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SUMMARY

In this research, we consider neural network-algorithms for option pricing. We use the
Black-Scholes model and the lifted Heston model. We derive the option pricing partial
differential equation (PDE), which we solve with a neural network, and the conditional
characteristic function of the stock price which leads to the option price with the COS
method. We consider two neural network-algorithms: the Deep Galerkin Method (DGM)
and the Time Deep Nitsche Method (TDNM). We extend the TDNM to be able to solve
the option pricing PDE by splitting the PDE operator in a symmetric part and an asym-
metric part. The splitting method is more stable than transforming the Black-Scholes
option pricing PDE to the symmetric heat equation. The DGM can predict options prices
perfectly in the Black-Scholes model even when r and σ are added as variables to the
neural network. In the lifted Heston model, the DGM can predict option prices perfectly
for small dimensions, but has larger errors for larger dimensions. The TDNM is as good
as DGM for small times to maturity and volatilities, but has larger errors for large times
to maturity and volatilities.
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PREFACE

Once trained, the output of a neural network is an analytical function of the input, allow-
ing fast option pricing even in high dimensions. In this research, neural networks-based
algorithms for option pricing are developed. We are able to compute option prices in the
Black-Scholes model and the lifted Heston model with few dimensions.
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1
INTRODUCTION

Every day, large amounts of financial derivatives trade at high frequency. One of the most
popular derivatives are stock options. Many people and institutions are busy with mod-
elling the prices of these options. The first successful attempt was by Black and Scholes
in 1973 [25]. The big advantage of their model is that it has an analytical solution. How-
ever, the prices computed in the model are inconsistent with market prices.

Therefore, more realistic methods have appeared since. A more realistic class of fi-
nancial models are stochastic volatility models such as the Heston model [19]. In con-
trast to the Black-Scholes model, most of these more realistic models do not have an an-
alytical solution. Therefore, efficient numerical methods are necessary to rapidly price
these derivatives. A first class of methods uses the often computable characteristic func-
tion of the stock price and transforms this function to the option price. Examples of this
kind of method are the Fourier method [8] and the COS method [10]. A second class of
methods uses the Feynman–Kac theorem to write the value of an option as the solution
of a partial differential equation (PDE), which can be computed with finite difference or
Monte Carlo methods [8].

Although some of these methods can calibrate option prices fast, they become slower
as the number of dimensions increases. The slowing is due to the exponential growth of
the number of grid points with the number of dimensions: this is the so-called curse of
dimensionality (CoD). Furthermore, for each set of model parameters, the option price
has to be calculated again.

A promising alternative are neural network algorithms. Neural networks do not suf-
fer from the CoD, since they do not use a grid. Alternatively, neural networks sample
randomly from the domain to train matching each set of input variables to the correct
output. Once a neural network finished training, the output is an analytical function
of the input. The price of an option for certain input variables can therefore be calcu-
lated fast. Furthermore, the number of input variables can be increased without making
the network much slower. Therefore, neural network algorithms are suitable for high-
dimensional problems. It is even possible to add the model parameters as input vari-
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ables to the neural network. Then the neural network is able to compute the option
price for random model parameter choices.

Neural networks received increasing attention in recent years. Some recently devel-
oped applications of neural networks are computing model-free price bounds for finan-
cial derivatives [23]; optimal control for stochastic optimal control problems [5, 26] and
approximating derivative prices under Lévy-processes [17]. Neural networks can solve
high-dimensional PDEs in financial applications such as credit valuation, portfolio allo-
cation [15, 16], the Hamilton-Jacobi-Bellman PDE, the Burgers equation, option pricing
PDEs, the Fokker-Planck equation, systemic risk and mean field games [5, 27].

This research develops neural networks-based algorithms for option pricing. We price
the options in the Black-Scholes model, where the analytical solution exists, and the
lifted Heston model, a stochastic volatility model without an analytical solution. In both
models, we derive the characteristic function and use the COS method to compute the
option prices. Furthermore, we derive the option pricing PDEs and use neural network
algorithms to solve these PDEs.

We use two different but related algorithms. The first algorithm is the Deep Galerkin
Method [27]. The second algorithm is the Time Deep Nitsche Method (TDNM) [14].
Originally, the TDNM could only be applied to a limited class of problems. However,
we design a splitting method so that it can be applied to solving option pricing PDEs.

The structure of this report is as follows. Chapter 2 covers background theory about
the models that are used in this research. Chapter 3 explains the methods to price the
options. Chapter 4 presents the results of pricing the options with these methods. The
report ends with the conclusions in Chapter 5.



2
THEORY

This chapter describes the theoretical knowledge required before we start our research.
Section 2.1 explains what options are and which methods there are to price options. Sec-
tion 2.2 describes the COS method, the numerical method to help price options. Sec-
tion 2.3 explains how to price options in the famous Black-Scholes model. Section 2.4
expands to the more complicated Heston model and its rough variant. Section 2.5 de-
scribes the lifted Heston model, which is the model we will use in the following chapters.

2.1. OPTION PRICING

An option is a contract which gives the owner the right, but not the obligation, to buy or
sell an asset at a specified price on or before a specified date. If the option gives the right
to buy, it is a call option. If the option gives the right to sell, it is a put option. If the op-
tion can only be exercised at the maturity, it is European. If the option can be exercised
at any time before or at maturity, it is American. The specified price is the strike price
and denoted by K . The specified date is the maturity and denoted by T .

There are many options. The most popular options are stock options. In this re-
search, we consider options where the asset is a single stock. If a stock option is on
multiple stocks of the same type, we only need to multiply the price in our model with
the number of stocks.

If at exercise time, the stock price S is higher than the strike price K , the owner can
buy the stock for K and earn S −K . If at exercise time, the stock is worth less than the
strike price K , the owner can do nothing and earn 0. This pay-off is summarized in the
functionΦcal l (S) = (S−K )+. Similarly, for a put option, the pay-off isΦput (S) = (K −S)+.

In this research, we will use two methods for pricing options. The first method uses
a partial differential equation (PDE) and is explained in Subsection 2.1.1. The second
method uses the conditional characteristic function and is explained is Subsection 2.1.2.

3
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2.1.1. PARTIAL DIFFERENTIAL EQUATION
The first method for option pricing is to rewrite the option price as the solution of a PDE.
This can be done with the Feynman-Kac theorem. Let (Ω,F ,P) be a probability space.
Let F= (Ft )t∈[0,T ] be a filtration of the sigma algebra F . Let (S,Σ) be a measurable space
and X : [0,T ]×Ω→ S a stochastic process. Then the process X is adapted to the filtration
F if the random variable X t :Ω→ S is an (Ft ,Σ)-measurable function for all t ∈ [0,T ]. Let
W be a Brownian motion adapted to the filtration.

Definition 2.1. An Itô process is an adapted stochastic process that can be written as the
sum of an integral with respect to a Brownian motion and an integral with respect to time:

X t = X0 +
∫ t

0
σs dWs +

∫ t

0
µs d s, (2.1)

for a predictable and W -integrable process σ and a predictable and integrable process µ.

If σt ∈ L2([0,T ]×Ω), i.e.
∫ T

0 E
[|σt |2

]
d t <∞, then

∫ t
0 σs dWs for t ∈ [0,T ] is a martin-

gale with respect to the filtration F [20]. The differential form of equation (2.1) is

X t =µt d t +σt dWt . (2.2)

Definition 2.2. Let 0 = t0 < t1 < ... < tn = t be a partition and h = tk − tk−1 = t
n the mesh

size. The covariation of two processes X and Y is

〈X ,Y 〉t = lim
h→0

n∑
k=1

(
X tk −X tk−1

)(
Ytk −Ytk−1

)
.

The quadratic variation is the covariation of a process with itself.

For a Brownian motion, the quadratic variation is [20]

〈W,W 〉t = lim
h→0

n∑
k=1

(
Wtk −Wtk−1

)2 = lim
h→0

n∑
k=1

tk − tk−1 = lim
h→0

t = t ,

while for time t

〈t , t〉t = lim
h→0

n∑
k=1

(tk − tk−1)2 = lim
h→0

th = 0.

More generally, an Itô process of the form (2.1) has quadratic variation

〈X , X 〉t =
∫ t

0
σ2

s d s.

For Itô processes the famous Itô’s formula [24] holds.

Lemma 2.1 (Itô’s formula). Let X be an Rd -valued Itô process and f : Rd → R a C 2-
function. Then

d f (X t ) =
d∑

i=1

∂ f

∂X i
t

d X i
t +

1

2

d∑
i , j=1

∂2 f

∂X i
t ∂X j

t

d〈X i
t , X j

t 〉. (2.3)

If f depends on t as well, then

d f (t , X t ) = ∂ f

∂t
d t +

d∑
i=1

∂ f

∂X i
t

d X i
t +

1

2

d∑
i , j=1

∂2 f

∂X i
t ∂X j

t

d〈X i
t , X j

t 〉.



2.1. OPTION PRICING

2

5

Substituting equation (2.2) in (2.3) gives

d f (X t ) =
d∑

i=1

∂ f

∂X i
t

(
µi

t d t +σi
t dW i

t

)
+ 1

2

d∑
i , j=1

∂2 f

∂X i
t ∂X j

t

σi
tσ

j
t d t

Definition 2.3. The infinitesimal generator A of X t is

A f = lim
t↓0

1

t

(
E[ f (X t )|X0 = x]− f (x)

)
.

Suppose the function f is a C 2-function. So it has a Taylor expansion:

f (y) = f (x)+
d∑

i=1
(yi −xi )

∂ f

∂xi
+ 1

2

d∑
i , j=1

(yi −xi )(y j −x j )
∂2 f

∂xi∂x j
+ ...

Then the infinitesimal generator is [20]

A f = lim
t↓0

1

t

(
d∑

i=1
E
[

X i
t −xi

] ∂ f

∂xi
+ 1

2

d∑
i , j=1

E
[(

X i
t −xi

)(
X j

t −x j

)] ∂2 f

∂xi∂x j

)

=
d∑

i=1
µi

t
∂ f

∂xi
+ 1

2

d∑
i , j=1

σi
tσ

j
t

∂2 f

∂xi∂x j

So we can rewrite d f (X t ) =A f d t+martingale. A is used in the following version of the
Feynman-Kac Theorem [24].

Theorem 2.1 (Feynman-Kac Theorem). Let X be an Rd -valued Itô process and A the
infinitesimal generator of X . Then u satisfies the PDE

∂u

∂t
+A u = r u, (t , x) ∈ [0,T ]×Rd ,

u(T, x) =Φ(x), x ∈Rd
(2.4)

if and only if
u(t , x) = e−r (T−t )E [Φ(XT )|X t = x] .

In an arbitrage-free market, there is no risk-free profit. Therefore, the price of a Euro-
pean option V (t ,S) that paysΦ(ST ) at maturity should at time t be equal to the expected
pay-off under the equivalent martingale measure at maturity discounted at the risk-free
rate r : V (t ,S) = e−r (T−t )E [Φ(ST )|St = S]. Thus, the price of a European option satisfies
PDE (2.4) with A the infinitesimal generator of the stock and r the risk-free rate.

AMERICAN OPTIONS

The price of an American option satisfies almost the same equation as the European op-
tion. Since the option can be exercised at any time, it has two values: the continuation
value, that the European option has as well, and the intrinsic value. The continuation
value is the value of the option if we do not exercise and let the stock continue following



2

6 2. THEORY

the PDE. The intrinsic value is the value of the option if we exercise, which is Φ. Com-
bining these values gives the following free boundary problem [22]:{

max
[
∂V
∂t +A V − r V ,Φ(S)−V (t ,S)

]
= 0,

V (T,S) =Φ(S).

This problem is equivalent to
∂V
∂t +A V − r V ≤ 0,

V (t ,S) ≥Φ(S),

V (T,S) =Φ(S),(
∂V
∂t +A V − r V

)
(V (t ,S)−Φ(S)) = 0.

(2.5)

If the stock does not pay dividends and r ≥ 0 the best exercise strategy for an American
call option is to wait until maturity. Therefore, the price of an American call is the same
as a European call. The same property holds for an American put option if r ≤ 0 [22].
A non-dividend paying stock and a nonnegative interest rate are not unusual stylized
assumptions. We will assume these two properties and only consider American put op-
tions.

2.1.2. CHARACTERISTIC FUNCTION

The second method for option pricing is computing the conditional characteristic func-
tion of the stock price. We can then use the conditional characteristic function to com-
pute option prices using Fourier-based methods such as the COS method, as will be ex-
plained in Section 2.2. For affine models, it is relatively easy to compute the conditional
characteristic function.

Definition 2.4. An Rd -valued process X is affine if it has the dynamics

dXt =β(Xt )d t +σ1(Xt )dBt +σ2(Xt )dB⊥
t ,

where Bt and B⊥
t are two independent Brownian motions, and

β(Xt ) = b(t )+β1X1 + ...+βd Xd

σ1(Xt )σ1(Xt )T +σ2(Xt )σ2(Xt )T = a(t )+α1X1 + ...+αd Xd .

We can use the following Theorem to compute the conditional moment generating
function for affine models [11].

Theorem 2.2. Suppose X is an Rd -valued affine process. Then the conditional moment
generating function of X is of the form

E
[
e〈u,XT 〉|Ft

]= eφ(T−t ,u)+〈ψ(T−t ,u),Xt 〉,
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with u ∈Rd if and only if and φ and ψ satisfy the Ricatti equations
∂ψi (t ,u)

∂t = 〈ψ(t ,u),βi 〉+ 1
2 〈ψ(t ,u),αiψ(t ,u)〉,

ψi (0,u) = ui ,
∂φ(t ,u)
∂t = 〈ψ(t ,u),b(T − t )〉+ 1

2 〈ψ(t ,u), a(T − t )ψ(t ,u)〉,
φ(0,u) = 0.

(2.6)

Proof. Denote the conditional moment generating function of X by

M(t ) = eφ(T−t ,u)+〈ψ(T−t ,u),Xt 〉.

We know eφ(0,u)+〈ψ(0,u),Xn
T 〉 = E[

e〈u,XT 〉|FT
]= e〈u,XT 〉. So ψi (0,u) = ui and φ(0,u) = 0. De-

note τ= T − t . Then Itô’s formula gives

d M(t )

M(t )
= (−∂τφ(τ,u)−〈∂τψ(τ,u),Xt 〉

)
d t +〈ψ(τ,u),dXt 〉+ 1

2
〈ψ(τ,u),〈X〉tψ(τ,u)〉 =

(
−∂τφ(τ,u)−〈∂τψ(τ,u),Xt 〉+〈ψ(τ,u),b(Xt )〉+ 1

2

〈
ψ(τ,u),σ1(Xt )σ1(Xt )T +

+ σ2(Xt )σ2(Xt )Tψ(τ,u)
〉)

d t +〈ψ(τ,u),σ1(Xt )dBt +σ2(Xt )dB⊥
t 〉 =(−∂τφ(τ,u)−〈∂τψ(τ,u),Xt 〉+〈ψ(τ,u),b(t )+β1X1 + ...+βd Xd 〉+

+1

2

〈
ψ(τ,u), (a(t )+α1X1 + ...+αd Xd )ψ(τ,u)

〉)
d t +martingale.

Since M(t ) is a martingale, the drift term should be 0. This should hold for all Xi . Sepa-
rating the coefficients of these terms results in Equation (2.6).

Conversely, if Equation (2.6) is satisfied, M(t ) is a martingale. Furthermore M(T ) =
e〈u,XT 〉. So E

[
e〈u,XT 〉|Ft

]= E [M(T )|Ft ] = M(t ).

The conditional characteristic function is the conditional moment generating func-
tion, substituting i u for u. For Fourier-based methods, it is not as simple as for PDE
methods to expand to American options. This pricing method is therefore not consid-
ered in the case of American option.

2.2. COS METHOD
In this section, we explain a recent method to price options from the conditional char-
acteristic function called the COS method [10]. The method is based on Fourier-cosine
expansions. Consider the density function f (x) and its characteristic function φ(x) re-
lated by

φ(ω) =
∫
R

e iωx f (x)d x, f (x) = 1

2π

∫
R

e−iωxφ(ω)dω. (2.7)

For a function on [0,π] the cosine expansion is

f (θ) =
∞∑

k=0

′
Ak cos(kθ), Ak = 2

π

∫ π

0
f (θ)cos(kθ)dθ,
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where
∑′

means that the first summation term is divided by two. For a function on a
general interval [a,b] we apply the change of variables

θ = x −a

b −a
π.

The cosine expansion then becomes

f (x) =
∞∑

k=0

′
Ak cos

(
k

x −a

b −a
π
)

, Ak = 2

b −a

∫ b

a
f (x)cos

(
k

x −a

b −a
π
)

d x.

We are interested in the price of a European option

V (t ,S) = e−r (T−t )E [Φ(ST )|St = S] = e−r (T−t )
∫
R
Φ(y) f (y |St = S)d y,

with f (y |St ) the probability density of ST given St = S. Since this density decays to zero
as y →±∞, we truncate the integration range

V (t ,S) ≈ e−r (T−t )
∫ b

a
Φ(y) f (y |St = S)d y.

Next we substitute the cosine expansion:

V (t ,S) ≈ e−r (T−t )
∫ b

a
Φ(y)

∞∑
k=0

′
Ak (S)cos

(
k

y −a

b −a
π
)

d y =

e−r (T−t )
∞∑

k=0

′
Ak (S)

∫ b

a
Φ(y)cos

(
k

y −a

b −a
π
)

d y = 1

2
(b −a)e−r (T−t )

∞∑
k=0

′
Ak (S)Vk ,

with

Vk = 2

b −a

∫ b

a
Φ(y)cos

(
k

y −a

b −a
π
)

d y,

the cosine series coefficients of the pay-off function Φ(y). Since the coefficients are de-
caying, we truncate the sum and obtain

V (t ,S) ≈ 1

2
(b −a)e−r (T−t )

N−1∑
k=0

′
Ak (S)Vk .

Since the integrands in the Fourier transform (2.7) have to decay to 0, the truncated in-
tegral approximates the characteristic function well

φ̃(ω|S) =
∫ b

a
e iωx f (x|S)d x ≈

∫
R

e iωx f (x|S)d x =φ(ω|S).

Then

Ak (S) = 2

b −a

∫ b

a
f (x|S)cos

(
k

x −a

b −a
π
)

d x = 2

b −a

∫ b

a
f (x|S)R

(
e i k x−a

b−a π
)

d x =
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2

b −a
R

(
φ̃

(
kπ

b −a

)
e−

i kaπ
b−a

)
≈ 2

b −a
R

(
φ

(
kπ

b −a

)
e−

i kaπ
b−a

)
.

Thus, the COS formula is

V (t ,S) ≈ e−r (T−t )
N−1∑
k=0

′
R

(
φ

(
kπ

b −a

)
e−

i kaπ
b−a

)
Vk .

If we denote y = log
(

ST
K

)
, then

Φ(ST ) = (
αK

(
e y −1

))+ , α=
{

1, for call,

−1, for call.

The cosine series coefficients of 1 are

φk (c,d) =
∫ d

c
cos

(
kπ

y −a

b −a

)
d y =

{[
sin

(
kπd−a

b−a

)
− sin

(
kπ c−a

b−a

)] b−a
kπ , k ̸= 0,

(d − c), k = 0.

The cosine series coefficients of e y are

χk (c,d) =
∫ d

c
e y cos

(
kπ

y −a

b −a

)
d y = 1

1+
(

kπ
b−a

)2

[
cos

(
kπ

d −a

b −a

)
ed −cos

(
kπ

c −a

b −a

)
ec+

+ kπ

b −a
sin

(
kπ

d −a

b −a

)
ed − kπ

b −a
sin

(
kπ

c −a

b −a

)
ec

]
.

Thus, the cosine series coefficients for the call and put option are

V cal l
k = 2

b −a
K

(
χk (0,b)−ψk (0,b)

)
,

V put
k = 2

b −a
K

(−χk (a,0)+ψk (a,0)
)

.

For the truncation boundaries we choose a =−L
p

T and b = L
p

T for time to maturity T
and truncation parameter L.

2.3. BLACK-SCHOLES MODEL
The most famous model for option pricing is the Black-Scholes model. In this section,
we apply the two methods from Section 2.1 to the Black-Scholes model. In this model,
the dynamics of the stock price S is a geometric Brownian motion:

dSt = r St d t +σSt dWt , S0 > 0, (2.8)

with σ a parameter indicating how much the stock fluctuates, called the volatility. One
of the reasons the model is so popular is that an exact solution of the option price exists.

Subsection 2.3.1 explains how to derive the option pricing PDE. Subsection 2.3.2 ex-
plains how to derive the conditional characteristic function of the (logarithm of the)
stock price.
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2.3.1. BLACK-SCHOLES PDE
We apply the theory from Subsection 2.1.1 to derive the option pricing PDE in the Black-
Scholes model with dynamics (2.8). Let f :R→R be a C 2-function. σSt ∈ L2([0,T ]×Ω).
Then by Itô’s formula

d f (St ) = ∂ f

∂S
(r St d t +σSt dWt )+ 1

2

∂2 f

∂S2 d〈St ,St 〉 =
(
∂ f

∂S
r St + 1

2

∂2 f

∂S2 σ
2S2

t

)
d t+martingale.

So by the Feynman-Kac Theorem the price of a European option V with pay-offΦ(ST ) at
maturity T satisfies the Black-Scholes PDE:

∂V

∂t
+ 1

2
σ2S2

t
∂2V

∂S2 + r St
∂V

∂S
− r V = 0, V (T,ST ) =Φ(ST ). (2.9)

This PDE has an exact solution [24]:

Vcal l (t ,S) = SN (d1)−K e−rτN (d2),

Vput (t ,S) = K e−rτN (−d2)−SN (−d1).
(2.10)

with N the standard normal distribution function, τ= T − t the time to maturity,

d1 =
log

( S
K

)+ (
r + σ2

2

)
τ

σ
p
τ

and d2 = d1 −σ
p
τ,

The free boundary problem for the American option does not have an exact solution.
We can approximate the solution using a finite difference method, stepping backwards
through time and at each iteration taking the maximum of the continuation value and
the intrinsic value.

2.3.2. BLACK-SCHOLES CHARACTERISTIC FUNCTION
We apply the theory from Subsection 2.1.2 to derive the characteristic function of the
stock price in the Black-Scholes model (2.8). To apply the theory, we need an affine pro-
cess. The St with dynamics (2.8) is not an affine process. To make the process affine, we
transform to the log-domain. Define X t = log(St ). Then using Itô’s formula

d X t = 1

St
(r St d t +σSt dWt )+ 1

2

−1

S2
t

σ2S2
t d t =

(
r − 1

2
σ2

)
d t +σdWt .

So the process X t is affine with b(t ) = r − 1
2σ

2, β = 0, a(t ) = σ2 and α = 0. The Ricatti
equations therefore are 

∂ψ
∂t = 0,

ψ(0) = u,
∂φ
∂t = (r −σ2)ψ+ 1

2σ
2ψ2,

φ(0) = 0.

The solution to these equations is{
ψ(t ,u) = u,

φ(t ,u) = (r −σ2)ut + 1
2σ

2u2t
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Thus, by Theorem 2.2 the conditional characteristic function of the log-price in the Black-
Scholes model is equal to

E
[

e i uXT |Ft

]
= e i u

(
r− 1

2σ
2)

t− 1
2σ

2u2t+i uX t . (2.11)

2.4. (ROUGH) HESTON MODEL
Despite its popularity, the Black-Scholes model is inconsistent with market data. Look-
ing at the price of options in the market, we can use Equation (2.10) to compute the
implied volatility σ resulting in this price. It turns out that this implied volatility is not a
constant, but varies for different S and t . This results in the so-called implied volatility
surface presented in Figure 2.1

Figure 2.1: The implied volatility surface [4].

This problem can be solved by introducing stochastic volatility models where the
volatility is not a constant but a stochastic process as well. The Heston model is a stochas-
tic volatility model with dynamics

dSt = r St d t +
√

Vt St dWt , S0 > 0,

dVt = κ(θ−Vt )d t +η
√

Vt dBt , V0 > 0.

Here V is the volatility process, B a Brownian motion correlated to W with correlation
ρ, and κ,θ,η ∈ R+. The Heston model can fit the implied volatility of an option at a spe-
cific time well. However, using estimated parameters to generate other option prices
requires difficult modifications, such as making the parameters time dependent. Fur-
thermore, the Heston model is not accurate for times close to maturity.
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A rough fractional stochastic volatility model is able to reproduce the implied volatility
surface with few constant parameters [7, 13]. In the rough Heston model, the Brownian
motion in the volatility process becomes a fractional Brownian motion

dSt = r St d t +
√

Vt St dWt , S0 > 0,

Vt = g (t )+
∫ t

0
K (t − s)

(
−λVs d s +η

√
Vs dBs

)
,

(2.12)

with the fractional kernel K (t ) = t H− 1
2

Γ
(
H+ 1

2

) , g (t ) = V0 +
∫ t

0 K (t − s)θ(s)d s, λ ∈ R+ and H ∈(
0, 1

2

)
the Hurst parameter. Although the process (S,V ) mimics the real world data well,

V is not a semimartingale. Moreover, due to the integral the process depends on all
previous states instead of only the current state, meaning the process is not Markovian.
Therefore, the Feynman-Kac Theorem cannot be applied anymore, giving trouble pric-
ing options in the filtration generated by (W,B).

2.5. LIFTED HESTON MODEL
The lifted Heston model is a Markovian approximation of the rough Heston model [2,
3]. The lifted Heston model converges to the rough Heston model, and option prices in
the lifted Heston model converge to the option prices in the rough Heston model. The
essence of the model is rewriting the kernel as a Laplace transform and approximating
this kernel with a discretization.

Define cH = 1
Γ
(
H+ 1

2

)
Γ
( 1

2 −H
) and measure µ(d x) = cH x−H− 1

2 d x. Then∫ ∞

0
e−xtµ(d x) = cH

∫ ∞

0
e−xt x−H− 1

2 d x = cH

∫ ∞

0
e−u

(u

t

)−H− 1
2 1

t
du =

cH t H− 1
2

∫ ∞

0
e−uu−H− 1

2 du = cH t H− 1
2 Γ

(
1

2
−H

)
= K (t ).

So K (t ) is written as the Laplace transform of µ. In the lifted Heston model, we replace µ
by a finite sum of Dirac measures. The approximate kernel is

K n(t ) =
n∑

i=1
cn

i e−γi t ,

with

cn
i = (

r 1−α
n −1

) r
(α−1)

(
1+ n

2

)
n r (1−α)i

n

Γ(α)Γ(2−α)
, γn

i = 1−α
2−α

r 2−α
n −1

r 1−α
n −1

r
i−1− n

2
n , and α= H + 1

2
.

Theoretical results suggest taking rn = 1+10n−0.9. Numerical results suggest that n = 20
and rn = 2.5 gives a good approximation to the rough Heston model [2]. Replacing K (t )
by K n(t ) in (2.12) gives

dSn
t = r Sn

t d t +
√

V n
t Sn

t dWt , S0 > 0,

V n
t = g n(t )+

∫ t

0

n∑
i=1

ci e−γi (t−s)
(
−λV n

s d s +η
√

V n
s dBs

)
= g n(t )+

n∑
i=1

cn
i V i ,n

t ,
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with

g n(t ) =V0 +
n∑

i=1
cn

i

∫ t

0
e−γ

n
i (t−s)θ(s)d s, and V i ,n

t =
∫ t

0
e−γi (t−s)

(
−λVs d s +η

√
Vs dBs

)
.

The last term can be recognized as the solution of an Ornstein-Uhlenbeck process [12]
with dynamics:

dV n,i
t =−

(
γn

i V n,i
t +λV n

t

)
d t +η

√
V n

t dBt , V n,i
0 = 0.

Indeed, applying Itô’s Formula to the function f
(
V n,i

t , t
)
=V n,i

t eγ
n
i t gives

d f = ∂ f

∂t
d t + ∂ f

∂V n,i
t

dV n,i
t + 1

2

∂2 f

∂
(
V n,i

t

)2 d
〈

V n,i
t ,V n,i

t

〉
= γn

i V n,i
t eγ

n
i t d t +eγ

n
i t dV n,i

t =

eγ
n
i t

(
−λVt d t +η

√
Vt dWt

)
.

Integrating from 0 to t gives

V n,i
t eγ

n
i t −V n,i

0 =
∫ t

0
eγ

n
i s

(
−λVs d s +η

√
Vs dBs

)
=⇒

V n,i
t =V n,i

0 e−γ
n
i t +

∫ t

0
e−γ

n
i (t−s)

(
−λVs d s +η

√
Vs dBs

)
.

We choose θ(t ) = θλ as this makes computations easier without changing the essence of
the problem [2].





3
METHODOLOGY

This chapter explains the methods to price options in the lifted Heston model. Section
3.1 derives the partial differential equation (PDE) of the option price in the lifted Heston
model. Section 3.2 derives the characteristic function of the lifted Heston model. Sec-
tion 3.3 explains the necessary variational calculus related to the pricing PDE. Section
3.4 explains the new splitting method to rewrite PDEs. Section 3.5 explains the neural
network algorithms to solve the PDEs.

3.1. LIFTED HESTON PDE
In this section, we derive the option pricing PDE in the lifted Heston model. We apply
the theory for deriving an option pricing PDE from Subsection 2.1.1 to the lifted Heston
model from Section 2.5. Consider the lifted Heston dynamics that were derived in the
previous chapter:

dSn
t = r Sn

t d t +
√

V n
t Sn

t dWt , S0 > 0,

V n
t = g n(t )+∑n

i=1 cn
i V i ,n

t ,

dV n,i
t =−

(
γn

i V n,i
t +λV n

t

)
d t +η

√
V n

t dBt , V n,i
0 = 0.

(3.1)

Let f
(
Sn

t ,V n,1
t , ...,V n,n

t

)
: Rn+1 → R be a C 2-function. Denote fS = ∂ f

∂Sn and fV i = ∂ f
∂V n,i .

Then Itô’s formula gives

d f
(
Sn

t ,V n,1
t , ...,V n,n

t

)
= fS dSn

t +
n∑

i=1
fV i dV n,i

t + 1

2
fSS d

〈
Sn

t ,Sn
t

〉+ n∑
i=1

fSV i d
〈

Sn
t ,V n,i

t

〉
+

+1

2

n∑
i , j=1

fV i V j d
〈

V n,i
t ,V n,i

t

〉
= fS r Sn

t d t −
n∑

i=1
fV i

(
γn

i V n,i
t +λV n

t

)
d t + 1

2
fSSV n

t

(
Sn

t

)2 d t+

+
n∑

i=1
fSV i ηρV n

t Sn
t d t + 1

2

n∑
i , j=1

fV i V j η2V n
t d t +martingale.

15
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Then the Feynman-Kac Theorem gives that the price of a derivative V with payoffΦ(ST )
satisfies

∂V

∂t
−A V = r u, V (T ) =Φ(ST ),

with

A f =−r S fS +
n∑

i=1

(
γn

i V i +λV n
t

)
fV i − 1

2
V n

t S2 fSS −ηρV n
t S

n∑
i=1

fSV i − η2

2
V n

t

n∑
i , j=1

fV i V j .

Switching to time to maturity τ= T − t gives

∂V

∂τ
+A V + r u = 0, u(0) =Φ(S0), (3.2)

In contrast to the Black-Scholes PDE (2.9), this PDE does not have an exact solution. Fur-
thermore, for n = 20 the problem has 21 dimensions, making a finite difference method
infeasible. We will solve this PDE using neural network algorithms, as is explained in
Section 3.5.

3.2. LIFTED HESTON CHARACTERISTIC FUNCTION

In this section, we derive the characteristic function in the lifted Heston model. We apply
the method to derive a characteristic function from Subsection 2.1.2 to the lifted Heston
model (3.1). To apply the method from Subsection 2.1.2, we need an affine model. The
St with the lifted Heston dynamics (3.1) is not affine. As in the Black-Scholes case in
Subsection 2.3.2 we transform to the logarithm of the stock price. Defining X n

t = log(Sn
t )

transforms (3.1) to


d X n

t = (
r − 1

2 V n
t

)
d t +

√
V n

t dWt , X0 ∈R,

V n
t = g n(t )+∑n

i=1 cn
i V i ,n

t ,

dV n,i
t =−

(
γn

i V n,i
t +λV n

t

)
d t +η

√
V n

t dBt , V n,i
0 = 0.

(3.3)

Since Wt and Bt are two Brownian motions with correlation ρ, we can write Wt = ρBt +√
1−ρ2dB⊥

t , with B⊥
t a Brownian motion independent of Bt . In matrix notation, (3.3)

becomes

dXt = d


X n

t
V n,1

t
...

V n,n
t

=β(Xt )d t +σ1(Xt )dBt +σ2(Xt )dB⊥
t ,
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with

β(Xt ) =


r − 1

2

(
g n(t )+∑n

k=1 cn
k V k,n

t

)
,

−γn
1 V n,1

t −λ
(
g n(t )+∑n

k=1 cn
k V k,n

t

)
...

−γn
nV n,n

t −λ
(
g n(t )+∑n

k=1 cn
k V k,n

t

)

 ,

σ1(Xt ) =


ρ
√

g n(t )+∑n
i=1 cn

i V i ,n
t

η
√

g n(t )+∑n
i=1 cn

i V i ,n
t

...

η
√

g n(t )+∑n
i=1 cn

i V i ,n
t

 , and

σ2(Xt ) =


√

1−ρ2
√

g n(t )+∑n
i=1 cn

i V i ,n
t

0
...
0

 .

Then

β(Xt ) = b(t )+β0X n
t +β1V n,1

t + ...+βnV n,n
t ,

σ1(Xt )σ1(Xt )T +σ2(Xt )σ2(Xt )T = a(t )+α0X n
t +α1V n,1

t + ...+αnV n,n
t ,

with

b(t ) =


r − 1

2 g n(t )
−λg n(t )

...
−λg n(t )

 , β0 = 0, β1 =


− 1

2 cn
1

−γn
1 −λcn

1
−λcn

1
...

−λcn
1

 , ...,βn =


− 1

2 cn
n

−λcn
n

...
−λcn

n
−γn

n −λcn
n

 ,

a(t ) = g n(t )Σ, α0 = 0 and αi = cn
i Σ for i = 1, ..., N ,

where

Σ=


1 ηρ ... ηρ

ηρ η2 ... η2

...
...

. . .
...

ηρ η2 ... η2

 .

So the process X t is affine. Then by Theorem 2.2 the moment generating function of the
lifted Heston models is

E
[
e〈u,XT 〉|Ft

]= eφ(T−t ,u)+〈ψ(T−t ,u),Xt 〉,

where φ and ψ satisfy the Ricatti equations. For ψ0

∂ψ0(t ,u)

∂t
= 0, ψ0(0,u) = u0 =⇒ ψ0(t ,u) = u0.
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Then for i = 1, ..., N

∂ψi (t ,u)

∂t
=−γn

i ψi (t ,u)−λcn
i

n∑
j=1

ψ j (t ,u)− 1

2
cn

i u0 + cn
i

(
1

2
u2

0 +u0ηρ
n∑

j=1
ψ j (t ,u)+

+η
2

2

(
n∑

j=1
ψ j (t ,u)

)2)
=−γn

i ψi (t ,u)+ cn
i F

(
u0,

n∑
j=1

ψ j (t ,u)

)
, ψi (0,u) = ui ,

with

F (u, v) = 1

2

(
u2 −u

)+ (
uηρ−λ)

v + η2

2
v2.

Then finally

∂φ(t ,u)

∂t
= r u0 + g n(T − t )F

(
u0,

n∑
j=1

ψ j (t ,u)

)
, φ(0,u) = 0.

To compute derivative prices, we solve these ordinary differential equations with the
Runge-Kutta method and then obtain the price from the characteristic function by the
COS method as in Section 2.2.

3.3. CALCULUS OF VARIATIONS
In this section, we explain the variational calculus which will be used in the Time Deep
Nitsche Method (TDNM) in Subsection 3.5.2. Calculus of variations is a technique to
solve nonlinear problems by rewriting them as minimization problems [9]. Let u(x1, ..., xd ) :
Ω→R be a sufficiently smooth function and denote ui = ∂u

∂xi
. Suppose we have the PDE{

L u = 0, inΩ,

u = g , on ∂Ω
(3.4)

We try to find an energy functional I such that L u = I ′[u]. Then PDE (3.4) rewrites to

I ′[u] = 0,

which is finding critical points of I . Now assume the energy functional has the form

I [u] =
∫
Ω

L (u1, ...,ud ,u, x1, ..., xd )d x.

The operator L :Rn ×R×Ω→R is the Lagrangian. Suppose u minimizes I and let v be a
smooth function that is 0 on ∂Ω. Consider the function

i (τ) = I (u +τv) =
∫
Ω

L(∇u +τ∇v,u +τv,x)d x, τ ∈R.

Since u minimizes I and u +τv = g on ∂Ω, τ= 0 minimizes i . So

0 = i ′(0) =
[∫
Ω

n∑
i=1

∂L

∂ui
(∇u +τ∇v,u +τv,x)

∂v

∂xi
+ ∂L

∂u
(∇u +τ∇v,u +τv,x) vd x

]
τ=0

=
∫
Ω

n∑
i=1

∂L

∂ui
(∇u,u,x)

∂v

∂xi
+ ∂L

∂u
(∇u,u,x) vd x.
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Using integration by parts gives

0 =
∫
Ω

[
−

n∑
i=1

∂

∂xi

(
∂L

∂ui
(∇u,u,x)

)
+ ∂L

∂u
(∇u,u,x)

]
vd x.

Since this equality must hold for all v , u satisfies the PDE

−
d∑

i=1

∂

∂xi

(
∂L

∂ui

)
+ ∂L

∂u
= 0.

This equation is the Euler-Lagrange equation. Suppose L is of the form

L u =−∇· (A∇u)+ r u. (3.5)

Then defining

L = 1

2

(
(∇u)T A∇u + r u2)

gives

−
d∑

i=1

∂

∂xi

(
∂L

∂ui

)
+ ∂L

∂u
=L u.

However, the Black-Scholes PDE (2.9) and the Lifted Heston PDE (3.2) do not have the
form (3.5). It is possible to transform the Black-Scholes PDE to the heat equation with
the following theorem [8].

Theorem 3.1. Define y = log
( S

K

)
, τ= 1

2σ
2(T − t ), q = 2r

σ2 ,

C = 1

K
exp

(
1

2
(q −1)y +

(
1

4
(q −1)2 +q

)
τ

)
> 0,

W (τ, y) =CV (t ,S) and g (τ, y) =CΦ(K e y ).

V satisfies the Black-Scholes equation (2.9) if and only if W satisfies

∂

∂τ
W (τ, y)− ∂2

∂y2 W (τ, y) = 0.

Furthermore, V satisfies the free boundary problem (2.5) for the American option in the
Black-Scholes case if and only if W satisfies{(

∂
∂τW (τ, y)− ∂2

∂y2 W (τ, y)
)(

W (τ, y)− g (τ, y)
)= 0, ∂

∂τW (τ, y)− ∂2

∂y2 W (τ, y) ≥ 0,

W (τ, y) ≥ g (τ, y), W (0, y) = g (0, y).

Proof.
∂

∂τ
W (τ, y)− ∂2

∂y2 W (τ, y) =C

((
1

4
(q −1)2 +q

)
V (t ,S)+ ∂V (t ,S)

∂τ

)
−

1

K

∂

∂y

(
exp

(
1

2
(q −1)y +

(
1

4
(q −1)2 +q

)
τ

)(
1

2
(q −1)V (t ,S)+ ∂V (t ,S)

∂y

))
=
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C

((
1

4
(q −1)2 +q

)
V (t ,S)+ ∂V (t ,S)

∂τ
− 1

4
(q −1)2V (t ,S)− (q −1)

∂V (t ,S)

∂y
− ∂2V (t ,S)

∂y2

)
.

The term without C is equal to

qV (t ,S)+ ∂V (t ,S)

∂t

∂t

∂τ
− (q −1)

∂V (t ,S)

∂S

∂S

∂y
− ∂2V (t ,S)

∂S2

(
∂S

∂y

)2

− ∂V (t ,S)

∂S

∂2S

∂y2 =

qV (t ,S)− ∂V (t ,S)

∂t

2

σ2 −q
∂V (t ,S)

∂S
K e y − ∂2V (t ,S)

∂S2 K 2e2y =

− 2

σ2

(
∂V (t ,S)

∂t
+ r S

∂V (t ,S)

∂S
+ 1

2
σ2S2 ∂

2V (t ,S)

∂S2 − r V (t ,S)

)
.

Since − 2C
Kσ2 ̸= 0, the first part of the Theorem holds. More specifically, − 2C

Kσ2 < 0, so

∂

∂τ
W (τ, y)− ∂2

∂y2 W (τ, y) ≥ 0 ⇐⇒ ∂V

∂t
+ 1

2
σ2S2 ∂

2V

∂S2 + r S
∂V

∂S
− r V ≤ 0.

The rest of the second part follows by multiplying each side of the (in)equality sign by
C .

If we for instance have a European call option, the initial condition becomes:

W (0, y) = 1

K
exp

(
1

2
(q −1)y

)
V (T,K e y ) = exp

(
1

2
(q −1)y

)
(e y −1)+

=
(
exp

(
1

2
(q +1)y

)
−exp

(
1

2
(q −1)y.

))+
.

In the heat equation L u =− ∂2u
∂y2 . This operator is of the same type as (3.5) with A = 1 ∈R

and r = 0. So the Lagrangian corresponding to the heat equation is L = 1
2 | ∂u
∂y |2.

For the lifted Heston model, such a transformation method is not possible. We there-
fore use another method, as explained in the next section.

3.4. SPLITTING METHOD
In this section, we explain how to apply the calculus of variations technique to a more
general operator. This allows us to apply the TDNM to more general problems than in
[14]. Suppose we have the general operator

A =
d∑

i=1
βi ui −

d∑
i , j=1

ai j ui j + r u. (3.6)

For most values of β and a this operator cannot be rewritten in the form (3.5). Therefore,
we split the operator into two parts. A symmetric part that can be written as equation
(3.5) and an asymmetric part containing all other terms of the operator. Using the chain
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rule, we can rewrite (3.6) to

A =
d∑

i=1
βi ui −

d∑
i , j=1

∂

∂x j

(
ai j ui

)
+

d∑
i , j=1

∂ai j

∂x j
ui + r u

=
d∑

i=1

(
βi +

d∑
j=1

∂ai j

∂x j

)
ui −

d∑
i , j=1

∂

∂x j

(
ai j ui

)
+ r u.

Define bi =βi +∑d
j=1

∂ai j

∂x j
. Then

A =L u +F (u)

with L as in (3.5) and

F (u) =
d∑

i=1
bi ui = b ·∇u,

for

A =


a11 a21 . . . ad1

a12 a22 . . . a1d

...
...

. . .
...

a1d a2d . . . add

 and b =


b1

b2

...
bd

 .

We apply this splitting method to the Black-Scholes PDE (2.9) in Subsection 3.4.1 and to
the Lifted Heston PDE (3.2) in Subsection 3.4.2.

3.4.1. BLACK-SCHOLES MODEL
First, we apply the splitting method to the Black-Scholes PDE (2.9). Switching to time to
maturity τ= T − t , the Black-Scholes PDE is

Vτ− 1

2
σ2S2 ∂

2V

∂S2 − r S
∂V

∂S
+ r V = 0, V (0,S) =Φ(S).

Applying the chain rule gives

0 =Vτ− ∂

∂S

(
1

2
σ2S2 ∂V

∂S

)
+σ2S

∂V

∂S
− r S

∂V

∂S
+ r V =Vτ+L V +F (V ),

with

F = (σ2 − r )S
∂V

∂S
(3.7)

and

L V =− ∂

∂S

(
1

2
σ2S2 ∂V

∂S

)
+ r V.

The corresponding Lagrangian is

L = 1

4
σ2S2

(
∂V

∂S

)2

+ 1

2
r V 2. (3.8)

In Section 4.2 a comparison of the splitting method and the transformation method
based on Theorem 3.1 is presented.
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3.4.2. LIFTED HESTON MODEL

Second, we apply the splitting method to the lifted Heston PDE (3.2). Applying the chain
rule gives

0 = uτ− r SuS +
n∑

i=1

(
γn

i V i +λV n
t

)
uV i − 1

2
V n

t S2uSS −ηρV n
t S

n∑
i=1

uSV i − η2

2
V n

t

n∑
i , j=1

uV i V j +

+r u = uτ− r SuS +
n∑

i=1

(
γn

i V i +λV n
t

)
uV i −

(
1

2
V n

t S2uS

)
S
+V n

t SuS − 1

2

n∑
i=1

(
ηρV n

t SuV i

)
S +

+1

2
ηρV n

t

n∑
i=1

uV i − 1

2

n∑
i=1

(
ηρV n

t SuS
)

V i + 1

2
ηρS

n∑
i=1

cn
i uS −

n∑
i , j=1

(
η2

2
V n

t uV i

)
V j

+

+η
2

2

n∑
i , j=1

cn
j uV i + r u = uτ+

(
V n

t S − r S + 1

2
ηρS

n∑
i=1

cn
i

)
uS +

n∑
i=1

(
γn

i V i +λV n
t + 1

2
ηρV n

t +

+η
2

2

n∑
j=1

cn
j

)
uV i −

(
1

2
V n

t S2uS

)
S
− 1

2

n∑
i=1

(
ηρV n

t SuV i

)
S −

1

2

n∑
i=1

(
ηρV n

t SuS
)

V i −

−
n∑

i , j=1

(
η2

2
V n

t uV i

)
V j

+ r u = uτ+L V +F (V ),

with

L V =−(
a00uS

)
S −

n∑
i=1

(
a0i uV i

)
S
−

n∑
i=1

(
ai 0uS

)
V i

−
n∑

i , j=1

(
ai j uV i

)
V j

+ r u,

F (u) = b0uS +
n∑

i=1
bi uV i . (3.9)

and 

a00 = 1
2 V n

t S2,

ai 0 = a0i = 1
2ηρV n

t S,

ai j = η2

2 V n
t ,

b0 = (
V n

t − r + 1
2ηρ

∑n
i=1 cn

i

)
S,

bi =
(
γn

i V n,i +λV n
t + 1

2ηρV n
t + η2

2

∑n
j=1 cn

j

)
.

The corresponding Lagrangian is

L = 1

2

(
a00u2

S +2
n∑

i=1
a0i uV i uS +

n∑
i , j=1

ai j uV i uV j + r u2

)
. (3.10)
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3.5. NEURAL NETWORK ALGORITHMS
This section explains the neural network algorithms that we use to solve the option pric-
ing PDEs. A neural network is a graph consisting of layers, a collection of vertices, that
are chained together like neurons in a brain, hence the name. A schematic overview
of a neural network is in Figure 3.1. The input travels through the layers and results in
the output. Each edge has a weight, making each vertex a weighted sum of all vertices
from the previous layer. Furthermore, each layer has an activation function which allows
nonlinearity. The number of layers of the graph is the depth. The number of neurons per
layer is the width. The parameters of the network are all weights and biases and denoted
by θ. The activation function is a hyperparameter.

Figure 3.1: Schematic overview of a neural network [28].

The aim is to train the neural network such that for each set of input variables x, the
network returns the correct output. Training the neural network means we update the
parameters θ such that we minimize a loss function L(θ;x) determining the performance
of the network.

The most used approach for minimizing a loss function is stochastic gradient de-
scent [5]. We start with an initial guess θ0 and compute the gradient of the loss function
at that point. This gives the direction with the largest increase in loss function. Gradient
descent updates θ by moving away from that direction: θn+1 = θn −αn∇θL(θ;x). The hy-
perparameter αn is the step-size of our update, called the learning rate. Often these loss
functions involve an integral, making it computationally expensive to compute. Stochas-
tic gradient descent means randomly sampling points xi from the domain and applying
a Monte Carlo approximation of L.

An overview of the neural network algorithm is in Algorithm 1. In the third step, we
take random points from the domain instead of grid points that finite difference meth-
ods use. Therefore, neural network algorithms do not suffer from the curse of dimen-
sionality like finite difference methods. In this research, we use two different neural
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Algorithm 1 Neural network algorithm

1: Initialize θ0.
2: for each sampling stage do
3: Generate random points xi for training.
4: Calculate the cost functional L̃(θn ;xi ) for the sampled points.
5: Take a descent step θn+1 = θn −αn∇θL(θn ;xi ).
6: end for

network-algorithms. First is the Deep Galerkin Method (DGM) explained in Subsection
3.5.1. Second is the TDNM explained in Subsection 3.5.2. The implementation details of
the neural network-algorithms are in Subsection 3.5.3

3.5.1. DEEP GALERKIN METHOD
The first neural network algorithm to solve PDEs we consider is the DGM [27]. Suppose
we have the following PDE:

(∂t +A )u(t ,X) = 0, (t ,X) ∈ [0,T ]×Ω,

u(0,X) =Φ(X), X ∈Ω,

u(t ,X) = g (t ,X), (t ,X) ∈ [0,T ]×∂Ω.

(3.11)

The goal is to approximate the function u with a neural network f (t ,X;θ) with parameter
set θ. The DGM approach is to define a loss function measuring how well the neural
network satisfies PDE (3.11):

L(θ; t , x, w,τ, z) = ∥∥(∂t +A ) f (t , x;θ)
∥∥2

[0,T ]×Ω+∥∥ f (0, w ;θ)−Φ(w)
∥∥2
Ω

+∥∥ f (τ, z;θ)− g (τ, z)
∥∥2

[0,T ]×∂Ω .

For a u satisfying the PDE (3.11) the loss function is 0. Applying a Monte Carlo approxi-
mation to the integrals, we define the loss functional

L̃(θ; ti , xi , wi ,τi , zi ) = 1

NI

NI∑
i=1

(
(∂t +A ) f (ti , xi ;θ)

)2 + 1

NT

NT∑
i=1

(
f (0, wi ;θ)−Φ(wi )

)2

+ 1

NB

NB∑
i=1

(
f (τi , zi ;θ)− g (τi , zi )

)2 ,

(3.12)

with NI the number of samples on the interior domain, NT the number of samples on
the terminal domain and NB the number of samples from the boundary domain. The
DGM algorithm is to apply Algorithm 1 with loss functional (3.12).

3.5.2. TIME DEEP NITSCHE METHOD
The second neural network algorithm to solve PDEs we consider is the TDNM [14]. We
develop a new version of the TDNM by combining it with the splitting method from
Section 3.4 so that it can solve option pricing PDEs. Instead of using time as an input
variable for the neural network, we train a neural network for each time step. The neural



3.5. NEURAL NETWORK ALGORITHMS

3

25

network for the previous time step is then a good initial guess for the neural network in
the current time step, reducing the number of training stages necessary. In the first step
the neural network then approximates the initial condition which is a known function
not needing differentiation of the network.

Again, consider PDE (3.11). Using the splitting method, we write A u = L u +F (u),
with L u =−∇· (A∇u)+ r u and F (u) the rest term. Divide [0,T ] in Nt intervals (tk−1, tk ]
with h = tk − tk−1 = 1

Nt
. We seek approximations f k (X;θ) such that

f k − f k−1

h
+L f k +F

(
f k−1

)
= 0.

We use f k−1 in F to avoid applying gradient descent to the nonlinear function F . Using
the theory from Section 3.3 this goal is equivalent to minimizing

1

2
∥w − f k−1∥2

L2(Ω) +h

(∫
Ω

L(w)+F
(

f k−1
)

wd x

)
,

with L the Lagrangian corresponding to L . For the boundary condition, we add the
following terms [14]:

1

2
∥w − f k−1∥2

L2(Ω) +h

(∫
Ω

L(w)+F
(

f k−1
)

wd x −
∫
∂Ω

n · A∇w(w − g )d s+

+
∫
∂Ω

γ

2
(w − g )2d s

)
,

with penalty parameter γ. Applying a Monte Carlo approximation to the integrals, we
define the loss functional

L̃ (θ; xi , zi ) = 1

NI

NI∑
i=1

[(
f k (xi ;θ)− f k−1(xi )

)2 +h
(
L(xi )+F

(
f k−1(xi )

)
f k (xi )

)]

+ |∂Ω|
|Ω|NB

NB∑
i=1

[
−n · A∇ f k (zi ;θ)

(
f k (zi ;θ)− g (t , zi )

)
+ γi

2

(
f k (zi ;θ)− g (t , zi )

)2
]

,

(3.13)

with NI the number of samples on the interior domain and NB the number of samples
on the boundary domain. For the penalty parameter, we choose [14]

γi = max
zi

500
|∂Ω|NIλd |∇ f k−1(zi )|2

|ΩNB |∇ f k−1(xi )
.

An overview of the TDNM is in Algorithm 2.
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Algorithm 2 Time Deep Nitsche Method

1: Initialize θ0
0 .

2: Initialize a neural network approximating the initial condition

f 0 = min
w∈H 1(Ω)

∥w −Φ(X)∥L2(Ω).

3: for each time step k = 1, ..., Nt do
4: Apply Algorithm 1 with initial parameter guess θk

0 = θk−1 and loss function L̃ from
(3.13).

5: end for

3.5.3. IMPLEMENTATION DETAILS

We use the following neural network architecture [27]:

S1 =σ1
(
W 1x+b1) ,

Z l =σ2

(
U z,l x+W z,l Sl +bz,l

)
, l = 1, ...,L,

G l =σ2

(
U g ,l x+W g ,l S1 +bg ,l

)
, l = 1, ...,L,

R l =σ2

(
U r,l x+W r,l Sl +br,l

)
, l = 1, ...,L, (3.14)

H l =σ3

(
U h,l x+W h,l

(
Sl ⊙R l

)
+bh,l

)
, l = 1, ...,L,

Sl+1 =
(
1−G l

)
⊙H l +Z l ⊙Sl , l = 1, ...,L,

f (t ,x;θ) =σ4
(
W SL+1 +b

)
,

with L the number of layers, σi an activation function and ⊙ denoting element-wise
multiplication. We use a depth of 3 and a width of 50 [27].

We take 600 samples for every variable of the neural network [14]. So if we take 600d
samples on the interior domain for the DGM, we take 600(d−1) samples on the terminal
and boundary domain and for the TDNM 600(d −1) samples on the interior domain and
600(d −2) samples on the boundary domain.

We use 100,000 sampling stages for the DGM. For the TDNM, we take the number of
intervals Nt = 100. So for a fair comparison, we use 100,000 sampling stages on the initial
network and 100,000

Nt
= 1000 for the subsequent networks. The training was performed on

supercomputer Delft Blue [1].

The last hyperparameters we have to choose are the activation functions and the learn-
ing rate. For the activation functions [27] used σ1 = σ2 = σ3 = tanh and no σ4. A new
and promising activation function is the Gaussian Error Linear Unit (GELU) [18]. We test
replacing each of the σi by the GELU to determine which network to use.
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For the learning rate, [27] proposed the following schedule:

αn =



10−4, 5000 ≥ n,

5×10−5, 5000 < n ≤ 10000,

10−5, 10000 < n ≤ 30000,

5×10−6, 20000 < n ≤ 30000,

10−6, 30000 < n ≤ 40000,

5×10−7, 40000 < n ≤ 45000,

10−7, 45000 < n.

(3.15)

[5] and [14] used a larger learning rate. Therefore, we compare learning rate schedule
(3.15) to the same learning rate schedule but with every learning rate multiplied by ten:

αn =



10−3, 5000 ≥ n,

5×10−4, 5000 < n ≤ 10000,

10−4, 10000 < n ≤ 30000,

5×10−5, 20000 < n ≤ 30000,

10−5, 30000 < n ≤ 40000,

5×10−6, 40000 < n ≤ 45000,

10−6, 45000 < n.

(3.16)

The results of these hyperparameter comparisons are in Section 4.1.

After choosing the right hyperparameters, we apply both neural network-methods to op-
tion pricing. The output of the neural network is the option price. In the Black-Scholes
model, the input variables are S and t for the DGM and only S for the TDNM.

Considering the moneyness S
K instead of the stock price S, will return the relative

option price V
K . So we can compute the option prices for all combinations of S and K

with only one parameter. In all computations, we substitute the moneyness for the stock
price and keep the notation S.

We wish to test our models for time to maturity t between 0 and 1 and moneyness
S between 0 and 2. When training, we sample t uniformly between 0 and 1 and S uni-
formly between 0 and 3 for call options and between 0 and 2 for put options [5].

After training the model for a fixed r and σ, we add σ and r to our input variables
[21]. Then we can train the neural network to model option prices for random σ and r
instead of training the network for each set of combinations of σ and r . We sample r
uniformly between 0.0 and 0.1 and σ uniformly between 0.01 and 1 [21]. The results for
the Black-Scholes model are in Section 4.3.

In the lifted Heston model, the input variables are S, t and V n,i for the DGM and S
and V n,i for the TDNM. The sampling of the V n,i is explained below. The results for the
lifted Heston model are in Section 4.4.

To help the algorithm to converge, we can add boundary conditions imposing what
the limiting behavior should be. As the moneyness becomes large, the probability that
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the put option becomes worth money goes to zero. Therefore, we add the boundary con-
dition Vput = 0 at the upper S-boundary. Using the put-call parity, Vcal l = S−K er t at the
upper S-boundary. Similarly, Vcal l = 0 and Vput = K e−r t −S at the lower S-boundary.

SAMPLING OF VARIANCE PROCESS

Although the variance process V n should remain nonnegative, some factors might be-
come negative [2]. In Figure 3.2 we plot a Monte Carlo simulation of the individual and
total variance processes. Indeed, the individual factor become negative while the total
variance process always stays nonnegative.

(a) The factors V 20,i of the variance process. (b) The total variance process V 20.

Figure 3.2: Monte Carlo simulation of the variance process for H = 0.1, λ= 0.3, η= 0.3, θ = 0.02 and V0 = 0.02.

In Figure 3.3 we plot 10 samples of a Monte Carlo simulation for V 20,1 and V 20,20.
The V n,1 become larger than V n,n , because γn

1 is smaller than γn
n . In Figure 3.4 we plot

the maximum of V 20,i and V 5,i until time T = 1 in 100 Monte Carlo simulations against
i . The maximum decreases almost linearly with i .

(a) V 20,1 (b) V 20,20

Figure 3.3: Monte Carlo simulation of the first and last factor of the variance process for H = 0.1,λ= 0.3, η= 0.3,
θ = 0.02 and V0 = 0.02.

We choose to sample V n,1 uniformly between -0.5 and 0.5 and decrease these bound-
aries linearly with i until −0.5

n and 0.5
n for V n,n . We then calculate V n and discard all
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(a) V 20,i (b) V 5,i

Figure 3.4: The maximum of the Monte Carlo simulation of V n,i until T = 1 against i for H = 0.1, λ = 0.3,
η= 0.3, θ = 0.02 and V0 = 0.02.

combinations which give negative V n . Empirically more than half of the samples gives
nonnegative V n leaving enough samples to train the neural network.





4
RESULTS

This chapter presents the results of pricing options using the methods explained in the
previous chapter. Section 4.1 selects good choices for the hyperparameters of the model.
Section 4.2 compares the splitting method to the transformation method in the Black-
Scholes model. Section 4.3 presents the results in the Black-Scholes model and Section
4.4 in the lifted Heston model.

4.1. HYPERPARAMETERS
Before we use our model, we test what good choices for the hyperparameters are. In
Subsection 4.1.1 we test what a good activation function is. In Subsection 4.1.2 we test
what a good learning rate is.

4.1.1. ACTIVATION FUNCTION
The first hyperparameter that is important to our model is the activation function. We
test replacing each of the standard activation functions σ1 = σ2 = σ3 = tanh and no σ4

in (3.14) by the GELU to determine which network to use. We train the Deep Galerkin
Method (DGM) with only 1000 sampling stages and compute the error compared to the
exact solution of a Black-Scholes call option. We use fewer sampling stages so that the
errors are larger and the comparisons clearer. The results are in Table 4.1. Using only
GELU activation function gives the lowest error.

In Figure 4.1 we plot the DGM solution for the standard activation functions and only
GELU activation functions together with the exact solution. We can see that the DGM
with the optimal activation functions is indeed closer to the exact solution than with
the standard activation functions. Therefore, we choose to use only GELU activation
functions.

4.1.2. LEARNING RATE
The second hyperparameter that is important to our model is the learning rate. We com-
pare small learning rate (3.15) to large learning rate (3.16). In Figure 4.2 we present the

31
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σ1 tanh GELU

σ3
σ4

σ2 tanh GELU tanh GELU

tanh
none 1.61 0.77 1.15 1.35
GELU 45.28 1.20 45.27 45.25

GELU
none 0.70 0.76 2.12 0.85
GELU 0.64 1.15 1.90 0.37

Table 4.1: Total absolute error of the DGM using only 1000 sampling stages with different activation functions
compared to the exact solution for the European call option in the Black-Scholes model for r = 0.05 and σ =
0.25. The results are evaluated on 41 evenly spaced points on the domain S = 0 to S = 2 for times to maturity
0.01, 0.34, 0.67 and 1.

Figure 4.1: Comparison of the DGM with standard activation functions as in [27] and optimal GELU activation
functions to the exact solution for a European call option in the Black-Scholes model with r = 0.05 andσ= 025.
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result of pricing a European call option using the DGM with both learning rates. The
larger learning rate (3.16) gives values closer to the exact solution.

Figure 4.2: Comparison of the DGM with large learning rate (3.16) and the small learning rate (3.15) to the exact
solution for a European call option in the Black-Scholes model with r = 0.05 and σ= 025.

In Figure 4.3 we plot the loss values at each time step for both learning rates. Al-
though the large learning rate is fluctuating more, the loss values eventually become
lower compared to the small learning rate. Therefore, we use learning rate (3.16).

4.2. SPLITTING METHOD

In this section, we compare the two methods for dealing with the asymmetry in the
Black-Scholes model: the splitting method from Section 3.4 and the transformation to
the heat equation based on Theorem 3.1. This comparison for a European call option is
in Figure 4.4. Sampling small values of S leads to large negative values in the y-domain,
which gives unstable results in the training of the neural network. Therefore, we choose
to split the partial differential equation (PDE).
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(a) Large learning rate (b) Small learning rate

Figure 4.3: Loss values of the large learning rate (3.16) and the small learning rate (3.15) using the DGM algo-
rithm.

Figure 4.4: Comparison of the two methods for dealing with asymmetry for a European call option in the Black-
Scholes model with r = 0.05 and σ= 0.25.
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4.3. BLACK-SCHOLES

In this section, we test the performance of our neural network methods in the Black-
Scholes model. We substitute the Black-Scholes PDE (2.9) in the loss function (3.12) for
the DGM and the Black-Scholes nonsymmetric function (3.7) and Lagrangian (3.8) in
the loss function (3.13) for the Time Deep Nitsche Method (TDNM). For European call
options, we compare the neural network performance with the exact solution (2.10) and
the COS method applied to the Black-Scholes characteristic function (2.11). For Amer-
ican put options, we compare the neural network performance with a finite difference
method.

First, we test the performance of our neural network methods on a European call op-
tion in the Black-Scholes model. We apply the DGM and the TDNM to the Black-Scholes
PDE (2.9). r = 0.05 and σ = 0.25 gives as a result Figure 4.5. The DGM is indistinguish-
able from the exact solution. The TDNM is indistinguishable for small times, but has a
larger error for larger times.

Figure 4.5: Relative European call option prices in the Black-Scholes model against the moneyness of the stock,
computed using the COS Method with N = 128, L = 30 for t = 0.01 and L = 10 for the other times and the two
neural network methods, compared to the exact solution for four different times to maturity. r = 0.05 and
σ= 0.25.
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Second, we test the performance of our neural network methods on an American put
option in the Black-Scholes model. We choose σ = 0.5 to enlarge the difference with a
European option and keep r = 0.05. This choice gives Figure 4.6. The DGM is indistin-
guishable from the finite difference method.

Figure 4.6: Relative American put option prices in the Black-Scholes model against the moneyness of the stock,
computed using the DGM compared to finite difference method with 10000 steps for four different times to
maturity. r = 0.05 and σ= 0.5.

Third, we test the performance of our neural network methods on a European call
option in the Black-Scholes model with bonus variablesσ and r . The results are in Figure
4.7. The DGM is indistinguishable from the exact solution for any t , σ and r . The TDNM
performs almost as good for small t and σ, but is off for large t and σ.

4.4. LIFTED HESTON
In this section, we test the performance of our neural network methods in the lifted He-
ston model. We substitute the lifted Heston PDE (3.2) in the loss function (3.12) for the
DGM and the lifted Heston nonsymmetric function (3.9) and Lagrangian (3.10) in the
loss function (3.13) for the TDNM. We compare the neural network performance with
COS method applied to the lifted Heston characteristic function from Subsection 3.2.
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Figure 4.7: Relative European call option prices in the Black-Scholes model against the moneyness of the stock
computed using the COS Method with N = 1028 and L = 20 and the two neural network methods compared to
the exact solution for different times to maturity, interest rates and volatilities.
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First, we test the performance of our neural network methods in the Lifted Heston
model with n = 1, which is equivalent to the regular Heston model. We apply the DGM
and the TDNM to price a European call option. We choose r = 0.0, H = 0.1, λ = 0.3,
η= 0.3, ρ =−0.7, θ = 0.02 and V0 = 0.02 [2]. This choice of parameters gives Figure 4.8 as
a result. The DGM is indistinguishable from the COS method. The TDNM is a little off
for larger times.

Figure 4.8: Relative European call option prices in the lifted Heston model with n = 1 against the moneyness
of the stock computed using the COS Method with N = 512, L = 30 for t = 0.01 and L = 10 for the other times
compared to the two neural network methods for different times to maturity, r = 0.0, H = 0.1, λ= 0.3, η= 0.3,
ρ =−0.7,θ = 0.02 and V0 = 0.02.

Second, we test the performance of our neural network methods in the Lifted Heston
model with n = 5. We keep r = 0.0, H = 0.1, λ = 0.3, η = 0.3, ρ = −0.7, θ = 0.02 and
V0 = 0.02. This choice gives Figure 4.9 as a result. The neural networks perform similar
as for n = 1.

Third, we test the performance of our neural network methods in the Lifted Heston
model with n = 20. We keep r = 0.0, H = 0.1, λ = 0.3, η = 0.3, ρ = −0.7, θ = 0.02 and
V0 = 0.02. This choice gives Figure 4.10 as a result. The DGM is less accurate than in
lower dimensions. The TDNM is still accurate for small t but inaccurate for larger t .
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Figure 4.9: Relative European call option prices in the lifted Heston model with n = 5 against the moneyness
of the stock computed using the COS Method with N = 512, L = 30 for t = 0.01 and L = 10 for the other times
compared to the two neural network methods for different times to maturity, r = 0.0, H = 0.1, λ= 0.3, η= 0.3,
ρ =−0.7,θ = 0.02 and V0 = 0.02.
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Figure 4.10: Relative European call option prices in the lifted Heston model with n = 20 against the moneyness
of the stock computed using the COS Method with N = 512, L = 30 for t = 0.01 and L = 10 for the other times
compared to the two neural network methods for different times to maturity, r = 0.0, H = 0.1, λ= 0.3, η= 0.3,
ρ =−0.7,θ = 0.02 and V0 = 0.02.
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CONCLUSION

In this research, we considered neural network-algorithms for option pricing. We used
two different models for the stock price. First, the Black-Scholes model, for which an
analytical solution exists. Second, the lifted Heston model which is a Markovian ap-
proximation of the rough Heston model, a stochastic volatility model. We applied two
different methods to price options. First, we derived the option pricing partial differ-
ential equation (PDE), which we solved with a neural network. Second, we derived the
conditional characteristic function of the stock price which lead to the option price with
the COS method.

Once trained, the output of a neural network is an analytical function of the input, al-
lowing fast option pricing even in high dimensions. We considered two neural network-
algorithms. First, the Deep Galerkin Method (DGM), which uses a loss function measur-
ing how well the neural network satisfies the option pricing PDE. Second, the Time Deep
Nitsche Method (TDNM), which uses variational calculus to rewrite a PDE as a mini-
mization problem. Initially, the TDNM could only be applied to symmetric PDEs. We
extended the TDNM by splitting the PDE operator in a symmetric part and an asymmet-
ric part. This splitting allows applying the TDNM to the option pricing PDE.

When training the neural network, we chose a learning rate decaying from 10−3 to 10−6.
As activation function, we chose the Gaussian Error Linear Unit. We found that this com-
bination gave the best results.

We compared our splitting method to transforming the Black-Scholes option pricing
PDE to the symmetric heat equation. We found that the splitting method was more sta-
ble.

We used the neural networks to price options in the Black-Scholes model. The DGM
can predict both European and American options prices perfectly. When r and σ are
added as variables to the neural network, it remained accurate. The TDNM can pre-
dict European option prices perfectly for small times to maturity and volatilities, but has
larger errors for large times to maturity and volatilities.

We used our the neural networks to price options in the lifted Heston model as well.
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The DGM can predict European options prices perfectly for n = 5, but has larger errors
for n = 20. The TDNM can predict European option prices perfectly for small times to
maturity, but has larger errors for large times to maturity and volatilities.

Some improvements on the research are still possible. First, for the sampling of the vari-
ance processes in the lifted Heston model, we sampled uniformly between two bounds.
However, the variance processes are denser around 0 than at larger values. Furthermore,
the variance increases with time. A better sampling method can be considered.

Second, the constants chosen in the lifted Heston model to approximate the rough
Heston model are not optimal. Better estimates exist, enabling even better modelling of
reality [6]. These estimates require smaller n for the lifted Heston model to be as close to
the rough Heston model as the standard estimates that we used. As the constants do not
change the essence of the research, we did not consider the optimal choices here.

Third, the hyperparameters of the model were optimized for DGM. For TDNM, other
hyperparameters might be better, improving the fit. However, theoretically the activa-
tion function should not matter and in general the method converges as long as the
learning rate drops over time.

Fourth, in the splitting method, we use the previous neural network for the asym-
metric part. To be accurate, it is therefore important that the previous network does not
differ too much from the current network. Therefore, it might help to take more intervals
so that we have a smaller time step.

For further research, there are several interesting possibilities to explore. First, in the
lifted Heston the parameters r , η, H . λ, ρ, θ and V0 can be added as variables to the neu-
ral network. Then we can train the neural network to model option prices for random
parameter choices, as we successfully did in the Black-Scholes model.

Second, it is interesting to see if the TDNM can be extended to free boundary PDEs.
Then, we can use the algorithm to solve American option prices as well.

Third, it might be interesting to model implied volatility as well, besides the option
price. Many people and institutions trading assets are interested in the implied volatility
of the options they trade, as this enables them to hedge the risk they are exposed to.
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