
 
 

Delft University of Technology

Integral system safety for machine learning in the public sector
An empirical account
Delfos, J.; Zuiderwijk, A. M.G.; van Cranenburgh, S.; Chorus, C. G.; Dobbe, R. I.J.

DOI
10.1016/j.giq.2024.101963
Publication date
2024
Document Version
Final published version
Published in
Government Information Quarterly

Citation (APA)
Delfos, J., Zuiderwijk, A. M. G., van Cranenburgh, S., Chorus, C. G., & Dobbe, R. I. J. (2024). Integral
system safety for machine learning in the public sector: An empirical account. Government Information
Quarterly, 41(3), Article 101963. https://doi.org/10.1016/j.giq.2024.101963

Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.1016/j.giq.2024.101963
https://doi.org/10.1016/j.giq.2024.101963


Government Information Quarterly 41 (2024) 101963

Available online 23 August 2024
0740-624X/© 2024 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

Integral system safety for machine learning in the public sector: An 
empirical account

J. Delfos (Jeroen)*, A.M.G. Zuiderwijk (Anneke), S. van Cranenburgh (Sander), C.G. Chorus 
(Caspar), R.I.J. Dobbe (Roel)
Delft University of Technology, Faculty of Technology, Policy and Management, Jaffalaan 5, 2628, BX, Delft, the Netherlands

A R T I C L E  I N F O

Keywords:
Machine learning
Artificial intelligence
Systems theory
System safety
Public sector
Public policy
Governance

A B S T R A C T

This paper introduces systems theory and system safety concepts to ongoing academic debates about the safety of 
Machine Learning (ML) systems in the public sector. In particular, we analyze the risk factors of ML systems and 
their respective institutional context, which impact the ability to control such systems. We use interview data to 
abductively show what risk factors of such systems are present in public professionals' perceptions and what 
factors are expected based on systems theory but are missing. Based on the hypothesis that ML systems are best 
addressed with a systems theory lens, we argue that the missing factors deserve greater attention in ongoing 
efforts to address ML systems safety. These factors include the explication of safety goals and constraints, the 
inclusion of systemic factors in system design, the development of safety control structures, and the tendency of 
ML systems to migrate towards higher risk. Our observations support the hypothesis that ML systems can be best 
regarded through a systems theory lens. Therefore, we conclude that system safety concepts can be useful aids for 
policymakers who aim to improve ML system safety.

1. Introduction

Machine learning (ML) systems are increasingly used in the public 
sector (Engstrom et al., 2020; van Noordt & Misuraca, 2022). The 
expectation of such systems is that they make public services cheaper 
and more effective (Maciejewski, 2017). These benefits are expected 
from ML's ability to offer personalized services, make more accurate 
forecasts, and model complex systems (Margetts & Dorobantu, 2019). 
Examples of ML uses in the public sector can be found in the interaction 
with citizens (Aoki, 2020), detection of fraud (Pérez López et al., 2019), 
and profiling (Brennan et al., 2009). ML systems include a range of al
gorithms that learn from data and subsequently can predict new data 
(Zhou, 2021). It is the ability to learn from data that makes ML systems 
powerful tools for governments, who gather large amounts of data 
during their administrative duties.

Besides the opportunities, scholars have identified several negative 
implications of ML systems in the public sector. For example, the idea 
that ML systems might deliver biased results across different groups or 
individuals with particular characteristics is widely acknowledged 
(Fountain, 2022; Mehrabi et al., 2022). Biased outcomes of ML systems 

may result from biased data or design choices within the ML algorithm 
itself (Mehrabi et al., 2022), potentially leading to unfair and discrimi
natory decisions (Fountain, 2022; Kroll et al., 2015). Even if an ML 
system has little bias, it will still make errors, which can lead to incorrect 
decision-making and harmful outcomes (Dobbe, 2022). Additionally, 
working with ML systems can lead to unclarity in the attribution of re
sponsibilities. The opacity of ML systems, found in, for example, artifi
cial neural networks, can hinder civil servants from accessing coherent 
explanations for the outcomes of ML, thereby posing challenges to 
justifying and scrutinizing decisions (Janssen & Kuk, 2016; Wieringa, 
2020). Furthermore, privacy breaches may be induced by the use of ML 
systems. The potential of ML systems may move organizations to use 
personal data unlawfully (Broeders et al., 2017). Although some of these 
negative implications are relevant for private organizations, ML system 
applications in the public sector present unique challenges (Desouza 
et al., 2020). These challenges include the public sector's need for 
transparency (Bryson & Winfield, 2017), the high diversity of stake
holders with conflicting agendas (Desouza et al., 2020), and the general 
requirement of ML systems in the public sector to promote the public 
good (Cath et al., 2018).
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Several policy and regulation initiatives have emerged on both na
tional and international levels to counter these negative implications. 
First, there have been initiatives to guide public algorithmic system 
design with the help of guidelines (High-Level Expert Group on AI, 
2019). Second, calls for transparency have led to policies requiring 
public organizations to be more transparent about using algorithmic 
systems (Artificial Intelligence Act, 2024; Overheid.nl, 2023). Third, 
supervisory agencies are tasked with supervising the public and com
mercial use of algorithmic systems (Artificial Intelligence Act, 2024; 
Dutch Data Protection Authority, 2023). Fourth, regulations are in the 
making that target both public and commercial use of Artificial Intelli
gence in Europe (Artificial Intelligence Act, 2024). These policies and 
regulations aim to improve the safety of ML systems. The first objective 
of the Artificial Intelligence Act is to “ensure that AI systems placed on 
the Union market and used are safe and respect existing law on funda
mental rights and Union values” (Artificial Intelligence Act, 2024, p. 3).

There is an ongoing discussion about how policies should be 
designed to make ML systems safer. Within these discussions, a common 
critique of current practices for designing these policies can be observed: 
ML systems are part of complex socio-technical systems without a single 
and easy path towards safety. For example, first, addressing bias in the 
data is needed but not enough since the practices that lead to bias are 
embedded in broader societal problems (Fountain, 2022; Hoffmann, 
2019). Second, the explainability of ML systems is helpful for detecting 
errors produced by these systems, but mistakes will still be made 
(Janssen et al., 2022). Third, placing an ML system in an existing system 
will change the behavior of actors in this system, which cannot be 
accounted for by the technological components of an ML system (Selbst 
et al., 2019).

However, we identify three major gaps in the literature that hinder 
the promotion of the safety of ML systems. First, ML systems are sparsely 
researched within the context in which they are implemented. When 
describing these systems' negative implications, there is a focus on the 
design phase and the ML system's technical artifacts. This focus covers 
only a part of the implications, as some only emerge when a system is 
implemented (Dobbe et al., 2018). The implementation of ML systems 
poses different challenges compared to the design phase. For example, it 
requires different expertise, which is found to be lacking, especially in 
the public sector (van Noordt & Tangi, 2023). Furthermore, the impact 
of ML systems is highly context-dependent and can only be assessed 
when considering institutions, processes (Gansky & McDonald, 2022), 
and social and political contexts (Cath & Jansen, 2022). Zuiderwijk et al. 
(2021) note that the context of the public sector has scarcely been the 
subject of research in conceptual and practice-driven studies. Although 
scholars have advocated for adopting non-technical and contextual 
factors in, for example, frameworks for data governance (Janssen et al., 
2020) and strategies for explaining algorithmic decision-making (de 
Bruijn et al., 2022), this approach is lacking when studying the negative 
implications of ML systems in the public sector.

Second, we see a gap in applying rigorously defined concepts when 
discussing ML system implications. Risks, hazards, and challenges, 
amongst others, are terms commonly used to indicate negative impli
cations but are not linked to concepts found in safety disciplines, some of 
which have intimate insight into software-based systems (Dobbe, 2022). 
Studies that map the challenges of ML systems have provided relevant 
overviews of aspects of ML systems (e.g., Sun & Medaglia, 2019; Wirtz 
et al., 2022), but it is left undescribed how these aspects relate to each 
other. For example, Wirtz et al. (2022) describe both ‘discrimination of 
minorities’ and ‘defining human values’ as ‘ethical AI risks’, without 
further explaining any causal or hierarchical relationship between these 
aspects. This lack of clear conceptualization hinders the progress to
wards a deeper understanding of the implications of ML systems in the 
public sector, as well as a proper diagnosis of causal relationships 
involved and possible interventions to prevent or mitigate such impli
cations. Such understanding is crucial for developing effective policies, 
regulations, and organizational capabilities to promote the safety of ML 

systems.
Third, there is a gap in the empirical underpinning of conceptual 

studies into ML systems used in the public sector (Aoki, 2020; Zuider
wijk et al., 2021). Such Additional empirical data will provide a more 
comprehensive and evidence-based understanding of ML implementa
tion's actual consequences and dynamics in real-world contexts.

In this paper, we aim to fill these gaps. The first gap, researching ML 
systems in their implemented context, is addressed by adopting a sys
tems perspective. Such a systems perspective has been advocated for by 
several scholars (Dwivedi et al., 2021; Janssen & Kuk, 2016; Straub 
et al., 2023). We use systems theory as our base for this systems 
perspective. Systems theory has been the main underlying theory in the 
research field of system safety (Leveson, 2011). This research field has 
proven to be valuable in several engineering sectors, such as the space, 
aviation and automotive sector. Although conceptual studies have 
shown that valuable lessons can be drawn from system safety, its con
cepts and ideas have yet to find their way into the field of information 
systems. We use the work of Leveson (2011) on system safety, which 
introduces a set of rigorously defined concepts through which systems 
thinking can be used to address the safety of systems. In doing so, we 
address the lack of clear conceptualization of safety concepts. Lastly, we 
introduce new empirical data to address the third gap, conceptual work's 
lack of empirical underpinning. This data is gathered during interviews 
with twelve Dutch public professionals who represent the main stake
holders in the design, management, and supervision of ML systems for 
public decision-making. Filling these literature gaps results in a set of 
perceptions of the interviewees, which can be explained by systems 
theory. Furthermore, there are themes that, when adopting a systems 
theory lens, one would expect to observe in the perceptions of the in
terviewees but that were not found. We argue that these themes are in 
fact relevant and may be given more attention in the ongoing debate 
about, and the design of, policies for ML systems safety.

We argue that the analysis of perceptions of public professionals 
working in the field of ML systems through a systems theory lens is a 
novel contribution to the field of information systems. Furthermore, 
literature that couples the system safety discipline to the domain of in
formation systems is still limited. This paper may serve as a starting 
point for further research, which uses concepts of system safety to 
address ML systems risks. This paper yields a first exploration of its 
merits. The chosen method for data collection, i.e., semi-structured in
terviews, is suited for the exploratory character of this study and the 
‘investigation of causation’ (Gorman et al., 2005). Furthermore, this 
study makes a societal contribution to increase ML systems safety. Cit
izens are skeptical of the use of ML systems in the public sector 
(Haesevoets et al., 2024), while citizen trust in such systems is critical 
for its success (Wirtz et al., 2019). To change citizen attitudes towards 
ML systems, there is a need to move beyond the ‘checkbox mentality’ 
and search for ways to prevent incidents that violate citizen trust in the 
long term (Kleizen et al., 2023). We argue that a systems theory 
approach provides a base for ML system safety.

In the following sections, we introduce our theoretical and concep
tual framework. We then explain our method, after which we present the 
perceptions of the interviewees and link these perceptions to system 
safety concepts in the results section. We proceed with a discussion in 
which we identify gaps between the perceptions of the interviewees and 
system safety and reflect on the applicability of systems theory for 
addressing ML systems in the public sector. We end the paper with the 
limitations and implications of our findings for further research and 
policy-making, and our final conclusions.

2. Theoretical and conceptual framework

Through abductive reasoning, we use systems theory and system 
safety concepts to explain observations about the risk factors of ML 
systems in the public sector. Systems theory and system safety form the 
conceptual framework used to analyze the interview data presented in 
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this paper. In this section, we first show why a systems theory lens is 
applicable for assessing ML systems safety. Subsequently, we introduce 
core concepts of system safety for which we use the work of Leveson 
(2011). These concepts will be used to abductively analyze the percep
tions that we find in the interview data presented in this paper.

2.1. Systems theory and machine learning systems

Although Computer Science and Statistics are at the heart of ML 
systems, its impacts can only be understood in a broader context. The 
human designers of ML systems introduce values and biases in its 
technical design (Janssen & Kuk, 2016), and the data used to train the 
model reflect the human biases of those who registered this data 
(Fountain, 2022). Furthermore, after its design, ML systems are placed 
in a context involving human decision-makers interacting with the 
technical system (Dobbe et al., 2021). These decision-makers may or 
may not agree with ML systems output, which is, amongst others, 
dependent on their experience (Janssen et al., 2022). Factors such as the 
values of the human designers, bias in training data, and the experience 
of human decision-makers are thus key for understanding the workings 
of ML systems. Adopting a scope beyond the technical artifacts and 
adopting a systems perspective when looking at ML systems has been 
advocated by scholars (Janssen & Kuk, 2016; Straub et al., 2023).

System theory goes one step further than extending the scope beyond 
technical artifacts when analyzing a system. It states that systems with a 
certain degree of complexity must be analyzed as a whole and that the 
analysis of subsystems independently will not adequately describe the 
full system (Leveson, 2011). These systems show emergent properties 
that cannot be foreseen when looking at component level behavior of the 
system. ML systems are such systems in which not all behavior can be 
explained at the component level (Dobbe et al., 2021).

2.2. System safety

Systems theory has been used to develop the analysis of the safety of 
engineering systems. The field that originated from this line of thinking 
is called system safety. System safety has been employed to improve the 
safety of, for example, aircraft and spacecraft (Roland & Moriarty, 1990) 
and software systems (Leveson, 1995). One of the most influential 
viewpoints on system safety can be found in the work of Leveson (2011), 
which we will use for the remainder of this section to explain the con
cepts of system safety. The work of Leveson stand out in its potential for 
practitioners responsible for (policies for) the safety of systems. Tools for 
making systems safer and for analyzing accidents are adopted in several 
engineering sectors. Leveson and Weiss (2009) show the relevance of 
system safety for software, and more specifically, (Dobbe, 2022) shows 
that valuable lessons can be learned from system safety concepts for 
addressing the safety of Artificial Intelligence systems.

System safety deviates from more traditional safety engineering in 
seven ways. First, it defies the assumption that safety can be defined on a 
system component level. Rather, accidents result from the interaction 
between these components, even when these components are not failing 
individually. Second, it challenges the common notion that accidents 
result from ‘event chains’ that have a ‘root cause,’ with the observation 
that the entire socio-technical system contributes to safety. This includes 
organizational and social components such as organizational culture and 
safety policy. Third, it points out that probabilistic risk analysis omits 
risk factors that are difficult to quantify and that fixing these risk factors 
should be prioritized over measuring them. Fourth, it describes operator 
errors as a result of the environment the operator works in instead of 
seeing errors purely as the result of human failure. Fifth, it makes a clear 
distinction between safety and reliability. Systems can be safe but un
reliable or unsafe but reliable. As such, what looks like functional and 
reliable software may be unsafe, and software complexity management 
is crucial in preventing additional safety risks. Sixth, it adopts the view 
that systems are dynamic and tend to become more unsafe over time as 

safety measures degrade. The constantly changing context in which a 
system operates means that today's safety measures may not be enough 
to ensure safety tomorrow. Seventh, it sees a danger in attributing blame 
in response to accidents, as this does not help the analysis of how the 
system behavior led to the accident. There is, hence, a natural tradeoff 
between accountability and safety, particularly at the level of organi
zational culture.

System safety uses a set of concepts to describe safety. We introduce 
these concepts in the remainder of this section. Fig. 1 shows a schematic 
representation of these concepts in cohesion. The ML system and its 
context determine the risk factors. These risk factors influence the ability 
to control the behavior of the system. Furthermore, the ML system and 
its context determine how safety management is shaped, which in turn 
determines the control strategies. Both the control strategies and the risk 
factors are the input for human and automated control. If the control is 
performed correctly and, thus, all control conditions are met, safety is 
achieved. If not, the system will enter a hazardous state and there is a 
probability, indicated by the dashed arrow, for an accident to occur.

Safety itself is regarded as the absence of accidents. It is an emergent 
property of a system, meaning it can only be evaluated in the context of 
the complete system and not the technical components alone. Instead, a 
system comprises technical and non-technical elements. To highlight the 
inclusion of non-technical aspects as a part of a system, the term soci
otechnical systems is frequently used in system safety. The boundaries of 
the system can be chosen arbitrarily, but to assess the safety of the 
system, it should include those components over which the system 
designer has control. Accidents are “undesired or unplanned events that 
result in a loss.” (Leveson, 2011, p. 181).

Accidents occur in certain system states in combination with worst- 
case environmental conditions, which are called ‘hazards’. Identifying 
such hazards and their causal factors is called a ‘hazard analysis’. We call 
these causal factors ‘risk factors. Besides technical factors related to the 
soft- and hardware of systems, system safety stresses the importance of 
including non-technical factors such as norms, rules, and standards as 
well as organizational culture and safety policy. In this paper, we will 
refer to these factors as ‘institutional factors', in line with Koppenjan and 
Groenewegen (2005), p. 244), who define institutions as “a set of rules 
that structure the course of actions that a set of actors may choose.”

In system safety, safety is a ‘control problem’. This means that the 
operational process, operated by humans, automation, or a mix/inter
action thereof, aims to respect ‘safety constraints’ that limit the behavior 
of the system to safe situations. This includes preventing the system from 
being in ‘hazardous situations,’ which are situations from which, under 
certain events, an unsafe situation can emerge. Four conditions need to 
be met to have effective control for operators to steer away from haz
ards. First, it must be clear to the controller what the control goal and the 
safety constraints are. Second, the controller needs to be able to influ
ence the system state to steer away from unsafe situations. Third, the 
controller must possess a model of the system containing information 
about the current state of the system, the relation between system var
iables, and how to influence the system. Fourth, the controller must be 
able to observe in what state the system is or might enter in some up
coming time window.

Control exists through observations of the system state and actions to 
influence the system state towards the desired system state. For the 
operation of the system, observations are done through sensors or data 
gathering (including human sensing), and the system state is influenced 
by actuators and/or control actions, either automated, manually oper
ated, or a mix thereof. The system safety field describes the need for 
controls in a sociotechnical system, which may be enacted at varying 
levels, both in the operational process as well as in other neighboring 
processes, including but not limited to design, maintenance, manage
ment, or supervision. Every level of control has its ‘reference channel’ to 
impose a particular criterion on what is being controlled and a 
‘measuring channel’ to understand to what extent the criteria are being 
met. The highest level of control in a sociotechnical system comes from 
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legislators who influence the system by means of legislation (reference 
channel) and observe the system state through, for example, oversight 
reports or accident investigations. Lower levels include regulatory 
agencies and management layers, which pass regulations, certification 
requirements, and standards. At the lowest level, we have the actual 
operational process in which the technology is applied and where 
various control measures are implemented to safeguard a system in real- 
time. In the remainder of this paper, we will refer to the options to 
control the sociotechnical system as ‘control strategies.’

Creating and maintaining these control strategies is called ‘safety 
management’. The objective of safety management is to maximize 
flexibility and improve system performance while adhering to safety 
constraints. System safety describes several ingredients for effective 
safety management, including commitment and leadership, a strong 
safety culture, and education and training.

3. Method

This section discusses the method for data collection and analysis.

3.1. Data collection

This study employs a qualitative data collection methodology, 
allowing us to explore the perceptions of risk factors of ML system safety. 
We interviewed Dutch professionals from executive organizations 
working with ML systems and from external supervisors who supervise 
the use of ML systems at public organizations. The Dutch context is 
particularly interesting because of the relatively high adoption of ML 
systems in the public sector (van Noordt & Misuraca, 2022).

Our sample includes public stakeholders who are closely involved 
with implemented ML systems and, therefore, have experience of how 
hazardous situations can arise. Based on systems theory, we view ML 
systems as hierarchical systems. The interviewees represent actors in the 
hierarchical layers of the control of ML systems that have a view of and 
say in the operation of the system (Leveson, 2011, p. 82). These actors 
include data scientists, operational managers, organization manage
ment, and external supervisors. For the interviewees in the category of 
external supervisors, both actors with deeper technical knowledge as 
well as managers were included. This group of actors from different 
hierarchical levels provides a wide spectrum of perspectives on the risk 
factors of ML systems in the public sector.

Twelve public professionals were interviewed, working at ten 
different organizations within the Dutch government. The last in
terviews yielded little new information regarding our research goal, 

after which no more interviews were conducted. We used a semi- 
structured approach that included a set of predefined questions, which 
are presented in Supplement 1. The open-ended questions left room for 
unexpected answers, which was suited for the exploratory character of 
this study and the ‘investigation of causation’ (Gorman et al., 2005). 
Although the interviewees can be regarded as experts in the field of ML 
usage in the public sector, they are not experts in system safety. As we 
aimed to explore possible risk factors, we asked the interviewees rather 
broadly to reflect on ‘the risks’ of ML in the public sector and possible 
risk ‘mitigation strategies.’ Explicitly asking to reflect on mitigation 
strategies proved to be helpful in getting a deeper understanding of the 
risk factors that the mitigation strategies would have to counter.

An overview of the interviewees can be found in Table 1. Note that 
interview I11 was an interview with two participants simultaneously. 
With the permission of the interviewees, the interviews were recorded 
and manually transcribed. All interviewees were given the opportunity 
to make corrections to the transcriptions, which did not lead to any 
major revisions.

3.2. Data analysis method

Systems theory and system safety concepts, as described in Section 2
of this paper, are used as the conceptual framework for our analysis. 
Through our analysis, we describe how observations in the interview 
data can be linked to this conceptual framework. This line of reasoning is 
called abductive reasoning. Abductive reasoning is a form of logical 
inference that involves making hypotheses to explain observed phe
nomena or data (Sætre & Van de Ven, 2021). In this paper, we hy
pothesize that ML systems can be best described through a systems 

Fig. 1. Schematic representation of the relation between the System Safety concepts derived from Leveson (2011).

Table 1 
Overview of interview IDs, interviewee positions, and organization types. The 
interviewees marked with an asterisk were employed by the same organization.

ID Interviewee position(s) Organization type

I1 Organizational manager Executive organization applying ML
I2* Data scientist Executive organization applying ML
I3 Data scientist Executive organization applying ML
I4* Operational manager Executive organization applying ML
I5 Data scientist Executive organization applying ML
I6 Data scientist Executive organization applying ML
I7 Operational manager Agency supervising ML applications
I8 Organizational manager Agency supervising ML applications
I9 Researcher Agency supervising ML applications
I10 Operational manager Agency supervising ML applications
I11 Operational manager and Advisor Agency supervising ML applications
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theory perspective, where we see an ML system as a complex system 
whose behavior can only be described by analyzing the system integrally 
instead of on a component level.

Through the analysis of the interview data, we find a set of percep
tions about ML systems in the public sector. Following abductive 
reasoning, we expect that all perceptions will fit the theory. Further
more, we may see some theory that is not supported by the perceptions 
of public professionals. Our hypothesis is wrong when we find obser
vations that do not support, or contradict, the theory. Thus, we only 
expect to find observations that support the theory. Any observations 
that contradict or do not support the theory will be at odds with our 
hypothesis.

We analyzed the interview data using the software ATLAS.ti (version 
23). An initial set of codes was directly derived from the conceptual 
framework presented in Section 3. In its entirety, the process of coding 
was done in five steps, based on the coding practices presented in 
Boyatzis (1998) and Braun and Clarke (2006):

1. Create an initial theory-based codebook. This initial codebook is 
based on the key system safety concepts which are introduced in 
Section 2. Five code groups were established. The first two groups, i. 
e. ‘institutional factors’ and ‘technical factors’, relate to the risk 
factors that follow from the institutional context of an ML system and 
the ML system itself. The third code group, ‘mitigation strategies’, 
relates to the concepts of safety management and control strategies. 
The fourth code group, ‘control conditions’, relates to the four con
trol conditions that need to be met to remain in a safe system state. 
The last code group, ‘accidents’, relates to the situations in which the 
working of the system leads to an unwanted and unplanned event 
resulting in a loss.

2. Review and revise the codebook. A first round of coding was per
formed, going through all transcriptions while assigning codes to 
relevant pieces of text. During this first round, 18 codes were added 
to capture interesting results that relate to the risks of ML systems, 
resulting in a codebook with a total of 41 codes with a total of 128 
quotations.

3. Check the reliability of the coder and codes. After the first round of 
coding, a second coder performed a round of coding, resulting in 51 
codes. All documents were analyzed again with this set of codes, 
resulting in 328 quotations.

4. Validate codes and quotations. For codes with few quotations, it was 
checked whether they could be merged with other codes. Further
more, quotations were revisited to check whether assigned codes 
were still valid for the text, building upon the experiences and in
sights from steps one to four. The resulting codebook can be found in 
Supplement 2.

5. Identify themes. Lastly, codes are grouped into themes. This process 
of thematic analysis can summarize the key features of the interview 
data and is useful to identify similarities and differences amongst the 
observed perceptions of the interviewees (Braun & Clarke, 2006). 
The identified themes are reported as the categories of risk factors in 
Section 4 of this paper.

Table 2 shows three examples of quotes with their related system 
safety concepts and assigned codes. There is much overlap between 
codes and concepts. It was very common to discuss control strategies and 
risk factors simultaneously. The lack of a control strategy can be inter
preted as a risk factor, as seen in quote #2. Similarly, remarks about 
control conditions are often found in connection with risk factors, as 
seen in quote #3.

The coding allows us to systematically report on public professionals' 
perceptions of ML systems in the public sector. Since our starting point 
for coding follows directly from the concepts of system safety, we are 
subsequently able to compare the perceptions with the literature on 
these concepts. Through this comparison we can identify the parts of 
systems theory and system safety concepts without support of the 

observed perceptions. This is the main input for our discussion in Section 
5.

4. Results

In this section, we present the main findings from the interview 
analysis. We used the system safety concepts introduced in Section 2 of 
this paper as a starting point for coding. Through the identification of 
themes amongst the codes, five categories of risk factors are found that 
can lead to unsafe system states. Fig. 2 schematically depicts these cat
egories within the conceptual framework as presented in Section 2.2. 
The risk factors are determined by the social and institutional context of 
the ML system and the ML system itself. The interviewees perceived both 
institutional and technical risk factors, which impact the control of the 
system and may lead to not meeting the control conditions, resulting in a 
hazardous system state with a probability of an accident occurring.

We use the following naming to refer to the categories of risk factors: 
organizational complexity, underdeveloped safety culture, a lack of 
knowledge, poor data and algorithm quality, and system complexity. 
Note that we implicitly define these categories by listing the observa
tions that adhere to these categories. The following sections will elab
orate on each of these factors and their consequences. Each section starts 
with the observations from the interviews, followed by a reflection on 
these results using system safety literature. For the latter, we identify 
relevant system safety concepts, which are marked in italics. Further
more, in Section 4.6, we show how the interviewees perceive how these 
risk factors impact the ability to control the ML system and what acci
dents and corresponding losses are expected when control fails. We end 
the section with an overview of these categories, the perceived risk 
factors, and the identified relevant system safety concepts.

4.1. Organizational complexity

This section elaborates on the insights provided by the interviewees 
related to the institutional risk factor of ‘organizational complexity.’ 
Interviewees see organizational complexity as a factor leading to risks in 
working with ML systems. The following paragraphs show how this 
organizational complexity is perceived to materialize, after which we 
end this section by explaining organizational complexity through system 
safety concepts.

4.1.1. Involvement of multiple stakeholders
Several interviewees mentioned that it is key to let multiple stake

holders have a say in the development and use of ML systems [I2, I5, I6, 

Table 2 
Examples of code assignments.

# Quote system safety 
concepts

Assigned codes

1 “In my opinion, there are few people 
who have the overall picture and can 
fully comprehend everything from A 
to Z, including all possible side 
effects that we may not want or that 
we did not expect.” [I11]

Institutional 
factors

Lack of Knowledge

Technical 
factors

System complexity

Control 
conditions

Model condition

2 “It really depends on the culture 
within an organization. Does the 
organization truly want to improve, 
or is it more focused on checking off 
boxes? To what extent is the 
organization a learning organization 
or not?” [I7]

Institutional 
factors

Lack of safety 
culture
Lack of learning 
organization

Control 
strategies

Safety culture
Learning 
organization

3 “This means that someone who 
works with AI must know what the 
AI is doing, when it is reliable and 
when it is not, but also must be able 
to assess whether something is 
correct.” [I10]

Control 
conditions

Model condition
Observability 
condition

Institutional 
factors

Lack of knowledge
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I9, I11]. Civil servants must work in accordance with political decision- 
making but simultaneously have to adhere to the wishes of citizens that 
are not captured in laws and regulations [I9, I11]. One of the in
terviewees stated that “the biggest risks lie in not taking into account the 
interest of individual citizens in the design [of ML systems] and in the way 
you can react [to decisions following from ML systems]” [I9]. Besides 
citizens, the civil servants working with the output of ML systems need 
to be included during the design process [I3, I5, I6]. On the one hand, 
this is important for the designers of ML systems to understand the 
impact of the system on daily operations [I3, I6]. On the other hand, 
involving these end-users is key to getting these civil servants to accept 
and trust ML systems [I5].

4.1.2. Delegation of public tasks over different organizations
ML systems may use data that is generated or registered by multiple 

organizations. This may lead to misconceptions about the meaning of 
certain data [I11]. Interviewees in interview I11 mentioned a case 
where a citizen constantly suffered from wrong decisions, and “when we 
had everybody at the same table, we found out that the data was interpreted 
differently by the receiving party than intended by the issuing party.” This 
shows that the delegation of tasks over different organizations may lead 
to accidents when data is shared without proper metadata.

4.1.3. Shared responsibilities with private parties
The interviewees see that organizational complexity increases when 

private parties are involved in designing the ML system [I7, I10, I11]. 
Responsibilities are shared with this private party, making it harder to 
know who is accountable when something goes wrong with the system 
[I11]. Furthermore, these third parties are not as familiar with the 
context of the public organization for which the ML system is designed 
as the public servants themselves, which can lead to misunderstandings 
about the (intended) use of the ML system [I7].

4.1.4. Values changing over time
Interviewees I1, I2, I3, and I5 acknowledge that organizational 

values change over time and that this impacts how trade-offs are made 
for the design of ML systems. They refer to three trade-offs for ML system 
design. First, the trade-off between model performance and explain
ability is mentioned by multiple interviewees [I1, I3]. Both the ability to 
make a good decision, as well as explaining how this decision was 

generated are important to civil servants. However, interviewees 
observe that while more complex algorithms can generally produce 
more accurate outcomes, this complexity might lead to fewer insights 
into how these outcomes were generated. There are no norms or 
guidelines for when model performance and explainability are ‘good 
enough.’ According to interviewee I5, “Everybody thinks it is very 
important to have transparent and explainable AI, but it is unclear what kind 
of explainability people require.” A second trade-off exists between 
transparency and confidentiality [I3, I5]. Some organizations are, to a 
certain extent, not able to share how they do their job because this might 
allow for malicious activities. To quote one interviewee: “If people 
spontaneously start to comply, that would be great, but you don't want them 
to avoid us.” For example, organizations that have the task of finding 
cases of fraud are having difficulties in being open about their use of ML 
systems, as citizens can alter their behavior if they know what variables 
are used to detect fraud. Lastly, a trade-off between privacy and non- 
discrimination is observed. Interviewee I2 stated, as an example, that 
“you are not able to test whether an algorithm is sexist if you don't include 
gender data.”

4.1.5. Responsibility attribution
The issue of responsibility attribution within organizations is 

mentioned as a factor that can lead to hazardous situations [I1, I2, I3, I7, 
I9, I10]. Several interviewees agree that only humans can be attributed 
with the responsibility for decisions that follow from working with ML 
algorithms. However, the normal line of hierarchy within the public 
sector might not suffice. Interviewee I1 mentioned that “at the moment, 
there is no minister with an affinity for data science while departments are 
working with it. He/she is still ministerially responsible”. Another inter
viewee mentioned that “the one [that is responsible] should have the 
chance to prevent [accidents]” [I3]. Besides the lack of affinity and the 
lack of room for intervention, interviewee I2 mentioned the “artificial 
separation between IT and other matters” as a responsibility issue. Re
sponsibility for the safety of ML algorithms cannot be attributed to the 
technology alone and requires a role for the users and other organiza
tional entities involved in the development, use, or governance of such 
systems. On the other hand, interviewee I7 mentioned overlapping re
sponsibilities as a potential hazard. People who know that others are 
also responsible are more likely to think that “it will probably be all right,” 
while others might have the same idea.

Fig. 2. Schematic representation of the perceived risk factors as part of the conceptual framework presented in Fig. 1.
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4.1.6. Organizational complexity in system safety
When we link these results to system safety literature, we see an 

important notion about the impact of organizational complexity can be 
found in the concept of control coordination. Control coordination is 
important for safety, mostly in those areas where responsibilities overlap 
and at the boundary of a responsibility (Leplat, 1984). Thus, control 
becomes more challenging in the organizational situations described by 
the interviewees, where different organizations or teams within orga
nizations each have a role in one process. Responsibility overlap may lead 
to conflicting decisions or advice or to controllers waiting on each other 
to take responsibility for a task (Leveson, 2011). Fundamental to 
translating safety requirements to functional operationalization is the 
safety control structure, which comprehensively describes how different 
processes and actors are involved in implementing, supervising, and 
maintaining vital safety control mechanisms (Leveson, 2011). In the 
lower levels of the safety control structure, the operational process is 
described, in which the ML system plays a vital role, and in which an 
idea is required of how every possible hazard may emerge in real time 
and what should be done to prevent it or mitigate its associated risks. 
Beyond the operational process, we can identify higher levels of the 
safety control structure, which have to do with maintenance, (re)design 
of the system and process, operational management, and beyond that, 
organizational management, supervision and law, policy and demo
cratic/political deliberation and decision-making (Leveson, 2011). Sys
tem safety approaches can also be used to identify hazards and causal 
scenarios on these organizational levels and components. Though 
sometimes less emphasized, a gap analysis may be vital to identify holes 
in the current design of the existing organizational and social safety 
control structure (Leveson, 2011, p. 232). Such gaps may then be 
translated to risks of varying priorities with associated policy recom
mendations or mitigation strategies.

4.2. Underdeveloped safety culture

This section discusses the perceptions of interviewees related to the 
second identified institutional factor: safety culture. All interviewees 
named the cultural features of an organization as a factor influencing the 
safety of ML systems. The following paragraphs show how these cultural 
features are perceived to materialize, after which we end this section by 
explaining safety culture through system safety concepts.

4.2.1. Learning from mistakes
Professionals need to be able to speak up and act when something 

goes wrong while using an ML system [I9, I11]. They should be critical 
and “be firm to ask critical questions about the system” [I11]. This may not 
be the case when professionals do not have enough knowledge to be 
critical, but also if the professional does not feel that there is room in the 
organization to be critical about its own processes and behaviors. 
Furthermore, it can be difficult to stay critical when there seems no need 
to do so: “It has been working for years, so why should I criticize?” [I6]. 
Being able to criticize is linked to an organizational culture where 
people are open to learning from mistakes [I5, I7]. Being fearful of 
making mistakes can lead to hazardous situations. It is preventing or
ganizations from letting external parties reflect on their work. According 
to interviewee I7: “If you want to innovate, you need to be a learning or
ganization, and part of that is making mistakes. To know if you make mis
takes, you need reflection”. Supervisors see resistance from organizations 
to be open about their work as “being checked is never fun” [I7]. One 
interviewee sees that the requirement to be open leads to organizations 
“taking all possible measures to not have to comply” [I1]. The biggest driver 
for not wanting to be open seems to come from fear of public opinion 
and any political repercussions. Interviewee I5 referred to a case where a 
mistake led to a heavy political reaction, which still challenges the 
transparent development of ML algorithms four years after this mistake.

4.2.2. The use of checklists for compliance
Several interviewees identified the use of checklists as a potential 

source for hazardous situations [I5, I6, I7, I11]. Checklists can 
contribute to a culture where it is more important to tick every box 
instead of becoming aware of the actual risk factors involved in using a 
certain ML algorithm. Due to checklists, “people stop thinking” about 
safety [I7].

4.2.3. Commitment through investments
The lack of commitment of organizations to implementing ML al

gorithms safely is also mentioned as a source of potential hazards [I1, 
I2]. “Doing this carefully needs a very big investment”, according to 
interviewee I1. Committing and investing in ML algorithms is, on the 
one hand, needed to make safe systems, but on the other hand, precar
ious in the public sector. Numerous cases of governmental overspending 
on IT projects can be found, causing “the public sector to be wary of large IT 
projects” [I1]. This causes organizations to “not get past a hobbyist level” 
of working with ML algorithms [I1]. Investments are needed in the 
“automation [infrastructure], knowledge and management system” [I1]. 
However, interviewees see that the government expects immediate 
returns on investments and expects to spend less money on processes 
where ML algorithms are implemented [I2, I4].

4.2.4. Safety culture and system safety
Three layers of organizational culture can be distinguished: its arti

facts, its beliefs and values, and its underlying assumptions (Shein, 
2004). All three layers should be addressed to ensure safety. Leveson 
(2011) explicitly warns of a paperwork culture where explaining the 
safety of a system on paper is pursued at the cost of the actual safety in 
the real world. This aligns with the perception of the interviewees, who 
criticize the ever-growing number of checklists that are available for the 
design of safe ML systems. Instead of striving for real safety, the goal is to 
check all the boxes.

Multiple interviewees highlighted the negative effects that the blame 
culture has on safety. The fear of being blamed for mistakes comes at the 
cost of organizations covering up their mistakes, inhibiting them from 
learning from these mistakes. Dekker (2012) describes this as the trade- 
off between accountability and safety. Although working towards a 
balance between these values is challenging, he describes steps that can 
be taken to move towards a just culture. System safety states that safety is 
ensured at the system level, considering all actors directly or indirectly 
involved (Leveson, 2011). This directly implies that when one wants to 
improve the safety of a system by learning from an accident, one should 
address the system as a whole instead of individual people. Blaming thus 
is not only standing in the way of being open and learning from mis
takes, it also wrongfully leads to the idea that, when the blamed changes 
his behavior, safety will be ensured.

4.3. Lack of knowledge

This section discusses the perceived risk factor ‘lack of knowledge,’ 
which can be seen as an institutional risk factor, as well as a technical 
one, as the knowledge needed is partly directly related to the technical 
artifact of an ML system. Knowledge is a central and repeating factor 
throughout the interviews. The following paragraphs show how this lack 
of knowledge is perceived to materialize, after which we end this section 
by explaining the importance of knowledge through system safety 
concepts.

4.3.1. Lack of knowledge at the end-user
Knowing what an ML system does, what it is capable of, and what its 

limits are, are essential for an ML system's safe operation. According to 
interviewee I11, “not [having] enough people that have the overview and 
understand the system from A to Z" makes it impossible to “have an 
overview of possible side effects” of an ML system. Multiple times, the lack 
of knowledge leading to hazardous situations is attributed to the end- 

J. Delfos et al.                                                                                                                                                                                                                                   



Government Information Quarterly 41 (2024) 101963

8

users, the civil servants working with the outcomes of an ML system [I3, 
I5, I7, I8, I10, I11]. These end-users are tasked to work with ML systems' 
outcomes and serve as a ‘human-in-the-loop,’ responsible for “checking 
whether it [the output of an ML system] is correct” [I11]. However, in
terviewees indicate that a civil servant who is not trained in working 
with these systems will not perform meaningful checks and balances [I1, 
I8, I10, I11].

4.3.2. Deskilling through ML systems use
Applying ML within an organization can lead to decreased knowl

edge about the process for which an ML system is used. Seemingly 
correctly functioning ML systems can move an organization to hire 
“cheap labor instead of a more expensive employee to check an AI system” 
[I10]. This means that the skills to manually perform the tasks that are 
now carried out by the AI system will disappear.

4.3.3. Lack of knowledge at the managerial levels
A lack of knowledge about ML systems is also attributed to pro

fessionals in managerial roles [I1, I3, I5, I6, I8, I11]. One interviewee 
mentioned that “the risk lies in the gap between the knowledge of analysts 
and decision-makers” [I1]. It is stated that managers push for the use of 
ML systems because it is “new and hip” and so they can “brag about who 
spends most on AI,” while ML “is not always the solution” [I3].

4.3.4. Reasons for a lack of knowledge
Various reasons are mentioned for this lack of knowledge. One 

reason is that much knowledge about ML systems is gained from 
temporarily hiring external consultants and disappears when these 
consultants finish their temporary jobs [I2]. Another reason is the 
reluctance to share experiences of working with ML between organiza
tions. According to interviewee I5: “When you try hard to be transparent 
[…] you will be punished most”. This leads to fear of being open about 
using ML systems, which stands in the way of sharing experiences [I5, 
I7].

4.3.5. Lack of knowledge and system safety
A lack of knowledge inhibits a good overview of the potential risks of 

a system, which is key for establishing safety constraints. A lack of 
knowledge about the system especially creates difficulties for operators 
in dealing with non-routine events (Leveson, 2011). Furthermore, 
“human skill levels and required knowledge almost always go up” when 
supervising an automated system (Leveson, 2011, p. 229), such as an ML 
system. This can be explained by the fact that human and automated 
control can only be meaningful when the controller understands how the 
system works, which comes on top of the knowledge needed about the 
subject matter for which the system is being used. This notion of re
quirements for enhanced skill and expertise may conflict with the initial 
reason to start using ML systems, which is often the promise of reduced 
operational costs.

It is vital to distinguish the reasons why a lack of knowledge arises 
that contributes to safety hazards and accidents. As we saw in the in
terviews, often a lack of knowledge is projected onto the operator or user 
of a particular system – those operating the process in which an ML 
system is used. However, such knowledge deficiencies can only be 
meaningfully attributed if there is a clear understanding of what 
knowledge was needed to safely and adequately operate the process and 
ML system in the first place. The history of system safety shows that most 
often, operator error is not a function of the operator's capabilities but of 
the environment in which they are asked to operate (Leveson, 2011). 
The environment determines what information is available to the 
operator and at what time; it determines what actions and support are 
available. Moreover, in the case of a complex system that requires 
nuanced knowledge to understand and operate, those responsible for 
managing and developing the system should have a clear idea of what 
knowledge and capabilities are required to operate it safely.

4.4. Poor data and algorithm quality

There were different opinions amongst the interviewees about 
whether data and algorithm quality are relevant factors impacting the 
safety of ML algorithms. Interviewee I10 stated: “I don't think that it often 
goes wrong in the technical details.” However, most interviewees identi
fied two potential risk factors related to the quality of data and algo
rithms. In this section, we will first address these two risk factors, ‘bias’ 
and ‘model performance,’ after which we end this section by explaining 
these risk factors through system safety concepts.

4.4.1. Bias
The interviewees describe several forms of bias as a problem that can 

lead to hazards [I1, I3, I5, I6, I8, I11]. Fraud detection is mentioned as a 
field with a lot of potential for bias [I1, I5, I6]. ML algorithms may be 
able to detect fraud for a specific subset of cases but may fail to detect 
fraud in others. Retraining the ML might then propagate the bias to
wards this specific subset [I5]. Furthermore, interviewees mention the 
possibility that historical data contains bias due to the way data was 
registered [I8] or the bias that human operators had when a task was 
carried out without the ML algorithm [I1, I3, I5]. Confirmation bias can 
be introduced or maintained by human operators working with ML al
gorithm advice because “they only follow the model when they agree, and 
in this way strengthen their own feelings” [I3].

4.4.2. Model performance
Model performance may be a source of hazardous situations [I1, I2, 

I4, I7, I10]. Interviewees describe cases where important variables were 
not included in the ML algorithm, leading to bad predictions [I2, I4]. 
Furthermore, limited data quality is mentioned as a reason for under
performing ML systems [I2, I10]. Low model performance may be a 
reason for ML systems not being put into production, which would not 
lead to accidents. However, one interviewee described a case where an 
ML algorithm was used, although accuracy metrics were very low [I7].

4.4.3. Data and algorithm quality and system safety
Although accidents are not caused solely by technical components of 

ML (Dobbe, 2022), such as data and algorithms, they can impact the 
safety of a system. However, the notion of bias presumes the program
mability of the ‘correct’ decision. In many situations, we know additional 
circumstances are needed to properly understand what a safe and just 
decision is (Dobbe et al., 2018). Furthermore, a crucial understanding of 
system safety is that reliability or accuracy is not sufficient and may not 
be necessary for safe outcomes (Leveson, 2011).

To first address the latter notion of necessity, it is more important to 
understand how issues of data or algorithm quality may lead to haz
ardous situations and harmful outcomes. Put differently, it is unwise to 
assume one can prevent errors in data or algorithmic outputs (Gansky & 
McDonald, 2022). Instead, it is crucial to assume such errors are made 
and to have control mechanisms in place to ensure that when an ML 
system fails, it fails safely or is prevented from being used in a conse
quential manner (Leveson, 2011). Second, and more pertinent to safety, 
while improving data and algorithm quality is wise, a sole emphasis on 
quality is insufficient to ensure safe outcomes, as the other emergent risk 
factors listed in this section have shown.

4.5. System complexity

Systems using ML algorithms tend to be complex in a way that im
poses risks for the safety of a system. Interviewees distinguish 
complexity on three different levels. In this section, we will first address 
these levels, after which we end this section by explaining system 
complexity through system safety concepts.

4.5.1. Complexity at the process level
System complexity is found at the process level in which one or 
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multiple ML algorithms can be used [I6, I7, I8, I9, I10, I11]. “I don't think 
we can comprehend how huge the processes and used data are,” according to 
interviewee I11. Stacking regulations makes public tasks more and more 
complex, which makes it very hard for civil servants to fully oversee 
these tasks [I11]. The use of ML algorithms that use multiple sources of 
data can make the system even more complex. More complexity is 
introduced when third parties deliver the ML algorithm [I6].

4.5.2. Complexity at the algorithm level
The ML algorithm itself can become very complex [I1, I3, I5, I6, I7, 

I9, I11]. ML algorithms, such as neural networks, have complex internal 
structures that are difficult for humans to understand [I5]. This opacity 
is seen as an obstruction for civil servants to check whether outputs 
make sense, which is needed for these professionals in order to be crit
ical of ML outputs [I11]. Besides this, governmental organizations often 
have the responsibility to “go back in time and see how a specific decision 
came to be” [I9]. There are methods to explain model output. However, 
“it is very hard to determine what is a good explanation” [I5].

4.5.3. Complexity at the data level
System complexity can be found in the data that is used in ML al

gorithms [I5, I10]. Some data is “very specialistic,” making it hard even 
for data scientists to understand what it means: “I understand only part of 
that data” [I5]. Some ML algorithms use data that is the output of other 
ML algorithms. This introduces the hazard that if one ML algorithm 
outputs a bad result, the second ML algorithm will take this bad result as 
an input, possibly causing more bad outputs [I10].

4.5.4. System complexity and system safety
The increase in system complexity is one of the reasons why a new 

approach towards safety engineering was required (Leveson, 2011, p. 3). 
As system complexity grows, the probability increases that accidents 
occur as a result of the interaction between system components. This 
asks for an approach towards safety that goes beyond safety on the 
component level and addresses system level safety, which system safety 
provides.

Software, in general, suffers from the curse of flexibility (Leveson, 
2011). The physical restraints of narrow-purpose machines have been 
lifted with the introduction of the computer and the increasing ease with 
which software can be developed. This makes it very easy to create 
complex systems, for which it becomes increasingly difficult to imple
ment and test safety requirements. In these complex systems, it becomes 
impossible to foresee all system states, including the ones that may lead 
to accidents. The recent experimentation with large language models, 
which are typically comprised of trillions of parameters or more and 
which are inscrutable due to their complexity (and potentially also due 
to these being hidden behind corporate APIs or interfaces), provides a 
case-in-point (Dobbe, 2022). Often, ML system projects suffer a ten
dency to start coding without properly understanding the broader re
quirements and how an ML system will be situated in context. Data 
experts tend to lack the needed domain expertise to design the system in 
its broader context (Leveson & Weiss, 2009). Once safety issues or re
quirements arise, it can then be costly to adjust the system design.

4.6. Unsafe control, accidents, and loss

The risk factors described in Sections 4.1 to 4.5 can lead to hazardous 
situations or system states of the ML algorithm. Separately or in com
bination, these factors can hinder the safe control of the system. In other 
words, one or more control conditions, as described in Section 2.2, 
cannot be met due to one of the risk factors. For example, the ‘action 
condition’ may not be met when a culture is lacking in which civil 
servants can criticize the system and procedures that they have to work 
with [I11]. The ‘model condition’ may not be met when operators have 
little knowledge about how the ML system works [I3, I5, I7, I8, I10, I11]. 
The ‘observability condition’ may not be met when operators are faced 

with high system complexity, on the level of the technical artifact [I1, I3, 
I5, I6, I7, I9, I11], the data [I5, I10] or on the process level [I6, I7, I8, I9, 
I10, I11].

Under unsafe control, a system enters a hazardous state, which has a 
probability of leading to an accident. The interviewees describe 
discriminatory decisions as one of these accidents [I3, I4, I6, I8, I11]. 
When a certain group of citizens is checked more often, or decisions are 
incorrect for a specific group, this is seen as an accident. Furthermore, 
losing room for considering individuals' personal circumstances is 
described as an accident [I11], as well as privacy breaches [I1, I2, I5, 
I10]. Interviewees describe a loss of trust in governmental organizations 
due to these accidents [I9, I10, I11].

4.7. Overview of results

Sections 4.1 to 4.5 present the results of the analysis of the interview 
data. Furthermore, we reflected on the perceptions of the interviewees 
by linking these perceptions to relevant system safety concepts. Table 3
presents these results in summary, listing the risk factor categories, risk 
factors, and the system safety concepts to which we linked these risk 
factors.

5. Discussion

In the previous section, we show that the public professionals who 
are interviewed perceive organizational complexity, an underdeveloped 
safety culture, a lack of knowledge about ML systems, poor data and 
algorithm quality, and system complexity as risk factors that lead to 
unsafe control and potential accidents. These perceptions are linked to 
concepts and lessons from system safety literature. In this section, we 
identify four constitutive factors of system safety that are currently 
underemphasized or missing when the perceptions of the interviewees 
are compared with the system safety literature. We discuss these gaps in 
Section 5.1. Furthermore, in Section 5.2, we link back to our initial 
hypothesis, being that ML systems are best described through a systems 
theory perspective.

Table 3 
Overview of the perceived risk factors per risk factor category, and the identified 
relevant system safety concepts.

Risk factor category Risk factor Relevant system safety 
concepts

Organizational 
Complexity (Section 
4.1)

Involvement of multiple 
stakeholders

• Control coordination
• Responsibility 

overlap
• Safety control 

structure
• Gap analysis

Delegation of public tasks 
over different 
organizations;
Shared responsibilities with 
private parties;
Values changing over time;
Responsibility attribution.

Underdeveloped safety 
culture (Section 4.2)

Learning from mistakes • Layers of 
organizational 
culture

• Paperwork culture
• Blame/just culture

The use of checklists for 
compliance
Commitment through 
investments

Lack of knowledge (
Section 4.3

Lack of knowledge at the 
end-user;

• Human and 
automated control

• Operator errorDeskilling through ML 
systems use;
Lack of knowledge at the 
managerial levels;

Poor data and algorithm 
quality (Section 4.4

Bias • Programmability
• Reliability vs. safety
• Fail safely

Model performance

System Complexity (
Section 4.5)

Complexity at the process 
level

• System level safety
• Curse of flexibility
• Need for domain 

expertise
Complexity at the 
algorithm level
Complexity at the data level
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5.1. Gaps between perceptions and system safety

We identify four constitutive factors of system safety that are not 
addressed by the interviewed public professionals. We argue that these 
factors are key when designing and operating safe ML systems.

5.1.1. Explicit safety goals and constraints
To design and operate a safe system, it should be clear what accidents 

need to be prevented. This is needed as input for any trade-off that is 
made between the safety of the system and any other potential goal, 
such as increased efficiency or the reduction of costs. Not being clear 
about the level of safety that is expected will inhibit the first control 
condition as formulated in Section 2.2, as the controller needs to be 
aware of the goal of his/her control actions and what outcomes to 
prevent.

Preventing unsafe behavior in a system can be done by implementing 
safety constraints. In engineering, these constraints often have a phys
ical nature. For example, a passenger train is not allowed to move when 
a door is open (Leveson, 2011, p. 192). This constrains the operation of 
the train with the aim of preventing hazardous situations in which 
passengers can exit the train during the ride. Constraints can also be 
designed for ML systems in the public sector if it is clear what hazardous 
situation we wish to avoid.

The emergent nature of ML systems means that certain hazards may 
not have been anticipated and present themselves over time. This war
rants explicit procedures, in addition to safety hazard analysis, to 
identify and follow up on issues during operation. Establishing such 
procedures in democratic contexts requires adequate avenues for 
expressing dissent (Dobbe et al., 2021) and ensuring follow-up to build 
and maintain trust (Leveson, 2011).

5.1.2. Inclusion of systemic factors in system design
The data in this paper shows that public professionals acknowledge 

non-technical factors when thinking about ML system safety. However, 
this acknowledgment has not yet led to structurally including these 
factors in design and governance practices. Interviewees do identify 
biased data as a potential source for hazards but address this as a 
problem that has to be solved within the technical artifacts of the ML 
system. Rather, biases existed in data before this data was used for 
training ML algorithms (Dobbe et al., 2018). Focusing on de-biasing ML 
algorithm output is therefore a suboptimal path for countering bias and 
can better be addressed where the data finds its origin.

The influence and importance of systemic factors have recently been 
highlighted in research (e.g., Rodriguez Rivas-Stellaard, 2023) and 
parliamentary investigations (e.g., Tweede Kamer der Staten-Generaal, 
2023) into several Dutch policy scandals. Although these scandals do 
not necessarily revolve around the use of ML algorithms, they show how 
systems, scoped from politics and policymaking towards the real impact 
of public decision-making on individual citizens, tend to fail. Evalua
tions of failed policy “tend to focus on pressing issues at hand in the here 
and now” (Rodriguez Rivas-Stellaard, 2023) and subsequently provide 
patchwork solutions for previous policy problems instead of fixing sys
temic problems.

5.1.3. Development of safety control structures
Although the interviewees recognize the importance of clear re

sponsibilities for controlling an ML system, we see that the development 
of safety control structures is underemphasized in the interviews and in 
the ongoing discourse on ML system safety. Systems theory describes the 
control of systems as hierarchically imposed constraints from one level 
on the activity on the level below (Checkland, 1981). Leveson (2011, p. 
82) shows that for sociotechnical systems, this control structure com
prises several layers of control, including, from higher to lower levels: 
legislators, regulators, company management, project and operations 
management, and human and automated controllers in the operational 
process of the system, each imposing their constraints on the layer 

below.
Although these levels of sociotechnical control can be found in Eu

ropean governance structures, it is often not formalized what constraints 
are imposed from layer to layer. Regarding the control structure of ML 
systems in the Netherlands, the Dutch Data Protection Authority was 
instated as the ‘algorithm watchdog’ by parliament. This was, however 
without extending the mandate of the authority, which is legally still 
bound by the GDPR. Meanwhile, several auditors and supervisors have 
published reports about the governmental use of ML systems, but it re
mains unclear how responsibilities are divided amongst them.

Interviewees mentioned that citizens have to be informed about the 
way the government is using ML systems and described citizens as 
controllers. However, to maintain meaningful control, the four control 
conditions described in Section 2.2 must be met, which is currently 
unrealistic. Citizens do not have insight into the risks of ML systems, do 
not understand how these systems work, have insufficient means to 
prevent or take action, and systems often do not work for them.

5.1.4. Migration to higher risk
During their operation, systems “tend to migrate toward states of higher 

risk” (Leveson, 2011, p.52; Rasmussen, 1997). Although the technical 
part of ML systems is generally perceived as static artifacts (i.e., the 
computer code does not change), this cannot be said about the socio
technical system and the context of the system. External pressure from, 
for example, politics can lead to a focus shift from safety towards cost 
reduction or efficiency gains. Furthermore, it is easy to forget why safety 
constraints are in place when accidents do not happen, which can 
motivate overstepping or ignoring established constraints and safety 
control mechanisms.

Ensuring safety means that migration towards states of higher risk 
should be accounted for. First, this can be done during the design of a 
system, as this migration can be expected. Controls can be implemented 
that limit the possibility of this migration. Second, migration can be 
detected during the operation of a system. This requires feedback loops 
in which signals of system behavior that diverts from the original system 
design are communicated, after which evaluation of the safety con
straints on this new behavior is needed.

Most often, such migration to higher states of risk is of social or 
political nature and is first expressed in the behaviors and decisions 
made at an organizational level. This tendency was starkly observed in 
the context of the Boeing 737-MAX crashes, which occurred in 
2018–2019. While safety management, culture, and oversight are cen
tral pillars to ensuring safety in aviation, investigations by the House 
Committee on Transportation and Infrastructure point out that migra
tion to unacceptable risk levels occurred: “The MAX crashes were not the 
result of a singular failure, technical mistake, or mismanaged event. 
They were the horrific culmination of a series of faulty technical as
sumptions by Boeing's engineers, a lack of transparency on the part of 
Boeing's management, and grossly insufficient oversight by the 
FAA—the pernicious result of regulatory capture on the part of the FAA 
with respect to its responsibilities to perform robust oversight of Boeing 
and to ensure the safety of the flying public” (The House Committee on 
Transportation and Infrastructure, 2020, p. 6). This case-in-point un
derlines the importance of monitoring the behavior of key actors 
responsible for a system's safety, including those responsible for 
oversight.

5.2. Applying systems theory to ML systems

This paper adopted the hypothesis that ML systems generally behave 
in a way that is described by systems theory. This hypothesis is based on 
the observation that the behavior of ML systems can only be explained 
by analyzing its components in cohesion. Our analysis of interview data 
shows that the perceptions of public professionals align with our hy
pothesis. Public professionals confirm that the context in which the 
technical artifacts of ML systems are deployed highly influences the risks 
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that we can expect from this system. They see the complexity of the ML 
system, both in the technical and the organizational components of the 
system, as an important risk factor. Omitting this complexity and 
simplifying ML systems by assessing its components individually thus 
leaves out key characteristics of the system's emergent behavior.

6. Limitations and implications

This paper presents a first exploration of the use of systems theory 
and system safety concepts for assessing the risks of ML systems in the 
public sector. The method and the data used in this study present limi
tations, which we will address in this section. Furthermore, in this sec
tion we address the implications of our research for both science and 
policy.

6.1. Limitations and recommendations for future research

The nature of this study presents limitations for interpretation. The 
exploratory character of the study limits us to making statements about 
the completeness of our data. Although we argue that our sample is a 
representative sample of Dutch public professionals working either with 
ML systems or being tasked with supervising the use of such systems, 
new observations may arise when other professionals are interviewed. 
Future research may further strengthen and broaden the empirical evi
dence on risk factors of ML systems in the public sector. Furthermore, 
our data collection was focussed on the public sector. System safety, 
however, is not bound to the public sector. Using system safety concepts 
to adress ML risk factors may be usefull for addressing challenges in the 
private sector in future research.

A limitation of our research is the geographic and temporal speci
ficity of our data. Contexts, other than the Dutch context in the current 
stage of ML system development, may present nuances and contextual 
factors relevant to the safety of Machine Learning systems that are 
unique to other countries or regions, which our study does not capture. 
The insights gained from Dutch professionals are highly valuable, given 
the country's proactive stance on ML adoption and regulation, similar to 
other northern European countries. However, it is important to recog
nize that the findings might differ in contexts where governmental ap
proaches to ML are at different stages of development or follow different 
regulatory and operational frameworks, such as the USA or Singapore. 
Future research should aim to include a more diverse range of 
geographic contexts to ensure a comprehensive understanding of the 
safety of ML systems in the public sector. Nonetheless, many of the 
systemic risk factors and safety considerations identified in our study are 
likely to be relevant across different contexts, given the universal nature 
of systems theory and system safety principles.

Our abductive line of reasoning shows that a systems theory lens is 
highly suitable when analyzing ML system safety. However, abductive 
reasoning does not give us a definite answer to whether systems theory is 
the best, or the only lens, to adopt for this analysis. We recommend that 
future research addresses this limitation by explicitly using and building 
upon existing theories, other than systems theory.

Although the system safety lens provides us with new insights related 
to ML system safety, its true powers lie at the level of individual systems. 
We believe that this presents several fruitful avenues for further 
research. Leveson (2011) describes methods for the design of safe sys
tems as well as for the analyses of accidents. Testing these methods will 
show their applicability to ML systems, and the results may generate 
lessons for the design and operation of safe ML systems. Furthermore, 
dealing with the risk factors that we have identified requires capability 
building within organizations. This process may not be straightforward, 
as Dekker (2012) shows for the path towards a ‘just culture’. The insights 
from research into the process of this capacity building may provide an 
extra layer of depth to the field of system safety. Lastly, there may be 
cultural nuances between different countries that may affect the trade- 
offs related to safety. These differences may include, for example, risk 

perception and blame culture. Studying these differences can provide 
insights that are key to safe ML systems, as culture is an important 
institutional factor that constitutes safety.

The exploration presented in this paper may serve as a starting point 
for more in-depth empirical research of the individual risk factors pre
sented in Section 4. We will briefly highlight three examples of such 
research opportunities. First, public organizations are struggling to 
design processes for developing compliant ML systems. We observe that 
checklists are popular tools but can be at odds with a healthy safety 
culture. Testing and validating alternatives to checklists can provide 
insights for both academics and practitioners. Second, we see in our data 
a shared perception amongst public professionals that a lack of knowl
edge is a risk factor. Experiments have shown the importance of expe
rience for ML system operators (Janssen et al., 2022), but more 
empirical research can make valuable impacts on ML safety. For 
example, case studies could point out how organizations train their 
operators and how this affects the quality of decision-making. Third, we 
see avenues for further developments regarding handling ML system 
mistakes. ML systems will make mistakes, so it would be wise to not only 
strive for prevention but also look at how to go about these mistakes. 
Both correcting the mistake and prevention of similar mistakes in the 
future are key here. Academic research may provide opportunities to 
(anonymously) share best practices, even though sharing information on 
the mistakes may be sensitive.

6.2. Contributions to science

This study builds on systems theory and system safety concepts that 
have had significant impact within a plethora of academic fields. Sys
tems theory is, however, scarcely used explicitly to research information 
systems. Studies do implicitly use some of its assumptions, for example, 
by referring to information systems as ‘socio-technical systems’ (Janssen 
& Kuk, 2016; Kolkman, 2020). In this paper, we show the perils of 
harnessing systems theory and more specifically the concepts of system 
safety. We extensively use the work of Leveson (2011), whose work 
influences several engineering sectors such as the space, aviation, and 
automotive sector. Leveson and Weiss (2009) show the applicability of 
system safety for software, but a direct link with ML systems in the 
public sector is not made. In this paper, we build on this literature, and 
more recent conceptual work that links system safety to ML systems (e. 
g., Dobbe, 2022). Here, we followed the recommendation of Zuiderwijk 
et al. (2021) to perform more empirical studies.

Our study contributes to existing literature by introducing new 
empirical data and analyzing this data using concepts with a strong 
theoretical lens. This theoretical lens allows to disentangle different risk 
factors and show how they affect the safety of ML systems in the public 
sector. Furthermore, our analysis goes beyond the implementation 
phase of ML systems and explicitly includes the risks of ML systems 
when they are deployed in real life settings, which is key if we view 
safety as an emergent property of an ML system (Dobbe et al., 2018).

6.3. Implications for policy

The importance of including organizational and management com
ponents as an explicit part of safety analysis, design, and governance 
cannot be overstated. However, it often requires overcoming a tendency 
to attribute safety to technical artifacts and expertise alone. As a result, 
organizational components may be overlooked, both as contributing 
directly to safety or indirectly as a systemic factor of relevance. There
fore, we recommend that policymakers adopt a system lens when 
considering safety and designing and operating ML systems. This in
cludes the design of control structures that transcend the operation of 
the technical artifact and that counterbalance pressure for efficiency 
improvements and cost reductions that are at odds with safety 
constraints.

The required knowledge for safely and effectively operating ML 
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systems in government processes extends beyond the operator and 
technical experts involved in building the associated software. Once the 
need to establish system safety standards and responsibilities is 
acknowledged, the rich history of system safety approaches may serve as 
a critical path to perform gap analyses in safety management. Conse
quently, the necessary knowledge across the organizational entities and 
roles involved in developing, implementing, using, managing, over
seeing, and otherwise governing a process and associated ML systems 
can be identified. We recommend viewing the safety of ML systems as an 
organizational challenge rather than that of the data scientists. 
Accordingly, increasing the knowledge and expertise needed for the safe 
operation of ML systems should include a wide span of stakeholders 
within and beyond the organization.

System safety concepts can be used directly to assess policy initia
tives to govern ML systems critically. We will give two examples of 
policy initiatives and their respective pitfalls that one can expect when 
adopting a system safety lens. First, the introduction of guidelines for ML 
systems. The context dependency of ML systems makes it difficult to 
introduce generic guidelines. This may be the reason for these guidelines 
to focus primarily on the technical artifacts and the design phase of ML 
systems. Through systems theory, we would expect that ML systems will 
show emergent behavior that cannot be predicted by assessing the 
technological artifacts in isolation and behavior should be continuously 
monitored in an inherently changing context. Second, the introduction 
of transparency requirements. Although transparency is regarded as a 
main ingredient for democratic processes (König & Wenzelburger, 
2020), we see that transparency can lead to a backlash. This backlash 
can lead to a culture of fear for publicity and lack of willingness to share 
about ML practices. Instead, a culture in which learning from mistakes is 
promoted is key for safety. Although there is no silver bullet for this 
trade-off between transparency and safety, there are pathways towards a 
more ‘just culture’ (Dekker, 2012), and references can be taken from 
sectors with more maturity in dealing with this trade-off, such as the 
healthcare or transportation sector.

7. Conclusions

In this paper, we identified the overlap and gaps between the per
ceptions of public professionals and concepts of system safety regarding 
risk factors of ML systems in the public sector. We hypothesized that ML 
systems safety can be best addressed through a systems theory lens. 
Subsequently, we used systems theory and key concepts from the system 
safety literature to analyze new and existing interview data. From the 
interview data, we identified organizational complexity, an underde
veloped safety culture, a lack of knowledge, poor data and algorithm 
quality, and system complexity as constitutive risk factors that are 
present both in the perceptions of public professionals and can be traced 
back to system safety lessons. Furthermore, we identify that the need for 
explicit safety goals and safety constraints, safety control structures as 
well as the tendency for systems to migrate to a state of higher risk are 
missing in the perceptions of the interviewed professionals. We argue 
that these insights are key when designing policy instruments that aim to 
make ML systems in the public sector safe.

We show that a systems theory lens is fitted for addressing ML sys
tems and system safety provides tools for increasing the safety of ML 
systems. Therefore, we see opportunities for further researching ML 
systems and their challenges for the public sector using systems theory 
and system safety concepts and recommend conducting more empirical 
studies regarding the risk factors presented in this paper. Policy makers 
may also benefit from adopting a systems theory lens when designing 
policies that aim for ML system safety. Our research implies that policies 
should address the organizational challenges of ML system safety and 
that system safety concepts can be used to critically assess policy 
initiatives.
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algorithm: Artificial intelligence in federal administrative agencies. NYU School of 
Law, Public Law Research Paper, 20–54. https://doi.org/10.2139/ssrn.3551505

J. Delfos et al.                                                                                                                                                                                                                                   

https://doi.org/10.1016/j.giq.2024.101963
https://doi.org/10.1016/j.giq.2024.101963
https://doi.org/10.1016/j.giq.2020.101490
https://doi.org/10.1016/j.giq.2020.101490
http://refhub.elsevier.com/S0740-624X(24)00055-8/rf0010
http://refhub.elsevier.com/S0740-624X(24)00055-8/rf0010
https://doi.org/10.1191/1478088706qp063oa
https://doi.org/10.1177/0093854808326545
https://doi.org/10.1016/j.clsr.2017.03.002
https://doi.org/10.1016/j.giq.2021.101666
https://doi.org/10.1109/MC.2017.154
https://doi.org/10.1109/MC.2017.154
https://doi.org/10.5840/techne202323172
https://doi.org/10.1007/s11948-017-9901-7
http://refhub.elsevier.com/S0740-624X(24)00055-8/rf0050
http://refhub.elsevier.com/S0740-624X(24)00055-8/rf0055
http://refhub.elsevier.com/S0740-624X(24)00055-8/rf0055
https://doi.org/10.1016/j.bushor.2019.11.004
https://doi.org/10.1093/oxfordhb/9780197579329.013.67
https://doi.org/10.1093/oxfordhb/9780197579329.013.67
https://doi.org/10.48550/arXiv.1807.00553
https://doi.org/10.1016/j.artint.2021.103555
https://doi.org/10.1016/j.artint.2021.103555
https://www.autoriteitpersoonsgegevens.nl/nl/onderwerpen/algoritmes/algoritmetoezicht
https://www.autoriteitpersoonsgegevens.nl/nl/onderwerpen/algoritmes/algoritmetoezicht
https://doi.org/10.1016/j.ijinfomgt.2019.08.002
https://doi.org/10.1016/j.ijinfomgt.2019.08.002
https://doi.org/10.2139/ssrn.3551505


Government Information Quarterly 41 (2024) 101963

13

Fountain, J. E. (2022). The moon, the ghetto and artificial intelligence: Reducing 
systemic racism in computational algorithms. Government Information Quarterly, 39 
(2), Article 101645. https://doi.org/10.1016/j.giq.2021.101645

Gansky, B., & McDonald, S. (2022). CounterFAccTual: How FAccT undermines its 
organizing principles. In 2022 ACM conference on fairness, accountability, and 
transparency (pp. 1982–1992). https://doi.org/10.1145/3531146.3533241

Gorman, G. E., Clayton, P. R., Shep, S. J., & Clayton, A. (2005). Qualitative research for the 
information professional: A practical handbook (2nd ed.). Facet Publishing. 

Haesevoets, T., Verschuere, B., Van Severen, R., & Roets, A. (2024). How do citizens 
perceive the use of artificial intelligence in public sector decisions? Government 
Information Quarterly, 41(1), Article 101906. https://doi.org/10.1016/j. 
giq.2023.101906

High-Level Expert Group on AI. (2019). Ethics guidelines for trustworthy AI. https://ec. 
europa.eu/futurium/en/ai-alliance-consultation.1.html.

Hoffmann, A. L. (2019). Where fairness fails: Data, algorithms, and the limits of 
antidiscrimination discourse. Information, Communication & Society, 22(7), 900–915. 
https://doi.org/10.1080/1369118X.2019.1573912

Janssen, M., Brous, P., Estevez, E., Barbosa, L. S., & Janowski, T. (2020). Data 
governance: Organizing data for trustworthy artificial intelligence. Government 
Information Quarterly, 37(3), Article 101493. https://doi.org/10.1016/j. 
giq.2020.101493

Janssen, M., Hartog, M., Matheus, R., Yi Ding, A., & Kuk, G. (2022). Will algorithms blind 
people? The effect of explainable AI and decision-Makers’ experience on AI- 
supported decision-making in government. Social Science Computer Review, 40(2), 
478–493. https://doi.org/10.1177/0894439320980118

Janssen, M., & Kuk, G. (2016). The challenges and limits of big data algorithms in 
technocratic governance. Government Information Quarterly, 33(3), 371–377. https:// 
doi.org/10.1016/j.giq.2016.08.011

Kleizen, B., Van Dooren, W., Verhoest, K., & Tan, E. (2023). Do citizens trust trustworthy 
artificial intelligence? Experimental evidence on the limits of ethical AI measures in 
government. Government Information Quarterly, 40(4), Article 101834. https://doi. 
org/10.1016/j.giq.2023.101834

Kolkman, D. (2020). The usefulness of algorithmic models in policy making. Government 
Information Quarterly, 37(3), Article 101488. https://doi.org/10.1016/j. 
giq.2020.101488

König, P. D., & Wenzelburger, G. (2020). Opportunity for renewal or disruptive force? 
How artificial intelligence alters democratic politics. Government Information 
Quarterly, 37(3), Article 101489. https://doi.org/10.1016/j.giq.2020.101489

Koppenjan, J., & Groenewegen, J. (2005). Institutional design for complex technological 
systems. International Journal of Technology, Policy and Management, 5(3), 240. 
https://doi.org/10.1504/IJTPM.2005.008406

Kroll, J. A., Huey, J., Barocas, S., Felten, E. W., Reidenberg, J. R., Robinson, D. G., & 
Yu, H. (2015). Accountable algorithms. University of Pennsylvania Law Review, 165 
(633), 633–705. http://arks.princeton.edu/ark:/88435/dsp014b29b837r.

Leplat, J. (1984). Occupational accident research and systems approach. Journal of 
Occupational Accidents, 6(1–3), 77–89.

Leveson, N. (1995). SafeWare : System safety and computers. Addison-Wesley. 
Leveson, N. (2011). In J. Moses, R. De Neufville, M. Heitor, G. Morgan, E. Paté-Cornell, 
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