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Abstract

Vertical federated learning’s (VFL) immense potential for time series forecasting
in industrial applications such as predictive maintenance and machine control remains
untapped. Critical challenges to be addressed in the manufacturing industry include
small and noisy datasets, model explainability, and stringent privacy requirements for
training and inference of forecasting. Additionally, to increase industry adaptability,
such forecasting models must scale well with the parties/clients while ensuring strong
convergence and low tuning complexity. To this end, we propose and design “Secret-
shared Time Series Forecasting with VFL” (STV), a novel framework with the follow-
ing features: i) a privacy-preserving VFL algorithm for time series forecasters such as
SARIMAX and autoregressive trees, ii) secret sharing with multi-party computation
protocols for aggregating intermediate training data and for privacy-preserving server-
less inference, iii) extension of secure two-party matrix operations for direct parameter
optimization to multiple parties, giving strong convergence with minimal hyperparam-
eter tuning complexity. We conduct evaluations on six diverse datasets from both
public and industry-specific contexts. Our results demonstrate that STV’s forecasting
accuracy is comparable to those of centralized approaches and that direct optimiza-
tion can outperform centralized methods by 23.81% on forecasting accuracy, including
state-of-the-art diffusion models and long-short-term memory. We also conduct scala-
bility analysis to offer the opportunity for flexible decision-making by examining the
communication costs of direct and iterative optimization, allowing navigating between
these two approaches.
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Chapter 1

Research Paper

This first chapter contains the draft of the research paper. It is a condensed version of the
thesis, providing a concise overview of the main points and findings.

The more detailed and comprehensive version of the thesis begins from the following
chapters. These delve deeper into the research, presenting detailed analysis, methodology,
and conclusions.
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Share your Secrets for Private Forecasting with Vertical Federated Learning

Abstract

Vertical federated learning’s (VFL) immense potential for
time series forecasting in industrial applications such as pre-
dictive maintenance and machine control remains untapped.
Critical challenges to be addressed in manufacturing include
small and noisy datasets, model explainability, and stringent
privacy requirements for training and inference of forecast-
ing. Additionally, to increase industry adaptability, such fore-
casting models must scale well with the parties while ensur-
ing strong convergence and low-tuning complexity. To this
end, we propose and design “Secret-shared Time Series Fore-
casting with VFL” (STV), a novel framework with the fol-
lowing features: i) a privacy-preserving VFL algorithm for
time series forecasters such as SARIMAX and autoregressive
trees, ii) secret sharing with multi-party computation proto-
cols for aggregating intermediate training data and for private,
serverless inference, iii) extension of secure two-party matrix
operations for direct parameter optimization, giving strong
convergence with minimal hyperparameter tuning complex-
ity. We conduct evaluations on six diverse datasets from pub-
lic and industry-specific contexts. Our results demonstrate
that STV’s forecasting accuracy is comparable to those of
centralized approaches and that direct optimization can out-
perform centralized methods by 23.81% on forecasting ac-
curacy, including state-of-the-art diffusion models and long-
short-term memory. We also conduct scalability analysis to
offer flexible decision-making opportunities by examining
the communication costs of direct and iterative optimization,
allowing navigation between the two.

Introduction
Time series forecasting with vertically-partitioned data is
relevant in manufacturing applications like continuous op-
erations, predictive maintenance, and machine control (Lin
et al. 2019; Susto and Beghi 2016). For example, let us
consider the scenario in Figure 1 with two primary man-
ufacturers and their customer1. The manufacturers collect
sensory data during production while the customer owns
post-production performance data, serving as the outputs or
labels. Predicting outputs from sensor values would allow

Copyright © 2023, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

1A secondary manufacturer, but is the “customer” from the per-
spective of the primary manufacturers

Customer

Manufacturer
1

Manufacturer
2

Device
performance

(output)

Sensor 1
(input)

Sensor 2
(input)

No
exchange
of private

information

Figure 1: Problem scenario—forecasting device perfor-
mance needs inputs from multiple parties, all of whom want
to protect the confidentiality of their data.

the manufacturers to make pre-shipment corrections, sav-
ing valuable time and helping to calibrate equipment in a
complex, high-volume production factory. However, confi-
dentiality agreements between customers and manufactur-
ers prevent sharing of sensitive information like outputs and
sensor data.

Existing framework. To address these privacy concerns,
federated learning (FL) has been emerging as a promising
solution (Konečnỳ, McMahan, and Ramage 2015). In FL,
training follows a model-to-data approach without data leav-
ing the party’s premises. Vertical federated learning (VFL)
falls within this, where each participant owns a different fea-
ture set pertaining to the same sample ID (Yang et al. 2019).
Our manufacturing example comes under VFL since the sen-
sor inputs and outputs are split between the participants.

Challenges. Despite its relevance, time-series forecasting
with VFL has received limited scholarly attention. This un-
derscores the critical need for further exploration and re-
search in this domain, especially considering the following
complexities introduced by manufacturing scenarios.

First, neural networks (NNs) tend to overfit on manufac-
turing datasets since they can be affected by slow collec-
tion and noisy measurements, leading to small datasets (Li
et al. 2021; Gkorou et al. 2017; Zhu et al. 2023). More-
over, their complex parameter interactions limit their inter-
pretability, which is needed for understanding the reasoning

1



behind predictions to optimize production quality and down-
time (Wang et al. 2022; Vollert, Atzmueller, and Theissler
2021).

Second, inferencing privately is very important in
manufacturing scenarios involving business competitors.
While VFL methods based on homomorphic encryption
(HE) (Hardy et al. 2017; Cheng et al. 2021; Fu et al. 2022)
and split learning (Vepakomma et al. 2018; Chen et al. 2020;
Yan et al. 2022) protect the privacy of features during
training, the outputs are assumed to exist with one party
alone, i.e., a server who is usually the label owner. This
is unsuitable as the server observes the inference results of
all requesting parties. Other methods, like differential pri-
vacy, introduce privacy-performance trade-offs by adding
noise to data, which is unsuitable when datasets are al-
ready noisy (Sarwate, Chaudhuri, and Monteleoni 2009;
Geyer, Klein, and Nabi 2017; Abadi et al. 2016; Yang et al.
2019).

Third, while direct optimization methods like the normal
equation (Blais and others 2010) reach globally optimal so-
lutions without requiring any hyperparameter tuning, they
are not scalable to large problem instances, unlike iterative
methods such as gradient descent. However, industries re-
quire both scalable and convenient solutions.

Contributions. To address these challenges, we develop
a novel framework, Secret-Shared Time Series Forecasting
with Vertical Federated Learning (STV), with the following
contributions.

VFL forecasting framework. STV enables forecasting
for VFL using Secret sharing (SS) (Shamir 1979) and se-
cure multi-party computation (SMPC) (Cramer, Damgård,
and others 2015; Lindell 2005). These do not involve
privacy-performance trade-offs and offer cryptographic pri-
vacy guarantees. We propose STVL for linear models such
as SARIMAX (Korstanje 2021; Perktold 2023; Hamilton
2020), and STVT for autoregressive trees (ARTs) (Meek,
Chickering, and Heckerman 2002).

Private, serverless inference. STV ensures that the party
requiring inference obtains the final predictions directly,
without an intermediary. This is achieved by maintaining
values as secret shares throughout the process. The request-
ing party can collect/aggregate these shares to get the pre-
dictions first-hand without needing a server.

Adaptable optimization with Least Squares. STVL uses
a two-step approach with least squares (LS). This lends
adaptability, as LS can be optimized using both iterative and
direct methods. While iterative approaches like gradient de-
scent scale better, direct optimization methods do not require
hyperparameter tuning and guarantee global convergence.
Therefore, we offer both options for diverse forecasting sce-
narios.

We thoroughly evaluate STV on multiple fronts. First, we
compare the forecasting accuracy of STVL and STVT with
centralized state-of-the-art forecasters based on diffusion
models (Alcaraz and Strodthoff 2022), Long Short Term
Memory (LSTM), and SARIMAX with Maximum Likeli-
hood Estimation (MLE) (Hamilton 2020). Second, we com-
pare the communication costs of iterative and direct opti-
mization of linear forecasters under different scaling sce-

narios, highlighting their trade-offs. We use a wide range of
datasets: five public datasets (Air quality, flight passengers,
SML 2010, PV Power, Rossman Sales) and one real dataset
from semiconductor manufacturing.

Background and Related Work
In this section, we provide background knowledge on time
series models and SMPC and highlight the shortcomings of
related works.

Time series forecasting
STV uses a popular linear forecaster, SARI-
MAX (Seasonal AutoRegressive Integrated Moving
Average with eXogenous variables) (Korstanje 2021;
Perktold 2023), that generalizes other forecasters such
as ARIMAX, ARMAX, and ARX (Hamilton 2020;
Montgomery, Jennings, and Kulahci 2015). It forecasts
future values by combining past values (autoregressive),
past residuals (moving average), and exogenous variables
linearly (Perktold 2023). For example, output Y at time t
can be represented using a polynomial H , containing errors
ϵ(t − i), past values Y (t − i), and the currently observed
exogenous features Xj(t):

H : Y (t)=α1Y (t−1)+α2Y (t−2)+β1ε(t−1)+
γ1X1(t)+γ2X2(t)+ε(t)

(1)

The coefficients (α, β, γ) are estimated using methods like
MLE (Hamilton 2020) or LS (Hannan and Kavalieris 1984;
Lütkepohl 2007; Liu et al. 2016; Tarsitano and Amerise
2017). However, MLE with SMPC is limited to likelihood
functions like the exponential or multivariate normal dis-
tributions (Snoke et al. 2017; Lin and Karr 2010), since
computations with SMPC are challenging due to the limited
number of supported mathematical operations.

Under normally distributed errors, LS approaches can be
used, by transforming the datasets, (X,Y ), into time-lagged
design matrices, (ϕX , ϕY ), to represent Equation 1:



Y (3)
Y (4)
..

Y (t)




︸ ︷︷ ︸
ϕY

=




Y (2) Y (1) ε(2) X1(3) X2(3)
Y (3) Y (2) ε(3) X1(2) X2(2)
.. .. .. .. ..

Y (t− 1) Y (t− 2) ε(t− 1) X1(t) X2(t)




︸ ︷︷ ︸
ϕX

×




α1

α2

β1

γ1
γ2




︸ ︷︷ ︸
A

+



ε(3)
ε(4)
..

ε(t)




︸ ︷︷ ︸
ε

(2)
Optimizing A can be viewed as a linear regression prob-

lem if not for its circular dependency on the residuals. A
two-step approach is used to resolve this (Tarsitano and
Amerise 2017; Lütkepohl 2007; Hannan and Kavalieris
1984; Liu et al. 2016). First, the residuals are estimated
by modeling using only autoregressive (AR) and exogenous
terms. Then all the coefficients in A are jointly optimized by
setting the residuals in ϕX to the estimates . An example of
applying the method is shown in Appendix E.

With LS, A can be estimated using iterative approaches
like gradient descent (GD) or direct methods like the normal
equation (NE) (Blais and others 2010):

Aoptimal = ((ϕX)TϕX)−1((ϕX)TϕY ) (3)
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Method Type TS IP. Optim.
Trees LR NN it. dir.

(Yan et al. 2022) ✖ ✖ ✔ ✔ ✖ ✔ ✖
(Hardy et al. 2017) ✖ ✔ ✖ ✖ ✖ ✔ ✖
(Han et al. 2009) ✖ ✔ ✖ ✖ ✔ ✔ ✔
(Cheng et al. 2021) ✔ ✖ ✖ ✖ ✖ ✔ ✖
(Xie et al. 2022) ✔ ✖ ✖ ✖ ✔ ✔ ✖
(Shi et al. 2022) ✖ ✔ ✖ ✖ ✔ ✔ ✖
STV (this work) ✔ ✔ ✖ ✔ ✔ ✔ ✔

Table 1: Comparison of related works in VFL. The aspects
compared are Model type, Time Series (TS), Inference pri-
vacy (IP.) and Optimization methods (optim.), that can be
either iterative (it.) or direct (dir.).

Autoregression can also be utilized for tree-based models
like XGBoost (Chen et al. 2015), leading to the formu-
lation of autoregressive trees (ARTs) (Meek, Chickering,
and Heckerman 2002). Extending VFL methods for XG-
Boost (Xie et al. 2022; Cheng et al. 2021; Fang et al. 2021) to
ARTs can be done by transforming the datasets into design
matrices using a polynomial like Equation 1. While ARTs
do not use residual terms, they can model non-linear depen-
dencies between AR and exogenous features.

SMPC
Secure Multi-Party Computation methods use the principle
of secret sharing (Shamir 1979) for privacy by scattering a
value into random shares among parties. With K parties,
Ci∈[1,K], if Ci wants to share data V with others, it generates
K − 1 random shares, denoted ⟨V ⟩i′ ∀i′ ∈ [1,K]; i′ ̸= i.
These are sent to the corresponding party Ci′ . Ci’s own
share is computed as ⟨V ⟩i = V -

∑K
i′ ̸=i⟨V ⟩i

′
. The whole

ensemble of K shares representing the shared state of V , is
denoted as ⟨V ⟩.

Parties cannot infer others’ data from their shares alone;
however, the value can be recovered by combining all shares.
By analogy, when applied to VFL, local features and out-

puts are distributed into shares across parties to preserve
their privacy. All parties jointly follow decentralized train-
ing protocols using the secretly shared data and end up with
local models. Inference is made similarly by distributing fea-
tures into secret shares and computing the prediction as a
distributed share.

Current SMPC-based works in VFL exist for performing
matrix operations (Han et al. 2009), gradient descent (Shi et
al. 2022), and training XGBoost (Fang et al. 2021; Xie et al.
2022), making it convenient for training linear forecasters
and ARTs that utilize these frameworks.

Related work on VFL
On the spectrum of models learned, research in VFL is di-
verse, including neural networks, trees, and regression mod-
els, as shown in studies (Khan, ten Thij, and Wilbik 2023;
Liu et al. 2022; Wei et al. 2022). In this context, we direct
our attention to the selected works presented in Table 1, as
they collectively provide a comprehensive representation of
research in VFL. We compare the methods on their model
type, their applicability to time series forecasting, whether

inference privacy can be easily achieved through decen-
tralization, and their adaptability to alternative optimization
choices.

Model type and time-series forecasting. Due to the in-
dustrial requirement for explainable models, we focus on
linear/logistic regression (LR) (Hardy et al. 2017; Han et
al. 2009; Shi et al. 2022), and tree-based models (Xie et al.
2022; Cheng et al. 2021), with transparent structures that
are considered inherently interpretable (Samek and Müller
2019; Zhang et al. 2021). Yan et al. (Yan et al. 2022) em-
ploy a modification of the split learning architecture using
Gated Recurrent Units (GRUs) with a shared upper model
for predictions. But its large parameter complexity limits
interpretability. Nevertheless, to the best of our knowledge,
this remains the only other method for time-series forecast-
ing with VFL. While STV does not include NNs, it adheres
to industrial requirements for explainability.

Inference privacy. While privacy during training is im-
plicit in all selected works, we consider schemes adopt-
ing SS as potential candidates for private inference require-
ments, as these can be seamlessly integrated with a server-
less/decentralized approach, akin to ours (Xie et al. 2022;
Shi et al. 2022; Han et al. 2009). HE-based schemes for lo-
gistic regression, such as Hardy et al. (Hardy et al. 2017),
assume that predictions are decrypted on a particular party
before sending them to the party requesting inference, which
is not privacy-preserving. Additionally, Yan et al. (Yan et al.
2022) use a shared upper model in their split architecture,
rendering the predictions accessible to all parties, compro-
mising inference privacy.

Optimization. When it comes to optimization techniques,
all selected works, except for Han et al. (Han et al. 2009),
employ solely iterative approaches. Notably, Han et al. (Han
et al. 2009) offer iterative and matrix-based methods for di-
rect optimization using Equation 3. This requires computing
matrix multiplications and inverses, which are only imple-
mented for the two-party case. We extend both operations to
a generic N -party setup.

STV Framework
This section introduces the adversarial model and problem
statement, followed by the general design of STV and the
detailed implementation for linear and tree forecasters.

Adversarial Models We assume all parties are honest-
but-curious/semi-honest (Hardy et al. 2017; Yang et al.
2019), i.e., they adhere to protocol but will try to infer
knowledge of other parties’ private data using their own lo-
cal data and whatever is communicated to them. Also, it is
assumed that parties do not collude, a standard assumption
in VFL as all parties are incentivized to collaborate due to
their mutual dependence on one another for training and in-
ference (Yang et al. 2019; Hardy et al. 2017). In addition,
we also assume that communication between parties is en-
crypted.

Problem Statement We assume a setup with K parties,
C1 to CK , grouped into two types: active and passive.
The active party, C1, owns the true values of the time series
output, Y (t), and exogenous features, X1(t), for timestep,
t. The passive parties have exogenous features, Xi,∀i ∈

3
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Figure 2: STV framework

[2,K]. The common samples between parties are assumed to
be already identified using privacy-preserving entity align-
ment approaches (Hardy et al. 2017; Scannapieco et al.
2007). Our goal is to forecast future values using exogenous
and autoregressive features without sharing them with others
in plaintext.

We further assume there is a coordinator, a trusted third
party that oversees the training process and is responsi-
ble for generating randomness, such as Beaver’s triples
for element-wise multiplication with SMPC (Beaver 1992;
Fang et al. 2021). The coordinator cannot access private
data and intermediate results, so it does not pose a security
threat, as mentioned in Xie et al. (Xie et al. 2022).

Protocol Overview
An overview of STV is provided in Algorithm 1. The work-
ing of the individual steps of STV, with pre-processing,
training, and inference, is illustrated in Figure 2.

Training. To start, the active party initiates by pre-
processing the output and determines parameters like the
auto-correlations and partial auto-correlations of the series
(line 2). These are then used to generate a polynomial for
SARIMAX or ARTs (line 3). Features and outputs are then
secretly shared and transformed into lagged design matrices
(line 7), like Equation 2. All parties then follow decentral-
ized Algorithm 2 or Algorithm 3 to train a distributed model.

Privacy-preserving inference. During inference, the final
prediction exists as a distributed share (line 14), which is
aggregated on the requesting party (line 16). Since only the
party making the inference acquires the aggregate value of
the secret shares, the final prediction is with that party alone.

STVT
By transforming the original datasets, X and Y , into time-
lagged design matrices, the training framework in Xie et al.
(Xie et al. 2022) can be used. The modification requires the

transformed matrices to be passed as inputs rather than the
secretly shared X,Y datasets. The details are provided in
Algorithm 2.

Training proceeds iteratively, finally resulting in the gen-
eration of T trees on each party. At each step, every party
learns a new tree and makes a local prediction (lines 4-5).
The tree-building function, SecureFit, from the framework
in Xie et al. (Xie et al. 2022), uses secret sharing primitives
to train XGBoost by computing the first and second-order
gradients. Details on this are in Appendix D.

During training, individual predictions are aggregated on
the active party (C1) since gradients are computed by C1

(see Appendix D). For inference, aggregation can be per-
formed on any party since gradients are not calculated, thus
enabling private inferencing.

STVL
With STVL, the objective is optimizing the coefficients, A,
in Equation 2, which can be done directly or iteratively using
two-step regression. The first step uses only the autoregres-
sive and exogenous terms to estimate the residuals. These
are then substituted for the moving average terms in the sec-
ond step to optimize all coefficients jointly. Details are pro-
vided in Algorithm 3.

Several steps in Algorithm 3 require matrix operations
like multiplications (lines 8-9; 13-19) and inverse (line 14)
on secretly shared data. Han et al. (Han et al. 2009) provide
algorithms only for the two-party case; we extend to multi-
ple parties.

N-party matrix multiplication. To extend matrix multipli-
cation to multiple parties (algorithm 4), we view the com-
putation of every output element Wi,j as a scalar prod-
uct of row and column vectors (line 3), which can be im-
plemented using the N -party element-wise product using
Beaver’s triples (see Appendix C).

N-party matrix inverse. For matrix inverses (Algorithm
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Algorithm 1: General protocol STV
Data: Xk on party Ck ∀k ∈ [1,K], and Y on C1

Accepted Parameters: Task: Training/Inference, Model type,
number of trees T , Optimization method O, learning rate α,
iterations, e, Trained distributed Model, Requesting party Cj

Output:Trained model distributed across K parties or final
inference result on party Cj

1: if Training and active party C1 then
2: params = ProcessSeries(Y)
3: H = GenPoly (params, type)
4: Broadcast H to Ci ∀i ∈ [1,K]
5: end if
6: Share local features ⟨Xk⟩ and (or) outputs ⟨Y ⟩
7: ⟨ϕX⟩,⟨ϕY ⟩ = TransformData (H){ Equation 2}
8: if type == Tree and Training then
9: return Model = STVT (⟨ϕX⟩, ⟨Y ⟩,T)

10: else if type == Linear and Training then
11: return Model = STVL (⟨ϕX⟩,⟨ϕY ⟩, O, α, e)
12: end if
13: if Inference then
14: ⟨Result⟩ = Model.Predict(⟨ϕX⟩)
15: if requesting party Cj then
16: Result =

∑K
k=1⟨Result⟩k {Aggregate predictions}

17: end if
18: end if

5), we compute the inverse of a secretly-shared matrix, U ,
using a non-singular perturbation matrix, P , generated by
the active party (line 2). Subsequently, the aggregation of
product UP on a passive party does not leak U as the party
does not know P (line 5). (UP )−1 can then be computed
locally and secretly shared, followed by a matrix multiplica-
tion with P , i.e., P × (UP )−1 = U−1, giving the result as
a secret share (lines 7-10).

Experiments
We evaluate the forecasting accuracy of STV against central-
ized approaches. We also compare the scalability of iterative
and direct optimization for linear forecasters using the total

Algorithm 2: STVT
Data: Secretly shared transformed matrices ⟨ϕX⟩, ⟨ϕY ⟩
Parameter: number of trees T
Output: Distributed autoregressive XGBoost tree

1: Initialize predictions ⟨ϕ̂Y ⟩k= 0 on all parties Ck

2: Initialize Treesk = [ ] on all parties Ck

3: for t ∈ [1, T ] do
4: treetk = SecureFit(⟨ϕX⟩k,⟨ϕY ⟩k,⟨ϕ̂Y ⟩k)
5: ⟨ϕ̂Yt⟩k = treetk .Predict(⟨ϕX⟩k)
6: if active party C1 then
7: ϕ̂Yt =

∑K
i=1⟨ϕ̂Yt⟩k{Aggregate predictions}

8: ϕ̂Y = ϕ̂Y + ϕ̂Yt{Add to final predictions}
9: end if

10: Treesk.append(treetk ) on every party Ck

11: end for
12: return Treesk on party Ck

Algorithm 3: STVL
Data: Secretly shared transformed matrices ⟨ϕX⟩, ⟨ϕY ⟩
Accepted Parameters: O, α, e
Output: Shared optimized coefficients ⟨A⟩

1: for step ∈ [1, 2] do
2: if step == 1 then
3: Initialize residuals to zero in ⟨ϕX⟩k for all Ck

4: end if
5: if O == “iterative” then
6: Randomly initialize ⟨A⟩k for all Ck

7: for e iterations do
8: Get ⟨ϕ̂Y ⟩ = ⟨ϕX⟩×⟨A⟩ using Alg. 4
9: ⟨ dl

dA
⟩ = 2×(⟨ϕX⟩)T×(⟨ϕ̂Y ⟩ - ⟨ϕY ⟩) (Alg. 4)

10: Perform update: ⟨A⟩ := ⟨A⟩ - α⟨ dl
dA

⟩
11: end for
12: else if O == “direct” then
13: ⟨Z⟩ = (⟨ϕX⟩)T×⟨ϕX⟩ using Alg. 4
14: ⟨W ⟩ = ⟨Z−1⟩ using Alg. 5
15: ⟨V ⟩ = (⟨ϕX⟩)T×⟨ϕY ⟩ using Alg. 4
16: ⟨A⟩ = ⟨W ⟩ × ⟨V ⟩
17: end if
18: if step == 1 then
19: Predict: ⟨ϕ̂Y ⟩ = ⟨ϕX⟩ × ⟨A⟩ using Alg. 4
20: Estimate residuals ⟨ε⟩ = ⟨ϕY ⟩ - ⟨ϕ̂Y ⟩
21: Set ⟨ϕX⟩k using residuals from ⟨ε⟩k for all Ck

22: end if
23: end for
24: return ⟨A⟩k on all parties Ck

communication cost.

Forecasting accuracy
We compare the performance of STVL (direct optimiza-
tion) and STVT with other centralized methods: Long-Short-
Term Memory (LSTM), SARIMAX with MLE2, and diffu-
sion models for forecasting (Alcaraz and Strodthoff 2022)
(SSSDS4).

The LSTM has two layers of 64 LSTM units each, fol-
lowed by two dense layers of size 32 and 1. We train the
model for 500 epochs and use a batch size 32 with a default
learning rate of 0.001. The diffusion configuration has the

Algorithm 4: Secure Matrix Multiplication
Data: Secretly shared matrices ⟨U⟩ and ⟨V ⟩ across K parties,
C1, C2, .., CK

Output: ⟨W ⟩, i.e., product W = U×V as shares across K parties

1: for each row index i do
2: for each column index j do
3: ⟨T⃗ ⟩ = ⟨ ⃗U [i, :]⟩ * ⟨ ⃗V [:, j]⟩ {Element-wise product}

⟨Wi,j⟩k = sum{⟨T⃗ ⟩k}
4: end for
5: end for
6: return ⟨W ⟩k on party Ck

2https://www.statsmodels.org/devel/generated/statsmodels.tsa
.statespace.sarimax.SARIMAX.html
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Algorithm 5: Secure Matrix Inverse
Data: Secretly shared matrix ⟨U⟩ across K parties, C1, C2, .., CK

Output: ⟨V ⟩, i.e., inverse, V = U−1, as a distributed share

1: if active party (P1) then
2: Generate random non-singular perturbation matrix P and

secretly share as ⟨P ⟩
3: end if
4: Get ⟨Q⟩ = ⟨U⟩ × ⟨P ⟩ using Alg. 4
5: Aggregate Q =

∑K
k=1⟨Q⟩k on passive party Cj ; j > 1

6: if Passive party Cj then
7: Compute R = Q−1 = (UP )−1 = P−1U−1

8: Generate shares ⟨R⟩
9: end if

10: Compute ⟨T ⟩ = ⟨U−1⟩ = ⟨P ⟩ × ⟨R⟩ using Alg. 4
11: return ⟨T ⟩k on party Ck

following settings3: T = 200, β0 = 0.0001, βT = 0.02. For
the wavenet configuration, we use two residual layers, four
residual and skip channels, with three diffusion embedding
layers of dimensions 8× 16. Training is done for 4000 iter-
ations with a learning rate of 0.002.

Five public forecasting datasets are used: Airline pas-
sengers (Kothari 2018), Air quality data (Vito 2016), PV
Power (Kannal 2020), SML 2010 (Romeu-Guallart and
Zamora-Martinez 2014), and Rossman Sales (ros 2015). An
industry-specific dataset to estimate a performance param-
eter from inline sensor values in semiconductor manufac-
turing is also included (Gkorou et al. 2017; Gkorou et al.
2020). Additional details on the datasets, evaluation, and
pre-processing are given in Appendix A and Appendix B.

A variant of prequential window testing (Cerqueira,
Torgo, and Mozetič 2020) is used since industrial time se-
ries data can significantly change after intervals due to ma-
chine changes/repairs. The dataset is partitioned into multi-
ple windows of a given size, each further divided into an 80-
20 train-test split. After forecasting the test split, the model
is retrained on the next window.

For a consistent comparison, all features and outputs are
scaled between 0 and 1. We thus present the normalized
mean-squared errors (n-MSE) of the predictions. Ground
truths on the test set are measured and averaged across multi-
ple windows. We average the n-MSE scores across different
window sizes to generalize performance scores across vary-
ing forecasting ranges, the results of which are in Table 2.

Table 2 shows that STVL is usually the best-performing
method. We use direct optimization since iterative gradient
descent eventually converges to the same value in the long
run. Due to its guaranteed convergence, direct optimiza-
tion improves against centralized methods by up to 23.81%.
Though it does worse than SARIMAX MLE on the passen-
ger data, it is still among the top two methods.

Furthermore, we also show three regression plots from a
prequential window of size 50 from three datasets in Fig-
ure 3. In general, all the methods can capture patterns in
the time series, like in Figure 3a and Figure 3b. However,

3Using https://github.com/AI4HealthUOL/SSSD.git
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Figure 3: Forecasts from one of the windows of total size 50
(40 train, 10 test) from three datasets.

highly complex models such as SSSDS4 may occasionally
overfit, showing the drawback of NNs when dealing with
small training windows (see Figure 3c).

Scalability
We measure the total communication costs of direct opti-
mization using the normal equation (NE) and iterative batch
gradient descent (GD) to analyze the scalability of the two
methods under increasing parties, features, and samples.

We vary the parties between 2, 4, and 8; features between
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Dataset STVL STVT SARIMAX LSTM SSSDS4 Rel. imp. (%)
(SARIMAX, VFL) (ART, VFL) (MLE, Centralized) (Centralized) (Centralized)

Airquality 0.00069 0.00100 0.00088 0.00114 0.00150 21.59
(0.00008) (0.00056) (0.00031) (0.00076) (0.00073)

Airline passengers 0.00304 0.00808 0.00222 0.04130 0.00392 -36.94
(0.00086) (0.00379) (0.00148) (0.04086 ) (0.00226)

PV Power 0.00138 0.00249 0.00159 0.14333 0.00167 15.22
(0.00136) (0.00254) (0.00095) (0.23033) (0.00058)

SML 2010 0.00787 0.01875 0.01033 0.01716 0.01085 23.81
(0.00711) (0.01458) (0.01061) (0.01086) (0.00871)

Rossman Sales 0.00074 0.00243 0.00077 0.00639 0.00331 3.89
(0.00012) (0.00153) (0.00006) (0.00280) (0.00151)

Industrial data 0.00602 0.04118 0.00969 0.00617 0.01875 2.43
(0.00049) (0.04051) (0.00449) (0.00203) (0.00313)

Table 2: Average normalized MSE and (standard deviation) results for different datasets and methods. Relative improvement of
the best VFL method with the best centralized one is also shown (rel. imp). Lowest MSE values are highlighted in bold. SML
2010, Air quality, and Rossman Sales have prequential window sizes 50, 100, 200, and 400. PV Power uses 25, 50, 100, and
200. Airline passengers uses 60, 80, 100, 120, and 140. Finally, the industrial data uses 25, 50, and 100.

10 and 100; and samples between 10, 100, and 1000. Since
communication costs depend only on the dataset dimensions
and the number of parties, we generate random data matri-
ces for all valid combinations of features and samples on
each party, i.e., #features ≤ #samples. We then optimize the
coefficients using either the direct approach (Algorithm 3,
lines (13-19)), or batch gradient descent (lines (6-10)), for
a different number of iterations (10, 100, 1000). For party-
scaling, we average the total communication costs across
various feature and sample combinations for a given number
of parties. Similarly, we measure feature and sample scaling
by averaging the total costs across different (sample, party)
and (feature, party) combinations respectively. Results are
shown in Table 3, Table 4, and Table 5.

parties NE GD iterations
10 100 1000

2 2.54E+08 2.33E+07 2.33E+08 2.33E+09
4 5.85E+08 4.65E+07 4.65E+08 4.65E+09
8 1.48E+09 9.31E+07 9.31E+08 9.31E+09

Table 3: Average of total communication sizes (bytes) with
varying parties.

Features NE GD iterations
10 100 1000

10 9.77E+06 8.34E+06 8.34E+07 8.34E+08
100 1.92E+09 1.23E+08 1.23E+09 1.23E+10

Table 4: Average of total communication sizes (bytes) with
varying feature counts.

Samples NE GD iterations
10 100 1000

10 1.16E+06 2.76E+05 2.76E+06 2.76E+07
100 4.53E+08 1.24E+07 1.24E+08 1.24E+09
1000 1.48E+09 1.23E+08 1.23E+09 1.23E+10

Table 5: Average of total communication sizes (bytes) with
varying samples.

What we see from these three tables is that when the
number of parties/samples/features is small, direct optimiza-
tion’s cost is comparable to an iterative version with a larger

number of iterations. For example, when the number of par-
ties is 2, we see that the cost of NE is close to GD with 100
iterations in Table 3. However, when we increase to 8 par-
ties, the cost of NE is greater than GD with 100 iterations.

Similarly, in Table 4 and Table 5, we see that NE has a
lower cost than GD with 100 iterations for a small number
of features and samples. This is no longer the case upon in-
creasing the features and samples.

However, the cost of GD increases proportionally with
the iterations, and at some point, it becomes more expen-
sive than NE, as we see with 1000 iterations. In practice, hy-
perparameters like the learning rate affect the steps required
for convergence, which may be hard to tune in a distributed
setup. So choosing between iterative or direct optimization
depends on several factors, requiring adaptability in frame-
works.

Conclusion
This work presents a novel privacy-preserving forecasting
framework for VFL using SS and SMPC, tackling chal-
lenges the manufacturing industry faces. A key part of our
work is distributing predictions’ ownership among parties,
addressing requirements for inference privacy, which chal-
lenges conventional VFL assumptions that predictions are
always available to a specific party. Our results show that
VFL methods are competitive against centralized methods,
and scalability analyses bring out the nuanced dynamics
between iterative and direct optimization, highlighting the
need for an adaptable framework.

For the future, several paths of exploration beckon. First,
the models used in this study are poor at capturing the
patterns present in long-range time series data, for which
LSTMs and diffusion models are better suited. We aim to
enable these models for VFL. Second, current VFL cases as-
sume a static set of participants. Exploring a hybrid combi-
nation of horizontal FL and VFL elements by independently
training clusters of VFL models, which are aggregated later,
can enhance their collective forecasting power. Lastly, forti-
fying our VFL framework against adversarial attacks is es-
sential. While our current work assumes semi-honest partic-
ipants, malicious adversaries cannot be ignored.
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Appendix A: Datasets and Pre-processing
We make use of the following public datasets in our work:
Air Quality (Vito 2016), SML 2010 (Romeu-Guallart and
Zamora-Martinez 2014), PV Power (Kannal 2020), Airline
Passengers (Kothari 2018), and Rossman Sales (ros 2015).
We do not provide the details on the industrial dataset due to
confidentiality agreements. Here we provide a brief descrip-
tion of each dataset and the pre-processing steps applied to
the dataset itself. These steps are unconnected with the series
pre-processing steps which are part of the STV framework.
For all datasets, we scale all features and output values be-
tween the range 0 to 1 using a MinMax scaler to ensure that
all datasets have the same range of values for comparing the
MSE losses.

Air Quality
The Air Quality dataset contains approximately 9300 sam-
ples of multivariate time-series data, with 15 attributes. Five
of these are true output values on five gases: Carbon Monox-
ide (CO), Non Metanic Hydrocarbons (NMHC)), Benzene
(C6H6)), Total Nitrogen Oxides (NOx), and Nitrogen Diox-
ide (NO2). Exogenous features such as the temperature,
ozone levels, and humidity are provided, along with strongly
correlated sensor data for each of the five gases. The dataset
contains missing values and duplicates, and contains hourly
data for each of the five gases.

We preprocess the data by discarding all rows with any
missing information and remove duplicate rows. We predict
the ground truth values of CO using the other sensor values
and information such as temperature and humidity as the ex-
ogenous regressors.

SML 2010
The SML 2010 dataset contains infomation from a moni-
tor system in a domotic house. It contains approximately
4100 samples with 24 attributes in total, corresponding to
40 days of monitoring data. The attributes contain values
such as the indoor and outdoor temperature, lighting levels,
Carbon Dioxide levels, relative humidity, rain, windspeed,
etc. We predict the indoor habitation temperature using the
others as exogenous features.

Airline Passengers
Airline Passengers is a small dataset of 145 samples contain-
ing the number of international airline passengers (in thou-
sands) on a monthly basis. The exogenous features are also
just two: the year and the month. We predict the number of
passengers using the year and month as exogenous regres-
sors.

PV Power
The PV Power dataset contains around 3100 samples of so-
lar power generation data from each of two power plants
over a 34-day period. Attributes include features such as the
DC power, AC power, yield, ambient temperature, irradia-
tion levels, and the data and time.

We drop identifiers, empty, and duplicate data. We also
drop the DC power attribute, and total yield as these fea-
tures are very strongly correlated with the AC output. As
outputs, we predict the AC power generation using the re-
maining features as exogenous regressors.

Rossman Sales
The Rossman Sales dataset contains sales data for 1115 store
outlets. The attributes consists of features such as holidays,
store type, competitor distance, number of customers, and
promotional details among others. We predict the sales of
the store with ID 1, using the other features as exogenous
regressors.

Appendix B: Experimental Evaluation
As mentioned in the main text, we use a variation of pre-
quential window testing (Cerqueira, Torgo, and Mozetič
2020), whereby the entire data is broken into windows of
a defined length, each one internally split in an 80-20 train-
test ratio. This is illustrated in Figure 4.
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Figure 4: Prequential window evaluation with re-training in
every window

For each window, we train on the portion allotted for train-
ing and forecast the remaining. Within a given training win-
dow, we first generate the polynomial by processing the time
series as in line 3 of Algorithm 1. Identifying the parameters
for generating the polynomial can be automated using im-
plementations such as auto arima4.

For each window size, such as 50, 100, 200, 400, we aver-
age the MSE loss between the forecasts and the true values
across all windows. The average MSE per-window size is
given in Table 6, which is an expanded version of Table 2.

Appendix C: SMPC primitives
We elaborate on the computation details for basic arithmetic
operations, such as addition, subtraction, and multiplication,
using the SMPC framework below.

1. Addition and subtraction: If X and Y exist as secret
shares, ⟨X⟩ and ⟨Y ⟩, each party performs a local addi-
tion or subtraction, i.e., ⟨Z⟩k = ⟨X⟩k +(−) ⟨Y ⟩k. To ob-
tain Z = X + (−)Y , the shares are aggregated: Z =∑K

k ⟨Z⟩k.

4https://alkaline-ml.com/pmdarima/modules/generated/pmdarima.
arima.auto arima.html
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Dataset Window size STVL SARIMAX MLE LSTM STVT SSSDS4

Air quality

50 0.00071 0.00110 0.00244 0.00198 0.00270
100 0.00059 0.00048 0.00055 0.00075 0.00086
200 0.00066 0.00124 0.00069 0.00067 0.00100
400 0.00080 0.00068 0.00087 0.00061 0.00144
Avg. 0.00069 0.00088 0.00114 0.00100 0.00150

SML 2010

50 0.00645 0.00621 0.00343 0.00755 0.01373
100 0.01958 0.02819 0.02778 0.04305 0.02384
200 0.00500 0.00662 0.02781 0.01709 0.00336
400 0.00045 0.00030 0.00960 0.00729 0.00249
Avg. 0.00787 0.01033 0.01716 0.01875 0.01085

Rossman Sales

50 0.00070 0.00079 0.00464 0.00183 0.00589
100 0.00064 0.00071 0.00340 0.00496 0.00281
200 0.00068 0.00086 0.00674 0.00088 0.00233
400 0.00095 0.00072 0.01079 0.00206 0.00220
Avg. 0.00074 0.00077 0.00639 0.00243 0.00331

PV Power

25 0.00133 0.00093 0.00950 0.00660 0.00131
50 0.00360 0.00307 0.01037 0.00258 0.00143
100 0.00004 0.00063 0.01115 0.00010 0.00267
200 0.00054 0.00175 0.54227 0.00068 0.00128
Avg. 0.00138 0.00159 0.14333 0.00249 0.00167

Airline Passengers

60 0.00261 0.00113 0.11651 0.00673 0.00110
80 0.00450 0.00444 0.00339 0.00628 0.00403
100 0.00308 0.00066 0.01982 0.00270 0.00798
120 0.00316 0.00136 0.05164 0.01134 0.00356
140 0.00185 0.00351 0.01512 0.01332 0.00293
Avg. 0.00304 0.00222 0.04130 0.00808 0.00392

Table 6: Average normalized MSE values for different public datasets, with different prequential window sizes

Knowing the value of ⟨Z⟩k makes it impossible to infer
the private values X or Y , as each participant only owns a
share of the whole secret. Moreover, the individual values
of the shares, ⟨X⟩k and ⟨Y ⟩k, are also masked by adding
them.

2. Multiplication (using Beaver’s triples) (Beaver 1992;
Xie et al. 2022): To get Z = X ∗ Y , where ∗ de-
notes element-wise multiplication, and X and Y , are se-
cretly shared, the coordinator first generates three num-
bers a, b, c such that c = a ∗ b. These are then secretly
shared, i.e., Ck, receives ⟨a⟩k, ⟨b⟩k, and ⟨c⟩k. Ck com-
putes ⟨e⟩k = ⟨X⟩k - ⟨a⟩k and ⟨f⟩k = ⟨Y ⟩k - ⟨b⟩k, and
sends it to C1. C1 then aggregates these shares to recover
e and f and broadcasts them to all parties. C1 then com-
putes ⟨Z⟩1 = e ∗ f+f∗⟨a⟩1+ e∗⟨b⟩1+⟨c⟩1, and the others
calculate ⟨Z⟩k = f∗⟨a⟩k+e∗⟨b⟩k+⟨c⟩k. It is easy to see
that aggregation of the individual shares gives the product
Z.
Despite knowing e and f , the actual values of X and Y
are hidden because none of the parties knows the values
of a, b, and c. Also, like in the case with addition, the indi-
vidual shares, ⟨Z⟩k, do not reveal anything about the local
share values, i.e., ⟨X⟩k, ⟨Y ⟩k, ⟨a⟩k, ⟨b⟩k, and ⟨c⟩k.
Additional primitives such as division, argmax, and sig-

moid can also be computed using secret sharing, the details
of which are provided in Fang et al. (Fang et al. 2021) and
Xie et al. (Xie et al. 2022).

Appendix D: SMPC-based XGBoost with VFL
XGBoost (Chen et al. 2015) is a tree-based gradient-
boosting algorithm, that iteratively generates an ensemble
of trees by greedily learning a new tree at every step to im-
prove on the earlier one. Each tree has weights assigned to
its leaf nodes. When making a prediction for a sample, the
weights corresponding to the leaf to which the sample was
assigned to are summed to give the final prediction score.

To generate a tree at every iteration, it uses first and sec-
ond order gradients of the latest predictions, i.e., from the
previous tree, in order to set the optimal weights for the new
one.

For each sample with index i, the first and second order
gradients are denoted as gi and hi, respectively. The sum
of the gradients of all instances on a particular node is used
to set the new weights for it. For example, for node j and
corresponding instance set Ij , the accumulated values of g
and h are computed as follows: Gj =

∑
i∈Ij

gi, and Hj =∑
i∈Ij

hi. Based on this, for a tree with T nodes, the weights
and objective are calculated as follows:

wj = −Gj/(Hj + λ) (4)

obj = −0.5×
T∑

j=1

((Gj)
2/(Hj + λ)) + γT (5)

, where γ, λ are regularizers. While Equation 4 sets the new
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Figure 5: Centralized vs Secretly shared XGBoost trees

weights, Equation 5 is used to identify how to split nodes at
each iteration.

With this in mind, using the secret sharing primitives it is
possible to compute these functions to extend XGBoost to
VFL, which we show in Algorithm 6.

When XGBoost is trained for VFL using secret sharing,
each client obtains a local tree with their own weights as
shown in Figure 5. In the figure, the weights for clients 1 and
2 are distributed such that their local weights are shares of
the weights of the centralized version, i.e., wi = wi1 +wi2
∀i ∈ [1, 4]

The indicator vector s on line 1 of algorithm 6, is a bi-
nary vector that is used to point out the location of instances
on nodes. We explain this with the help of the example in
Figure 6. To calculate the updated weight of the node with
instances that have an age greater than 30 (bottom left),
we need to find the sum of

∑
i∈Ij

gi, where Ij = {2, 4}(
Equation 4). The indicator vector in this case would be
s = [0, 1, 0, 1], meaning that nodes 2 and 4 are part of node
j. If we have a vector of the gradients, g = [g1, g2, g3, g4],
we can compute g2 + g4 as s ⊙ g, i.e., the inner product.
Under VFL, both the gradients g, and the indicator vector s,
exist as secret shares across clients, i.e., s =

∑K
k ⟨sk⟩k, and

g =
∑K

k ⟨gk⟩k. Therefore, to compute the product, we can
do it using secret shared primitives for matrix multiplication.

The process of split-finding and setting weights is done
using the SecureBuild function, which makes use of secret
sharing primitives to compute the functions in Equation 5
and Equation 4. We defer readers to the implementation in
Xie et al. (Xie et al. 2022) for additional details on this.

Appendix E: Two-step regression
Consider the example from the main text:


Y (3)
Y (4)
..

Y (t)




︸ ︷︷ ︸
ϕY

=




Y (2) Y (1) ε(2) X1(3) X2(3)
Y (3) Y (2) ε(3) X1(2) X2(2)
.. .. .. .. ..

Y (t− 1) Y (t− 2) ε(t− 1) X1(t) X2(t)




︸ ︷︷ ︸
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×
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α2

β1

γ1
γ2




︸ ︷︷ ︸
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︸ ︷︷ ︸
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Figure 6: Mapped instances to a node in XGBoost

Algorithm 6: Fit XGBoost (Xie et al. 2022)

Data: Secretly shared matrices: ⟨X⟩, ⟨Y ⟩, ⟨Ŷ ⟩ across K
clients, C1, C2, .., CK

Output: Learned tree for the current iteration, one on each
client.

1: Initialize indicator vector s← 1 on all Ck

2: if active client C1 then
3: Compute derivatives g, h
4: Generate shares ⟨g⟩, ⟨h⟩, ⟨s⟩
5: end if
6: Treek = SecureBuild(⟨g⟩k,⟨h⟩k, ⟨s⟩k) on each Ck

7: return Treek on Ck

The application of the two steps to this is shown below.
1. First step: As the residual terms in ϕX are unknown, they

are initialized to zero to give ϕ̂X . The estimated coeffi-
cients for this step are denoted as Â:



Y (3)
Y (4)
..

Y (t)




︸ ︷︷ ︸
ϕY

=




Y (2) Y (1) 0 X1(3) X2(3)
Y (3) Y (2) 0 X1(2) X2(2)
.. .. .. .. ..

Y (t− 1) Y (t− 2) 0 X1(t) X2(t)




︸ ︷︷ ︸
ϕ̂X

×




α̂1

α̂2

β̂1

γ̂1
γ̂2




︸ ︷︷ ︸
Â

+



ε(3)
ε(4)
..

ε(t)




︸ ︷︷ ︸
ε

(7)
Â is optimized using the normal equation or gradient de-
scent. The residuals, ε, are then estimated as:

ε = ϕY − ϕ̂X × Â (8)

These are then re-substituted within ϕX before the second
optimization. Residual terms that are still unavailable, like
ε(2), can be set to zero:

ϕ̃X =




Y (2) Y (1) 0 X1(3) X2(3)
Y (3) Y (2) ε(3) X1(2) X2(2)
.. .. .. .. ..

Y (t− 1) Y (t− 2) ε(t− 1) X1(t) X2(t)




(9)
2. Second step: All coefficients in A can be jointly opti-

mized using the normal equation or an iterative approach
by replacing ϕX in Equation 7 with ϕ̃X .
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With iterative methods like gradient descent, the update
rule for optimizing A is shown in Equation 10 under mean-
squared-error (MSE) loss:

A := A−2α× (ϕX)T × (ϕ̂Y −ϕY ) (for e iterations) (10)

; where ϕ̂Y are the predictions at a particular step and α is
the learning rate.

For direct optimization, the normal equation can be used
as shown below: Equation 11.

A = ((ϕX)TϕX)−1((ϕX)TϕY ) (11)

Enabling the training of linear forecasting models with
VFL requires the design matrices, ϕX and ϕY to exist as se-
cret shares. Following this, SMPC versions of the operations
in Equation 11 and Equation 10 can be applied to optimize
the parameters.
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Chapter 2

Introduction

In this chapter, we approach the problem from the viewpoint of its application in manufac-
turing, followed by the challenges in existing methodologies and our contributions.

2.1 Problem Scenario

In today’s manufacturing landscape, time series forecasting has emerged as a critical factor
in various applications, particularly within machine control, predictive maintenance, and
diagnostics [29, 46]. An illustration of this significance can be found in the scenario de-
picted in Figure 2.1, involving two primary manufacturers and their shared customer1. The
manufacturers collect sensory data during production. In contrast, the customer owns post-
production performance data, serving as the outputs or labels. Predicting outputs from sen-
sor values would allow the manufacturers to make pre-shipment corrections, saving valuable
time and helping to calibrate equipment in a complex, high-volume production factory.

The relevance of this scenario reflects in semiconductor manufacturing processes such
as photolithography [48], where performance measurements can be predicted from inline
sensor data [17]. The conventional approach to developing models combines the input fea-
tures and outputs into a centralized dataset, upon which models are trained. However, this
approach confronts a significant hurdle regarding scenarios involving such feature/vertically-
partitioned datasets, as business confidentiality agreements prevent the involved parties
from sharing their features and outputs in plaintext. This challenge pivots around the deli-
cate domain of privacy-preserving machine learning, necessitating the need for strategies to
circumvent the data-sharing problem.

2.2 Existing Solution Framework

A promising solution that has emerged to address privacy concerns within the context of
distributed machine learning is federated learning [25]. This approach operates under a
distinctive model-to-data paradigm, where data remains securely confined to each party’s

1A secondary manufacturer who is the “customer” from the perspective of the other two.
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Figure 2.1: Problem scenario—forecasting device performance needs inputs from multiple
parties who want to protect the confidentiality of the data.

premises. Every party undertakes the task of training a localized model using their private
data. Subsequently, knowledge across these models is combined via decentralized or dis-
tributed protocols while ensuring data privacy. This culminates in creating models capable
of generalizing across the diverse datasets of multiple parties.

Central to federated learning are the two ways in which datasets on each party can be
organized: horizontally or vertically partitioned datasets. In the case of horizontal partition-
ing, every party’s local dataset has an identical set of attributes, though the specific samples
might vary, as depicted in Figure 2.2. In contrast, vertical partitioning entails splitting a
dataset’s features or columns across different parties (see Figure 2.3). All parties retain ac-
cess to a shared attribute, such as a sample ID or timestamp which serves as a cohesive link,
allowing the disparate samples across parties to be effectively interconnected.

Both modes of partitioning require a different modeling approach within federated
learning. In our problem context, the sensor measurements and outputs can be viewed as a
vertically partitioned dataset, which falls within the realm of Vertical Federated Learning
(VFL) [56, 8, 24, 53, 33].

2.3 Challenges

Despite its relevance, time-series forecasting with VFL has received limited scholarly atten-
tion. This underscores the critical need for further exploration and research in this domain,
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Figure 2.3: Vertically partitioned data

17



2. INTRODUCTION

especially considering the following complexities introduced by manufacturing scenarios.

1. Small and noisy datasets Manufacturing data can be slow and resource-intensive
to gather, resulting in small datasets, causing complex models like neural networks
(NNs) to overfit. Moreover, the complex parameter interactions of NNs limit their
interpretability, which is an important factor in manufacturing applications, to under-
stand the reasoning behind predictions for optimizing production quality and down-
time [52, 51].

Datasets can also be noisy since they might originate from noisy sensors. This makes
modeling even more challenging [28, 17, 58], and may not be appropriate with pri-
vacy measures like differential privacy [2, 11, 12, 13], which would involve adding
noise to already noisy data. Differential privacy also introduces a trade-off between
privacy and performance, necessitating careful consideration [41, 16, 2, 56].

2. Training and inference privacy requirements. On top of the default assumption of
privacy during training, parties in VFL also need to perform inference privately, i.e.,
obtain first-hand predictions, given the competitive business environments in man-
ufacturing. For the example shown in Figure 2.1, if manufacturer 1 wants to make
a prediction, the customer (True output/label holder) should not be able to observe
these predictions since the manufacturer would use them for their private use such
as optimizing the factory pipeline. However, many existing works in VFL assume
that predictions are obtained on one party (usually the label owner), which may be
different from the party requiring inference. For instance, in split learning architec-
tures [49], where an NN is divided into a bottom and top half, the predictions are
yielded on the party owning the top half [8, 55, 15]. Similarly, homomorphic en-
cryption (HE) schemes [22, 9] may require the predictions to be first decrypted by a
specific party holding the decryption key, such as a coordinator/output holder.

Since the manufacturers would like to obtain the predictions first-hand without hav-
ing another party observe them first, there is a need to make the inferencing server-
less, i.e., ownership of the predictions is not with a particular party like the output
holder, but is distributed across multiple parties. Here, we make it a point to dis-
tinguish between the predictions, which are obtained during inference, and the true
outputs/labels. While the latter is still the output holder’s property, it does not include
ownership of the predictions.

3. Navigating optimization tradeoffs. Parameter optimization for models can be achieved
using direct or iterative methods. While direct optimization methods like the normal
equation [5] reach globally optimal solutions without requiring any hyperparameter
tuning, they are not scalable to large problem instances. On the other hand, iterative
methods like gradient descent scale better but require additional tuning, such as set-
ting the learning rate or batch size, which may be inconvenient in a distributed setting.
However, industries require both scalable and convenient solutions with little tuning,
as this would save time and money. Therefore, navigating the trade-off between these
factors requires a solution adaptable to both optimization approaches.
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2.4 Our Contributions

Towards achieving the goal of a forecasting framework for VFL while addressing industrial
challenges and requirements, we develop a novel framework, Secret-Shared Time Series
Forecasting with Vertical Federated Learning, (STV), with the following features.

1. VFL forecasting framework. STV extends centralized forecasting models such as
autoregressive trees (ARTs) [35], and classical linear forecasters such as SARIMAX
and ARIMAX [26, 38, 19] to VFL. These models are less prone to overfitting on
small datasets due to their low parameter complexity. They also have transparent
structures that are inherently interpretable [57, 40], which adheres to the industrial
requirement for model explainability. Within STV, ARTs and SARIMAX are trained
using the STVT and STVL protocols, respectively.

2. Privacy-preserving training and inference. STV is built on the foundations of Se-
cure Multi-Party Computation (SMPC) [10, 31] and Secret Sharing (SS) [43], which
are cryptographic methods offering strong privacy guarantees. With secret sharing,
privacy is preserved by distributing sensitive data into random shares across multiple
parties. All computations are performed on local shares, causing the final result to
also exist as a distributed share. These shares of the result can be collected/aggregated
to yield the final prediction on the requesting party first-hand, which preserves infer-
ence privacy. SMPC and SS also have the additional advantage of their computations
being lossless, which overcomes the drawback of differential privacy.

3. Adaptable optimization. Our linear forecasting algorithm, STVL, is designed with a
two-step approach that harnesses the power of least squares (LS) for optimizing the
parameters of linear forecasting models. LS optimization can be done using both it-
erative and direct methods, adding adaptability to our algorithm. However, enabling
direct optimization within STVL requires a fundamental expansion: extending the ex-
isting two-party schemes for matrix operations to accommodate multiple parties.

We evaluate STV on multiple fronts. First, we compare the forecasting accuracy of STVL
and STVT with centralized forecasters like state-of-the-art diffusion models [3], Long Short
Term Memory (LSTM), and SARIMAX with Maximum Likelihood Estimation (MLE) [19].
Second, we compare the communication costs of iterative and direct methods for optimizing
linear forecasters under different scaling scenarios, highlighting their trade-offs. We exper-
iment using a wide range of datasets: five public datasets (Air quality, flight passengers,
SML 2010, PV Power, Rossman Sales) and one real dataset from semiconductor manufac-
turing to validate our findings.

19



Chapter 3

Background and Related Work

In this chapter, we provide background knowledge on Secret Sharing (SS) and Secure
Multi-Party Computation (SMPC), forecasting models, and VFL. Then, we highlight the
shortcomings of existing related works in VFL.

3.1 Secret Sharing and Secure Multi-Party Computation

Secret sharing [43] serves as a crucial privacy-enhancing technique by dispersing a pri-
vate value into randomized shares distributed among parties, as depicted in Figure 3.1.
The original value can only be reconstructed through aggregating these individual shares,
achieved by summing the contributions from all the parties. This concept forms a founda-
tional component within Secure Multi-Party Computation (SMPC) methodologies [10, 31],
which operate on these distributed data shares. As a result of this distribution, the computed
result also persists in the form of a secret share, maintaining confidentiality. Furthermore,
these operations exhibit consistency, ensuring the final aggregated result aligns with what
would have been obtained through centralized computation. Although basic mathematical
operations, such as simple arithmetic, can be executed on distributed shares, it is important
to note that tackling more complex or non-linear functions remains a challenging endeavor
within this framework.

Share: 120 - (31 + 67 - 10) = 32

Share: 31
Share: 67

Share: -10

Secret: 120
Secret:

 [1, 0, -4]

Share: 
[100, -14, 3]

Share: 
[2, 1, 37]

Share: 
[0, 0, -1]

Share: 
[-101, 13, -43] = [1, 0, -4] - [102, -13, 39]

(a) Sharing a scalar (b) Sharing a vector

Figure 3.1: Secret sharing principle
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3.1. Secret Sharing and Secure Multi-Party Computation

Formally, in a setup involving K parties, denoted as Ci∈[1,K], when a party Ci intends to
share data V with the other parties, it generates K− 1 random shares, denoted as ⟨V ⟩i′ for
all i′ ∈ [1,K] where i′ ̸= i. These shares are then transmitted to their respective parties, i.e.,
Ci′ . Ci computes its own share as ⟨V ⟩i = V - ∑

K
i′ ̸=i⟨V ⟩i

′
. This process results in an ensemble

of K shares, collectively representing the shared state of V , denoted as ⟨V ⟩.
We elaborate on the computation details for basic arithmetic operations, such as addi-

tion, subtraction, and multiplication, using the SMPC framework below.

1. Addition and subtraction: If X and Y exist as secret shares, ⟨X⟩ and ⟨Y ⟩, each party
performs a local addition or subtraction, i.e., ⟨Z⟩k = ⟨X⟩k +(−) ⟨Y ⟩k. To obtain
Z = X +(−)Y , the shares are aggregated: Z = ∑

K
k ⟨Z⟩k.

Knowing the value of ⟨Z⟩k makes it impossible to infer the private values X or Y ,
as each participant only owns a share of the whole secret. Moreover, the individual
values of the shares, ⟨X⟩k and ⟨Y ⟩k, are also masked by adding them.

2. Multiplication (using Beaver’s triples) [4, 54]: To get Z = X ∗Y , where ∗ denotes
element-wise multiplication, and X and Y are secretly shared, the coordinator first
generates three numbers a,b,c such that c = a ∗ b. These are then secretly shared,
i.e., Ck, receives ⟨a⟩k, ⟨b⟩k, and ⟨c⟩k. Ck computes ⟨e⟩k = ⟨X⟩k - ⟨a⟩k and ⟨ f ⟩k = ⟨Y ⟩k
- ⟨b⟩k, and sends it to C1. C1 then aggregates these shares to recover e and f and
broadcasts them to all parties. C1 then computes ⟨Z⟩1 = e ∗ f + f∗⟨a⟩1+ e∗⟨b⟩1+⟨c⟩1,
and the others calculate ⟨Z⟩k = f∗⟨a⟩k+e∗⟨b⟩k+⟨c⟩k. It is easy to see that aggregation
of the individual shares gives the product Z.

Despite knowing e and f , the actual values of X and Y are hidden because none of
the parties knows the values of a,b, and c. Also, like in the case with addition, the
individual shares, ⟨Z⟩k, do not reveal anything about the local share values, i.e., ⟨X⟩k,
⟨Y ⟩k, ⟨a⟩k, ⟨b⟩k, and ⟨c⟩k.

Additional primitives such as division, argmax, and sigmoid can also be computed using
secret sharing, the details of which are provided in Fang et al. [14] and Xie et al. [54].

SMPC and SS can also be used for training and inferencing with VFL models due to
their strong privacy guarantees. For training, all parties’ local features or outputs are se-
cretly shared to preserve their privacy. All parties then jointly follow decentralized training
protocols using the secretly shared data and end up with local models. Inference is made
similarly by distributing features into secret shares and computing the prediction as a dis-
tributed share.

As mentioned earlier, due to the limited mathematical operations under SMPC, applying
it to complex models such as neural networks is challenging because of their non-linear
operations such as sigmoid or ReLU. However, for models such as XGBoost trees [7],
and linear regressors, these methods can still be applied as shown in several VFL works
[20, 44, 54, 14].
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3.2 Linear Forecasting Models

Linear forecasters fall under the autoregressive family of models, which use historical values
of the output variables to predict the future [19]. In addition to historical data, these models
may incorporate other factors to enhance their predictive capabilities, such as exogenous
features (external variables that impact the target variable) and past errors (residuals).

The most general of these forecasting models is Seasonal AutoRegressive Integrated
Moving Average with eXogenous variables [26, 38], a.k.a SARIMAX. By incorporating
seasonality, it generalizes other forecasters such as ARIMAX, ARMAX, and ARX [19, 36].
The outputs can be modeled by combining all the factors linearly. For example, the output,
Y , at time t can be represented using a polynomial, H, in the following way using the past
errors, ε(t− i), past values Y (t− i), and the currently observed exogenous features, X j(t):

H : Y (t) = α1Y (t−1)+α2Y (t−2)+β1ε(t−1)+

+γ1X1(t)+ γ2X2(t)+ ε(t)
(3.1)

Estimation of the coefficients (α,β,γ) is done using methods like MLE [19] or LS [21, 34,
32, 47]. However, MLE with SMPC is limited to certain families of likelihood functions
like the exponential or multivariate normal distributions [45, 30], since computing non-
linear functions is challenging due to the limited mathematical operations with SMPC.

Under normally distributed errors, LS approaches can be used, where the original datasets
are transformed into time-lagged design matrices, (φX ,φY ), starting at t = 1, to represent
Equation 3.1:




Y (3)
Y (4)
..

Y (t)




︸ ︷︷ ︸
φY

=




Y (2) Y (1) ε(2) X1(3) X2(3)
Y (3) Y (2) ε(3) X1(2) X2(2)
.. .. .. .. ..

Y (t−1) Y (t−2) ε(t−1) X1(t) X2(t)




︸ ︷︷ ︸
φX

×




α1
α2
β1
γ1
γ2




︸ ︷︷ ︸
A

+




ε(3)
ε(4)
..

ε(t)




︸ ︷︷ ︸
ε

(3.2)

Optimizing A can be viewed as a linear regression problem if not for its circular dependency
on the residuals. Specifically, the value of the residuals in φX , ε(t− k) for some k, requires
first knowing the value of A and vice-versa. A two-step approach is used to resolve this [47,
34, 21, 32]. First, the predictions are modeled using only the autoregressive and exogenous
terms by substituting the residuals in φX to zero and then estimating them by subtracting the
actual values, φY , with the predictions. Finally, joint optimization of all the coefficients in
A is done by setting the residuals in φX to the estimates. The application of these two steps
is shown below.

1. First step: As the residual terms in φX are unknown, they are initialized to zero to
give φ̂X . The estimated coefficients for this step are denoted as Â:
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Y (3)
Y (4)
..

Y (t)




︸ ︷︷ ︸
φY

=




Y (2) Y (1) 0 X1(3) X2(3)
Y (3) Y (2) 0 X1(2) X2(2)
.. .. .. .. ..

Y (t−1) Y (t−2) 0 X1(t) X2(t)




︸ ︷︷ ︸
φ̂X

×




α̂1
α̂2

β̂1
γ̂1
γ̂2




︸ ︷︷ ︸
Â

+




ε(3)
ε(4)
..

ε(t)




︸ ︷︷ ︸
ε

(3.3)

Â is optimized using the normal equation or gradient descent. The residuals, ε, are
then estimated as:

ε = φY − φ̂X × Â (3.4)

These are then re-substituted within φX before the second optimization. Residual
terms that are still unavailable, like ε(2), can be set to zero:

φ̃X =




Y (2) Y (1) 0 X1(3) X2(3)
Y (3) Y (2) ε(3) X1(2) X2(2)
.. .. .. .. ..

Y (t−1) Y (t−2) ε(t−1) X1(t) X2(t)


 (3.5)

2. Second step: All coefficients in A can be jointly optimized using the normal equation
or an iterative approach by replacing φX in Equation 3.3 with φ̃X .

Viewing parameter estimation as a regression problem is a crucial step to enable the
training of SARIMAX and its like under VFL. It also makes it adaptable to use both iterative
and closed-form optimization approaches. With iterative methods like gradient descent, the
update rule is shown in Equation 3.6 under mean-squared-error (MSE) loss:

A := A−2α× (φX)
T × (φ̂Y −φY ) (for e iterations) (3.6)

; where φ̂Y are the predictions at a particular step and α is the learning rate.
For direct optimization, the normal equation can be used as shown below: Equation 3.7.

A = ((φX)
T

φX)
−1((φX)

T
φY ) (3.7)

Enabling the training of linear forecasting models with VFL requires the design matri-
ces, φX and φY to exist as secret shares. Following this, SMPC versions of the operations in
Equation 3.7 and Equation 3.6 can be applied to optimize the parameters.

3.3 Autoregressive Trees (ARTs)

Standard gradient-boosted tree methods like XGBoost [7] are not catered to time-series
data as they do not account for temporal lags and autocorrelations, which are critical for
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(a) Standard XGBoost forecasts
using only X value as an input.

(b) ART using the both X value and
lagged outputs as features.

Figure 3.2: Forecasts made by standard XGBoost and ARTs

forecasting. They lack memory of past observations, making it challenging to recognize the
sequential patterns inherent in time series data.

In this context, ARTs [35] offer a promising solution by incorporating the concept of au-
toregression into the tree-based framework. By considering past observations as predictors,
ARTs can capture temporal dependencies like in the case with linear forecasters.

As an illustrative example, we consider Figure 3.2, which shows the forecasts made by
an XGBoost tree and an ART on generated time series data with a linear trend component.
For both models, training is done on the samples from the blue region while forecasts are
made on the red region. The green part shows the forecasts made by the trained models.

While both models are able to predict values quite accurately in the training region, we
see that the standard XGBoost completely collapses when it is given inputs from outside its
training domain. The autoregressive tree on the other hand shows a clear improvement on
the forecasts because of regressing on the lagged output values.

Extending tree-based VFL methods [54, 9, 14] to ARTs can be done by transforming
the datasets into design matrices using a polynomial like Equation 3.1. While ARTs do
not use residual terms unlike SARIMAX, they can model non-linear dependencies between
autoregressive and exogenous features.

3.4 Background on VFL

In this section, we provide a general overview of the steps involved when modeling in VFL.
We also cover some popular model architectures as they provide more context on the related
works.

3.4.1 General overview

The general procedure for modeling with VFL consists of two steps: entity alignment and
model training (see Figure 3.3), which we explain as follows.
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Figure 3.3: Overview of VFL. Entity alignment and joint model training

1. Entity alignment: In the context of Figure 2.3, it was noted that in vertical feder-
ated learning, each party possesses a shared column, often referred to as a sample ID,
which can be used to establish links between samples across different parties. In a
scenario without privacy restrictions, accomplishing this task would be straightfor-
ward. Parties could exchange their lists of IDs, allowing them to identify matching
samples directly. However, this approach poses privacy concerns within the vertical
federated learning setting, as the sample IDs are considered sensitive information.
This is where privacy-preserving entity alignment approaches come into play, pro-
tecting the confidentiality of the shared IDs [42, 22]. One such approach involves
encrypting the sample IDs from multiple parties and then performing the matching
process at a trusted third party. This third party plays a key role by sending a mask
to the individual parties, indicating the locations of the common samples without re-
vealing the actual sample IDs. This mechanism ensures that the parties can align their
data while maintaining the privacy of the sensitive information, as described in Hardy
et al. [22].
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Intermediate outputs
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Figure 3.4: Split neural network

2. Privacy-preserving distributed training: Once the common samples are identified,
models are trained using different protocols. Three such approaches are split learn-
ing [49], homomorphic encryption based [22, 15, 9], and SMPC-based [14, 54, 44]

3.4.2 Modeling approaches in VFL

Here we provide a brief description of split learning, HE-based methods, and SMPC based
methods.

1. Split learning: Such a scheme is popular with NN-based methods. As shown in
Figure 3.4, the model is divided into two halves. Each party uses a local network
to perform forward propagation using the private inputs (bottom half), and the inter-
mediate outputs are sent to the party owning the top half. The rest of the forward
propagation is performed on this party, and the gradients are sent to the individual
parties at the split section so that the parties can update their local models. The same
procedure follows during inference, and the predictions are obtained on the top half of
the model. Privacy in such methods is typically achieved through differential privacy
[11, 13], by adding noise to the intermediate values communicated.

2. Homomorphic encryption-based solutions: Such methods use homomorphic en-
cryption schemes like Paillier encryption [37]. The advantage of such a scheme is
that mathematical operations on encrypted data yield the same result in the encrypted
space, as would be the case by performing the computation in plaintext and then en-
crypting it. For example, the sum of two numbers, U +V , in encrypted space can
be written as JU +V K = JUK+ JV K, where J.K denotes the encrypted state of a value.
Such operations extend to other mathematical operations as well, enabling parties
to perform computations on data in the encrypted space without knowing their true
plaintext values. This is valuable in VFL as computations like the loss and gradi-
ents can be computed on the label/output-holding party using encrypted intermediate
computations received from the other parties. Such schemes are popular with lin-
ear/logistic regression methods [15, 22], or tree-based methods [9].

26



3.5. Related work on VFL

3. SMPC-based solutions: Like HE-based solutions, these methods perform computa-
tions using secretly shared data rather than encrypted values. Like with HE-schemes,
SMPC methods exist for tree-based solutions [54, 14], and also for linear regres-
sors [44, 20], both of which are within the scope of this thesis.

3.5 Related work on VFL

Method Type Time Series Inference Privacy Optimization
Trees LR NN iterative direct

Yan et al. [55] ✖ ✖ ✔ ✔ ✖ ✔ ✖

Hardy et al. [22] ✖ ✔ ✖ ✖ ✖ ✔ ✖

Han et al. [20] ✖ ✔ ✖ ✖ ✔ ✔ ✔

Cheng et al. [9] ✔ ✖ ✖ ✖ ✖ ✔ ✖

Xie et al.[54] ✔ ✖ ✖ ✖ ✔ ✔ ✖

Shi et al. [44] ✖ ✔ ✖ ✖ ✔ ✔ ✖

STV (this work) ✔ ✔ ✖ ✔ ✔ ✔ ✔

Table 3.1: Comparison of related works in VFL. The aspects compared are model type,
compatability with time series data, inference privacy, and optimization methods offerred.

On the spectrum of models learned, research in VFL is diverse, including neural net-
works, trees, and regression models, as shown in studies [24, 33, 53]. In this context, we
direct our attention to the selected works presented in Table 3.1, as they collectively pro-
vide a comprehensive representation of research in VFL. We compare the methods on their
model type, their applicability to time series forecasting, whether inference privacy can be
easily achieved through decentralization, and their adaptability to alternative optimization
choices.

Model type and time-series forecasting. Due to the industrial requirement for explain-
able models, we focus on linear/logistic regression (LR) [22, 20, 44], and tree-based mod-
els [54, 9], with transparent structures that are considered inherently interpretable [40, 57].
Yan et al. [55] employ a modification of the split learning architecture using Gated Recurrent
Units (GRUs) with a shared upper model for predictions. But its large parameter complex-
ity limits interpretability. Nevertheless, to the best of our knowledge, this remains the only
other method for time-series forecasting with VFL. While STV is not developed for neural
networks, its use of lightweight forecasting models adheres to industrial requirements.

Inference privacy. While privacy during training is implicit in all selected works, we
consider schemes adopting SS as potential candidates for private inference requirements,
as these can be seamlessly integrated with a serverless/decentralized approach, akin to
ours [54, 44, 20]. HE-based schemes for logistic regression, such as Hardy et al. [22],
assume that predictions are decrypted on a particular party before sending them to the party
requesting inference, which is not privacy-preserving. Additionally, Yan et al. [55] use a
shared upper model in their split architecture, rendering the predictions accessible to all
parties, compromising inference privacy.
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Optimization. When it comes to optimization techniques, all selected works, except for
Han et al. [20], employ solely iterative approaches. Notably, Han et al. [20] offer iterative
and matrix-based methods for direct optimization using Equation 3.7. However, this re-
quires computing matrix multiplications and inverses, which are only implemented for the
two-party case in Han et al. [20]. We extend both operations to a generic N-party setup.
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Chapter 4

Methodology

This section introduces the adversarial model and problem statement, followed by the gen-
eral design of STV and the detailed implementation for linear and tree forecasters.

4.1 Adversarial Models

We assume that all parties are honest-but-curious/semi-honest [22, 56]. This means that they
adhere to protocol, but will try to infer knowledge of other parties’ private data using their
own local data and whatever is communicated to them. Also, it is assumed that parties do not
collude, a standard assumption in VFL as all parties involved are incentivized to collaborate.
This is because of their mutual reliance on one another for training and inference [56, 22].
In addition, we also assume that communication between parties is encrypted.

4.2 Problem Statement

We assume a setup with K parties, C1 to CK , grouped into two types: active and passive. The
active party, C1, owns the true values of the time series output, Y (t), and exogenous features,
X1(t), for timestep t. The passive parties only have exogenous features, Xi,∀i ∈ [2,K].
The common samples between parties are assumed to be already identified using privacy-
preserving entity alignment approaches, as explained earlier in subsection 3.4.1. Our goal
is to forecast future values of Y (t) using exogenous and autoregressive features, without
sharing them with others in plaintext.

We further assume there is a coordinator, a trusted third party that oversees the training
process and is responsible for generating randomness, such as Beaver’s triples for element-
wise multiplication with SMPC [4, 14]. The coordinator cannot access private data and
intermediate results, so it does not pose a security threat, as mentioned in Xie et al. [54].

4.3 Protocol Overview

An overview of STV is provided in Algorithm 1. A high level overview of the individual
steps of STV, with pre-processing, training, and inference, is illustrated in Figure 4.1.
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Training. To start, the active party initiates by pre-processing the output and deter-
mines parameters like the auto-correlations and partial auto-correlations of the series (line
2). These are then used to generate a polynomial for SARIMAX or ARTs (line 3). Features
and outputs are then secretly shared and transformed into lagged design matrices (line 7),
like in Equation 3.2. All parties then follow decentralized Algorithm 2 or Algorithm 3 to
train a distributed model across all parties.

Inference privacy. During inference (lines 14 - 16), the final prediction exists as a
distributed share across all parties (line 14), which is aggregated on the requesting party
(line 16). Since only the party making the inference acquires the aggregate value of the
secret shares, the final prediction is with that party alone.

Algorithm 1 General protocol STV
Data: Xk on party Ck ∀k ∈ [1,K], and Y on C1
Accepted Parameters: Task: Training/Inference, Model type, number of trees T , Optimization method O,
learning rate α, iterations, e, Trained distributed Model, Requesting party C j
Output:Trained model distributed across K parties or final inference result on party C j

1: if Training and active party C1 then
2: params = ProcessSeries(Y)
3: H = GenPoly (params, type)
4: Broadcast H to Ci ∀i ∈ [1,K]
5: end if
6: Share local features ⟨Xk⟩ and (or) outputs ⟨Y ⟩
7: ⟨φX ⟩,⟨φY ⟩ = TransformData (H){ Equation 3.2}
8: if type == Tree and Training then
9: return Model = STVT (⟨φX ⟩, ⟨φY ⟩,T)

10: else if type == Linear and Training then
11: return Model = STVL (⟨φX ⟩,⟨φY ⟩, O, α, e)
12: end if
13: if Inference then
14: ⟨Result⟩ = Model.Predict(⟨φX ⟩)
15: if requesting party C j then
16: Result = ∑

K
k=1⟨Result⟩k {Aggregate predictions}

17: end if
18: end if

4.4 STVT

Training ARTs within STV is done using STVT. This approach is rooted in our explanation
from section 3.2, where we illuminated how time series forecasting can be framed as a
regression problem by transforming the original data into design matrices. This strategic al-
teration allows us to leverage tree-training methodologies, such as the approach introduced
by Xie et al. [54], in the training of ARTs. A detailed description of STVT is provided in
Algorithm 2.

In Algorithm 2, the training process unfolds iteratively, resulting in the generation of T
trees on each party. In every iteration, each participating party learns a new tree, akin to
the conventional approach in standard XGBoost, and subsequently makes a local prediction
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Figure 4.1: STV framework

(lines 4-5). Since data is secretly shared, the final prediction is derived by aggregating the
shares of local predictions from all clients (line 7).

The key component in this process is the tree-building function, SecureFit, derived
from the work of Xie et al. This function employs secret sharing primitives to train XG-
Boost, involving computations of first and second-order gradients. Given that XGBoost is
traditionally a centralized algorithm, its VFL-based variant, with secret sharing, replaces
centralized operations with SMPC-based alternatives. Additional details of this algorithm
can be found in Appendix B.

During the training phase, individual predictions are aggregated on the active party (C1)
since the gradients are computed by C1. However, for the inference process, aggregation can
be carried out on any party since gradients are not computed, enabling serverless, first-hand
inferencing capability.
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Algorithm 2 STVT
Data: Secretly shared transformed matrices ⟨φX ⟩, ⟨φY ⟩
Parameter: number of trees T
Output: Distributed autoregressive XGBoost tree

1: Initialize predictions ⟨φ̂Y ⟩k= 0 on all parties Ck
2: Initialize Treesk = [ ] on all parties Ck
3: for t ∈ [1,T ] do
4: treetk = SecureFit(⟨φX ⟩k,⟨φY ⟩k,⟨φ̂Y ⟩k)
5: ⟨φ̂Yt ⟩k = treetk .Predict(⟨φX ⟩k)
6: if active party C1 then
7: φ̂Yt = ∑

K
i=1⟨φ̂Yt ⟩k{Aggregate predictions}

8: φ̂Y = φ̂Y + φ̂Yt{Add to final predictions}
9: end if

10: Treesk.append(treetk ) on every party Ck
11: end for
12: return Treesk on party Ck

4.5 STVL

In the context of STVL, our primary objective is optimizing the coefficients, denoted as A,
in Equation 3.2. This optimization can be approached directly or iteratively, mirroring the
two-step regression process. The key distinction here is that the traditional centralized op-
erations are replaced with their SMPC equivalents to enable compatibility for VFL. Details
are outlined in Algorithm 3. In the centralized version of this process, as we previously
explored, the optimization of the coefficients can be accomplished using either iterative
methods or direct optimization techniques, like in Equation 3.6 and Equation 3.7, which
use matrix operations. This is reflected in several steps within Algorithm 3, where matrix
operations such as multiplications (lines 8-9; 13-19) and inverses (line 14) are conducted
on secretly shared data. While Han et al. [20] have provided algorithms for the two-party
scenario, we have extended these techniques to accommodate a multi-party context.

N-party matrix multiplication. To extend matrix multiplication to multiple parties (al-
gorithm 4), we view the computation of every output element Wi, j as a scalar product of row
and column vectors (line 3). A scalar product between two vectors involves an element-wise
multiplication of the elements followed by a summation of the products. Using Beaver’s
triples method and addition on secretly-shared values (see section 3.1), these operations can
be securely computed.

N-party matrix inverse. For matrix inverses (Algorithm 5), we compute the inverse of
a secretly-shared matrix, U , using a non-singular perturbation matrix, P, generated by the
active participant (line 2). The idea is to compute the inverse of UP, i.e., UP−1 = P−1U−1

and then pre-multiply this with P to obtain U−1. The aggregation of product UP on a
passive party does not leak U as the party does not know P (line 5). (UP)−1 can then
be computed locally and secretly shared, followed by a matrix multiplication with P, i.e.,
P× (UP)−1 =U−1, giving the result as a secret share (lines 7-10).
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Algorithm 3 STVL
Data: Secretly shared transformed matrices ⟨φX ⟩, ⟨φY ⟩
Accepted Parameters: O, α, e
Output: Shared optimized coefficients ⟨A⟩

1: for step ∈ [1,2] do
2: if step == 1 then
3: Initialize residuals to zero in ⟨φX ⟩k for all Ck
4: end if
5: if O == “iterative” then
6: Randomly initialize ⟨A⟩k for all Ck
7: for e iterations do
8: Get ⟨φ̂Y ⟩ = ⟨φX ⟩×⟨A⟩ using Alg. 4
9: ⟨ dl

dA ⟩ = 2×(⟨φX ⟩)T×(⟨φ̂Y ⟩ - ⟨φY ⟩) (Alg. 4)
10: Perform update: ⟨A⟩ := ⟨A⟩ - α⟨ dl

dA ⟩
11: end for
12: else if O == “direct” then
13: ⟨Z⟩ = (⟨φX ⟩)T×⟨φX ⟩ using Alg. 4
14: ⟨W ⟩ = ⟨Z−1⟩ using Alg. 5
15: ⟨V ⟩ = (⟨φX ⟩)T×⟨φY ⟩ using Alg. 4
16: ⟨A⟩ = ⟨W ⟩ × ⟨V ⟩
17: end if
18: if step == 1 then
19: Predict: ⟨φ̂Y ⟩ = ⟨φX ⟩ × ⟨A⟩ using Alg. 4
20: Estimate residuals ⟨ε⟩ = ⟨φY ⟩ - ⟨φ̂Y ⟩
21: Set ⟨φX ⟩k using residuals from ⟨ε⟩k for all Ck
22: end if
23: end for
24: return ⟨A⟩k on all parties Ck

Algorithm 4 Secure Matrix Multiplication
Data: Secretly shared matrices ⟨U⟩ and ⟨V ⟩ across K parties, C1,C2, ..,CK
Output: ⟨W ⟩, i.e., product W =U×V as shares across K parties

1: for each row index i do
2: for each column index j do
3: ⟨T⃗ ⟩ = ⟨ ⃗U [i, :]⟩ * ⟨ ⃗V [:, j]⟩ {Element-wise product} ⟨Wi, j⟩k = sum{⟨T⃗ ⟩k}
4: end for
5: end for
6: return ⟨W ⟩k on party Ck

33



4. METHODOLOGY

Algorithm 5 Secure Matrix Inverse
Data: Secretly shared matrix ⟨U⟩ across K parties, C1,C2, ..,CK
Output: ⟨V ⟩, i.e., inverse, V =U−1, as a distributed share

1: if active party (P1) then
2: Generate random non-singular perturbation matrix P and secretly share as ⟨P⟩
3: end if
4: Get ⟨Q⟩ = ⟨U⟩ × ⟨P⟩ using Alg. 4
5: Aggregate Q = ∑

K
k=1⟨Q⟩k on passive party C j; j > 1

6: if Passive party C j then
7: Compute R = Q−1 = (UP)−1 = P−1U−1

8: Generate shares ⟨R⟩
9: end if

10: Compute ⟨T ⟩ = ⟨U−1⟩ = ⟨P⟩ × ⟨R⟩ using Alg. 4
11: return ⟨T ⟩k on party Ck
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Chapter 5

Experiments and Analysis

We assess the predictive accuracy of STV in comparison to centralized approaches. Ad-
ditionally, we analyze the scalability of both iterative and direct optimization methods for
linear forecasters with respect to the overall communication cost.

5.0.1 Forecasting accuracy

We compare the performance of STVL (direct optimization) and STVT with other central-
ized methods: Long-Short-Term Memory (LSTM), SARIMAX with MLE1, and diffusion
models for forecasting (SSSDS4) [3].

The LSTM has two layers of 64 LSTM units each, followed by two dense layers
of size 32 and 1. We train the model for 500 epochs and use a batch size 32 with a
default learning rate of 0.001. The diffusion configuration has the following settings2:
T = 200,β0 = 0.0001,βT = 0.02. For the wavenet configuration, we use two residual lay-
ers, four residual and skip channels, with three diffusion embedding layers of dimensions
8×16. Training is done for 4000 iterations with a learning rate of 0.002.

Five public forecasting datasets are used: Airline passengers [27], Airquality data [50],
PV Power [23], SML 2010 [39], and Rossman Sales [1]. An industry-specific dataset to es-
timate a performance parameter from inline sensor values in semiconductor manufacturing
is also included [17, 18]. Additional details on the datasets, evaluation, and pre-processing
are provided in Appendix C and Appendix D.

A variant of prequential window testing [6] is used since industrial time series data can
significantly change after intervals due to machine changes/repairs. The dataset is parti-
tioned into multiple windows of a given size, each further divided into an 80-20 train-test
split. After forecasting the test split, the model is retrained on the next window (see Ap-
pendix D).

For a consistent comparison, all features and outputs are scaled between 0 and 1. We
thus present the normalized mean-squared errors (n-MSE) of the predictions, and ground
truths on the test set are measured and averaged across multiple windows. We then average

1https://www.statsmodels.org/devel/generated/statsmodels.tsa.statespace.sarimax.SARIMAX.html
2Using https://github.com/AI4HealthUOL/SSSD.git
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5. EXPERIMENTS AND ANALYSIS

Dataset
STVL STVT SARIMAX LSTM SSSDS4 Rel. imp. (%)

(SARIMAX, VFL) (ART, VFL) (MLE, Centralized) (Centralized) (Centralized)

Airquality
0.00069 0.00100 0.00088 0.00114 0.00150 21.59

(0.00008) (0.00056) (0.00031) (0.00076) (0.00073)

Airline passengers
0.00304 0.00808 0.00222 0.04130 0.00392 -36.94

(0.00086) (0.00379) (0.00148) (0.04086 ) (0.00226)

PV Power
0.00138 0.00249 0.00159 0.14333 0.00167 15.22

(0.00136) (0.00254) (0.00095) (0.23033) (0.00058)

SML 2010
0.00787 0.01875 0.01033 0.01716 0.01085 23.81

(0.00711) (0.01458) (0.01061) (0.01086) (0.00871)

Rossman Sales
0.00074 0.00243 0.00077 0.00639 0.00331 3.89

(0.00012) (0.00153) (0.00006) (0.00280) (0.00151)

Industrial data
0.00602 0.04118 0.00969 0.00617 0.01875 2.43

(0.00049) (0.04051) (0.00449) (0.00203) (0.00313)

Table 5.1: Average normalized MSE and (standard deviation) results for different datasets
and methods. Relative improvement of the best VFL method with the best centralized one is
also shown (rel. imp). Lowest MSE values are highlighted in bold. SML 2010, Air quality,
and Rossman Sales have prequential window sizes 50, 100, 200, and 400. PV Power uses
25, 50, 100, and 200. Airline passengers uses 60, 80, 100, 120, and 140. Finally, the
industrial data uses 25, 50, and 100.

the n-MSE scores across different window sizes to generalize performance scores across
varying forecasting ranges, the results of which are in Table 5.1.

Table 5.1 demonstrates that, in general, STVL stands out as the best-performing method
across various datasets. We opt for direct optimization due to its convergence properties, as
iterative gradient descent eventually reaches the same value over time. This strategic choice
results in a remarkable improvement of up to 23.81%

For a deeper understanding, we present regression plots for a window from both the
largest and smallest prequential window sizes for each dataset in Figure 5.1 and Figure 5.2.
Notably, all the methods demonstrate the ability to capture patterns in the time series, as ob-
served in Air Quality data and Rossman Sales (see figures 4.1c, 4.1d, 4.2c, 4.2d). However,
it’s worth noting that highly complex models, such as SSSDS4, may occasionally exhibit
overfitting, highlighting the limitation of neural networks when dealing with small datasets
and short-term forecasting (see figures 4.1e, 4.2a, 4.2b).

5.0.2 Scalability

We quantify the total communication costs of optimization using the normal equation (NE)
and iterative batch gradient descent (GD), aiming to analyze the scalability of these two
methods as the number of parties, features, and samples increase.

We systematically vary the number of parties across 2, 4, and 8; features between 10 and
100; and samples with values of 10, 100, and 1000. To ensure that communication costs
depend solely on the dataset dimensions and the number of parties, we generate random
data matrices for all valid combinations of features and samples on each client, adhering
to the constraint that the number of features should be less than or equal to the number of
samples (#features ≤ #samples). The coefficient optimization is performed using either the
direct approach (Algorithm 3, lines (13-19)), or batch gradient descent (Algorithm 3, lines
(6-10)), with varying numbers of iterations (10, 100, 1000).
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Figure 5.1: Regression plots showing the forecasts of various methods for the largest and
smallest prequential window sizes (in brackets). Datasets present are Industrial data, Air
Qualtiy, and SML 2010.
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Figure 5.2: Regression plots showing the forecasts of various methods for the largest and
smallest prequential window sizes (in brackets). Datasets present are PV Power, Rossman
Sales, and Flight Passengers.
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For client scaling, we average the total communication costs across different combina-
tions of features and samples for each specified number of parties. Similarly, we assess
feature and sample scaling by averaging the total costs across different (sample, client) and
(feature, client) combinations. The results of these analyses are presented in Table 5.2,
Table 5.3, and Table 5.4. The complete version of these tables is provided in Appendix E.

parties NE
GD iterations

10 100 1000
2 2.54E+08 2.33E+07 2.33E+08 2.33E+09
4 5.85E+08 4.65E+07 4.65E+08 4.65E+09
8 1.48E+09 9.31E+07 9.31E+08 9.31E+09

Table 5.2: Average of total communication sizes (bytes) with varying parties.

Features NE
GD iterations

10 100 1000
10 9.77E+06 8.34E+06 8.34E+07 8.34E+08
100 1.92E+09 1.23E+08 1.23E+09 1.23E+10

Table 5.3: Average of total communication sizes (bytes) with varying feature counts.

Samples NE
GD iterations

10 100 1000
10 1.16E+06 2.76E+05 2.76E+06 2.76E+07
100 4.53E+08 1.24E+07 1.24E+08 1.24E+09

1000 1.48E+09 1.23E+08 1.23E+09 1.23E+10

Table 5.4: Average of total communication sizes (bytes) with varying samples.

From these three tables, we discern that when the number of parties, samples, or features
is relatively small, the cost of direct optimization (NE) is comparable to an iterative version
with a higher number of iterations. For example, with 2 parties, the cost of NE closely
aligns with GD with 100 iterations, as evident in Table 5.2. However, as we increase the
number of parties to 8, the cost of NE surpasses that of GD with 100 iterations.

Similarly, in Table 5.3 and Table 5.4, we observe that NE exhibits lower costs than
GD with 100 iterations when the number of features or samples is limited. However, this
balance shifts when we increase the feature and sample counts.

Notably, the cost of GD grows proportionally with the number of iterations, eventually
surpassing NE, particularly when 1000 iterations are employed. In practical scenarios, hy-
perparameters such as the learning rate significantly influence the convergence steps, which
might be challenging to fine-tune in a distributed setup. If the correct hyperparameters are
chosen, the number of iterations for convergence could be small, making gradient descent
a better option. However, for the wrong set, the iterations to converge may be signifi-
cant, making the cost of direct optimization a more viable option. Therefore, the choice
between iterative and direct optimization depends on several factors, necessitating adapt-
ability within frameworks.
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Chapter 6

Future Work and Conclusions

This chapter gives possible future directions to continue this line of research. We also
provide concluding remarks on the scope of this work.

6.1 Future work

While this work marks an essential initial step toward forecasting within the framework
of Vertical Federated Learning (VFL), there remain significant areas for improvement and
exploration, which we highlight as follows.

1. Extension to complex forecasting models. The current models employed in this
study, although effective for certain scenarios, possess limitations in capturing the
intricate patterns of highly complex time series data, especially for long-term fore-
casting. As we find ourselves in an era of unprecedented data availability due to
digitalization, the potential for more advanced models capable of handling this com-
plexity is noteworthy. Recent advancements in forecasting, such as Long Short-Term
Memory (LSTM) networks and the emerging state-of-the-art diffusion models, show
promise. However, these cutting-edge models are primarily designed for centralized
data scenarios, making their adaptation to the vertically partitioned data context a
natural next step. By achieving this, we aim to assemble a diverse set of forecasting
models tailored for diverse industry scenarios.

2. Hybrid horizontal and vertical federated learning. From a practical standpoint, fa-
cilitating the onboarding of new participants or collaborators into the VFL forecasting
environment is a crucial consideration. Currently, the retraining process poses chal-
lenges for new entrants, leading us to contemplate a more efficient approach. This
involves the possibility of independently training clusters of VFL models, subse-
quently aggregating them to harness their collective forecasting power. This innova-
tion, which bridges elements of both horizontal and vertical federated learning, holds
the potential to significantly reduce costs and computational burdens while maintain-
ing forecast accuracy.
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6.2. Conclusion

3. Stronger privacy. Although this work assumes semi-honest participants, extending
our research to address malicious adversaries represents a valuable and necessary
future endeavor. By fortifying the VFL framework against adversarial attacks, we
elevate the robustness and reliability of our collaborative forecasting system.

6.2 Conclusion

This work introduces a novel privacy-preserving forecasting framework for vertical feder-
ated learning. By integrating SS and SMPC, we achieve privacy guarantees and address
crucial challenges faced by the manufacturing industry.

One of the key aspects of our approach is to distribute predictions’ ownership among
multiple parties, addressing requirements for inference privacy. This is a shift from the
conventional VFL assumptions that predictions are always available to a specific party.

Our performance evaluations show that VFL methods have competitive performance
against centralized methods. Furthermore, our scalability analyses highlight the nuanced
dynamics between iterative and direct optimization, highlighting the need for an adaptable
framework.

For the future, several avenues of exploration beckon. Firstly, the models employed
in this study have limitations when capturing the patterns present in highly complex time
series data for which LSTMs and diffusion models are better suited. We aim to adapt these
models to the vertically partitioned data context. Another area is exploring a hybrid ap-
proach combining horizontal FL and VFL elements by independently training clusters of
VFL models, later aggregated to harness their collective forecasting power. Lastly, forti-
fying our VFL framework against adversarial attacks is essential. While our current work
assumes semi-honest participants, the reality of malicious adversaries cannot be ignored.
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Appendix A

Glossary

In this appendix we give an overview of frequently used terms and abbreviations.

ART: Autoregressive Tree

GD: Gradient Descent

HE: Homomorphic Encryption

LS: Least Squares

LSTM: Long Short Term Memory

MLE: Maximum Likelihood Estimation

MSE: Mean Squared Error

NE: Normal Equation

NN: Neural Network

SMPC: Secure Multi-Party Computation

SS: Secret Sharing

VFL: Vertical Federated Learning
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Appendix B

SMPC-based XGBoost for VFL

XGBoost [7] is a tree-based gradient-boosting algorithm, that iteratively generates an en-
semble of trees by greedily learning a new tree at every step to improve on the earlier one.
Each tree has weights assigned to its leaf nodes. When making a prediction for a sample,
the weights corresponding to the leaf to which the sample was assigned to are summed to
give the final prediction score.

To generate a tree at every iteration, it uses first and second order gradients of the latest
predictions, i.e., from the previous tree, in order to set the optimal weights for the new one.

For each sample with index i, the first and second order gradients are denoted as gi and
hi, respectively. The sum of the gradients of all instances on a particular node is used to
set the new weights for it. For example, for node j and corresponding instance set I j, the
accumulated values of g and h are computed as follows: G j = ∑i∈I j gi, and H j = ∑i∈I j hi.
Based on this, for a tree with T nodes, the weights and objective are calculated as follows:

w j =−G j/(H j +λ) (B.1)

ob j =−0.5×
T

∑
j=1

((G j)
2/(H j +λ))+ γT (B.2)

, where γ,λ are regularizers. While Equation B.1 sets the new weights, Equation B.2 is used
to identify how to split nodes at each iteration.

With this in mind, using the secret sharing primitives it is possible to compute these
functions to extend XGBoost to VFL, which we show in Algorithm 6.

When XGBoost is trained for VFL using secret sharing, each client obtains a local tree
with their own weights as shown in Figure B.1. In the figure, the weights for clients 1 and
2 are distributed such that their local weights are shares of the weights of the centralized
version, i.e., wi = wi1+wi2 ∀i ∈ [1,4]

The indicator vector s on line 1, is a binary vector that is used to point out the location of
instances on nodes. We explain this with the help of the example in Figure B.2. To calculate
the updated weight of the node with instances that have an age greater than 30 (bottom left),
we need to find the sum of ∑i∈I j gi, where I j = {2,4}( Equation B.1). The indicator vector
in this case would be s = [0,1,0,1], meaning that nodes 2 and 4 are part of node j. If we
have a vector of the gradients, g = [g1,g2,g3,g4], we can compute g2+g4 as s⊙g, i.e., the
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Figure B.2: Mapped instances to a node in XGBoost

inner product. Under VFL, both the gradients g, and the indicator vector s, exist as secret
shares across clients, i.e., s=∑

K
k ⟨sk⟩k, and g=∑

K
k ⟨gk⟩k. Therefore, to compute the product,

we can do it using secret shared primitives for matrix multiplication.
The process of split-finding and setting weights is done using the SecureBuild function,

which makes use of secret sharing primitives to compute the functions in Equation B.2 and
Equation B.1. We defer readers to the implementation in Xie et al. [54] for additional details
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B. SMPC-BASED XGBOOST FOR VFL

Algorithm 6 Fit XGBoost [54]
Data: Secretly shared matrices: ⟨X⟩, ⟨Y ⟩, ⟨Ŷ ⟩ across K clients, C1,C2, ..,CK

Output: Learned tree for the current iteration, one on each
client.

1: Initialize indicator vector s← 1 on all Ck
2: if active client C1 then
3: Compute derivatives g,h
4: Generate shares ⟨g⟩, ⟨h⟩, ⟨s⟩
5: end if
6: Treek = SecureBuild(⟨g⟩k,⟨h⟩k, ⟨s⟩k) on each Ck
7: return Treek on Ck

on this.

50



Appendix C

Datasets and Pre-processing

We make use of the following public datasets in our work: Air Quality [50], SML 2010 [39],
PV Power [23], Airline Passengers [27], and Rossman Sales [1]. Here we provide a brief
description of each dataset and the pre-processing steps applied to the dataset itself. These
are not these steps are unconnected with the series pre-processing steps which are part of
the STV framework. For all datasets, we scale all features and output values between the
range 0 to 1 using a MinMax scaler to ensure that all datasets have the same range of values
for comparing the MSE losses.

C.1 Air Quality

The Air Quality dataset contains approximately 9300 samples of multivariate time-series
data, with 15 attributes. Five of these are true output values on five gases: Carbon Monox-
ide (CO), Non Metanic Hydrocarbons (NMHC)), Benzene (C6H6)), Total Nitrogen Oxides
(NOx), and Nitrogen Dioxide (NO2). Exogenous features such as the temperature, ozone
levels, and humidity are provided, along with strongly correlated sensor data for each of the
five gases. The dataset contains missing values and duplicates, and contains hourly data for
each of the five gases.

We preprocess the data by discarding all rows with any missing information and remove
duplicate rows. We predict the ground truth values of CO using the other sensor values and
information such as temperature and humidity as the exogenous regressors.

C.2 SML 2010

The SML 2010 dataset contains infomation from a monitor system in a domotic house. It
contains approximately 4100 samples with 24 attributes in total, corresponding to 40 days of
monitoring data. The attributes contain values such as the indoor and outdoor temperature,
lighting levels, Carbon Dioxide levels, relative humidity, rain, windspeed, etc. We predict
the indoor habitation temperature using the others as exogenous features.
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C. DATASETS AND PRE-PROCESSING

C.3 Airline Passengers

Airline Passengers is a small dataset of 145 samples containing the number of international
airline passengers (in thousands) on a monthly basis. The exogenous features are also just
two: the year and the month. We predict the number of passengers using the year and month
as exogenous regressors.

C.4 PV Power

The PV Power dataset contains around 3100 samples of solar power generation data from
each of two power plants over a 34-day period. Attributes include features such as the DC
power, AC power, yield, ambient temperature, irradiation levels, and the data and time.

We drop identifiers, empty, and duplicate data. We also drop the DC power attribute,
and total yield as these features are very strongly correlated with the AC output. As outputs,
we predict the AC power generation using the remaining features as exogenous regressors.

C.5 Rossman Sales

The Rossman Sales dataset contains sales data for 1115 store outlets. The attributes consists
of features such as holidays, store type, competitor distance, number of customers, and
promotional details among others. We predict the sales of the store with ID 1, using the
other features as exogenous regressors.
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Appendix D

Experimental Evaluation

As mentioned in the main text, we use a variation of prequential window testing [6], whereby
the entire data is broken into windows of a defined length, each one internally split in an
80-20 train-test ratio. This is illustrated in Figure D.1.

For each window, we train on the portion allotted for training and forecast the remaining.
Within a given training window, we first generate the polynomial by processing the time
series as in line 3 of Algorithm 1. Identifying the parameters for generating the polynomial
can be automated using implementations such as auto arima1.

For each window size, such as 50, 100, 200, 400, we average the MSE loss between
the forecasts and the true values across all windows. The average MSE per-window size is
given in Table D.1, which is an expanded version of Table 5.1.

Time

Prequential
Window

Tr
ai
ni
ng

80
%

Fo
re
ca
st
in
g

20
%

Figure D.1: Prequential window evaluation with re-training in every window

1https://alkaline-ml.com/pmdarima/modules/generated/pmdarima.
arima.auto arima.html
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D. EXPERIMENTAL EVALUATION

Dataset Window size STVL SARIMAX MLE LSTM STVT SSSDS4

Air quality

50 0.00071 0.00110 0.00244 0.00198 0.00270
100 0.00059 0.00048 0.00055 0.00075 0.00086
200 0.00066 0.00124 0.00069 0.00067 0.00100
400 0.00080 0.00068 0.00087 0.00061 0.00144
Avg. 0.00069 0.00088 0.00114 0.00100 0.00150

SML 2010

50 0.00645 0.00621 0.00343 0.00755 0.01373
100 0.01958 0.02819 0.02778 0.04305 0.02384
200 0.00500 0.00662 0.02781 0.01709 0.00336
400 0.00045 0.00030 0.00960 0.00729 0.00249
Avg. 0.00787 0.01033 0.01716 0.01875 0.01085

Rossman Sales

50 0.00070 0.00079 0.00464 0.00183 0.00589
100 0.00064 0.00071 0.00340 0.00496 0.00281
200 0.00068 0.00086 0.00674 0.00088 0.00233
400 0.00095 0.00072 0.01079 0.00206 0.00220
Avg. 0.00074 0.00077 0.00639 0.00243 0.00331

PV Power

25 0.00133 0.00093 0.00950 0.00660 0.00131
50 0.00360 0.00307 0.01037 0.00258 0.00143
100 0.00004 0.00063 0.01115 0.00010 0.00267
200 0.00054 0.00175 0.54227 0.00068 0.00128
Avg. 0.00138 0.00159 0.14333 0.00249 0.00167

Airline Passengers

60 0.00261 0.00113 0.11651 0.00673 0.00110
80 0.00450 0.00444 0.00339 0.00628 0.00403
100 0.00308 0.00066 0.01982 0.00270 0.00798
120 0.00316 0.00136 0.05164 0.01134 0.00356
140 0.00185 0.00351 0.01512 0.01332 0.00293
Avg. 0.00304 0.00222 0.04130 0.00808 0.00392

Table D.1: Average normalized MSE values for different public datasets, with different
prequential window sizes
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Appendix E

Scalability Experiments

The complete version of Table 5.2,Table 5.3, and Table 5.4 is shown in Table E.1. As
the communication costs don’t change with number of trials, the standard deviation is not
included.

parties features samples Normal Equation
GD iterations

10 100 1000

2
10

10 2.49E+05 1.17E+05 1.17E+06 1.17E+07
100 1.17E+06 9.81E+05 9.81E+06 9.81E+07
1000 1.04E+07 9.62E+06 9.62E+07 9.62E+08

100
100 1.94E+08 9.62E+06 9.62E+07 9.62E+08
1000 1.06E+09 9.62E+07 9.62E+08 9.62E+09

4
10

10 7.46E+05 2.36E+05 2.36E+06 2.36E+07
100 2.59E+06 1.96E+06 1.96E+07 1.96E+08
1000 2.11E+07 1.92E+07 1.92E+08 1.92E+09

100
100 5.81E+08 1.92E+07 1.92E+08 1.92E+09
1000 2.32E+09 1.92E+08 1.92E+09 1.92E+010

8
10

10 2.48E+06 4.74E+05 4.74E+06 4.74E+07
100 6.17E+06 3.93E+06 3.93E+07 3.93E+08
1000 4.31E+07 3.85E+07 3.85E+08 3.85E+09

100
100 1.93E+09 3.85E+07 3.85E+08 3.85E+09
1000 5.41E+09 3.84E+08 3.84E+09 3.84E+10

Table E.1: Total communication sizes ( bytes) for varying number of parties features and
samples. Compared optimization methods are normal equation and batch gradient descent
(GD)
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