models like the CVAE can exhibit stochastic per-
formance due to different neural network initializations [28]. Specifically, for our loss design,
certain random seeds may lead to suboptimal performance for β-AgentFormer. To address
this, we experiment with multiple random seeds to achieve satisfactory results for each con-
figuration. Our goal is to minimize randomness in the training process and maximize the
repeatability of our results. Therefore, all results presented in the tables and figures are ob-
tained as follows: We select three random seeds (specifically, 42, 37, and 43), train the model
with each, and record the best outcome based on the relevant metric. If the three results are
marginally similar, we default to using the result with seed 42. This approach balances re-
peatability and performance, demonstrating that our method is not highly sensitive to factors
such as neural network initialization and sampling order. Further details on repeatability can
be found in Appendix B-1.
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5-2 Explanatory Trajectory Prediction 13

(a) Vanilla β-AgentFormer (Test time: traverse all agents)

(b) β-AgentFormer trained with PrefCVAE (Test time: traverse all agents)

(c) β-AgentFormer trained with PrefCVAE (Test time: traverse only one agent)

Figure 5-1: Manipulable predictions, demonstrating usefulness of PrefCVAE framework. For
each subfigure, Left: prediction results; Middle: semantic metric w.r.t. z value (horizontal dashed
lines are ground truth values); Right: ADE (solid)/FDE (dashed). PrefCVAE can semantically
manipulate the prediction: For model trained with PrefCVAE, larger z value always leads to larger
average velocity, as learned with the preference loss. The best accuracy occurs around the latent
values that pertain to the ground truth velocity (indicated by the dashed horizontal lines).
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14 Results

5-2 Explanatory Trajectory Prediction

PrefCVAE decoder generates manipulable and plausible trajectory predictions.
Figure 5-1 illustrates a minibatch from the test set. We evaluate the models by traversing
the latent space from 0.1 to 0.9 with a step size of 0.1. In the vanilla AgentFormer model
(Figure 5-1(a)), the latent factors are not influenced by the preference loss, resulting in a
latent representation that lacks explicit correlation with average velocity. Consequently, the
average velocity on the test set does not exhibit a monotonic pattern across all agents, and
the velocity range for different latent values is limited (Table 5-1). In some other minibatches
from the test set, the average velocity fails to follow a monotonic pattern even for individual
agents. In contrast, a model trained with our PrefCAVE approach (Figure 5-1(b)) generates
predictions where the average velocity increases monotonically with respect to z traversal.
Specifically, we train the model such that larger latent values correspond to higher average
velocities, resulting in a more distinct monotonic pattern and a broader velocity span on
the test set. Interestingly, although the latent factors are regularized jointly during training,
manipulating only one agent’s latent factor (Figure 5-1(c)) while randomly sampling for all
other agents in a scene effectively alters the behavior of that individual agent alone. This
indicates that the latent factors are essentially learned independently for each agent.

Latent monotony consistency persists while moderately dropping random pref-
erences. In pursuit of the goal of extending to human-labeled data, providing prefer-
ences for the entire dataset is costly. Therefore, it is important to examine the impact of
randomly dropping preference pairs. Interestingly, applying preference pairs to the entire
dataset (ν = 1) does not always yield the best performance, which is counterintuitive. To
evaluate this, we propose a benchmark called the violation rate (VR) to measure the consis-
tency of monotony across the entire dataset. A violation occurs for an agent if, given two
predictions ŷ0 and ŷ1 with latent generative factors z0 > z1, their average velocities satisfy
avg_vel(x, ŷ0) < avg_vel(x, ŷ1), where zi ∈ {0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9}. The test
set consists of 138 scenes, encompassing 3,076 minibatches (each scene is recurrently clipped
into 20-frame-long minibatches, averaging about 22 valid minibatches per scene) and 9,041
agents (with 1 to 11 agents per minibatch). The violation rates of monotony are calculated in
three respects: agent-wise (if any trajectory violates), minibatch-wise (if at least one trajec-
tory in the minibatch violates), and scene-wise (if at least one minibatch in the scene violates).
Table 5-2 demonstrates that, for most configurations, we achieve a satisfactory violation rate
(agent-wise VR smaller than 0.5%), and dropping preference pairs does not significantly in-
crease violation rates. In fact, at a use rate of 25%, we achieve the optimal violation rate
with comparable accuracy.

Leveraging only a partial set of preference pairs (less than 50% of the total) proves to be
more effective because it reduces overfitting. While it is desirable to have as many high-
quality preference pairs as possible, the model may also learn domain-specific noise present in
these pairs, which can reduce its sensitivity to the actual semantic factors that the preference
loss is intended to capture—in this case, the average velocity.

PrefCVAE encoder perceives more accurate characteristics of trajectories. We
evaluate the encoder using CVAE-generated data as the ground truth. Following the traversal
scheme described in the previous section, we assign values from 0.1 to 0.9 to the semantic
latent factor, generating nine sets of predictions, ŷi, each corresponding to one of the nine z
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5-2 Explanatory Trajectory Prediction 15

Table 5-2: Violation rate vs. preference use rate with different preference weight factors. Total
latent dimension: 2, nuScenes dataset, manipulated scemantic factor is the average predicted
velocity. (SW VR: Scene-wise violation rate; MBW VR: Minibatch-wise violation rate; AW
VR: Agent-wise violation rate. A violation occurs when the factor is not monotonous w.r.t. z
traversal. All VR’s: Lower is better)

Use rate, ν
0 (Base) 0.125 0.25 0.375 0.5 0.625 0.75 0.875 1

SW VR (%) 99.28 55.80 4.35 10.87 15.22 11.59 10.87 10.87 6.52
MBW VR (%) 92.43 12.55 0.29 0.85 0.91 0.65 0.68 0.75 0.35
AW VR (%) 82.28 4.86 0.10 0.29 0.32 0.22 0.23 0.25 0.12

minADE5 (m) 2.62 2.54 2.66 2.58 2.64 2.59 2.71 2.53 2.64
minFDE5 (m) 5.62 5.53 5.76 5.57 5.73 5.76 5.72 5.51 5.74

Table 5-3: Concentrated approximate posterior encoding with PrefCVAE and the resampling
trick (JSD: Jensen-Shannon Divergence; LMode: The marginalized likelihood over all traversed
latent values; Avg. JSD and logLMode: Larger is better; Avg. Mode Dev.: Smaller is better)

Base ν=0.25 ν=1

Avg. JSD 0.0352 0.4874 0.4578
logLMode 3.19 13.23 11.76

Avg. Mode Dev. 0.1660 0.0090 0.0163

values used as the pseudo ground truth latent labels. For each set, we use the approximate
posterior encoder to map the predictions back to the latent space, ẑ ∼ qϕi

(x,yi). We then
analyze the distribution of these nine sets of encoded latents. As shown in Figure 5-2 (first
row, with the distribution on the x-axis representing the concerned latent dimension), the
posterior encoder approximately encodes a Beta distribution for all agents in the test set. We
use maximum likelihood estimation to fit a Beta distribution, q̂ϕi

, indicating the statistical
pattern associated with each assigned zi.

To assess the quality of the encoders, i.e., their semantic understanding ability, we adapt
three metrics (Table 5-3). (i) The Jensen-Shannon divergence (JSD) measures the similarity
between two distributions, and the average JSD, D̄JS(qϕi

, qϕj
) (calculated as the average of

C(9, 2) = 36 pairwise JSDs for integer indices i ̸= j ∈ [1, 9]), serves as a symmetric metric for
the similarity of the nine distributions. A higher average JSD indicates greater dissimilarity
between the encoded distributions. (ii) The log-likelihood of each distribution at its ground
truth mode indicates how likely the ground truth is to be obtained. A higher cumulative
log-likelihood,

∑9
i=1 log qϕi

(z = i
10 ; x,yi), suggests that the latent distributions are more

trustworthy. (iii) The mode deviation, | arg max(qϕi
)− i

10 |, measures the deviation of the mode
(the z value corresponding to the peak probability density) of each fitted Beta distribution
from the ground truth. These three metrics collectively evaluate the distinction between
different distributions, the concentration, and the estimation error of each distribution.
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(a) Base

(b) ν=0.25

(c) ν=1

Figure 5-2: Distribution histograms and regressions of each traversed latent mode. Each colored
histogram and regressed distribution pertain to trajectories predicted with a differently assigned z
value. The ideal result should be 9 distinct distributions with modes at the ground truth z values.
(Left: Marginal histogram; Right: Regressed beta distributions
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5-3 Ablation Analysis 17

Figure 5-3: Velocity span as semantic latent traversal for different models and test time settings.

Table 5-4: Effect of tuning weighting factor at small preference use rates

Use rate (ν)
Violation rate type

Scene-wise (%) Minibatch-wise (%) Agent-wise (%)

λ=8 λ=32 λ=8 λ=32 λ=8 λ=32

0.05 91.30 96.38 64.56 64.11 45.99 38.70
0.10 93.47 10.14 65.08 0.62 46.09 0.21
0.15 91.30 13.04 63.30 1.07 44.62 0.38
0.20 95.65 11.59 77.44 0.94 56.89 0.32
0.25 38.41 15.22 6.05 0.94 2.18 0.32
0.30 84.06 57.24 24.80 21.52 10.30 11.04

5-3 Ablation Analysis

Manipulating unsupervised latent factors does not lead to explanatory prediction.
Figure 5-3 demonstrates that when traversing the other latent dimension of the PrefCVAE-
trained β-AgentFormer, the monotonic relationship with velocity does not persist. This indi-
cates that our preference loss specifically supervises the assigned latent dimension and does
not influence other dimensions.

Increasing the preference weighting factor λ enhances monotony consistency ro-
bustness. All previous experiments utilized a weighting factor of 16. We further explore
the effects of setting λ to 8 and 32. As the previous section demonstrated that with λ = 16,
a satisfactory violation rate (VR) can be achieved when ν exceeds 0.25, we focus on testing
ν ∈ {0.05, 0.10, 0.15, 0.20, 0.25, 0.30} to avoid insignificant comparisons for ν > 0.3. Due to
the limited number of restarts (three different random seeds, as described in Section 5-1, with
identical random seeds used for each ν), most models with λ = 8 fail to achieve a satisfac-
tory VR (Table 5-4). Conversely, models with λ = 32 consistently achieve a very low VR,
indicating that moderately increasing the weight of the PrefCVAE loss improves the model’s
robustness in understanding preferences. Furthermore, tuning the weighting factor does not
substantially impact accuracy (Table 5-5). Therefore, we conclude that increasing the weight-
ing factor can enhance explainability without compromising accuracy, although we have not
determined an upper bound for an appropriate λ.
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Table 5-5: Marginal effect on accuracy while tuning weighting factor at small preference use
rates

Use rate (ν)
Accuracy

minADE5 (m) minFDE5 (m)

λ=8 λ=32 λ=8 λ=32

0.05 2.59 2.52 5.57 5.52
0.10 2.57 2.52 5.59 5.46
0.15 2.53 2.57 5.48 5.55
0.20 2.73 2.51 5.97 5.52
0.25 2.53 2.54 5.52 5.55
0.30 2.58 2.71 5.56 5.91

Table 5-6: Emergence of tradeoff between accuracy and diversity as latent dimension increases

Latent Dimension
nz=8 nz=16 nz=32

λ=16 λ=32 λ=16 λ=32 λ=16 λ=32

SW VR (%) 3.62 0.72 5.07 0 0.72 5.80
MNW VR (%) 0.20 0.03 0.23 0 0.03 0.26
AW VR (%) 0.07 0.01 0.08 0 0.01 0.09

Vel. Span (m/s) 1.74 1.55 1.74 1.72 1.80 1.68
(min/max) 5.03 6.00 5.08 5.77 4.96 4.91

minADE5 (m) 2.70 2.83 2.70 2.83 2.63 2.66
minFDE5 (m) 5.75 5.91 5.73 5.91 5.57 5.61

Increasing latent dimension nz introduces a tradeoff between accuracy and di-
versity. All previous experiments used a latent dimension of 2, with one dimension being
semantic and the other domain-invariant. Having validated this concept, we now explore
higher-dimensional latent spaces, which are more commonly used in prior works [3], [4].
Specifically, we investigate latent dimensions of 8, 16, and 32. For this set of comparisons,
we use only the random seed 42, so some variance may exist. We find that increasing the
latent dimension slightly improves the model’s best accuracy (Table 5-6), likely because a
larger information bottleneck can capture more implicit information about the trajectory
history. However, the velocity span during traversal of the semantic latent space noticeably
decreases. For nz = 8 or 16 with λ = 32, the maximum difference in average velocity exceeds
4.5 m/s, whereas for nz = 32, the span drops to below 3.3 m/s (as a baseline, the span for
nz = 2 and λ = 16 is around 3.3 m/s), indicating reduced diversity in manipulation. This
reduction occurs because, as the latent dimension increases, it becomes more challenging to
enforce independence among latent factors, and the correlations between these dimensions
make it harder to assign distinct semantics to each latent factor. Incorporating unsupervised
disentanglement techniques could help mitigate this tradeoff [29], [31].
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Chapter 6

Discussion

6-1 Limitations and Future Work

We identify two key assumptions underlying our work. (i) First, we use a simple oracle-
based metric, the average prediction velocity, as the semantic factor. This represents a basic
case study of our framework. For practical applications in autonomous driving, additional
techniques are needed to incorporate human labeling and inject more practically useful se-
mantics, such as Social Value Orientation (SVO) [45], [46]. (ii) Second, we only evaluate the
effectiveness of our method with one semantic dimension. Reducing correlations among dif-
ferent latent factors is inherently challenging [31], making it difficult to extend our method to
multiple semantic latent factors. Below, we propose tentative resolutions to these limitations.

High-level semantics. Our PrefCVAE framework can be extended to more complex se-
mantic factors beyond the basic example of average velocity. Specifically, SVO is a valuable
indicator of driver behavior [46]. Since SVO for a trajectory can be estimated in a closed-
form manner given a predefined or hand-crafted reward model, the pipeline introduced in this
paper can be directly extended to learn SVO as a latent factor.

Adaptation to human-labeled preferences. Although our preference loss does not ex-
plicitly use the ground truth of metric values (the Sigmoid function output only indicates
the relationship between a pair), the preferences we calculate are still based on ground truth
metric calculations. This is feasible because average velocity is easily computed. However, in
practice, we may require more abstract semantic factors that are difficult to define. As future
work, we aim to relax the assumption of ground truth requirements in human labeling scenar-
ios. This can be achieved using a Straight-Through Estimator (STE) [47] or Gumbel-Softmax
[48] to approximate the preference. The key challenge is that human-labeled preference data
is not inherently differentiable, but STE or Gumbel-Softmax can address such samples. Ad-
ditionally, it may be worthwhile to first fit a neural network-based preference classifier and
then use it to generate synthesized human-like preferences.

Multiple semantic representations. In this work, we only investigate the effectiveness of
learning one metric at a time. However, the promise of disentangled representation learning
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lies in the ability to learn a set of generative factors, rather than just one. Therefore, it is
worth exploring the incorporation of multiple metrics as different latent dimensions. Previous
efforts in disentanglement research could be beneficial in addressing these challenges [49].

6-2 Implications for Other Machine Learning Tasks

Explanatory trajectory prediction using CVAE is just one application of the PrefCVAE frame-
work. We tentatively explore its utility in generic imitation learning and data generation
tasks.

Imitation learning. Imitation learning involves learning actions from offline demonstra-
tions. Generally, there are two approaches: behavior cloning and inverse reinforcement learn-
ing [50]. Robotics tasks learned with generative models often contain biases from the dataset.
A recent work, SkiP [51], proposed using a VAE-based model to extract skill priors with
human preference, followed by RLHF to fine-tune the generative policy. Our work offers new
insights into this area: rather than using an external classifier to approximate human pref-
erence, we demonstrate that the approximate posterior encoder of a CVAE can inherently
function as a preference estimator.

Data generation. Generating abundant and authentic training data is increasingly im-
portant for large-scale pretraining with foundation models [52]. Using VAE-based models
to generate such data is one possible approach [53]. Our work suggests a method to in-
troduce bias into the data generation process, aligning the dataset distribution with human
preferences.
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Chapter 7

Conclusion

This paper presents PrefCVAE, an augmentation to the CVAE framework that enables ex-
planatory trajectory prediction. The core innovation is a preference loss that regularizes the
semantic meanings of latent factors through pairwise preference comparison. Such compar-
isons are often tractable and cost-effective for many tasks. Beyond proposing a method for
explanatory trajectory prediction, we aim to offer a new perspective on effectively and effi-
ciently incorporating dataset inductive bias for disentangled representation learning in deep
generative models.
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Appendix A

Conditional Variational Autoencoders

Probabilistic graph. A wide range of machine learning tasks such as classification or
synthesizing using deep probabilistic generative models assume different dependency rela-
tionships among random variables. Specifically, the notation in trajectory prediction differs
from normal vision works. In this section we provide a probabilistic view of the multiple
variables to clarify dependencies.

The following random variables are considered,

• x: History observation

• y: Future trajectory

• zi: Implicit latent generative factors, who are not explicitly learned with our proposed
loss

• zs: Semantic latent generative factors, who are explicitly learned with our proposed loss

Given the definition of random variables, the probabilistic graph for generation of prediction
and recognition of entire trajectories are shown in Figure.A-1.

The two types of generative relationships represent two plausible assumptions: (i). Some
factors of future trajectory should be consistent with history and thus can be inferred from
the history. For example, driving style related factors should be consistent throughout the
entire trajectory, and be able to be estimated based on history observation. (ii). On the
other hand, some characters could be considered independent. For example, the choice of
future velocity could be diverse even with the identical history observation, with all candidate
predictions being plausible.

The major difference in the causal framework between the two cases occurs in the assumption
of prior distribution. For the former case, the prior distribution is assumed to be learnable,
meaning that the prior can be variational conditioned on the history observation; For the
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24 Conditional Variational Autoencoders

Figure A-1: Probabilistic graph for generation and recognition

latter case, the prior should be unlearnable, meaning that no prior knowledge regarding this
generative factor could be drawn from the history observation.

ELBO loss deduction. To learn a generative multimodal conditional distribution, a con-
ditional variational autoencoder (CVAE) assumes a marginalized distribution

pθ(y|x) =
∫
pθ(y|x, z)pθ(z|x)dz. (A-1)

For ease of loss calculation for a batch of data, the log-likelihood of the conditional distribution
log pθ(y|x) is often considered,

log pθ(y|x) = log
∫
pθ(y|x, z)pθ(z|x)dz

= log
∫
pθ(y|x, z)pθ(z|x)

qϕ(z|x,y) qϕ(z|x,y)dz (Introduce approximate posterior)

= logEqϕ(z|x,y)

[
pθ(y|x, z)pθ(z|x)

qϕ(z|x,y)

]
(By definition of expectation)

≥ Eqϕ(z|x,y)

[
log pθ(y|x, z)pθ(z|x)

qϕ(z|x,y)

]
(Jensen’s inequality)

= Eqϕ(z|x,y) [log pθ(y|x, z)] + Eqϕ(z|x,y)

[
log pθ(z|x)

qϕ(z|x,y)

]
= Eqϕ(z|x,y) [log pθ(y|x, z)] − DKL(qϕ(z|x,y)||pθ(z|x)). (Definition of KLD)

(A-2)

In traditional Bayesian inference, the posterior is updated upon every likelihood observation.
However, in CVAEs the probability distributions are assumed to be generalisable and parame-
terized by neural networks, making it intractable to calculate. Hence, it is common practice to
leverage another recognition distribution to approximate the true posterior, qϕ(z|x, y), which
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is often called approximate posterior. In the deduction, θ denotes the parameter of the prior
distribution encoder and the likelihood distribution decoder, and ϕ denotes parameter of the
approximate posterior distribution encoder.

In practice, the first term in ELBO loss is estimated with reparameterization trick through
Monte-Carlo sampling the latent random variable, and the KL-divergence term is distribution-
specific, and is close-formed for most common distributions.
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Appendix B

Implementation Details

B-1 Training Details

The model is trained on an Ubuntu 20.04 workstation with an Intel® Core™ i9-11900KF
@3.50GHZ CPU, 1 NVIDIA® GeForce® RTX 3090 GPU, and 64 GB memory. For the
nuScenes dataset, a model with a total of 2-dimensional latent space and 1 semantic dimension
takes around 24 hours to train for 50 epochs. For all parallel comparisons, we use the DAIC
clusters at the TU Delft with A100 GPUs.

Important software stack versions: CUDA 11.7, PyTorch 1.13.1, CUDNN: 8.5.0. Please note
that different versions of software may bring minuscule numerical differences from results
listed in this report, although random seed and non-deterministic flags are preset to maximize
reproducability (see also: https://pytorch.org/docs/stable/notes/randomness.html).

B-2 Task-specific Losses

We observed that, while using the original AgentFormer loss with our PrefCVAE loss term,
the predictions typically has a very large deviation at the first time step, and for the rest
of future trajectory are normal. Hence, we add a regulation to the first step prediction:
Ltask = ||YTcur+1 − ŶTcur+1 ||2, with a weighting factor of 8. To reduce effect of this additional
term during comparison, we use it for all experiments presented in this paper.

B-3 Semantic Factors and Oracle Programs

The new preference loss takes the preference between two trajectories as the input, and the
preference over two trajectories is given by an oracle program or human labeler. As validation
of the concept, in this work we introduce two close-form oracle programs to provide such
preference by firstly estimating each individual ground truth metric value and then comparing
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B-3 Semantic Factors and Oracle Programs 27

them. But one should note that such oracle could also be replaced by the preference given
by human labelers. Also, these proxies are to validate the methodology, and more applicable
alternatives could be beneficial to learning other useful latent factors. Lastly, we discuss how
to further leverage human labels instead of oracle program in our framework.

We consider scemantics for an entire scene of a fixed number of N agents, with 4 history
frames and 12 future frames. Then, the variables required for the oracle calculation are

• History position observation: X =
[
{pht}3

t=0
]

=
[
{(xht, yht)}3

t=0
]

• Future position prediction: Y =
[
{pft}11

t=0
]

=
[
{(xft, yft)}11

t=0
]
. Also, denote pf−1

to be ph3

• Future velocities: VY =
[
{vft}11

t=0
]

=
[
{(vxft, vyft)}11

t=0
]
. Also, denote vf−1 to be

vh3

• Semantic map: M: Information of occupancy pertain to each position in the scene,
indicating the ground type, such as drive lanes, pavement, etc.

When there are confusions in terms of the agent index in the scene, we apply a superscript
to distinguish them.

B-3-1 Low-level: Average Velocity of Prediction

In the low level oracle, we define larger average velocity to pertain to larger latent factor
values. The average velocity is simply calculated as

mavg_vel(VY ) =
11∑

i=0
∥(vxft, vyft)∥2 (B-1)

Since velocity can be agent-independent, i.e., all agents could simultaneously be faster or
slower, the velocity is taken average further over the entire mini-batch, i.e., the current scene
with N agents.

B-3-2 High-level: Social Value Orientation

Similar to the low-level case, the oracle program also firstly estimates ground truth SVOs
and formulates the result as the comparison between the pair. The oracle reward for a single
agent involves several aspects, as described in existing literature.

Reward definition We define an oracle reward for each individual (larger reward value
implies better) with following terms:

• Collision avoidance, rcolli: Model the reward function to penalize the agents for
getting too close to each other.

• Comfort, rcomf: Quadratically penalizes high steering and acceleration.
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• Centered positions, rcent: Penalizes the trajectory’s deviation from its current lane’s
center line, which is regressed from semantic map.

• Road departure, rdept: Assigns a negative value on occurrence of the predicted
trajectory misses derivable area, which is provided by the semantic map.

Denote the Euclidean distance between the ith agent and the jth agent at time t is defined
as dij . To penalize closeness, we use a logarithmic barrier function that becomes increasingly
large as the distance dij(t) approaches a predefined safe distance dsafe

B(dij(t)) = − log
(
dij(t)
dsafe

)
The function B(dij(t)) is active when dij(t) < dsafe.

Then the collision avoidance reward Ri(t) for the ith agent, considering all other agents in
the scene, is defined as

rcolli(Y ) =
11∑

t=0

N∑
j=1,j ̸=i

[−λ · I (dij(t) < dsafe) ·B(dij(t))]

where:

• λ > 0 is a scaling factor that determines the severity of the penalty.

• I (dij(t) < dsafe) is an indicator function that is 1 if dij(t) < dsafe and 0 otherwise.

The centered positions term is defined as

rcomf(Y ) =
11∑

t=0
cos2(φ(vft,vft−1)) − ∥(vxft, vyft)∥2

2, (B-2)

where φ is the angle between two frames’ velocities indicating the steering,

cos(φ(vft,vft−1)) = < vft,vft−1 >

∥vft∥ · ∥vft−1∥
. (B-3)

Assume the regressed equation of lane center line closest to the predicted trajectory is given
by

Ax+By + C = 0. (B-4)

Then the reward on centered positions is the negative sum of deviation of the trajectory,

rcent(Y ) = −
11∑

t=0

|Axft +Byft + C|√
A2 +B2

(B-5)
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In practice, for the NuScenes dataset, the distances are not calculated with the theoretical
formula above, but with the map API, which gives the closest pose on the closest lane from
the queried pose. Then the Euclidean distance can be easily calculated.

Since there are the cases of straight line or a curvature exists, we apply a coarse approximation
to the linear equation for estimation of lane centerline is simply regressed from the closest 3
points on the lane. The closest point on a lane can be queried given a pose, and the adjacent
two points are also used.

Now that the semantic map is available, given every predicted position, the semantic could
be queried. Then road departure is penalized when the prediction misses drivable area,

rdept(Y,M) =
{

−Rdept, if Ymisses drivable area in M,
0 otherwise, (B-6)

where Rdept is a constant.

Then the total reward for agent i is

ri = ri(Y ,VY ,M) = w0rcolliw1rcomf + w2rcent + w3rdept, (B-7)

where w0, w1, w2 and w3 are constant weights.

For the i-th agent among the N agents in the scene with SVO of ϕi, the cumulative scene
reward is

rtotal,i(ϕi; Y ,VY ,M) = cos(ϕi)ri + sin(ϕi)
1

N − 1

N∑
j=1
j ̸=i

rj , (B-8)

where Y =
[
Y 0, ..., Y N−1

]
.

SVO Estimation Given the agent-wise cumulative reward defined above, the close-form
optimum of the SVO is given by

ϕ∗
i = arg max

ϕ∈(− π
2 , π

2 )
(rtotal,i(ϕi; Y ,VY ,M)) = arctan2

−∂ri(Y ,VY ,M)
∂Y i

,

∂
∑N

j=1
j ̸=i

rj(Y ,VY ,M)

(N − 1)∂Y i

 .

(B-9)

Then for the minibatch, the high-level metric is the vectorized SVOs

mSVO(Y ,VY ,M) =
[
ϕ∗

0,ϕ
∗
1, ...,ϕ

∗
N−1

]
. (B-10)
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B-4 Latent Distributions

In this section we describe the probability distribution, KL-divergence calculation, and repa-
rameterization trick for both levels of semantics.

Unlike in the base models where Gaussian distributions is applied to model the latent dis-
tribution, we choose Beta and von Mises-Fisher distributions to cater to characteristics of
estimation of bounded velocity and SVO. For CVAEs, the prior and approximate posterior
encoders encode the data to distribution parameters, and the latent factors are sampled from
the probability distribution defined by these parameters. For different levels of semantics,
the outer probabilistic framework is generalizable. Here we describe the probability distribu-
tion definitions, their KL-divergence calculation, and how reparameterization tricks enables
gradient to flow through them.

B-4-1 Beta Distribution

Probability density function A Beta distribution has a bounded domain of z ∈ [0, 1] and
two governing parameters α and β and is defined as

Beta(z|α, β) = 1
B(α, β)z

α−1(1 − z)β−1, (B-11)

where B(α, β) is the Beta function

B(α, β) = Γ(α)Γ(β)
Γ(α+ β) =

∫ 1

0
tα−1(1 − t)β−1 dt, (B-12)

and Γ(x) is the Gamma function

Γ(x) =
∫ ∞

0
tx−1e−t dt (B-13)

In our model, we desire the latent Beta distribution to possess a mode within the range of
(0, 1), so α and β are clipped to be larger than 1. This is enforced by adding an intercepted
exponential linear unit (IcpELU) layer after the encoder, which is defined as

IcpELU(x) =
{
x+ 2, if x > 0,
exp(x) + 1 if x ≤ 0. (B-14)

That is, for (a, b) = PriorProj(AFEncoder(X)) or (a, b) = PostProj(AFEncoder(X,Y )),
(α, β) = (IcpELU(a), IcpELU(b)).

There is two-fold advantage of using Beta distribution instead of Gaussian as average velocity
indicator: (i). Uniform distribution, used in unlearnable prior distribution case, is essentially
Beta distribution with α = β = 1, so the KL divergence computation when the prior is
uniform distribution brings no extra trouble; (ii). No extra process is required to regulate the
output of the Gaussian distribution to a fixed range, like [0,1] in our design, since the Beta is
inherently a bounded distribution.
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KL Divergence The KL divergence between two Beta distributions Beta(α1, β1) and
Beta(α2, β2) is given by

DKL(Beta(α1, β1) ∥ Beta(α2, β2)) = log B(α2, β2)
B(α1, β1) + (α1 − α2)ψ(α1)

+ (β1 − β2)ψ(β1) + (α2 − α1 + β2 − β1)ψ(α1 + β1)
(B-15)

where ψ is the digamma function, which is the derivative of the logarithm of the gamma
function

ψ(x) = d

dx
log Γ(x) = Γ′(x)

Γ(x) . (B-16)

Reparameterization trick A random variable X following a beta distribution, denoted
X ∼ Beta(α, β), cannot be differentiated through in a standard backpropagation. To reparametrize,
the process involves the following steps: The beta distribution can be generated from two in-
dependent gamma distributions. Specifically, if Y1 ∼ Gamma(α, 1) and Y2 ∼ Gamma(β, 1),
then

X = Y1
Y1 + Y2

follows a beta distribution X ∼ Beta(α, β).

The gamma distribution with shape parameter k and scale 1 can be reparametrized using a
standard gamma distribution with shape parameter 1 (which is equivalent to an exponential
distribution). For a sample Z ∼ Gamma(1, 1), the sample from a gamma distribution with
shape k can be obtained by:

Y = G(k) =
k∑

i=1
Zi

where Zi ∼ Exp(1) are independent samples from an exponential distribution.

A more practical approach is to approximate the gamma distribution using existing reparametriza-
tion techniques, such as the inverse of the cumulative distribution function (CDF) method or
leveraging approximations for more complex cases.

Once Y1 and Y2 are obtained through reparametrization, the beta-distributed variable X can
be constructed as:

X = G(α)
G(α) +G(β)

This expression now allows gradients to flow back through the parameters α and β because
the operations involved are differentiable.

B-4-2 Von Mises Distribution

The von Mises distribution, often referred to as the circular normal distribution, is a proba-
bility distribution on the circle. In 2D, it is used to model angular data and is defined by a
mean direction vector µ and a concentration parameter κ.
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Probability density function. The probability density function of a 2D von Mises distri-
bution is given by:

VM(θ | µ, κ) = 1
2πI0(κ) exp

(
κµ⊤θ

)
where:

• θ is a unit vector on the circle.

• µ is the mean direction vector (also a unit vector).

• κ ≥ 0 is the concentration parameter, with larger values of κ indicating stronger con-
centration around the mean direction.

• I0(κ) is the modified Bessel function of the first kind and order zero, which serves as a
normalization constant.

KL Divergence. The Kullback-Leibler divergence between two 2D von Mises distributions
VM(θ | µ1, κ1) and VM(θ | µ2, κ2) is given by:

DKL(VM(θ | µ1,VM(θ | µ2, κ2)) = log
(
I0(κ2)
I0(κ1)

)
+ (κ1µ⊤

1 µ2 − κ2)

This expression measures the divergence or "distance" between the two distributions.

Reparameterization Trick. In variational inference, particularly in variational autoen-
coders (VAEs), the reparameterization trick is used to allow gradients to flow through stochas-
tic nodes. For the 2D von Mises distribution, the reparameterization trick can be applied as
follows:

• First, sample a unit vector z from a uniform distribution over the circle.

• Then, apply the following transformation to obtain a sample θ from the von Mises
distribution:

θ =
µ +

√
1 −

(
κ

∥µ∥

)2
z

∥µ +
√

1 −
(

κ
∥µ∥

)2
z∥

Here, z is independent of the parameters µ and κ, which allows backpropagation through
the sampling process.

This reparameterization allows the von Mises distribution to be used effectively in gradient-
based optimization, enabling the incorporation of angular stochasticity in neural networks.
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