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Population Games With Replicator Dynamics
Under Event-Triggered Payoff Provider and

a Demand Response Application
Juan Martinez-Piazuelo , Graduate Student Member, IEEE , Wicak Ananduta ,

Carlos Ocampo-Martinez , Senior Member, IEEE , Sergio Grammatico , Senior Member, IEEE ,
and Nicanor Quijano , Senior Member, IEEE

(Special Section on Multi-Agent Coordination for Energy Systems:
From Model-Based to Data-Driven Methods)

Abstract—We consider a large population of decision
makers that choose their evolutionary strategies based
on simple pairwise imitation rules. We describe such a
dynamic process by the replicator dynamics. Differently
from the available literature, where the payoffs signals are
assumed to be updated continuously, we consider a more
realistic scenario where they are updated occasionally.
Our main technical contribution is to devise two event-
triggered communication schemes with asymptotic conver-
gence guarantees to a Nash equilibrium. Finally, we show
how our proposed approach is applicable as an efficient
distributed demand response mechanism.

Index Terms—Event-triggered control, game theory,
optimization.

I. INTRODUCTION

POPULATION games provide a framework to model the
strategic behavior of large populations of decision-making

agents [1]. Depending on the protocols that agents use to
update their strategies, several evolutionary dynamics may
arise. We focus on the so-called replicator dynamics (RD) [2],
which comprise a class of imitative strategy-revision pro-
tocols, where agents repeatedly engage in random pairwise
interactions and copy the strategy of their peers with a
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probability proportional to the difference of their perceived
payoffs. Thus, under the RD, the agents are payoff-driven
decision-makers that require bounded rationality levels [3].
As such, the RD have found relevance in large-scale control
systems, with applications in wireless networks [4], road traf-
fic congestion [5], subsidy design [6], and residential demand
response [7], among others.

Under the considered framework, the payoffs perceived by
the agents in general depend on the aggregate decision of the
entire population. Therefore, to accurately compute/estimate
their corresponding payoffs, the agents typically require access
to non-local information. To avoid excessive inter-agent com-
munication, which is costly for large-scale applications, one
might introduce a high level entity, here referred to as the
payoff provider, that observes the strategic distribution of the
population and broadcasts the payoff signals to the agents [8].
Consequently, the payoff provider and the population form
a closed-loop system. For instance, in congestion games,
the payoff provider would be the entity that provides non-
local traffic information to the agents [5], whereas in demand
response problems, the payoff provider would be the elec-
tric power utility that broadcasts cost signals on the aggregate
demand of the system [7].

To analyze the stability properties of the population, the
available literature models the payoff signal as the output
of a continuous-time system, which can be either a static
or a dynamic map [1], [3], [9], [10], [11]. However, apply-
ing such results to our framework would imply that the
payoff provider has to continuously broadcast information
to the agents, leading to high communication costs as well
as practical implementation questions, e.g., how frequently
should the information be broadcast so that the stability
is not compromised? By exploiting the event-triggered con-
trol framework [12], over the last decade there has been an
increasing interest in event-triggered communication meth-
ods for multi-agent systems [13], [14]. In fact, some recent
works, e.g., [15], [16], [17], have considered event-triggered
communications in games as well. The main advantage of
event-triggered approaches is that they explicitly model that
communications take place occasionally over time, and only

2475-1456 c© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: TU Delft Library. Downloaded on December 06,2023 at 07:51:38 UTC from IEEE Xplore.  Restrictions apply. 

https://orcid.org/0000-0002-3032-0502
https://orcid.org/0000-0002-6305-1329
https://orcid.org/0000-0001-9251-6044
https://orcid.org/0000-0002-6021-2350
https://orcid.org/0000-0002-8688-3195


3418 IEEE CONTROL SYSTEMS LETTERS, VOL. 7, 2023

when a given event occurs. As such, event-triggered methods
can reduce the communication costs while still guaranteeing
desirable stability properties for the closed-loop system.

Motivated by the previous discussion, in this letter, we
formulate an event-triggered payoff provider that broadcasts
the payoff signals only occasionally over time. Specifically,
we devise two (Zeno-free) event-triggered mechanisms and
we formally prove global asymptotic stability of the unique
Nash equilibrium when the underlying payoff functions are
Lipschitz continuous and strongly contractive. To the best
of our knowledge, this is the first time that an event-
triggered payoff provider has been formally analyzed for
population games under the RD. Hybrid and event-triggered
RD have been previously reported in [18] and [19], respec-
tively. However, these works study the RD as continuous-time
optimization dynamics for resource allocation, rather than
as an evolutionary model for large populations of imitative
agents. Nonetheless, if applied to our context, the results
in [18] would still imply continuous communication from
the payoff provider, as well as the global synchronization of
the agents on a time-varying (time-scale) parameter, whilst
the approach in [19] would limit the scope of applica-
tion to quadratic strictly concave full-potential games with
diagonal Hessian matrix. Instead, our framework enables non-
continuous communication from the payoff provider, allows
the agents to operate asynchronously, and it is applicable
to more general (not-necessarily potential) population games.
Finally, we implement our proposed approach as a distributed
demand response scheme, improving upon [7]. The numeri-
cal results on large-scale test cases show that the proposed
method not only significantly reduces the total number of
broadcast operations, but also speeds up the convergence of
the population game.

Notation: We use standard font for scalars, bold font for
vectors and matrices, and calligraphic font for sets. Besides,
all vectors are taken as columns by default. The set of
real (integer) numbers is denoted by R (Z). The set of
non-negative (strictly positive) real numbers is denoted by
R≥0 (R>0). A similar notation holds for integers, and Z�1
denotes the integers much greater than 1. We denote the
Euclidean norm by ‖ · ‖2, and the Cartesian product by∏

. The operators col(·) and diag(·) create a column vector
and a (block) diagonal matrix of the arguments, respectively.
Given a vector z ∈ R

m, we let zi denote its i-th element,
and supp(z) = {i ∈ {1, 2, . . . , m}:zi > 0} denote its support.
Given a domain D ⊆ R

m and an operator T:D → D,
fix(T) := {z ∈ D:z = T(z)} is the fixed point set of T .

II. POPULATION GAMES WITH REPLICATOR DYNAMICS

A. Mathematical Formulation

Let us consider a society with P ∈ Z≥1 populations of
decision-making agents. Throughout, let P = {1, 2, . . . , P}
be the set indexing the populations and, for each population
k ∈ P , let Nk ∈ Z�1 be the total number of agents that belong
to population k (where we assume that Nk is large and con-
stant over time). Let Sk = {1, 2, . . . , nk}, with nk ∈ Z≥2,
be the set of decision strategies available to the agents of
population k and, for each i ∈ Sk, let xk

i ∈ [0, 1] denote
the proportion of agents of population k choosing strategy i,

i.e., Nkxk
i yields the total number of agents playing i in pop-

ulation k. Then, the strategic distribution of population k is
given by xk = col((xk

i )i∈Sk) ∈ �k := {y ∈ R
nk

≥0:1	
nk y = 1},

whilst the strategic distribution of the entire society is given
by x = col((xk)k∈P ) ∈ � := ∏

k∈P �k = �1 ×�2 ×· · ·×�P.
Furthermore, we assume that each strategy i ∈ Sk is char-

acterized by a fitness function f k
i :� → R. Namely, the value

f k
i (x) is the payoff to be given to the agents of population

k ∈ P playing strategy i ∈ Sk at the society’s strategic distribu-
tion x ∈ �. Thus, the fitness functions determine the strategic
environment for the society of decision-makers. Throughout,
let fk(·) = col(f k

1 (·), f k
2 (·), . . . , f k

nk(·)) be the fitness vector of
population k, and let f(·) = col(f1(·), f2(·), . . . , fP(·)) be the
overall fitness vector of the entire society. As such, a pop-
ulation game can be defined in normal form as the tuple
G = (P,�, f(·)), which captures the set of populations P ,
the set of strategic distributions �, and the overall fitness vec-
tor f(·). Besides, we impose the following smoothness and
monotonicity conditions on f(·), which are also considered
in [15], [16], [17] outside of the context of population games.

Standing Assumption 1: The overall fitness vector f(·) is
θ -Lipschitz continuous and μ-strongly contractive, i.e., there
exist some θ, μ ∈ R>0 such that, for every x, y ∈ �,
‖f(x) − f(y)‖2 ≤ θ‖x − y‖2 and (x − y)	(f(x) − f(y)) ≤
−μ‖x − y‖2

2, respectively.
Similar to asynchronous gossip algorithms [20], in this let-

ter we assume that agents communicate in a random pairwise
fashion and at random instants of time. Moreover, as is often
assumed in the replicator dynamics (RD) models reported in
the literature, e.g., [1, Sec. 5.4], we consider the case where
each agent can communicate with any other agent of its same
population, i.e., there is an all-to-all interaction connectivity
among agents of the same population. Nonetheless, inter-agent
communications only occur in a pairwise fashion and at ran-
dom sporadic instants of time. For the sake of clarity, we now
proceed to formally describe the microscopic decision-making
process followed by the agents.

Microscopic decision-making process: Let each agent be
equipped with a Poisson alarm clock which provides (indepen-
dent and identically distributed) strategy-revision opportunities
according to an exponential distribution with rate R ∈ R>0.
Suppose that, at time t ∈ R≥0, an agent of population k ∈ P
receives a revision opportunity. Then, this agent randomly
and uniformly chooses a second agent from its population k.
Without loss of generality, let the revising agent be playing
an arbitrary strategy i ∈ Sk, and let the second agent be play-
ing an arbitrary strategy j ∈ Sk. Throughout, we assume that
agents employ an imitative revision protocol [1, Sec. 4.3.1],
where the revising agent imitates the strategy of the second
agent with probability

�k
ij(x(t)) =

max
{

f k
j (x(t)) − f k

i (x(t)), 0
}

R
, (1)

assuming that

R ≥ max
x∈�,k∈P,i,j∈Sk

max
{

f k
j (x) − f k

i (x), 0
}
. (2)

Here, to compute �k
ij(x(t)), it is assumed that the revising agent

knows R and f k
i (x(t)), and that the second agent communicates

Authorized licensed use limited to: TU Delft Library. Downloaded on December 06,2023 at 07:51:38 UTC from IEEE Xplore.  Restrictions apply. 



MARTINEZ-PIAZUELO et al.: POPULATION GAMES WITH RD UNDER ET PAYOFF PROVIDER AND A DR APPLICATION 3419

f k
j (x(t)) to the revising agent. Since the probability of ran-

domly choosing a second agent playing j is xk
j (t), the overall

probability for the revising agent to switch its strategy from
i to j is given by xk

j (t)�
k
ij(x(t)), while the probability for the

revising agent to keep playing i is 1 −∑
j∈Sk\{i} xk

j (t)�
k
ij(x(t)).

Under this framework, the (expected) instantaneous change in
the proportion xk

i is thus given by [1, Sec. 4.2]

ẋk
i (t) = xk

i (t)
(

f k
i (x(t)) −

∑

j∈Sk
xk

j (t)f
k
j (x(t))

)
, (3)

for all i ∈ Sk and all k ∈ P . The dynamics in (3) are often
referred to as the (mean) RD and if Nk is sufficiently large for
all k ∈ P , then (3) provides an arbitrarily accurate approxi-
mation of the temporal evolution of x(t) over any finite-time
horizon [1, Ch. 10].

In this letter, we focus on studying the convergence of the
society to a Nash equilibrium (NE) of the underlying popu-
lation game, i.e., a strategic distribution where no agent can
increase its fitness by unilaterally changing its strategy.

Definition 1 (Nash equilibria): Given a population
game G, characterized by a fitness vector f(·), the set of Nash
equilibria of G is defined as NE(f) = fix(arg maxx∈� x	f(·)),
or equivalently as NE(f) = {x∗ ∈ � : xk∗

i > 0 ⇒ f k
i (x∗) =

maxj∈Sk f k
j (x∗),∀i ∈ Sk, ∀k ∈ P}.

Remark 1 [1, Th. 5.4.13]: Every x∗ ∈ NE(f) is an
equilibrium of the RD in (3), i.e., x(t) = x∗ ⇒
ẋ(t) = 0n.

From Definition 1, it follows that the set NE(f) coin-
cides with the set of solutions of the variational inequality
VI(�,−f(·)). Thus, by Standing Assumption 1 it holds that
there exists a unique x∗ ∈ NE(f) [21, Th. 2.3.3], and the fit-
ness vector satisfies (x∗ − x)	f(x) > 0, for all x ∈ � \ {x∗}.
Hence, x∗ is asymptotically stable under the RD in (3) [1,
Th. 7.2.4]. On the other hand, we remark that NE(f) is invari-
ant under positive scales of the fitness vector, i.e., NE(f) =
NE(αf), ∀α ∈ R>0. Consequently, by appropriately designing
the fitness vector one can always guarantee the condition in (2)
for any given R, without changing the set of Nash equilibria.
Finally, we impose the following technical condition for our
stability analyses.

Standing Assumption 2: For every k ∈ P it holds that
fk(x∗) ∈ span(1nk), where x∗ ∈ NE(f).

Standing Assumption 2 means that at the NE all the strate-
gies within each population yield the same fitness value.
A sufficient yet not necessary condition to satisfy Standing
Assumption 2 is for the NE to belong to the relative interior
of �, i.e., x∗ ∈ � ∩ R

n
>0. Given that the RD suffers from

extinction, i.e., xk
i (t̃) = 0 ⇒ xk

i (t) = 0,∀t ≥ t̃, in many appli-
cations one might enforce the presence of an interior NE to
ensure that no strategy goes extinct in the long term.

B. Problem Statement

According to the microscopic decision-making process
described in Section II-A, to evaluate �k

ij(x(t)) in (1) for a
strategy-revision executed at time t, both the revising agent
and the randomly chosen agent must know the fitness value of
their selected strategies at time t. However, as fitness functions
may depend on the strategic distribution of the entire society,
letting agents compute their own fitness values would require
for every agent to repeatedly have full-decision information

regarding the strategic selections of all the
∑

k∈P Nk soci-
ety members. To avoid excessive information-exchange among
agents, we assume the existence of a payoff provider [7], [8]
that operates as follows. Every time an agent updates its strat-
egy, it informs its new selected strategy to the payoff provider,
and the payoff provider then broadcasts the updated fitness
values to the society. Namely, the following three steps are
repeated in order: i) the payoff provider broadcasts the fit-
ness values to the society; ii) an agent receives a revision
opportunity and compares their fitness values with a second
randomly selected agent; iii) the revising agent imitates the
strategy of the second agent with probability �k

ij(x(t)) and
then informs the payoff provider about its strategy-update.
Nonetheless, although the proposed framework reduces the
information-exchange among agents, it still requires for the
payoff provider to broadcast the fitness values every time
that an agent updates its strategy. Since on average the soci-
ety receives

∑
k∈P NkRdt revision opportunities over every

(small) time interval of length dt, the considered framework
still implies high communication demands for large soci-
eties, rendering the approach nonviable for many practical
applications.

III. AN EVENT-TRIGGERED PAYOFF PROVIDER

To overcome the aforementioned issues and reduce the
requirements on the communication capabilities of the pay-
off provider, yet still guaranteeing asymptotic stability of
NE(f) under the RD, we formulate an event-triggered payoff
provider, which broadcasts the fitness values at a rate (possibly
aperiodic) that is independent of the size of the society. Our
proposed event-triggered scheme is as follows. Let (t�)�∈Z≥0

denote the sequence of event times and define

x̂(t) = x(t�), ∀t ∈ [t�, t�+1), (4a)

e(t) = x̂(t) − x(t). (4b)

Namely, x̂(t) takes the value of x(t�) when the �-th event
occurs, and x̂(t) is held constant in between events, while e(t)
denotes the error of x̂(t) with respect to x(t). We assume that
the payoff provider can only broadcast the fitness values at
the event times. Thus, at time t�, the payoff provider com-
putes and broadcasts f(x(t�)), and for any t ∈ [t�, t�+1), the
agents update their strategies based on the (constant) fitness
vector f(x̂(t)). As such, for an agent of population k revising
its strategy at time t, the probability to switch from strategy i
to j is xk

j (t)�
k
ij(x̂(t)) (i.e., agents operate under the microscopic

dynamics of Section II-A, but with �k
ij(·) in (1) evaluated at

x̂(t) instead of x(t)). Consequently, under our event-triggered
scheme, the RD in (3) become

ẋk
i (t) = xk

i (t)
(

f k
i

(
x̂(t)

) −
∑

j∈Sk
xk

j (t)f
k
j

(
x̂(t)

))
, (5)

for all i ∈ Sk and all k ∈ P , where x̂(t) is as in (4a). Clearly, if
x̂(t) = x(t) for all t, then the RD in (5) recover the RD in (3).
Besides, we recall that when an agent updates its strategy, it
informs its new strategy to the payoff provider (but not to the
other agents). Thus, the payoff provider always knows x(t)
regardless of the event times.

We remark that the RD in (5) resemble the event-triggered
control scheme [12], where a nonlinear system (the RD in (3))
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is subject to an event-triggered control input (the fitness
vector). Therefore, motivated by the analytical framework
in [12], we now state our main technical results. To this
end, let �k

xk∗ = {xk ∈ �k: supp(xk∗) ⊆ supp(xk)} be the
set of strategic distributions in �k whose support contains
the support of xk∗, and let �x∗ = ∏

k∈P �k
xk∗ . In addition,

note that (5) can be rewritten compactly for each population
k ∈ P as ẋk(t) = gk(xk(t), x̂(t)), and for the entire soci-
ety as ẋ(t) = g(x(t), x̂(t)), where gk(xk, x̂) = diag(xk)(Ink −
1nk xk	)fk(x̂) and g(x, x̂) = diag(x)(In − M(x))f(x̂), with
M(x) = diag((1nk xk	)k∈P ) ∈ R

n×n.
Theorem 1: Consider the RD in (5) under an event-

triggered payoff provider with event times specified by t�+1 =
min{t′ ≥ t� + τ : ‖e(t′)‖2 ≥ τ‖g(x(t′), x̂(t′))‖2}, with
τ = 2μ/(θ(θ + μ)), and x̂(t), e(t) are as in (4). The unique
x∗ ∈ NE(f) is globally asymptotically stable from every
x(0) ∈ �x∗ . Besides, the proposed trigger is free from Zeno
behavior with minimum inter-event time τmin = τ .

Theorem 1 reveals that employing the periodic trigger given
by t�+1 = t� + τ is enough to guarantee the global asymp-
totic stability of x∗ within �x∗ . Hence, by following such a
periodic sequence, the payoff provider does not need to eval-
uate any state-dependent event-triggering condition at the cost
of possibly more overall broadcast communications than the
event-triggered counterpart.

As formally stated next, when the payoff provider
knows x∗ in advance, we can obtain a different trigger-
ing condition that yields less frequent triggers than that of
Theorem 1.

Proposition 1: Consider the RD in (5) under an event-
triggered payoff provider with event times specified by t�+1 =
min{t′ ≥ t� + τ :‖e(t′)‖2 ≥ (μ/θ)‖x∗ − x(t′)‖2}, with τ =
2μ/(θ(θ+μ)), and e(t) is as in (4b). The unique x∗ ∈ NE(f) is
globally asymptotically stable from every x(0) ∈ �x∗ . Besides,
the proposed trigger is free from Zeno behavior with minimum
inter-event time τmin = τ .

Finally, we remark that both of the proposed event-triggered
payoff providers will perpetually trigger (at the periodic rate
t�+1 = t� +τ) even after x(t) = x∗. Nevertheless, to overcome
unnecessary broadcast of information, the payoff provider
might simply avoid to broadcast the fitness vector whenever
f(t�+1) = f(t�), because that would not change the fitness
values perceived by the agents.

IV. A DEMAND RESPONSE APPLICATION

Let us consider a large society of consumers (agents)
engaged in a demand response (DR) program. The goal of
the DR program is to shave the aggregate demand by at least
C kW, and the multiple populations in P characterize dif-
ferent types of DR agents according to their allowed power
commitment levels. Specifically, each DR agent of popula-
tion k must choose a power commitment strategy from the
set Sk = {1, 2, . . . , nk}, where each strategy in Sk corre-
sponds to an individual power demand reduction of rk

i kW.
Let rk = col((rk

i )i∈Sk) ∈ R
nk

≥0, for all k ∈ P . Moreover, let
Ak = {1, 2, . . . , Nk} be the set indexing the agents of popu-
lation k, and let sk

a ∈ {0, 1}nk
represent the selected strategy

of agent a ∈ Ak (i.e., if agent a chooses strategy i ∈ Sk, then
sk

a is the i-th column of the nk × nk identity matrix). Hence,

the power committed by the a-th agent is given by rk	sk
a, and

the total power committed by the entire society is given by∑
k∈P

∑
a∈Ak rk	sk

a.
To encourage the participation in the DR program, the

energy power utility (EPU) provides monetary incentives to the
agents based on their power demand reductions. Let Pk

i,i ∈ R>0

be the monetary incentive for a power demand reduction of rk
i

kW, and let Pk = diag((Pk
i,i)i∈Sk) ∈ R

nk×nk
. The goal of the

DR program is given by

min{sk
a}a∈Ak ,k∈P

∑

k∈P
(∑

a∈Ak
sk

a

)	
Pk

(∑

a∈Ak
sk

a

)

s.t.
∑

k∈P
∑

a∈Ak
rk	sk

a ≥ C. (6)

The optimization problem in (6) is an integer optimization
problem, which regards the minimization of the overall mon-
etary incentive subject to the desired shaving of the demand.
To solve (6) in a distributed fashion, we employ the frame-
work of population games and RD. Given that xk describes
the proportions of agents choosing the multiple strategies in
population k ∈ P , it follows that Nkxk = ∑

a∈Ak sk
a. Thus, (6)

can be rewritten as

min
x∈�

∑

k∈P

(
Nk

)2
xk	Pkxk s.t.

∑

k∈P
Nkrk	xk ≥ C. (7)

Note that (7) is no longer an integer optimization problem, as
x ∈ � ⊂ R

n, and its optimal solution x∗ can be computed
with standard quadratic optimization solvers. Since the EPU
knows the DR program parameters (C and {Nk, Pk, rk}k∈P ),
it is reasonable to assume that the EPU knows x∗. As such,
a population game with {x∗} = NE(f) can be designed by the
EPU, which acts as a payoff provider, and the consumers can
then employ the (microscopic) imitative revision protocols of
Section II-A to solve (6) in a (resilient [7]) distributed fashion.
As in [7], it is assumed that the EPU can measure in real-
time the proportion of power demand reductions (x(t)) at the
distribution substation level.

To establish a population game G whose unique NE matches
x∗, the EPU sets f k

i (x) = α(xk∗
i − xk

i ), for all i ∈ Sk and all
k ∈ P , where α ∈ R>0 is a gain parameter to be set in brief.
Therefore, the resulting fitness vector is f(x) = α(x∗ −x), and
it immediately holds that x∗ ∈ NE(f) (c.f., Definition 1). In
addition, f(·) satisfies Standing Assumption 1 with θ = μ = α,
and satisfies Standing Assumption 2 as f(x∗) = 0n ∈ span(1n).
Throughout, we assume that the Poisson alarm clocks of the
agents are characterized by R = 1 s−1, and so we set α = 1/2
to satisfy (2). Hence, τmin = 1/α = 2 s (the time units of τmin
are given by the units of R in the Poisson clocks).

As illustration, we first consider a fixed instance of the
problem with P = 2, N1 = N2 = 104, n1 = 3, n2 = 2,
r1 = [0.001, 0.01, 0.1]	, r2 = [0.1, 1]	, Pk

i,i = rk
i , ∀i, k,

and C = 5 · 103. Under such parameters, the solution
of (7) is x∗ = [0.261, 0.364, 0.375, 0.602, 0.398]	. We
compare the performance of the proposed event-triggered
payoff provider against a continuously-triggered (CT) payoff
provider that broadcasts the fitness vector after every strategy-
update. Besides, we simulate both the expected evolution
under the ODEs in (3) and (5) and the actual evolution of
the microscopic decision-making processes of 2 · 104 agents.
We simulate the dynamics under 500 different initial strategic
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Fig. 1. Numerical results for the considered (fixed) instance of the DR
problem. (Left) The expected strategic evolution under the ODEs in (3)
and (5), averaged over 500 random initial conditions. (Right) A particular
simulation of the actual evolution of the microscopic dynamics of 2 · 104

agents. Here, the markers depict the corresponding event times.

distributions x(0) randomly sampled from �x∗ , and, for all
cases, we measure the normalized distance to the NE given by
dNE(t) = ‖x∗ − x(t)‖2/‖x∗ − x(0)‖2. Figure 1 (left) shows the
expected convergence of the event-triggered RD in (5) under
the triggering schemes of Theorem 1 and Proposition 1. These
dynamics converge faster than the their continuously-triggered
counterpart. This counter-intuitive phenomenon can be (infor-
mally) explained by comparing the right hand sides of (3)
and (5). Note that while the fitness values in (3) get closer to
zero as x(t) → x∗, the fitness values in (5) remain constant
in between event times. Thus, ‖ẋ(t)‖2 is larger under (5) than
under (3) as x(t) → x∗, which implies that the RD in (5)
moves faster near x∗ than the RD in (3). Figure 1 (right)
shows that similar results hold for the actual microscopic
dynamics, and in this case convergence is achieved in finite
time.

Next, we simulate the microscopic dynamics for 50 ran-
dom instances of the DR problem, with P ∼ U [1, 3], Nk ∼
U [5 · 103, 104], nk ∼ U [2, 4], rk

i ∼ U [0.001, 1], Pk
i,i = rk

i ,
and C uniformly sampled from the maximum and minimum
attainable demand reduction capacities. For simplicity, we only
consider interior Nash equilibria where xk∗

i ≥ 0.05 (note
that, for boundary solutions, the EPU might simply remove
the unused strategies from the DR program). Figure 2 shows
that the event-triggered scheme requires significantly (i.e., two
order of magnitude) less broadcasting operations than its
continuously-triggered counterpart while maintaining compa-
rable convergence time. Besides, the trigger of Proposition 1
slightly outperforms the one of Theorem 1, at the expense of
requiring the knowledge of x∗.

V. CONCLUDING REMARKS AND FUTURE DIRECTIONS

In population games under the replicator evolutionary
dynamics, convergence to a Nash equilibrium can be guar-
anteed even with event-based communication between the
payoff provider and the agents. In our numerical simula-
tions on a large-scale demand response problem, the proposed
event-triggered schemes significantly improve communication
efficiency. Future work should extend the framework to other
evolutionary dynamics models and large-scale applications.

APPENDIX

We first prove Proposition 1 and then Theorem 1.

Fig. 2. Performance comparison under 50 randomized instances of
the DR program. Relative convergence time refers to the quotient of the
convergence time of the event-triggered scheme over the convergence
time of the CT one. A relative time below 1 implies faster convergence
than the CT approach.

A. Proof of Proposition 1

We can observe that the proposed trigger is free from
Zeno behavior as t�+1 − t� ≥ τ > 0 follows immediately
from the definition of the triggering condition. Moreover, if
‖e(t)‖2 = ‖x∗ − x(t)‖2 = 0, then the event will trigger peri-
odically throughout [t,∞) with t�+1 = t� + τ , implying that
τmin = τ .

From [1, Th. 5.4.7], x(0) ∈ �x∗ ⇒ x(t) ∈ �x∗ ,∀t ≥ 0.
Thus, let us consider the Lyapunov function candidate given
by V(x) = ∑

k∈P
∑

i∈supp(xk∗) xk∗
i log(xk∗

i /xk
i ). From [1, Th.

7.2.4], V(·) is a valid Lyapunov function candidate. Moreover,
V(x) → ∞ as x → �\�x∗ , and so V(·) is radially unbounded
with respect to �x∗ . In addition,

V̇(t) = −
∑

k∈P

∑

i∈Sk

xk∗
i

⎛

⎝f k
i

(
x̂(t)

) −
∑

j∈Sk

xk
j (t)f

k
j

(
x̂(t)

)
⎞

⎠

= −
∑

k∈P
xk∗	(

Ink − 1nk xk	(t)
)

fk(x̂(t)
)

= −d(t)	f
(
x̂(t)

)
,

[
with d(t) = x∗ − x(t)

]

= −d(t)	f(x(t)) + d(t)	
(
f(x(t)) − f

(
x̂(t)

))

≤ −d(t)	f(x(t)) + θ‖d(t)‖2

∥
∥x(t) − x̂(t)

∥
∥

2

= −(
x∗ − x(t)

)	f(x(t)) + θ
∥
∥x∗ − x(t)

∥
∥

2‖e(t)‖2

≤ −μ
∥
∥x∗ − x(t)

∥
∥2

2 + θ
∥
∥x∗ − x(t)

∥
∥

2‖e(t)‖2,

where the last inequality follows from Standing Assumption 1
in conjunction with the fact that (x∗ − x)	f(x∗) ≥ 0, for
all x ∈ � (see Definition 1). Now, we observe that if
‖e(t)‖2 < (μ/θ)‖x∗ −x(t)‖2, then V̇(t) < 0, for all x(t) �= x∗.
Furthermore, the proposed trigger guarantees that

‖e(t)‖2 <
μ

θ

∥
∥x∗ − x(t)

∥
∥

2, ∀t ∈ [t� + τ, t�+1):x(t) �= x∗. (8)

Therefore, to prove the global asymptotic stability of x∗ within
�x∗ , it suffices to show that

‖e(t)‖2 <
μ

θ
‖x∗ − x(t)‖2, ∀t ∈ [t�, t� + τ):x(t�) �= x∗. (9)

Observe that if x(t�) = x∗, then x̂(t�) = x∗ and ẋ(t) =
g(x∗, x∗) = 0n, for all t ≥ t� (see Remark 1), implying that
the RD in (5) have converged to x∗. We now proceed to prove
that (9) indeed holds.
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First, from Standing Assumption 2: fk(x∗) ∈ span(1nk), for
all k ∈ P . Thus, (Ink − 1nk xk	)fk(x∗) = 0nk , for all xk ∈ �k,
and (In − M(x))f(x∗) = 0n, for all x ∈ �. In consequence,

ẋ(t) = diag(x(t))(In − M(x(t)))
(
f
(
x̂(t)

) − f
(
x∗)). (10)

Thus, ‖ẋ(t)‖2 ≤ θ‖Z(t)‖2(‖e(t)‖2 + ‖x(t) − x∗‖2), where
Z(t) = diag(x(t))(In − M(x(t))). Here, notice that Z(t) is
an n × n block diagonal matrix whose k-th block is given
by Zk(t) = diag(xk(t)) − xk(t)xk	(t). Hence, the elements
of the k-th block are given by Zk

i,i(t) = xk
i (t)(1 − xk

i (t))
and Zk

i,j(t) = −xk
i (t)x

k
j (t), for all i �= j. Therefore, for

every x(t) ∈ �, the matrix Z(t) is symmetric and diagonally
dominant with non-negative diagonal elements, i.e., Z(t) is
positive semi-definite. Consequently, by the Gershgorin Circle
Theorem, ‖Z(t)‖2 ≤ 1/2, and so

‖ẋ(t)‖2 ≤ θ

2

(‖e(t)‖2 + ∥
∥x∗ − x(t)

∥
∥

2

)
. (11)

Next, let x(t�) �= x∗ and y(t) = ‖e(t)‖2/‖x∗ − x(t)‖2, for all
t ∈ [t�, t�+1). Notice that y(t�) = 0 is well-defined and

dy(t)

dt
= e(t)	ė(t)

‖e(t)‖2‖x∗ − x(t)‖2
+ ‖e(t)‖2(x

∗ − x(t))	ẋ(t)

‖x∗ − x(t)‖3
2

≤ ‖ė(t)‖2

‖x∗ − x(t)‖2
+ ‖e(t)‖2‖ẋ(t)‖2

‖x∗ − x(t)‖2
2

= ‖ẋ(t)‖2

‖x∗ − x(t)‖2
(1 + y(t)),

where the last equality uses the fact that ‖ẋ(t)‖2 = ‖ė(t)‖2,
for all t ∈ [t�, t�+1). Using (11) one can further conclude that
dy(t)/dt ≤ (θ/2)(1 + y(t))2, and hence, by the Comparison
Lemma [22, Lemma 3.4] it holds that y(t) ≤ φ(t), where
φ(t) = θ(t − t�)/(2 − θ(t − t�)) is the solution to dφ(t)/dt =
(θ/2)(1 + φ(t))2, for all t ∈ [t�, t� + 2/θ) and with φ(t�) = 0.
Therefore, for every σ ∈ [0, 1), it holds that

y(t� + στ) ≤ θστ

2 − θστ
= σμ

θ + (1 − σ)μ
<

μ

θ
.

Consequently, ‖e(t)‖2/‖x∗ − x(t)‖2 = y(t) < μ/θ , for all
t ∈ [t�, t� + τ) ⊂ [t�, t� + 2/θ), and thus (9) holds.

B. Proof of Theorem 1

As in the proof of Proposition 1, it is straightforward to
show that the proposed trigger is free from Zeno behavior
with τmin = τ .

Now, let g(t) � g(x(t), x̂(t)). The trigger guarantees that
‖e(t)‖2 < τ‖g(t)‖2, for all t ∈ [t� + τ, t�+1):g(t) �= 0n.
From (11) in the proof of Proposition 1, it follows that
‖g(t)‖2 ≤ (θ/2)(‖e(t)‖2 + ‖x∗ − x(t)‖2), which implies that
the proposed trigger ensures that

‖e(t)‖2 <
μ

θ

∥
∥x∗ − x(t)

∥
∥

2, ∀t ∈ [t� + τ, t�+1):g(t) �= 0n. (12)

Observe that if g(t̃) = 0n at some arbitrary t̃ ∈ [t� + τ, t�+1),
then t�+1 = t̃ and ‖e(t̃)‖2 = ‖g(x(t̃), x̂(t̃))‖2 = 0.

On the other hand, from [1, Th. 5.4.13] it follows that
ζ ∈ �x∗ ⇒ (g(ζ , ζ ) = 0n ⇔ ζ = x∗). Hence, since
x(t) ∈ �x∗ ,∀t ≥ 0, and ‖e(t)‖2 = 0 ⇒ x̂(t) = x(t), it holds
that

‖e(t)‖2 = 0 ⇒ (∥
∥g

(
x(t), x̂(t)

)∥
∥

2 = 0 ⇔ x(t) = x∗).

Therefore, if ‖e(t)‖2 = ‖g(t)‖2 = 0, then x(t) = x∗ and the
RD in (5) have converged to x∗. By marshalling all of these
facts, we conclude that by guaranteeing (12), the proposed
trigger also guarantees (8). As such, the global asymptotic
stability of x∗ within �x∗ follows directly from the proof of
Proposition 1 by recalling that (9) holds.
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