
Modeling the Exception Flow in
PHP Systems

THESIS

submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE

in

COMPUTER SCIENCE

by

Tom den Braber
born in Maassluis, the Netherlands

Software Engineering Research Group
Department of Software Technology
Faculty of Electrical Engineering, Mathematics
& Computer Science, Delft University of Tech-
nology
Delft, the Netherlands
www.ewi.tudelft.nl

Moxio BV
Rotterdamseweg 183c
Delft, the Netherlands

www.moxio.com

www.ewi.tudelft.nl
www.moxio.com

©2017 Tom den Braber. All rights reserved.

Modeling the Exception Flow in
PHP Systems

Author: Tom den Braber
Student id: 4223780
Email: tomdenbraber@gmail.com

Abstract

The goal of this thesis is to learn how exception handling constructs are used by
PHP developers. We present an approach for detecting the exception flow of a software
system, based on the work of Robillard and Murphy [26]. We show the accuracy of this
approach by evaluating the tool on a corpus of three different PHP systems. The ap-
proach is thereafter used to perform an empirical study on a corpus of 20 PHP systems.
For each of these systems, we compute the exception flow and measure the number of
exceptions that are encountered, how often exceptions are propagated before they are
caught, by what type they are typically caught, and whether they are documented. The
results show that many exceptions are propagated often before they are caught and
that many are caught by subsumption. Another finding is that exceptions are often not
documented, which in many cases is a violation of the Liskov Substitution Principle.

Thesis Committee:

Chair: Prof. Dr. A. van Deursen
University supervisors: MSc. M. Soltani, Faculty EEMCS, TU Delft

Dr. M. Aniche, Faculty EEMCS, TU Delft
Company supervisor: MSc. M. Wijngaard, Moxio BV
Committee Members: Dr. G. Gousios, Faculty EEMCS, TU Delft

Dr. S. Verwer, Faculty EEMCS, TU Delft

tomdenbraber@gmail.com

Preface

After a journey of almost 9 months, I can now deliver a thesis of which I am proud and for
which I worked hard. I would like to thank the people who supported me throughout the
research process. To start with, I want to thank Mozhan, who kindly reviewed my work and
has been a very helpful supervisor. I would also like to thank Merijn for the constructive
meetings we had over the course of the project. The third person who deserves my thanks
is Mauricio, who pushed me to pursue a high standard concerning the determination of the
accuracy of the algorithm. My thanks also go out to Arie, for his feedback and ideas. I want
to thank Hylke for giving me the opportunity to perform this study at Moxio. I am grateful
for all my colleagues at Moxio, with whom I had a lot of fun. I also want to thank all the
people who were willing to work in my house, painting walls, doors and window frames,
while I was working on this thesis. Finally, I would like to thank Lisette for supporting me
throughout the whole project.

Tom den Braber
Delft, the Netherlands

August 16, 2017

iii

Contents

Preface iii

Contents v

List of Figures vii

1 Introduction 1

2 Background 3
2.1 The PHP language . 3
2.2 Static Analysis to Support the Evolution of Exception Structure in Object-

Oriented Systems . 4
2.3 Simple and Efficient Construction of Static Single Assignment Form 6
2.4 Optimization of Object-Oriented Programs Using Static Class Hierarchy

Analysis . 7

3 Approach 9
3.1 Type Inference . 10
3.2 Call Graph Construction . 13
3.3 Flow Detection . 16
3.4 Research Scope . 18

4 Algorithm Accuracy 21
4.1 Methodology . 21
4.2 Results . 25
4.3 Concluding remarks . 30

5 Empirical Study 33
5.1 Research Questions . 33
5.2 Corpus . 34
5.3 Methodology . 35

v

CONTENTS

5.4 Threats to Validity . 38

6 Results 39
6.1 RQ1. Number of Encounters per Method 39
6.2 RQ2. Paths of Exceptions . 39
6.3 RQ3. Catch by Subsumption . 39
6.4 RQ4. Documentation Validation . 41

7 Discussion 45
7.1 RQ1. Number of Encounters per Method 45
7.2 RQ2. Paths of Exceptions . 45
7.3 RQ3. Catch by Subsumption . 46
7.4 RQ4. Documentation Validation . 47
7.5 Algorithm Accuracy . 48

8 Related Work 49
8.1 Exception Flow Modeling . 49
8.2 Exception and Error Handling . 49
8.3 PHP and Web Development . 50

9 Conclusion 51
9.1 Contributions . 51
9.2 Conclusions . 51
9.3 Future Work . 52

Bibliography 53

A Results 57
A.1 Paths of Exceptions . 57
A.2 Catch by Subsumption . 61
A.3 Documentation Validation . 71

vi

List of Figures

2.1 Catch clauses in PHP . 4
2.2 Example code for scopes and guarded scopes 5
2.3 Indication of the (guarded) scopes in code in Listing 2.2. 5
2.4 Example class hierarchy . 8

3.1 Overview of the approach for computing the exception flow 10
3.2 Exception flow example code . 13
3.3 Visual representation of the exception flow of the program in Listing 3.2. . . . 13
3.4 Dynamic calls . 19

4.1 Real errors and propagated errors . 22
4.2 Example situation for exception entering scope via different routes 24
4.3 Type inference limitations . 30

5.1 A method with a @throws annotation . 34
5.2 An example where the exception can be propagated from two sources 36
5.3 Propagation via multiple paths for exception e to the catch clause in scope c . . 37
5.4 Catch by subsumption code example . 37
5.5 Catch by subsumption example class hierarchy 37

6.1 Shortest path lengths from throw statement to catch clause 40
6.2 Distances between exceptions, catch clauses and root types in all projects . . . 41
6.3 Distances between exceptions, catch clauses and root types in PHPUnit 42
6.4 Comparison of throws annoations to encountered exceptions 43

A.1 Shortest path lengths from throw statement to catch clause in Joomla 57
A.2 Shortest path lengths from throw statement to catch clause in CakePHP . . . 57
A.3 Shortest path lengths from throw statement to catch clause in Doctrine 58
A.4 Shortest path lengths from throw statement to catch clause in DokuWiki . . . 58
A.5 Shortest path lengths from throw statement to catch clause in Drupal 58
A.6 Shortest path lengths from throw statement to catch clause in Fabric 58

vii

LIST OF FIGURES

A.7 Shortest path lengths from throw statement to catch clause in Nette 59
A.8 Shortest path lengths from throw statement to catch clause in Phing 59
A.9 Shortest path lengths from throw statement to catch clause in phpBB 59
A.10 Shortest path lengths from throw statement to catch clause in phpDocumentor2 59
A.11 Shortest path lengths from throw statement to catch clause in PHPUnit 60
A.12 Shortest path lengths from throw statement to catch clause in Digitaalloket . . 60
A.13 Shortest path lengths from throw statement to catch clause in Objectbrowser . 60
A.14 Shortest path lengths from throw statement to catch clause in Roundcube . . . 60
A.15 Shortest path lengths from throw statement to catch clause in Smarty 61
A.16 Shortest path lengths from throw statement to catch clause in Symfony 61
A.17 Shortest path lengths from throw statement to catch clause in Wordpress . . . 61
A.18 Shortest path lengths from throw statement to catch clause in Zend Framework 61
A.19 Distances from all caught exceptions to the types of the catching catch clause

in Joomla . 62
A.20 Distances from all caught exceptions to the types of the catching catch clause

in CakePHP . 62
A.21 Distances from all caught exceptions to the types of the catching catch clause

in Doctrine . 62
A.22 Distances from all caught exceptions to the types of the catching catch clause

in DokuWiki . 62
A.23 Distances from all caught exceptions to the types of the catching catch clause

in Drupal . 63
A.24 Distances from all caught exceptions to the types of the catching catch clause

in Fabric . 63
A.25 Distances from all caught exceptions to the types of the catching catch clause

in Nette . 63
A.26 Distances from all caught exceptions to the types of the catching catch clause

in Phing . 63
A.27 Distances from all caught exceptions to the types of the catching catch clause

in phpBB . 64
A.28 Distances from all caught exceptions to the types of the catching catch clause

in phpDocumentor2 . 64
A.29 Distances from all caught exceptions to the types of the catching catch clause

in PHPUnit . 64
A.30 Distances from all caught exceptions to the types of the catching catch clause

in Digitaalloket . 64
A.31 Distances from all caught exceptions to the types of the catching catch clause

in Objectbrowser . 65
A.32 Distances from all caught exceptions to the types of the catching catch clause

in Roundcube . 65
A.33 Distances from all caught exceptions to the types of the catching catch clause

in Smarty . 65
A.34 Distances from all caught exceptions to the types of the catching catch clause

in Symfony . 65

viii

List of Figures

A.35 Distances from all caught exceptions to the types of the catching catch clause
in Wordpress . 66

A.36 Distances from all caught exceptions to the types of the catching catch clause
in Zend Framework . 66

A.37 Distance from the caught exceptions to the Exception type in Joomla 67
A.38 Distance from the caught exceptions to the Exception type in CakePHP 67
A.39 Distance from the caught exceptions to the Exception type in Doctrine 67
A.40 Distance from the caught exceptions to the Exception type in DokuWiki . . . 67
A.41 Distance from the caught exceptions to the Exception type in Drupal 68
A.42 Distance from the caught exceptions to the Exception type in Fabric 68
A.43 Distance from the caught exceptions to the Exception type in Nette 68
A.44 Distance from the caught exceptions to the Exception type in Phing 68
A.45 Distance from the caught exceptions to the Exception type in phpBB 69
A.46 Distance from the caught exceptions to the Exception type in phpDocumentor2 69
A.47 Distance from the caught exceptions to the Exception type in PHPUnit 69
A.48 Distance from the caught exceptions to the Exception type in Digitaalloket . . 69
A.49 Distance from the caught exceptions to the Exception type in Objectbrowser . 70
A.50 Distance from the caught exceptions to the Exception type in Roundcube . . . 70
A.51 Distance from the caught exceptions to the Exception type in Smarty 70
A.52 Distance from the caught exceptions to the Exception type in Symfony 70
A.53 Distance from the caught exceptions to the Exception type in Wordpress . . . 71
A.54 Distance from the caught exceptions to the Exception type in Zend Framework 71
A.55 Annotations compared to explicitly raised exceptions in CodeIgniter 72
A.56 Annotations compared to explicitly raised exceptions in Joomla 72
A.57 Annotations compared to explicitly raised exceptions in PEAR 72
A.58 Annotations compared to explicitly raised exceptions in CakePHP 72
A.59 Annotations compared to explicitly raised exceptions in Doctrine 73
A.60 Annotations compared to explicitly raised exceptions in DokuWiki 73
A.61 Annotations compared to explicitly raised exceptions in Drupal 73
A.62 Annotations compared to explicitly raised exceptions in Fabric 73
A.63 Annotations compared to explicitly raised exceptions in Nette 74
A.64 Annotations compared to explicitly raised exceptions in Phing 74
A.65 Annotations compared to explicitly raised exceptions in phpBB 74
A.66 Annotations compared to explicitly raised exceptions in phpDocumentor2 . . . 74
A.67 Annotations compared to explicitly raised exceptions in PHPUnit 75
A.68 Annotations compared to explicitly raised exceptions in Digitaalloket 75
A.69 Annotations compared to explicitly raised exceptions in Objectbrowser 75
A.70 Annotations compared to explicitly raised exceptions in Roundcube 75
A.71 Annotations compared to explicitly raised exceptions in Smarty 76
A.72 Annotations compared to explicitly raised exceptions in Symfony 76
A.73 Annotations compared to explicitly raised exceptions in Wordpress 76
A.74 Annotations compared to explicitly raised exceptions in Zend Framework . . . 76
A.75 Annotations compared to encountered (but not raised) exceptions in CodeIgniter 77
A.76 Annotations compared to encountered (but not raised) exceptions in Joomla . . 77

ix

LIST OF FIGURES

A.77 Annotations compared to encountered (but not raised) exceptions in PEAR . . . 77
A.78 Annotations compared to encountered (but not raised) exceptions in CakePHP . 77
A.79 Annotations compared to encountered (but not raised) exceptions in Doctrine . 78
A.80 Annotations compared to encountered (but not raised) exceptions in DokuWiki 78
A.81 Annotations compared to encountered (but not raised) exceptions in Drupal . . 78
A.82 Annotations compared to encountered (but not raised) exceptions in Fabric . . . 78
A.83 Annotations compared to encountered (but not raised) exceptions in Nette . . . 79
A.84 Annotations compared to encountered (but not raised) exceptions in Phing . . . 79
A.85 Annotations compared to encountered (but not raised) exceptions in phpBB . . 79
A.86 Annotations compared to encountered (but not raised) exceptions in phpDocu-

mentor2 . 79
A.87 Annotations compared to encountered (but not raised) exceptions in PHPUnit . 80
A.88 Annotations compared to encountered (but not raised) exceptions in Digitaalloket 80
A.89 Annotations compared to encountered (but not raised) exceptions in Object-

browser . 80
A.90 Annotations compared to encountered (but not raised) exceptions in Roundcube 80
A.91 Annotations compared to encountered (but not raised) exceptions in Smarty . . 81
A.92 Annotations compared to encountered (but not raised) exceptions in Symfony . 81
A.93 Annotations compared to encountered (but not raised) exceptions in Wordpress 81
A.94 Annotations compared to encountered (but not raised) exceptions in Zend Frame-

work . 81
A.95 Annotations at abstract method level compared to encountered exceptions in

implementing methods in Joomla . 82
A.96 Annotations at abstract method level compared to encountered exceptions in

implementing methods in CakePHP . 82
A.97 Annotations at abstract method level compared to encountered exceptions in

implementing methods in Doctrine . 82
A.98 Annotations at abstract method level compared to encountered exceptions in

implementing methods in DokuWiki . 82
A.99 Annotations at abstract method level compared to encountered exceptions in

implementing methods in Drupal . 83
A.100Annotations at abstract method level compared to encountered exceptions in

implementing methods in Fabric . 83
A.101Annotations at abstract method level compared to encountered exceptions in

implementing methods in Nette . 83
A.102Annotations at abstract method level compared to encountered exceptions in

implementing methods in Phing . 83
A.103Annotations at abstract method level compared to encountered exceptions in

implementing methods in phpBB . 84
A.104Annotations at abstract method level compared to encountered exceptions in

implementing methods in phpDocumentor2 84
A.105Annotations at abstract method level compared to encountered exceptions in

implementing methods in PHPUnit . 84

x

List of Figures

A.106Annotations at abstract method level compared to encountered exceptions in
implementing methods in Digitaalloket . 84

A.107Annotations at abstract method level compared to encountered exceptions in
implementing methods in Objectbrowser . 85

A.108Annotations at abstract method level compared to encountered exceptions in
implementing methods in Roundcube . 85

A.109Annotations at abstract method level compared to encountered exceptions in
implementing methods in Smarty . 85

A.110Annotations at abstract method level compared to encountered exceptions in
implementing methods in Symfony . 85

A.111Annotations at abstract method level compared to encountered exceptions in
implementing methods in Wordpress . 86

A.112Annotations at abstract method level compared to encountered exceptions in
implementing methods in Zend Framework 86

xi

Chapter 1

Introduction

Exception handling mechanisms, introduced by Goodenough [19], provide a means to sig-
nal an exceptional situation and subsequently handle that situation. Different exception
types are used to signal different exceptional situations, and for each exception type a block
of code can be created to handle that specific exception. Exception handling mechanisms
enable developers to separate the normal flow of the program from the exceptional flow.

These mechanisms are often misused and misunderstood. For example, Cabral and
Marques [10] found that exceptions are often not used as an error recovery system. Instead
of handling the exceptional situation, the exception handling constructs are used for logging
the error, notifiying the user or terminating the application. Another aspect of exception
handling mechanisms is that classes that use them are more often defect prone than classes
that do not use them [23]. Miller and Tripathi [24] argue that the current mechanisms
used for exception handling are flawed. For instance, they claim that exception handling
mechanisms place an extra burden on a developer as they have to understand two different
execution paths: the exception flow path and the normal execution path. When combining
the conclusions of Cabral and Marques [10], Marinescu [23] and Miller and Tripathi [24],
we see that exception handling mechanisms are hard to understand.

Because reasoning about the exception flow is hard, several static analysis tools for
inspecting the exception flow of a software system have been developed (e.g. [26, 11, 18]).
However, these tools are all developed for languages and environments like Java and .NET.
To the best of our knowledge, no such tool exists for PHP.

In this thesis, we present a static analysis tool for deducing the exception flow of PHP
programs, based on the work of Robillard and Murphy [26]. This approach works by
analysing the AST of the program. We consider only the structured programming features
of PHP. This means that we account for the exception flow in methods and functions, but
that we do not focus on PHP code embedded in HTML code. The focus of our thesis is
on the exception flow as created by the programmer; we disregard the exceptions that are
generated by the PHP environment.

We evaluated the accuracy of the approach by creating oracles of three PHP software
systems, which consists of two open-source projects and one closed-source project. The
evaluation shows that 63% of the exceptions that are encountered in a system are actually
also detected by the presented algorithm.

1

1. INTRODUCTION

We thereafter conducted an empirical study on 20 software projects, totalling over 1.6
million lines of PHP code. We performed this study using our static analysis tool. The
empirical study shows that about 30% of the caught exceptions is not caught close to their
source. We also found that many exceptions are not documented. We argue that missing
annotations in interfaces are a violation of the Liskov Substitution Principle and show that
this principle is violated often in PHP systems.

The remainder of this thesis is organised as follows. In Chapter 2, we introduce the PHP
language, as well as the algorithms on which our approach is based. Chapter 3 describes
the algorithms that we devised to deduce the exception flow of a PHP program. Chapter 4
contains an analysis of the accuracy of the algorithm. In Chapter 5, we detail the empirical
study that was conducted on a corpus of 20 software projects. Chapter 6 shows the results of
this empirical study. We discuss and interpret the results of the empirical study in Chapter
7. In Chapter 8, we show how our work relates to other research done on exception flow,
exception handling, and PHP. Finally, Chapter 9 concludes the thesis.

2

Chapter 2

Background

As our research focuses on PHP, we first introduce the PHP language and its exception
handling constructs in Section 2.1. Our research is to a large extent based on existing
approaches, proposed in literature. In this chapter, we present these approaches. Section 2.2
presents the work by Robillard and Murphy [26], which concerns deducing the exception
flow of software programs. Thereafter, we present the work of Braun et al. [9], which
introduces an algorithm for creating a representation in Static Single Assignment (SSA)
form of a program. Section 2.4 presents the work of Dean et al. [13] concercing Class
Hierarchy Analysis.

2.1 The PHP language

PHP is a programming language focused on server-side application development. It cur-
rently ranks 7th on the TIOBE programming community index, which indicates its popu-
larity [6]. PHP is dynamically typed, meaning that types of expressions are determined at
run-time. The language contains a single-inheritance class model, including interfaces and
traits. It also contains a number of dynamic features, e.g. a variable can be used to access
methods, functions or other variables.

PHP contains several constructs for dealing with exceptions. To start with, the throw
keyword can be used to throw an exception. Only objects that implement the Throwable
interface1 can be thrown. PHP defines several types of exceptions which can be used and
extended, e.g. RuntimeException and LogicException. Exceptions can be caught by
using the try-catch-finally construct. The exceptions that are encountered within the
try block can be caught by one of the catch clauses that is attached to the try block.

It is important to note that in PHP, catch clauses can influence each other if they are
attached to the same try block. Consider the code in Listing 2.1. The try block encoun-
ters an exception of type RuntimeException. This exception is caught by the first catch
clause. However, the code located in this clause throws a new exception of type Exception.
Whereas in other popular languages with exception handling constructs, like Java, this last

1This interface was introduced in PHP 7.0; in earlier versions, the Exception class was the basetype of the
exception class hierarchy.

3

2. BACKGROUND

exception would not be caught by this try-catch construct, in PHP it is caught by the
second catch clause.

It is also possible to attach a finally block to a try block. The code in the finally
block will always be executed after the code within the try block (and potentially any of
the catch clauses).

1 <?php
2 try {
3 throw new RuntimeException();
4 } catch (RuntimeException $e) {
5 throw new Exception();
6 } catch (Exception $e) {
7 log($e);
8 } finally {
9 print "Will always be executed";

10 }

Listing 2.1: Catch clauses in PHP

2.2 Static Analysis to Support the Evolution of Exception
Structure in Object-Oriented Systems

Robillard and Murphy [26] present an approach for deducing the exception flow which is
“in theory applicable to any object-oriented programming language that define exceptions
as objects.” As this criterion also applies to PHP, their approach forms the basis of our
research. In Section 2.2.1 we introduce the terminology used by Robillard and Murphy
[26]. Section 2.2.2 presents the mathematical definitions of the concepts that they use for
computing the exception flow.

2.2.1 Terminology

To start with, Robillard and Murphy [26] introduce scopes and guarded scopes. A scope
s = (I,G) consists of a set of instructions I and a set of guarded scopes G which are nested
in scope s. An exception that is encountered within a scope always flows directly to the
boundary of that scope. This means that a scope represents one ‘step’ that an exception
takes in the program as it propagates from one scope to another. A guarded scope g = (n,C)
consists of a nested scope n and a sequence C of catch clauses. The catch clauses can prevent
exceptions that are encountered in n to flow to the scope that encloses the guarded scope
g. Each catch clause can catch a certain type of exception, as well as all of its subtypes. If
an exception is not caught by its actual type, but by the type of one of its supertypes, it is
caught ‘by subsumption’.

An example of scopes and guarded scopes can be found in Listing 2.2. This example
shows the mapping from the scope definitions of Robillard and Murphy [26] to scopes in

4

2.2. Static Analysis to Support the Evolution of Exception Structure in Object-Oriented
Systems

PHP. The scope s1 corresponds to the function a. It contains the guarded scope gs1, which
consists of the entire try-catch construct. The guarded scope itself contains a scope, called
s2. s2 consists of all the instructions in the try block of gs1.

1 <?php
2 function a() {
3 try {
4 throw new SomeException();
5 } catch (SomeException $e) {
6 $this->logger ->logException($e);
7 }
8 }

Listing 2.2: Example code for scopes and guarded
scopes

Figure 2.3: Indication of the
(guarded) scopes in code in
Listing 2.2.

Each scope s = (I,G) can encounter exceptions. Four different origins for an exception
can be discerned, as the following [26]:

raises the set of exceptions that are explicitly thrown in scope s using the throw statement;

uncaught the set of exceptions that are encountered in one of the nested guarded scopes
g ∈ G of scope s, but that are not caught by one of g’s catch clauses;

propagates the set of exceptions that are encountered in a scope t where t is not enclosed
by s for which holds that s contains a call to scope t;

generates the set of exceptions for which holds that they are generated by an instruction
i ∈ I as the result of a system operation in the instruction i, where i is not a throw
statement.

When we compute the union of these four different sets, we have the complete set of ex-
ceptions that can be encountered in a scope s. This set is called the encounters set of scope
s.

2.2.2 Algorithm

The terms presented in Section 2.2.1 can be defined in mathematical terms. We use the
mathematical definitions of these terms in the description of our algorithms. To start with,
we define two helper functions. Thereafter, we present a mathematical function for each of
the origins presented in Section 2.2.1.

The algorithm uses two helper functions: encounters(s) and catches(g,c). Both these
functions return a set of exceptions. The encounters function represents the complete set of
exceptions encountered in a method; this means that it is defined as the union of the raises,
uncaught, propagates and generates sets. The input for the encounters function is a scope
s = (I,G).

encounters(s) = raises(I)∪generates(I)∪ propagates(I)∪uncaughtGS(G) (2.1)

5

2. BACKGROUND

The second helper function, catches(g,c) operates on a guarded scope g = (s,C) where
C = {c1, . . .cn}. type(ci) denotes the type that catch clause ci can catch, and <: denotes the
subtype relation. Using these notations, the catches function is defined as:

catches(g,ci) = {e|e ∈ encounters(s)∧ e 6∈
⋃

j=1..i−1

catches(g,c j)∧ e <: type(ci)) (2.2)

Using the catches function, the catchesGS function is defined as the set of exceptions that
are caught by a guarded scope:

catchesGS(g,C) =
⋃
∀c∈C

catches(g,c) (2.3)

The encounters function uses all the sets that were presented in Section 2.2.1. Each
of these sets can be formally defined as well. Note that there is a difference between the
uncaught set and the other sets: the uncaught set is calculated using a set of guarded scopes
G, whereas the other sets are calculated over a set of instructions I. We present the definition
of the raises set here, but the generates and propagates sets can be similarly defined.

raises(I) =
⋃
∀i∈I

raises(i) (2.4)

The raises(i) function returns the set of exceptions that are explicitly raised by instruc-
tion i. In PHP, this would be when instruction i is a throw statement. The generates(i)
function returns the set of exceptions that are triggered by internal PHP mechanisms, but
not by a throw statement. The propagates(i) function returns the set of exceptions that are
propagated by instruction i. Let i be a method call that can be resolved to a set of scopes
Sm. The collection of exceptions that can be progated by i is then defined as:

propagates(i) =
⋃

s∈Sm

encounters(s) (2.5)

On a set of guarded scopes G, the uncaughtGS defines the set of exceptions that are not
caught by these guarded scopes.

uncaughtGS(G) =
⋃
∀g∈G

uncaught(g) (2.6)

On a single guarded scope, the function returns the set of exceptions that is encountered in
g = (s,C), but not caught by any of the catch clauses c ∈C.

uncaught(g) = encounters(s)− catchesGS(C) (2.7)

2.3 Simple and Efficient Construction of Static Single
Assignment Form

Braun et al. [9] introduce an algorithm for creating intermediate representations of programs
in the Static Single Assignment (SSA) form. In the SSA form, each variable is assigned ex-
actly once. A representation in SSA is useful for performing dependency related analyses,

6

2.4. Optimization of Object-Oriented Programs Using Static Class Hierarchy Analysis

as it is a compact representation of the use-def chains in a program. The algorithm assumes
that the program under analysis can be divided into basic blocks, where each block corre-
sponds to a set of linearly executed set of instructions. These blocks can then be connected
to form the Control Flow Graph (CFG). For each read of a variable in a basic block, the
algorithm tries to relate it to a preceding definition of that variable within the current block.
If this is not possible, it tries to resolve it to one of the preceding blocks recursively. If a
variable is defined along multiple paths to the current basic block, a φ function is introduced
in the current block, which contains all possible definitions that might reach the current ba-
sic block. The approach by Braun et al. [9] is proven to construct the minimal SSA form of
a program, i.e. the number of φ functions is minimal.

This algorithm is used in our research for building CFGs of programs. These CFGs are
intermediates, and function as input for the type inference algorithm.

2.4 Optimization of Object-Oriented Programs Using Static
Class Hierarchy Analysis

The work of Robillard and Murphy [26] uses the work of Dean et al. [13] for resolving calls,
which is needed to calculate the propagates set. The approach that Dean et al. [13] define
is called Class Hierarchy Analysis (CHA), as information from the class hierarchy of the
program to be analysed is used to statically limit the amount of methods that a call can be
resolved to. This approach does not construct a call graph, but it provides the ingredients for
creating a call graph. We first present an example of what the effect of CHA is in practice.
Thereafter, we briefly present the building blocks of CHA.

To start with, we examine the class hierarchy in Figure 2.4. Consider the situation where
method C.p contains a call this.m(). If p is called on an object of type C, we can see that
the call this.m() automatically resolves to B.m, as this is the most direct ancestor that
implements method m. If the method p is called on a an object of type D or E, it resolves
to method C.p. Within the method C.p, the expression this has the type D respectively
E, which both also do not implement the method m. This means that the call this.m also
resolves to the method B.m for both subclasses of C. In summary, the call this.m() in
method C.p always resolves to method B.m. This line of reasoning is the foundation of the
CHA approach.

Dean et al. [13] introduce two sets: the applies-to set and the Cone(C) set. The applies-
to set for a method is the set of classes for which that method is the appropriate target. If
we consider the class hierarchy in Figure 2.4, the applies-to set for method B.m would be
the set of classes {B,C,D,E}, as for each of these classes, a call to method m would resolve
to method B.m. Cone(C) is defined as the set of all subclasses of class C, including C itself.
For the hierarchy in Figure 2.4, Cone(B) would be the set {B,C,D,E}.

To compute the applies-to sets, we first compute a partial order of all methods in the
system. Within the partial order, a method m1 is smaller than a method m2 iff method m1
overrides m2. After constructing the partial order, for each method m defined on a class
C an applies-to set is initialised to Cone(C). Thereafter, the partial order is traversed top-
down. For each visited method C.m, each of the direct children are visited and their (initial)

7

2. BACKGROUND

Figure 2.4: Example class hierarchy

applies-to sets are substracted from the applies-to set of C.m. If C.m is defined in type C
and D1,D2, . . . ,Dn are the classes that directly override C.m, the applies-to set for C.m can
be calculated as follows:

Cone(C)−{Cone(D1)∪Cone(D2)∪ . . .∪Cone(Dn)} (2.8)

Part of our approach consists of creating the call graph, so that the propagates sets can
be computed. In our research, we use Class Hierarchy Analysis as a basis for constructing
the call graph of a program.

8

Chapter 3

Approach

In this chapter, we present our approach for deducing the exception flow in PHP programs.
To map the the approach of Robillard and Murphy [26] to the PHP language, we have to
overcome two main difficulties. The first difficulty is that the Abstract Syntax Tree (AST) of
a PHP program does not contain types. The solution is to first infer the types of a program
before starting the detection of the exception flow. The second difficulty lies in the fact
that PHP supports traits, which were not included in the original analysis of Robillard and
Murphy [26]. A trait is a set of related methods and/or properties, which can be imported
into classes independent of their class hierarchy1.

The approach is visualised in Figure 3.1. Each of the blocks represents a certain action
that needs to be taken to get to the end result: the exception flow. The approach that Robil-
lard and Murphy [26] propose operates on the AST (see Section 2.2). To obtain the AST
of a program, the code of the program needs to be parsed. Unlike languages with static
typing, the AST of a PHP program does not contain any type information. To be able to
resolve method calls and deduce the types of the exceptions that are thrown in the program,
the types of the expressions in the AST have to be inferred. However, type inference cannot
be performed directly on the AST: it needs control flow information to know which expres-
sions can influence each other. To get the information about the control flow, the AST is
transformed into a Control Flow Graph (CFG), which can be seen in step 2a in Figure 3.1.
We use the algorithm of Braun et al. [9] to create the CFG (see Section2.3). The types are
consecutively inferred using the CFG, which can be seen in step 2b. After the types are
inferred, a call graph can be constructed. This call graph is built using the approach that is
introduced by Dean et al. [13] (see Section 2.4). Using the type information and the call
graph, the exception flow can be inferred in step 4.

In the following sections, we explain each of the relevant building blocks in more detail.
To start with, we introduce the type inference algorithm in Section 3.1. Section 3.2 presents
the construction of the call graph. In Section 3.3, we elaborate on the computation of the
exception flow. The chapter closes with a definition of the scope of this research.

1 In other languages, like Scala and Ruby, this construct is known as a ‘mixin’.

9

3. APPROACH

Figure 3.1: Overview of the approach for computing the exception flow

3.1 Type Inference

The analysis of Robillard and Murphy [26] operates on the AST of a program. In their
work, they assume that the expressions in the AST are typed. However, as a PHP program
is dynamically typed, the types are not available when parsing the program: they are deter-
mined at run-time. Because the types are needed for resolving method calls and detecting
which exceptions are thrown, the first main task is to infer types. We investigated several
options for inferring types:

• We examined the work of Van der Hoek and Hage [28]. However, it was not docu-
mented, which rendered it unfit for use.

• We also explored the work of Kneuss et al. [21], but their application was last updated
five years ago. A considerable amount of work would have to be done to make it run
on code that was written for more recent versions of PHP.

• We also considered the PHP-Types2 tool. Although it was not documented very well,
it proved to be easy to use and worked on the latest versions of PHP. PHP-Types
yielded acceptable results in an earlier study by Wijngaard [29].

Given these considerations, we decided to use the PHP-Types tool for type inference.
It is not possible to infer types on an AST, as information about the flow of a program

is needed for type inference; this flow information is not present in an AST. Therefore, the
AST has to be converted to a CFG first. This conversion is done by PHP-CFG3, which
works well together with PHP-Types. PHP-CFG is a PHP implementation of the algorithm
by Braun et al. [9], which has been described in more detail in Section 2.3. The CFGs
that PHP-CFG creates are intra-procedural. This implies that the program is represented

2Source can be found at https://github.com/ircmaxell/php-types
3Source can be found at https://github.com/ircmaxell/php-cfg

10

https://github.com/ircmaxell/php-types
https://github.com/ircmaxell/php-cfg

3.1. Type Inference

as a collection of CFGs, which are not linked together. All code that is not enclosed by a
function or method is put into a superficially created main function.

When the CFGs have been created, PHP-Types can reconstruct the types of the variables
in the CFGs to a certain extent. Not all types can be reconstructed, e.g. due to dynamically
accessed variables or the absence of type hints. Algorithm 1 presents a global overview of
the algorithm of PHP-Types. The input of this algorithm is an “environment” object, which
contains all the declarations and expressions of a PHP program. The environment is created
by traversing over all the CFGs of that program and gathering all relevant statements. The
notion of iterations in the algorithm is introduced because reconstructing the type of one
expression might enable the algorithm to reconstruct the type of another expression. In
each iteration, the algorithm tries to resolve as many expressions as possible. The algorithm
reaches a fix-point if after an iteration no new expressions have been resolved.

Algorithm 1 Type inference algorithm
Input: An environment of a program, which comprises all declarations and expressions of

the program
Output: A list of resolved and unresolved expressions respectively

1: function RESOLVE(environment)
2: RESOLVEPROPERTIES(GETPROPERTIES(environment))
3: unresolved← /0

4: resolved← /0

5: for all exp ∈ GETEXPRESSIONS(environment) do
6: if ISLITERAL(exp) then
7: resolved[exp]← RESOLVEFROMVALUE(exp)
8: else if exp = $this then . $this refers to the current instance of the type it

resides inalg
9: resolved[exp]← RESOLVEFROMDECLARATION(exp)

10: else
11: unresolved[exp]← TYPE(unknown)
12: end if
13: end for
14: repeat
15: for all exp ∈ unresolved do
16: type← RESOLVEVAR(exp)
17: if ISRESOLVED(exp) then
18: resolved[exp]← type
19: unresolved← unresolved−{exp}
20: end if
21: end for
22: until ¬EMPTY(unresolved) and NUMBEROFEXPRRESOLVEDINLASTITERATION

= 0
23: return resolved, unresolved
24: end function

11

3. APPROACH

The algorithm uses four resolution functions, which have the following functionality:

• The resolveProperties function loops over all properties and tries to find a cor-
responding phpdoc4 annotation. If an annotation can be found, the type from that
annotation is taken to be the type of the property.

• The resolveFromValue function takes a literal and infers the type from the value of
the literal. For example, it infers the type ‘string’ from a literal with the value ‘abc’.

• The resolveFromDeclaration function resolves the types from ‘$this expres-
sions’. In PHP, the $this keyword refers to the current instance of the type the
$this expression resides in. The type of $this can thus be inferred to the type in
which the expression resides.

• resolveVar applies a variety of techniques to reconstruct the type of an expression:

– Type hints are parsed (e.g. typed parameters);

– Documented type annotations are parsed (i.e. @return, @param and @var dec-
larations in phpdoc);

– Types are reconstructed for PHP expressions with a ‘default’ type (e.g. ($a
=== $b) has the type ‘boolean’);

– An internal database containing the return types of all PHP functions is used to
assign types to expressions containing a call to such a function;

– Types of method call expressions are reconstructed by resolving method calls
to the method defined in the type of the callee object or in any of its subtypes.
Calls are resolved without considering the context of the call, which means that
the resolution algorithm is context-insensitive.

The original version of PHP-Types did not support traits: it did not take them into ac-
count when building the type hierarchy of a system. A trait is a set of related methods,
which can be imported into several independent classes. A trait can be seen as a normal
interface, with the only difference being that methods defined in a trait can carry an imple-
mentation. Because our industry partner uses of traits in several of its projects, we decided
to extend the type inference system to also contain support for traits5.

When running PHP-Types on the created CFGs, the types are inferred onto the CFGs,
but not onto the AST. The representation that PHP-CFG uses differs from the representa-
tion as generated by the parser, which implies that there is no direct link between the CFGs
and the AST. To be able to map the types from the CFGs back to the AST, the PHP-CFG
tool was adapted6. When the PHP-CFG tool creates a new CFG-node based on an exist-
ing AST-node, the CFG-node now ‘remembers’ from which AST-node it originated. This
information is then used to map the types from expressions in the CFG back to the AST.

4phpdoc is a documentation standard, see https://www.phpdoc.org/
5The adapted version can be found at https://github.com/tomdenbraber/php-types
6The adapted version can be found at https://github.com/tomdenbraber/php-cfg

12

https://github.com/tomdenbraber/php-types
https://github.com/tomdenbraber/php-cfg

3.2. Call Graph Construction

3.2 Call Graph Construction

To be able to detect the exception flow, the call graph of a program has to be computed. The
exception flow can be seen as a ‘reverse flow’: it has the reverse direction of the call graph,
in the sense that a call goes from a caller to a callee and an exception is propagated from a
callee to a caller. This is shown in the code in Listing 3.2 and the corresponding exception
flow graph in Figure 3.3.

Robillard and Murphy [26] use the work of Dean et al. [13] for building the call graph
(see Section 2.4), which we also use in our work. In this section, we describe our imple-
mentation of their algorithm. We first explain how we fill the partial order with methods.
Thereafter, we explain how we use the partial order to create a call resolution map. This
call resolution map is a different representation of the applies-to set. Lastly, we describe
how the call resolution map is used to create the call graph.

1 <?php
2 function a() {
3 b();
4 }
5
6 function b() {
7 c();
8 }
9

10 function c() {
11 throw new Exception();
12 }

Listing 3.2: Exception flow example code Figure 3.3: Visual representation of the ex-
ception flow of the program in Listing 3.2.

First, a partial order is created of all methods in the system. To create this partial order,
we need an approach for comparing the methods we want to insert into it. Comparing two
methods a and b can have four different outcomes:

1. a and b are equal, i.e. a and b are the same method.

2. a and b are not comparable, i.e. a and b will not have a relation in the partial order.
This is the case when a and b do not have the same name, or are not defined in the
same type hierarchy.

3. a is greater than b, i.e. a will be placed above b in the partial order. Let x and y be the
classes, interfaces or traits in which a and b respectively are defined. If a and b have
the same name, and x and y are part of the same type hierarchy, and x is a supertype
of y, then a is greater than b.

13

3. APPROACH

4. a is smaller than b, i.e. a will be placed below b in the partial order. This is the exact
opposite of the previous situation.

Let m and n be two methods that are to be compared. Let x be the entity in which m
is defined, and let y be the entity in which n is defined. Algorithm 2 describes how two
methods are compared in order to give them the correct place in the partial order. The
algorithm operates on two methods m and n. Two helper functions are presented as well:
Algorithm 3 shows how a class can be compared to a trait and Algorithm 4 shows how two
classes can be compared.

Algorithm 2 Comparing two methods
Input: Two methods m and n
Output: One of the following: GREATER, SMALLER, EQUAL or NOT COMPARABLE

1: function COMPAREMETHODS(m,n)
2: x← GETTYPEWHICHDEFINESMETHOD(m)
3: y← GETTYPEWHICHDEFINESMETHOD(n)
4: if m.name 6= n.name then
5: return NOT COMPARABLE
6: else
7: if x.name = y.name then
8: return EQUAL
9: else if ISCLASSORINTERFACE(x) and ISCLASSORINTERFACE(y) then

10: return COMPARECLASSES(x,y)
11: else if ISCLASSORINTERFACE(x) and ISTRAIT(y) then
12: return COMPARECLASSANDTRAIT(x,y)
13: else if ISTRAIT(x) and ISCLASSORINTERFACE(y) then
14: return INVERT(COMPARECLASSANDTRAIT(y,x))
15: else if ISTRAIT(x) and ISTRAIT(y) then
16: return NOT COMPARABLE
17: end if
18: end if
19: end function

As can be seen from Algorithm 3, comparing two methods that are located in traits will
always yield ‘not comparable’. When two traits, t1 and t2, both implement a certain method
m and are imported into the same class, this will result in an error as the PHP interpreter
does not know which method m it should prefer. This conflict can be resolved by using trait
adapters, which are able to modify the name of an imported method. Implementing support
for these adapters would require significant effort beyond our current scope, and therefore
remains future work. Our personal experience is that these adapters are not used often.

After constructing the partial order, the call resolution map can be created, which is used
when constructing the call graph. The call resolution map is a different representation of
the applies-to sets which have been described in Section 2.4. The resolution map contains
an entry for each possible call t.m. Here t is a certain type and m a certain method that can

14

3.2. Call Graph Construction

Algorithm 3 Comparing a class to a trait
Input: A class c and a trait t
Output: One of the following: GREATER, SMALLER, EQUAL or NOT COMPARABLE

1: function COMPARECLASSANDTRAIT(c, t)
2: if c <: t then
3: return SMALLER
4: else if t <: c then
5: return GREATER
6: else
7: for all s ∈ CLASSESUSINGTRAIT(t) do
8: outcome← COMPARECLASSES(s,c)
9: if outcome 6= NOT COMPARABLE then

10: return outcome
11: end if
12: end for
13: return NOT COMPARABLE
14: end if
15: end function

Algorithm 4 Comparing two classes
Input: Two classes (or interfaces) c1 and c2
Output: One of the following: GREATER, SMALLER, EQUAL or NOT COMPARABLE

1: function COMPARECLASSES(c1,c2)
2: if c1 <: c2 then
3: return SMALLER
4: else if c2 <: c1 then
5: return GREATER
6: else
7: return NOT COMPARABLE
8: end if
9: end function

15

3. APPROACH

be called on objects of that type, as well as methods that can be called on the type itself
through static calls. The map contains for each entry a list of methods that the call t.m
can be resolved to. This call resolution map is created by doing a top-down breadth-first
traversal of the partial order. When entering a node (i.e. a method) in the partial order, the
following rules are applied.

A call t.m can be resolved to:

1. Method m in type t if it is present and it is not abstract. Applying this rule is trivial.

2. Method m in type s if it holds that s <: t. This rule requires knowledge of the class
hierarchy, and is implemented by adding the current method m to all entries s.m for
which holds that s <: t.

3. Method m in type s if it holds that t <: s and t does not implement m and there exists
no type u which implements m for which holds that u <: s and t <: u. In order to
implement this rule, first all direct children c.m of the current method in the partial
order are fetched. Then, for each of these children, the class s for which holds that
c <: s and s <: t is fetched, and method t.m is added to s in the call resolution map.

When the call resolution map is created, the final call graph is created by traversing all
scopes. For each method call t.m in scope s an edge is added from s to all entries that are
registered in the call resolution map for the call t.m. Note that the result is not a call graph
in the classical sense of the word: although each edge ends in a method scope, an edge can
start in a scope which is nested in a guarded scope, instead of starting in a method scope.

3.3 Flow Detection

Two types of flow can be discerned: the local flow and the inferred flow. The local flow
comprises all exceptions that are not entering the current scope via another scope. It is thus
the combination of the raises and the generates set (see Section 2.2.1). The raises set is
computed by traversing the AST and gathering all throw statements in a scope and adding
the types of the expressions that follow those statements to the raises set of that scope.

The second type of flow is the inferred flow. This flow contains all exceptions that enter
a scope via another scope. It can be constructed by computing the union of the uncaught set
and the propagates set. If a scope does not contain a nested guarded scope, the uncaught set
is always empty. If it does contain a guarded scope g, the exceptions that are encountered
in g need to be determined first. If those are known, then for each exception e that is
encountered in g it has to be determined whether e is caught or not. Let type(e) denote the
type of e, let catches(c) denote the type that is caught by catch clause c and let C be the set
of all catch clauses of guarded scope g. Algorithm 5 describes how to compute the set of
exceptions that are encountered in but not caught by a guarded scope g.

Algorithm 6 contains a description of the computation of the propagates set. Here, the
call graph that was described in Section 3.2 is used: the resolveCallToScopes function
fetches all scopes that can be called by instruction i.

16

3.3. Flow Detection

Algorithm 5 Computing the uncaught set

Input: A guarded scope g = (n,C)
Output: The uncaught set of this guarded scope

1: function DETERMINEUNCAUGHT(g = (n,C))
2: uncaught← /0

3: for all e ∈ encounters(n) do
4: for all c ∈C do
5: if type(e)<: catches(c) then
6: continue
7: end if
8: end for
9: uncaught← uncaught ∪{e}

10: end for
11: return uncaught
12: end function

Algorithm 6 Computing the propagates set

Input: A guarded scope s = (I,G)
Output: The uncaught set of this guarded scope

1: function DETERMINEPROPAGATES(s = (I,G))
2: propagates← /0

3: for all i ∈ I do
4: if ISCALLINSTRUCTION(i) then
5: for all m ∈ RESOLVECALLTOSCOPES(i) do
6: propagates← propagates∪ encounters(m)
7: end for
8: end if
9: end for

10: return propagates
11: end function

The propagates and uncaught set algorithms assume that in the scopes that are referred
to (called scopes and nested guarded scopes respectively) all exceptions that can be encoun-
tered are known. At the start of the computation, this is not the case. To work around this
problem, we devised a fixed-point algorithm, which can be found in Algorithm 7. First, for
all scopes in the system, the local flow is computed. All these scopes are also added to the
worklist. As long as the worklist is not empty, a scope is fetched and the inferred flow is
computed for that scope. Thereafter, we verify whether the flow for that scope has changed.
If so, we add all the scopes that are influenced directly by s to the worklist. A scope u is
affected by another scope v when it holds that either v is enclosed by u or u calls v. The
algorithm terminates when there are no scopes left on the worklist. For each scope in the
analysed system, the exceptions that can be encountered in that scope are contained in the
encounters set.

17

3. APPROACH

Algorithm 7 Fixed-point algorithm for determining the exception flow
Input: A set of scopes S
Output: None, encounters set is added as an attribute on each scope

1: function DETERMINEFLOW(S)
2: worklist← /0

3: for all s ∈ S do
4: DETERMINELOCALFLOW(s)
5: ENQUEUE(worklist,s)
6: for all nested scope ∈ GETALLNESTEDSCOPES(s) do
7: DETERMINELOCALFLOW(nested scope)
8: ENQUEUE(worklist,nested scope)
9: end for

10: end for
11: while worklist 6= /0 do
12: s← DEQUEUE(worklist)
13: DETERMINEINFERREDFLOW(s)
14: if SCOPEHASCHANGED(s) then
15: for all a f f ected scope ∈ GETAFFECTEDSCOPES(s) do
16: ENQUEUE(worklist,a f f ected scope)
17: end for
18: end if
19: end while
20: end function

A pure PHP implementation of the approach presented in this section can be found at
http://github.com/tomdenbraber/php-exception-flow.

3.4 Research Scope

Although the encounters set presented in Section 2.2 consists of four subsets, we model
only three of them: raises, propagates and uncaught, but not generates. As we focus on the
exception flow induced by the programmer, we have left the generates set out of scope. This
decision is supported by the fact that one of the shortcomings of the approach by Robillard
and Murphy [26] was that the generates contained information that was too imprecise to
their liking. They argue that semantic analysis is needed to improve the precision of the
generates set.

We also limit the raises set: exceptions that are thrown by PHP library functions are
ignored. The only source of information for the raises set of PHP library functions is the
documentation, which is excluded from our research scope. As the PHP manual states that
most functions use the internal error system of PHP instead of exceptions, this decision has
limited impact on the accuracy of our approach [3].

The third restriction of our scope is related to a specific feature of PHP, namely error
handlers. PHP functions can raise errors or warnings, which differ from normal exceptions.

18

http://github.com/tomdenbraber/php-exception-flow

3.4. Research Scope

Programmers can write custom error handlers which are called when such an error occurs.
These error handlers are normal functions, and can be used for e.g. handling the error, or
transforming the error into an exception. To be able to detect this kind of exceptions, the
error handlers should be linked to the functions that can generate errors. This would involve
parsing the documentation.

Another aspect which does influence the exception flow but which has not been included
in this research is the resolution of ‘dynamic’ method and function calls. In PHP, functions
can be called via variables, or via other functions. Two examples can be found in Listing
3.4. To be able to resolve these kind of calls, it would be necessary to track the actual values
of variables. Because that is a completely different topic, we decided to remove dynamic
call resolution from the scope of this research.

1 <?php
2 //EXAMPLE 1
3 $fn = "a";
4 $$fn(); //leads to a function call to a
5 //EXAMPLE 2
6 call_user_func("a"); //leads to a function call to a

Listing 3.4: Dynamic calls

The last limitation of our approach is related to the PHP-CFG project, as it has only
a rudimentary interpretation of exception handling constructs. A throw statement is inter-
preted as an empty return statement, and all code located in catch and finally blocks is
ignored. This choice was made as the developers on the project could not reach an agree-
ment about the specific implementation of intraprocedural exception flow 7.

7See https://github.com/ircmaxell/php-cfg/pull/23 for the discussion on this matter.

19

https://github.com/ircmaxell/php-cfg/pull/23

Chapter 4

Algorithm Accuracy

Because of the limitation of our scope (see Section 3.4), we know that our approach will
both be unsound and incomplete. In this chapter, we evaluate how well the approach as
described in Chapter 3 works in practice, to see what the implications are of the limitations
of our scope.

We perform the evaluation by means of two research questions:

RQ1. How sound is the approach?
With the answer to the this question, we can know to what extent the output of the
approach can be trusted. If the output is sound, we know that for every exception
that the algorithm detects in a method, that this exception is also encountered in the
method in the actual situation.

RQ2. How complete is the approach?
Knowing the answer to this question enables us to say whether the exceptions that
the algorithm detects in a method are all the exceptions that the method encounters
in practice, or whether there might be more exceptions which were missed by the
algorithm.

The approach relies on several existing tools. We know that these tools are unsound,
and the effects of the unsoundness are made explicit by this evaluation. We evaluate our
approach by manually building three oracles. Section 4.1 introduces the process of building
and using an oracle in Section, and contains a brief description of the projects for which an
oracle was created. Thereafter, we present the results of the evaluation in Section 4.2. Our
conclusion concerning the evaluation of the approach can be found in Section 4.3.

4.1 Methodology

4.1.1 Oracle usage

An oracle describes the ‘truth’: it contains valid information about the real world. The
approach as presented in Chapter 3 is a model, and needs validation. The difference between

21

4. ALGORITHM ACCURACY

the oracle and the output of the approach gives us information about the soundness and the
completeness of our model.

First, all the mismatches between the output of the algorithm and the oracle are man-
ually analysed. The mismatches are categorized by their origin (i.e. raises, propagates,
or uncaught). Each error is marked as either a false negative or a false positive. For
each error it is then checked why this error occurred, and if it is a real error or a propa-
gated error. An error is marked as real if the reason why the exception was not detected
correctly can be found in the scope in which the error occurred. In all other cases, the
error is marked as propagated. As an example, consider the code in Listing 4.1. For
this program, the oracle can be found in Table 4.1. Assume that the raises set for the
throwSomething method is computed correctly by the algorithm, but that the propagates
set for the with real error function is empty, in other words: the algorithm failed to
detect that the expression $a→ throwSomething propagates a RuntimeException into
with real error. The propagates set for the with propagated error function will now
always contain an error, even if the call to with real error is resolved correctly, as the
oracle says that a RuntimeException should be found. When examining the errors of
the algorithm, the error concerning the with real error function is marked as a real er-
ror. The error in with propagated error is marked as a propagated error if the call to
with real error was resolved correctly, otherwise it is categorized as a real error.

1 <?php
2 class A {
3 public function throwSomething() {
4 throw new RuntimeException();
5 }
6 }
7
8 function with_real_error(A $a) {
9 $a->throwSomething();

10 }
11
12 function with_propagated_error() {
13 $a = new A();
14 with_real_error($a);
15 }

Listing 4.1: Real errors and propagated errors

4.1.2 Oracle creation

An oracle consists of a random selection of methods and functions (scopes) from a system.
Its structure closely resembles the output format of the algorithm, which is a list of scopes
and for each scope a list of exceptions grouped by their origin, namely the different sets
mentioned in Section 2.2.1.

22

4.1. Methodology

Scope Exception set Propagated from Exception type
A::throwSomething raises n/a RuntimeException
with real error propagates A::throwSomething RuntimeException
with propagated error propagates with real error RuntimeException

Table 4.1: An example oracle corresponding to Listing 4.1

For each scope s in the oracle, the throws, propagates and uncaught sets are manually
defined. The propagates set for s depends on all the function and method calls that s
contains. Let S be the collection of all scopes in a system. For each randomly selected
method scope s, all scopes {t ∈ S|s calls t} are also included in the oracle. An oracle thus
consists of a set of randomly selected scopes, but to be able to model the propagates set,
scopes on which a randomly selected scope has a call dependence are also included.

The scopes in the call dependence set of a scope cannot always be determined, even
when manually constructing the oracle, as some function calls are dynamic (see Section
3.4). Often, the functions and methods that are called via these dynamic constructs can be
deduced from the immediate context (i.e. the scope that contained the call or the class that
contained the scope). In these cases, we decided to include the called scopes in the oracle.
In all other cases, the dynamic call was not resolved and was left out of the oracle. Even
though dynamic calls are left out of the approach, they are included in the oracle, which
enables us to see their impact.

If a scope in the call dependence set of a certain scope is defined in the PHP library,
its definition was looked up on the PHP website1. If the documentation states that that
function could raise an exception, this exception was added to the propagates set of the
caller method. Here, the same holds as for dynamic calls: although it is evident that the
algorithm will fail in all these cases, it is interesting to see how often PHP library functions
might cause an exception to enter the system.

Another important decision that was made also relates to the propagates set. Consider
a scope s which calls scopes t and u, and both t and u encounter a certain exception of
type x. An exception of type x has thus two paths to scope s: the path via the call to t
and a path via the call to u. This situation is visualised in Figure 4.2. The output of the
algorithm could be that s encounters an exception e of type x, because it is contained in
propagates(s). However, if this is all the information, it cannot be decided whether the
algorithm propagated e from t, from u, or from both t and u. Even if the outcome of the
algorithm would say that s propagates an exception of type x, it might still be incorrect. We
therefore include all possible edges in the propagation set of the oracle.

For the situation in Figure 4.2, propagates(s) would contain both t → x and s→ x.
Here, → denotes that the scope on the left-hand side propagates an exception of the type
written on the right-hand side of the→ symbol.

1See http:///www.php.net

23

http:///www.php.net

4. ALGORITHM ACCURACY

Figure 4.2: Example situation for exception entering scope via different routes

Project LOC3 #classes4 #methods5 #throw stmts #try stmts #catch stmts
Fabric 62914 1024 3904 938 94 126
Flarum 12956 353 1175 61 14 13
Monolog 5956 100 521 87 4 4

Table 4.2: Characteristics of the projects that are used to create oracles

4.1.3 Corpus

The corpus for evaluating the approach has to consist of programs with different use cases,
applications and origins. By testing the approach on such a corpus, we show that the ap-
proach can be applied on a wide range of projects while yielding comparable results. Based
on this criterion, three projects were selected. To start with, we selected Fabric, a framework
produced by our industry partner. Subsequently, we chose Flarum, an application written
on the Laravel2 framework. We decided that the last project to be used was Monolog, a
stand-alone package that is used for sending logs over a whole range of mediums.

A list of characteristics relevant for our research can be found in Table 4.2. These char-
acteristics have been collected by counting the nodes in the AST unless stated otherwise.

Fabric

Fabric is the framework that is produced by our industry partner and is used as a basis for
all their web applications. It contains a lot of functionalities: logging, session management,
and database interaction among others. It is a closed-source project and has been under
development for 7 years. Over those years, 22 different programmers have worked on the

2Laravel is a framework for developing PHP applications. See https://www.laravel.com.
3As counted by cloc, see https://github.com/AlDanial/cloc
4Also includes interfaces and traits
5Also includes abstract methods

24

https://www.laravel.com
https://github.com/AlDanial/cloc

4.2. Results

system. As can be seen from Table 4.2, it is the largest of the three projects. In comparison
with the other projects, it contains a relatively high number of throw statements.

Flarum

The second project for which we created an oracle is called Flarum6. Flarum is an appli-
cation which can be used to build forums and has been built on Laravel. At the time of
writing, Laravel is a popular framework used for developing PHP web applications [1, 5].
The project was chosen because it is of considerable size, has close to 50 contributors and
was written on a popular framework. The framework itself was not incorporated in the or-
acle: all calls to methods or functions that reside in the framework have been left out of
the oracle. However, the framework does influence the architecture of the application, as
the application needs to be plugged into the framework to make use of its features. It is
important to note that the philosophy of Laravel differs a lot from the philosophy of Fab-
ric. For example, applications which are built on Fabric mostly use dependency injection
to make use of the framework, whereas Laravel uses “static facades” to make dependencies
available. These facades are available from everywhere in the system.

Monolog

The last project for which we built an oracle is called Monolog7. Monolog is a package that
provides functionalities for logging. It offers handlers for a wide range of mediums to which
logged messages can be sent. Monolog is neither a framework nor a web application, but a
stand-alone package that can be plugged into existing projects to take care of sending logs.
According to Packagist8, almost 2500 other projects depend on Monolog [2]. More than
250 developers have contributed to Monolog over the past 6 years. Monolog is dissimilar
to both other projects. It differs from Fabric in the sense that it only offers one functionality
and it does not enforce or encourage a certain type of architecture. It differs from Flarum
because there is no system or dependency which influences its architecture: it does not have
to adhere to certain interfaces or subclass certain framework classes.

4.2 Results

After creating an oracle for each of the applications described in Section 4.1.3 and cat-
egorising all the errors, we can see how well the approach works in practice. First, the
precision and the recall for each of the created oracles are presented. Thereafter, for each of
the oracles, the results will be explained briefly.

4.2.1 Precision and recall

Table 4.3 presents the results of the evaluation. The numbers that are noted behind the

6Source can be found at https://github.com/flarum/core
7Source can be found at https://github.com/Seldaek/monolog
8Packagist is a package repository for PHP packages. See https://packagist.org.

25

https://github.com/flarum/core
https://github.com/Seldaek/monolog
https://packagist.org

4. ALGORITHM ACCURACY

Fabric Flarum Monolog Aggregated
Oracle statistics

#methods 251 360 243 854
#call edges 980 5979 6699 2246

encounters
algorithm 1370 71 298 1739

oracle 2087 89 316 2492
intersection 1247 71 262 1580

precision 0.91 1.0 0.88 0.91
recall 0.60 0.80 0.83 0.63

raises
algorithm 53 18 28 99

oracle 53 18 28 99
intersection 53 18 28 99

precision 1.0 1.0 1.0 1.0
recall 1.0 1.0 1.0 1.0

propagates
algorithm 1310 53 269 1632

oracle 2017 71 287 2375
intersection 1191 53 234 1478

precision 0.91 1.0 0.87 0.91
recall 0.59 0.75 0.82 0.62

uncaught
algorithm 7 0 1 8

oracle 17 0 1 18
intersection 3 0 0 3

precision 0.43 n/a 0.0 0.38
recall 0.17 n/a 0.0 0.17

Table 4.3: Evaluation results

cells with ‘algorithm’ and ‘oracle’ denote the number of exceptions contained in the output
of the algorithm and the oracle respectively. The ‘intersection’ rows denote the number of
exceptions that are both in the output of the algorithm and in the oracle, i.e. the intersection
contains the true positives. The precision is then calculated as intersection

algorithm and the recall as
intersection

oracle .

4.2.2 Reasons for errors

To be able to better understand the results, each error (either a false positive or a false
negative) was labeled with a reason. This reason describes why this error occurred. We

9Calls to methods in the underlying framework or external dependencies have been left out

26

4.2. Results

found the following reasons:

I. A method could not be resolved because the type inference tool could not detect a
precise type for the callee object;

II. A dynamic call to a method or function could not be resolved;

III. The exception to be detected is thrown by a PHP library function;

IV. The throw statement is located in a catch statement;

V. The exception to be detected has been caught and rethrown afterwards;

VI. A method is erroneously resolved.

We completely separate reason IV from reason V: reason IV occurs because of the fact
that no types are inferred in catch clauses, whereas reason V occurs because PHP-CFG
does not properly support try/catch constructs (see Section 3.4). The errors are not evenly
distributed over the reasons, as some reasons occur more than others. Table 4.4 presents the
number of errors for each reason.

Reason encounters propagates uncaught
Number % Number % Number %

I. 537 50.1 531 50.5 6 30.0
II. 72 6.7 72 6.9 0 0.0
III. 52 4.9 52 4.9 0 0.0
IV. 133 12.4 121 11.5 12 60.0
V. 2 0.2 0 0.0 2 10.0
VI. 19 1.8 19 1.8 0 0.0
I., II. 157 14.7 157 14.9 0 0.0
I., III. 21 2.0 21 2.0 0 0.0
I., II., III. 78 7.3 78 7.4 0 0.0

Table 4.4: The number of errors per reason

4.2.3 Fabric

The Fabric oracle was the largest of the three oracles in terms of number of encountered
exceptions. We can see a difference between the raises set and the other two sets: the raises
set is computed correcly, whereas both the propagates set and the uncaught set are not. For
both uncaught and propagates it holds that the precision is higher than the recall.

Table 4.6 shows how often each of the reasons listed in Section 4.2.2 occurs for each
exception set. If a reason does not occur at all, it is left out of the table. A combination
of reasons can occur if there are multiple ways in which an exception of a certain type

27

4. ALGORITHM ACCURACY

can reach a function. One of the first things to note is that incomplete or too generic type
information is the most common cause for a false negative in the Fabric oracle. A lot of
errors were also due to propagation: the error did not occur in the enclosing scope, but was
propagated via a call. Because missing type information was such a dominant factor, we
separately analysed each individual non-propagated error due to type inference. In Table
4.5, we show which causes lead to incomplete type information.

Cause Total %
Missing type annotation 242 91.3
Incorrect type annotation 10 3.7
Unresolved static property 6 2.3
Unresolved return type 7 2.7

Table 4.5: Causes of incomplete type information

We can see that there is one dominant cause: in 91.3% of the errors due to type infer-
ence, a type could not been inferred on a property because of a missing type annotation10.
Because the inference algorithm is dependent on these annotations for resolving the types
of properties (see Section 3.1), methods called on these non-annotated properties could not
be resolved. This leads to an error if such an unresolved method propagates an exception.

The precision and the recall for the uncaught set are both quite low. This can be ex-
plained by the fact that the PHP-CFG library does not analyse the code within a catch
block. This problem is not inherent to our approach, as it can be resolved in the future
without adapting the other algorithms of our approach. However, implementing a correct
representation of catch blocks in the PHP-CFG library is not trivial. As a starting point,
the work of Amighi et al. [7] could be used to implement a correct CFG creation algorithm
for programs with exceptions.

If an exception is thrown from a catch block, the type can not be deduced correctly, as
the type inference is based on the CFG. This knowledge can be used to explain both reason
IV and reason V and all the false positives for the uncaught set, as the algorithm then puts
an exception of type ‘unknown’ in the uncaught set. Because this ‘unknown’ exception can
consequently be propagated, the propagates set also contains a lot of ‘unknown’ exceptions.
In 97.4% of the false positives in the propagates set, the original cause can be deduced to
an exception which is (re)thrown from a catch clause. The other false positives were due to
erroneously resolved method calls (reason VI).

4.2.4 Flarum

The throws set was computed correctly. The uncaught set was empty in both the oracle
and the output of the approach, due to the fact that there were no try/catch constructs in

10 A type annotation is a comment in a specific format, which provides extra information to the programmer
and can also be used for static analysis, such as type inference.

11The percentage of exceptions for the reason stated in the left-most column that has been propaged

28

4.2. Results

Reason propagates uncaught
Total Error propagated Total Error propagated

Number % Number %11 Number % Number %11

I 484 58.6 265 54.8 6 42.9 3 50.0
II 70 8.5 38 54.3 0 0.0 n/a n/a
III 16 1.9 10 62.5 0 0.0 n/a n/a
IV 0 0.0 n/a n/a 6 42.9 0 0.0
V 0 0.0 n/a n/a 2 14.2 0 0.0
I, II 157 19.0 157 100.0 0 0.0 n/a n/a
I, III 21 2.5 21 100.0 0 0.0 n/a n/a
I, II, III 78 9.4 78 100.0 0 0.0 n/a n/a

Table 4.6: Reasons for false negatives in the Fabric oracle

the analysed methods. With a precision of 1.0 and a recall of 0.80, there were only false
negatives in the output of the approach. All false negatives originated from the propagates
set because of two reasons, as can be seen in Table 4.7. A large portion of the errors is again
due to incomplete type information.

Reason propagates
Total Error propagated

I 12 66.7 1 8.3
III 6 33.3 5 83.3

Table 4.7: Reasons for false negatives in the Flarum oracle

4.2.5 Monolog

The recall of the approach on the Monolog project was better than the recall on the other
projects, mostly due to a better performance on the propagates set. This is the case because
the project contains a lot of type hints, which enabled the type inference tool to reconstruct a
relatively high amount of types. The errors were mostly due to exceptions that were thrown
by PHP functions, as can be seen in Table 4.8. We can see that the number of propagated
errors is relatively high, as for the other projects.

In comparison with the other oracles, the precision of the Monolog oracle is somewhat
lower: 3% lower than Fabric’s precision and 12% lower than the precision of Flarum. Upon
further investigation, the false positives could be divided over the same set of reasons as
presented in Section 4.2.2. This classification can be found in Table 4.9. In the other oracles,
reason VI was almost absent, but for Monolog, it is one of the most occurring reasons for

29

4. ALGORITHM ACCURACY

Reason propagates uncaught
Total Error propagated Total Error propagated

Number % Number %11 Number % Number %11

I 19 35.8 5 26.3 0 0.0 n/a n/a
II 2 3.8 1 50.0 0 0.0 n/a n/a
III 30 56.6 28 93.3 0 0.0 n/a n/a
IV 2 3.8 2 100.0 1 100.0 0 0.0

Table 4.8: Reasons for false negatives in the Monolog oracle

false positives. The reason for an erroneously resolved method is that the type inference
algorithm does not make a distinction between types inferred from parameter declarations
and types that can be inferred from a constructor call. Consider the code in Listing 4.3. The
type inference tool would now deduce that variable $a has type A and that variable $b has
type B. While these types are both correct, it does not make the distinction that $a could
be of type A, but also of all types that are a subtype of A, whereas $b can be of type B and
B only. In some cases, a method call is thus incorrectly resolved to a method defined in a
subtype.

1 <?php
2 function(A $a) {
3 $b = new B();
4 }

Listing 4.3: Type inference limitations

Reason propagates uncaught
Total Error propagated Total Error propagated

Number % Number %11 Number % Number %11

I 16 45.7 5 31.3 0 0.0 n/a n/a
IV 3 8.6 3 100.0 1 100.0 0 0.0
VI 16 45.7 0 0.0 0 0.0 n/a n/a

Table 4.9: Reasons for false positives in the Monolog oracle

4.3 Concluding remarks

The aggregated recall of the encounters set of the approach is 0.63, whereas the aggregated
precision of the encounters set is 0.91. Because the precision and recall are both smaller

30

4.3. Concluding remarks

than 1.0, it is possible to argue that our approach is both unsound and incomplete. However,
the false negatives in the approach all come from external sources, i.e. the exception flow
algorithm itself does not add exceptions where they should not be. Due to incorrect type
annotations, incomplete type information and an incomplete CFG implementation, excep-
tions with an “unknown” type are sometimes detected in methods where they might not be
encountered in the actual code. This is not due to the exception flow algorithm itself. We
conclude that the exception flow algorithm is sound, but that the underlying dependencies
are not. The incompleteness of the approach is partly due to libraries which generate in-
complete output (i.e. the type inference algorithm), and partly because of the limitation of
the research scope (e.g. dynamic calls, library functions).

When looking at the results for the different oracles, a few aspects need to be discerned.
The first is that ‘type inference’ takes quite a large portion of the errors, as reason I, IV,
V and (to a lesser extent) reason VI have all to do with type inference. If we accumulate
the number of errors for these reasons, we can see that these account for 64.5% of the
total number of errors. This gives a strong indication that an improvement in the type
inference algorithm directly leads to a better performance of the exception flow detection
algorithm. A possible improvement would be to use another source of information for
resolving the types of properties. Types of properties are now resolved by their annotations,
and a property without annotation always leads to incomplete type information. The type
inference algorithm could incorporate write operations to properties to detect the types of
not-annotated properties.

A second observation is that reason II and III, which were both decided to be out of
scope, account for a smaller yet significant portion of the errors. Adding support so that
errors caused by reason II and III will be prevented, will improve the recall of the algo-
rithm. Lastly, it is also clear that the propagates set is the largest in all three oracles: most
exceptions enter a scope not because they are uncaught by a nested scope or raised directly
in a scope, but via a call to another scope. Conversely, the number of exceptions in the
uncaught set is very small in all three oracles. The approach does not perform well on this
set, with the highest precision and recall being only 0.43 and 0.17 respectively. However,
these low numbers do not strongly influence the overall performance due to the small size
of the uncaught sets.

31

Chapter 5

Empirical Study

Using the presented algorithm, we can analyse a number of software projects to discover
the exception handling practises that are used in the PHP community. To start with, Section
5.1 presents a set of research questions. Subsequently, we introduce the corpus of projects
which are used for the analysis. Section 5.3 explains how each of the research questions
will be answered. The chapter closes with a description of the threats to the validity of this
study.

5.1 Research Questions

RQ1. How many exceptions does a method typically encounter?
For PHP systems, we currently do not have any information concerning the presence
of exceptions in methods. If a method encounters many exceptions, this might signal
a problem: the developer who wrote the method is perhaps not aware of all these
exceptions.

RQ2. How close to the source are exceptions caught?
It is considered a good practice to catch exceptions as close to its original scope as
possible, so that there is enough information available to handle the exception [30].
Catching an exception that has been propagated through many scopes might indicate
that the catch clause catches an exception which it was not intended to catch.

RQ3. What is the typical distance in the class hierarchy between a caught exception
and the type which is used in the catch clause type that catches it?
An exception can be caught by its exact type, but also by any of its supertypes. Bar-
bosa et al. [8] found that the use of an overly-generic catch clause lead to bugs in
multiple projects. It is therefore a good practice to catch an exception by a type which
is as close to the type of the thrown exception as possible. Using a more precise type
also gives the opportunity to handle the direct cause of the exception.

RQ4. How often are exceptions documented correctly?
In PHP, all exceptions are unchecked: exceptions are not part of a method’s signature.

33

5. EMPIRICAL STUDY

However, it is possible to use phpdoc to document exceptions that are encountered
in a method or function. An example of such an annotation can be found in Listing
5.1. A documented exception is more visible than a non-documented exception, and
is therefore likely to be handled correctly more often than a non-documented excep-
tion. If a method encounters an exception of type t and has a @throws annotation
for exactly type t, we consider the exception as documented correctly. We are also
interested in the usage of “contractual annotations”. If an abstract super method does
not document an exception, we expect that its implementations do not propagate any
exceptions, because in that case, the implementation would break the contract.

1 <?php
2 class A {
3 /**
4 * @throws SomeException
5 */
6 public function someFunction() {
7 throw new SomeException();
8 }
9 }

Listing 5.1: A method with a @throws annotation

5.2 Corpus

Our corpus consists of a selection of Open Source Software (OSS) projects in combination
with three projects that were created by our industry partner. We selected the OSS projects
using OpenHub1, which monitors a large number of OSS projects. Our corpus includes a
subset of the 50 most popular projects which have PHP as their main language. Because
our computational resources were limited, projects which contained more than 500000 lines
of PHP code could not be analysed. By inspecting the type, size, use cases and origin
of projects we have created a diverse corpus, consisting of both open and closed source
projects.

Before we analysed the projects, we collected some general information for each project.
This information can be found in Table 5.1. For each project, we installed all required de-
pendencies (except those dependencies that were needed for development). We manually
analysed the projects to find a namespace or prefix which separates the project from its de-
pendencies. The LOC2 column represents the number of lines of PHP code of the project,
including its dependencies. All the other data that Table 5.1 presents is taken from the
project itself, excluding its dependencies. Both LOC metrics only include PHP lines of
code as counted by cloc2. For some projects, it was not possible to find a namespace that

1See https://www.openhub.net/tags?names=php
2See https://github.com/AlDanial/cloc.

34

https://www.openhub.net/tags?names=php
https://github.com/AlDanial/cloc

5.3. Methodology

Project Version LOC1 LOC2 #class #interface #method #function #throw #try #catch #@throws
CakePHP 3.4.9 56111 61549 399 27 4374 0 402 62 64 388
CodeIgniter 3.1.5 28879 29319 133 0 1510 0 13 8 8 0
Digitaalloket 7.3 16032 78296 297 70 1239 0 61 35 51 17
Doctrine 2.5.6 29587 105930 342 25 2431 0 329 13 13 179
DokuWiki∗ 2017-02-19b n/a 171067 320 3 3210 587 202 29 30 93
Drupal 8.3.4 82527 461714 2096 465 13327 74 820 250 266 409
Fabric 1.6 67205 67205 781 247 3922 19 938 94 126 321
Joomla 3.7.2 208197 208197 1340 30 7667 61 824 537 550 867
Objectbrowser 2.2 5437 58849 71 2 311 0 10 10 10 17
Nette 2.4.6 12100 12100 120 21 952 0 212 27 34 93
PEAR 1.10.4 30986 30986 73 1 1119 0 3 0 0 3
Phing∗ 2.16.0 n/a 49257 497 19 4452 2 1135 199 211 671
phpBB 3.2.0 66475 445198 684 42 4070 127 271 79 91 160
phpDocumentor2 2.9.0 19184 196184 317 31 1451 0 92 15 16 67
PHPUnit 6.2.3 17110 61030 145 22 1035 0 257 49 70 133
Roundcube∗ 1.3.0 n/a 133628 245 4 2605 198 138 47 48 141
Smarty 3.1.30 17092 18194 172 0 898 57 105 11 11 127
Symfony 3.3.3 256848 287204 1618 276 9093 2 2017 361 360 914
Wordpress 4.8 178583 178583 366 6 4013 3075 141 52 53 39
Zend Framework 2.4.12 158688 164151 1814 341 12258 0 2730 176 183 2249

Table 5.1: Characteristics of the projects which will be used in the empirical study. Projects
in italics are closed source projects. Projects marked with an ∗ are analysed including the
dependencies.

separated the project from its dependencies. In those cases, we added an ∗ as a suffix to
the project name, and the presented data includes the dependencies. The projects that are
printed in italics are the projects which originate from our industry partner.

5.3 Methodology

Before gathering the data needed for answering the questions as presented in Section 5.1,
we first build the prerequisite resources as listed below.

exception flow The exception flow is calculated using the algorithm presented in Chapter
3. This resource contains for each scope in the system all the exception that it en-
counters, as well as the causes for those exceptions (i.e. if they are raised, propagated
or uncaught).

@throws annotations For answering the question concerning the documentation of ex-
ceptions, we build a set which contains the @throws annotations for each method
or function in the system under analysis. This is done by traversing the AST of the
system, collecting all the methods and parsing the documentation using phpDocu-

35

5. EMPIRICAL STUDY

Figure 5.2: An example where the exception can be propagated from two sources

mentor3.

method order The partial order of all the methods in the system (see Section 3.2). It
contains for each method in the system the methods that override it.

paths to catch clauses This set contains for each caught exception e the shortest path from
the initial scope of e to the guarded scope in which e is caught. The set is computed by
first registering for each catch clause c all the exception that are caught by c. Then, for
each of these exceptions, the shortest path between the original scope and the guarded
scope which contains the catch clause is calculated using Dijkstra’s algorithm [14].

type hierarchy For each type t in the system, this resource contains the types to which t
can be resolved, and which types t resolves itself.

We will now detail the methodology for answering each of the questions as posed in Section
5.1.

RQ1. For each method, we record the number of exceptions that it encounters. Thereafter,
we group methods with the same number of encountered exceptions. If an exception
can enter a method via different paths, it is counted only once. This situation is
visualised in Figure 5.2. Exception e can enter scope t via both scope u and scope
v. Because the exceptions that are encountered by u and v both refer to the same
exception e which is coming from scope w, the number of encountered exceptions is
1 for all scopes in this example.

RQ2. This analysis is based on the path to catch clauses set. As this set contains all the
shortest path from the catch clause in which an exception is caught to the scope in
which it was raised, we can find the path lengths by counting all the scopes in the
path between the initial scope and the catch clause. Figure 5.3 visualises two paths
from the same exception to the same guarded scope. Here, the path via scope b is the
shortest and will be registered with length 3. We then aggregate the number of paths
by their lengths.

3phpDocumentor is a tool that can be used to generate and parse documentation for PHP. See https:
//www.phpdoc.org/about.

36

https://www.phpdoc.org/about
https://www.phpdoc.org/about

5.3. Methodology

Figure 5.3: Propagation via multiple paths for exception e to the catch clause in scope c

RQ3. For each each caught exception in the system, we calculate the distance in the class
hierarchy between the type of the caught exception and the type by which it was
caught. We also record the distance between the caught exception and the exception
root type. In Listing 5.4, the exception is caught by subsumption. From the class
hierarchy, depicted in Figure 5.5, we can see that the distance between the catch
clause and the caught type is 1, and that the distance from the caught exception to the
root exception type is 3.

1 <?php
2 try {
3 throw new RangeException();
4 } catch (RuntimeException $e) {}

Listing 5.4: Catch by subsumption code example

Figure 5.5: Catch by subsumption
example class hierarchy

RQ4. For answering this question, we use three of the earlier mentioned resources: the
exception flow, the @throws annotations and the method order. To start with, we
record whether an exception that is explicitly raised in a method is documented with
a @throws annotation. Secondly, we compare the annotations of methods to the ex-
ceptions that they encounter but that have their origin in another scope (i.e., they
are propagated and/or uncaught). Thereafter, we compare the annotations of abstract
methods to the implementations of those methods. The abstract super method de-
fines a “contract” to which the implementations of that method have to adhere to, i.e.
they are not allowed to throw exceptions that are not annotated at the abstract super
method.

37

5. EMPIRICAL STUDY

There are three possible outcomes for each exception:

a) It can be annotated, which means that the encountered exception has a corre-
sponding @throws annotation;

b) An annotation can be missing, which means that for an encountered exception
of type t, no corresponding @throws annotation with type t could be found;

c) Because phpDocumentor might be unable to parse the type in a @throws an-
notation, the last possible outcome for the question whether an exception is
annotated or not is “unknown”.

In Chapter 4, we showed that some exceptions could have an “unknown” type. These
exceptions are left out the analysis for annotations, as we cannot compare it to an
annotation.

5.4 Threats to Validity

There are several aspects which threaten the validity of our study. To start with, we limited
the scope of our study (see Section 3.4), and the elements which we put out of scope might
affect the exception flow. In our evaluation (see Chapter 4), we took some of these features
into account. Despite the influence of these features, the aggregated recall and precision
concerning the encounters set of our approach still were 0.63 and 0.91 respectively (see
Section 4.3). The evaluation of our tool gives us confidence that although the outcome of
our empirical study might not be completely correct, it will still be close enough to the
actual situation to be useful. However, this confidence is based on the assumption that the
corpus used for evaluating the approach is representative. The possibility that the corpus
is biased poses another threat to the validity. The same holds for the representativeness of
the corpus used in the empirical study. We have tried to counter these threats by selecting
projects with a wide range of sizes, use cases and backgrounds.

38

Chapter 6

Results

In this chapter we present the results of the empirical study (see Chapter 5). We answer
each of the research questions in a separate section.

6.1 RQ1. Number of Encounters per Method

The distribution of the number of encounters per method follows a power law distribution.
All projects in the corpus yielded similar results in this respect. 70.9% of all the methods
in the corpus do not encounter an exception. Of the remaining methods, 21% encounter
between 1 and 10 exceptions. 8.1% of the methods in the corpus encounter more than 10
exceptions, with a maximum of 775 exceptions in the Task::perform method of Phing.

6.2 RQ2. Paths of Exceptions

Figure 6.1 depicts the shortest path lengths from the catch clause where an exception is
caught to the initial scope of the caught exception. There is a peak in the graph at length
3, which means that most caught exceptions are raised, propagated to another scope, then
propagated to a guarded scope which then catches the exception. Most of the projects in
the corpus have a path length distribution which approximates the curve in the aggregated
graph. The projects with a lower number of try/catch and throw statements diverge the
most from the aggregated curve. Figures for individual projects can be looked up in Ap-
pendix A.1.

An important observation is that there exist paths of length 1. This means that an ex-
ception is thrown within a guarded scope, and then immediately caught. A second aspect
of this curve is that it does not flatten out directly after the peak at length 3: 33.2% of the
paths have a length greater than or equal to 5 and smaller than or equal to 10.

6.3 RQ3. Catch by Subsumption

Figure 6.2a shows the distances between all caught exceptions in all projects and the type
by which those exceptions are caught. A distance of zero means that the exception is caught

39

6. RESULTS

Figure 6.1: Shortest path lengths from throw statement to catch clause

by its direct type. We can see that most exceptions, namely 37.7%, are caught by their direct
parent, followed by their parent in the second degree. Figure 6.2b shows the distance from
the caught exceptions to the Exception type1. Most caught exceptions have a distance of
two to the Exception type.

Both figures also show the usage of ‘generic’ exception types versus ‘specific’ exception
types. We consider every occurrence of Exception or RuntimeException as ‘generic’, as
it does not signal what kind of exception did occur. We categorise all other exceptions as
‘specific’. If we combine the knowledge of the two graphs, we can infer that most catch
clauses use a subtype of Exception to catch an exception that is their direct child. However,
the data from individual projects can in some cases diverge strongly from the aggregated
data; this aggregate is dominated by the Joomla project, which accounts for 3090 of the
4190 exceptions caught by their direct parent as presented in Figure 6.2a. In Appendix A.2
we present Figures for both the distance between the caught types and the type by which
they are caught, as well as for the distance between the caught types and the Exception
type for all projects in the corpus.

A project which strongly deviates from the aggregate is PHPUnit. In PHPUnit, excep-
tions are most often caught by their direct type, as can be seen in Figure 6.3a. In addition,
PHPUnit never uses an exception type which we categorised as generic. Figure 6.3b shows
that PHPUnit only uses exception types with a minimum distance of two to the Exception

1In PHP versions before version 7.0, Exception is the root type of the exception class hierarchy. Starting
from version 7.0, the Throwable interface was added, which is implemented by Exception. Because most
projects in our corpus have a minimum required version of PHP 5.x, we decided to assume that the Exception
class is the root for the exception hierarchy in all projects.

40

6.4. RQ4. Documentation Validation

type.

(a) Distances from all caught exceptions to
the types of the catching catch clause in all
projects

(b) Distance from the caught exceptions to
the Exception type in all projects

Figure 6.2: Distances between exceptions, catch clauses and root types in all projects

6.4 RQ4. Documentation Validation

Figure 6.4 depicts the presence of annotations for encountered exceptions. Figure 6.4a fo-
cuses on exceptions that are explicitly thrown in a method. Figure 6.4b shows the exceptions
that are encountered in a method but not explicitly thrown compared to the annotations of
that method. Lastly, Figure 6.4c shows the annotations at contract level, compared to the en-
countered exceptions in its implementations. For each project in the corpus, similar figures
are presented in Appendix A.3.

Figure 6.4a shows that most explicitly thrown exceptions are not annotated. Even if
all annotations for which we could not infer an exception type would be annotated, there
still would be more exceptions which are not annotated. This does not hold for all projects:
CakePHP, Joomla, Phing, and Smarty have more than 100 throw statements, and all have
more annotated than not annotated exceptions2.

For propagated and uncaught exceptions, there are even fewer annotations, as can be
seen in Figure 6.4b. Here, Smarty and Roundcube have a larger portion of annotated excep-
tions as compared to the other projects in the corpus.

2Note that not every throw statement should lead to a throws annotation, e.g. if the exception is directly
handled in the method in which it is thrown.

41

6. RESULTS

(a) Distances from all caught exceptions to
the types of the catching catch clause in PH-
PUnit

(b) Distance from the caught exceptions to
the Exception type in PHPUnit

Figure 6.3: Distances between exceptions, catch clauses and root types in PHPUnit

Figure 6.4c shows the encountered exceptions in methods compared to the annotations
at abstract super method level. We can see that the vast majority of encountered excep-
tions is not annotated at abstract method level. It is worth noting that some projects (i.e.
CakePHP, phpDocumentor, PHPUnit, Roundcube, Wordpress) do not have any exceptions
documented at abstract method level.

In each of these figures, we separated the exceptions that can be resolved to
LogicException. The PHP manual states that a LogicException “should lead directly to
a fix in your code” [4]. In other words, a LogicException does not have to be handled or
documented, as it should not be caught but “fixed”. Following this line of reasoning, we
decided to separate LogicExceptions from the other exceptions to see whether this is also
done in practice. When looking at the the graphs in Figure 6.4, we see that there is not a
big difference between “normal” exceptions and LogicExceptions in terms of annotations.
34.9% of the normal exceptions are annotated if they are thrown directly, whereas 27.3%
of the LogicExceptions are annotated. For propagated and uncaught exceptions it holds
that 1.4% of the normal exceptions are annotated, versus 0.7% of the LogicExceptions.
Normal exceptions are annotated at interface level in 1.6% of the cases, compared to 0.6%
of the LogicExceptions.

42

6.4. RQ4. Documentation Validation

(a) Annotations compared to explicitly raised
exceptions in all projects

(b) Annotations compared to encountered
(but not raised) exceptions in all projects

(c) Annotations at abstract method level compared
to encountered exceptions in implementing meth-
ods in all projects

Figure 6.4: Comparison of throws annoations to encountered exceptions

43

Chapter 7

Discussion

In this chapter, we will discuss the results as presented in Chapter 6. Thereby, we answer
the research questions we raised in Chapter 5. In Section 7.5, we discuss the implications
of the accuracy of the algorithm.

7.1 RQ1. Number of Encounters per Method

Most methods do not encounter any exception at all: in only 30% of all methods, an excep-
tion can occur. Most methods in which exceptions can come acoss only encounter a small
number of exceptions. We believe that it is unlikely that a programmer who writes a method
that encounters many exceptions (e.g. 15 or more) is aware of all of them. It would there-
fore be interesting to see whether these “unnoticed” exceptions cause bugs, which could
be researched in the future. If this is the case, our tool could be used to find methods that
do encounter many exceptions, so that these methods can be refactored. Another subject
which we left untouched is concerned with the nature of methods that do encounter many
exceptions. A qualitative study of those methods might point out similarities between those
methods.

7.2 RQ2. Paths of Exceptions

As mentioned in Section 5.1, it is considered a good practice to catch an exception as close
to the source as possible. Although this criterion is hard to express in numbers, we deem
it acceptable if an exception travels through 2 upto 4 scopes before it is caught. Using this
criterion, 69.4% of the exceptions is actually caught ‘close to the source’.

29.7% of the caught exceptions has been in more than five scopes before they are caught.
We can think of several explanations for this fact:

1. The caught exception originated from a dependency and not from the project in which
it was caught itself. In this case, the exception has traveled through a number of
framework scopes before it ends up in the project itself. We leave this question open
for future research.

45

7. DISCUSSION

2. The caught exception was unknown to the developer. We think that a developer who
is writing a catch clause is often not aware of exceptions that come from functions
that are 5 or more calls away. This leads to the conclusion that the developer who
wrote a catch clause that catches such an exception probably did not intend to catch
it. This problem can be prevented by using specific exception types for both throwing
and catching, as it is less likely to catch an exception unintentionally if the catch
clause can only catch a small subset of exception types.

3. The try/catch construct was added as a safeguard. In some instances, a developer
might not know whether the method they are using throws or propagates any excep-
tions. For example, this can be the case when the method resides in another subsys-
tem of the project, or if it is an external method. Because the developer does not want
the method containing the call to that untrusted method to propagate an exception, a
try/catch block is added with a generic type in the catch clause.

Another result that requires attention is the fact that there are cases in which an exception
is caught in the same scope as it was raised. These cases only make up for 0.9% of the paths.
The exception can in these cases be reduced to a goto statement, as the throw statement is
used to jump over a set of instructions to the instructions in the catch clause. Dijkstra [15]
argues that the goto statement should be considered as harmful. Therefore, we argue that
cases where an exception is thrown and immediately caught should be refactored.

7.3 RQ3. Catch by Subsumption

In the optimal situation, the graph showing the distance between a caught type and the type
by which it is caught is right skewed: this indicates that the distance between the caught
type and the type in the catch clause is small most of the times. From Figure 6.2a, we know
that this is not the case. This fact can be interpreted in multiple ways. First, it is possible
that the programmer who wrote the catch clause did not care about the precision. It could
be that they simply wanted to log the exception, but not handle it. In other words, the writer
of the catch clause does often not seem to care about the precision that is offered by the
specific exception type. Conversely, we can say that the programmer who is writing the
function that throws the exception offers information which is lost because the exception is
caught with a type that is too generic. In some cases, the caught exception might have been
handled correctly, but this is prevented by using the wrong catch clause.

In Figure 6.2b, we can see that most exceptions do have a specific type. Although the
exceptions that are caught do have specific types most of the times, the catch clauses do
often not use this specific information. A possible explanation is that PHP programmers
use generic types in catch clauses because they might not be certain about which exception
types might occur in a certain piece of code. They then use a generic type so that no
exception escapes.

46

7.4. RQ4. Documentation Validation

7.4 RQ4. Documentation Validation

For 56.4% of the explicitly thrown exceptions, no annotation was available. When subtract-
ing all exceptions that resolve to LogicException, following the reasoning that these do not
have to be annotated, still 51.4% of the thrown exceptions would not be documented. Excep-
tions which do not originate from the method scope are even less often documented: 98.3%
of the propagated exceptions are not documented when incorporating LogicExceptions,
and 98% when not accounting for LogicExceptions. As we can see, this large percentage
cannot be explained by the fact that LogicExceptions do not have to be documented. We
can think of several explanations for this fact, each of which could be researched in future
work.

• Exceptions thrown in private methods might be annotated less often. This might hap-
pen because the private method can by definition only be used locally. The developer
who wrote the private method is more likely to be the only one who uses that method
than if it were a public method. The method is not part of the public interface and is
thus not a method of which the documentation has large impact.

• Exceptions thrown in short methods might be annotated less often. The reasoning
behind this explanation is that an exception which is thrown in a method of less than
10 lines is often easy to read. The throw statement is more likely to be noticed in
such a method, and therefore, the developer does not deem it neccessary to annotate
the thrown exception.

• Exceptions might not be annotated because of laziness. Although creating such an
annotation is not hard, it requires some extra work which does not yield an immediate
reward.

Exceptions were in 98.4% of the all the cases not annotated at interface level. If we
consider only the exceptions that do not resolve to LogicException, still 97.9% of all ex-
ceptions were not annotated at interface level. We did not discern between explicitly thrown
and propagated exceptions. We consider each exception that is thrown in an implementing
class but not documented in the interface as a violation of the Liskov Substitution Principle.
Liskov and Wing [22] define the “exception rule” as follows: “The exceptions signaled by
mσ, are contained in the set of exceptions signaled by mρ.” Here, method mσ overrides mρ.
If we interpret the word “signaled” as “annotated”, we can see that each exception that is
propagated by a method in a subtype and not annotated in the parent of that method is a
violation of this rule.

As we can see, this violation is abundant in PHP programs. We are interested in whether
these violations do have a big impact and pose this as a question for future research. The
same holds for the consequences of non-annotated exceptions in methods that propagate or
throw exceptions themselves.

47

7. DISCUSSION

7.5 Algorithm Accuracy

In Chapter 4, we have determined the accuracy of the algorithm by comparing the output of
the algorithm to three manually created oracles. The precision is 91%, and almost all ex-
ceptions that were in the output but not in the oracle had a very generic type (e.g. “object”).
These generic types can be filtered out the output of the algorithm easily, and thus have a
low impact. The impact of the incompleteness of the algorithm is more serious, as 37%
of the exceptions is not recalled by the algorithm. As most of the results of our empirical
study show a clear trend, we believe that the recall of our algorithm is sufficient to justify
our conclusions concerning those results.

The accuracy of the algorithm can be improved in several ways. First, improving the
type inference algorithm will result in an improved accuracy. As a starting point, better
support for resolving types of class properties could be implemented. Another possible im-
provement could be made by implementing support for dynamic calls. Lastly, implementing
correct support for try/catch constructs in the CFG creation algorithm will also improve
the accuracy of the algorithm.

48

Chapter 8

Related Work

Modeling the exception flow of a system has been done in multiple ways. We discuss
the literature on exception flow modeling in Section 8.1. There are also numerous studies
available which are concerned with exception and error handling. In Section 8.2, we present
a subset of these studies. PHP is a less well explored topic in scientific literature, but some
of the existing work on PHP is also related to our work. We introduce the most important
works on PHP and web development with relation to our work in Section 8.3.

8.1 Exception Flow Modeling

Amighi et al. [7] created an algorithm which models the control flow graph of software
systems with focus on exceptions. Their approach uses an intermediate representation of
the code to be analysed, in contrast to the approach by Robillard and Murphy [26] which
is based on analysing the AST. Their approach is specifically designed for the Java pro-
gramming language. Sinha and Harrold [27] analysed the impact of exceptions on static
analysis tools. They also constructed an algorithm for exception propagation in Java, which
uses CFGs for intraprocedural exception flows. To be able to model the interprocedural
exception flow, they link the CFGs together into an (interprocedural) CFG. In contrast to
the PHP-CFG library, their CFG construction algorithm correctly accounts for try/catch
constructs. Fu and Ryder [17] have created an algorithm which is able to compute semanti-
cally related exception chains. Exception paths are linked in a chain if one of the following
conditions applies: either an exception is caught and rethrown, or a new exception which
is based on a caught exception is thrown. Their work could be used to expand our own
analysis.

8.2 Exception and Error Handling

Coelho et al. [12] conducted an extensive study on exception handling bug hazards in An-
droid projects. In their study, they analysed over 6000 stack traces and surveyed 71 develop-
ers. They found that most errors in Android projects are due to errors in programming logic.
In addition, they found that many unchecked exceptions are also undocumented, which is

49

8. RELATED WORK

in concordance with our own finding concerning exception documentation in PHP projects.
Ebert et al. [16] executed a survey of 154 developers and manually analysed 220 exception
handling bugs from two Java projects. From the results of their survey, they found that most
developers do not test the exception handling constructs in their code. They also found that
exception handling bugs did only form a small portion of the complete set of bugs in the
analysed projects. Marinescu [23] did an empirical study of three releases of the Eclipse
project. In this study, they found that classes that do use exceptions are more likely to be
error prone. This finding supports the notion that tooling that helps programmers to under-
stand exception handling is needed. Cabral and Marques [10] studied 32 .NET and Java
projects to find how these projects deal with exception handling. They found that exception
handling constructs are often not used correctly, and pose the question whether the design
of exception handling mechanisms might be flawed.

8.3 PHP and Web Development

Hills [20] has created a collection of variable feature usage patterns and anti-patterns in
PHP. They analyse how often these patterns occur in 20 open-source projects, and show
how often these patterns can be statically resolved. They conclude that these patterns can
be used to improve the accuracy of static analysis tools. We believe the implementation of
these patterns in the type inference algorithm will increase the performance of our tool.

Nguyen et al. [25] introduce WebSlice, a tool for slicing web applications. WebSlice
is able to create cross-language slices as web projects often consist of both PHP, HTML,
JavaScript and SQL code. They show that many program slices do indeed cross languages,
indicating the complexity of web application development. Their approach could be used
to create a slicer which also accounts for the exception flow. Such a slicer would make it
possible to see the impact of an uncaught exception on the web application as a whole.

50

Chapter 9

Conclusion

In this chapter, we reflect on the contents of our research. To start with, we list our contri-
butions in Section 9.1. Thereafter, we summarise our findings in Section 9.2. Lastly, we
provide some pointers for future work in Section 9.3.

9.1 Contributions

Our work contains three main contributions. The first contribution is our implementation
of the exception flow detection algorithm of Robillard and Murphy [26] for the PHP lan-
guage. We have shown that it is possible to detect the exception flow in dynamically typed
languages, by first executing a type inference algorithm. Our second contribution is the
determination of the accuracy of our implementation of the algorithm of Robillard and
Murphy [26]. In the original paper, the authors only presented a few use cases in which
their algorithm would be useful, but they did not show how accurate their algorithm is. The
third main contribution is the empirical study we performed on 20 PHP projects, focusing
on their exception flow.

9.2 Conclusions

We focus our conlusions on two parts of our thesis: the accuracy of the algorithm, and the
results of our empirical study. To start with, the evaluation of our approach showed that the
recall of the algorithm is 0.63, meaning that of all exceptions that could have been encoun-
tered, our approach detects 63%. Of the output of our approach, 91% of the exceptions are
exceptions that can be actually encountered. Improvement in the underlying type inference
algorithm will also lead to an improvement of the accuracy of our approach.

The results of our empirical study provide insight into the way PHP programmers use
exceptions. We have shown that most methods do not encounter any exceptions at all. We
have also shown that most exceptions are caught by subsumption, i.e. they are not caught by
their exact type. This signals that developers often do not make use of the extra information
that is provided by the specific exception type. Exceptions are most of the time caught after
they have traveled through three scopes. However, paths with lengths of up to ten are quite

51

9. CONCLUSION

common. These long paths might signal a problem, as the developer that wrote a catch
clause might not be aware of all the exceptions that are caught. We have also shown that
PHP developers catch most exceptions by subsumption. Lastly, we compared the @throws
annotations of methods to the exceptions that are actually encounted. We found that most
exceptions are not annotated, even if they are thrown explicitly. For methods which over-
ride an abstract method, we also compared the annotations of the abstract method to the
encountered exceptions of the overriding method. We found that many methods violate the
Liskov Substitution Principle by propagating exceptions which are not documented at the
abstract method.

9.3 Future Work

We can think of several opportunities for future work. A first suggestion for future work is
improving the type inference algorithm. During the evaluation of our approach, we found
that the type inference algorithm is of great importance to the accuracy of our approach.
Better support for properties and for the dynamic features of PHP would improve the accu-
racy of our algorithm. A different opportunity for improving the accuracy of our approach
lies in implementing proper support for try/catch constructs in the PHP-CFG library.

Another research subject could be finding whether developers that write catch clauses
know or even want to know about all the exceptions that are caught these catch clauses. We
found that some catch clauses catch exceptions which have traveled through many scopes
before they are caught, and wonder whether this is intentional and whether it could be
harmful.

Our last suggestion for future work is researching the impact of exceptions which are
encountered but not annotated. A future study could try to find why developers do not
annotate exceptions, and if exceptions that are not annotated to fatal errors lead more often.

52

Bibliography

[1] Google trends - laravel, symfony, codeigniter, yii, cakephp. https://trends.
google.nl/trends/explore?q=laravel,symfony,codeigniter,yii,cakephp.
Accessed: 2017-04-25.

[2] monolog/monolog. https://packagist.org/packages/monolog/monolog. Ac-
cessed: 2017-04-25.

[3] PHP: Exceptions - Manual. http://php.net/manual/en/language.exceptions.
php, . Accessed: 2017-08-15.

[4] PHP: LogicException - Manual. http://php.net/manual/en/class.
logicexception.php, . Accessed: 2017-08-03.

[5] The best PHP framework for 2015: Sitepoint survey results. https://www.
sitepoint.com/best-php-framework-2015-sitepoint-survey-results/.
Accessed: 2017-04-25.

[6] TIOBE index for june 2017. https://www.tiobe.com/tiobe-index/. Accessed:
2017-06-07.

[7] A. Amighi, Pedro de Carvalho Gomes, and Marieke Huisman. Provably Correct
Control-Flow Graphs from Java Programs with Exceptions, pages 31–48. Number 26
in Karlsruhe Reports in Informatics. Karlsruhe Institute of Technology, 10 2011.

[8] E. A. Barbosa, A. Garcia, and S. D. J. Barbosa. Categorizing faults in exception
handling: A study of open source projects. In 2014 Brazilian Symposium on Software
Engineering, pages 11–20, Sept 2014.

[9] Matthias Braun, Sebastian Buchwald, Sebastian Hack, Roland Leißa, Christoph Mal-
lon, and Andreas Zwinkau. Simple and efficient construction of static single assign-
ment form. In Proceedings of the 22Nd International Conference on Compiler Con-
struction, CC’13, pages 102–122, Berlin, Heidelberg, 2013. Springer-Verlag.

53

https://trends.google.nl/trends/explore?q=laravel,symfony,codeigniter,yii,cakephp
https://trends.google.nl/trends/explore?q=laravel,symfony,codeigniter,yii,cakephp
https://packagist.org/packages/monolog/monolog
http://php.net/manual/en/language.exceptions.php
http://php.net/manual/en/language.exceptions.php
http://php.net/manual/en/class.logicexception.php
http://php.net/manual/en/class.logicexception.php
https://www.sitepoint.com/best-php-framework-2015-sitepoint-survey-results/
https://www.sitepoint.com/best-php-framework-2015-sitepoint-survey-results/
https://www.tiobe.com/tiobe-index/

BIBLIOGRAPHY

[10] Bruno Cabral and Paulo Marques. Exception handling: A field study in Java and .NET.
In Proceedings of the 21st European Conference on Object-Oriented Programming,
ECOOP’07, pages 151–175, Berlin, Heidelberg, 2007. Springer-Verlag.

[11] Byeong-Mo Chang, Jang-Wu Jo, and Soon Hee Her. Visualization of exception propa-
gation for Java using static analysis. In Proceedings of the Second IEEE International
Workshop on Source Code Analysis and Manipulation, SCAM ’02, pages 173–182,
Washington, DC, USA, 2002. IEEE Computer Society.

[12] Roberta Coelho, Lucas Almeida, Georgios Gousios, Arie van Deursen, and Christoph
Treude. Exception handling bug hazards in Android. Empirical Software Engineering,
22(3):1264–1304, Jun 2017.

[13] Jeffrey Dean, David Grove, and Craig Chambers. Optimization of object-oriented
programs using static class hierarchy analysis. In Proceedings of the 9th European
Conference on Object-Oriented Programming, ECOOP ’95, pages 77–101, London,
UK, UK, 1995. Springer-Verlag.

[14] E. W. Dijkstra. A note on two problems in connexion with graphs. Numer. Math., 1
(1):269–271, December 1959. ISSN 0029-599X.

[15] Edsger W. Dijkstra. Letters to the editor: Go to statement considered harmful. Com-
mun. ACM, 11(3):147–148, March 1968. ISSN 0001-0782.

[16] Felipe Ebert, Fernando Castor, and Alexander Serebrenik. An exploratory study on
exception handling bugs in Java programs. Journal of Systems and Software, 106:
82–101, 2015.

[17] Chen Fu and Barbara G. Ryder. Exception-chain analysis: Revealing exception han-
dling architecture in Java server applications. In Proceedings of the 29th International
Conference on Software Engineering, ICSE ’07, pages 230–239, Washington, DC,
USA, 2007. IEEE Computer Society.

[18] I. Garcia and N. Cacho. eFlowMining: An exception-flow analysis tool for .NET
applications. In 2011 Fifth Latin-American Symposium on Dependable Computing
Workshops, pages 1–8, April 2011.

[19] John B. Goodenough. Exception handling: Issues and a proposed notation. Commun.
ACM, 18(12):683–696, December 1975. ISSN 0001-0782.

[20] M. Hills. Variable feature usage patterns in PHP (t). In 2015 30th IEEE/ACM Inter-
national Conference on Automated Software Engineering (ASE), pages 563–573, Nov
2015.

[21] Etienne Kneuss, Philippe Suter, and Viktor Kuncak. On using static analysis to detect
type errors in PHP applications. Technical report, Ecole polytechnique fédérale de
Lausanne, 2010.

54

Bibliography

[22] Barbara H. Liskov and Jeannette M. Wing. A behavioral notion of subtyping. ACM
Trans. Program. Lang. Syst., 16(6):1811–1841, November 1994. ISSN 0164-0925.

[23] Cristina Marinescu. Are the classes that use exceptions defect prone? In Proceedings
of the 12th International Workshop on Principles of Software Evolution and the 7th
Annual ERCIM Workshop on Software Evolution, IWPSE-EVOL ’11, pages 56–60,
New York, NY, USA, 2011. ACM.

[24] Robert Miller and Anand Tripathi. Issues with exception handling in object-oriented
systems, pages 85–103. Springer Berlin Heidelberg, Berlin, Heidelberg, 1997.

[25] Hung Viet Nguyen, Christian Kästner, and Tien N. Nguyen. Cross-language program
slicing for dynamic web applications. In Proceedings of the 2015 10th Joint Meeting
on Foundations of Software Engineering, ESEC/FSE 2015, pages 369–380, New York,
NY, USA, 2015. ACM.

[26] Martin P. Robillard and Gail C. Murphy. Static analysis to support the evolution of
exception structure in object-oriented systems. ACM Transactions on Software Engi-
neering and Methodology (TOSEM), 12(2):191–221, 2003.

[27] Saurabh Sinha and Mary Jean Harrold. Analysis and testing of programs with excep-
tion handling constructs. IEEE Transactions on Software Engineering, 26(9):849–871,
2000.

[28] Henk Erik Van der Hoek and Jurriaan Hage. Object-sensitive type analysis of PHP. In
Proceedings of the 2015 Workshop on Partial Evaluation and Program Manipulation,
PEPM ’15, pages 9–20, New York, NY, USA, 2015. ACM. ISBN 978-1-4503-3297-2.

[29] Merijn Wijngaard. Dependence analysis in PHP. Master’s thesis, Universiteit van
Amsterdam, The Netherlands, 2016.

[30] Rebecca J. Wirfs-Brock. Toward exception-handling best practices and patterns. IEEE
software, 23(5):11–13, 2006.

55

Appendix A

Results

Chapter 6 depicts mainly aggregated data. This appendix contains all relevant figures for
each project in the corpus, similar to the figures in Chapter 6.

A.1 Paths of Exceptions

This section contains Figures depicting the lengths of the shortest paths for caught excep-
tions from throw statement to catch clause for the projects in the corpus. If a project does
not catch any exceptions, it has not been included in this overview.

Figure A.1: Shortest path lengths from
throw statement to catch clause in
Joomla

Figure A.2: Shortest path lengths from
throw statement to catch clause in
CakePHP

57

A. RESULTS

Figure A.3: Shortest path lengths from
throw statement to catch clause in
Doctrine

Figure A.4: Shortest path lengths from
throw statement to catch clause in
DokuWiki

Figure A.5: Shortest path lengths from
throw statement to catch clause in
Drupal

Figure A.6: Shortest path lengths from
throw statement to catch clause in
Fabric

58

A.1. Paths of Exceptions

Figure A.7: Shortest path lengths from
throw statement to catch clause in
Nette

Figure A.8: Shortest path lengths from
throw statement to catch clause in Ph-
ing

Figure A.9: Shortest path lengths from
throw statement to catch clause in ph-
pBB

Figure A.10: Shortest path lengths
from throw statement to catch clause
in phpDocumentor2

59

A. RESULTS

Figure A.11: Shortest path lengths
from throw statement to catch clause
in PHPUnit

Figure A.12: Shortest path lengths
from throw statement to catch clause
in Digitaalloket

Figure A.13: Shortest path lengths
from throw statement to catch clause
in Objectbrowser

Figure A.14: Shortest path lengths
from throw statement to catch clause
in Roundcube

60

A.2. Catch by Subsumption

Figure A.15: Shortest path lengths
from throw statement to catch clause
in Smarty

Figure A.16: Shortest path lengths
from throw statement to catch clause
in Symfony

Figure A.17: Shortest path lengths
from throw statement to catch clause
in Wordpress

Figure A.18: Shortest path lengths
from throw statement to catch clause
in Zend Framework

A.2 Catch by Subsumption

Section A.2.1 contains Figures depicting the distances between the types of caught excep-
tions and the type by which they are caught. Section A.2.2 shows Figures which depict the
distances between the types of caught exceptions and the Exception type.

61

A. RESULTS

A.2.1 Caught Type to Catch Clause Type

Figure A.19: Distances from all caught
exceptions to the types of the catching
catch clause in Joomla

Figure A.20: Distances from all caught
exceptions to the types of the catching
catch clause in CakePHP

Figure A.21: Distances from all caught
exceptions to the types of the catching
catch clause in Doctrine

Figure A.22: Distances from all caught
exceptions to the types of the catching
catch clause in DokuWiki

62

A.2. Catch by Subsumption

Figure A.23: Distances from all caught
exceptions to the types of the catching
catch clause in Drupal

Figure A.24: Distances from all caught
exceptions to the types of the catching
catch clause in Fabric

Figure A.25: Distances from all caught
exceptions to the types of the catching
catch clause in Nette

Figure A.26: Distances from all caught
exceptions to the types of the catching
catch clause in Phing

63

A. RESULTS

Figure A.27: Distances from all caught
exceptions to the types of the catching
catch clause in phpBB

Figure A.28: Distances from all caught
exceptions to the types of the catching
catch clause in phpDocumentor2

Figure A.29: Distances from all caught
exceptions to the types of the catching
catch clause in PHPUnit

Figure A.30: Distances from all caught
exceptions to the types of the catching
catch clause in Digitaalloket

64

A.2. Catch by Subsumption

Figure A.31: Distances from all caught
exceptions to the types of the catching
catch clause in Objectbrowser

Figure A.32: Distances from all caught
exceptions to the types of the catching
catch clause in Roundcube

Figure A.33: Distances from all caught
exceptions to the types of the catching
catch clause in Smarty

Figure A.34: Distances from all caught
exceptions to the types of the catching
catch clause in Symfony

65

A. RESULTS

Figure A.35: Distances from all caught
exceptions to the types of the catching
catch clause in Wordpress

Figure A.36: Distances from all caught
exceptions to the types of the catching
catch clause in Zend Framework

66

A.2. Catch by Subsumption

A.2.2 Caught Type to Exception

Figure A.37: Distance from the caught
exceptions to the Exception type in
Joomla

Figure A.38: Distance from the caught
exceptions to the Exception type in
CakePHP

Figure A.39: Distance from the caught
exceptions to the Exception type in
Doctrine

Figure A.40: Distance from the caught
exceptions to the Exception type in
DokuWiki

67

A. RESULTS

Figure A.41: Distance from the caught
exceptions to the Exception type in
Drupal

Figure A.42: Distance from the caught
exceptions to the Exception type in
Fabric

Figure A.43: Distance from the caught
exceptions to the Exception type in
Nette

Figure A.44: Distance from the caught
exceptions to the Exception type in
Phing

68

A.2. Catch by Subsumption

Figure A.45: Distance from the caught
exceptions to the Exception type in
phpBB

Figure A.46: Distance from the caught
exceptions to the Exception type in
phpDocumentor2

Figure A.47: Distance from the caught
exceptions to the Exception type in
PHPUnit

Figure A.48: Distance from the caught
exceptions to the Exception type in
Digitaalloket

69

A. RESULTS

Figure A.49: Distance from the caught
exceptions to the Exception type in
Objectbrowser

Figure A.50: Distance from the caught
exceptions to the Exception type in
Roundcube

Figure A.51: Distance from the caught
exceptions to the Exception type in
Smarty

Figure A.52: Distance from the caught
exceptions to the Exception type in
Symfony

70

A.3. Documentation Validation

Figure A.53: Distance from the caught
exceptions to the Exception type in
Wordpress

Figure A.54: Distance from the caught
exceptions to the Exception type in
Zend Framework

A.3 Documentation Validation

Section A.3.1 shows for each project in the corpus the difference between explicitly raised
exceptions and the annotated exceptions for all methods. In Section A.3.2, we show for
each project the propagated and/or uncaught (but not raised) exceptions compared to the
annotations for all methods. Lastly, Section A.3.3 shows for each project the annotations at
contract level compared to the encountered exceptions at implementation level.

71

A. RESULTS

A.3.1 Explicitly Raised Exceptions Compared To Annotations

Figure A.55: Annotations compared
to explicitly raised exceptions in
CodeIgniter

Figure A.56: Annotations compared to
explicitly raised exceptions in Joomla

Figure A.57: Annotations compared to
explicitly raised exceptions in PEAR

Figure A.58: Annotations compared
to explicitly raised exceptions in
CakePHP

72

A.3. Documentation Validation

Figure A.59: Annotations compared to
explicitly raised exceptions in Doctrine

Figure A.60: Annotations compared
to explicitly raised exceptions in
DokuWiki

Figure A.61: Annotations compared to
explicitly raised exceptions in Drupal

Figure A.62: Annotations compared to
explicitly raised exceptions in Fabric

73

A. RESULTS

Figure A.63: Annotations compared to
explicitly raised exceptions in Nette

Figure A.64: Annotations compared to
explicitly raised exceptions in Phing

Figure A.65: Annotations compared to
explicitly raised exceptions in phpBB

Figure A.66: Annotations compared to
explicitly raised exceptions in phpDoc-
umentor2

74

A.3. Documentation Validation

Figure A.67: Annotations compared to
explicitly raised exceptions in PHPUnit

Figure A.68: Annotations compared to
explicitly raised exceptions in Digitaal-
loket

Figure A.69: Annotations compared to
explicitly raised exceptions in Object-
browser

Figure A.70: Annotations compared to
explicitly raised exceptions in Round-
cube

75

A. RESULTS

Figure A.71: Annotations compared to
explicitly raised exceptions in Smarty

Figure A.72: Annotations compared to
explicitly raised exceptions in Symfony

Figure A.73: Annotations compared to
explicitly raised exceptions in Word-
press

Figure A.74: Annotations compared
to explicitly raised exceptions in Zend
Framework

76

A.3. Documentation Validation

A.3.2 Propagated or Uncaught Exceptions compared to Annotations

Figure A.75: Annotations compared to
encountered (but not raised) exceptions
in CodeIgniter

Figure A.76: Annotations compared to
encountered (but not raised) exceptions
in Joomla

Figure A.77: Annotations compared to
encountered (but not raised) exceptions
in PEAR

Figure A.78: Annotations compared to
encountered (but not raised) exceptions
in CakePHP

77

A. RESULTS

Figure A.79: Annotations compared to
encountered (but not raised) exceptions
in Doctrine

Figure A.80: Annotations compared to
encountered (but not raised) exceptions
in DokuWiki

Figure A.81: Annotations compared to
encountered (but not raised) exceptions
in Drupal

Figure A.82: Annotations compared to
encountered (but not raised) exceptions
in Fabric

78

A.3. Documentation Validation

Figure A.83: Annotations compared to
encountered (but not raised) exceptions
in Nette

Figure A.84: Annotations compared to
encountered (but not raised) exceptions
in Phing

Figure A.85: Annotations compared to
encountered (but not raised) exceptions
in phpBB

Figure A.86: Annotations compared to
encountered (but not raised) exceptions
in phpDocumentor2

79

A. RESULTS

Figure A.87: Annotations compared to
encountered (but not raised) exceptions
in PHPUnit

Figure A.88: Annotations compared to
encountered (but not raised) exceptions
in Digitaalloket

Figure A.89: Annotations compared to
encountered (but not raised) exceptions
in Objectbrowser

Figure A.90: Annotations compared to
encountered (but not raised) exceptions
in Roundcube

80

A.3. Documentation Validation

Figure A.91: Annotations compared to
encountered (but not raised) exceptions
in Smarty

Figure A.92: Annotations compared to
encountered (but not raised) exceptions
in Symfony

Figure A.93: Annotations compared to
encountered (but not raised) exceptions
in Wordpress

Figure A.94: Annotations compared to
encountered (but not raised) exceptions
in Zend Framework

81

A. RESULTS

A.3.3 Annotations at Contract Level Compared to Exceptions at
Implementation Level

Figure A.95: Annotations at abstract
method level compared to encountered
exceptions in implementing methods in
Joomla

Figure A.96: Annotations at abstract
method level compared to encountered
exceptions in implementing methods in
CakePHP

Figure A.97: Annotations at abstract
method level compared to encountered
exceptions in implementing methods in
Doctrine

Figure A.98: Annotations at abstract
method level compared to encountered
exceptions in implementing methods in
DokuWiki

82

A.3. Documentation Validation

Figure A.99: Annotations at abstract
method level compared to encountered
exceptions in implementing methods in
Drupal

Figure A.100: Annotations at abstract
method level compared to encountered
exceptions in implementing methods in
Fabric

Figure A.101: Annotations at abstract
method level compared to encountered
exceptions in implementing methods in
Nette

Figure A.102: Annotations at abstract
method level compared to encountered
exceptions in implementing methods in
Phing

83

A. RESULTS

Figure A.103: Annotations at abstract
method level compared to encountered
exceptions in implementing methods in
phpBB

Figure A.104: Annotations at abstract
method level compared to encountered
exceptions in implementing methods in
phpDocumentor2

Figure A.105: Annotations at abstract
method level compared to encountered
exceptions in implementing methods in
PHPUnit

Figure A.106: Annotations at abstract
method level compared to encountered
exceptions in implementing methods in
Digitaalloket

84

A.3. Documentation Validation

Figure A.107: Annotations at abstract
method level compared to encountered
exceptions in implementing methods in
Objectbrowser

Figure A.108: Annotations at abstract
method level compared to encountered
exceptions in implementing methods in
Roundcube

Figure A.109: Annotations at abstract
method level compared to encountered
exceptions in implementing methods in
Smarty

Figure A.110: Annotations at abstract
method level compared to encountered
exceptions in implementing methods in
Symfony

85

A. RESULTS

Figure A.111: Annotations at abstract
method level compared to encountered
exceptions in implementing methods in
Wordpress

Figure A.112: Annotations at abstract
method level compared to encountered
exceptions in implementing methods in
Zend Framework

86

	Preface
	Contents
	List of Figures
	Introduction
	Background
	The PHP language
	Static Analysis to Support the Evolution of Exception Structure in Object-Oriented Systems
	Simple and Efficient Construction of Static Single Assignment Form
	Optimization of Object-Oriented Programs Using Static Class Hierarchy Analysis

	Approach
	Type Inference
	Call Graph Construction
	Flow Detection
	Research Scope

	Algorithm Accuracy
	Methodology
	Results
	Concluding remarks

	Empirical Study
	Research Questions
	Corpus
	Methodology
	Threats to Validity

	Results
	RQ1. Number of Encounters per Method
	RQ2. Paths of Exceptions
	RQ3. Catch by Subsumption
	RQ4. Documentation Validation

	Discussion
	RQ1. Number of Encounters per Method
	RQ2. Paths of Exceptions
	RQ3. Catch by Subsumption
	RQ4. Documentation Validation
	Algorithm Accuracy

	Related Work
	Exception Flow Modeling
	Exception and Error Handling
	PHP and Web Development

	Conclusion
	Contributions
	Conclusions
	Future Work

	Bibliography
	Results
	Paths of Exceptions
	Catch by Subsumption
	Documentation Validation

