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Before coming to TU delft, I studied industrial design and worked at a furniture company. 
While working, my interest was in people's housing space and residential architecture and 
bringing a better life for people. Living in the metropolis of Seoul, I witnessed house prices 
doubling and tripling within a few years, which drew more attention to architecture and 
housing issues. From the experiences, I wondered why architecture could not be as simple 
and easy to build as furniture and comes with a price tag. Complex required dimensions, 
safety, insulation, etc., are incomparable to a table. However, I believe if understood 
the technology and basic concepts used in architecture, similar to the case of furniture, 
the architecture industry can evolve into an industry that is more affordable and mass-
produced through reorganization of the process.

At TU Delft, I developed an interest in computational design and modular construction. 
Combining the study motivation and interest in the field, in this thesis, I seek to build the 
modular architectural industry into a more customizable and participatory product for 
more people with access to the industry. proposing an approach to solve the complexity 
of construction and demonstrate the potential of modular components. Therefore, the 
final product I am to develop is a participatory design tool, combined with modularity and 
computation, which provides combinatorial creativity and transparent CPQ (configure, 
price, quotation).

The motivation for conducting the study
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MMC Modern Method of Construction

MC Modular Construction

BMC  Boolean Marching Cube

BMS  Boolean Marching Square 

WFC Wave Function Collapse

DFMA  Design for Manufacturing and Assembly 

CPQ Configure, Price, & Quote (Referring to industrial product configurators)

PCG Procedural Content Generation (Video Games Industry)

Acronyms and local terms
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The demand for lower construction costs comes at the price of duplicating architectural 
designs. As a result, the misperception that modular architecture is repetitive prevails. 
However, the developments in computational design and MMC (modern methods of 
construction) can suggest a standardized manufacturing approach to provide mass 
customization. The research explores the computation of Modular building envelope 
systems using the Boolean marching cube algorithm under the premise of a ‘participatory 
generative design framework’ of the 'GO-Design' developed by Pirouz Nourian and Shervin 
Azadi [1]. In this project, (1) a set of architectural tilesets is developed that incorporates 
mass-customization by providing the potential for generating various configurations, and 
(2) a prototype of an interactive digital tool is established to enable future inhabitants to 
customize the configuration of their modular houses based on the predefined tileset. The 
algorithm is developed and applied in the Rhino & Grasshopper environment. The BMC 
algorithm reads the voxels' labels pertaining to each cube's vertices (a collection of 8 
neighboring voxels) to load and choose the corresponding tile from a predefined tileset. The 
project's focus is the design of such a tileset, its engineering consistency, and architectural 
coherence. As an input, a voxelated massing will be the input, possibly later accompanied 
by a colored zoning scheme. and the output will be a modular architectural assembly. This 
workflow is envisaged to become a procedural component of a Configure, Price, & Quote 
(CPQ) system for the industrialization of mass customizable housing.

Abstract
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CHAPTER 1  
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The global MC(Modular Construction) market size was USD 72.11 billion in 2020 and is 
projected to reach USD 114.78 billion by 2028 [2] growth of about 40%. In US 2015 the 
Modular Building Institute noted that MC constituted 2.9% of all construction and expected 
it to grow to 6.4% from 2021 to 2028 [3]. Similarly, the UK predicts that MMC(Modern Method 
of Construction) homes will rise from 6~10% to 20% in 10 years [4]. It is estimated that 
the increase puts tremendous pressure on the construction industry to shift into modular 
construction quickly. Choi, professor of University of Nevada predicts that developers 
will be pushed to consider MC or even be forced to implement it with increased modular 
construction with reduced price from the economy of scale [5]. 

While the shift is expected, there are problems with the current modular construction 
market. Oftentimes, modules in the market are solely optimized for mass production but 
not for custom configuration. Therefore, the demand for lower construction costs comes at 
the price of duplicating designs. As a result, the misperception that modular architecture 
is repetitive prevails. It is essential to mention that adopting a standardized manufacturing 
approach does not necessarily imply the provision of standardized architecture. It may 
simply mean benefiting from the manufacturing industry’s practices to achieve high 
productivity rates [6]. 

1. Introduction 

1.1 Background

As technologies advance, the limits and boundaries of modular construction continue 
to expand. In today’s digital world, where powerful computing power is easily accessible 
to designers in the built environment, mass design customization challenges provide 
the opportunity to develop digital solutions that can handle complex modularization. 
Professor Robert Doe of the University of Sydney remarks on the ‘Modularity’ concerning 
design informatics that the assembly of parts and their interactions and the configurability 
of components are concepts common to new computational design tools and improved 
methods of making architectural solutions.[7]

Fig.1: example of the duplicated design of modular construction (images sourced from enews)
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Social relevance – In 2019, a survey carried out by the Lincoln Institute of Land Policy 
(LILP) revealed that 90 percent of the 200 cities around the globe were considered 
unaffordable to live in [9].  Prices of houses in cities are increasing rapidly, and so is the 
cost of construction price of new houses due to an increase in material costs and labour 
wages [10]. Yet, the adoption of the MMC in the industry remains low [6], and The industry's 
productivity has not risen since the Second World War [11]. The MC is emerging as a solution 
to the housing crisis, enhancing productivity by shortening the timeline and saving costs.
[4] This thesis is socially relevant as the research is searching for a computational method 
of mass customization of the modern modular construction to bring more people available 
for more transparency in the architecture industry. 

Scientific relevance – Due to its complexity and high price, the process of architectural 
customization has only remained bespoke, available only to a few people. To break this 
convention, the thesis aims to develop a mass customization method of architecture 
through participatory design involving people in the design process and achieve a more 
transparent CPQ(configure price quotation) of the industry. Since the project is a study of 
translating the digital information into valid modular and connectable components, the 
potential benefit of the research can be a link between construction to computer generative 
or participatory design methods. Connecting the two can suggest a solution to an increase 
in productivity and the labour crisis that the industry is facing. 

1.2 Relevance 

1.3 Problem Statement
The traditional construction method is characterized by bespoke solutions delivered by 

a bespoke process in architectural design [6]. Which is highly customizable but results in 
low productivity and architecture one of the most expensive purchase in life. Whereas the 
MC (Modular Construction) in the market is often characterized as standardized solutions 
provided by a standardized process in architectural design, optimized for mass production 
but not for custom configuration. 

Therefore, the lower construction costs come at the price of duplicating designs, and as 
a result, the misperception that MC is repetitive and limits the design options or restricts 
their control prevails. However, contrary to the misperception, the MC can accommodate 
various forms and styles through mass customization, offering the combinatorial creativity 
of modules similar to the LEGO blocks. 

To achieve this interaction of the components, the thesis works with the BMC algorithm, 
invented by Lorensen and Cline in 1987 [8]. The original use is to extract a polygonal 
mesh of an isosurface from a three-dimensional discrete scalar field, mainly concerned 
with medical visualizations such as CT and MRI scan data images. The application of the 
algorithm expands from the medical field and is also widely used in computer graphics. In 
this research, I seek to explore a methodology of design that utilizes a participatory design 
of small-sized architecture through the BMC algorithm.
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1.4 Research questions 
Research Question –

 How to devise a participatory computational design tool for constructing valid 
modular building frames in a Modern Method of Construction as an assembly of 
architectural tiles using the Boolean Marching Cubes (BMC) algorithm?

Sub Questions – 
	- How to develop an interactive tool for normal users to customize their modular 
architecture from an input voxel array with enough visual representation? 
	- How can the structural validity check of the frame generate?    
	- How to offer a set of architectural tiles that incorporates mass customization 
enabling expert users to develop the tileset?  

1.5 Research Objectives
In housing production workflows optimized for mass production but not for customized 

configuration, the lower construction costs come at the price of standardized products. As 
a result, the underlying misperception that MC offers repetitive design limits and restricting 
control. Contrary to the misperception, the MC can suggest a coexistence of a standardized 
construction process and a bespoke design by achieving mass customization. 

In this project, the research seeks a methodology of mass customization through the 
participatory design of a small-sized residential architecture. The suggested method 
will contain. First, a set of architectural tiles (hereinafter referred to as the tileset) is 
developed that provides for combinatorial mass customization of building envelopes by 
ensuring an exhaustive extent of consistency that would allow for procedural cladding 
of virtually any possible colored configuration of voxelated building designs. Secondly, 
the project develops a prototype of an interactive digital tool that enables future 
inhabitants to customize the cladding and the envelope structure of their modular houses 
based on the predefined tileset from the first phase. the third is the structural analysis 
of the architecture for the purpose of validity check, environmental evaluation in terms 
of embodied energy, and pricing efficiency of a certain configuration ( to be possibly 
compared with alternative configurations). 

 

The design process of mass customization, in the end, can enhance the architect’s ability to 
coordinate the design of manufactured components and enable more creativity in design.

The challenge lies in the assembly of parts and their interactions and the configurability 
of elements. Unlike the participatory design output of digitalized information or toys, 
the real-world architectural modules require far more complexity in material, functions, 
connectivity, and interaction with each part. If computational methods can address 
the challenges of such complexity, the modular architecture industry will evolve into a 
customizable mass industry with enhanced productivity. 
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The algorithm is developed and tested in the Rhino & Grasshopper environment using the 
BMC algorithm developed by Shervin Azadi. The tool will read the voxels’ labels of each 
cube’s vertices (a collection of 8 neighboring voxels) to load and choose the corresponding 
tile from a predefined tileset. The project’s focus is the design of such a tileset, its engineering 
consistency, and architectural coherence. Figure 2 is the use case diagram of the thesis. 
As an input for the algorithm, importing a colored voxelated mass (later referred to and 
specified as a configuration) produces an output of a modular architectural assembly. 
This workflow envisages becoming a procedural component of a Configure, Price, & Quote 
(CPQ) system for the industrialization of mass customizable housing.

 

 

 

Fig.2: Diagram of Research Objective as Use case diagram (Author)

Scope- The Go_Design framework, a modular generative design framework for mass 
customization and optimization in architectural design [1], articulates the framework to 
three meta procedures, 1) space-planning, 2) configuring, and 3) shaping. Planning’ is the 
procedure involving multi-value, multi-actor, and multi-criteria complexities and aims 
to reach a collective design goal. ‘Configuring’ is a procedure focused on generating a 
configuration of spaces from the specified criteria and relations in the planning step. The 
‘Shaping’ stage, which focuses on the topological design, involves multi-dimensional and 
multi-value design complexities and determines the aesthetic styling of design.

1.6 Scope

Fig.3: The scope of the thesis in the GO-Design framework [1]  
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The thesis focuses on developing a method for the ‘Shaping’ stage of the GO_design 
framework in developing a system for polygonizing a modular architecture, described 
as colored modular configurations from the configuring stage. The proposed framework 
of the thesis maintains the GO_design framework but works on another layer of colored 
modular configuration, which defines the architecture’s exterior envelope, apart from the 
zoning configuration. This approach is also related to the Open building concept [12] of 
physically separating and layering architecture components by longer and shorter life 
spans for easier adjustable over time.  

The scope of the thesis is not configuring colored modular configurations(voxel array). 
The research aims not to present a ready-made system for the market but to determine the 
direction of further investigation and acknowledge that there are multiple solutions to the 
problem. 

for space plan and system for envelope (skin and strcutrure)

+

Fig.4: The scope of the thesis in the Open building concept (Author)

The research methodology of the thesis is ‘research by design.’ 
Background Research-  The literature review divides into three parts. The first part 

discusses the Modern method of construction, background research on previous modular 
construction practices, categories, benefits, and case studies of modular construction 
to search and conclude on the fittest element type of MC for the thesis. The second part 
discusses the modular participatory design of toys, gaming, and architecture, providing 
participatory creativeness. The research includes the toy industry, LEGO and Mobaco, the 
game industry, and Townscaper, and in the architectural context, the case study from the 
Savov from ETH Zurich. The third part is the research on algorithms, discussing the two 
procedural generation algorithms, the Boolean Marching Cubes algorithm and the Wave 
Function Collapse algorithm. The two algorithms will be compared and selected for the 
project.  Design Methodology - In the design development stage, First, set the preset 
of the algorithm and module components: the terminology, the Module dimension, and 
the 26 unique cube tilesets. Second, the surface and architectural tilesets and examples 
of each tileset. Third, design the polygonization BMC algorithm and discuss the input 
voxel rulebook. Result- In the result chapter, validate the result from the design phase 
for accuracy, and the possibility of structural validity made using a grasshopper plugin, 
Karamba3D. Conclusion/reflection - contains the concluded results, future works, 
limitations, and project discussion. 

1.7 Research methodology
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Fig.5: The overview diagram of the research (Author)
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CHAPTER 2
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2. BACKGROUND RESEARCH 

The MMC (Modern Methods of 
Construction) is a broad term to 
describe a wide range of construction 
processes aiming to produce more 
sustainable housing for better quality, 
cost, and less time. In many cases, 
the term is parental for modular and 
offsite construction. In the Savills [4] 
report, the UK Government published 
a definition of the framework and the 
seven categories for defining MMC: 
and in the seven categories the five: 

2.1 Modern Methods of Construction

Fig.6: Seven categories of Modern Method of Construction [4]

Volumetric modular, Structural panelized, Offsite components, additive manufacture, and 
Non-structural assemblies and sub-assemblies are the primary methods of offsite modular 
construction. According to the technical report of Oliveria[13], The UK government has 
identified MMC as a critical vision for meeting the UK housing needs and promotes its 
application to encourage the adoption of modularity in the construction sector. 

The Open building concept is an 
idea developed by N.John Habraken 
in the 60’s. the main objective being 
to physically separate the elements 
with different life cycles, and increase 
flexibility and adapability of the 
building. The principle is often 
described using the Shearing layers of 
change designed by Stewart Brands’s 
giving example of layers of different 
life span of the architectural elements 
[12].

2.1.2 Open Building concept

2.1.1 Modern Methods of Construction 

Fig.7: Shearing layers of change from Openbuilding [12]
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Throughout the decades, the attempt to industrialize and modularize construction has 
existed in the belief that the new construction approach can bring rapid urban housing 
development, mass customization, and more affordable housing. Such attempts of MC 
existed even before the digitalization of parts and assisted computation. Some of the 
attempts succeeded in the market and enhanced construction productivity. However, the 
attempts vanished due to the financing issues outside the company’s handle, such as the 
great depression and the war that caused government policy changes. Although the case 
projects no longer exist in the market, the attempts build the foundation of the current MC 
industry. 

2.1.3 MC before digitalization

Fig.8: Images of Sear’s Modern Home 
Catalog [4]

Sears Modern Home Catalog - In 1908, Sears, Roebuck, 
and Co. introduced a Sears Modern Home Catalog in the 
US. The Sears Modern Home catalog presented more than 
four hundred houses in various styles. The instruction and 
parts came in prefabricated pieces, ready to be assembled. 
Sears also provided a service allowing buyers to submit 
their designs to present and share plans offering creative 
control of the parts without the quality reduction. Sears 
found massive success, and 75,000 houses were built in 
this manner for over five decades, reducing housing costs 
to less than two-thirds of conventionally built homes [14].
In 1941, as the war broke out, residential construction was 
only permitted for workers in the defense department, and 
Sears was troubled in sourcing the lumber they needed. In 
1942 the US government called for the need for lumber 

supply and gained control of all lumber mill sales and deliveries to ensure the supply of 
lumber for military purposes [14].

Oak ridge project - In 1943, Skidmore, Owings & Merrill 
(SOM) managed to construct three thousand prefabricated 
houses for members of the Manhattan Project in the 
secret location now known as Oak Ridge using MMC. The 
houses were prefabricated in cement as planar wall types 
and plugged in varying configurations. The windows and 
casework were often manufactured off-site and then 
installed on-site, and assemblies such as machine rooms 

Fig.9: Images of Oak ridge project [4]

and HVAC systems were commonly built off-site and craned into place. Manufacturing 
One house In every 30 minutes and, on average, built around 17 homes per day. [14], [16]. 
After the war ended, the government withdrew its funds and its expansion.   According to 
a report from AIA( American Institute of Architecture), The increasing recognition of the 
modular construction industry benefits contributes to increasing projects using the MC 
method. Often the MC involves the off-site prefabrication of manufacturing architectural 
elements contributing to improved quality, productivity, safety, schedule, cost/value, and 
sustainability [3].
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Quality - Under a monitored manufacturing setting, precise fabrication tools and 
automated processes allow high-quality control and consistency. Contrary to traditional 
construction, off-site construction enables the fabrication of wall components to achieve 
increased precision. As a result, the building envelopes are much tighter, with fewer air and 
water leaks. [3]

Productivity- Labor productivity can increase working in a plant with more negligible 
effect by weather and equipped with necessary tools and machinery. Working under 
a roof in a factory enables workers to perform in the best conditions to achieve a high 
level of productivity. [3] Also, MMC requires fewer operatives on-site, and it’s possible to 
significantly reduce the level of skill needed. The use of low-skilled personnel is possible if 
the design is sufficient enough. [6]

Safety- The most praised benefit of MMC is the speed of construction. According to the 
Modular Building Institute, the construction schedule can be saved dramatically by 30 to 
50 percent. This time saving brings significant benefits compared to the traditional wet 
construction requiring concrete curing. The more work can be completed off-site, the 
greater the savings from the increased time saved on-site.[3]

Schedule- The most praised benefit of MMC is the speed of construction. According to 
the Modular Building Institute, the construction schedule can be saved dramatically by 30 
to 50 percent. This time saving brings significant benefits compared to the traditional wet 
construction requiring the curing of concrete. The more work can be completed off-site, 
the greater the savings from the increased time saved on-site.[3]

Cost and Value- The AIA report says that although modular construction can be more 
cost-efficient than on-site construction, it will not automatically reduce the project cost. 
However, The prices are more predictable than traditional construction methods. In the 
document of Construction 2025 by the HM Government, MMC products resulted in a 33% 
reduction in the initial cost of construction and the whole-life cost of assets. [6] if MMC is 
implemented correctly, it will prove to be a more cost-efficient way to create value in the 
long term.

Sustainability- The off-site production of building components allows for optimal 
material use control, resulting in reduced material input and waste than traditional on-
site construction. Surplus material and fall-off can be captured and recycled back into the 
inventory for use on other projects.

2.1.4 The benefits of the MC
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In general, the Offsite construction divides into Volumetric and Non-volumetric 
construction methods. The thesis of T.M de Haas [17] defines the four different elements 
of modular prefabrication (linear, planar, and hybrid). The primary criteria for categorizing 
the elements are the size, shape, and assembly method. The thesis adds one more element 
type to Haas’s definition: the block type element.

2.1.5 Building elements of MC 

Volumetric elements
Volumetric systems are the most factory-based production 

elements. It involves off-site prefabricating individual three-
dimensional units representing a part of an entire room, 
which then is connected on-site to form a single building. 
These modules can be finished in the factory to include all 
fixtures and fittings, requiring minimal on-site installation 
work. Once arriving at the site, the Volumetric element 
assembly method enables the fastest assembly and requires 
minimal time and work.

Another advantage is that the elements are fully finished, 
and operational as most of the work is done in the controlled 
environment factory. Often, having modules fitted with 
stairs increases productivity and excursion, as there is no 
need for ladders, scaffolding, and lifts to move from one 
level to another [3]. 

However, The size of spatial elements is often limited by 
the transportation size on local roads and compared to non-
volumetric systems, and the volumetric elements cover 
more transportation volume as they are three-dimensional. 
Another disadvantage is that a manufacturing facility 
requires a more significant investment. For this reason, The 
elements are less suited for small and medium construction 
and more optimal for larger housing complex projects and 
multipurpose highrises buildings.

Fig.10: Volumetric elements 
(Author)
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Linear elements are the closest elements to the conventional 
construction elements, which are already widely adopted 
in the construction industry, as most structural beams are 
prefabricated as linear elements. However, It isn’t easy to 
find them fully serviced as MC and finished as single units in 
the market, as most cases are in the form of concrete, steel, 
and wooden beams delivered on-site. The Linear elements 
are often easy to connect, but additional processes, parts, 
and finishings are required. In general, this linear system 
requires the most work on-site as the elements stay as pure 
material on-site in terms of customization.

Fig.12: Planar elements (Author)

Planar elements are two-dimensional panel elements. 
These panel elements perform better on design flexibility 
and optimized logistics than the volumetric system. 
Therefore they are more adapted in small or medium-
sized architecture, such as single-family housing projects, 
than more giant-scale constructions. Planar elements 
with a complex level of MMC can equip building services 
such as HVAC, plumbing, and electrical systems in the wall 
element before the assembly. [6] When done correctly, 
planar elements provide easy connection of elements and 
do not require more space for construction than volumetric 
construction as they can be transported as flat-pack.

Non-volumetric elements
The non-volumetric system connects the off-site 

prefabrication of building elements on site. This method 
uses a standardized process to deliver bespoke solutions, 
making build-to-order manufacturing in plants possible 
and enabling combinatorial creativity by using standardized 
components. Components can be transported more 
compactly than volumetric units, potentially reducing 
transportation costs. But the system requires additional 
assembly and sealing work on-site [6]. The non-volumetric 
system is categorized by the elements used, linear, planar, 
block, and Hybrid types.

Fig.11: Linear elements (Author)
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Fig.13: Block elements (Author)

Fig.14: Hybrid elements (Author)

Hybrid elements are mixed uses of different systems, and 
most modular construction is in hybrid form to offer the 
benefits of each approach to the market. In most cases, 
prefabricated columns, walls, and floor slabs are widely 
used as elements. Also, developing computation and 
digitalization enables the mixing of components more 
accessible. According to Bertram et al. (2019), mixing such 
systems can be cheaper (3%) than just using one element.

Block elements are similar to stacking toys such as LEGO 
modules; these blocks are usually lightweight and filled 
with insulation to provide sufficient thermal, acoustic, 
and energy efficiencies and offer users freedom of design 
variation. Yet, the block system does not provide the level 
of complexity of MMC as other systems offer. In general, the 
size of each element remains smaller sizes that one person 
can lift and are easy to connect without skilled labor, making 
the block system more suitable for small housing projects. 

2.1.6 Case Study of Building elements of MC  

Finch building [18] is an example of using volumetric 
elements as a modular unit. In Finch buildings, a sustainable 
approach is delivered as the modular volumetric units are 
produced from mainly sustainable wood material (CLT) 
consisting of a fixed number of ingredients. The module size 
is set to specific dimensions prefabricated from partnering 
factories. By standardizing the prefabricated units, waste and 
energy consumption are reduced, The quality is maintained 
under a controlled environment, and each volumetric unit 
complies with the dutch building codes.

 Compared to the average construction period in the 
Netherlands, between 7 to 10 years, the Finch buildings 
take an average construction time of seven months from 
delivery of the modules, as the products are prefabricated 
in a plant and assembled on-site, significantly reducing 
the construction time. Another aspect the Finch building 
emphasizes is its re-locate ability. The modules can be 
transported to other places as a finished product as a unit.  

Fig.15: Images of Finch buildings 
representing volumetric element 
type of MC [18] 

Volumetric System Case Study - Finch building
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The ‘Bone Structure[19] is a company practicing the linear 
system of MMC. ‘The Bone structure’ offers a patented light 
steel construction technology that combines the advantages 
of post and beam structure.

 Their linear elements are produced with galvanized steel 
as the primary material and designed on 3d software, 
outsourced to manufacturers, and laser-cut from factories. 
The construction is pre-engineered from the design 
phase and requires no highly skilled labor. The firm’s pre-
cut openings in elements of the structure are ready to 
accommodate electricity, ventilation, and heating. The 
company also emphasizes the environmental sustainability 
of the products. The steel elements are reusable and can 
reduce the integrated process of precisely calculating its 
parts, waste reduction, removal, rent of containers, and 
labor. 

The ‘Bone structure’ specializes in medium-scale 
architectures such as residential and light commercial 
buildings, which often require no interior load-bearing walls 
and offer adaptable and reconfigurable space to customers. 
As the linear elements are less volumetric than the 
volumetric and planar systems, minimizing transportation 
size and space reconfiguring is possible. 

Linear System Case Study - Bone structure: 

Fig.16: Images Bone structure 
representing linear elements of MC 
[19]

The Finch building offers design, coordinating their 
product's permit, which provides a rather bespoke approach 
using standardized units. The reconfigurability of spaces is 
relatively lower than other companies as the dimensions 
of units determine the spaces and are supported by a load-
bearing wall of a fixed size.
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Go Logic[20] houses are examples of an MMC using planar 
elements as their construction unit. Using wooden ‘2×8 
stud framing’, their planar elements provide structural 
support for the building and accommodate insulation. The 
computer model of each panel design allows generating a 
specific plan for each panel, detailed down to the individual 
stud. 

The panelized exterior wall model is prefabricated under 
factory conditions, completed with building wrap, windows, 
and exterior insulation installed and tested. Then walls 
are delivered to the building site, craned into place on 
a foundation constructed in advance. The fabricating of 
building panels for a single house takes approximately three 
to four weeks. Their design process and manufacturing 
method decrease the construction time. 

The firm offers some level of customization, from a catalog 
offer the basic types, and as a service provides unique 
customization design. Customers can select from various 
kinds of exterior cladding, such as fiber-cement clapboards, 
Eastern white cedar shingles, charred cedar boards, and 
corrugated weathering steel. The firm also offers a range 
of options for other home elements, from window trim and 
porch decking to interior flooring, appliances, lighting, and 
hardware.

Gablok, founded in 2019 in Belgium, is an example of 
a block system in MMC. Gablok proposes a concept that 
assembling a building can be done using block elements 
that are lightweight and right-sized that one person can lift 
and stack like a lego block. Their blocks are made in three 
lengths: 30, 60, and 90cm. The height and depth of the 
blocks are fixed to 30cm, and the weight of a block-sized 
60cm is 7.5kg. Made of OSB and 264mm thick graphite EPS 
insulation components, The insulation is free to slide to 
form the protrusion necessary for interlocking. Their block 
elements have low complexity but offer limitless design 
freedom [21].

After installing the blocks, the exterior finishes can be 
selected from options of plaster, bricks, facade cladding, 
etc., since the installation system is fast and requires no 
drying time, reducing construction time. However, the 

Block System Case Study - Gablok: 

Planar System Case Study - gologic.us: 

Fig.17: Images of Go_logic houses 
and planar element installation [20]

Fig.18: Images of Gablock digital 
modeling and elements [21]



25

The Sustainer Home [22] is an example of a Hybrid element 
system. The Sustainer home provides a digital building 
system and does not manufacture or supply parts or 
modules. Still, the firm’s product is the information set of 
highly detailed 3D models via a digital building system. The 
self-developed software can automatically load a database 
of geometric elements into a new design based on their 
design. With this, the company and customers can achieve a 
cost reduction from the digital twin and get precise data on 
the use of the material. 

Sustainer Homes aim to achieve seamless integration 
from design to realization in partnerships with builders. In 
Sustainer Home’s digital product, every screw and notch is 
visible in the model of digital development. This makes the 
model the foundation of the most critical business processes 
in the assembly, including purchasing, calculation, planning, 
logistics, quality control, and aftercare. 

Since the product sold is only the highly detailed 
information, any local manufacturer with a suitable 
machine can produce the provided information, and 
transportation can be linked with the closest manufacturers. 
Reconfigurability can be achieved easily since all parts are 
transparently given as detailed 3d data and information are 
given.

Hybrid System Case Study - Sustainer Homes:

Fig.19: Digital building a system of 
Sustainer Homes [22]

transportation volume is the same or more than conventional 
construction since the blocks are prefabricated as volumetric 
block elements, and reconfiguring after completion is just 
as difficult as traditional architectures. 
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2.2 Participatory design of modular elements.
The main question that the thesis address is the participatory design of modular 

architectural elements. The modularity, the combinatory creativeness, and the interaction 
and connection between modules are the three traits of the participatory modular design 
discussed in each case study.

Gamification and serious gaming refer to computer software designed for collective 
decision-making or participatory design not just to play but also has other severe aspects 
like education, decision-making, and problem-solving. Following the idea, video games 
and toys are interactive mediums where players or children can engage with the production 
of form and systems thinking. In toys and computer games, the participatory design of 
modules has been studied by researchers worldwide and achieved in smaller product sizes 
and digital forms. 

The case studies of such modular participatory design involve,
the toy industry: LEGO, and MOBACO,  
the game industry: townscaper, 
the architectural industry: research of Savov [32], GO-design framework [1]

2.2.1 Participatory design of modules in the toy industry

Case Study of LEGO- LEGO, a toy brick company, established in 1932 in Denmark, is 
commonly used to describe the participatory design. LEGO bricks clearly illustrate features 
of the participatory design of modules.

 The article by Linus “Getting started with advanced LEGO” [25] describes The modularity 
of LEGO, the essential piece of LEGO is the LDU part, The name originated in the LDraw(LEGO 
CAD) community, representing the smallest LEGO unit. The size of a single LDU piece is 
4.8mm in height and 8mm in width and length, and the Combinations of LDU parts create 
all lego pieces no matter their variations in size and shape. 

Fig.20: LDU smallest part of LEGO, the smallest module size of LEGO [23][24]

Another essential aspect of LEGO is combinatorial creativity. An associate professor at 
the University of Copenhagen, Soren Eilers,[26] has written a computer program that 
systematically generates and counts all configurations with six two-by-four studded LEGO 
bricks. 

4.8 mm

1.6mm
4.8mm

8 mm

3 stacks
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The result was 915,103,765 combinations. Also, all pieces of all varieties constitute a 
universal system. Despite variation in the design and the purposes of individual pieces 
over the years, each piece remains compatible with existing pieces. Lego bricks from 1958 
still interlock with those made in the current time, and Lego sets for young children are 
consistent with those made for teenagers.

Fig.21: six-two by four studded LEGO bricks generate 915,103,765 combinations [27]

Case Study of Mobaco - Mobaco was a Dutch construction toy made of wood and 
cardboard from the 1930s, containing all the features of the participatory design of 
modules. The building system included most of the architectural elements that resembled 
standard architecture, and some descriptions of its parts could be found on the website of 
the museum of kinderwereld [28].

The Mobaco consisted of brown and green cardboard base plates of at least 15 by 15 
centimeters and 1 centimeter thick, in which holes of about 1 centimeter punched at a 
distance of about 7 centimeters. There were black hardened cardboard floor plates with 
holes in the exact dimensions of the floor’s base plate. Each floor is 10cm high, giving it a 
scale of approximately 1:30. Wooden posts with grooves on all sides could be one, two, or 
three stories high. The Wall, Door, and window elements are made of pressed cardboard 
and available in various colors fitted into the grooves. There were also roof elements of 
Mobaco, always in red and intended to form pitched roofs, with hooks punched out at the 
ridge to interlock. 

The Mobaco system came with an instruction book, but the combinations that could be 
generated were endless, as the figure shows. The facade systems could slide in different 
variations, and the roof pitched tiles could interlock with other tops to extend the wall 
plates.

Fig.22: Mobaco toy assemblies from the museum of kinderwereld [28]
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2.2.2 Participatory design of modules in the Game Industry

The Townscaper is an indie city builder video game developed by Oskar Stålberg, featuring 
low poly graphics and a simple, minimalistic user interface. In the official description of the 
Townscaper [29], Stalberg describes the Townscaper as a toy than a game. The game lets 
users construct an island town by placing and removing colored blocks on an ocean.

The game modules are a block that can be constructed and deconstructed into 
different houses with clicks. Each click can place these architecture blocks vertically and 
horizontally. As the module connections are made using an algorithm, the link of each 
module is seamlessly modeled in 3D. The game is based on mixing two algorithms, the 
Marching Cubes and the Wave function collapse algorithm, addressed later in the thesis 
paper. The combination the game can create is endless as all required for placing modules 
are clicks. By discretizing a grid space into a series of points, players can create a polygonal 
mesh using points within that 3D space. Some rules dictate the block’s appearance, some 
as spires and others as balconies. This method of rule-based decoration allows arches, 
gardens, and stairways to be created without specific user instruction.

Fig.23: Townscaper visualization from the official website [29]
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2.2.3 Participatory design of modules in the Architecture Industry

 In the research of ‘Encoding Architectural Design as Iso-surface Tileset for Participatory 
sculpting of massing Models’ conducted by Savov [32] in ETH Zurich developed a 
participatory computational design system. Here Savov presented the concept of 
‘assisted sculpting,’ which is ‘the assisting of non-experts in exploring design options 
using a combination of iso-surfacing and constraint-solving tools to make design easy 
for non-experts and could bring them into a creative flow. The device is made with the 
BMC algorithm implemented in Rhino/grasshopper environment and tested with massing 
models and schematic space allocation.

The Modules of the program are the input of a 3d array of voxels with tile options that 
designers or architects can themselves model. The program provides a tileset editing mode 
offering creative challenges for architects making full use of their skills and knowledge. 
Inside, the tool uses 15 unique tiles that can form an isosurface covering. Using the tileset, 
if the tileset is valid in connection, the combinations can be created in seamless and 
countless combinations.  

Fig.24: The tilesets created by workshop participants from the research of Savov. [32]

Savov [32] also suggests in the paper that various options are available to stage the 
interactions that generate the input field (voxel). It can be done via a point-and-click as a 
participatory design. But it also can be based on different logic such as structural stress, 
solar analysis, cost estimates, or any other performance-driven analysis. Savov also 
suggests that the program should be developed as a web version to allow more people to 
explore the collaborative qualities of the design system and involve as many non-experts 
and reach a broader crowd as possible.
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In computing, procedural content generation(PCG) creates data algorithmically instead 
of manually, typically through a combination of human-generated assets and algorithms 
coupled with computer-generated randomness and processing power. The two algorithms 
are prominent in PCG for generating isosurface using modeled tileset, the BMC(Boolean 
Marching Cube and WFC (Wave Function Collapse). In this chapter, the two algorithms are 
researched to compare.

2.3 Procedural content generation Algorithms

Lorensen and Cline invented the Marching Cube algorithm in 1987 [8]. The original use is 
to extract a polygonal mesh of an isosurface from a three-dimensional discrete scalar field, 
the main concern of medical visualizations such as CT or MRI scan data into three or two-
dimensional images. (the description and diagrams of the two-dimension of BMS (boolean 
marching square algorithm) are in appendix 1. However, The application of the algorithm 
expands from the medical field and is also widely used in computer graphics. 

The algorithm proceeds through the scalar field. Then, the imaginary cubes form the field 
taking eight neighbor locations from its vertices. When passing the specific cube, the cube 
is read as 8-bit integer indices, fusing the preset polygons into the specific cube index. 

the possible eight vertice configurations are 256 possible polygon configurations. (two 
to the power of eight) and the configurations can be represented as an 8-bit integer. (in 
Boolean marching cube 1 and 0, If the value read: ‘1’ if the value does not read: ‘0’) After 
checking all eight vertices or scalars, the final 8-bit integer becomes the index of cube 
indices. Finally, in the appropriate position of the cubes along with the configuring number, 
fuse the preset polygons (Figure 25). 

2.3.1 Marching Cube algorithm.

Fig.25: BMC of a single voxel module represented as eight cubes with unique configuration id. (Author)
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The Wave Function Collapse algorithm was developed by Maxim Gumin[31][35] as a texture 
synthesis method based on simple configuration or sample images. It is a constraint-based 
procedural algorithm inspired and named after the concept of wave function collapse from 
quantum physics. [35] The WFC algorithm defines each cell in a grid as a slot. Whereas the 
Marching cube reads from vertices of imaginary cubes, the WFC algorithm reads the lists of 
possible neighbors. Six neighbors in a three-dimensional system and four neighbors in a 
two-dimensional system. Each module inside the slots contains information about the 3D 
model and the constraints module’s neighbors, allowing neighbors to be next to them or 
not. (as illustrated in Figure 26) [35]

2.3.2 Wave Function Collapse

Neighbors

Neighbors

Neighbors

Neighbors

In the unobserved state, each slot can be filled by every module possible. When the 
algorithm runs and the slots are observed, as one slot of the grid collapses down to a single 
possible module, the neighboring slot will also be restricted in possible modules because 
of the adjacent collapsed slot. The algorithm continues to proceed to the following slots, 
containing them in possible modules until the process is over. In computer graphics, the 
algorithm mostly generates maps for gaming as the process can create an endless and 
seamless connection of tiles while keeping the constraints inside each module.

Fig.26:  Example diagram of WFC neighbor contraints adapted from [31]

Fig.27:  Example diagram of WFC algorithm adapted from [31]
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2.4 Conclusion of background research
The background research aimed to overview the current status of the modular construction 

industry, focusing on modularization using participatory modular design methods using 
computational algorithms. To research this, devised the following topics: Which type of 
modular element is the most suitable for the modular participatory? And consider which 
PCG algorithm for the modular participatory design? 

Which type of modular element is the most suitable for the modular participatory 
design?

In choosing a modular element, multiple criteria need to be considered, such as 
architecture’s size, types, function, reconfigurability, the transportation of the elements, 
etc. There is no single universal element system for all kinds of architectures. Specifying 
the architecture’s type and other criteria for choosing a modular component is essential. 
The main architecture types defined in the thesis are houses and small commercial 
buildings that can be structurally stable from only the exterior framing. The thesis 
provides a methodology for creating an exterior architectural frame using an input voxel 
array. The report on Delivery Platforms of Government assets [6] provides the (Figure 28) 
mapping of MMC initiatives from least to most efficient. The highest efficiency increase 
is in Manufactured elements, in which it is possible to bring bespoke solutions from the 
standard process.
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Fig.28: Mapping elements of the MMC initiatives from least to most efficient adapted from [6].

 In Figure 26, a conclusion graph is illustrated Based on the research. The Hybrid, planar and 
Linear elements, offer bespoke solutions, and the manufacturing process is standardized, 
showing the most potent to enhance efficiency. Since the parts are already widely used in 
the market, the components require a small transportation volume. Developments of the 
elements provide the most benefit as the industry does not require significant investment 
in changing already existing facilities. The thesis uses the Hybrid of Planar and Linear 
elements of MMC as the research element since the component is closely linked to the 
conventional construction method and is the most basic form of architectural elements.
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Which PCG algorithm for the modular participatory design? 
Among the two PCG algorithms listed, the Marching cubes and Wave Function Collapse, 

a comparison of the two algorithms is considered. In the report, Savov documents and 
compare the two algorithms. The table is modified based on the context of the thesis to 
compare two algorithms and implicit conventional modeling CAD tools.  

The table derives that both the BMC and WFC provide some degree of non-experts users 
expressing their ideas from encoded content, and experts can also encode design ideas. 
However, the BMC offers less challenge experienced by users. Using a pre-modeled tileset, 
the BMC gives users a start point without starting from scratch. Most importantly, the user 
actions are traceable and impact the resulting polygonization (not randomized). However, 
the results and activities are not traceable or controllable for users using the WFC algorithm 
(randomized). This traceability makes the BMC more applicable for the participatory design. 

Implicit modeling Wave Function Collapse Marching cube

Description (Users) Users can freely define 
all the final product’s 
geometric, material, and 
compositional character-
istics. 

Users edit rules as text or 
in a visual coding editor. 
configures considers 
constraints and expand in 
a random generation.

Users can “sculpt” the 
composition of the final 
product into a voxel grid 
while the configurator 
takes care of the correct 
selection of tiles.

Description (Experts) There is no distinction 
between expert and 
non-expert. Any CAD or 3D 
modeling software is in 
this category.

Experts program rules and 
model parts, as well as 
the generative algorithm 
itself.

Experts can model the 
possible tiles and define 
rules for their placement.

Considering connections 
count

None(limitless) six sides eight vertices

Degree of user can 
express own ideas from 
encoded content

Very low High High

Degree of which experts 
can encode design ideas

Very low Medium High

Challenge experienced 
by user

High High low

Do not let the user start 
from scratch

NO NO YES

Actions are traceable and 
impact on result

NO NO YES

Fig 29. The amount of control offered to the experts and the non-experts adapted from Ref [32].
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Chapter 3
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This chapter marks the first step of developing an algorithm and sets the preset required 
to achieve a participatory design framework under an architectural context. 

3 Design Methodology

3.1 Algorithm preset 

3.1.1 List of Terminology for BMC 
As explained in the BMC chapter (2.3.1) and visualized (Figure 30),  the Cube (green empty 

boxes) contains information on the octant of a voxel (sub-voxel) from the original voxel boxes 
represented as 8 binary digits. In the BMC Algorithm, the components share similarities  
in cubical geometry, to avoid ambiguity, it is necessary to define the terminology of the 
components.

[10000000]
= 128

[01011010]
= 80 

[00000101]
= 5

[00000101]
= 5

[00000100]
= 4

[00001000]
= 8

[00000100]
= 4

[00001000]
= 8

[00000001]
= 1

[00000001]
= 1

[00000010]
= 2

[00000010]
= 2

[00001010]
= 10

[00001010]
= 10

[10100000]
= 160 

[00100010]
= 34

[00010001]
= 17 

[01010100]
= 84

[00000000]
= 0

[00000000]
= 0

[00100000]
= 128

[00100000]
= 128

[10101000]
= 168

[01000000]
= 64

[01000000]
= 64

[10000000]
= 128

[01000000]
= 64

[01000000]
= 64

[00100000]
= 32

[00100000]
= 32

[00010000]
= 16 

[00100000]
= 32

[00010000]
= 16 

[00010000]
= 16 

[00000100]
= 4

[00001000]
= 8

[00000001]
= 1

[00000010]
= 2 Voxel

Cube

Octant of a voxel
(Sub_voxel)

Fig.30: Examples and reference image for terminology for BMC (Author)
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Voxel 
A Voxel is a fundamental component in making a modular 

architecture and a single unit representation of the 
initial voxel array from the user input. It is visualized as a 
hexahedron of a specified dimension and is defined as inside 
a building. Therefore, the assembly of Voxels represents the 
connection between the insides of a modular architecture. 
For the thesis and architectural context, the connection is 
limited to only surface connection.

Cube 
A cube is a unit of the Marching Cube algorithm without 

any actual substances and is only a representation of 8 
codes. In a Boolean Marching Cube algorithm, A cube reads 
the center points of voxels and checks whether the center 
point is inside the voxel as a boolean value of 0 and 1. As a 
cube contains binary information on eight vertices, a cube 
is translated into eight binary integers and read based on 
the preset reading sequence. A cube can have eight binary 
configurations; thus, a single cube can contain information 
of 2^8 = 256 possible polygons. In the thesis and the 
architectural tileset, more than two options of 0 and 1 are 
used in the codification. 

Fig.31: Module diagram 
(Author)

Fig.32: Cube diagram 
(Author)

Fig.33: Octant of a 
voxelSubvoxels diagram 

(Author)

Octant of a voxel (Sub-voxels) 
The Octant of a voxel or Sub-voxel is without any actual 

substances and only represents one digit from the cube 
configuration. It is the region representing the overlap of a 
voxel and a cube and It is a visual expression of the center 
point of a voxel (also located at the edge point of a cube), 
containing information about a presence of a voxel inside 
a cube. An active sub-voxel represents voxel information 
inside the cube as 1 and if not 0.
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Fig.34: Sequence of numbering vertices for cube configurations (Author)
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Z Y X
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Z Y X
[ , , ]

Z Y X
[ , , ]

Z Y X
[ , , ]

Z Y X
[ , , ]

Z Y X
[ , , ]

Z Y X
[ , , ]3

[00001000]
 = 8  

The counting sequence of Sub-voxels(Cube vertices) is essential in the BMC algorithm 
as the sequence determines the reading order of cube indices and the unique cube ids. 
(Different programs take the various sequences of coordinate systems in appendix 2). 
Under Rhino, Grasshopper environment, the reading sequence is based on the reading 
order of X->Y->Z in F-order,

 when given a cube size of (X:1, Y:1, Z:1). The direct translation of the coordinate position 
in binary to the decimal numbers results in the sequence shown in figure 28 starting from 
the bottom counts and continuing to the top counts. The sequence works throughout the 
thesis to generate the unique id of the cube vertices.

3.1.2 Seqence of numbering vertices of cubes
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 This chapter will develop a methodology for defining the 26 unique tilesets from the 
256 configurations within the architectural context. As introduced in the background 
research of BMC(2.3.1), the algorithm generates a level set (the geometry that separates 
the 1s from 0s). The thesis defines the level set as the configuration and information of the 
vertex indices, represented as 8-digit integers. In the Boolean marching cube, the possible 
configurations are 256 as there are eight vertices to a cube. 

3.1.3 Establishing 26 unique tilesets 

Fig.35: the list of  256 configurations of a cube. (Author) 

The original unique tileset for the Marching Cube is defined as 15 tilesets [8], considering 
both the selected and unselected vertices and the horizontal and vertical symmetry of the 
cube configuration. (visualized in figure 36)

Fig.36: 15 Unique tileset contains selected/unselected and vertical/horizontal symmetries [30] 

15 Original Unique tileset

selected vertices non - selected verticesHorizontal & vertical 
symmetry
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However, in an architectural context, such vertical symmetry of modules does not create 
reasonable modular elements. For example, a window frame has different details on the 
top and bottom for air and water leak protection and structural purposes, and the same 
applies to the roof and floor modules. Due to these architectural constraints, the thesis will 
research and practice a different methodology for defining unique tilesets than the original 
marching cube tileset. 

To eliminate from the all 256 configurations of the BMC algorithm, compositions such as  
‘Point-to-point’ and ‘edge-to-edge’ connections of the voxel do not create a possible result 
in the architectural context. Thus, such configurations are eliminated from the list, leaving 
only the ‘surface-to-surface’ connecting configurations of sub-voxels from the connection 
of the voxels, resulting in the 126 configurations. 

Fig.37: point-to-point and edge-to-edge connection(Author)

Fig.38: 126 surface connecting configurations (Author)
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The configurations are grouped by the 90-degree horizontal rotation of the same shapes. 
The same configured tiles are grouped into 33 tilesets with 31 four directions of horizontal 
rotations, with the two configurations already horizontally symmetrical. 

034 :00100010
017 :00010001
136 :10001000
068 :01000100

051 :00110011
153 :10011001
204 :11001100
102 :01100110

119 :01110111
187 :10111011
221 :11011101
238 :11101110

240 :11110000

015 :00001111

032 :00100000
016 :00010000
128 :10000000
064 :01000000

048 :00110000
144 :10010000
192 :11000000
096 :01100000

112 :01110000
176 :10110000
208 :11010000
224 :11100000

114 :01110010
177 :10110001
216 :11011000
228 :11100100

003 :00000011
009 :00001001
012 :00001100
006 :00000110

114 :01110010
177 :10110001
216 :11011000
228 :11100100

243 :11110011
249 :11111001
252 :11111100
246 :11110110

039 :00100111
027 :00011011
141 :10001101
078 :01001110

047 :00101111
031 :00011111
143 :10001111
079 :01001111

251 :11111011
253 :11111101
254 :11111110
247 :11110111

103 :01100111
059 :00111011
157 :10011101
206 :11001110

155 :10011011
205 :11001101
110 :01101110
055 :00110111

035 :00100011
025 :00011001
140 :10001100
070 :01000110

019 :00010011
137 :10001001
076 :01001100
038 :00100110

147 :10010011
201 :11001001
108 :01101100
054 :00110110

099 :01100011
057 :00111001
156 :10011100
198 :11000110

116 :01110100
178 :10110010
209 :11010001
232 :11101000

184 :10111000
212 :11010100
226 :11100010
113 :01110001

050 :00110010
145 :10010001
200 :11001000
100 :01100100

049 :00110001
152 :10011000
196 :11000100
098 :01100010

118 :01110110
179 :10110011
217 :11011001
236 :11101100

185 :10111001
220 :11011100
230 :11100110
115 :01110011

103 :01100111
059 :00111011
157 :10011101
206 :11001110

155 :10011011
205 :11001101
110 :01101110
055 :00110111

039 :00100111
027 :00011011
141 :10001101
078 :01001110

063 :00111111
159 :10011111
207 :11001111
111 :01101111

247 :11110111
251 :11111011
253 :11111101
254 :11111110

002 :00000010
001 :00000001
008 :00001000
004 :00000100

Fig.40: The 26 unique tilesets contain the information of 126 configurations. (Author)

Fig.39: The horizontal rotation and mirroring (Author)

Of the 33 tiles, the 14 tiles mirror the same shapes on a horizontal axis. Such tiles are 
referred to as “Equivalent up to’’ each other in mathematics. The ‘’Equivalent upto’’ tiles 
make into seven unique tilesets, each containing information on eight configurations of 
both rotated and mirrored. This results in the 26 unique tilesets containing information for 
126 configurations of an architectural context. 
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The dimension of the module size is one of the most important decisions to be made 
for modular construction. Of all the architectural building elements, the stair is most 
connected to the human scale as stairs are one of the most common objects and consider 
human ergonomics dimensions. 

As a general equation established by french architect Francois Blondel, the stride length 
should span two risers and one tread, ranging from 500 to 700mm. Following the rule, the 
riser and tread sizes of the module are 180mm and 300 mm, which sum to 660mm.

3.1.4 Defining a module size  

2R + T  = 500 to 700 mm
2 *180 + 300 = 660 mm 30.9 °

The stair’s angle can be calculated from the size riser and tread; the inverse tangent of 0.6 
is a 30.9° angle in degrees, and the angle is within the optimal angle between 30.49 and 
43.26 degrees for stairs [31]. 

For the horizontal dimension of the stair modules, As the modules are rotated and mirrored 
horizontally, the modules need to have the same length and width and a reasonably sized 
for human ergonomics. The module dimensions are trice multiplications of the steps sized 
900 by 540mm in height. 

The modules are stacked to generate architectural space, and the increase of the modules 
creates a height of each floor space. Six modules’ stacks create a floor-to-floor height of 
3.24m, making it a reasonable floor height, and stacking more or fewer modules will adjust 
the floor height by the height of modules(540mm).   

Riser 180/ tread 300 = 0.6 
 = tan-1(0.6) = 30.9°

Fig.41: step module, stair module (Author) and standard staircase angle diagram [31]

Fig.42: six stacks of modules to make one floor height (Author)

32
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As the cube configurations do not consider the vertical symmetry of sub-voxels due to 
the architectural context, the distinction of vertical placement of sub-voxels becomes the 
criterion for categorizing the tilesets. The placement of the sub-voxels can be divided by the 
top and bottom count order and the order can be categorized based on the architectural 
meanings of each tile as shown in (Figure 43).

3.2 Surface Tilesets
3.2.1 Categorizing tilesets 

•	 wall tiles  - Top Subvoxels counts  = bottom Subvoxels counts 
•	 roof tiles  - bottom Subvoxels counts >  top Subvoxels counts  
•	 floor tiles - bottom Subvoxels counts < top Subvoxels counts 
•	 extra tile - The extra tile consists of the same 2:2 Subvoxels, but the upper and lower 

Subvoxelses are located in different places.

Fig.43: Tile classified of the 26 unique tiles in four functions, wall, root, floor, and extra. (Author)

Equivalent upto 
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3.2.2 Casestudy surface tileset 1 
Surface tileset 1 -  Surface tileset 1 is a simple surface tileset that generates a simple 

offset of the input voxel array as an output (Figure 45). The unique cube id represents that 
each tileset geometry is callable by the ID of the cube configurations (Figure 44)

Fig.44: Surface tileset 1 visualized with Subvoxels and cube IDs. (Author)

Fig.45: Resulting isosurface from surface tileset 1 with given input array of voxels (Author) 
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Surface tileset 2 - The second case study of the surface tilesets intends to model geometry 
with more resemblance to the architectural tilesets. The result of the second surface tileset 
shows the roof shapes forming slanted roof connections of surfaces and floor surfaces.

Fig.46: Surface tileset 2 visualized with Subvoxels and cube IDs.

Fig.47: Resulting isosurface from surface tileset 2 with given input array of voxels (Author)

3.2.3 Casestudy surface tileset 2 
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Fig.48: Roof tiles angle and the connection of roof tiles (Author)

Fig.49: Diagram of floor tile and increase in the number of floor tiles (Author)

Floor tile of 
Surface tileset 1

Floor tile of 
Surface tileset 2

Floor tiles -  Unlike surface tileset 1, covering every voxel array as one, surface tileset 
2 creates a surface outside the input voxel array. The floor tiles for surface tileset two 
are moved to the top of the cube configurations to maintain the floor-to-floor height. 
With increases in the number of modules, the floor-to-floor height increases by 540mm 
(equivalent to three stair steps).

4320 mm

8 stacks
24 steps

3780 mm

7 stacks
21 steps

3240 mm

6 stacks
18 steps

Roof tiles - The angle connecting the cube’s top and bottom edge, which is the same as 
the stair’s rise calculated, is essential for creating slanted roof surface tiles. In Figure 42, 
the angle on the left side generates seamless connections of surface tiles, as shown on the 
right side. For the tilesets to connect universally, the surfaces are placed inward to connect 
with the edges of other tiles, such as wall tiles.  



46

The case studies of surface tilesets could generate a single type surface envelope. However, 
in architecture, multiple architectural elements of different materials and properties form 
a valid architecture. These architecture variations require various modules (voxels) to be 
recognized as distinct subjects. For the intuitive identification, their color and numbers are 
assigned to voxels.

The possible options for sub-voxels are six (0,1,2,3,4 and 5). The change from binary to 
heximal (6 elements) in 8-digit increases the possible cube configuration exponentially 
from 256 to 1679616 (6^8). 

In heximal, the cube configuration orders the position and the kind of sub-voxels as 8-digit 
integers. In conversion to decimal, the numbers are the specific id used in the marching 
cube algorithm, which is also traceable by converting back to heximal integers of eight. 
It is essential to set design rules(3.5) and provide enough cube configurations to enable 
the algorithm to generate the wanted envelope using the modular components. Without 
assigned cube configurations, the algorithm leaves empty blocks without input geometry. 

3.3.1 Architectural tilesets voxel types

Fig.50: Five different voxel types representing a different architectural functions as colored voxels (Author).

Fig.51: Method of defining cube id for color cube configuration of architectural tileset. (Author).

3.3 Architectural Tilesets

[05000000]6

= 23328010

[50000000]6

= 139968010

[00100000]6

= 777610

[00010000]6

= 129610 [01050000]6

= 5313610

[00000105]6

=  4110

[00000500]6

=   18010

[00005000]6

=108010

[00000001]6

= 110

[00000010]6

= 610

[00001050]6

= 24610

[10500000]6

= 29548810
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3.3.2 Architectural tilesets Overview

The architectural tileset contains the information for 109 tilesets, covering 493 situations 
of cube configurations. Due to the traits of architectural context, (described in each tileset 
chapter), the number of tilesets can be reduced by grouping the same geometries.

Base tiles (1)

Fig.52: 109 Tileset before grouping tilesets with same shapes . (Author).

= 26 tiles 
= 25 tiles
= 10 tiles 
= 4 tiles
= 12 tiles
= 10 tiles 
= 10 tiles 
= 12 tiles  

Base tiles 
floor frame tiles
foundation frame tiles
foundation tiles
Opening tiles	
floor to opening tiles
foundation to openging tiles
window tiles

(containing only 1)
(containting 1 and 2)
(containing 1 and 3)
(containing only 3) 
(containing 1 and 4) 
( containing 1, 2 and 4)
(containing 1,3 and 4) 
(containing 1 and 5)
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Grouping the same shaped geometry reduces the number of tileset modeling. The number 
of tiles reduces down to 72 tilesets but keeps the same number of configurations of 493 
cube configurations. 

Base tiles (1)

Fig.53: 72 Tileset after grouping tilesets with same shapes . (Author).

= 26 tiles 
= 3 tiles
= 15 tiles 
= 4 tiles
= 12 tiles
= 12 tiles  

Base tiles 
floor, foundation frame tiles
floor to frame down
foundation tiles
Opening tiles
window tiles

(containing only 1)
(containing 1,2 and 3)
(containing 1,2) 
(containing only 3s)
(containing 1, 2 and 4)
(containing 1 and 5)
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The Architectural base 
tilesets consist of only the 
base voxel configurations, 
meaning the configurations 
only consist of eight integers 
of 0 and 1 as the assigned 
number for base voxels is 
‘1’. as the tileset consists 
of the same configuration 
as the surface tilesets, The 
categorization of the base 
cube tileset is identical to 
the surface tilesets. the 
base tilesets form the frame 
of the architecture. 

1) Base cube tileset 

Fig.54: Categorization of Base cube tileset (Author).

Fig.55: Roof tile geometry of the Base cube tileset, and the connections visualized (Author)

 Roof tiles geometries - Similar to Surface Tileset 2, the shape of the base tile’s roof 
modular geometry consists of the same angle as the slope of the stairs. Because it is a 
connection of three-dimensional geometry, a continuous interlock of a given cube 
configuration is possible through modeling the connection, as shown in Figure 55.

Floor tiles geometries - Same as surface tile 2, the floor geometry of the base floor 
tile is located on top of the cube. The thickness of the slab is 180mm, equivalent to one 
step height. As the height of the floor increases, the height increases by the module size, 
matching the maximum height of the stairs with the slab height—the floor-to-ceiling height 
increases by the module height, 540mm.

Fig.56: floor tiles and increase in height based on staircase design (Author)

3060 mm

180 mm
6 stacks
18 steps

3600 mm

7 stacks
21 steps

4320 mm

8 stacks
24 steps
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Fig.57: Generated frame using the Base cube tileset (Author).
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Light green cube tiles refer to the corresponding cube configurations between the floor 
voxel and base voxel. The sub-voxels of light green are represented by ‘2’ in the heximal 
configuration of 8-digits. The tileset is divided into two parts, the connection tiles that 
connect the floor to the frame upward and the tiles that connect the floor to the frame 
downward.

The dark green cube tiles refer to the cube configurations above and under the foundation 
voxels, represented by ‘3’ in the heximal numbering of 8-digits. These tiles are divided into 
two parts, connecting the foundation with slabs and foundations.

2)Floor cube tileset 

3)Foundation cube tileset 

Fig.59: Categorization of foundation cube tileset (Author).

Fig.58: Categorization of floor cube tileset (Author).



52

The ‘floor to frame(up)’ and ‘foundation to frame(up) tiles are grouped into three tiles. 
The grouped tiles maintain the same configurations as the original number of 39.

Fig.61: Categorization of foundation cube tileset (Author).

Since the floor geometries are lifted upward inside cube configurations, the configurations 
of the ‘Floor to the frame(up)’ tiles and ‘Foundation to the frame (up)’ tiles are only 
determined by the base voxels’ location at the top. When the base voxel is in the same 
position at the top, the geometry inside has the same shape. This redundancy of tiles with 
the same geometry is addressed by creating tiles of different codes of the same shape 
through the configuration group.

Fig.60: Grouping the same geometry of floor and foundation tileset (Author).
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Fig.62: Resulting polygonization from Base and floor, foundation tilesets (Author) 
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4) Opening cube tileset 

The yellow cube tiles refer to the cube configurations of the opening voxel and three 
different voxels, the base, floor, and foundation tiles. The number of opening cube tiles is 
30, but by grouping the same shapes, the tileset required reduces to 10 tiles containing all 
information. The integer representing opening sub-voxels is ‘4’ in the heximal numbering 
of 8-digits.

The opening voxel must connect to the floor or foundation tile to create an opening for a 
door starting from the floor or foundation tile. For this to be possible, this situation must be 
specified as a cube tile. This designation of specific conditions allows the bottom surface of 
the opening voxel to connect to the foundation and floor voxel.

Fig.63: Categorization of opening cube tileset (Author) 

Fig.64: Polygonization of opening tileset from Base and floor, foundation tilesets (Author) 
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5) Window cube tileset

Fig.65: Categorization of  window tilesets. 
(Author)

Fig.66: possible placement of window voxels 
and resulting envelope 

The tilesets of the blue octant voxel represent 
the window tiles. As a design rule, The base voxels 
surround the window tiles. The number of tiles is 
ten and is equivalent to 72 situations of horizontal 
rotation and mirroring. 

The number of possible cube configurations of the 
window tileset is only 72, meaning that the window 
voxels have some restrictions in placing and, as a 
rule (3.5), need to be surrounded by base voxels to 
bring the cube configurations assigned to them. 
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Fig.67: Resulting polygonization from every tilesets with given input array of voxels (Author) 
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Fig.68: BMC Algorithm diagram of the thesis project (Author) 

Fig 69: BMC Algorithm diagram of the thesis project in grasshopper environment (Author) 

The Houscaper algorithm is developed under a grasshopper environment using both 
grasshopper components and python scripting. The script categorizes into Cube ID, Cube 
options, Cube placing, and structural analysis.   

3.4 Algorithm

Output geometry placed in position of cube with 
layer properties assigned as the orignal geometry

Assigning original layer properties 

Move geometry to the point of cube location

Visualize Cube location as Cube frame

input 
Voxel 
Array decimal numbering 

Input Linear assembly 

Assign material Assign Cross section

Assign Support 
(foundation vertices 

Tensile Stress

Determine buildability 
of structure

Compressive Stress

Horizontal Rotate & mirroring of input cube vertices 
to get unique cube id options Saving the geometries by 

Horizontal Rotate & mirroring of input geometry 
saving the layer properties in tree structure 

Input Cube vertices 

Input Cube id

Input Cube geometry

the generated cube id options. 
append layer tree strcuture to 
assign layers

Output : Geometry from the unique 

append layer tree strcuture to
assign layers

ube with 
geometry

Move geometry to the point of cube location

lity

ess

Cube ID from input voxel array 

Cube Placing from cube id and geometries

Structural analysis from linear results 

Modular Architectural 
envelope geometry

3.4.2 Algorithm Overview

Input

Output
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Cube Array -  The first part of the Cube id algorithm is converting the input Voxel array 
into a Cube array. Inside grasshopper, the python script component enables the scripting 
of the algorithm. Below is a pseudo-code of the cube array algorithm generating the cube 
array list and first vertices list from the input array. The original codes are in appendix 3.   

3.4.2 Cube ID algorithm

Fig.70: Pseudocode of the cube array algorithm (Author) 

input 
Voxel 
Array decimal numbering 

Input : Voxel array
Output : Cube array, Cube vertices, first vertices of the cube array

make empty list of centerpoints
for elements in voxel:
    append centroids of the voxel in the center point list 

get a voxel as onebox
get a bounding box of the voxels as boundingbox

deconstruct onebox to get X.Y.Z value of onebox
deconstruct boundingbox to get X.Y.Z value of the boundingbox

boundingbox's X[1] - X[0] divide by onebox's X[1] - X[0] gives the X count, add 1 to it for cube array count X
boundingbox's Y[1] - Y[0] divide by onebox's X[1] - X[0] gives the Y count, add 1 to it for cube array count Y
boundingbox's Z[1] - Z[0] divide by onebox's X[1] - X[0] gives the Z count, add 1 to it for cube array count Z

assign 'start' the first point of onebox[0]
assign 'centerpoint' the centroid of onebox 

subtract start with centerpoint to get a vector 
move onebox using the vector as 'moved'

make an array of boxes using the moved box by the cube array count of X.Y.Z = Cube array

create an empty list of first cube_vertices
create an empty list of cube vertices 

for elements in cube array, 
    get box corners of cube array
    append first cube vertices the first elemnt of elements in first cube_vertices
    append all cube vertices in the cube vertices list  
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The combinations of algorithms of ‘cube array’ and ‘assigning cube id’ provides the unique 
cube id of every cube configurations inside the given voxel array. 

Cube’s id assigning - In the algorithm, the center points of the voxel are read as an integer, 
and a code consisting of a total of 8 integers indicates the composition of the subvoxel in 
the cube. The pseudo-code below extracts the cube configuration of eight integers from 
the cube array, converts the heximal integers into decimals, and lists them. (original code 
in appendix 4)

Fig.71: Pseudo code for Cube id assigning algorithm (Author) 

input 
Voxel 
Array decimal numbering 

input : Cube vertices, centerpoints of voxels by types
Output : cube id in 8 integers

define intersect function getting (centerpoints and cube_id_number)
    create an emptylist
    for elements in the cube vertices
        Member index of elements by the centerpoints as an indexlist
            create an binary_list
            for elements in indexlist
                if elements is []
                    element is 0
                    append element in binary_list
                elif elements is not []
                    elememnts is the cube_id_number
                    append elements in binary_list
        return the value of binary_list 

define by_eight function getting (binarylist)
    for elements in binary_list 
        separate all elements by 8 

run intersect on base voxel centerpoints (base centepoint,1)
run intersect on floor voxel centerpoints (floor centerpoint, 2)
run intersect on foundation voxel centerpoints (foundation centerpoint, 3)
run intersect on opening voxel centerpoints (opening centerpoint, 4)
run intersecton window voxel centerpoints (window centerpoint, 5)

run by_eight  on base intersect
run by_eight  on floor_intersect
run by_eight  on foundation_intersect
run by_eight  on opening_intersect
run by_eight  on window_intersect
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3.4.3 Cube Options (tileset) Algorithm

Cube options - The generated cube id needs to be searched from a list cube configuration. 
In the thesis, the list is a tileset described in previous chapters. Tileset made in rhino 
grasshopper is saved in grasshopper and called when the necessary cube ID is specified. 
However, for future use and reproducibility, the tile has set up an algorithm to store outside 
the Rhino. Below is an overview of the tileset generation algorithm. 

Fig.72: Overview of Cube options (tileset) generating algorithm

Fig.73: Overview of Cube options inside clusters (tileset) generating algorithm

Horizontal Rotate & mirroring of input cube vertices 
to get unique cube id options Saving the geometries by 

Horizontal Rotate & mirroring of input geometry 
saving the layer properties in tree structure 

Input Cube vertices 

Input Cube id

Input Cube geometry

the generated cube id options. 
append layer tree strcuture to 
assign layers

Output : Geometry from the unique 

Inside each cluster, the input objects and points are rotated and mirrored in a 90-degree 
horizontal direction. After member indexing of the vertices, translate the index into the 
eight digits of heximal numbers and assign the unique id of the number in decimal.

The tileset geometry is saved as an obj file in the assigned directory outside the Rhino 
environment with a click of the bake button. When a cube id matches with a generated 
cube option, the algorithm searches for the geometry of the cube id and sends it over to 
the cube placing algorithm.



61

The pseudo-code for cube option generation is as follows, original code is in appendix 6. 

Fig.74: Pseudo code for Cube option generation algorithm (Author)

Input: Cube frame, Sub-voxels as vertices
Output: Cube options 
Define function of ‘mirror_rotate’ # to rotate and mirror get ‘equivalent upto’ vertices
    Create an empty list 
        for range of 4:
            Rotate objects 90 degrees four times
            append in the empty list   
        Mirror the the last rotated object in YZ plane for horizontal mirror
        for range of 4:
            Rotate the mirrored object 90 degrees four times
            Append in the empty list 
        Return the result list    

Run function ‘mirror_rotate’ on base vertices
Run function ‘mirror_rotate’ on floor vertices
Run function ‘mirror_rotate’ on foundation vertices
Run function ‘mirror_rotate’ on opening vertices
Run function ‘mirror_rotate’ on window vertices

define intersect function getting (centerpoints and cube_id_number) # intersect with cube vertices to get id
    create an emptylist
    for elements in the cube vertices
        Member index of elements by the centerpoints as an indexlist
            create an binary_list
            for elements in indexlist
                if elements is []
                    element is 0
                    append element in [binary_list]
                elif elements is not []
                    elememnts is the cube_id_number
                    append elements in binary_list
        return the value of binary_list 

define by_eight function from binarylist
    for elements in binary_list 
        separate all elements by 8 

run intersect on base vertices (base centepoint,1)
run intersect on floor vertices (floor centerpoint, 2)
run intersect on foundation vertices (foundation centerpoint, 3)
run intersect on opening vertices (opening centerpoint, 4)
run intersect on window vertices (window centerpoint, 5)

add the heximal list in to one added list 
convert the added list in to Deicmal to make cube options
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Fig.75: Pseudo code for geometry option generation algorithm (Author)

The cube options are checked for an intersection with the cube id received from the earlier 
stage. as shown in the pseudo-code of comparing script below, When a cube id matches 
with one of the cube options stored the algorithm takes the exact configurations to be 
loaded and located to the cube position. (Appendix 8)

Fig.76: Pseudo code for searching for cube id in cube options and assigning geomtery

Input: Cube frame, tileset geometry
Output: Geometry Options 
origin_point = Point3d(0,0,0)
cube_cornerpoint = get the first point from the frame[0] 
create vector from origin_point to cube_cornerpoint
Move object to the origin point using the vector # for later saving as OBJ files 

Define function of ‘mirror_rotate’ # generate ‘equivalent upto’ tiles of given geometry
    Create an empty list 
        for range of 4:
        Rotate objects 90 degrees four times
            append in the empty list  
    Mirror the the last rotated object in YZ plane for horizontal mirror
        for range of 4:
        Rotate the mirrored object 90 degrees four times   
       Append in the empty list 
        Return the result list

mirror_rotate the moved object # 90 degreee rotate mirror and save the geometry 

Input : Cube ID, Cube Options, Cube Geometry
Output : Cube geometry of an assigned cube id 

for each option in cube options:
    if the option equals the cube id:
        get the index of the cube option from the cube options 
        get the cube geometry from the cube options using the cube id
        return the cube geometry of the cube id 

the returned element is the cube geometry of cube id
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Cube geometry placing - The later stage is the placement of the cube geometry to the 
cube position. An iterative plugin called ‘anemone’ is used to visualize the process more 
intuitively. From the cube options, all the cube geometry options are moved to the origin 
point of (0,0,0) and saved as obj files. In the algorithm, the geometries are transferred to 
the first point of the cube and, using the tree structure of the geometry, assign original 
layer properties when baked. 

3.4.4 Cube placement Algorithm

Output geometry placed in position of cube with 
layer properties assigned as the orignal geometry

Assigning original layer properties 

Move geometry to the point of cube location

Visualize Cube location as Cube frame

Fig.77: Overview of Cube placing algorithm(Author)

Architectural elements consist of various materials with different traits and properties. 
Dividing the layer properties provides the freedom of differentiating materiality to enable 
the separation of geometry. However, in grasshopper, when geometries are grouped, the 
layer properties are ignored and merge into one. The layer properties need to be re-assigned 
to the grouped objects to solve the issue. This is enabled by separating materials using layer 
filter components and saving the object layer division in layers as a tree structure. After 
selecting the matching cube configuration from the options, the tree structure is applied to 
the configuration to separate the material layers. The figure shows the separation of these 
layers in detail and how a configured cube information is divided using the algorithm in 
grasshopper. 
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   The participatory design of an architectural envelope requires design rules set. Of the cube 
options generated as tilesets, the cube configurations made do not cover most of the cube 
configurations as there are 16796166(6^8) possibilites and the generated configurations are 
only 493. Although the thesis aims to reduce and minimize the complexity of architecture 
into a more straightforward participatory design for users by ‘assist sculpting,’ The voxels 
need some rules to address users to build a structure within the scope of tilesets. 

3.5 Interactivity

3) One-floor height is established with more than five 
stacking of base tiles and one floor tiles, to achieve floor to 
ceiling height of 3060mm. (more stacks increase by module 
height of 540mm)

2) Foundation voxels should be placed at the bottom of the 
voxel array to create the foundation of the architecture.

3.5.1 Design rules for voxels (normal users)

1) All voxels must surface connect

3240mm

x6

4) Color voxels (yellow, blue, green, dark green) cannot be 
placed neighbor to each other, need white voxels in between 
with one exceptional case.

5) One exceptional case is the yellow voxel on top of green 
and dark green voxels. the configuration of such is assigned 
in opening cube configurations (3.3.2.4)  

6) The window voxels are always surrounded by the base 
voxels and the minimum units available for placement figure 
on the figure on the left.

7) Rectangular placement of blue and yellow voxels results 
in generating bigger openings for the window and opening 
frames. 

Fig.78: Voxel placement ruleset 
(Author)
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The possible cube configurations increase exponentially with the increase of kinds of 
the tileset. This increase brings more possibilities and demand for professional designer/
architect users to create more configurations and own designs for the system. In the 
grasshopper environment, such tilesets are saved as cube options within each cluster and 
loaded when the cube id and cube options are a match. The script also enables the saving 
of geometries as obj files outside the Rhino grasshopper environment for other use cases. 

3.5.1 Design rules for tilesets (tileset designers)

1. Assign a cube frame to the cluster. The algorithm takes 
the cube's eight vertices from the frame. From the vertices, 
the algorithm will search if there is a match between the 
eight vertices with other selected vertices. 

2. Set the points of different colors designated as separate 
layers. (sub voxels/ octant of voxels)Rotate and mirror from 
the center point of the cube, and the points intersect with 
the vertices of the cube frame and output as cube options 
in four or eight.

3. Set the tileset geometry. Like the sub voxels, the 
geometries rotate and mirror from the cube’s center point 
and are assigned to the unique cube options. The geometries 
move to the position (0,0,0) to be saved as obj geometry 
outside the rhino environment. 

0009083 0282313 0326988 0054498 0009103 0281453 0327708 0054618
Fig.79: Tileset design rules (Author)
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It is essential to address users to achieve their voxel design while keeping the design rules. 
Using the participatory design method or stacking the voxels using the design rules can 
generate endless combinations of voxel arrays. In other words, those endless combinations 
can end in combinations that are not so realistic. Figure 79 shows the procedural process 
of the use case scenario of Houscaper and methods developed to address users to design 
under the ruleset. 

1. selection of the land 2. selection of the foundation 3. selection of the floor area

4. automatic extrusion of floor 
area (default 6 stacks 3240mm)

5. system asks if user wants 
second flooring if yes fill roof 
with floor voxels

6. drag to select area of second 
floor

7. automatic extrusion of second 
floor area 

8. In a edit mode, user can delete 
or add voxels one by one

9. sculpt the building by clicks 

10. add openings and window 
voxels 

11. Run the Houscaper for 
polygonization

12. Finished architectural 
envelope with details and 
different layer properties 

3.5.2 User case scenario

Fig.80: User case scenario procedure (Author)
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Chapter 4



68

4.1 Architectural envelope
One of the goals of the house caper is to provide non-expert users with generating a 

modular architecture envelope with simple clicks to offer architectural design freedom 
within a modular design framework. The algorithm and user case scenario shows the 
possibility of the process. The following figures show some voxel designs resulting in an 
architectural envelope under the Houscaper algorithm.

Input voxel arrays

Output architectural envelope

4 Results

Fig.81: Input and output envelope geometry (Author)
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The structural validity check of the generated envelope is an essential aspect of 
architecture and a key saving point for the users. The Houscaper offers a structural analysis 
of the envelope combining the structure and skin system of the Open-building concept. 
The building type and size are limited to only the small and medium-sized self-standing 
envelope buildings. (The interior systems and zoning configurations can be applied as 
another layer of voxel array. such generative design method can be developed under the 
Go_Design framework.)  

There are multiple reasons why Houscaper runs structural analysis on the architectural 
envelopes. First, there is only one type of voxel array applied on Houscaper, generating a 
single envelope without a structural system inside. (Adding more voxel configurations such 
as interior and structural voxel arrays will further increase the possibility of the system 
enabling more extensive architecture to undergo the structural analysis.) Second, without 
interior load-bearing walls, the system offers reconfigurability and brings more design 
options to the interior for the users to freely configure themselves. Third, the material, 
cost, and embodied energy are reduced using the exterior load-bearing systems, which 
Impacts less on the environment and increases efficiency over the interior load-bearing 
systems. 

4.2 Structural valididty check
4.2.1 Structural envelope

Houscaper provides 
Structural Envelope of Small/Medium 
sized architecture with exterior load 
bearing envelope 

+ less cost
+ less embodied energy

Houscaper

GO_Design Framework

Fig.82: Structural envelope analysis in Houscaper(Author)
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For structural analysis, the Houscaper requires another tileset of linear elements. The 
linear tileset is applied in the same method as architectural envelope generation with 
different tilesets appendix 9. The generated line structure runs in a Karamba script to check 
on the structural validity of the shape.

Input Linear assembly 

Assign material Assign Cross section

Assign Support 
(foundation vertices 

Tensile Stress

Determine buildability 
of structure

Compressive Stress

4.2.2 Structural analysis script

Fig.83: Overview Structural analysis script in Houscaper and input linear geometry (Author)
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Material properties - Karamba enables users to assign properties of material and 
crosssections of the elements. In the script, layers of generated geometry divide the 
crosssections. The S355, non-alloy European standard structural steel, is used in the 
example structural analysis. The steel is commonly used after S235, where more strength is 
needed. The structural properties of S355 show the tensile strength of S355 is 470 ~680MPa. 
Below are graphs of S355 compared to other materials in Recyclability, Embodied energy 
for primary production, and CO2 footprint recycling. 

In general, steel frame houses are lighter, more durable, and more cost-effective to 
assemble than building with other materials such as timber. However, the steel frame 
shows relatively poor insulation and low energy efficiency. It is essential to understand 
that the Houscaper does not only work with steel frame houses and can select other linear 
materials such as wood or CLT to perform structural analysis. 

Fig.84: material properties of S355 (Author)
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In the script, expert users can assign different cross-sections on the beam in separate 
layers. Below are the cross-section properties set for regular steel frames. 

For gravity and wind loads applied to the structure, expert users can control more detailed 
levels of using loads. The script internally applies a standard load of 1.5 gravity load and 
1000N/m for wind load on one side of a building.

 As a general rule of beam structural analysis, the tensile and compressive stress of the 
beam defines the structural validity of the beam structure. The structure’s max compressive 
and tensile stress should be placed under half of the material’s compressive and tensile 
stress. These structural validity checks can be processed as an algorithm check of yes or 
no, enabling results to be delivered clearly and fast. The figure shows a pseudo code of the 
algorithm. 

Fig.85: Cross-sections applied for frames (Author)

Fig.86: load case applied on linear geomgetry (Author)

Fig.87: Pseudo code for the structural analysis to determine buildability

Input : structure's axial stress
Output: Validity of the structure
If structure’s compressive, tensile stress is less than  
    ½  of the material’s compressive stress (278 n/mm2)
    ½  of the material’s tensile stress (278 n/mm2), 
    the structure is valid.
Else
    the structure is not valid.
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As applied in the algorithm, the structural analysis results in a simple yes or no for the 
architecture to be buildable or not. Expert users can make variations in material and 
crosssections. 

Fig.88: Result of Structural analysis indicating the stresses in red and blue colour(Author)
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Chapter 5
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Conclusion

Discussion

5. Conclusion

The thesis presents a participatory design method of Modular Construction combined 
with the concept of ‘assisted sculpting’ using the BMC algorithm, enabling the non-expert 
users to design and check the validity of the structure. The modular construction has 
been considered a duplicate architecture that the end-users are not considered in the 
design process. The thesis counters the underlying perception and aims to bring Mass 
customization to the participatory design process, proving that modular architecture is not 
a connection of components but merged components based on modular digital parts. The 
tool generates polygonization of the voxel array using the tileset. As all parts are completely 
modular, the finished geometry can be precisely calculated with the CPQ (configure, price, 
quotation) of the material used for the frame generated.

Houscaper is a participatory design tool using a modification of the BMC algorithm. 
Instead of using Boolean (0 and 1), the tool uses multiple options depending on the 
number of voxel types. Each of these multiple options refers to a unique type of voxel 
in the configuration. Given the combinatorial nature of the discrete configurations, the 
number of possible configurations is astronomical, and designing all of them is inefficient 
and time-consuming. By using a set of design rules in placing the voxels, users can work 
with a  reasonable number of tilesets, as suggested in the thesis. To limit the number of 
elements in each of these tilesets, the suggested method exploits various symmetries in 
architectural settings. More specifically, the modules and cube configurations are designed 
based on the ‘equivalent up to’ horizontal geometries (rotation and mirroring) Total of 493 
configurations from 109 architectural tilesets are reduced to 72 under the design rule of the 
possible placement of voxel arrays.

As a guide to designing tilesets, the thesis offers three different kinds of tilesets, two surface 
tilesets and the architectural tileset. Expert users can work in a 3D modeling environment 
based on these template tilesets to produce more tilesets. The expert users can modify the 
cube configurations to add more options of tilesets based on the rule written and test their 
tilesets on the Houscaper.

Under the assumption the building owns a structural envelope, The tool can visualize 
the finished architectural frame and run a structural analysis, providing an instant validity 
check of the structure. The structural analysis script allows alternation of material and 
crosssections of linear building elements providing expert users with freedom of choice in 
materiality. 

As a nature of modular construction, the use of material exceeds the standard construction 
method. The need for a universal connection of components increases the manufacturing 
cost and material. However, this limitation can be solved as the modular construction 
method achieves the economy of scale.
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limitation

future works 

The research has mainly focused on the polygonization aspect of modular housing using a 
voxel array. The modeling of the parts remains basic to give users a simple visual impression 
of the tool, but with more advanced modeling the tool is capable of professional-level 
performance. 

The structural analysis also works with linear modular components by assigning 
crosssections and material properties in FEM analysis. However, site property variations 
and specifications are ignored to bring more generality to the project.

 Other methods of generating cube configurations were researched, but the generality 
and predictability are valued more and proceeded with the current method.

Future work concerns further experimentation with the proposed workflow.
1. A web version, a lighter version of the tool designed for the mass as a publishable SaaS 

(software as a Service), enables public access to the device for both the mass and the 
experts. With more people’s access to the tool, the Houscaper can become a platform to 
share their ideas and tilesets to bring possibilities of modular construction further.	

2. Development of a generative design method for the voxel array design. Already 
optimization methods introduced in GoDeisgn show possibilities to generative design the 
zone configuration. Under the GoDesign framework, the envelope voxel generating method 
can be developed and applied to automatize the Houscaper further.

3. Develop a script enabling the parts outside of Module sizes, such as the truss inside 
the wall and roof. The trusses connecting edge-to-edge point of frame sizes often exceed 
the modules’ size. In the thesis, the trusses fit in the size of modules (which is sufficient for 
structural validity), but this increases material usage. Further research is to develop the 
algorithm for a better way to generate trusses exceeding the module size.
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Appendix
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1.	 A two-dimensional rectangular boolean array is given as an input. 
2.	  Direct reading from the input results in four pixels.
3.	 The boolean array of the four edge points gives a unique id for each square thus 

creating tilesets (Filled points = 1 and empty points = 0).   
4.	 Boolean marching squares Iterating on all squares in the grid, the square marches, 

placing matching tiles from the tileset of the unique square id configurations. The 
possible tile counts are 16 since two possible options of 4 points exist (2^4). 

5.	 the process completes on all squares.
6.	 A finished contour isocurve is generated from the input boolean array

Boolean Marching square algorithm
The BMS (Boolean Marching Square) algorithm is an algorithm that generates a contour 

line for a two-dimensional rectangular array or a scalar field. The BMS algorithm is 
addressed to understand the BMC algorithm used throughout the thesis. Instead of the 
three-dimensional voxel array input of BMC, the BMS algorithm takes the two-dimensional 
pixel array as an input and outputs a single contour isocurve. The basic procedures of the 
algorithm explained in the diagram followed. 

Appendix 1. Boolean Marching Square algorithm
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Appendix 2. Different programs using different coordinate systems by Freya Holmer

Rhinoceros
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Appendix 3. Cube arry from voxel array

import ghpythonlib.components as gc
import ghpythonlib.treehelpers as th
import rhinoscriptsyntax as rs
import Rhino.Geometry as rg

# get centerpoints of boxes
centerpoints = []
for i in voxel:
    centerpoints.append(rg.AreaMassProperties.Compute(i).Centroid)

oneb = rs.BoundingBox(voxel[0])
onebox = rg.Box(rs.WorldXYPlane(),oneb)

box = rs.BoundingBox(voxel) 
bbox = rg.Box(rs.WorldXYPlane(),box)

debox= gc.DeconstructBox(bbox)
deboxOne = gc.DeconstructBox(onebox)

ox = deboxOne[1]
oy = deboxOne[2]
oz = deboxOne[3]

x = debox[1]
y = debox[2]
z = debox[3]

xx = (x[1]-x[0])/(ox[1]-ox[0]) +1
yy = (y[1]-y[0])/(oy[1]-oy[0]) +1
zz = (z[1]-z[0])/(oz[1]-oz[0]) +1 

# get vector to move cell to starting point 
start = box[0]
cent = gc.Volume(onebox)['centroid']
vec = start-cent
moved = gc.Move(onebox,vec)

# create array of cube from modules 
array = gc.BoxArray(moved[0],onebox,xx,yy,zz)
cube_array = array['geometry']

# from the array of cubes 
# get all the corner points as tree
# get first vertices as first_vertices 
allpt = []
first_vertices = []
for i in cube_array:
    e = gc.BoxCorners(i)
    allpt.append(e)
    first_vertices.append(e[0])

cube_vertices = th.list_to_tree(allpt)
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Appendix 4.intersect the vertices with cube frame edge points to get cube id 

Appendix 5.converting heximal to decimal 

import ghpythonlib.treehelpers as th
import rhinoscriptsyntax as rs
import ghpythonlib.components as gc

cube_vert = th.tree_to_list(cube_vertices,None)

def intersect(pts,id):
    list2 = []
    for i in cube_vert:
        a = gc.trees.MemberIndex(pts,i)
        newlist=th.tree_to_list(a['index'])
        list = []
        for j in newlist:
            if j == []:
                j = 0
                list.append(j)
            elif j != []:
                j = id
                list.append(j)
        list2.append(list)
    return (list2)

def byeight(list):
    result = [list[i * 8:(i + 1) * 8] for i in range((len(list) - 1 + 8) // 8 )] 
    result_ = th.list_to_tree(result)
    return result_

base = intersect(base_ctp,1)
fl= intersect(fl_ctp,2)
fo = intersect(fo_ctp,3)
op = intersect(op_ctp,4)
wi = intersect(wi_ctp,5)

base_ = byeight(base)
floor_= byeight(fl)
found_ = byeight(fo)
wi_ = byeight(wi)
op_ = byeight(op)

import rhinoscriptsyntax as rs
import ghpythonlib.treehelpers as th

def Hextodec(lst):
    result=[]
    for i in lst:
        d = ''.join(map(str,i))
        e = int(d,6)
        result.append(e)
    return result 

Cubelist= th.tree_to_list(Cube,None)
Cubetobin = Hextodec(Cubelist)
th.list_to_tree(Cubetobin)
Cubelist = th.list_to_tree(Cubelist)
Cubelist = [str(i).zfill(7) for i in Cubetobin]
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Appendix 6.Rotate mirror vertices to get cube options options

import rhinoscriptsyntax as rs
import ghpythonlib.treehelpers as th
import ghpythonlib.components as gc
import Rhino.Geometry as rg 
import math
# get centroid of bounding box
CP = gc.Volume(frame)['centroid']
vec = rs.CreateVector(0,0,90)
# make plane for XYZ plane
x = rg.Point3d(0.01,0,0)
y = rg.Point3d(0,0.01,0)
z = rg.Point3d(0,0,0.01)
# make XYZ oriented from centerpoint 
newx = CP+x 
newy = CP+y
newz = CP+z

## move to top 8 times 
def move(obj):
    result=[]
    for i in range(8):
        a = gc.Move(obj,vec*i)
        result.append(a[0])
    return result

# rotate_mirror_rotate 
def mirrorrotatemove(obj):
    result = []
    for i in range(4):
        a = rs.RotateObjects(obj,CP,90*i,None,True)
        b = rs.MoveObjects(a,vec*i)
        result.append(b)
    mir = rs.MirrorObjects(obj,newy,newz,False)
    for i in range(4):
        d = rs.RotateObjects(mir,CP,90*i,None,True)
        e = rs.MoveObjects(d,vec*(i+4))
        result.append(e)
    return result 

base_id = th.list_to_tree(mirrorrotatemove(base))
floor_id = th.list_to_tree(mirrorrotatemove(floor))
found_id = th.list_to_tree(mirrorrotatemove(found))
open_id = th.list_to_tree(mirrorrotatemove(opening))
window_id = th.list_to_tree(mirrorrotatemove(window))

RF = move(frame)
RF2 = th.list_to_tree(RF)

allpts=[]
startpt1= []
for i in RF:
    e = gc.BoxCorners(i)
    allpts.append(e)
    startpt1.append(e[0])

tree = th.list_to_tree(allpts)



83

Appendix 8.intersect check on Cube and Cube opt

Appendix 7.Move geometry to origin point and rotate mirror to get geometry options
import rhinoscriptsyntax as rs
import ghpythonlib.components as gc
import ghpythonlib.treehelpers as th
import Rhino.Geometry as rg
import math

# move obj to origin[0,0,0]
origin_point = rg.Point3d(0,0,0)
cube_cornerpoint = gc.BoxCorners(frame)[0]
vec_o_to_c= rs.VectorCreate(origin_point,cube_cornerpoint)
obj_ol=gc.Move(GroupedObj,vec_o_to_c)[0]
cube_cp = gc.Move(frame,vec_o_to_c)
# get centerpoint of the moved frame
CP = gc.Volume(cube_cp['geometry'])['centroid']

# make plane for XYZ plane
x = rg.Point3d(0.01,0,0)
y = rg.Point3d(0,0.01,0)
z = rg.Point3d(0,0,0.01)
# make XYZ oriented from centerpoint 
newx = CP+x 
newy = CP+y
newz = CP+z

plane = rs.PlaneFromPoints(CP,newx,newy)

def mirrorrotatemove(obj):
    result = []
    for i in range(4):
        a = rs.RotateObjects(obj,CP,90*i,None,True)
        result.append(a)
    mir = rs.MirrorObjects(obj,newy,newz,False)
    for i in range(4):
        d = rs.RotateObjects(mir,CP,90*i,None,True)
        result.append(d)
    return result 

a =mirrorrotatemove(obj_ol)
a = th.list_to_tree(a)

print a 

import rhinoscriptsyntax as rs
import ghpythonlib.treehelpers as th
from itertools import chain

CubeOpt = th.tree_to_list(CubeOpt,None)
obj = th.tree_to_list(geometry,None)
list = []
for i in CubeOpt[0]:
    if i == Cube[0]:
        list.append(CubeOpt[0].index(Cube[0]))
num = list[0]

a = obj[num]
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Appendix 9. Linear tileset 
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