

Delft University of Technology

Introducing the 3DCityDB-Tools Plug-In for QGIS

Agugiaro, Giorgio; Pantelios, Konstantinos; León-Sánchez, Camilo; Yao, Zhihang; Nagel, Claus

DOI
10.1007/978-3-031-43699-4_48
Publication date
2024
Document Version
Final published version
Published in
Recent Advances in 3D Geoinformation Science

Citation (APA)
Agugiaro, G., Pantelios, K., León-Sánchez, C., Yao, Z., & Nagel, C. (2024). Introducing the 3DCityDB-Tools
Plug-In for QGIS. In T. H. Kolbe, A. Donaubauer, & C. Beil (Eds.), Recent Advances in 3D Geoinformation
Science: Proceedings of the 18th 3D GeoInfo Conference (pp. 797-821). (Lecture Notes in Geoinformation
and Cartography). Springer. https://doi.org/10.1007/978-3-031-43699-4_48
Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.1007/978-3-031-43699-4_48
https://doi.org/10.1007/978-3-031-43699-4_48

Green Open Access added to TU Delft Institutional Repository

'You share, we take care!' - Taverne project

https://www.openaccess.nl/en/you-share-we-take-care

Otherwise as indicated in the copyright section: the publisher
is the copyright holder of this work and the author uses the
Dutch legislation to make this work public.

Introducing the 3DCityDB-Tools Plug-In
for QGIS

Giorgio Agugiaro , Konstantinos Pantelios, Camilo León-Sánchez ,
Zhihang Yao , and Claus Nagel

Abstract This paper introduces a new plug-in for QGIS that allows to connect to
the free and open-source 3D City Database to load CityGML data, structured as
classic GIS layers, into QGIS. The user is therefore not required to be a CityGML
specialist, or a SQLexpert, as the plug-in takes care of hiding from the usermost of the
complexity in terms of underlying data model and database schema implementation.
The user can therefore load CityGML thematic “layers” (e.g. for buildings, bridges,
vegetation, terrain, etc.), explore their geometries in 2D and 3D and access and edit
the associated attributes. At the same time, depending on the user privileges, it is
possible to delete features from the database using either normal QGIS editing tools,
or a “bulk delete” tool, also included. The plug-in is composed of two parts, a server-
side one, whichmust be installed in the 3DCityDatabase instance, and the client-side
one, which runs as a QGIS plug-in in strict sense. A GUI-based tool is also provided
for database administrators in order to install/uninstall the database-side part of the
plug-in, and manage users and their privileges. All in all, the 3DCityDB-Tools plug-
in facilitates the access to CityGML data for GIS practitioners from heterogeneous
fields and expertise with the common denominator being the well-known QGIS
environment.

This article was selected based on the results of a double-blind review of the full paper

G. Agugiaro (B) · C. León-Sánchez
3D Geoinformation Group, Faculty of Architecture and the Built Environment, Department of
Urbanism, Delft University of Technology, Julianalaan 134, 2628BL Delft, The Netherlands
e-mail: g.agugiaro@tudelft.nl

C. León-Sánchez
e-mail: c.a.leonsanchez@tudelft.nl

K. Pantelios
Coöperatieve Rabobank U.A. RNT DP Consumer Banking, Croeselaan 18, 3521CB Utrecht, The
Netherlands

Z. Yao · C. Nagel
Virtualcitysystems GmbH, 7 B/C, 10789 Tauentzienstr, Berlin, Germany
e-mail: zyao@vc.systems

C. Nagel
e-mail: cnagel@vc.systems

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
T. H. Kolbe et al. (eds.), Recent Advances in 3D Geoinformation Science, Lecture Notes
in Geoinformation and Cartography, https://doi.org/10.1007/978-3-031-43699-4_48

797

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-43699-4_48&domain=pdf
http://orcid.org/0000-0002-2611-4650
http://orcid.org/0000-0002-9696-7229
http://orcid.org/0000-0003-2582-5896
mailto:g.agugiaro@tudelft.nl
mailto:c.a.leonsanchez@tudelft.nl
mailto:zyao@vc.systems
mailto:cnagel@vc.systems
https://doi.org/10.1007/978-3-031-43699-4_48

798 G. Agugiaro et al.

Keywords 3D city database · QGIS · CityGML · CityJSON · Plug-in

1 Introduction

Semantic 3D city models are being used more and more in a wide variety of appli-
cations (Biljecki et al. 2015) like energy (León-Sánchez et al. 2021; Monteiro et al.
2017; Rossknecht and Airaksinen 2020), flood simulation (Kilsedar et al. 2019),
integration with BIM (Kolbe and Donaubauer 2021; Noardo et al. 2020), micro-
climate simulation (Chenet al. 2020), urbanplanning (Agugiaro et al. 2020), visibility
analyses (Virtanen et al. 2021), traffic simulation (Ruhdorfer et al. 2018), etc.

Given the number and heterogeneity of urban objects to represent and the hetero-
geneity of data to describe them, adoption of standards is beneficial to facilitate
usage and exchange of information depending on the application and the involved
stakeholders. For this purpose, the Open Geospatial Consortium (OGC) has adopted
CityGML (Gröger and Plümer 2012) as an international standard to store and
exchange spatial and non-spatial data related to semantic 3D city models. CityGML
comes as a UML-based conceptual data model and several encodings: two are file-
based and rely on XML or JSON–the latter commonly known as CityJSON (Ledoux
et al. 2019)–, while a third one is based on SQL and is called the 3D City Database
or, for short, 3DCityDB (3DCityDB, 3D City Database Documentation 2023; Yao
et al. 2018). The benefit of using a database encoding is that databases are built to
handle and organise large amounts of data, which semantic 3D city models usually
consist of.

The 3DCityDB is an open-source project currently developed for PostgreSQL,
Oracle and PolarDB/Ganos databases. The database schema implements the
CityGML standard with semantically rich and multi-scale urban objects. The
3DCityDB has been used in production and commercial environments for more
than a decade already, as well as in academia and in several research projects related
to 3D city models. Besides the database schema, the 3DCityDB normally ships
with a suite of additional tools, collectively packaged as “3DCityDB Suite” (2023).
The suite contains–among the rest–a Java-based Importer/Exporter, which allows to
import and export XML-based CityGML and CityJSON files from/to the database,
as well as to further export data in KML, COLLADA, and glTF formats for the
visualisation for example in Google Earth and CesiumJS.

On the one hand, importing CityGML data into the 3DCityDB has the advantage
to avoid direct XML or JSON file parsing by allowing the user to interact directly
with data via “standard” tables and SQL commands. On the other hand, the struc-
ture of the database schema is rather complex and requires sometimes long SQL
queries in order to extract data properly. For example, the current version 4.x of the
3DCityDB consists of a set of 66 tables used mostly to store feature data, but also
to handle relations between them. Attributes referring to the same CityObject (e.g.
a Building, a Bridge, a Road, etc.) are often stored in multiple linked tables. Addi-
tionally, CityGML allows for nested features (e.g. a Room is part of a Building), and

Introducing the 3DCityDB-Tools Plug-In for QGIS 799

one feature can have multiple representations in terms of geometry: for any given
CityObject there are multiple LoDs. In addition, also within the same LoD there
can be different possibilities. For example, a building in LoD2 can be represented
by means of a solid geometry, a multi-surface geometry, or by means of thematic
surfaces (e.g. an aggregation of WallSurfaces, RoofSurfaces, GroundSurfaces, etc.).
On top of that, in the same 3DCityDB instance there can co-exist several “copies” of
a 3D city model. For the sake of simplicity, we will refer to them as “scenarios” in
this paper, but in reality they are stored in different database schemas. The resulting
complexity of the 3DCityDB reflects the rich structure of CityGML, but, eventually,
the level of SQL knowledge required to interact with it might be indeed beyond that
of a common GIS practitioner, de facto limiting access to the data stored therein.
The query shown in Fig. 1 provides a simple example. It retrieves all building roofs
built since 2015 from the 3DCityDB. As it can be seen, several tables must be joined
and geometries must be collected. This implies that a rather advanced knowledge of
SQL and, above all, of the 3DCityDB structure is required to write and successfully
run such query.

Fig. 1 Example of query to the 3DCityDB to extract the buildings roofs built since 2015. A simple
visual example of the result is given in the image in the lower bottom

800 G. Agugiaro et al.

These limitations appear even stronger if one recalls the fact that QGIS (formerly:
Quantum GIS) was originally developed in the early 2000s with the primary goal of
accessing data stored in PostgreSQL/PostGIS.

Overcoming the above-mentioned limitations has been one of the main reasons
behind the development of the 3DCityDB-Tools plug-in: the purpose is to let the plug-
in “hide” and handle the complexity of the 3DCityDB schema(s) in the background,
while providing a user-friendly, GUI-based interface directly from within QGIS.

Just two conceptually similar plug-ins were found during the preliminary research
work. They were tested and analysed before starting with the development of the
3DCityDB-Tools plug-in, in order to collect information and learn from previous
experiences. In general, both are designed to connect to PostgreSQL/PostGIS and
both are still rather limited in the type and extents of offered functionalities, not
documented or apparently not in active development anymore.

The 3DCityDB Explorer plug-in (2023), for example, is available in GitHub, but
last updated in 2021. It allows to load data from the 3DCity Database andmodify the
CityGMLgenericAttributes of the underlying geometries. Data are loaded intoQGIS
considering a combination between a maximum number of features (set by the user)
and the current extents of the map. However, it only works for “Building” features
represented in LoD2 geometries, and no dependent objects (e.g. BuildingInstallation,
Room) can be loaded. Additionally, the layers do not contain the attributes. Finally,
only one “scenario” can be accessed. Lastly, the plug-in doesn’t seem to account for
cases of multiple database users with different privileges.

The 3DCityDB Viewer plug-in 3DCityDB Viewer (2023) is also available in
GitHub, although it seems that the project is not maintained anymore, the last commit
being in 2021, too. The plug-in allows to load data from a 3DCityDB instance. The
user can load “Building” features based on all LoDs, but no children objects. Features
are however loaded only in terms of geometry, so no attributes are available at all.
As with the “3DCityDB Explorer” mentioned before, only tables from the default
citydb schema can be accessed. There is no check on the amount of data to load,
which means that the plug-in attempts to import the entire database. This means
that, in case of huge amounts of data, QGIS might crash. Finally, similarly to the
previous plug-in, it doesn’t seem to support multiple database users with different
access privileges.

Although it does not interact with the 3DCityDB, the CityJSON-Loader plug-in
(2023); Vitalis et al. 2020) was also evaluated, as it allows to load into QGIS and
interact with CityGML data encoded as CityJSON files. The user can select which
features to import, and this applies also to the different LoDs. It is important to note
that the plug-in loads CityJSON files by converting the data into vector layers stored
temporarily inmemory. Thismeans that changes happening in theQGIS environment
(both in geometries or attributes) are not saved to the original CityJSON file. In order
to save changes, users need to export the layers as a new file, however QGIS does
not support a CityJSON driver for writing files. Consequently, the plug-in focuses
mostly on loading data and does not allow for direct data modifications. Lastly, it is
not possible to load data just for a particular area. For big CityJSON files, this could
cause performance and stability issues in QGIS.

Introducing the 3DCityDB-Tools Plug-In for QGIS 801

The results of the preliminary analyses were collected in order to help define the
overall goal, the user and software requirements of the “3DCityDB-Tools” plug-in. In
the remainder of the paper, the main characteristics and functionalities of the plug-in
will be presented and described, followed by a discussion on the current development
status, the current limitations and the planned future improvements.

2 User and Software Requirements

From the user point of view, the plug-in should allow to load data from the 3DCityDB
as “layers”, ideally following the Simple Features for SQL Model (2023). In simple
words, this means that each layer contains a number of objects having each one a
single geometry and one tuple of attributes. Probably, the most well-known example
is represented by a shapefile. In the case of CityGML, this means that for each class–
for example in the case of a Building–there might exist different layers in which
the associated attributes are the same, but the geometries vary depending on the
chosen LoD. As a matter of fact, the number of possible layers that can be generated
following this approach is close to 600, therefore, from the software point of view,
this requires some logic to deal with these numbers.

Just to exemplify this concept, a CityGML building object might be equivalent to
several layers that follow the Simple Features for SQLModel. If the attributes can be
considered to be always the same, this does not apply however to its geometries. A
building could be represented bymeans of its footprint (i.e. as LoD0), or as a prismatic
geometry (i.e. as LoD1), or as a geometry that includes the simplified shape of the
roof (i.e. as LoD2), or a more detailed one (i.e. LoD3), etc. Additionally, a building
might also be decomposed into its component surfaces, e.g. as a set of Ground-,Wall-
and RoofSurfaces. Again, each thematic surface can be associated with geometries
at different levels of detail. Allowing the user to easily choose which geometry to
use and work with (also depending on the available ones in the database), has been
one of the main challenges (and goals) of the 3DCityDB-Tools plug-in.

Additionally, a 3D city model can be extremely large and therefore it may be not
possible to load it completely in memory without crashing the client. This implies
that some logic is also required at software level to limit or control the amount of
data that the user can select and load into QGIS. As a result, this has been another
goal to pursue when developing the plug-in.

Furthermore, since data are already stored in the database, the user should be
allowed to perform typical database operations, i.e. inserts, updates, and deletions.
In the case of the 3DCityDB, and depending on the type of privileges granted to the
user, it was decided that:

• No insert operations are allowed at all. Nevertheless, inserting newCityGML data
can still be carried out as usual and at any time by means of the existing Importer/
Exporter tool;

802 G. Agugiaro et al.

• Attributes can be edited and updates are then stored back to the database, but
geometries cannot be modified;

• Features can be deleted.

Finally, unlike other existing plug-ins, the user should be given the possibility to
access different citydb schemas (aka “scenarios”).

This set of above-mentioned user requirements has contributed to the definition
of the software requirements, as well as the overall structure of the plug-in. First and
foremost, the plug-in has been developed based on the 3DCityDB version 4.x for
PostgreSQL/PostGIS, but avoiding–as far as possible–technological lock-ins in case
it might be extended in future to support Oracle or other databases. The 3DCityDB
4.x supports CityGML v. 1.0 and 2.0, but not the recently released CityGML 3.0
(Kutzner et al. 2020).

Regarding QGIS, the Long Term Release v. 3.22 (first released in autumn 2021)
has been chosen, given its maturity–although the plug-in works also on the latest
QGIS LTR v. 3.28 (as of summer 2023) without problems. The reason for choosing
QGIS as the target front-end of the plugin is due to the fact that it is a well-known
and established open-source software, widely used by a heterogeneous and steadily
growing community. In addition, since it’s very first releases in the early 2000s it
has a native support for PostgreSQL/PostGIS. Furthermore, it has a strong 2D and
some 3D visualisation functionalities, although the latter ones are still a bit unstable.
Last but not least, it can be extended with Python-based plug-ins, for which several
freely available examples and a fairly good documentation already exist.

3 The 3DCityDB-Tools Plug-In

In general, the 3DCityDB-Tools plug-in is composed of two main parts. The first
is the server-side one (also called “QGIS Package”) and it is written completely
in PL/pgSQL, the procedural language of PostgreSQL. The “QGIS Package”
must be installed on top of a 3DCityDB database instance in order to enable the
communication and data exchange between the 3DCityDB and QGIS.

The second, client-side part is written in Python 3.9 and uses the QGIS Python-
based API in order to communicate with the host application. The Qt library is used
for all user interface elements, while the dialogs are designed in Qt Creator (Qt
2023), which is also shipped with QGIS. Except for the server-side part, there are no
additional software requirements for the client-side to work, as all aforementioned
libraries are provided by the QGIS installation. The overall structure is represented
in Fig. 2.

More in detail, the “QGIS Package” is responsible to create andmanage the layers,
the users and their privileges. In particular, each layer consists in a database view
that links all necessary tables containing the feature attributes with a materialized
view containing the geometries for the selected LoD. A simplified example is given
in Fig. 3, based on the class “Building”. In the 3DCityDB, the attributes are stored in

Introducing the 3DCityDB-Tools Plug-In for QGIS 803

Fig. 2 Overall structure of the 3DCityDB-Tools plug-in, with a server-side part for PostgreSQL
and a client-side one for QGIS

tables CITYOBJECT and BUILDING. These two tables are linked together using as
primary/foreign key the ID of the “Building” object and then linked to the respective
materialized view containing a specific LoD geometry. A set of naming conventions
for prefixes and suffixes has been defined and implemented that allows to identify
each layer uniquely within the same 3DCityDB instance. At the same time, triggers
and trigger functions have been developed to make each view updatable (as far as
the attributes are concerned).

The reason for choosing materialized views for the geometries is due to the
complexity of how geometries are decomposed and stored in the 3DCityDB. A
detailed explanation of how the CityGML geometry model is mapped to the
3DCityDB is beyond the scope of this paper, so the reader is invited to refer to the
online documentation for a better understanding. In short, regardless of the nature of
the original GML geometry (e.g. solid or multi-surface), all geometries are decom-
posed and stored as simple 3D polygons, whereas information about their hierarchy
and aggregation is also preserved. Preliminary performance tests have shown that
querying (and thus aggregating again) the 3D polygons directly from the corre-
sponding 3DCityDB table is rather time-consuming. As a consequence, the materi-
alized views offer instead a good compromise to allow for a better user experience

804 G. Agugiaro et al.

Fig. 3 Simplified representation of how layers are composed for the 3DCityDB-Tools plug-in
in the case of Building objects. Tables containing building attributes (here: CITYOBJECT and
BUILDING) are linked to the corresponding materialized views with specific LoD geometries

at the cost of some storage space and the time needed to generate/refresh them upon
layer creation. In addition, another advantage of relying on materialized views is that
also implicit geometries can be created in advance and used as “normal” geometries.
In CityGML, implicit geometries can be used to represent features (e.g. a street lamp,
a traffic sign, a bus stop, etc.) by means of “template geometries” that must then be
instantiated, roto-translated and scaled by means of a 3D affine transformation.

In order to cope with the large number of layers that may result from all possible
combinations, a number of checks has been added and implemented. First, layer
creation functions are grouped according to theCityGMLmodules (Building,Bridge,
Vegetation, Transportation, Terrain, etc.) and can be invoked individually. Therefore,
if a user is only interested in working with building data, only those layers will be
created. Second, during the layer creation process, a check is performed to count
the number of existing features for that layer. If, for example, there are no data at
all regarding Rooms or BuildingInstallations in the database, then those layers will
not be generated. The same goes also for LoDs: layers are created only if data (here:
geometries) are available in a specific LoD.

Finally, the user can define the size of the area for which the layers will be gener-
ated. This means that, especially with very large city models, it is not necessary to
generate materialized views of the whole city model, but only within a user-selected,
smaller area. This has the benefit of reducing the storage space consumed by the
materialized view and, more importantly, the time needed to refresh the materialized
views.

The client-side part of the plug-in allows the user to interact with the “QGIS
Package” on the server via a set of GUI-based dialogs, and to interact with the
data in QGIS itself. Currently, as of version 0.8.2, the client-side part offers three
GUI-based tools:

• The “QGIS Package Administration” is used to install the server-side part of
the plug-in, as well as to set up database user access and user privileges;

• The “Layer Loader” allows the user to load and interact with layers in the 3D
City Database directly from QGIS

Introducing the 3DCityDB-Tools Plug-In for QGIS 805

• The “Bulk Deleter” can be used to bulk delete features from the database, either
all at once, or by means of spatial and feature-related filters.

The “QGIS Package Administration” is meant to be used only by a database
administrator. Figures 4, 5 and 6 serve as a visual reference as the following text will
reference certain parts of the GUI dialog indicated by letters. Once the connection
is set up (a), the database administrator can perform different operations. The first
time, the installation of the “QGIS Package”must be carried out (b). For every action,
status information is provided in the Connection status box (c). Once the server-side
part is installed, the user installation box is activated. It is now possible to choose
which database users are allowed to connect to the selected 3DCityDB database
instance from the plug-in. This is achieved by adding users to a specific database
user group (d). For each group member, the database administrator has to set up
the server-side configuration by creating a user schema (e) which will contain the
user’s layers and settings. Finally, database privileges (read-only or read and write)
(f) can be granted or revoked for each user and for each existing citydb schema (or
“scenario”) (g). Once the database administrator has completed the setup, the GUI
dialog can be closed. The client-side plug-in can now be used–provided the user is
entitled to.

The “Layer Loader” GUI dialog can be loaded by any user. Again, Figs. 7 and 8
will serve as a visual reference. Once the user has connected to a 3DCityDB instance,
the list of citydb schemas (or “scenarios”) is shown, and information is provided
regarding the access privileges (read-only: “ro”, or read and write: “rw”) (h). Once
the user selects the citydb schema to work with, the extents of the whole dataset
are displayed in the map canvas. It is possible to set the area extents for which the
layers will be generated (i), those are then displayed by means of the blue bounding
box. Additionally, the user can choose whether the layers have to be created for all
CityGML modules, or only for some of them (j). Afterwards, the next operation is
the creation of the layers. Materialized views and the updatable views needed for
each layer are set up, and materialized views can be subsequently refreshed. If all
requirements are met (as indicated in the Connection status box at the bottom of the
dialog), the user can move on to the next tab, where layers will be eventually loaded
into QGIS.

For the Layers tab, Fig. 9 will provide visual guidance to the reader when it
comes to the principal operation to be carried out. First, the user is given the chance
to further reduce the extents of the data to be imported into QGIS (l). These extents
are represented by means of a green bounding box. By default, the green bounding
box coincides with the blue one defined before, but the user is given the option to
change it. Successively, the user filters the layers to be selected by first defining the
CityGMLmodule and the LoD (m). These drop down menus are updated depending
on the actual data available within the green bounding box. Finally, the filtered list
of available layers is generated, from which the user can check which layer(s) will
be eventually loaded into QGIS (n).

Once the layers are imported into theQGISmainwindow, the user can interactwith
them as “normal” GIS layers and perform the usual set of operations. A hierarchical

806 G. Agugiaro et al.

Fig. 4 Overview of the connection and installation operations within the “QGIS Package
Administration” GUI dialog in the client-side part of the plug-in

Introducing the 3DCityDB-Tools Plug-In for QGIS 807

Fig. 5 Overview of the user management operations within the “QGIS Package Administration”
GUI dialog in the client-side part of the plug-in

808 G. Agugiaro et al.

Fig. 6 Overview of the user privileges operations within the “QGIS Package Administration” GUI
dialog in the client-side part of the plug-in

Table of Contents (Layers tab) is generated and updated upon each layer import, it
offers an overview of the loaded layers ordered according to the CityGML module
and LoD. An example is provided in Fig. 10. The user can select features, and access
their attributes, either via the table view, or by means of customised attribute forms
that present the feature’s attributes, but also contain nested tables related to CityGML
generic attributes, addresses and external references. If the user is allowed to edit

Introducing the 3DCityDB-Tools Plug-In for QGIS 809

Fig. 7 Overview of the connection operations within the “User connection” tab of the “Layer
Loader” GUI dialog in the client-side part of the plug-in

data, the attribute forms perform a series of checks to reduce errors during data
entry. For example, enumeration values are converted to drop down menus and, in
case of invalid input, the user is informed also visually. For example, in Fig. 11
an error is shown for the number of storeys below ground, as the value must be a
positive integer, and in the case of the storey height value, the units of measure are
missing. Finally, the user can visualise the layers in 3D using either the QGIS 3D
Map or the plug-in Qgis2threejs Exporter (Qgis2threejs 2023), as shown in Fig. 12.
It must be said however that 3D visualisation support is still rather unstable in QGIS,
especially in the case of the 3D Map which might crash while loading the 3D layers
and rendering the scene. The Qgis2threejs Exporter is a bit more stable, however

810 G. Agugiaro et al.

Fig. 8 Overview of the layer generation operations within the “User connection” tab of the “Layer
Loader” GUI dialog in the client-side part of the plug-in

artefacts are sometimes still visible with some 3D geometries. These limitations will
be discussed later on in the paper.

The third and last available GUI dialog of the 3DCityDB-Tools plug-in is the
“Bulk Deleter”. It is meant to be used by a user having at least read-and-write
privileges. Figures 13 and 14 provide a visual reference of the following text. Once
the user has connected to a 3DCityDB instance, the list of available citydb schemas
(or “scenarios”) is shown in a similar way as seen before, however only those citydb
schemas are listed for which read-and-write privileges are granted. Once the citydb
schema is selected (o), the user can delete features in twoways. The first is to clean up
the whole citydb schema (p). In other words all tables are truncated and the schema
is completely emptied. Alternatively, the user can perform a selection on the type

Introducing the 3DCityDB-Tools Plug-In for QGIS 811

Fig. 9 Overview of the operations within the “Layers” tab of the “Layer Loader” GUI dialog in
the client-side part of the plug-in

of features to delete, choosing either from a list of available CityObject modules, or
from a list of available CityGML top-class features (q). Additionally, it is possible to
set the area extents insidewhich features will be deleted. Such extents are represented
by a red bounding box. The information presented in the drop downmenus is updated
dynamically.

812 G. Agugiaro et al.

Fig. 10 Example of layers loaded in QGIS. The hierarchical Table of Contents (Layers tab on the
left) is generated and updated automatically upon layer import. Attributes can be accessed via the
standard attribute table view

4 Tests and Current Limitations

The plug-in has been tested with different datasets varying both in terms of size
(geographical extents and number of features) and in terms of available CityGML
modules and classes. Table 1 contains an overview of themain characteristics of such
test datasets. All datasets have been previously imported into a 3DCityDB instance
using the Importer/Exporter. Tests have been conducted to check whether layers can
be generated correctly, the attributes can be retrieved, displayed and updated, the
geometries can be correctly visualised in 2D and in 3D, the features can be deleted.
At the same time, the plug-in was tested on a variety of software configurations
(Windows, Linux, MacOS) and different PostgreSQL/PostGIS versions.

Tests conducted so far show that, in general, the back-end part of the plug-in
works as expected with all datasets used. Of course, the larger the area is for which
the layers are created, the longer the time will be to refresh the materialized views
associated to the layers. To test the most time-consuming use case, all layers were
generated for all datasets for the whole dataset (e.g. maximum extents). As results
show in Table 2, both operations to generate the layers and to refresh the underlying

Introducing the 3DCityDB-Tools Plug-In for QGIS 813

Fig. 11 Example of a customised attribute form used in QGIS to present all attributes of a feature.
If the user is allowed to edit the attributes, checks are carried out interactively to avoid errors during
data input. The user is notified also visually. External references, addresses and generic attributes
are also supported and can be added, deleted or updated

materialized views could always be carried out in acceptable times from the user
perspective. Obviously, selecting smaller extents leads to shorter times.

When it comes to the front-end, regardless of the extent of the layers (i.e. the blue
bounding box), the ability to further reduce the size of the data to load into QGIS
(i.e. the green bounding box) is useful to guarantee a good user experience. Using
the front-end part of the plug-in in QGIS, the user can therefore:

• Visualize and interactively define an area of interest for which layers will be
created;

• Choose and select for which CityGML module(s) the layers will be created;
• Further select for which features and for which LoD layers can be selected and

loaded into QGIS;
• Visualize data in 2D and 3D using QGIS (or the Qgis2threejs plug-in);
• Access feature attributes and eventually edit them, if sufficient privileges are

granted.

Usability tests have been carried out with heterogeneous beta testers and the feed-
back collected has been so far positive, proving that the user interaction with the
3DCityDB has become indeed easier than before. Some feedback suggestions have
also been used to improve the design of the GUI dialogs. There are however still

814 G. Agugiaro et al.

Fig. 12 Example of 2D and 3D visualisation (using QGIS 3D Map View)

some limitations that currently apply to the 3DCityDB-Tools plug-in. For example
no raster-based layers from the 3DCityDB are supported. This applies basically to
the Relief module, and more specifically to the RasterRelief class. Additionally, the
CityGMLmoduleCityObjectGroup is not supported by the “LayerLoader”, although
it is supported by the “Bulk Deleter”. Currently, no CityGML appearances are
supported, i.e. neither colours nor textures can be read from the 3DCityDB and
applied to the loaded features. This is however in part due to the limitations imposed
by the capabilities of QGIS, which only supports simple or rule-based coloured
surfaces for polygon layers. Finally, no CityGML Application Domain Extensions
(ADEs) are supported at the moment.

Although it is not a limitation related to the plug-in itself in a strict sense, a major
drawback experienced so far by the users is due to some 3D visualisation problems
in QGIS which affect the possibility to visualize CityGML data in 3D. Therefore–for
the sake of completeness–theywill be briefly reported here. As amatter of fact, trying
to visualise layers in 3D may lead, from time to time, to visualisation artefacts (e.g.
geometries showing spikes) or to crashes of QGIS altogether. This happens when
using both the default QGIS 3D Map and–less frequently–the Qgis2threejs plug-in.
Some tests were carried out to check the validity of the geometries. As shown for
example in Fig. 15, while QGIS shows artefacts (1) (please note the spikes in the
WallSurface geometries, shown in the upper part of the image; the roofs are shown
only in the lower part), the same (valid) WallSurface geometries can be successfully

Introducing the 3DCityDB-Tools Plug-In for QGIS 815

Fig. 13 Overview of the connection and database clean-up operations within the “Bulk Deleter”
GUI dialog in the client-side part of the plug-in

rendered in Safe Software’s FME Data Inspector (2) or Google Earth (3). Further
tests were conducted exporting the datasets to other formats, such as GeoPackage. In
QGIS, the same issues still apply, nomatter whether data come from PostGIS or from
aGeoPackage file. The reason for such problems is not clear at themoment and needs
therefore further investigation, however a first hypothesis is that the reason could be
how geometries stored as well-known binary are then converted before triangulation
and rendering, with possible loss of precision in the geometry coordinates happening
during the process.

816 G. Agugiaro et al.

Fig. 14 Overview of the feature selection operations within the “Bulk Deleter” GUI dialog in the
client-side part of the plug-in

5 Conclusions and Outlook

This article has presented and described the design and the main functionalities
of the 3DCityDB-Tools plug-in for QGIS. The plug-in is already available on
GitHub (2023) and on the official QGIS plug-ins repository (2023). The plug-in
was conceived and developed to facilitate management and visualisation of data
stored in the 3D City Database, which currently supports CityGML v. 1.0 and 2.0.
As semantic 3D city models tend to be huge datasets and are generally best managed
in spatial databases, the main idea behind the development of this plug-in is to facil-
itate access and use of CityGML/CityJSON data for those practitioners that lack a

Introducing the 3DCityDB-Tools Plug-In for QGIS 817

Table 1 List of datasets used to test the “3DCityDB-Tools” plug-in, and their main properties

Dataset
[source]

Number of
CityObjects

Database
schema size

CityGML modules LoDs

FZK Haus
(2023)

120 5 MB Building 0, 1, 2,
3, 4

Railway (2023) 235 23 MB Bridge, building, CityFurniture,
generics, relief, transportation, tunnel,
vegetation, WaterBody

3

Delft (2023) 287,242 2.4 GB Building 0, 1, 2

Amsterdam
(2023)

319,117 4 GB Bridge, buildings, generics, LandUse,
transportation, vegetation, WaterBody

1

Rijssen-Holten
(2023);
León-Sánchez
et al. (2022)

827,105 1.8 GB Building, relief, vegetation 2

Den Haag 3,143,353 4 GB Building 1, 2

Vienna (2023);
Agugiaro
(2016)

7,512,795 23 GB Building, generics, LandUse,
vegetation, relief

1, 2

Table 2 Time required to
generate the layers and to
refresh them, respectively.
Times shown in this table are
measured on a Dell Latitude
7490 compute with Core
i7-8650U @ 1.90 GHz CPU,
32 GB RAM and 2 TB SSD,
and Windows 10 21H2, QGIS
v. 3.22 LTR, PostgreSQL v.
14 and PostGIS v. 3.2. Each
time value is the average of
three consecutive
measurements

Dataset Layer generation
(s.s)

Layer refresh
(mm:ss.s)

FZK Haus 2.3 00:00.4

Railway 10.4 00:01.4

Delft 6.5 01:12.1

Amsterdam 11.4 01:51.4

Rijssen-Holten 11.3 01:15.2

Den Haag 14.3 02:05.9

Vienna 33.5 13:38.7

Fig. 15 Examples of artefacts generated during 3D visualisation in QGIS (via Qgis2threejs plug-
in). The WallSurfaces of the building highlighted in (1) are shown with and without RoofSurfaces.
Some artefacts while rendering the WallSurfaces can be noticed. Such artefacts are however not
present when visualising the same WallSurface geometries in (2) (FME Data Inspector) and in (3)
(Google Earth, after exporting to KML using the Importer/Exporter)

818 G. Agugiaro et al.

deep knowledge of the international standardOGCCityGMLdatamodel, and/or have
limited experience with SQL/Spatial-RDBMSs in general. For this reason, a view/
layer-based concept was conceived and implemented in order to bridge commonGIS
practitioners and complex 3D city models. At the same time, an approach to allow
different users to access the 3D city model database was realised.

As a result, the plug-in allows to connect to local or remote instances of 3DCityDB
for PostgreSQL/PostGIS and to load data as “classical” layers into QGIS. The user
can then interact with them as usual, i.e. perform analyses, work with associated
attributes, edit and update them, explore and visualise the data. Additionally, data in
the database can be deleted, either using classical QGIS editing tools, or bulk-wise.

From the internal tests carried out so far, and from the feedback received from
some early adopters and external testers, the plug-in seems to work well and, most
importantly, it can be used not only by experts but also by the “target user” it was
originally developed for: GIS practitioners without deep knowledge of CityGML or
databases. The complexity of CityGML, and by reflection of the 3DCityDB structure,
is sufficiently “hidden” to leverage access to CityGML/CityJSON data to a wider
number of users interested in spatial urban analytics.

A simple visual example of the main contribution provided by the 3DCityDB-
Tools plug-in is presented in Figs. 16 and 17: the same query shown in Fig. 1 is now
run either using the “QGIS Package” (i.e. with circa 50% less SQL code lines), or
directly from QGIS using only GUI tools (i.e. without any need to write SQL).

More in general, the added value of choosing QGIS to develop this plug-in is
manifold. First and foremost, it is a free and open-source platform which is used by
a large and steadily growing amount of heterogeneous users. If, on the one hand and
as described in the previous sections, there exist still some issues mainly regarding
the 3D visualisation and support for textures, on the other hand QGIS comes with a
plethora of processing and data conversion tools “out of the box”–without counting
the number of already available plug-ins developed by the community. For example,

Fig. 16 Using the “QGIS Package”, i.e. the server-side part of the 3DCityDB-Tools plug-in, the
same query as in Fig. 1 can now be written in 16 lines (instead of 30)

Introducing the 3DCityDB-Tools Plug-In for QGIS 819

Fig. 17 Using the client-side part of the 3DCityDB-Tools plug-in, the same query as in Fig. 1 can
now be constructed and run using the GUI of QGIS without writing any SQL

QGIS already incorporates SAGA GIS (2023) and GRASS GIS (2023) functions
and the ability to further transform data formats through GDAL (2023).

Although the current development status of the plug-in already covers most of the
originally envisioned characteristics, there are still a number of further improvements
that are planned for the future. Besides further testing, we are looking forward to
more user feedback so that the overall plug-in structure (functionalities, GUI dialogs,
etc.) can be possibly improved. Looking further, inclusion of CityGML Application
Domain Extension (ADE) support is planned despite probably being among the
major challenging ones, as it will require the revision and extension of the current
implementation for both the server-side and the client-side part in order to cope with
new ADE classes, data types, and relations. This is however still subject of research
at TUDelft with preliminary results expected during the second half of 2023. Finally,
the upcoming version 5.0 of the 3DCityDB will support CityGML 3.0. Therefore it
will be a valuable addition to investigate–and possibly integrate–support for it also
in the “3DCityDB-Tools” plug-in.

Acknowledgements The authors would like to thank María Sánchez Aparicio for the thorough
testing of the plug-in and the feedback provided to improve its usability, and Tendai Mbwanda for
the contribution to the initial development of the “Bulk Deleter”.

References

3DCityDB, 3DCityDatabaseDocumentation.Retrieved fromhttps://3dcitydb-docs.readthedocs.io.
Accessed on 1 Jul 2023

3DCityDBExplorer. Retrieved from https://github.com/3dcitydb/3dcitydb-qgis-explorer. Accessed
on 1 Jul 2023

https://3dcitydb-docs.readthedocs.io
https://github.com/3dcitydb/3dcitydb-qgis-explorer

820 G. Agugiaro et al.

3DCityDB Suite. Retrieved from https://github.com/3dcitydb/3dcitydb-suite. Accessed on 1 Jul
2023

3DCityDB-Tools. Retrieved from https://github.com/tudelft3d/3DCityDB-Tools-for-QGIS.
Accessed on 1 Jul 2023

3DCityDB Viewer. Retrieved from https://github.com/aberhamchristomus/3DCityDB-Viewer.
Accessed on 1 Jul 2023

Agugiaro G (2016) First steps towards an integrated CityGML-based 3D model of Vienna. In:
ISPRS annals of the photogrammetry, remote sensing and spatial information sciences, 2016
XXIII ISPRS congress, Prague, Czech Republic, vol III-4, pp 139–146

Agugiaro G, González FGG, Cavallo R (2020) The city of tomorrow from… the data of today.
ISPRS Int J Geo-Inf 9(9, 554):42

Amsterdam Dataset. Retrieved from https://3d.bk.tudelft.nl/projects/geobim-benchmark/amster
damgml.html. Accessed on 1 Jul 2023

Biljecki F, Stoter J, Ledoux H, Zlatanova S, Çöltekin A (2015) Applications of 3D city models:
state of the art review. ISPRS Int J Geo–inf 4:2842–2889

Chen S, ZhangW,Wong NH, Ignatius M (2020) Combining CityGML files and data-driven models
for microclimate simulations in a tropical city. Build Environ 185:107314. https://doi.org/10.
1016/j.buildenv.2020.107314

CityJSON Loader. Retrieved from https://github.com/cityjson/cityjson-qgis-plugin. Accessed on 1
Jul 2023

Delft Dataset. Retrieved from https://3dbag.nl/en/download. Accessed on 1 Jul 2023
Den Haag Dataset. Retrieved from https://ckan.dataplatform.nl/dataset/3d-stadsmodel-den-haag-

2021-citygml
FZK Haus Dataset. Retrieved from https://www.citygmlwiki.org/index.php?title=KIT_CityGML_

Examples. Accessed on 1 Jul 2023
GDAL. Retrieved from https://gdal.org. Accessed on 1 Jul 2023
GRASS. Retrieved from https://grass.osgeo.org. Accessed on 1 Jul 2023
GrögerG, PlümerL (2012)CityGML–interoperable semantic 3Dcitymodels. ISPRS JPhotogramm

Remote Sens 71:12–33. https://doi.org/10.1016/j.isprsjprs.2012.04.004
Kilsedar CE, Fissore F, Pirotti F, Brovelli MA (2019) Extraction and visualization of 3D building

models in urban areas for flood simulation. In: The international archives of the photogram-
metry, remote sensing and spatial information sciences, 2019 GEORES 2019–2nd international
conference of geomatics and restoration, Milan, Italy, vol XLII-2/W11, pp 669–673. https://doi.
org/10.5194/isprs-archives-XLII-2-W11-669-2019

Kolbe TH, Donaubauer A (2021) Semantic 3D city modeling and BIM. In: Shi W, Goodchild
MF, Batty M, Kwan MP, Zhang A (eds) Urban informatics. The Urban Book Series. Springer,
Singapore, pp 609–639. https://doi.org/10.1007/978-981-15-8983-6_34

Kutzner T, Chaturvedi K, Kolbe TH (2020) CityGML 3.0: new functions open up new applications.
PFG 88:43–61. https://doi.org/10.1007/s41064-020-00095-z

Ledoux H, Ohori KA, Kumar K, Dukai B, Labetski A, Vitalis S (2019) CityJSON: a compact and
easy-to-use encoding of the CityGML data model. Open Geospatial Data Softw Stand 4(4):1–12

León-SánchezC,Giannelli D,AgugiaroG, Stoter J (2021) Testing the new3Dbag dataset for energy
demandestimationof residential buildings. In:The international archives of the photogrammetry,
remote sensing and spatial information sciences, 6th international conference on smart data and
smart cities, Stuttgart, Germany, vol XLVI-4/W1-2021, pp 69–76

León-Sánchez C, Agugiaro G, Stoter J (2022) Creation of a CityGML-based 3D city model testbed
for energy-related applications. In: The international archives of the photogrammetry, remote
sensing and spatial information sciences, 7th international conference on smart data and smart
cities (SDSC), Sydney, Australia, vol XLVIII-4/W5-2022, pp 97–103

Noardo F, Ellul C, Harrie L, Overland I, Shariat M, Ohori KA, Stoter J (2020) Opportunities and
challenges for GeoBIM in Europe: developing a building permits use-case to raise awareness
and examine technical interoperability challenges. J Spat Sci 65(2):209–233. https://doi.org/10.
1080/14498596.2019.1627253

https://github.com/3dcitydb/3dcitydb-suite
https://github.com/tudelft3d/3DCityDB-Tools-for-QGIS
https://github.com/aberhamchristomus/3DCityDB-Viewer
https://3d.bk.tudelft.nl/projects/geobim-benchmark/amsterdamgml.html
https://doi.org/10.1016/j.buildenv.2020.107314
https://github.com/cityjson/cityjson-qgis-plugin
https://3dbag.nl/en/download
https://ckan.dataplatform.nl/dataset/3d-stadsmodel-den-haag-2021-citygml
https://www.citygmlwiki.org/index.php?title=KIT_CityGML_Examples
https://gdal.org
https://grass.osgeo.org
https://doi.org/10.1016/j.isprsjprs.2012.04.004
https://doi.org/10.5194/isprs-archives-XLII-2-W11-669-2019
https://doi.org/10.1007/978-981-15-8983-6_34
https://doi.org/10.1007/s41064-020-00095-z
https://doi.org/10.1080/14498596.2019.1627253

Introducing the 3DCityDB-Tools Plug-In for QGIS 821

QGISPlugins.Retrieved fromhttps://plugins.qgis.org/plugins/citydb-tools/.Accessed on1 Jul 2023
Qgis2threejs. Retrieved from https://github.com/minorua/Qgis2threejs. Accessed on 1 Jul 2023
Qt. Retrieved from https://www.qt.io/product/development-tools. Accessed on 1 Jul 2023
Railway Dataset. Retrieved from https://nervous-ptolemy-d29bcd.netlify.app/samplefiles/.

Accessed on 1 Jul 2023
Rijssen-Holten Dataset. Retrieved from https://github.com/tudelft3d/Testbed4UBEM. Accessed on

1 Jul 2023
Rossknecht M, Airaksinen E (2020) Concept and evaluation of heating demand prediction based

on 3D city models and the CityGML energy ADE—case study Helsinki. ISPRS Int J Geo–inf
9(602):1–19. https://doi.org/10.3390/ijgi9100602

Ruhdorfer R, Willenborg B, Sindram M (2018) Coupling of traffic simulations and semantic 3D
city models. gis.Science, vol 3

SAGA. Retrieved from https://saga-gis.sourceforge.io. Accessed on 1 Jul 2023
SFS, Simple Feature for SQL Model. Retrieved from https://www.ogc.org/standard/sfs/. Accessed

on 1 Jul 2023
Monteiro CS, Pina A, Cerezo C, Reinhart C, Ferrão P (2017) The use of multi-detail building

archetypes in urban energy modelling. Energy Procedia 111:817–825. ISSN 1876–6102
Vienna dataset. Retrieved from https://www.wien.gv.at/stadtentwicklung/stadtvermessung/geo

daten/viewer/geodatendownload.html. Accessed on 1 Jul 2023
Virtanen J-P, Jaalama K, Puustinen T, Julin A, Hyyppä J, Hyyppä H (2021) Near real-time semantic

view analysis of 3D city models in web browser. ISPRS Int J Geo-Inf 10(138):1–23. https://doi.
org/10.3390/ijgi10030138

Vitalis S, Ohori KA, Stoter J (2020) CityJSON in QGIS: development of an open-source plugin.
Trans GIS 24(5):1147–1164. https://doi.org/10.1111/tgis.12657

Yao Z, Nagel C, Kunde F, Hudra G, Willkomm P, Donaubauer A, Adolphi T, Kolbe TH (2018)
3DCityDB–a 3D geodatabase solution for the management, analysis, and visualization of
semantic 3D city models based on CityGML. Open Geospatial Data Softw Stand 3(5):1–26.
https://doi.org/10.1186/s40965-018-0046-7

https://plugins.qgis.org/plugins/citydb-tools/
https://github.com/minorua/Qgis2threejs
https://www.qt.io/product/development-tools
https://nervous-ptolemy-d29bcd.netlify.app/samplefiles/
https://github.com/tudelft3d/Testbed4UBEM
https://doi.org/10.3390/ijgi9100602
https://saga-gis.sourceforge.io
https://www.ogc.org/standard/sfs/
https://www.wien.gv.at/stadtentwicklung/stadtvermessung/geodaten/viewer/geodatendownload.html
https://doi.org/10.3390/ijgi10030138
https://doi.org/10.1111/tgis.12657
https://doi.org/10.1186/s40965-018-0046-7

	 Introducing the 3DCityDB-Tools Plug-In for QGIS
	1 Introduction
	2 User and Software Requirements
	3 The 3DCityDB-Tools Plug-In
	4 Tests and Current Limitations
	5 Conclusions and Outlook
	References

