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Abstract
The cargo fare class mix (CFCM) problem aims to find the optimal fare class mix 
for a given intermodal transportation network based on known client demands. It is 
based on a revenue management problem for aviation passengers, the fare class mix 
problem, but considering intermodal cargo transportation, two major differences 
apply. Firstly, the CFCM’s premise is that long-term commitments to customers 
must be provided, such that a customer has a guaranteed daily capacity. Secondly, 
cargo may be rescheduled or rerouted, as long as the customer’s delivery due date is 
met. Our goal is to balance revenue maximisation and capacity utilisation by opti-
mally combining two delivery service levels. Therefore, the optimisation problem 
is to select fare class limits at a tactical level up to which transportation demand 
will be accepted on a daily basis at the operational level. Any accepted demand that 
does not fit on the available network capacity during operation, must be transported 
by truck at increased expenses for the network operator. In this paper, we propose 
a faster method than the previously proposed solution method for a single corridor 
network and we provide proofs for the optimality of the result. Using this, we extend 
the problem to an intermodal network of multiple corridors. We provide numerical 
results for different settings, in which we compare the baseline of individual corridor 
optimums with the result of using rerouting. Finally, we apply the methods in a case 
study for an intermodal transportation network in North-West Europe.
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transportation · Revenue management · Fare class sizes
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1 Introduction

In traditional intermodal container networks in practice, customers usually have 
strict requirements regarding route, mode and time of a container transport, by which 
the transportation planning problem is restricted. These types of restrictions are gen-
erally ignored in literature. However, multiple studies have shown that customers 
have an interest in transportation services that provide more flexibility to the trans-
porter, as long as they receive the right incentives for that (Verweij 2011; Tavasszy 
et al. 2015; Dong et al. 2018; Khakdaman et al. 2017). In Van Riessen et al. (2017), 
we presented the Cargo Fare Class Mix in a case study of a single corridor. The goal 
was to maximise revenue for the transporter, by finding the optimal balance between 
two fare classes, with a higher priced Express service yielding a higher revenue but 
fewer planning options for the transporter and a lower priced Standard service that 
gives more planning flexibility. The goal of this paper is to extend that approach to 
network cases with multiple intermodal corridors, and to consider rerouting options. 
Including the possibility of rerouting increases the flexibility options to the trans-
porter, potentially changing the optimal balance of both offered services.

However, rerouting is not trivial. In the Cargo Fare Class Mix setting, we assume 
that fixed booking limits for each fare class are set in advance, and all demand up to 
that level must be accepted and transported. When considering rerouting options, 
booking allocations on one corridor may influence those on another corridor and 
corridors cannot be optimised separately. Therefore, we present a generalisation of 
the Cargo Fare Class Mix model for a network of multiple corridors.

Our research fits into the concept of synchromodal transportation. In recent years 
a large amount of literature has been published on this topic. Most studies focus 
on creating efficient transportation plans but aim to include practical elements into 
the existing models of intermodal transportation, see for an overview Pfoser et al. 
(2016). In Van Riessen et al. (2015a) we described our observations on two sides of 
synchromodality: transportation network planning and product design of transporta-
tion services. One side is to find the best possible solution to a transportation prob-
lem; however, without flexibility—i.e. multiple options per order—no possibility for 
optimisation exists. Therefore, the other side is to focus on the right amount of flex-
ibility in the order pool. This combination is relevant for any application in which 
the customer has much influence on the degrees of freedom for the transportation 
plan, e.g. inland container transportation, online retail, express parcel delivery, and 
ride sharing applications. This article focuses on the application of inland container 
transportation, including a case study for the North-West European synchromodal 
network of European Gateway Services (EGS), in which we have been involved. The 
driver for this research is not solely to increase revenue for the transporter by max-
imising sales of the Express service, but also to increase its asset utilisation by lever-
aging the planning flexibility offered by bookings for the Standard service (resulting 
in a more sustainable transportation network, more efficient use of asset and infra-
structure and a reduction in operational costs).

By addressing transportation planning and product offering simultane-
ously, our work aims to create a bridge between the operations management of 
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optimising transportation planning and the revenue management of optimising 
the service portfolio. In the traditional capacity allocation problem (e.g. Lit-
tlewood 1972/2005), only the inferior product is limited, to guarantee enough 
capacity for the higher priced product. We show that by including the network 
planning problem in the portfolio design, our models give different results than in 
a traditional revenue management setting: The cost savings resulting from an effi-
cient transportation plan are the main reason due to which the Standard product is 
not inferior to the Express product when considering profit maximisation.

1.1  Problem description

Typically, in intermodal container transportation long-term commitments must be 
provided to customers to guarantee daily transportation up to a certain number of 
containers per day. Determining these limits occurs at the tactical level. Then, at the 
operational level transport requests are accepted by the network operator if within 
the booking limits and rejected else as they arrive (by phone or email). At the opera-
tional level, the transportation plan is constructed. Hence, at the time of accepting a 
booking, it is not yet known whether actual capacity at the time of loading will suf-
fice. All accepted transportation requests are referred to as accepted demand. Subse-
quently, a transportation plan is created to transport all accepted demand within the 
required time limits. If the network operator has insufficient intermodal capacity to 
fulfil all demand, the alternative for such excess demand is to use transport by truck 
at elevated costs from the deep-sea terminal directly to the final destination.

The objective of our proposed methods is to set booking limits that maximise the 
expected profit for the transportation provider. The profit consists of the expected 
revenue and costs of accepted demand on all corridors, minus the penalty costs for 
the expectation of excess demand, given the chosen booking limits.

We consider an intermodal hinterland transportation network consisting of a set 
of intermodal corridors between a single deep-sea port and multiple inland termi-
nals. From the inland terminals, d destinations can be accessed by truck. This is 
considered last-mile trucking, or haulage. Without loss of generality, in the remain-
der of this paper, we consider import transportation in this network, i.e. transport 
from the deep-sea terminal towards the inland destinations. (For export transporta-
tion (towards the deep-sea terminal) a similar set of services is offered, resulting in 
a similar problem as the problem studied in this paper.) The assumptions for this 
setting are described in more detail below and are based on business setting as we 
encountered with EGS.

Figure 1 gives a schematic overview of the type of network considered, with 
a single origin O and multiple inland corridors i to inland terminals. Near each 
inland terminal, an inland destination d ∈ {A,B,…} is situated. Transportation 
from the inland terminal to the destination is carried out with local trucking (end 
haulage). An inland location can be reached via multiple inland corridors at cost 
ci,d. Typically, every inland location is served from a preferential inland terminal 
and detours via other terminals will be more costly. Transport over the network 
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is operated by a synchromodal network operator, responsible for all transport 
from O to the inland locations.

The network operator offers two transportation service levels between the 
deep-sea port and each destination: Standard ( S ) and express (E), at price fS,i 
and fE,i respectively (the tariff to destination d is based on preferential corridor 
i). The Express product guarantees delivery within 1  day, the Standard prod-
uct guarantees delivery within 2  days. For the Express service level, a higher 
price is charged than for the Standard service. The customer pays the price for 
the requested service level, regardless of how the transport is carried out (i.e. 
with what modality, or what routing). We assume that transport requests for both 
services arrive on a daily basis, according to known, independent distributions. 
Also, we assume that all travel times are within 1 day. Direct trucking for such 
Excess demand comes at an increased cost p, which is higher than the incurred 
revenue and must thus be avoided. To minimise the necessity of direct trucking 
and to maximise expected profit, a booking limit must be determined for each 
service level, or fare class.

In practice, the cargo fare class mix problem for inland transportation has 
many dimensions. The operational planning problem considers multiple routes r 
and multiple destinations d for transporting all cargo. This must be done within 
the time limits of the product agreed upon with the customer; the number of 
fare classes p is the third dimension. We use these dimensions to classify the 
problem type of the CFCM problem as CFCM (r, d, p). This problem was intro-
duced in Van Riessen et al. (2017) as the Cargo Fare Class Mix (CFCM) prob-
lem, in which we studied a simplified version of this problem, considering only 
one corridor. This was denoted as the CFCM-(1, d, 2) class of problems. Since 
warehouses around an inland terminal are usually situated close to this terminal, 
we argued that such a group of warehouses can be considered as a single loca-
tion. Also, we showed that extending the delivery horizon (i.e. more that two 
transportation services) provided limited additional benefit. This paper, how-
ever, studies an extension to multiple corridors: i.e. how the option of rerouting 
changes the optimal booking limits for the larger class of CFCM-(r, r, 2) prob-
lems, considering r corridors to r destinations.

 + 1

B 

A 

Terminal

Inland loca�on

Intermodal corridors (barge, rail)

End haulage
Excess cargo trucking

A

Fig. 1  Schematic overview of the CFCM (r, r, 2) problem
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1.2  Outline

The remainder of this paper is organized as follows. Section 2 provides an overview 
of literature on revenue management in freight transportation, as well as on synchro-
modal networks. In Sect. 3, three extensions of the CFCM problem are proposed: an 
improved optimal solution method for single corridor CFCM problems, an optimal 
solution for 2-corridor CFCM problems and a lower and upper bound for multiple 
corridor CFCM networks. Section 4 provides a case study to compare the results of 
these three methods to an intermodal network based on EGS. Finally, Sect. 5 pro-
vides conclusions and directions for future research.

2  Literature overview

First, we provide an overview of the relevant works on revenue management in 
freight transportation in general. Subsequently, we focus on the developments in 
synchromodal network planning, and the associated pricing and revenue manage-
ment policies.

2.1  Revenue management in freight transportation

In general, revenue management is concerned with demand-management decisions. 
Revenue management decisions can be of three basic types: (1) structural decisions, 
on selling format and/or segmentation mechanism; (2) price decisions, on the pric-
ing policy over all segments, including discounting; and (3) quantity decisions, on 
accept or reject decisions, and on how to allocate capacity per segment, products or 
channels (Talluri and Van Ryzin 2004). Typically, price information of competitors 
is public information, providing constraints for the second decision, while quantity 
information is not. On top of that, we learned from our experience with EGS that 
the shipping industry dislikes price volatility generally. Therefore, for the CFCM 
problem, we assume constant prices for each product, and we consider long-term 
commitments, ignoring the time factor. As a result, the quantity decision is our main 
interest here: how to distribute our capacity over the product types and, hence, how 
to accept and reject incoming requests.

Talluri and Van Ryzin (2004) describe Littlewood’s model for freight services 
differentiated on quality: Littlewood’s model assumes two distinct market segments 
(no substitution), with sequentially arriving demand, i.e. the demand of the inferior 
product (class 2) arrives before the demand for the superior product (class 1). The 
optimal result is to handle the incoming demand one by one according to a simple 
rule. For each incoming demand of class 2, and a remaining capacity x do the fol-
lowing: accept if the price for class 2 (p2) exceeds the expected revenue for that slot 
for class 1:

p2 ≥ p1P
(
D1 ≥ x

)
.
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The issue of multiple product classes has also been addressed in queuing theory: 
e.g. Mazzini et al. (2005) studied a two-class priority queue for Bernoullian arrival 
processes. However, several aspects of the CFCM problem make it very hard to be 
modelled as a queuing network. For instance, the finite capacities of intermodal ser-
vices must be considered as finite queues with blocking. Exact solutions for blocking 
networks with more than two nodes can only be obtained by numerical solutions of 
the underlying Markov chain (Bolch et al. 2006).

Feng et al. (2015) provide an overview of revenue management problems in air 
cargo operations. Most studies consider accept-reject decisions or overbooking for 
single flights. Only a few consider capacity allocations, such as Amaruchkul et al. 
(2011). They consider allotments, i.e. freight contracts that allocate capacity to a 
forwarder in advance. The carrier presents the forwarder a menu of potential con-
tracts with a certain price and refunds for unused allotment capacity. Some similari-
ties to our case exist: their approach considers fixed long-term allocations as well, 
although the contract structure differs from our intermodal setting. Barz and Gartner 
(2016) consider accept-reject decision for spot market bookings for air freight, at 
the time when demand and capacity are still uncertain. Similar to our case, their 
approach allows for overbooking, but penalizes excess cargo. For the specific setting 
of container transportation fewer studies are available. Meng et al. (2019) provide an 
overview of two types of revenue management approaches for liner shipping: ship 
capacity control and pricing. They provide an overview of several studies that apply 
airline revenue modelling to liner shipping, and describe and address several gaps in 
existing research: When using airline models to determine booking limits, the divi-
sion of booking classes insufficiently incorporates the heterogeneous character of 
shipping cargo demand, such as differences in sizes, cargo types and contract types 
(e.g. long term contracts). In this article, we address a category of problems with 
heterogeneous demand in two demand classes for intermodal inland transportation 
(varying in allowed transportation time). Armstrong and Meissner (2010) provide an 
overview of revenue management in railway transportation but found little literature 
on the topic. Most studies consider optimal network flow, although some studied dif-
ferent segments based on service quality. E.g. Kwon, et al. (1998) consider rail car 
scheduling, taking into account the priority of specific rail cars.

More recent studies typically assume implicitly geographic segmentation, based 
on transportation corridor or destination, e.g. Ypsilantis (2016, pp. 47–82) consid-
ers an intermodal network and Crevier et al. (2012) consider pricing per request in a 
railway network. An overview of pricing problems studied in an intermodal context 
is provided by Tawfik and Limbourg (2018). Several of those problems are consid-
ered in Sect. 2.2 on synchromodal transportation.

2.2  Synchromodal transportation

In recent years a large amount of literature has been published on the topic of 
synchromodal transportation. Most studies focus on creating efficient transporta-
tion plans, as is the purpose in the long line of research of intermodal planning 
problems, noted in the overviews of Caris et al. (2013), SteadieSeifi et al. (2014), 
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Reis (2015) and Dong et al. (2018). Ambra et al. (2019) compare findings of syn-
chromodal transportation research with findings in relation to the physical inter-
net. The recent studies into synchromodal transportation generally aim to include 
more practical elements into the more general models of intermodal transporta-
tion as in Crainic and Kim (2007). These new elements in the models usually 
depend on the perspective of the researcher and together create an ambiguous 
definition of the concept of synchromodality. Pfoser et al. (2016) created a frame-
work to identify critical factors in synchromodality. Based on a literature review 
of several studies relating to the concept, they identified seven factors related to 
synchromodality: cooperation, transport planning, intelligent transport systems 
(ITS), infrastructure, legal framework, mental shift and service offering. This 
paper’s focus is mostly related to service offering (including pricing) and trans-
portation planning. For this, a network operator can employ a business model 
with lead-time-based transportation services, rather than just selling transporta-
tion slots. As such, the network operator gains flexibility to optimise utilisations, 
and operate the network more efficiently. In this section we provide an overview 
of recent research contributions on these topics.

Several studies focused on efficient network planning in a synchromodal set-
ting, i.e. by considering the combination of committed and uncommitted capac-
ity (Ypsilantis 2016, pp. 47–82; Van Riessen et  al. 2015a, b), real-time planning 
(Nabais et al. 2015; Van Riessen et al. 2016; Van Heeswijk et al. 2016; Rivera and 
Mes 2016, 2018), generating options (Kapetanis et al. 2016; Mes and Iacob 2016), 
including vehicle deployment (Resat and Turkay 2019) or including vessel routing 
(Fazi et al. 2015). Table 1 provides an overview of planning-related studies and cat-
egorises them regarding the perspective of the optimisation problem, the dimensions 
of flexibility and the considered decisions. Regarding the optimisation perspective, 
most studies consider the cost minimisation problem of the transportation provider 
given a certain available capacity. This is different from the logistics service pro-
vider’s perspective, which usually has no invested capacity. It can consider container 
transports one at a time, without considering an integral plan for optimising its 
capacity utilisation. Most studies mention to some extent three dimensions of flex-
ibility: mode, route and timing. In Table 1, we restricted the categorisation to those 
dimensions that specifically influenced the modelling choices. Finally, we distin-
guished between five types of decisions: the scheduling of transportations, accept-
ing or rejecting bookings, the deployment of (barge or rail) services, the pricing of 
transportation services and the conditions of the transportation service. From these 
decision types, the first typically is aimed at the operational level, whereas the other 
three are typically tactical decisions.

From Table 1 it can be observed that most studies consider either the perspective 
of the transportation provider, or the logistics service provider. The transportation 
provider typically carries the risk of unused capacity, whereas the logistics service 
provider typically does not. Also, most studies considered a problem that combined 
routing and timing—in most cases, the mode is considered implicitly in the defini-
tion of the service schedule. Only some considered mode-specific constraints, such 
as the potential for rerouting with barges (Fazi et al. 2015) or the possibility of tran-
shipments. Finally, almost all studies considered an operational planning problem, 
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for optimal allocation of cargo to an available schedule. In some cases, this was 
combined with a service schedule design problem.

In this article, especially the interaction between the service offering (including 
pricing) and the transportation planning is of interest for our topic. Some studies 
have considered the pricing and properties of transportation services, usually in 
combination with logistics planning. For instance, Li et al. (2015) designed a pricing 
scheme based on average costs, rather than actual costs per itinerary and thus allow-
ing a reduction of the standard price due to network efficiencies. Dullaert and Zam-
parini (2013) study the impact of lead time variability in freight transport. Crevier 
et al. (2012) compared a pricing strategy for specific itineraries, with a strategy of 
pricing transportation requests. Bilegan et al. (2015) introduced a revenue manage-
ment strategy of accepting or rejecting bookings on a railway corridor. Kapetanović 
et al. (2018) propose a dynamic programming solution for this problem. Similarly, 
Wang et al. (2016) consider accept-reject decisions for a barge transportation net-
work, including some customers with long term commitments. Luo et  al. (2016) 
include demand forecasting and supply leasing in their accept-reject decisions for 
different fare classes. None of these consider long-term commitments for accepted 
cargo. Finally, in Van Riessen et  al. (2017), we introduced the framework of the 
CFCM problem and provided solutions for an optimal fare class mix on a single cor-
ridor. These studies all show significant revenue gains can be achieved by a pricing 
policy that is optimised considering the logistics planning for different geographi-
cal areas (destinations and/or corridors). However, as far as we know, none have 
considered the effect of multiple products with varying lead times in an intermodal 
network setting. Van Riessen et al. (2017) used a revenue management approach not 
only aimed at geographical market segments, but at different segments in time hori-
zon as well. In this paper, we extend our earlier work on the CFCM problem. We 
assume that market information on demand and prices is already known, based on 
which we aim for finding optimal booking limits for synchromodal products.

As indicated in Table 1, our focus on product conditions differentiates our work 
from earlier studies into product characteristics of synchromodal transportation. 
Although our work is specifically focused on a multi-corridor network with multiple 
modes, we do not specifically consider the impact of differences in mode. Instead, 
our work focuses on selecting the best route and time of transportation from the per-
spective of the transportation network operator.

3  Methodology for solving the CFCM problem in intermodal 
networks

Our research builds on earlier work in Van Riessen et  al. (2017) for a single cor-
ridor Cargo Fare Class Mix problem. Figure  2 provides a schematic overview of 
the methodology proposed in this paper. In Sect.  3.1, we provide an extension of 
our earlier work with a more efficient solution method and optimality proofs are 
given. In order to quantify the optimality gap of the proposed heuristic, in Sect. 3.2, 
an analytical result for a multimodal corridor version is derived, i.e. two different 
routes represent a barge and a rail connection. We show that we get close to the 



 B. Van Riessen et al.

1 3

optimum with our proposed approximation method. In Sect. 3.3 an approach for an 
intermodal corridor with r corridors is proposed, by iteratively using the single cor-
ridor optimisation and a network rerouting heuristic. As in Talluri and Van Ryzin 
(2004, Ch 3.3), the large dimensionality of this network capacity control problem 
requires approximation methods. Section 3.4 provides numerical results and a sen-
sitivity analysis for various settings of the two-corridor case in which the upper and 
lower bounds of Sect. 3.3 are compared with the optimal results obtained with the 
analytical approach of Sect. 3.2.

3.1  Improved solution method for single corridor CFCM (1, d, 2)

In Van Riessen et  al. (2017), we introduced an analytical solution to the CFCM 
(1, d, 2) problem. For the sake of completeness, the main aspects of the earlier pro-
posed approach are compactly presented here.

In the revenue management objective of the CFCM (1, d, 2) model, we focus on 
optimising revenue for a fixed capacity C on one route to one destination. The cost 
of transportation c is considered constant, since all capacity is fixed and is oper-
ated according to a predefined schedule. However, on this corridor, two differently 
priced products are offered: Express and Standard, at a fare fE and fS , respectively, 
with the available demand in the market per period denoted by random variables 
DE(t) and DS(t) . The demand distribution is considered stationary and can have any 
form. Let · (t) denote the value of a random variable at a given time period t. Express 
must be transported within one period, while the demand for Standard transporta-
tion can be postponed one period. As the transportation company gives long-term 
commitments, we need to find optimal booking limits LE, LS for each class at the tac-
tical level. Demand is accepted if within the booking limits and rejected else, before 
the operational transportation plan is constructed. Hence, at the time of accepting 
or rejecting a booking, it is not yet known whether actual capacity at the time of 
loading will suffice. All accepted transportation requests are referred to as accepted 

Fig. 2  Structure of the methodology and contribution of this paper
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demand, or transportation volume, denoted by random variables TE(t) and TS(t) , 
respectively.

Any standard not transported intermodally within two periods, is denoted as over-
flow O(t), which must be transported by sending a truck directly to the destination at 
a (very high) cost exceeding the potential revenue. The additional cost of this truck 
transport on top of the regular transportation costs c is denoted by p. We assume that 
all travel times are within one period, hence, selecting the day of departure within 
the guaranteed delivery period is sufficient: for Express within 1 period or for Stand-
ard within 2 periods. Any slots not used are denoted as surplus (or slack) slots S. 
Consider the network in Fig. 3, with one origin 0, two products s ∈ {E, S} , an inter-
modal corridor i and destinations j ∈ {A,B,… , d} . For easier notation, we leave out 
the time indicator (t) in the remainder of the paper.

In order to find the optimal booking limits LE and LS , we need to solve for the 
maximum expected profit J:

subject to the condition that all accepted demand must be transported in time, 
either by an intermodal connection, or by a truck move for excess cargo not fitting 
on available intermodal capacity. With �

(
LE, LS

)
 , we denote the potential value of 

slack slots. In subsequent sections, we will use this for estimating the value of slack 
slots for rerouting. For a single corridor, this can be ignored, so in the remainder of 
this section, we will consider ψ = 0. In Van Riessen et al. (2017), the optimal solu-
tion was found by enumerating the value of (1) for all feasible values of LE,i and LS,i 
for a corridor i. We will use the subscript i in the remainder to denote a single cor-
ridor, since we will reuse the formulation for situations with multiple corridors later. 
Each iteration was solved using a Markov Chain for the amount of Standard demand 
postponed to the next period, denoted by Ri, with transition probabilities pi(v,  w) 
denoting P

(
Ri(t + 1) = w|Ri(t) = v

)
 for corridor i:

TE(t) = min
(
DE(t), LE

)
, TS(t) = min

(
DS(t), LS

)

(1)max
LE,LS

J = (fE − c)�TE +
(
fS − c

)
�TS − (p − c)�O + �

[
�
(
LE, LS

)]
,

(2)pi(v,w) =

�
P
�
TS,i = 0

�
P
�
TE,i > C − v

�
+
∑C−v

z=0
P
�
TE,i + v = C − z

�
P
�
TS,i ≤ z

�
w = 0

P
�
TS,i = w

�
P
�
TE,i > C − v

�
+
∑C−v

z=0
P
�
TE,i + v = C − z

�
P
�
TS,i = z + w

�
w > 0

B 

A 

… 

Terminal

Inland loca�on

Intermodal corridor (barge, rail)

End haulage
Excess cargo trucking

A

Fig. 3  Network of a CFCM (1, d, 2)-problem (schematic)
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We denote the steady-state distribution of the Markov state of corridor i (Ri) as 
πi(w) = P(Ri

∞ = w), i.e. πi(w) denotes for corridor i the probability in the long run of 
postponing w transportation orders to the next period. To find the distribution of πi, 
we need to find a solution to the Markov equilibrium equations, as in Kelly (1975):

The probability distributions of overflow cargo and slack slots are provided by:

The derivation of (5) and (6) can be found in “Appendix 1”. With the distribution 
of πj, we obtain the following expression for the expected value of the overflow, by 
summing over all potential overflow values (denoted by m):

Furthermore, we have

and, similarly,

Given certain limits for the express and standard demand, the expected profit, based 
on the distribution of overflow and slack slots can be determined. In the enumeration 
approach of Van Riessen et al. (2017), (2)–(9) need to be computed for every itera-
tion consecutively to obtain the results for (1). Here, we provide a much faster opti-
mal algorithm. We propose an algorithm that searches optimal solutions by increas-
ing the limits step-by-step. The selection of the limit that is best increased is based 
on an estimate of the additional profit. As the solution space is not convex, such a 

(3)�i(w) =
∑

i

�i(v)pi(v,w),

(4)
∑

w

�i(w) = 1.

(5)ℙ
�
Oi = y

�
=

�∑Ci

q=0
𝜋i(q)ℙ

�
TE,i ≤ Ci − q

�
y = 0

∑Ci

q=0
𝜋i(q)ℙ

�
TE,i = Ci + y − q

�
y > 0

(6)

ℙ
�
Si = z

�
=

�∑Ci

q=0
𝜋i(q)

∑Ci

e=0
ℙ
�
TS,i ≥ Ci − q − e

�
ℙ
�
TE,i = e

�
z = 0

∑Ci

q=0
𝜋i(q)

∑Ci−q

e=0
ℙ
�
TS,i = Ci − z − q − e

�
ℙ
�
TE,i = e

�
z > 0

(7)�
(
Oi

)
=

LS,i∑

m=1

m

LS,i∑

q=0

P
(
TE,i = Ci + m − q

)
�i(q)

(8)�
(
TE,i

)
=

LE,i−1∑

k=1

kpE,i(k) + LE,i

(
1 −

LE,i−1∑

k=0

pE,i(k)

)

(9)�
(
TS,i

)
=

LS,i−1∑

l=1

lpS,i(l) + LS,i

(
1 −

LS,i−1∑

l=0

pS,i(l)

)
.
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search is not sufficient to find a maximum. In order to efficiently search the solution 
space, we use several rules to structurally eliminate potential combinations of limits.

The proposed procedure to find the optimal limits LE,i, LS,i is given in Algo-
rithm 1. The algorithm excludes combinations of limits that will never be the opti-
mal solution. Firstly, if the sum of both limits is less than the capacity in a period, 
there will always be slack slots. It is without risk of a penalty to increase the lim-
its up to at least the capacity. Therefore, there will always be an optimal solution 
that satisfies LE,i + LS,i ≥ Ci . Secondly, if the expectation of the average accepted 
demand for a certain combination of limits is higher than the capacity, then on the 
long-term this will result in structural Excess. Since the cost of Excess is higher than 
any expected revenues, this can never be optimal. Therefore, in the optimal solu-
tion, it will always hold that �LE,i

(
TE,i

)
+ �LS,i

(
TS,i

)
≤ Ci. Thirdly, if increasing a 

limit does no longer result in additional demand, we do not explore further. I.e. for 
a sufficiently small number � , we exclude combinations of limits for which either 
express or standard satisfies �Ls,i+1

(
Ts,i

)
− �Ls,i

(
Ts,i

)
< 𝜀. The remaining combina-

tions of limits must be explored to find the optimum. We use three additional results 
to search the remaining combinations efficiently. Firstly, we can reduce the search 
with the following result: the expected profit has a single maximum for one variable 
limit, if the other limit is fixed (Proof 1, “Appendix 2”). Then, we can exclude more 
potential combinations using the following:

i.e. if the expected profit for two given limits is larger than the profits obtained when 
one of the limits is reduced by 1, then this profit exceeds all scenarios with limits 
lower than or equal to the given limits (Proof 2, “Appendix 2”). Likewise, this also 
holds for increasing limits (Proof 3, “Appendix 2”):

With these results, if a local optimum is found, then the lower corner and upper cor-
ner of the search space can be excluded. We use these results in Algorithm 1.

Algorithm 1 Optimal solutions for the CFCM (1, d, 2) problem
1 Create a list of all combinations of potential limits 

LE,i ∈
{
0, 1,… ,Ci

}
 and LS,i ∈

{
0, 1,… , 2Ci

}
.

2 Remove from that list all combinations that satisfy one or more of 
the following:

LE,i + LS,i < Ci

�LE,i

(
TE,i

)
+ �LS,i

(
TS,i

)
> Ci

�Ls,i+1

(
Ts,i

)
− �Ls,i

(
Ts,i

)
< 𝜀.

3 Determine maxLi,s
Ji considering all remaining combinations of 

limits as (cf. Proofs 1–3, “Appendix 2”):
a. Find a local optimum of the 

expected profit Ji
(
LE,i,LS,i

)
 

based on (3)–(10) in the list of 
all remaining combinations of 
limits, and store the value.

if JLE,i,LS,i ≥ JLE,i−1,LS and JLE,i,LS,i ≥ JLE,i,LS−1 then JLE,i,LS,i ≥ JLE,i−x,LS,i−y, ∀x, y ≥ 0

if JLE,i,LS,i ≥ JLE,i+1,LS and JLE,i,LS,i ≥ JLE,i,LS+1 then JLE,i,LS,i ≥ JLE,i+x,LS,i+y. ∀x, y ≥ 0
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b. Apply results from Proof 1-3 for 
the current values LE,i and LS,i:
          Remove all com-

binations that satisfy 
LE,i + x,LS,i + y ∀x, y ≥ 0

          Remove all com-
binations that satisfy 
LE,i − x,LS,i − y ∀x, y ≥ 0

c. Go to step 3 a. , until no more com-
binations of limits remain.

4 Select the limit combination that result in the highest expected profit.

We apply Algorithm 1 and for step 3a. We use a greedy search algorithm, by iter-
atively increasing limits. Let Ls,i

+1 denote increasing the limit Ls,i with 1 ( s ∈ {E, S} ), 
then an estimate for the expected change in profit is given by:

in which Δ̂Oi is an estimator of the expected change in overflow cost of the demand. 
For the estimator Δ̂Oi we use the distribution of slack slots of the current solution. 
In case we consider incrementing an express limit ( L+1

E
 ), we consider that if no slack 

slots are available for LE , the additional demand accepted due to increment could not 
be transported. Therefore, in these cases, this results in an overflow unit:

For standard, this is the case if no slack slots are available twice in a row:

in which Si
t+1 denotes the number of slack slots in the next period. Other estimators 

for the expected change in overflow cost can be used in Algorithm 1 as well. Note 
that the quality of this estimator influences the efficiency of the search, but not the 
optimality of the result, since we explore or exclude all combinations. At each point 
in which the estimate ΔJ does not show an improvement, we check whether a local 
optimum is found by evaluating all neighbouring limit combinations. If no improve-
ment in expected profit can be found by increasing one of both limits, we use the 
results from Proofs 1–3 to exclude more combinations. We iterate until all combi-
nations have been searched or excluded. The previously proposed solution method 
(Van Riessen et al. 2017) required enumerating all 2Ci

2 combinations of limits, for 
each of which a solution to Markov Chain (3) and (4) must be found. In this new 
approach, with every iteration we can exclude combinations in which one of the 
limits is the same as the found maximum (Proof 1). Therefore, our newly proposed 
approach is of O(Ci  log Ci): with this approach maximally Ci searches have to be 
done with for each search, given one fixed limit, a complexity of O( log Ci). Using 

ΔJ =
(
fs − ci

)
ℙ

(
Ts,i = L+1

s,i

)
− Δ̂Oi,

Δ̂Oi = pℙ
(
Si = 0

)
ℙ

(
TE,i = L+1

E,i

)

Δ̂Oi = pℙ
(
Si = 0

)
ℙ
(
St+1
i

= 0|Si = 0
)
ℙ

(
TS,i = L+1

S,i

)

≈ pℙ
(
Si = 0

)2
ℙ

(
TS,i = L+1

S,i

)
,
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Proofs 2 and 3, more combinations are excluded, therefore reducing the search time 
per iteration and likely reducing the total number of searches even further.

3.2  Optimal solution method for the two‑corridor problem CFCM (2, 2, 2)

In this section, an optimal approach for the CFCM (2, 2, 2) problem is proposed, i.e. 
with one origin 0, connected by two corridors, i ∊ {1, 2} with capacities Ci to 2 des-
tinations d ∈ {A,B} (Fig. 4). We assume, without loss of generality, that all regular 
demand for destination A is typically routed over corridor 1, and similarly, destina-
tion B over corridor 2. The distribution of transportation requests (or independent 
demand) on corridor i is denoted as Di with transportation costs ci,d for transport-
ing over corridor i to destination d. The network operator offers two transporta-
tion services s ∈ {E, S} for both corridors, denoting Express delivery for delivery 
within one period and Standard delivery for delivery of cargo within two periods, 
respectively. The associated fares fs,i denote the price of service s for the destina-
tion belonging to corridor i. For both services s, we need to find the optimal book-
ing limits on each corridor i, denoted as Ls,i. Incoming transportation requests are 
accepted up to the booking limit. Ts,i denotes the accepted demand, i.e. the transport 
volume per period for corridor i on service s,

We assume that the cargo is allocated in order of urgency. Therefore, all express 
demand is given priority, and based on our assumption that TE,i(t) ≤ Ci , express 
demand is only transported on its preferred corridor. Subsequently, the second pri-
ority is the standard demand remaining from the previous period, Ri(t). Any slots 
not in use by TE,i(t) are used for transporting this cargo. If the slots on the standard 
corridor are insufficient for Ri(t), we consider the remaining demand as overflow, 
denoted by Oi(t). If slots remain after allocating Ri(t), the third priority is the new 
Standard demand for this period, TS,i(t) . Then, the last slots are considered slack 
slots, denoted by Si(t). These slots are available for overflow cargo of other cor-
ridors. Finally, let Ei(t) denote the amount of Excess cargo, for all cargo of Ri(t), 
which could not be transported on corridor i, nor on surplus slots of other corridors. 
This cargo could not be transported in time by any intermodal corridor and must be 
delivered by truck. For corridor i, the order of priority is summarised in Table 2. In 

Ts,i(t) = max
(
Di(t), Ls,i

)
.

B 

A Terminal

Inland loca�on

Intermodal corridors (barge, rail)

End haulage
Excess cargo trucking

A

Fig. 4  Network of a CFCM (2, 2, 2)-problem (schematic)
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the case of two corridors, the only alternative for corridor 1 is corridor 2, and vice 
versa. The potential planning situations are depicted schematically in Fig. 5.

In order to find optimal fare class limits for the CFCM (2, 2, 2) problem, we for-
mulate an analytical model based on a Markov Chain. Our goal is to find booking 
limits for Express and Standard demand on each corridor ( LE,i, LS,i ) that result in the 
maximum expected profit J:

subject to the condition that all accepted demand must be transported in time, 
either by an intermodal connection, or by a truck move for excess cargo not fitting 
on available intermodal capacity. To maximise (10), we need to determine �

(
Ts,i

)
 , 

and �
(
Ei

)
 . We use Ri

t to denote the remainder of standard demand from the period 
before, and Ri

t+1 to denote the remainder of current day’s standard demand that must 
be transported the next period. The cargo routing rules give us the following rela-
tions (see Fig. 5) for the CFCM (2, 2, 2) problem:

From (11)–(14), we see that Rt
1, O1 only depend on corridor 1, and S2 only depends 

on corridor 2. Note that we consider 2 corridors in this section. Generalising, Ri
t, Oi 

and Si do not depend on other corridors than i. We can describe the state of a single 
corridor by (Ri). Only Ei depends on other corridors. Ri(t + 1) does only depend on 
corridor i, by demand Ti and remaining demand Ri(t).

(10)max
LE,i,LS,i

J =
∑

s,i

[(
fs,i − ci,d

)
�
(
Ts,i

)
− p�

(
Ei

)]
,

(11)Rt+1
1

= min

(
TS,1, max

(
TE,1 + TS,1 + R1 − C1, 0

))

(12)O1 = max
(
R1 + TE,1 − C1, 0

)

(13)E1 = max
(
R1 + TE,1 − C1 − S2, 0

)
= max

(
O1 − S2, 0

)

(14)S2 = max
(
C2 − TE,2 − TS,2 − R2, 0

)

Table 2  List of priority in 
allocating cargo to corridor i 

Priority Cargo

1 TE,i(t)

2 Ri(t)
3 TS,i(t)

4 Oj(t)     j ≠ i
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(a)

(b)

(c)

(d)

Fig. 5  Transportation plan: options for corridor 1 and interactions with corridor 2
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Algorithm 2 Optimal limits for the CFCM (2, 2, 2) problem
1 Create a list of all combinations of potential limits for each of the cor-

ridors, LE,i and LS,i (i = 1, 2).
2 Compute the solution for each combination of limits (as in step 3 of 

Algorithm 1):
a. Determine ℙ

(
Oi = y

)
 and ℙ

(
Si = z

)
 

using (6) and (7).
b. Determine for each limit the 

expected additional profit for Ls
+1:

ΔJ =
(
fs − ci

)
ℙ
(
Ts = L+1

s

)
− Δ̂O

in which Δ̂O is an estimator for the 
penalty increase by Ls

+1

c. Select the limit for which an 
increase results in the maximum 
expected profit and increment 
with 1 and solve the Markov 
Chain with (3)–(5) as new limits.

3 Create a list of all combinations of limits for both corridors: Ls,i 
(s ∈ {E, S}, i ∈ {1, 2}).

4 Remove from that list all combinations that result in suboptimal solu-
tions:

a. The sum of all limits is less than 
capacity in a period

∑ s,iLs,i ≤ C1 + C2

b. The expectation of the average 
accepted demand for a certain 
set of limits is higher than the 
capacity∑

s,i

�Ls,i

�
Ts,i

�
> C1 + C2

c. The expected additional demand 
when incrementing a limit 
becomes negligible

�Ls,i+1

(
Ts,i

)
− �Ls,i

(
Ts,i

)
< 𝜀,

where � is an arbitrary small 
number.

5 Enumerate for all remaining combinations of limits the expected 
profit (1), based on the obtained Markov solutions in step 2 and (15).

6 Select the limit that result in the highest profit.

Therefore, we can re-use the corridor specific Eqs. (3)–(10) for the CFCM 
(1, d, 2) problem from Sect. 3.1. Note that these expressions do not depend on the 
other corridor, because of the assumed order of cargo allocation (Table 2). If over-
flow from other corridors would be allocated before TS,i , R1

t+1 would become depend-
ent on other corridors, resulting in a much more complex Markov Chain. Assuming 
the demand distributions on both corridors are independent and using (6) and (7) we 
can derive the probability that overflow cargo can be transported on slack slots on 
the alternative corridor. For corridor 1, the expression is as follows:
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To find the optimal limits Ls,i for a CFCM (2, 2, 2) problem, we apply the procedure 
as shown in Algorithm 2, similar to Algorithm 1. In this case we cannot use the three 
rules of excluding limit combinations, since Overflow cargo could be rerouted. The 
computational complexity of Algorithm 2 scales exponentially with the number of 
corridors, since step 5 requires enumerating all combinations of limits. Therefore, in 
the next section, we will use (6), (7) and (15) in an approximation scheme for lower 
and upper bounds in a generalised intermodal network with multiple corridors.

3.3  Intermodal problem, CFCM (r, r, 2)

To study the value of rerouting in a synchromodal network, we consider a network 
of intermodal connections, the CFCM (r, r, 2) problem: multiple corridors connect 
from a deep-sea port to the inland. The deep-sea port and its inland corridors form a 
one-level tree structure, as depicted in Fig. 1. We also assume independent demand 
per corridor, directed to precisely one destination per corridor (i.e. we do not distin-
guish between multiple warehouses around an inland terminal). In this section, we 
propose methods for finding a lower and upper bound for the CFCM (r, r, 2) prob-
lem. By doing so, an estimate is provided of the benefit of rerouting in a synchro-
modal network in comparison to optimising all corridors separately.

From the previous section, we know that the overflow Oi of a corridor does not 
depend on other corridors, and neither does the number of slack slots Si. The Excess 
demand Ei does depend on alternative corridors, we assume that the total amount of 
overflow cargo can be reduced by the expected free slots on alternative corridors. 
Also, we assume that if any excess trucking on a route occurs, it is not important 
which container on that route will be transported by Excess trucking. Therefore, to 
find the network optimum, we can re-use the iterations of the single-corridor opti-
misation to get distributions of Oi and Si. However, we need to find the number of 
rerouting containers to determine how much of the overflow remains as Excess Ei.

In Sect. 3.3.1, we propose a method for finding the lower bound for the optimal 
CFCM in such a network. This method is based on a sub problem of the original 
problem, in which a corridor can be the alternative to at most one other corridor. In 
Sect. 3.3.2, we propose method for finding an upper bound, by ignoring potential 
penalties.

3.3.1  Lower bound for optimal network solution, based on single alternative 
corridors

By considering all corridors individually, using the result from Sect. 3.1, a lower bound 
for the network solution is obtained, considering no rerouting at all. Here we propose a 
better lower bound assuming that each corridor is the alternative for at most one other 
corridor. We assume that the unique alternatives have been determined, based on lowest 

(15)ℙ
�
E1 = k

�
=

�∑2C1

y=0
ℙ
�
O1 = y

�
ℙ
�
S2 ≥ y

�
k = 0

∑2C1

y=k
ℙ
�
O1 = y

�
ℙ
�
S2 = y − k

�
k > 0
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rerouting costs. See Fig. 6 for a schematic overview of corridors with single alterna-
tives. With this approach, we only have to consider two ‘neighbouring’ corridors, in 
order to assess the impact of changing a limit on the lower bound. For finding the opti-
mal limits that result in the highest expected profit J, our approach is as follows. In the 
first phase, we consider all corridors separately, and determine optimal limits using the 
approach from Sect. 3.1. We keep the result for all iterations. In the second phase, we 
consider the rerouting possibilities between corridors. Considering the rerouting pos-
sibilities, it is likely that the optimal limits are different. Firstly, cases exist in which it is 
optimal to have in total higher limits than the optimal single-corridor limits, since over-
flow can likely be rerouted. We consider this the reduced overflow cost effect. Second, 
there may exist a positive effect of decreasing a limit in one corridor, for the benefit of 
accepting more cargo on another corridor. We consider this the slack slot value effect. 
Note that changing a limit on a corridor i influences two other corridors: on the one 
hand, by increasing a limit on corridor i, the expected overflow �(Oi) may be increased, 
which could increase the expected excess �(Ei) as well. Depending on the price, cost 
and penalty parameters, there is a trade-off between increasing a limit on corridor i and 
reducing limits on the alternative corridor a. Let the cost of transporting cargo from 
corridor i via the alternative corridor a be denoted by ca,i. On the other hand, the same 
effect may exist with the corridor for which i is the alternative, the bequeathing cor-
ridor. Let this bequeathing corridor be denoted by b, and let �

(
Eb

)
 denote the expected 

Excess from that corridor. A trade-off exists between increasing a limit on corridor i 
and reducing limits on the bequeathing corridor b.

For a single corridor, the profit is denoted by:

These two effects, the reduced overflow cost effect, and the slack slot value effect 
can be made quantifiable by replacing the penalty value by a virtual penalty pi,v, and 
introducing a slack slot value si,v. The virtual penalty is the average rerouting costs 
per overflow unit, the slack slot value is the average cost saving per slack slot. They 
are provided by the following equations:

(16)
Ji
(
LE,i, LS,i

)
=
(
fE,i − ci

)
�
(
TE,i

)
+
(
fS,i − ci

)
�
(
TS,i

)
+ ci�

(
Oi

)

− ca,i�
(
Oi − Ei

)
− p�

(
Ei

)
+
(
p − ca,b

)
�
(
Ob − Eb

)

B

A

Terminal

Inland loca�on

Intermodal corridors (barge, rail)

End haulage
Excess cargo trucking

A

Fig. 6  Schematic overview of CFCM (r, r, 2) problem with single alternatives
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Rewriting, we can use (17) and (18) to rewrite (16) to a virtual corridor profit Ji,v:

Two key insights are important for our approach. Firstly, Eq. (19) has the same 
structure as the maximisation goal for a single corridor as in (1), with penalty p set 
to pi,v and slack slot value ψ set to si,v�

(
Ob − Eb

)
 . In this way, we can use pi,v and 

si,v to include the benefits of network-rerouting in the single-corridor formulation 
and reuse Algorithm 1 per corridor for finding solutions fast. Secondly, the solution 
of the Markov Chains (step 3-iv) in Algorithm 1 does not depend on the value of 
pi,v and si,v, but only on the limits LE,i, LS,i . Therefore, all previously solved Markov 
Chains for specific limits can be reused for later computations for different values of 
pi,v and si,v.

Using these insights, we propose a double iterative solution algorithm: a net-
work-wide iterative procedure aims to iteratively find optimal limits, until no more 
improvement to the network revenue can be found. Eh iteration considers every 
corridor separately, and per corridor an iterative procedure is used to estimate the 
values for pi,v and si,v, given the slack slot distribution of the alternative corridor 
a and the bequeathing corridor b. This approach is given as Algorithm 3. It works 
for any multi-corridor CFCM (r, r, 2) network, in which a corridor has at most one 
bequeathing corridor. The computational complexity of Algorithm 3 increases lin-
early with the number of corridors r. Note that Algorithm 3 uses Algorithm 1, with 
a complexity per corridor of O(Ci log Ci). An extension in which a corridor is the 
alternative for multiple corridors is not fundamentally excluded by our assumptions 
but would require rewriting (16)–(19) and Algorithm  3 for a case with multiple 
bequeathing corridors. The computational complexity would get slightly worse as 
well, since the adapted algorithm would scale quadratically in the order of r2.

Although such an extension would potentially increase the value of network 
rerouting, the increase has limited value for real-world problems, as we will show in 
Sect. 4. Since such an extension would substantially complicate the notation of the 
analysis, we have not included it in this section.

(17)pi,v =

{
ca,i[�(Oi)−�(Ei)]−p�(Ei)

�(Oi)
if �

(
Oi

)
> 0

0 otherwise

(18)si,v =

{
(p−ca,b)[�(Ob)−�(Eb)]

�(Si)
if �

(
Si
)
> 0

0 otherwise

(19)
Ji,v

(
LE,i, LS,i

)
=
(
fE,i − ci

)
�
(
TE,i

)
+
(
fS,i − ci

)
�
(
TS,i

)

−
(
pi,v − ci

)
�
(
Oi

)
+ si,v�

(
Ob − Eb

)
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Algorithm 3 Network solution for the CFCM (r, r, 2) problem
1 Apply Algorithm 1 for each corridor i, to find corridor-optimal 

values for LE,i,LS,i and save for each corridor all solved Markov 
Chains for later use.

2 Determine the total network revenue J by rerouting any overflow 
demand—if possible. If this is the first iteration, or if the newest J 
exceeds the previous one, continue; else go to step 5.

3 Find for each corridor i the revenue maximising limits, provided the 
state of the other corridors:

a. Determine the virtual corridor 
value Ji,v with (19), considering 
the rerouting between corridor 
b, i and a. If this is the first itera-
tion, or if the newest Ji,v exceeds 
the previous one, continue; else 
go to step 3e.

b. Determine the virtual penalty pi,v, 
and slack slot value si,v using (17) 
and (18).

c. Find optimal limits given these 
values for pi,v and si,v, using 
Algorithm 1; re-use previ-
ously solved Markov Chains for 
specific values LE,i,LS,i whenever 
possible; save all newly solved 
Markov Chains.

d. Go to step 3a., until converged.
e. Continue for corridor i + 1, until 

this was the last corridor.
4 Restart at step 2, until converged.
5 Finish.

3.3.2  Upper bound for network solution, based on minimum alternative corridor 
cost

An upper bound is found if we consider the case in which all overflow can be 
rerouted over the cheapest alternative. I.e. we replace the penalty of each corridor by 
the rerouting cost of its alternative corridor:

in which ca,i denotes the cost of the cheapest alternative route:

JUB
i

(
L
E,i
, LS,i

)
=
(
fE,i − ci

)
�
(
TE,i

)
+
(
fS,i − ci

)
�
(
TS,i

)

−
(
ca,i − ci

)
�
(
Oi

)
, j ≠ i

ca,i = min
j

cj,i
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In this upper bound, only demand-routing options that are unprofitable are 
excluded. For cases in which the profit outweighs the rerouting costs, i.e. (
fS,i − ci

)
>
(
ca,i − ci

)
 , this is not a very tight bound. However, if rerouting is 

expensive compared to the profit per container, i.e. 
(
fS,i − ci

)
<
(
ca,i − ci

)
 or even (

fE,i − ci
)
<
(
ca,i − ci

)
 , this bound is expected to be rather tight. Effectively, this is 

reducing the network problem to multiple single corridor problems with a penalty 
of ca,i.

3.3.3  Upper bound for network solution, based on maximum capacity 
on the alternative corridor

A tighter lower bound can be found considering the maximum available capacity on 
the alternative corridor. We denote the optimal limits for the single corridor case, 
L∗
E,j
, L∗

S,j
 . In the network optimum, these limits could be lower to accommodate cargo 

from a bequeathing corridor.
At the same time, lowering the limits is not efficient if the expected incremen-

tal profit of an additional container on this corridor is higher than the profit of a 
rerouted container from the bequeathing corridor. Let corridor a be the alterna-
tive corridor for corridor i. Then, the limits on corridor j will not be lowered 
below the level xs,a for which ℙ

(
DE,a = xE,a

)(
fE,a − ca

)
> fS,i − ca,i and 

ℙ
(
DS,a = xS,a

)(
fS,a − ca

)
> fS,a − ca,i . On corridor a, we can now conclude that the 

lower bound of the limits will be the minimum of 
L

�

E,a
= min

(
L∗
E,a

, xE,a

)
, L

�

S,a
= min

(
L∗
S,a
, xS,a

)
 . For finding the upper bound on cor-

ridor i, we can now use a varying penalty function for the overflow slots. We use 
ca,i as the penalty value for all overflow slots up to Ca − L

�

E,a
− L

�

S,a
 . For all over-

flow slots above this level, we use the cost of the next alternative ci,k, where k is 
the alternative of corridor of a. This is schematically depicted in Fig. 7. For com-
pleteness, this procedure is provided as Algorithm  4. The computational 

Fig. 7  Penalty function for overflow slots to find an upper bound
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complexity of this algorithm increases linearly with the number of corridors r, 
with a complexity of O(Ci log Ci) for each corridor.

Algorithm 4 Algorithm for an upper bound for the CFCM (r, r, 2) problem
1 For each corridor:

a. Find cost of the cheapest alterna-
tive that can be used in case of 
overflow, i.e. the cost of rerout-
ing over another corridor, or the 
costs of Excess trucking.

b. Find the minimum limits of the 
alternative corridor ( L′

E,j
;L

′

S,j
)

c. Set the penalty value to ca,i for all 
slots up to Cj − L

�

E,j
− L

�

S,j
 , and 

to ck,i above that.
d. Apply Algorithm 1 to get an 

upper bound of the profit on that 
corridor

2 Take the sum of the profits of all corridors to obtain the network 
upper bound.

3.4  Numerical results and sensitivity analysis

In order to get more insight in relevant aspects of the problem that influence the 
network effect, we performed a sensitivity analysis in a stylised setting with two 
corridors. For different settings, we compare the baseline of individual corridor opti-
mums with the result of using rerouting. We compare four results for the network 
setting: using rerouting based on corridor optimums, the lower and upper bounds of 
Sect. 3.3 and the network optimum based on the results of Sect. 3.2. Additionally, to 
show the benefits of the studied product combination, we also consider the case of 
using first-come-first-serve (FCFS) routing, i.e. when only the standard product is 
available. In a FCFS setting, no express product is offered, since it represents a prod-
uct with a long-term commitment of fast transportation in our analysis. In Van Ries-
sen et al. (2017) we showed in more detail the effect of introducing an Express prod-
uct. We consider two corridors in which one has a moderate profit margin, and one 
a significant profit margin (see Table 3). In the table, three parameters are denoted 
by (x, y, z); for each experiment, one of these parameters is changed to one of the 
alternative values indicated in the table; changing one parameter at a time. With 
parameter x, we study the sensitivity for excess trucking costs (the cost of excess 
trucking is changed for both corridors simultaneously). Parameter y is used for 
changing only corridor 1: the demand on this corridor is varied in a wide range to 
see its effect on the network profitability and effectiveness of our proposed method. 
Finally, parameter z is used to study the sensitivity for the ratio between Express and 
Standard demand. All other settings are denoted in Table  3, the standard settings 
for (x,  y,  z) are denoted between brackets. The FCFS setting is determined using 
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no penalty (x = 0), the demand of the Standard setting (y = 70%) and no Express 
demand (z = 0).

Figure 8 shows the resulting profits for the Standard case of Table 3. More details 
are provided in Table  4. By applying Algorithm  1 to both corridors individually, 
the optimums per corridor are found. The sum of this gives the corridor optimum 
(CO) of 12.79. In the corridor optimum, rerouting (RR) provides little additional 
profit (12.87, + 0.6%). Applying Algorithm 2 gives the network optimum (NO) of 
13.04 (+  1.3%, compared to RR). Algorithm  2 provides the global optimum, but 
the computation time is only feasible for a simple benchmark case such as this one. 
Applying Algorithm  3—which is more scalable to larger problems—results in a 
lower bound, in this case close to the optimum: 12.97. Still, this is only +0.8% over 
the result based on corridor optimums with rerouting (RR). An upper bound can be 
found with Algorithm 4, resulting in 13.17. For this setting, the benefit of a network 
solution is negligible.

Table 3  Standard experiment 
setting sensitivity analysis

Standard setting Sensitivity analysis

Corridor 1 Corridor 2

Costs
Direct route 1.00 1.00
Alternative route 1.15 1.15
Excess trucking x (4) x (4) x = [2, …, 6]
Pricing
Express 1.25 1.45
Standard 1.10 1.30
Network
Capacity (C) 30 30
Demand (% of C) y (70%) 100% y = [20, 30, …, 150]%
% Express demand z (30%) z (30%) z = [10, 20, …, 80]%

98.0%

99.0%

100.0%

101.0%

102.0%

103.0%

104.0%

RR

CO

LB-UB

NO

Fig. 8  Profit for standard setting (basis for sensitivity analysis, normalised to corridor optimum)



 B. Van Riessen et al.

1 3

With a low cost of Excess trucking, the quality of the bounds is better than 
in a situation with very high Excess trucking. This effect can be seen in Fig. 9a: 
the lower and upper bounds of the network gain is largest for higher values of 
excess trucking costs. However, the effect of excess trucking costs is limited for 
the network optimum. For all cases, the potential benefit of a network solution 
is just below 2%. Figure  9b shows the effect of demand volume in comparison 
with capacity. For corridor 1, demand is varied between 20% and 150% of its 
capacity, while demand on the second corridor is kept constant. The effects on 
our methods for the lower and upper bound are different. If demand < 1, the lower 
bound on the network optimum is higher than the result of rerouting only. The 
actual network optimum appears to be equal to the upper bound. It shows that 
our lower bound method is beneficial to exploit available capacity for these situ-
ations. On the other hand, for cases with demand > 1, the network optimum does 
not provide an advantage compared to the case of using the individual corridor 
optimums (with rerouting). However, in these cases, the upper bound method is 
not very tight.

Finally, Fig. 9c shows the effect of express demand. From the figure, we can see 
that from low to high fractions of express, rerouting and network solutions provide 
similar benefit. Also, the lower and upper bound methods are close to the optimum 
for all variations in Express demand fractions.

4  Case study of the CFCM problem in the EGS network

In this section, the procedure proposed for the CFCM (r, r, 2) problem is applied 
to two cases. The cases represent two different parts of the synchromodal trans-
portation network of EGS (Fig.  10). Case 1 considers the transportation of con-
tainers from the port of Rotterdam towards two destinations in the industrial Ruhr 

Table 4  Results of Algorithms 1–4 for CFCM (2, 2, 2) problem

Case Optimal book-
ing limits   
(LE;  LS)

Expected revenue (J) Capacity 
utilisation  
[η (%)]

Expected 
excess 
[ �
(
ES

)
]

Comp. 
time  
[T (s)]

First-come-first-serve 
(FCFS)

NA 11.02 (− 13.8%) 75 0.0% < 1

Corridor optimum 
(CO)

33; 57 12.79 (= 100%) 81 0.0% 1

CO with rerouting 
(RR)

33; 57 12.87 (+ 0.6%) 81 0.0% 1

Network lower bound 
(LB)

35; 58 12.97 (+ 1.4%) 82 0.0% 3

Network upper bound 
(UB)

45; 78 13.17 (+ 3.0%) 82 0.9% 3

Network optimum 
(NO)

48; 47 13.04 (+ 2.0%) 82 0.0% 1738
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area: Venlo and Duisburg. Case 2 represents transportation to Central Europe, i.e. 
5 corridors from Rotterdam to inland terminals in Southern Germany and France. 
Table 5 provides a general overview of the two corridors and the main differences. 
Case 1 represents a two-corridor network structure with high volume and relatively 

(a) Benefit of rerouting and network solutions for different levels of Excess trucking costs 

(b) Benefit of rerouting and network solutions for different levels of demand 

(c) Benefit of rerouting and network solutions for different levels of Express demand 
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Fig. 9  Results sensitivity analysis
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short distances. Therefore, the costs for trucking excess demand, and the additional 
costs for rerouting are tolerable. On the other hand, case two represents a 5-corridor 
network with much lower throughput to a more distant and wider dispersed area. 
Therefore, both excess trucking and rerouting come at significant additional costs. 
The areas that these two cases represent are considered as two very different busi-
ness settings. The different settings are represented by differences in (1) distance to 
the port (2) distance between locations, also relative to the port distance and (3) vol-
ume, see Table 5. In the remainder of this section we consider all parameters, such 
as capacity and prices, based on 40-foot containers, or forty-foot equivalent units 
(FEU). We consider the import flow, i.e. from the deep-sea port towards the inland 

Deep-sea port: (A) ECT Rotterdam 
Case 1: (B) Venlo, (C) Duisburg,  

Case 2: (D) Aschaffenburg, (E) Strasbourg, (F) Stuttgart, (G) Nuremberg and (H) Munich. 

Fig. 10  Case study locations EGS network

Table 5  Two case studies with 
the CFCM (r, r, 2) model

Case 1 Case 2

Locations Duisburg, Venlo Nuremberg, Munich, Stutt-
gart, Strasbourg, Aschaf-
fenburg

Distance (km) 209–239 520–870
Corridor import 

per period 
(FEU)

50–150 5–15
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terminal. We make a comparison between these two cases, and how the effect of a 
network approach for the fare class limits differs between these cases.

4.1  Network solution high demand target area: Rotterdam–Ruhr area

EGS operates two high volume corridors between the port of Rotterdam and the 
Ruhr area, Venlo, and Duisburg. On the corridors both rail and barge services 
operate, but we ignore transportation time and do not distinguish between the 
modes. The average distance from the port of Rotterdam is 219 km. The distance 
between both locations is 53  km. In order to apply Algorithm  3, we make the 
following assumptions. For the capacity, we take the average available slots per 
period on each corridor. The transportation cost per FEU is based on the aver-
age slot costs of all rail and barge slots. For demand and prices, we will use input 
from EGS’s internal research into the market for synchromodal products. We 
assume Poisson distributed demand per day.

The transportation cost matrix is determined as follows: if a container is trans-
ported on the regular corridor, i.e. towards a final destination towards the end 
of that corridor, we use the slot costs of a direct transport on that corridor. If an 
alternative route is selected, this will incur different slot costs for the corridor 
transport, and on top of that the local delivery is more expensive: the container 
must be rerouted to its original destination area. Therefore, for an alternative 
route, we use the slot costs on the alternative route, and in addition the extra costs 
for local truck delivery. The cost matrix for Case 1 is provided in Table 6. For 
confidentiality reasons, cost information is normalised to the lowest costs, and 
demand is normalised to the destination with the highest expected demand. For 
prices, we will use input from EGS’s internal research into the market for syn-
chromodal products.

Table 6  Parameters case 1—
high demand target area

Destination Best alternative

Venlo Duisburg

Costs [normalised]
Rotterdam-Venlo 1.00 1.12 (+ 12%)
Rotterdam-Duisburg 1.21 1.10 (+ 10%)
Excess trucking 2.05 2.05

(+ 105%) (+ 83%)
Pricing
Express 1.33 1.52
Standard 1.16 1.32
Network volumes [normalised]
Capacity per corridor 1.00 0.34
Expected demand 1.00 0.34
% Express demand 30% 30%
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The results are provided in Table 7 and the expected profits are visualised in 
Fig. 11a. By applying Algorithm 1 to both corridors separately, the optimal limits 
for these corridors are found. Together, these corridors give an expected profit 
per period of 45.33. Applying Algorithm 3 to this case, does not provide a higher 
expected profit and gives the same solution as individually optimising the cor-
ridors. This is also a lower bound for the network optimum. Algorithm 4 gives 
an upper bound for the network optimum of 45.79, a maximum increase of 1.1% 
over the corridor optimum.

4.2  Network solution dispersed long‑distance area: Rotterdam–Central Europe

In the second case, we consider container transportation between Rotterdam and 5 
inland terminals in Central Europe, Nuremberg, Munich, Aschaffenburg, Stuttgart 
and Strasbourg. The average distance of these location from the port of Rotterdam is 
635 km. No barge transport is considered, for each of the five locations we consider 
the rail connection. The distance between the 5 inland locations ranges from 169 to 
676 km. For this case, we consider a horizon for Express of 3 days, and for Standard 
twice that, 6 days. Therefore, in order to apply Algorithm 3, we make the following 
assumptions. For the capacity, we take the average available slots on 3 days on each 
corridor. The transportation cost per FEU is based on the average slot costs of all 

Table 7  Results for case 1—high demand target area

Case Optimal booking 
limits [ LE ; LS  
(% of C)]

Expected revenue 
(J)

Capacity 
utilisation  
[ � (%)]

Expected 
excess 
[ �
(
ES

)
]

Comp. 
time  
[T (s)]

Corridor optimum 
(CO)

53%;76% 45.31 (= 100%) 99 0.1% 177

CO with rerouting 
(RR)

53%;76% 45.33 (+ 0.0%) 99 0.1% 177

Network lower 
bound (LB)

51%;76% 45.33 (+ 0.0%) 99 0.1% 300

Network upper 
bound (UB)

56%;103% 45.79 (+ 1.1%) 99 0.6% 434

98%

99%

100%

101%

102%

103%

(a) Ruhr area (b) Central Europe

RR

CO

LB-UB

Fig. 11  Profit per period for cases 1 and 2 (normalised to the corridor optimums)
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rail slots. For demand and prices, we will use input from EGS’s internal research 
into the market for synchromodal products. We assume Poisson distributed demand. 
The transportation cost matrix is determined as in the previous case, provided in 
Table 8.

The results are tabularised in Table 9, and the profits are shown in Fig. 11b. By 
applying Algorithm 1 to each corridor individually, we get a total expected profit 
of 7.54. Subsequently, we apply Algorithm  3, to consider the benefits of the net-
work. After step 2 of Algorithm 3, we have the expected profit considering network 

Table 8  Parameter setting case 2—dispersed demand in long-distance area

The direct route is double underlined, the alternative route is single underlined
a Projected data for new corridors, no sufficient data available yet

Destination Alternative

Nuremberg Munich Stuttgart Strasbourg Aschaffenburg

Costs [normalised]
Rotterdam–Nuremberg 1.00 1.22 1.31 1.51 1.24 (+ 22%)
Rotterdam–Munich 1.24 1.00 1.31 1.59 1.53 (+ 31%)
Rotterdam–Stuttgart 1.34 1.34 1.02 1.19 1.27 (+ 17%)
Rotterdam–Strasbourg 1.68 1.79 1.31 1.04 1.49 (+ 43%)
Rotterdam–Aschaf-

fenburg
1.33 1.62 1.33 1.48 1.01 (+ 32%)

Excess trucking 2.50 2.50 2.50 2.50 2.50
(+ 150%) (+ 150%) (+ 146%) (+ 140%) (+ 149%)

Pricing
Express (+15%) 1.27 1.27 1.42 1.17 1.25
Standard 1.10 1.10 1.23 1.02 1.09
Network volumes [normalised]
Capacity per corridor 1.00 0.30 0.20 0.20 0.20
Expected demand 1.00 0.30 0.20a 0.20a 0.20a

% Express demand 30% 30% 30% 30% 30%

Table 9  Results for case 2—dispersed destinations in a long-distance area

Case Optimal booking 
limits [ LE ; LS  
(% of C)]

Expected revenue 
( J)

Capacity 
utilisation  
[ � (%)]

Expected 
excess 
[ �
(
ES

)
]

Comp. 
time  
[T (s)]

Corridor optimum 
(CO)

70%;82% 7.54 (= 100%) 82% 0.1% 3

CO with rerouting 
(RR)

70%;82% 7.58 (+ 0.5%) 82% 0.0% 3

Network lower 
bound (LB)

73%;83% 7.60 (+ 0.8%) 82% 0.0% 9

Network upper 
bound (UB)

92%;112% 7.73 (+ 2.4%) 84% 0.9% 10
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rerouting, based on the limits of the individual corridor optima. This gives a slight 
increase of 0.5%, to an expected profit of 7.58. By finishing Algorithm  3, we 
obtained an improved network solution, 7.60 (+ 0.8%), which is a lower bound for 
the network optimum. The upper bound for the network optimum is obtained by 
Algorithm 4 and equals 7.73, an increase of 2.4% over the corridor optimum.

The proposed methods provide results for both cases within seconds or minutes. 
For the application of determining booking limits in practice, that is sufficiently fast. 
The two cases from the EGS network represent different realistic settings from prac-
tice, and the corridor optimum gives a good result for both. Figure  11 shows the 
network solution mostly adds benefit for the Central Europe area, whereas for the 
Ruhr area it does not. Therefore, practical applicants should start with computing 
the corridor optimum using Algorithm 1 and subsequently check the improvement 
potential with our proposed network solution (Algorithm 3).

5  Conclusions and future research

With the introduction of the Cargo Fare Class Mix problem, we aimed to create a 
bridge between the operations management of optimising transportation planning 
and the revenue management of optimising the service portfolio in synchromodal 
container networks. So far, only methods for smaller single corridor problems have 
been studied. In this article we provided a method that is faster than earlier methods 
and suitable for larger corridors. Secondly, we proposed an approach for finding lim-
its in the CFCM (r, r, 2) problem. This approach is suitable for use in practice, as we 
showed in a case study of two parts of the EGS network. We also showed how sensi-
tive the problem is for various settings:

• For higher excess trucking cost levels, the network approach is beneficial. If the 
cost of excess trucking is low relative to the intermodal transportation costs, the 
proposed network method provides little improvement.

• For low demand levels on one corridor, the improvement by considering the net-
work approach is significant. If demand on this corridor is high compared to the 
available capacity, the benefit of our lower bound method for a network solution 
is limited, but the upper bound is high.

• The fraction of express demand is not very important: For all express fractions, 
network rerouting becomes relevant, making the network approach significant.

The above shows that an intermodal operator has multiple options to adjust demand 
to available capacity. Our approach aims at balancing the available express and 
standard demand in an optimal way, leveraging the flexibility in the network. Alter-
natively, the operator can focus on flexibility within the corridor, e.g. by aiming on 
large parts of demand that can be postponed such as the Standard fare class. Hence, 
we showed that revenue management for synchromodal transportation, as proposed 
in this article, is beneficial in some cases, as it supports offering a higher priced 
express service, while at the same time increasing capacity utilisation.
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A series of mathematical proofs was used for a new approach that reduced the 
computational complexity from O(C2) to O(C  log C). For the realistic cases con-
sidered in this paper, the new approach was very fast. Furthermore, a generalised 
framework was presented to assess the optimal combination of two fare classes in an 
intermodal network. The improved corridor approach was used in methods for find-
ing lower and upper bounds for the subset of network problems. This subset consid-
ered cases with r destinations and r corridors, considering one alternative corridor 
per destination. It was shown with sensitivity analyses that lower and upper bounds 
are tight for some settings.

The results from this study are based on specific assumptions on the demand 
distribution: We assume independent distributions for both service types, ignoring 
the possibilities of substitution. We assume independent demand distributions per 
corridor, ignoring potential seasonal or market effects that influence multiple cor-
ridors simultaneously. Also, our method is aimed at cases in which a corridor is the 
alternative for at most one corridor. In practice, our approach is not fundamentally 
limited to this situation: Algorithm 3 can be applied to a more complex rerouting 
algorithm as well. However, this would not add significant benefit to the class of 
transport problems considered in this paper but would substantially complicate the 
notation of the analysis. It will be interesting, however, to study as part of future 
research the impact of more advanced rerouting in more complex networks. In 
future research, we aim to develop models for the CFCM problem that consider mul-
tiple customers per corridor. In such a situation, the intermodal operator may want 
to create an optimal portfolio of selected customers that match his available capac-
ity as good as possible. Two alternative modelling strategies for such a problem are 
provided in “Appendix 3”.

From our experience with EGS we know that the industry has only recently 
started considering the product portfolio in conjunction with the operational net-
work management. Further integration of several aspects, such as network sched-
uling, dynamic updates, capacity sourcing and transportation product definitions 
requires continuous research on the topic.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, 
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as 
you give appropriate credit to the original author(s) and the source, provide a link to the Creative Com-
mons licence, and indicate if changes were made. The images or other third party material in this article 
are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the 
material. If material is not included in the article’s Creative Commons licence and your intended use is 
not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission 
directly from the copyright holder. To view a copy of this licence, visit http://creat iveco mmons .org/licen 
ses/by/4.0/.

Appendix 1: Probability distributions of surplus and overflow

This appendix provides the derivation of the steady state distributions of the number 
of overflow containers Oi and the number of surplus (or slack) slots Si on corridor 
i. First, we consider slack slots. When the available cargo exceeds the capacity, the 

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
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number of slack slots is zero. Otherwise, the number of slack slots equals the differ-
ence between available cargo and the capacity:

The distribution of Ri is provided by �i(j) = P
(
Ri = j

)
 as obtained by solving the 

Markov Chain for CFCM (1, d, 2) (see Sect. 3.1). We can then rewrite (20) as:

And by summing over z we obtain:

We observe that Si ≤ Ci − Ri , and therefore 𝜋i(q) = 0, q > Ci − z . The expected 
value from (21) is provided by:

Secondly, we consider the distribution of the amount of overflow cargo for corridor 
i. When the available cargo is less than the capacity on that corridor, the number of 
overflow slots is zero. Otherwise, the number of overflow slots equals the difference 
between available cargo and the capacity:

The distribution of Ri is provided by �i(j) = P
(
Ri = j

)
 as obtained by solving the 

Markov Chain for CFCM (1, d, 2) (see Sect. 3.1). We can then rewrite (24) as:

By summing over z, we obtain:

The expected value from (25) is obtained by:

(20)ℙ
(
Si = z

)
=

{
ℙ
(
TE,i + TS,i + Ri ≥ Ci

)
z = 0

ℙ
(
TE,i + TS,i + Ri = Ci − z

)
z > 0

(21)

ℙ
�
Si = z

�
=

�∑Ci

q=0
𝜋i(q)

∑Ci

e=0
ℙ
�
TS,i ≥ Ci − q − e

�
ℙ
�
TE,i = e

�
z = 0

∑Ci−z

q=0
𝜋i(q)

∑Ci−q−z

e=0
ℙ
�
TS,i = Ci − z − q − e

�
ℙ
�
TE,i = e

�
z > 0

(22)ℙ
(
Si > 0

)
=

Ci∑

q=0

𝜋i(q)

Ci−q∑

e=0

ℙ
(
TS,i < Ci − q − e

)
ℙ
(
TE,i = e

)

(23)

𝔼
(
Si
)
=

Ci∑

z=1

zℙ
(
Si = z

)
=

Ci∑

z=1

z

Ci−z∑

q=0

�i(q)

Ci−q−z∑

e=0

ℙ
(
TS,i = Ci − z − q − e

)
ℙ
(
TE,i = e

)

(24)ℙ
(
Oi = z

)
=

{
ℙ
(
Ri + TE,i ≤ Ci

)
z = 0

ℙ
(
Ri + TE,i = Ci + z

)
z > 0

(25)ℙ
�
Oi = z

�
=

�∑Ci

q=0
𝜋i(q)ℙ

�
TE,i ≤ Ci − q

�
z = 0

∑Ci

q=0
𝜋i(q)ℙ

�
TE,i = Ci + z − q

�
z > 0

(26)ℙ
(
Oi > 0

)
=
∑

q=0

𝜋i(q)ℙ
(
TE,i > Ci − q

)
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Appendix 2: Optimality proofs

Proof 1 The expected profit has a single maximum for one variable limit, if the other 
limit is fixed.

In the remainder, we assume that LE is fixed and LS is varied, but the proof also 
holds the other way around. Let ℙs+1 denote the probability of incurring one addi-
tional overflow slot, if a unit of product S is added. I.e.:

where �
[
ΔTS

]
 denotes the expected additional Standard demand if the limit is 

increased by 1:

Let J
(
LS
)
 be the profit for limit LS. Let Ω be the set of possible scenarios, and pω the 

probability that scenario ω occurs. It holds that:

We now consider J
(
LS + 1

)
− J

(
LS
)
:

Clearly, �
[
ΔTs,d

]
≥ 0 for all values of LS . Hence, J

(
LS
)
 is increasing with 

increasing LS if fS − c − pℙS
+1 ≥ 0 and J

(
LS
)
 is decreasing with increasing LS if 

fS − c − pℙS
+1 ≤ 0.

The probability that an extra unit of demand will lead to a penalty increases 
when the limit increases, so fS − c − pℙS

+1 is a decreasing function. This means 
that J

(
LS
)
 is first increasing and later decreasing, with a unique maximum at the 

point where fS − c − pℙS
+1 changes sign.

Proof 2 If the expected profit for two given limits is larger than the profits obtained 
when one of the limits is reduced by 1, then this profit exceeds all scenarios with 
limits lower than or equal to the given limits.

We consider a single corridor with a single destination. Let JLE,LS denote the 
expected profit in a scenario for a given LE and LS . We show the following:

(27)𝔼
(
Oi

)
=

Ci∑

z=i

z

Ci∑

q=z

�i(q)ℙ
(
TE,i = Ci + z − q

)

𝔼
[
ΔTS

]
ℙS

+1 = 𝔼
[
O|LS + 1

]
− 𝔼

[
O|LS

]
,

�
[
ΔTS

]
= �

[
TS|LS + 1

]
− �

[
TS|LS

]
.

J
(
LS
)
=
∑

�,t

p�
((
fS − c

)
TS(t,�) − pO(t,�)

)
= (fS − c)�

[
TS
]
− p�[O].

J
(
LS + 1

)
− J

(
LS
)
=
(
fS − c

)(
𝔼
[
TS|LS + 1

]
− 𝔼

[
TS|LS

])
− p𝔼

[
O|LS + 1

]
− 𝔼

[
O|LS

]
)

= 𝔼
[
ΔTS

](
fS − c − pℙS

+1

)
.
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The expected profit for a single corridor is given by:

And, as in proof 1:

Subsequently, we consider

Since the expected demand for one product is independent of the other products 
demand, we have �

[
ΔTE

]
= �

[
ΔT �

E

]
≥ 0 . Also, since total demand is lower, 

ℙ
�

E
+1
≤ ℙE

+1 . Therefore, we have:

Consequently, JLE,LS−1 − JLE−1,LS−1 ≥ 0 and JLE−1,LS−1 ≤ JLE,LS−1 ≤ JLE,LS . By recur-
sion, this extends to the desired proof.

Proof 3 If the expected profit for two given limits is larger than the profits obtained 
when one of the limits is increased by 1, then this profit exceeds all scenarios with 
limits higher than or equal to the given limits

In a similar fashion as in proof 2, we obtain:

Again, �
[
ΔTE

]
= �

[
ΔT �

E

]
≥ 0 . Because demand is higher, ℙ�

E
+1
≥ ℙE

+1 . Therefore, 
we have now:

From this follows that JLE+1,LS+1 − JLE,LS+1 ≤ 0 and JLE+1,LS+1 ≤ JLE,LS+1 ≤ JLE,LS . By 
recursion, this extends to the desired proof.

if JLE,LS ≥ JLE−1,LSandJLE,LS ≥ JLE,LS−1thenJLE,LS ≥ JLE−x,LS−y ∀x, y ≥ 0

JLE,LS = (fE − c)�
[
TE

]
− (fS − c)�

[
TS
]
− p�[E].

JLE,LS − JLE−1,LS = 𝔼
[
ΔTE

]
(fE − c − pℙE

+1) ≥ 0.

JLE,LS − JLE,LS−1 = 𝔼
[
ΔTS

]
(fS − c − pℙS

+1) ≥ 0.

JLE,LS−1 − JLE−1,LS−1 = 𝔼
[
ΔT �

E

]
(fE − c − pℙ�

E
+1).

(fE − c − pℙ�
E
+1) ≥ (fE − c − pℙE

+1) ≥ 0

if JLE,LS ≥ JLE+1,LS and JLE,LS ≥ JLE,LS+1 then JLE,LS ≥ JLE+x,LS+y ∀x, y ≥ 0

JLE+1,LS − JLE,LS = 𝔼
[
ΔTE

]
(fE − c − pℙE

+1) ≤ 0.

JLE,LS+1 − JLE,LS = 𝔼
[
ΔTS

]
(fS − c − pℙS

+1) ≤ 0.

JLE+1,LS+1 − JLE,LS+1 = 𝔼
[
ΔT �

E

]
(fE − c − pℙ�

E
+1)

0 ≥ (fE − c − pℙE
+1) ≥ (fE − c − pℙ�

E
+1)
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Appendix 3: Extensions and alternatives

As in Van Riessen et al. (2017), we have used the aggregated demand for all des-
tinations around the inland terminal to model each corridor. In reality, specific 
agreements per destination (or customer) in the destination’s region can be made. 
Modelling limits per destination would result in a very large problem. Enumera-
tion would be of order O(|Ci|2d), that is selecting a limit LS,d ∈

{
0,… , 2Ci

}
 and 

LE,d ∈
{
0,… , 2Ci

}
 for each destination d. Although, the approach as in proofs 1–3 

would reduce the problem size, it would still be a very large problem to solve to 
optimality. Here we provide two alternative modeling approaches, which we did not 
explore in further detail, but suggest as future research topics.

Two level stochastic modeling for CFCM (r, d, 2)

Alternatively, this could be modelled as a stochastic programming problem with 
a sufficient number of scenarios. In a two-level approach, the upper level problem 
must select general limits, which serve as input for the lower level problems, in 
which for each scenario individually the optimal transportation plan is created. Such 
an approach will also allow more flexible allocation strategies when creating the 
operational transportation plan, thereby alleviating one critical assumption in our 
analysis: the strict order of allocating cargo. Under our assumption, subsequently 
Express, all remaining Standard, the new Standard demand and lastly Overflow of 
bequeathing corridors is allocated. As long as the penalty p is equal for all types, 
and the direct costs on corridor i are lower than rerouting its bequeathing corridor 
( ci < ci−1,a ), starting with Express and yesterday’s Standard is always right, as it will 
directly induce a penalty otherwise. However, in a two-level stochastic approach, 
there is a possibility to on the operational level to decide to postpone some of 
today’s standard demand, in favour of transporting overflow.

Alternative problem formulation for CFCM (r, d, 2) based on customer selection

Here, we provide an outline for further research, based on a different CFCM deci-
sion problem: provided exogenous demand distributions per product and per cus-
tomer, the problem is to decide whether to provide a long-term commitment to the 
customer or do not serve the customer at all. Since the number of possibilities for 
selecting limits per product and per customer scales to fast, this alternative approach 
will reduce the number of options per customer significantly: serve the customer, or 
not at all. This provides two potential improvements for the solution algorithm:

• The number of options becomes of order O(2d), which is significantly smaller 
than the order of a problem with limits per customer O(|Ci|2d), especially for real-
istic numbers of customers per corridor, e.g. d ≤ 15.

• Secondly, provided the exogenous demand of a customer, its contributing value 
is a combination of the expected profit of a customer, and the potential penalties 
included by that customer. For estimating the induced penalties, a measure must 
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incorporate the fact that a customer with a small variation has little risk on trig-
gering a penalty, while a customer with a long tail distribution may cause excess.

Note that accepting a customer with fully deterministic demand would reduce the 
problem to a new CFCM problem in which the capacity is reduced by the custom-
er’s demand.
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