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Abstract

Open-domain question answering (QA) is an important step in Artificial Intelligence
and its ultimate goal is to build a QA system that can answer any question posed by hu-
mans. The majority of the open-domain QA system is the retrieval-based open-domain
QA system, which enables the retrieval component to retrieve relevant documents from
a large-scale knowledge source to a question and the answer extraction component to
extract the answer to this question based on retrieved documents. As the techniques
of Deep Learning progressing significantly, many researchers tried to apply the neu-
ral reading comprehension (RC) model to serve the answer extraction component of
the open-domain QA system. However, the performance of the neural RC model in
open-domain QA is considerably worse than the performance of it in RC-style QA.
Therefore, many works have focused on the neural RC model for addressing the per-
formance gap, whereas the retrieval component of the open-domain QA system lacks
equivalent attention.

Some researchers have built the neural network based information retrieval (IR)
models, but currently, it is still difficult for these neural IR models to directly retrieve
documents from a large-scale knowledge source in open-domain QA. Hence, many
works attempted to use neural IR models for re-ranking documents retrieved by the
traditional but efficient IR models (e.g., TF-IDF, BM25) in open-domain QA. How-
ever, these works did not analyze the impact of different questions of QA datasets on
traditional IR models. Thus, this research gap is the focus in this thesis.

We conduct error analyses of questions of different QA datasets to figure out the
error types of questions that have a negative impact on the traditional IR models. From
the error analysis, we learn that different QA datasets have different impacts on the
traditional IR models and are differently hard to be dealt with by the traditional IR
models. Therefore, we propose hypotheses that might mitigate the negative impact of
the error types of questions that are relatively harder to be handled by the traditional
IR models. Furthermore, we perform experiments based on the methodologies that
implement our hypotheses for figuring out the validity of these hypotheses.

In conclusion, we believe that our work is a step forward to obtaining more insights
into the retrieval component of the open-domain QA system and will contribute to the
development of the retrieval component for a better open-domain QA system. More-
over, our work can give our users guidance on how to issue a more suitable question
that can be processed by the open-domain QA system for giving a more accurate and
better answer.
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Chapter 1

Introduction

Open-domain question answering (QA) is an important step approaching the ultimate
goal of QA, that is a general QA system which can answer a question regarding any
domain posed by humans, no matter what sort of resources it depends on [16, 32].
Open-domain QA systems aim to answer questions posed by humans in the form of
natural language [28, 111, 112] and the majority1 of these systems have a two-stage
working pipeline: retrieval stage and answer extraction stage, which can be found
in Figure 1.1. This retrieval-based open-domain QA system2 first retrieves relevant
documents to the question from a large-scale knowledge source (e.g., the web and the
full Wikipedia) by information retrieval (IR) techniques as the retrieval component in
the retrieval stage and then it extracts the answer to the question based on the retrieved
documents by the answer retrieval component in the answer extraction stage [17, 28].

Figure 1.1: The two-stage working pipeline of the open-domain QA system.

In the QA community, open-domain can be interpreted either as the scope of ques-
tion topics or the capacity and breadth of the knowledge source used to answer ques-
tions or both of them [17, 125]. In contrast, closed-domain QA is a task in which
questions are domain specific (e.g., science or medicine) [2], topics are limited in the

1Some recent open-domain QA systems have been working with approach of answer generation
instead of this two-stage pipeline [15].

2For convenience, open-domain QA in this thesis only refers to the retrieval-based open-domain QA,
which has a two-stage pipeline.
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CHAPTER 1. INTRODUCTION

knowledge source, question types are limited or even a specific text is provided for a
QA system to answer the question based on this text. In particular, the task in which a
QA system tries to answer questions based on the provided text is called reading com-
prehension (RC)-style QA [32, 42]. In the RC-style QA task, the question is created
based on the text that contains all the reasoning facts as well as the answer and the
QA system extracts the answer to the question from this text [40, 94]. This is because
the RC-style QA task aims at improving the ability of the QA system on the linguistic
analysis of the text, so generating a question from the text enables that the question
can be answered successfully by the QA system only based on the source text. Some
examples of RC-style QA and open-domain QA are shown in Table 1.1. As we can
see from the examples in Table 1.1, RC-style QA is given a paragraph that contains
the answer span3 "Association of American Universities", but this is not the case for
open-domain QA, since the paragraphs retrieved by the retrieval component might not
contain the answer (e.g., paragraph2 in blue in Table 1.1).

Reading comprehension-style question answering
Question: What organization did Harvard found in 1900?
Paragraph: Following the American Civil War, President Charles W. Eliot’s
long tenure (1869–1909) transformed the college and affiliated professional
schools into a modern research university; Harvard was a founding member of
the Association of American Universities in 1900.

Answer: Association of American Universities

Open-domain question answering
Question: What does a camel store in its hump?

Paragraph1: The humps are reservoirs of fatty tissue: concentrating body fat
in their humps minimizes the insulating effect fat would have if distributed over
the rest of their bodies, helping camels survive in hot climates.
Paragraph2: Camels with one hump are called Arabian camels, or
Dromedaries, and come from North Africa. Camels with two humps are from
Asia, and are called Bactrian camels.

Answer: fat

Table 1.1: Examples of RC-style QA and open-domain QA. The paragraph containing
the answer is in green and not containing the answer is in blue . Answers are in

yellow .

Question answering is a challenging and one of the earliest tasks in Natural Lan-
guage Processing (NLP) which can date back to the 1960s [16, 47, 57]. PROTO-
SYNTHEX system proposed by Simmons et al. [107] employed some rules based on
lexical and semantic heuristics to analyze the dependency relations of words, which
lays a foundation to the rule-based QA systems. MURAX is another notable QA sys-
tem from [58] which used some linguistic approaches (e.g., part-of-speech tagger and
a lexico-syntactic pattern matcher) to answer general-knowledge questions based on

3The answer string is a piece of text (e.g., "fat" in Table 1.1) and if the answer is a consecutive text,
it is called the answer span [88].
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1.1. MOTIVATION

the online encyclopedia. Open-domain QA has received much attention since 1999,
when the QA track was first introduced in Text Retrieval Conference (TREC) com-
petitions by the National Institute of Standards and Technology (NIST) [16, 77]. In
the QA track of TREC, QA was defined such that the systems were to retrieve small
snippets of text that contain the answer to open-domain questions4. It has motivated
a surge of QA systems [79, 120] and most of them consist of the two-stage working
pipeline as shown in Figure 1.1.

After the QA track was introduced in TREC, open-domain QA had generally been
built upon knowledge-bases (KBs) as the knowledge source, such as Freebase [9] and
DBpedia [4]. However, the drawback of KBs is that these knowledge bases are not
complete to be used for answering questions that cover a range of topics [42]. In
addition, these KBs are not easy to construct and maintain [130]. Therefore, recent
works on open-domain QA have focused on using unstructured text (i.e., raw text),
such as Wikipedia articles, newswire articles [17, 27, 125], as there is a large amount
of raw text available and generated every day, which can cover different kinds of topics
[42]. Furthermore, the unstructured text does not need much human intervention to
collect [92], we thus consider the unstructured text as our knowledge source in our
work. In addition to KBs and unstructured text, open-domain QA can also retrieve
relevant documents based on the whole web [34] and other modalities of knowledge
sources, including tables [90], images [3], diagrams [52] and even videos [115], but
we only consider unstructured text as our knowledge source as we explained above.

1.1 Motivation

RC-style QA has achieved significant advances in recent years due to the introduc-
tion of large-scale QA datasets and the promising learning technologies (e.g., Machine
Learning, Deep Learning) [26, 104, 139]. In previous years, the size of the QA datasets
was small. For example, QA datasets of TREC 8-12 only contains almost 2.4K QA
pairs [124]. However, there have been many large-scale datasets proposed in recent
years. For example, Stanford Question Answering Dataset (SQuAD) proposed by Ra-
jpurkar et al. [94] contains 107K QA pairs and Yang et al. [136] proposed a dataset
named HotpotQA, which includes 113K QA pairs. These datasets are also called RC
datasets [28, 42] since these datasets provide one or more paragraphs containing the
reasoning facts and answers to RC models for extracting the answer to the question.
The goal of these datasets is to motivate the development of high-performing RC mod-
els. Hence, these large-scale datasets can be used to train neural network based RC
models and motivate the potential and development of RC models. As a result, RC
models have achieved significant success [26, 44, 68] and some of them have outper-
formed human level accuracy5.

The significant success of RC models in RC-style QA have motivated NLP re-
searchers to combine the retrieval component with RC models that are used as the an-
swer extraction component to challenge the task of open-domain QA [17, 42, 88, 136].
The QA pipeline DrQA proposed by Chen et al. [17] is the earliest work that applied
the neural network based RC model with the retrieval component in the open-domain

4QA track in TREC: https://trec.nist.gov/data/qa.html.
5SQuAD leaderboard: https://rajpurkar.github.io/SQuAD-explorer/.
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CHAPTER 1. INTRODUCTION

setting [88]. They compared the QA performance by applying DrQA in the task of
RC-style QA and the task of open-domain QA. In RC-style QA, DrQA was given a
question as well as the paragraph that contains all reasoning facts and the answer to
this question. Nevertheless, in open-domain QA, DrQA was only given a question
and required to retrieve relevant documents from the large-scale knowledge source
Wikipedia using an IR system and then extracted the answer to this question from re-
trieved documents. DrQA achieved the answer accuracy of 69.5 in RC-style QA and
its accuracy decreased to 27.1 in open-domain QA. The work in HotpotQA [136] also
showed the answer accuracy drop from 48.38 to 24.68 when the paragraph containing
all the reasoning facts and the answer was not given to the RC model directly. In order
to extract the correct answer, the open-domain QA system should have an effective re-
trieval component that can retrieve highly relevant documents. Therefore, the retrieval
component plays an important role in open-domain QA.

Further works have been conducted on RC models to narrow down the perfor-
mance gap between open-domain QA and RC-style QA. Lin et al. [66] proposed DS-
QA to filter out those noisy documents retrieved by the retrieval component which do
not contain the answer. Dehghani et al. [25] and Wang et al. [126] tried to take advan-
tage of multiple documents retrieved by the retrieval component to combine and reason
facts from them for answering the question. Table 1.2 shows an example from the QA
dataset HotpotQA. As we can see, the answer can be extracted based on the multiple
reasoning facts from two different documents. Furthermore, the dataset SQuAD2.0
[95] motivates an emergence of RC models that are able to distinguish whether a para-
graph can be used to answer the question correctly or not [110, 127].

Question: The birthplace of George McCall Theal is a port city of what bay?
Doc1: George McCall Theal (11 April 1837, Saint John, New Brunswick-17
April 1919, Wynberg, Cape Town), was the most prolific and influential South
African historian, archivist and genealogist of the late nineteenth and early twen-
tieth century.
Doc2: Saint John is the port city of the Bay of Fundy in the Canadian province
of New Brunswick.
Answer: Bay of Fundy

Table 1.2: An example of HotpotQA [136]. Reasoning facts are in underline and the
answer is in yellow .

However, IR techniques in the retrieval stage have not received much attention
compared to RC models in the answer extraction stage in the pipeline of open-domain
QA. Many NLP researchers have placed much more emphasis on the answer extraction
stage of open-domain QA to emphasize various aspects of linguistic analysis [135].
Despite there have been an emergence of neural network based IR models in recent
years [43, 45, 86, 105], it is difficult for these neural IR models to retrieve relevant
documents from a large-scale knowledge source directly6 since learning features of

6Some works have attempted to employ neural IR models in a large-scale knowledge source directly
by learning sparse representations of each question and documents [142] or compressing the neural mod-
els [39].
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all documents exhaustively in a large-scale knowledge source by neural IR models is
computationally expensive and time-consuming (e.g., Wikipedia contains more than
5.7M articles) [84, 135]. Therefore, some works [42, 63, 84, 125] attempted to apply
neural IR models as a ranker in open-domain QA to re-rank the documents retrieved
by the traditional but efficient IR models. For example, Lee et al. [63] used a tra-
ditional IR model called TF-IDF (Section 2.2.2), which is a term-based (i.e., lexical
matching) IR model. They used TF-IDF to retrieve the initial round of documents and
then used a neural ranker to re-rank top-ranked documents retrieved by TF-IDF. This
term-based IR model is efficient because it builds a retrieval index (Section 2.2) before
conducting the retrieval process and mainly relies on the feature of terms appearing in
the question and documents. Hence, the ability of the efficiency of traditional IR mod-
els makes them popular for the task of full-text search [109]. The assumption behind
the neural ranker is that the top-ranked documents after re-ranking are more relevant
to the question than low-ranked documents. The combination of traditional but effi-
cient IR models and neural rankers helps the retrieval component in open-domain QA
improve the retrieval performance without losing too much efficiency when retrieving
documents from the large-scale knowledge source like Wikipedia [84].

While adding the neural ranker after traditional IR models in open-domain QA
has shown some retrieval improvements over the traditional IR models without the
neural ranker [42, 63, 84, 125], these previous works did not conduct fine-grained
error analysis of traditional IR models based on different questions of QA datasets.
More specifically, there are three aspects that previous works did not explore, which
are shown in the following:

1. Previous works did not explore whether some different existing QA datasets in
the open-domain setting have the same impact on the traditional IR models in
the retrieval stage. Some existing datasets contain different questions from each
other. For example, a question of dataset SQuAD "Who was the Super Bowl
50 MVP?" has a different syntactic structure from a question of dataset Hot-
potQA "Where is the company, which designed the Glomar Challenger, based?".
The latter question has an attributive clause "which designed the Glomar Chal-
lenger".

2. Previous works did not explore the error types of questions of these datasets
that have a negative impact on the traditional IR models, namely the reasons for
retrieval ineffectiveness of traditional IR models.

3. Previous works did not explore whether the neural rankers they used can alle-
viate the negative impact on the traditional IR models resulting from the error
types of questions of datasets. In addition to the approach of neural rankers,
previous works also did not explore whether there are other approaches based
on the traditional IR models that can alleviate the negative impact of the error
types of questions of datasets.

To develop a better retrieval component of the open-domain QA system, we need to
figure out the insights of these three aspects described above. If we attempt to improve
the overall performance of an open-domain QA system without knowing what aspects
make the pipeline of the open-domain QA system get wrong, we are more likely to fix
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the trivial things of the pipeline and our efforts might be in vain. Therefore, these three
research gaps above inspire our work to do an exploration of them.

1.2 Aim of Research

There have been many works already that focused on the RC models in open-domain
QA [25, 66, 126], whereas the retrieval component in open-domain QA is usually
treated as a black box. Hence, we will pay our attention on the retrieval component
in this thesis, as the retrieval component plays an important role in open-domain QA
and it does influence the overall performance of an open-domain QA system (see the
retrieval stage in Figure 1.1). The research questions of this thesis are the following:

RQ1: Whether different QA datasets in the open-domain setting have the same impact
on traditional IR models that are used as the retrieval component in the retrieval
stage?

RQ2: What are the error types of questions of QA datasets in the open-domain setting
that have a negative impact on traditional IR models?

RQ3: What are the approaches that can be used to alleviate the negative impact of the
error types of questions of QA datasets in the open-domain setting on traditional
IR models?

1.3 Thesis Outline

Following the research questions we proposed above, the remainder of this thesis is
organized as follows. In Chapter 2, we provide readers with some background knowl-
edge of QA and IR and we also discuss some related works. Subsequently, in Chapter
3, we focus on the retrieval stage of the open-domain QA system and describe the ex-
ploratory analysis of datasets that are used in this thesis. In addition, we also present
the hypotheses with corresponding methodologies for alleviating the negative impact
of QA datasets. In Chapter 4, we then discuss experiments that are conducted to vali-
date the hypotheses we proposed in Chapter 3 and provide the analysis of results based
on the performance of the retrieval stage and the answer extraction stage in the pipeline
of the open-domain QA system. Finally, in Chapter 5, we give a summary of this thesis
and introduce some related future work.

6



Chapter 2

Related Work

This chapter aims to provide readers with some background knowledge of question
answering (QA) and information retrieval (IR), which can facilitate readers to have
some initial insights into the work in this thesis. Firstly, we begin with the definition
and composition of QA in natural language processing (NLP) (Section 2.1) and we
elaborate the reading comprehension (RC)-style QA and open-domain QA. Then, we
provide the introduction of different IR techniques (Section 2.2), including traditional
IR models and neural IR models.

2.1 Question Answering

Question answering is a discipline of computer science whose goal is to build an auto-
mated mechanism to answer questions posed by humans in natural language [16, 47].
QA is a heated research field in NLP which motivates the development of QA datasets
and learning technologies [20, 68, 94, 95, 136]. QA can be divided into two different
types [30, 35]:

• Closed-domain QA: It aims to solve the questions under limited domains (e.g.,
science or medicine) based on domain-specific knowledge sources or a specific
context. In particular, the task of QA based on a specific context is called reading
comprehension-style QA [28, 42], which requires an RC system to read the
context and answer the question. RC-style QA has gained much attention in
recent years [26, 44, 94, 136] and the models used in RC-style QA are also
important to the open-domain QA which is another type of QA. Hence, we will
give more detailed introduction of RC-style QA in this chapter.

• Open-domain QA: It is not restricted to any specific domain and aims to answer
questions regarding almost everything based on larger knowledge sources than
closed-domain QA (e.g., the web and Wikipedia) [135]. This task is the focus
of our work, we thus will elaborate it in this chapter as well.

2.1.1 Reading Comprehension-Style QA

Reading comprehension (RC)-style QA emulates how our humans answer questions
based on a text and it requires QA systems to understand the question and text from
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which the question is generated [47]. RC-style QA puts emphasis on text understand-
ing by answering questions as an evaluation of language understanding [16].

Early RC-style QA systems used rule-based approaches to answer questions based
on some hand-designed syntactic and semantic rules [99]. Then, this field moved to
the machine learning approaches due to the availability of large text material [12, 31].
Machine learning approaches attempted to formulate this task as a supervised learning
problem based on some feature engineering works [82]. Nowadays, more and more
researchers have applied the learning approach based on neural networks (i.e. Deep
Learning) in RC-style QA, because this learning technology is able to learn the features
of data automatically without hand-designed rules or feature engineering works by
domain experts which are time-consuming and expensive [26, 104, 139].

Rule-Based Approach
Most of early RC-style QA systems are logical representations of decision trees. The
decision trees are linguistic structures (e.g., grammatical rules) that mimic the way
humans understand text [47, 71]. Through decision trees, QA systems are able to
find syntactic and semantic clues in the question and text. The performance of these
QA systems highly depends on the constant extension of rules in decision trees and
all these rules at the very beginning were written by hand [98]. These QA systems
require different rule sets that define paths in decision trees to answer different types
of questions. For example, the question "where is the city Delft" has a different path
from the question "how large is the city Delft". The former question asks about the
location, while the latter one asks about the quantity. The performance of early RC-
style QA systems can be improved with some shallow linguistic processing methods
like stemming1 and part-of-speech tagging2 [47]. Despite rule-based systems were
successful for QA at the beginning, these systems are not applicable to highly volatile
questions and extensions to these systems cost too much effort [37, 47].

Machine Learning Approach
Due to the availability of a large amount of data in text material, researchers have put
their efforts on machine learning technology to tackle the task of RC-style QA [82].
A large amount of data can be used to train statistical models that learn a function
which maps a piece of text and a question into the corresponding answer [16]. Two
notable datasets MCTEST [97] and PROCESSBANK [8] were proposed which in-
spired a surge of machine learning models [81, 102, 122] and most of these models
were built over a number of hand-designed linguistic features such as syntactic de-
pendencies, coreference resolution, semantic frames and discourse relations [16]. The
performance on QA based on the machine learning approach has been significantly im-
proved over rule-based heuristic approaches [16]. Nevertheless, the performance of the
machine learning approach is limited because of some drawbacks of the hand-designed
linguistic features. Machine learning models highly depend on existing linguistic tools
(e.g., dependency parsers and part-of-speech taggers) to obtain features, whereas some

1The process of reducing a word to its root form (e.g., "playing" to "play").
2The process of identifying a word as noun, verb, adverb, etc.
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noise exists in this process. In addition, these hand-designed features are difficult and
insufficient to construct an effective QA system to simulate human-level performance.

Deep Learning Approach
Thanks to the creation of many large-scale supervised training data [40, 94], deep
learning has boosted the recent development of NLP since its ability of learning under-
lying features of data automatically using neural networks [47, 62]. Unlike rule-based
and machine learning approaches, deep learning models do not rely on hand-designed
linguistic features and all the features are learned in the end-to-end neural network by
deep learning models themselves [40]. This can help models avoid the noise produced
by linguistic tools and enlarge the scope of useful features [16]. RC-style QA systems
have benefited significantly from deep learning models and some of them have outper-
formed human level performance [26]. Neural networks are applied in text understand-
ing to learn linguistic features and latent semantic (i.e., the meaning of the text) of text
based on the training data. Then, trained neural networks encode the textual text (e.g.,
word, sentence or paragraph) into a distributed representation which is a vector called
embedding. Recurrent neural networks (RNNs) [41] have shown promising results on
language processing [138] and the process of RNNs can be found in Figure 2.1. The
hidden layers of RNNs retain the previous values and this process is similar to the
process of human processing and comprehending text from left to right. We memorize
the previous meaning of words to cumulatively understand the entire meaning of text
[74]. This special property of RNNs has the potential to model the dependencies of
words in a long distance (i.e., long sentences) [74, 143], but it also brings a problem of
gradient explosion or vanishing resulting in the difficulty of optimization of weights in
hidden layers [89]. Hence, some other neural networks based on RNNs were proposed
to alleviate this problem such as long short-term memory networks (LSTMs) [41] and
gated recurrent units (GRUs) [18].

Figure 2.1: The working process of RNNs. Each input word is processed by the hidden
layer and the hidden layer maintains previous hidden values to output a text embed-
ding. Input words are generally represented by pre-trained word embeddings (e.g.,
Glove [91] or Fasttext [50]).
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Categories of RC-Style QA
Based on the answer type of the existing RC-style QA datasets, the task of RC-style
QA can be divided into four categories [16] and the examples of each category can be
found in Table 2.1:

• Cloze style: In the cloze-style dataset, some words in the text have been masked
and missing and QA systems need to predict them based on the context. Repre-
sentative datasets are CNN/Daily Mail [40] and Story Cloze Test [80].

• Multiple choice: In this case, each question has multiple choices to be chosen
and one of them is correct. QA systems need to distinguish the correct one from
all the hypothesized answers. Representative dataset is ARC [21].

• Text span: In this case, the answer to each question is a span of text (i.e., a word
or multiple continuous words) from the corresponding provided passage and
this is also called extractive QA. QA systems require to predict the starting word
and ending word respectively thereby forming an answer span. Representative
datasets are SQuAD [94] and HotpotQA [136].

• Free-form answer: The answer belonging to this category can be a text without
length limitation. Representative dataset is Natural Questions [59].

Evaluation Metrics
In terms of cloze-style questions and multiple-choice questions, the evaluation is def-
initely straightforward to be done by measuring the accuracy of predicted answer
[27, 113] since the answer is chosen from candidate answers. The question whose
predicted answer is correct gets credit 1.0 and 0.0 otherwise. Hence, the metric Accu-
racy of all questions can be derived from Equation 2.1.

Accuracy =
# ques correct predicted answer

# total ques
(2.1)

For text-span questions whose answer is string(s), we need to compare the pre-
dicted string(s) with the ground truth answer string(s) (i.e., the correct answer). RC-
style QA task generally uses evaluation metrics Exact Match (EM) and F1 score (F1)
proposed by Rajpurkar et al. [94] for text-span questions [104, 116]. EM assigns credit
1.0 to questions whose predicted answer is exactly the same as the ground truth an-
swer and 0.0 otherwise, so the computation of EM is the same as the metric Accuracy
but for different categories of RC-style QA. F1 measures the average word overlap
between the predicted answer and the ground truth answer. These two answers are
both considered as bag of words with lower cases and ignored the punctuation and
articles "a", "an" and "the". For example, the answer "The Question Answering Sys-
tem" is treated as a set of words {question, answering, system}. Therefore, F1 of each
text-span question can be computed at word-level by Equation 2.2.

F1 =
2×Precision×Recall

Precision+Recall
(2.2)
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Cloze style Passage: The ent381 producer allegedly struck by ent212 will not
press charges against the “ ent153 ” host, his lawyer said friday.
ent212, who hosted one of the most-watched television shows in
the world, was dropped by the ent381 wednesday after an internal
investigation by the ent180 broadcaster found he had subjected
producer ent193 “to an unprovoked physical and verbal attack.”
Question: producer X will not press charges against ent212, his
lawyer says.
Answer: ent193

Multiple choice Question: What is a worldwide increase in temperature called?
Candidate answers: (A) greenhouse effect (B) global warming
(C) ozone depletion (D) solar heating
Answer: (B)

Text span Passage: Super Bowl 50 was an American football game to deter-
mine the champion of the National Football League (NFL) for the
2015 season. The American Football Conference (AFC) champi-
ons Denver Broncos defeated the National Football Conference
(NFC) champions Carolina Panthers, 24–10.
Question: Which NFL team represented the AFC at Super Bowl
50?
Answer: Denver Broncos

Free-form answer Question: Where is the bowling hall of fame located?
Long answer: The World Bowling Writers ( WBW ) Interna-
tional Bowling Hall of Fame was established in 1993 and is lo-
cated in the International Bowling Museum and Hall of Fame , on
the International Bowling Campus in Arlington, Texas.
Short answer: Arlington, Texas

Table 2.1: Examples from each category of RC-style QA based on the answer type.
The answer in the text is in yellow .

where Precision and Recall are computed by Equation 2.3 and Equation 2.4 respec-
tively.

Precision =
# {predicted words}

⋂
{ground truth words}

# predicted words
(2.3)

Recall =
# {predicted words}

⋂
{ground truth words}

# ground truth words
(2.4)

In terms of free-form questions whose answer has no length limitation, most of
works [65, 104, 116] use standard evaluation metrics that are employed in natural
language generation (NLG) tasks, including BLEU, METEOR and ROUGE3.

3See https://github.com/sebastianruder/NLP-progress/blob/master/english/
question_answering.md.
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2.1.2 Open-Domain QA

Open-domain QA systems are not restricted to any specific domain or any specific
question type and they aim to answer questions based on large knowledge sources
such as the World Wide Web, which covers a large number of different topics [135].
Open-domain QA combines the researches from different fields like IR, information
extraction and NLP [16] and it mainly consists of two stages as we introduced in
Chapter 1 [17, 28] . The two-stage pipeline of the open-domain QA system can be
found in Figure 1.1.

The research in open-domain QA has increased since 1999 when the QA track was
first introduced in Text Retrieval Conference (TREC) competitions by the National
Institute of Standards and Technology (NIST) [16, 77]. The first TREC competition
on QA track4 provided 200 questions and a set of documents where the answer to the
question exists. At that time, QA systems were expected to retrieve small snippets
of a text containing the answer to the question and it inspired some developments
of QA systems [79, 120]. In the QA track of next TREC competition (i.e., TREC-
9) held in 2000, the number of questions and the size of document collection were
increased (the number of questions increased by 693). In TREC-11 held in 2002,
the QA systems were asked to give an exact short answer to the question and the
later TREC competitions of QA track introduced different types of questions (e.g., list
type questions and factoid questions) and increased the diversity of question topics.
Hence, TREC competitions on QA track progressed with increasing size of document
collection, the complexity of questions and strictness of evaluation strategies.

With the rise of information online, there is a large amount of data that may provide
useful information to the user and it has motivated the development of knowledge bases
(KBs) in recent years such as Freebase [9] and DBpedia [4]. Some QA datasets have
been proposed based on these KBs such as WebQuestions [7] and SimpleQuestions
[11] and most of the models on these datasets are either based on semantic parsing or
information extraction techniques [137]. Nevertheless, KBs based open-domain QA
systems have inherent drawbacks: (1) KBs are not complete, so they cannot cover a
large range of knowledge sources [130]; (2) the knowledge in KBs is arranged in fixed
schemas for information extraction, so it is expensive to construct and maintain [42].
Therefore, the limitations of KBs have motivated researchers to return to the original
setting of open-domain QA which is based on raw text [16].

Open-domain QA based on raw text is also called corpus-based5 approach, where
QA systems look for the answer in the unstructured text corpus (i.e., raw text) [34].
This approach alleviates the cost to build and maintain KBs by taking advantage of the
availability of a large amount of text on the web [42].

There are also some open-domain QA systems using hybrid resources to look for
the answer, including both unstructured text corpus and structured knowledge bases
such as AskMSR from Microsoft [13] and DeepQA from IBM [34]. IBM’s DeepQA
has received much attention after its victory at the TV game-show Jeopardy! in 2011
and it is a sophisticated and complicated QA system that relies on unstructured infor-
mation and structured information to get the answer.

4See https://trec.nist.gov/data/qa/t8_qadata.html
5Corpus refers to a body of raw text from a group of documents [72].

12

https://trec.nist.gov/data/qa/t8_qadata.html


2.2. INFORMATION RETRIEVAL

There are other modalities of knowledge sources, including tables [90], images
[3], diagrams [52] or even videos [115], but we only focus on unstructured text-based
knowledge source in this thesis as we described in Chapter 1.

As the significant success has been achieved by neural network based RC models
in RC-style QA, researchers have attempted to apply neural network based RC models
in open-domain QA to implement the answer extraction stage of open-domain QA (see
Figure 1.1) [17, 42, 88, 136]. For instance, Chen et al. [17] proposed an open-domain
QA system named DrQA and the working pipeline is shown in Figure 2.2. It consists
of a Document Retriever and a Document Reader. The Document Retriever is based
on the traditional IR model TF-IDF (will be described in Section 2.2.2), upon the un-
structured text corpus Wikipedia. The Document Reader is a neural network based RC
model and it will be used in our experiments (will be described). Despite the Docu-
ment Reader of DrQA achieves EM of 69.5 on dataset SQuAD, this performance drops
to 27.1 in open-domain setting when the relevant paragraph containing the answer is
not given to the Document Reader.

Figure 2.2: The overview of an open-domain QA system DrQA. Figure is copied from
[17].

2.2 Information Retrieval

The definition of IR in academia is finding material (usually documents) of an un-
structured nature (usually text) that satisfies an information need from within large
collections (usually stored on computers) [72]. A common practical example of IR
in our daily lives is using web commercial search engines (e.g., Google and Bing) or
search the emails. When engaging in the web search engine, the user initiates a search
with a set of keywords as a query to convey the information need and then the query
is executed by the IR system built in the search engine. Finally, the IR system re-
turns ranked documents (i.e., web pages) to the user according to the relevance6. The
overview of the retrieval process is displayed in Figure 2.3.

6A document is relevant if it contains the information that the user is looking for.
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Figure 2.3: The overview of the IR process.

2.2.1 Preliminaries

This part introduces some background knowledge of IR which is fundamental to tradi-
tional IR models. There is a large number of documents on the web that can be used for
retrieval and a way to avoid linearly scanning all the documents for a query is to index
these documents in advance. Manning et al. [72] gives a detailed description of how to
index documents and what the purpose of the index is. They consider a play of Shake-
speare’s as a document and judge whether it contains each word out of all words in all
plays (about 32,000 words). As a result, a binary term-document incidence matrix can
be derived as in Figure 2.4.

Figure 2.4: A term-document incidence matrix and each entry (t,d) is 1 if the document
d in column contains the word t in row, and is 0 otherwise. The figure is copied from
[72].

The terminology term is the indexed unit and it is usually a word7. Document
is the indexed retrieval unit over which we can decide to build our retrieval system
and it can be based on each paragraph, chapter or even the whole content of a book.

7Sometimes it is not a word such as "Hong Kong", so using term to indicate the indexed unit instead
of word.
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Collection indicates a group of documents over which the retrieval system performs
and it is sometimes referred to a corpus (a body of raw text) [72].

As we can see from the term-document incidence matrix, if a document only con-
tains 1,000 unique words, its column is filled with a large number of entries 0 since
the number of dimensions of each column equals to the number of unique words in all
documents. Hence, the matrix is too sparse to fit the memory of computers and the
inverted index was introduced to solve this problem, which can be found in Figure
2.5. The inverted index is an index that maps a term to documents that contain it.

Figure 2.5: The inverted index. The figure is copied from [72].

All terms are kept in dictionary which is a type of data structure and each item
in the postings indicates the ID of the document that contains the term. The inverted
index can be built based on the major steps below [72]:

1. Choose the retrieval document unit (e.g., each paragraph or chapter of a book)
and collect documents to be indexed.

2. Tokenize the text and transform the text of each document into a list of tokens.
For example, a piece of text "Lily went to the park with her friends" is trans-
formed into a set of tokens {Lily, went, to, the, park, with, her, friends}.

3. Implement linguistic preprocessing (e.g., lower case, stopwords8 removal and
stemming) so that the tokens are normalized before becoming indexed terms. In
terms of the example in step 2, a set of tokens {Lily, went, to, the, park, with,
her, friends} can be preprocessed into tokens {lily, go, park, friend}.

4. Assign a unique document number (i.e., document ID) to each document and
then index documents that each term appears in by creating an inverted index
with a dictionary and postings as shown in Figure 2.5. For an efficient retrieval,
terms in the dictionary are sorted alphabetically and document IDs in postings
are sorted from smallest number to largest number.

The inverted index described above is a binary index which means we only can
know whether a document contains the term or not. There are other methods that can

8Some common words are of little value in helping matching documents to the user’s query (e.g., of,
to, in).
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construct different indexes with more statistics for different IR models, such as term
frequency, document frequency and positions the term appears in [24].

2.2.2 Traditional IR Models

Traditional IR models mainly contain Boolean retrieval models, vector space mod-
els, probabilistic retrieval models, language modeling and relevance models [72]. As
we can see the term-document incidence matrix in Figure 2.4, it gives us an intuition
about how Boolean retrieval models work, which just indicates that a document ei-
ther contains or does not contain a query. However, the Boolean retrieval model is
hardly used in open-domain QA since it returns a set of documents just satisfying the
Boolean queries9. For example, a Boolean query "Brutus and Caesar not Calpurnia"
can be executed by the Boolean retrieval model and this model returns a collection of
documents that contain keywords "Brutus" and "Caesar" but not "Calpurnia". The
Boolean query is not in the form of natural language and documents returned are not
ranked by relevance. This makes it hard for RC models to extract a correct answer to
the question in the open-domain setting, as RC models tend to extract the answer from
top-ranked documents retrieved by the retrieval component [17]. We thus introduce
other traditional IR models that can be deployed in open-domain QA.

Vector Space Models
It is important for a retrieval model that can rank matching documents to a query
according to their relevance [72]. A vector space retrieval model is an IR model that
can implement the ranking based on the relevance score computed for each document.
It treats each document as a vector of term weights and computes a score between the
query and each document. Before introducing the process of computing the relevance
score by the vector space model, we give a description of how to construct a vector for
each document and what each entry in the vector is.

As we described above, the Boolean retrieval model only cares about whether
or not a query term is present in a document, but a document that contains a term
several times should be more important and have a higher relevance score compared
to the one that only has this term once [69]. Toward this, a weight can be assigned
to each term in a document that depends on the number of occurrences of the term in
the document and this weighting scheme is called term frequency (TF), denoted by
t ft,d [72]. The vector space model considers the text in the query as free text query,
without any Boolean retrieval operators, so the query and the document can be treated
by vector space model as bag of words. In this way, the vector space model ignores the
ordering of terms in the query and the document, but the number of occurrences of each
term is retained. However, not all terms are equally important when we evaluate the
relevance between a query and documents. For example, the article "the" may appear
in every document many times and it has little value to help evaluate the relevance of
a document to a query. This problem can be solved by stopwords removal, which we
described in the construction of the inverted index. Another scenario is that a collection
of documents on the topic "information retrieval" is likely to have the term retrieve in
every document, but it is not a stopword. Hence, the idea to scale down the term

9Combining keywords with relational operators (e.g., and, or).
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weights of this type of terms is by inverse document frequency (IDF) and document
frequency or collection frequency is referred to the number of occurrences of a term
in the collection, denoted by d ft . Inverse document frequency is defined as Equation
2.5, where N indicates the total number of documents in the collection.

id ft = log
N

d ft
(2.5)

Therefore, a term t can be assigned a weight in a document d by TF-IDF weighting
scheme using Equation 2.6. In fact, this formula is a general one and has different
variants of tf weight and idf weight, such as sublinear TF scaling and maximum TF
normalization [1, 72].

t f − id ft,d = t ft,d× id ft (2.6)

After introducing the TF-IDF weighting scheme, we can consider each document
as a document vector in a vector space, in which each entry is a TF-IDF weight of
each term in the dictionary of the inverted index. For terms in the dictionary that
do not appear in a document, the TF-IDF weights of these terms in this document
vector are 0. Some fabricated examples of document vectors can be found in Table
2.2. As we can see from the examples, the document vectors of Doc1 and Doc3 are−→
V (Doc1) = (16,8,25,6, ...) and

−→
V (Doc1) = (20,14,10,0, ...) respectively and Doc3

does not contain the term "document". The query can be considered as a vector as well
by considering the query as a short document and we thus can build a query vector.
Consequently, we can compute the relevance score for each document to the query
based on the relation between the document vector and query vector and the relevance
score can be used for ranking. A standard way for quantifying the relation between
two vectors is to compute their cosine similarity [108], which is given in Equation
2.7, where q is a query and d is a document.

sim(q,d) =
−→
V (q) ·−→V (d)∣∣∣−→V (q)

∣∣∣ ∣∣∣−→V (d)
∣∣∣ (2.7)

Doc1 Doc2 Doc3 ...
information 16 12 20 ...
retrieval 8 10 14 ...
relevance 25 16 10 ...
document 6 8 0 ...
... ... ... ... ...

Table 2.2: Some fabricated examples of document vectors using TF-IDF weighting.

Probabilistic Models
The probabilistic approach was proposed to use probability theory to reason about the
uncertainty of the relevance of a document to a query [72] since no retrieval system
can predict with certainty that a document is either relevant or irrelevant to a query
[73, 101]. Intuitively, probabilistic models can rank documents by their estimated

17



CHAPTER 2. RELATED WORK

probabilities of relevance with respect to a query, so it models the probability P(d|q)
of the relevance of a document d with respect to a query q [72].

Probabilistic models originally did not show superiority than other traditional IR
models (e.g., TF-IDF) and this situation changed when the BM25 weighting scheme
was proposed in 1990s [72]. The original probabilistic models such as Binary Indepen-
dence Model (BIM) did not take term frequency and document length into considera-
tion [131], while the BM25 weighting scheme, also called Okapi BM25 weighting,
was implemented to focus on these aspects in text [48]. BM25 can be computed in
Equation 2.8, where t ft,d is term frequency of term t in the document d, Ld is the
length of document d and Lave is the average document length of whole documents in
the collection. k1 and b are hyperparameters which need to be tuned manually. Specif-
ically, k1 (k1 ≥ 0) indicates the scaling to term frequency and BM25 is a binary model
with ignoring term frequency if k1 is 0, and k1 has a large value which indicates to use
almost raw term frequency. b (0 ≤ b ≤ 1) determines the scaling by document length
and if it is 1 which indicates fully scaling down the term weight by document length
and 0 means no scaling by document length.

BM25(q,d) = ∑
t∈q

log
[

N
d ft

]
·

(k1 +1)t ft,d
k1((1−b)+b× (Ld/Lave))+ t ft,d

(2.8)

Language Modeling
Unlike probability models that model the probability P(d|q) of relevance of a docu-
ment d with respect to a query q, language modeling approach aims to build a language
model Md from each document d and ranks documents based on the probability of gen-
erating the query P(q|Md) with their own language models [72, 78]. Query terms have
a probability distribution of generation in a document and the likelihood of generating
a query term by a document can be estimated by the probability of successfully sam-
pling this query term from all terms in this document, which is the maximum likelihood
estimation (MLE) of this query term in this document [78]. The language model Md
of a document d stores the probability distribution of query terms and it can be used
to estimate the probability of query generation P(q|Md) by the product of each query
term’s generation probability.

The basic approach to use language models in IR is query likelihood (QL) model
[72] and it computes the probability of relevance of a document P(d|q) based on the
Bayes rule in Equation 2.9. P(q) indicates the probability of a query proposed by the
user, so it is the same for all documents. The prior probability of a document P(d) is
often considered as uniform distribution across all documents [72], hence the proba-
bility of relevance of a document P(d|q) only depends on the value of P(q|d), which is
equivalent to the query generation probability based on the document language model
P(q|Md).

P(d|q) = P(q|d)P(d)
P(q)

(2.9)

Query generation probability based on the document language model can be es-
timated in Equation 2.10 (P̂ means estimated probability), where Md is the language
model of a document d, t ft,d is the term frequency of a query term t in the document d
and Ld indicates the number of all tokens in the document d. This equation is the prod-
uct of all query terms’ generation probability based on the document language model
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and the value of it is positive only when the document contains all query terms. If the
document does not have one of the query terms, the value of the equation becomes 0,
which means the document has nothing to do with the query. However, some terms
do not appear in the document, but they are possible terms for the user’s information
need [72]. To avoid this problem, we should not only consider a query term that is
generated by a document, but also by all documents in the collection. One of this
smoothing approaches called Jelinek-Mercer smoothing can be found in Equation
2.11. In this smoothing approach, 0 < λ < 1 and Mc is a language model built on the
entire documents in the collection.

P̂(q|Md) = ∏
t∈q

P̂MLE(t|Md) = ∏
t∈q

t ft,d
Ld

(2.10)

P̂(t|d) = (1−λ)P̂MLE(t|Md)+λP̂MLE(t|Mc) (2.11)

Pseudo Relevance Feedback
In IR community, a user’s query expression sometimes might be too short or simple
to indicate the information need of the user, so a user’s original query might not be
sufficient to retrieve the information that the user is looking for [5, 36]. As a result,
researchers have been motivated to focus on the query formulation and the refinement
mechanism such as query suggestion and query expansion [5, 36, 51].

Based on users’ relevance feedback is one of the approaches10 to implement the
mechanism of query expansion [51, 103]. Relevance feedback is to build interactions
between users and the retrieval system to improve the final retrieval results [72]. A user
firstly issues a query and the retrieval system returns the initial round of retrieved doc-
uments. Then, the user requires to pick out some relevant or non-relevant documents
from the initial round of retrieved documents which can help this retrieval system do a
query refinement. Subsequently, the second round of retrieved documents after revis-
ing the original query are returned. The process of relevance feedback can go through
one or more iterations like this.

Pseudo relevance feedback (PRF) is one of the types of relevance feedback11 [108]
and it replaces the user’s intervention by an automatic process. PRF firstly employs
retrieval models (e.g., BM25 and QL) to retrieve a set of initial documents and then
assumes top− k ranked documents are relevant, so it does not require users to pick
out relevant documents. Relevance-based language model (usually called Relevance
Model or RM) is an approach based on PRF to do query expansion which was pro-
posed by Lavrenko and Croft [61] and it has four variants: RM1, RM2, RM3 and
RM4. In particular, RM3 has been used in many IR related researches and it is the
most popular one [14, 64, 100].

RM3 is built on RM1, so we will introduce RM1 before RM3. The process of
RM1 consists of following steps12:

1. RM1 assigns a weight to top− k relevant documents based on their query gen-
eration probabilities in Equation 2.12, which is the same as the formula of query

10Other automatic query expansion approaches are re-weighting query terms and using external
sources (e.g., thesaurus).

11Explicit feedback and implicit feedback are other two types.
12See http://people.cs.vt.edu/~jiepu/cs5604_fall2018/10_qm.pdf.
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likelihood model in Equation 2.10.

P̂(q|Md) = ∏
t∈q

P̂MLE(t|Md) (2.12)

In this equation, the query generation probability is the product of generation
probability of each query term t based on the relevant document language model
Md .

2. Compute the probability of a term w that is expanded to the original query based
on the language model of the relevant document Md by P̂MLE(w|Md) · P̂(q|Md).

3. Normalize the probability of all terms that are expanded to the original query
in relevant documents in Equation 2.13, where DR is the collection of top− k
relevant documents and WE are the set of terms in relevant documents that are
expanded to the query.

P̂RM1(w|q,DR) =
∑d∈DR(P̂MLE(w|Md)P̂(q|Md))

∑w∈WE ∑d∈DR(P̂MLE(w|Md)P̂(q|Md))
(2.13)

In terms of RM1, the term which has a larger value of P̂RM1(w|q,DR) is expanded
to the original query and then the retrieval system re-runs the revised query to retrieve
new documents. Sometimes, the term appears in the original query does not have large
value of P̂RM1(w|q,DR) which seems risky and problematic, because query terms are
supposed to be more important than some other terms appearing in relevance feed-
back documents to the user’s information need [6, 72]. Hence, RM3 was proposed to
alleviate this query drift problem with the linear interpolation of the language model
of original query q [6]. RM3 can be found in Equation 2.14, where Mq is the lan-
guage model of the original query and λ (0 < λ < 1) is a hyperparameter to indicate
how much weight is assigned to the query language model that influences the final
probability of the expanded term w.

P̂RM3(w|q,DR) = λ · P̂MLE(w|Mq)+(1−λ) · P̂RM1(w|q,DR) (2.14)

In addition to the hyperparameter λ, two more hyperparameters also can influence
the performance of RM3 in retrieval effectiveness and they are:

• fbDocs: the number of relevance feedback documents.

• fbTerms: the number of terms that can be expanded to the original query from
relevance feedback documents.

2.2.3 Neural IR Models

As we described in Section 2.1.1, Deep Learning has boosted the development of neu-
ral RC models which achieve significant success in RC-style QA, as deep neural net-
works can learn features of input data automatically [47, 62]. This capability has
inspired the development of deep neural IR models as well [23] and with this capa-
bility, neural IR models can learn features from raw text of the query and document
automatically. Hence, many neural IR models have been proposed to deal with the
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relevance ranking problem of documents by only taking the textual data of the query
and document into account [38, 45, 86].

Neural IR models aim to determine the relevance score of a document to a query.
According to Hu et al. [43], Pang et al. [86], this process can be formulated in Equation
2.15, where the relevance Rel(q,d) relies on the mapping functions Ψ and Φ of a
query q and a document d respectively as well as the scoring function F . The mapping
functions of the query and document can map the text of them into a query vector and
a document vector (i.e., distributed representation described in Section 2.1.1) and the
scoring function can model the relation between these two vectors. Existing neural IR
models thus can be categorized into two types that focus on mapping functions and
the scoring function respectively and they are: representation-focused models and
interaction-focused models [87].

Rel(q,d) = F(Ψ(q),Φ(d)) (2.15)

Representation-Focused Models
Representation-focused models concentrate on building a good representation of the
query and document by a deep neural network, so mapping functions Ψ and Φ are paid
more attention to and relatively complex than the scoring function F [87]. In general,
the model architecture of representation-focused models can be viewed as a Siamese
(i.e., symmetric) architecture over the text inputs (i.e., input query and input document)
[10, 87], as displayed in Figure 2.6a. The representative neural IR models belonging
to the representation-focused model are Deep Structured Semantic Model (DSSM)
[45], Convolutional Deep Structured Semantic Model (C-DSSM) [105] and ARC-I
[43]. In DSSM, as shown in Figure 2.7, the mapping functions Ψ and Φ are built
on feed forward networks (i.e., multi-layer non-linear projection) for learning to map
the query and document into representations and the scoring function F uses cosine
similarity (Equation 2.7) to compute the relevance score over the query representation
and document representation.

Interaction-Focused Models
The architecture of interaction-focused models can be found in Figure 2.6b. As we can
see from this architecture, interaction-focused models primarily build the local interac-
tions between the query representation and document representation which are gener-
ated based on relatively simple mapping functions. Some interaction-focused models
[43, 87] use pre-trained word embeddings (e.g., Glove [91] or Fasttext [50]) instead
of using deep neural networks to generate high-level representations of the query and
document based on the input text . Then, interaction-focused models make use of deep
neural networks to learn complex matching signals based on their local interactions
and finally aggregate these matching signals to derive the relevance score between
the query and document [87, 145]. The representative neural IR models belonging to
the interaction-focused model are MatchPyramid [86], ARC-II [43] and MV-LSTM
[121]. For example, in ARC-II, as displayed in Figure 2.8, mapping functions Ψ and
Φ map two sentences into representations which are the sum of word embeddings of
the words they contain. Then, local interactions are performed by a 1D convolution
over each pair of words from these two sentences, which is followed by 2D convolu-
tion and 2D max-pooling to operate more complex matching signals. Consequently,
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a Representation-focused models b Interaction-focused models

Figure 2.6: Two categories of Neural IR models.

Figure 2.7: The architecture of Deep Structured Semantic Model (DSSM) [45], which
belongs to the representation-focused model. Figure is copied from [45].

all matching signals go through a multi-layer perceptron (MLP) to obtain the matching
degree between input sentences.

Neural IR Models as A Ranker
Traditional IR models discussed in Section 2.2.2 can retrieve documents to a query
from a large document collection in an efficient way based on the index they build
in advance [72, 109]. Traditional IR models construct an index with indexing each
term and each document, so traditional IR models are also considered as term-based
IR models which are widely used in full text search [109].

Many works [42, 63, 84, 125] deploy neural IR models to subsequently re-rank a
number of top-ranked documents retrieved from a large document collection (i.e., the
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Figure 2.8: The architecture of ARC-II [43], which belongs to interaction-focused
models. The figure is copied from [43].

large-scale knowledge source) by traditional but efficient IR models. Therefore, neural
IR models can be considered as an extension of the original ranking process and this
process is composed of two steps as shown in Figure 2.9:

1. Traditional IR models (e.g., TF-IDF, BM25) retrieve a number of top-ranked
documents from a large document collection.

2. Neural IR models as the ranker to re-rank these top-ranked documents with re-
spect to the input query to obtain the final ranked documents.

Figure 2.9: The overview of the retrieval process with the neural IR model as the
ranker for re-ranking top-ranked documents retrieved by the traditional IR model.
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Chapter 3

Exploratory Analysis of SQuAD,
HotpotQA and TriviaQA

The goal of this chapter is to conduct an analysis of three QA datasets SQuAD [94],
HotpotQA [136] and TriviaQA [49] in the task of open-domain QA based on tradi-
tional IR models. More specifically, we present the comparison of existing QA datasets
and select three datasets that are suitable in our work (Section 3.1). We then describe
the retrieval test on these three datasets (Section 3.2), which is followed by the analysis
and conclusion of retrieval results as well as our answers to RQ1 and RQ2 (Section
3.3). Subsequently, we propose our hypotheses for alleviating the negative impact of
error types of questions on traditional IR models (Section 3.4) and we finally introduce
specific methodologies that are used to implement hypotheses (Section 3.5).

3.1 Datasets Selection

In NLP community, there have been a large range of QA datasets covering different as-
pects of QA, such as QA datasets for reading comprehension [40, 94], conversational
QA [96], multimodal comprehension [132], and open-domain QA [28, 32]. Never-
theless, not all types of the QA datasets are applicable in our work. For example, the
conversational QA dataset CoQA proposed by Reddy et al. [96] focuses on the conver-
sational scenario and some questions are related to the information in history, so this
type of QA dataset is different from datasets of RC-style QA and open-domain QA.
An example of CoQA can be found in Figure 3.1. As we can see from Figure 3.1, the
question Q2 uses the pronoun "she" to refer to "Jessica", which is the answer to the
question Q1.

Therefore, we compare some popular QA datasets focusing on the task of RC-
style QA and the task of open-domain QA based on some prominent characteristics.
The comparison can be seen in detail in Table 3.1. As we can see from Table 3.1, we
compare some QA datasets based on the number of questions, the source of questions,
the source of retrieved documents (i.e., the knowledge source), the form of questions
and the answer type. Considering the definition of open-domain QA (Section 2.1.2)
and the knowledge source (i.e., unstructured text) we focus on in our work, we choose
QA datasets SQuAD, HotpotQA and TriviaQA in our work and the reasons are the
following:
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Figure 3.1: A conversation from the CoQA dataset. The figure is copied from [96].

• Questions of these three QA datasets are in the form of natural language.

• These three QA datasets have the same knowledge source (i.e., Wikipedia) which
enables traditional IR models to retrieve documents to questions of these QA
datasets from the same resource.

• The answer type of these three QA datasets are all text span (answer type are
described in Table 2.1).

3.1.1 SQuAD

Stanford Question Answering Dataset (SQuAD) [94] is a reading comprehension dataset
including 107K question-answer pairs and each QA pair is provided one ground truth
paragraph that can be used to answer the question. QA pairs of SQuAD were gener-
ated in a way that the provided paragraph for each question is one of the paragraphs
of a Wikipedia article and this paragraph was guaranteed to contain all reasoning facts
and the answer to the question, because each QA pair was constructed and extracted
based on this paragraph [32, 125]. Specifically, crowd-workers were provided a single
paragraph firstly, they then generated QA pairs from this paragraph. Two examples of
SQuAD can be found in Table 3.2.

In the open-domain setting, the ground truth paragraph of each QA pair is not pro-
vided to the open-domain QA system. Hence, the open-domain QA system requires to
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Dataset # Ques Source of Ques Source of Docs Ques form (Nature) Answer Type Used

RACE [60] 870K English exam English exam X Mutiple choice
QAngaroo [129] 53K Wikipedia/PubMed Wikipedia/PubMed 7 Text span
NewsQA [118] 100K CNN CNN X Text span
MultiRC [53] 6.5k Science, News, sto-

ries, travel guides
Science, News, sto-
ries, travel guides

X Mutiple choice

MS MARCO [83] 100K User logs Web search (Bing) X Free-form
NarrativeQA [56] 46K Movie Scripts, Lit-

erature
Movie Scripts, Lit-
erature

X Free-form

QUASAR-T [28] 43K Trivia websites ClueWeb09 X Text span
SearchQA [32] 140K Jeopardy Web search

(Google)
X Text span

TriviaQA [49] 95K Trivia websites Wikipedia/Web
search (Bing)

X Text span X

SQuAD [94] 107K Wikipedia Wikipedia X Text span X
HotpotQA [136] 113K Wikipedia Wikipedia X Text span X

Table 3.1: The comparison of some popular QA datasets focusing on the task of RC-
style QA and open-domain QA. Note that in the column of Ques form (Nature), "X"
indicates that the question form of the dataset is natural language and "7" otherwise.

SQuAD

Paragraph: The Broncos took an early lead in Super Bowl 50 and never trailed.
Newton was limited by Denver’s defense, which sacked him seven times and
forced him into three turnovers, including a fumble which they recovered for a
touchdown. Denver linebacker Von Miller was named Super Bowl MVP, record-
ing five solo tackles, 2 sacks, and two forced fumbles.
Question: Who was the Super Bowl 50 MVP?
Answer: Von Miller

Paragraph: Harvard is a large, highly residential research university. The nom-
inal cost of attendance is high, but the University’s large endowment allows it
to offer generous financial aid packages. It operates several arts, cultural, and
scientific museums, alongside the Harvard Library, which is the world’s largest
academic and private library system, comprising 79 individual libraries with over
18 million volumes...

Question: How many volumes are contained in the library?
Answer: 18 million

Table 3.2: Two examples of dataset SQuAD. Each QA pair was generated from the
provided paragraph, which is one of the paragraphs of a Wikipedia article. The ground
truth answer is in yellow .

retrieve relevant documents to the question from Wikipedia by the retrieval component,
and the RC model extracts the answer to the question based on retrieved documents.
We use the term SQuADopen to indicate the open-domain setting of SQuAD, so the
term SQuAD indicates the task of RC-style QA on SQuAD which provides the ground
truth paragraph of each QA pair to the RC model directly, while the term SQuADopen

indicates the task of open-domain QA on SQuAD which needs the retrieval compo-
nent to retrieve relevant documents from Wikipedia to the RC model. The notation of
SQuADopen is the same as that in [63, 125].
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3.1.2 HotpotQA

HotpotQA [136] is a reading comprehension dataset containing 113K QA pairs. De-
spite QA pairs in HotpotQA were also constructed based on the paragraphs of Wikipedia
articles which is similar to SQuAD, there are still some differences between these two
QA datasets. On one hand, each question of SQuAD was generated based on a sin-
gle paragraph of a Wikipedia article, while each question of HotpotQA was generated
based on two paragraphs1 of two different Wikipedia articles. HotpotQA connected
two Wikipedia articles by the hyperlink appearing in the first paragraph of one of the
Wikipedia articles. The hyperlink can be seen in Figure 3.2. On the other hand, the
ground truth answer to the question of SQuAD appears in the provided single ground
truth paragraph, whereas the ground truth answer to the questions of HotpotQA only
appears in one of two paragraphs instead of both paragraphs. Two examples of Hot-
potQA are shown in Table 3.3.

Figure 3.2: The hyperlink in the Wikipedia article is used to generate QA pairs of
HotpotQA, so each question was generated based on two paragraphs of two Wikipedia
articles.

HotpotQA is composed of three categories of questions and they are described as
follows.

(1) Questions with the bridge entity. The bridge entity connects the answer and
other reasoning facts. As we can see from Table 3.3, the question at the top
"Where is the company, which designed the Glomar Challenger, based?" con-
tains the bridge entity "the company" that is a descriptive phrase. If we want

1Each paragraph is the first paragraph of a Wikipedia article, since it contains the main information
of this article [136].
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HotpotQA

Paragraph A, Glomar Challenger: Glomar Challenger was a deep sea research
and scientific drilling vessel for oceanography and marine geology studies. The
drillship was designed by Global Marine Inc. (now Transocean Inc.) specifically
for a long term contract with the American National Science Foundation and Uni-
versity of California Scripps Institution of Oceanography and built by Levingston
Shipbuilding Company in Orange, Texas...
Paragraph B, Transocean: Transocean Ltd. is the world’s 2nd largest offshore
drilling contractor and is based in Vernier , Switzerland. The company has offices
in 20 countries, including Switzerland, Canada, United States, Norway, Scotland,
India, Brazil, Singapore, Indonesia and Malaysia.
Question: Where is the company, which designed the Glomar Challenger, based?
Answer: Vernier

Paragraph A, Emma Bull: Emma Bull (born December 13, 1954) is an Ameri-
can science fiction and fantasy author. Her novels include the Hugo- and Nebula-
nominated Bone Dance and the urban fantasy War for the Oaks...
Paragraph B, Virginia Woolf: Adeline Virginia Woolf (25 January 1882 – 28
March 1941) was an English writer, considered one of the most important mod-
ernist 20th-century authors and also a pioneer in the use of stream of conscious-
ness as a narrative device.
Question: Who was born earlier, Emma Bull or Virginia Woolf?
Answer: Adeline Virginia Woolf

Table 3.3: Two examples of dataset HotpotQA. Each QA pair was generated from two
paragraphs of two different Wikipedia articles. The ground truth answer only appears
in one of the paragraphs, which is in yellow .

to obtain the answer to this question, we need to figure out the real name of
this bridge entity based on other reasoning facts in this question (i.e., "which
designed the Glomar Challenger"). Then, we can check the Wikipedia article
of "Glomar Challenger", in which we can find out the real name of this bridge
entity namely "Transocean". Consequently, by retrieving the Wikipedia article
of "Transocean", we can get the answer "Vernier". The reasoning process can
be seen in Figure 3.3.

Figure 3.3: The reasoning process for one question of HotpotQA with bridge entity.

(2) Comparison questions. The comparison questions compare two entities in
the question. As we can see from Table 3.3, the question at the bottom "Who

29



CHAPTER 3. EXPLORATORY ANALYSIS OF SQUAD, HOTPOTQA AND TRIVIAQA

was born earlier, Emma Bull or Virginia Woolf?" compares two named entities
"Emma Bull" and "Virginia" on the date of birth.

(3) "yes/no" questions. This type of questions is not included in our work, as
the answer "yes" or "no" is not extracted from text. For example, the question
"Are Giuseppe Verdi and Ambroise Thomas both Opera composers" has the an-
swer "yes", but the answer is not extracted from this question’s ground truth
Wikipedia articles of entities "Giuseppe Verdi" and "Ambroise Thomas".

Furthermore, HotpotQA consists of two benchmark settings:

(1) Distractor setting. This setting aims to challenge the RC model to find out the
ground truth paragraphs in the presence of noisy paragraphs. The authors of Hot-
potQA employed the traditional IR model TF-IDF to retrieve eight paragraphs
from Wikipedia as distractors and mix them with two ground truth paragraphs.
Hence, this setting concentrates on the development of RC models.

(2) Fullwiki setting (i.e., the open-domain setting). This setting fully tests the per-
formance of the open-domain QA system on HotpotQA, whose retrieval com-
ponent needs to retrieve relevant documents from Wikipedia to the RC model.
Hence, fullwiki setting without providing ground truth paragraphs for the RC
model is the setting we employ in our work and we use the term HotpotQA f ullwiki
to denote the task of open-domain QA on HotpotQA.

3.1.3 TriviaQA

TriviaQA [49] is a QA dataset for reading comprehension including 95K QA pairs. As
we can see from the comparison of datasets (Table 3.1), questions of TriviaQA were
collected from online trivia websites2, which are different from HotpotQA and SQuAD
whose questions were generated from paragraph(s) of Wikipedia articles. Hence, rel-
evant documents of questions of TriviaQA were independently gathered from knowl-
edge sources and these documents are called distant supervision.

Distant supervision is commonly used in some QA datasets for reading compre-
hension [17, 114, 129]. These QA datasets only contain QA pairs without associated
documents that can be used to answer the question, so they cannot be used for training
neural network based RC models. Thus, some works [32, 83] either deployed com-
mercial search engines (e.g., Google, Bing) to obtain relevant documents or used a
procedure of relation extraction [17, 76] to automatically obtain relevant documents
from knowledge sources to these QA pairs. These retrieved documents are called dis-
tant supervision.

TriviaQA gathered distant supervision from two knowledge sources: Wikipedia
and the Web3. We include QA pairs whose distant supervision were gathered from
Wikipedia in our work for being comparable to SQuAD and HotpotQA which both use
Wikipedia as the knowledge source. Retrieved documents from Wikipedia have been
demonstrated that they contain reasoning facts and answers to questions of TriviaQA

2See https://www.reddit.com/r/trivia/comments/3wzpvt/free_database_of_50000_
trivia_questions/.

3Using commercial search engine Bing for retrieval from the Web.
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[49]. We term the task of open-domain QA on TriviaQA as TriviaQAwiki, which
requires the retrieval component to retrieve relevant documents from Wikipedia to the
RC model. Two examples of TriviaQA can be found in Table 3.4.

TriviaQA

Document: O’Hare International Airport, typically referred to as O’Hare Airport,
Chicago O’Hare, or simply O’Hare, is an international airport located on the far
Northwest Side of Chicago, Illinois , 14 miles (23 km) northwest of the Loop
business district, operated by the Chicago Department of Aviation and covering
7,627 acres (3,087 ha)...
Question: In which city would you find O’Hare International Airport?
Answer: Chicago, Illinois

Document: Anthony Patrick Hadley (born 2 June 1960) is an English singer-
songwriter, occasional stage actor and radio presenter. He rose to fame in the
1980s as the lead singer of the New Romantic band Spandau Balletand launched
a solo career following the group’s split in 1990...
Question: Tony Hadley was the lead singer with which 1980s new romantic band?
Answer: Spandau Balletand

Table 3.4: Two examples of dataset TriviaQA. The document for each QA pair was
gathered from Wikipedia. The ground truth answer is in yellow .

3.2 Retrieval Test on Datasets

This Section focuses on the retrieval stage of the open-domain QA system on SQuAD,
HotpotQA and TriviaQA. We perform a retrieval test on these datasets using traditional
IR models TF-IDF, BM25 and QL as the retrieval component to retrieve documents
from the knowledge source Wikipedia. The goal of the retrieval test is to analyze
the impact on traditional IR models across different QA datasets in the open-domain
setting, thereby figuring out answers to RQ1 and RQ2 in Section 1.2.

3.2.1 Retrieval Test Setup

Datasets Statistics
The statistics of datasets that we use in the retrieval test can be found Table 3.5. Note
that the test sets of SQuAD4 and HotpotQA5 are not public, so we use the training set
and the development set of these three datasets in our work.

Knowledge source of Datasets
Datasets SQuAD, HotpotQA and TriviaQA all consider Wikipedia as the knowledge
source over which the retrieval component performs the retrieval. In our work, we
use the same version of Wikipedia in [17, 125, 135] and it is the 2016-12-21 dump

4See https://rajpurkar.github.io/SQuAD-explorer/.
5See https://hotpotqa.github.io/.
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Dataset # Train # Dev # Test

SQuAD 87,599 10,570 -
HotpotQA 90,564 6,947 -
TriviaQA 61,888 7,993 7,701

Table 3.5: Statistics of datasets used in our retrieval test.

of English Wikipedia6 which contains 5,075,182 Wikipedia articles with 9,008,962
unique lowercase words. This Wikipedia retains the raw text of each Wikipedia article
and abandons all structured and semi-structured data such as lists, tables and figures,
as these works [17, 125, 135] and our work concentrate on the task of open-domain
QA over the knowledge source of unstructured text.

We note that the Wikipedia used in the original work of HotpotQA only retains
the first paragraph instead of the entire raw text of each Wikipedia article. Hence, the
size of Wikipedia in our work is much larger than the one used in the original work of
HotpotQA.

Evaluation Metric
A high-performing retrieval component of the open-domain QA system can retrieve
highly relevant documents containing all reasoning facts and answers to the question.
As we described above (see Table 3.1), datasets SQuAD, HotpotQA and TriviaQA all
belong to the answer type text span whose answers are the span of text extracted from
retrieved documents by the RC model. Therefore, if retrieved documents do not con-
tain the answer, the RC model7 cannot extract the correct answer from these retrieved
documents. In terms of datasets whose answer type is text span, many previous works
[17, 42, 63, 125, 135] used the evaluation metric top-k recall (TOP-k) to evaluate
the retrieval performance of the retrieval component of the open-domain QA system
and this metric indicates that whether the ground truth answer to the question appears
in top-ranked k documents retrieved by the retrieval component. The computation of
TOP-k can be found in Equation 3.1. The metric TOP-k can also indicate the prob-
ability of retrieved top-ranked k documents containing the ground truth answer to a
question. If an IR model has a higher value of TOP-k than another IR model on the
same dataset, it indicates that questions of this dataset are more likely to be answered
successfully based on documents retrieved by the IR model with the higher TOP-k.
Hence, TOP-k showcases the retrieval effectiveness of an IR model to some extent.

top− k recall =
# ques TOP− k docs have ans

# total ques
(3.1)

Traditional IR Models for Retrieval Test
Some previous works in the task of open-domain QA [17, 63, 92, 125, 135] used tra-
ditional IR models TF-IDF and BM25 as the retrieval component of the open-domain
QA system to retrieve relevant documents from the large-scale knowledge source. We

6Obtained from https://dumps.wikimedia.org/enwiki/.
7Here we do not include the RC model that has the ability of answer generation.
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thus employ TF-IDF and BM25 for our retrieval test on datasets SQuAD, HotpotQA
and TriviaQA in the open-domain setting. Besides, we also include the traditional IR
model query likelihood model (QL) with Jelinek-Mercer smoothing in our retrieval
test, as it is also a term-based and efficient IR model that can be used in open-domain
QA. Also, QL uses a different retrieval principle from the ones used in TF-IDF and
BM25, so we can compare the retrieval performance of QL with that of TF-IDF and
BM25 in the open-domain setting across different datasets for fully exploring the im-
pact on the retrieval component across datasets. Detailed introductions of these tra-
ditional IR models are described in Section 2.2.2. For reproducibility of our retrieval
test and providing clear insights for readers about the difference between the retrieval
component in the retrieval test and the modification of the retrieval component in our
hypotheses later (Section 3.4), we will describe some implementation details of our
retrieval test in this section.

In terms of traditional IR models TF-IDF, BM25 and QL, we employ an open-
source IR toolkit Anserini8 to implement them. Anserini was built on Lucene9 project
and it aims to bridge the gap between the research on IR and the practice of build-
ing real-world search applications [133], many works [134, 135, 140] thus have used
Anserini to do explorations on IR for academic research.

In terms of Wikipedia as the knowledge source for traditional IR models in the
open-domain setting, we also take advantage of Anserini to index all articles of Wikipedia.
We consider each Wikipedia article as the retrieval document unit of traditional IR
models. Furthermore, stopwords appearing in each article are not kept and Porter
stemmer [93] is used to do word stemming in the construction of the index.

Hyperparameter Tuning
As described in Section 2.2.2, traditional IR models BM25 and QL with Jelinek-
Mercer smoothing have two hyperparameters (k1,b) and one hyperparameter (λ) to be
tuned respectively. Correctly setting these hyperparameters is important to the good
retrieval performance of BM25 and QL [72]. We employ the method grid search to
tune hyperparameters and it is a traditional way of performing hyperparameter tuning
[19, 33].

Grid search tests the performance of all hyperparameters’ candidate values and
then selects the hyperparameters’ values achieving the best performance. For BM25,
most experiments [67, 70, 117, 119] have shown that the optimal b is in the range of
0.3-0.9 and k1 is in the range of 0.5-2.0. In terms of QL with Jelinek-Mercer smooth-
ing, Zhai and Lafferty [144] indicated that the optimal λ depends on the query and
the text collection for retrieval and it is around 0.1 for short queries and 0.7 for long
queries. Although these experiments showed an empirical analysis of setting a suitable
range of candidate values of hyperparameters, the best way to tune hyperparameters
satisfying our work is tuning hyperparameters on datasets we use. In the process of
hyperparameter tuning, BM25 and QL are both optimized for the evaluation metric
top-10 recall (TOP-10) and we tune hyperparameters on each training set of SQuAD,
HotpotQA and TriviaQA. The overview of range of hyperparameters’ values can be

8See https://github.com/castorini/anserini.
9See https://lucene.apache.org/.
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found in Appendix A. Best-performing hyperparameters are adopted in our retrieval
test and they can be found in Table 3.6.

Model Hyperparameter SQuADopen (tuned) HotpotQA f ullwiki (tuned) TriviaQAwiki (tuned)

BM25 k1 0.1 0.3 0.4
b 0.1 0.4 0.3

QL λ 0.1 0.1 0.1

Table 3.6: Fine-tuned hyperparameters are derived from hyperparameter tuning on
each training set of SQuAD, HotpotQA and TriviaQA in the open-domain setting for
optimizing the metric TOP-10.

3.2.2 Retrieval Results

Many previous works [22, 72, 85, 106] have demonstrated that BM25 and QL have
similar retrieval performance in different tasks of information retrieval and their per-
formances are both better than that of TF-IDF. Therefore, we expect that our retrieval
results also can showcase similarities to previous works, which can be considered as a
sanity check of our implementation of traditional IR models used in our retrieval test.

We perform our retrieval test on datasets SQuAD, HotpotQA and TriviaQA in the
open-domain setting, in which we use traditional IR models TF-IDF, BM25 and QL
to retrieve top-ranked 5 and 10 documents from Wikipedia to questions of develop-
ment set of each dataset. We then compute the metric TOP-5 and TOP-10 to indicate
the retrieval performance of three traditional IR models across datasets. The retrieval
results of our retrieval test can be found in Table 3.7.

Model
SQuADopen HotpotQA f ullwiki TriviaQAwiki

TOP-5 TOP-10 TOP-5 TOP-10 TOP-5 TOP-10

TF-IDF 10.45 17.21 21.48 27.75 33.55 44.53
BM25 68.06 74.33 60.92 67.68 89.64 92.82
QL 56.86 66.04 58.76 65.51 85.70 90.48

Table 3.7: Retrieval results of our retrieval test on development set of SQuAD, Hot-
potQA and TriviaQA in the open-domain setting. TOP-5(10) indicates % of ques-
tions whose top-ranked 5(10) documents retrieved by the traditional IR model from
Wikipedia contain the answer. The best retrieval performance of TOP-5(10) for each
dataset is in bold.

As we can see from Table 3.7, traditional IR models BM25 and QL have similar
retrieval performance across datasets and they are both have a better retrieval perfor-
mance than TF-IDF, which is similar to the results of these traditional IR models in
previous works.
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3.3 Analysis of Retrieval Test

After the sanity check of the implementation of TF-IDF, BM25 and QL in our retrieval
test, we will give more detailed analysis of retrieval results in Table 3.7 in this section.

As we can see from Table 3.7, BM25 achieves the best retrieval performance across
three different datasets in the open-domain setting based on metrics TOP-5 and TOP-
10. The results of BM25 are in bold in Table 3.7. In contrast, TF-IDF is the worst
retrieval model in our retrieval test across datasets in the open-domain setting. In
terms of each traditional IR model, no matter what traditional IR model is, it achieves
relatively worse retrieval performance on SQuAD and HotpotQA in the open-domain
setting compared to the performance achieved on TriviaQA in the open-domain setting.
To figure out the performance gap across datasets SQuAD, HotpotQA and TriviaQA
in the open-domain setting, we perform an error analysis of exploring error types of
questions of these datasets.

3.3.1 Error Analysis

We randomly sample 100 questions from the development set of SQuAD, HotpotQA
and TriviaQA respectively and these questions are ones whose top-ranked 10 docu-
ments retrieved by BM25 from Wikipedia do not contain the answer to them. The
reason we select top-ranked documents retrieved by BM25 is due to the reason that
BM25 achieves the best retrieval performance on all datasets in our retrieval test, so
questions to which BM25 cannot retrieve top-ranked 10 documents containing the an-
swer are relatively more difficult for traditional IR models TF-IDF and QL to some
extent. We manually analyze these sampled 100 questions of each dataset based on
questions and their top-ranked 10 retrieved documents for figuring out reasons (i.e.,
error types) why BM25 cannot retrieve top-ranked 10 documents that contain answers
to these questions. The overview of the error analysis can be found in Table 3.8, where
we denote error types of SQuAD, HotpotQA and TriviaQA using the Arabic number
with the character "A", "B" and "C" respectively.

The detailed analysis of figuring out the error types of questions is described below
with a representative example of each error type.

Error Analysis of SQuAD in the open-domain setting

A1 – Question: "which French kind issued this declaration?"

– Analysis: This question contains two entities "French kind" and "this dec-
laration". The former one has a spelling error and it should be "French
king". The latter one becomes an ambiguous entity in the open-domain
setting, as BM25 does not know what exactly "this declaration" refers to.
BM25 might retrieve Wikipedia articles of "Anglo-French Declaration"
and "Balfour Declaration" which contain "French" and "declaration" but
not the answer "Louis XIV".

– Error type: The question contains an ambiguous entity and an entity with
a spelling error.
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Dataset Error type # ques

SQuADopen

A1: Spelling error (ambiguous) 2
A2∗: No answer in ground truth article (ambiguous) 1
A3: No topical entity (ambiguous) 52
A4: Incomplete name of entity (ambiguous) 5
A5: Acronym of entity (ambiguous) 5
A6: Long name of entity (unambiguous) 9
A7: Lexical variation (unambiguous) 4
A8: Low term frequency (unambiguous) 13
A9∗: No answer in ground truth article (unambiguous) 7
A10: Spelling error (unambiguous) 2

Total 100

HotpotQA f ullwiki

B1: No name of bridge entity (bridge) 57
B2: Low term frequency (bridge) 19
B3: Stopwords in name of entity (bridge) 3
B4∗: No answer in ground truth article (bridge) 2
B5: No topical entity (bridge, ambiguous) 8
B6: Acronym of entity (bridge, ambiguous) 2
B7: Long name of entity (bridge) 2
B8: Stopwords in name of entity (unambiguous) 3
B9∗: Answer partially correct (unambiguous) 4

Total 100

TriviaQAwiki

C1∗: Answer partially correct (unambiguous) 41
C2: Spelling error (unambiguous) 1
C3: Low term frequency (unambiguous) 23
C4: Stopwords in name of entity (unambiguous) 10
C5∗: No Wikipedia article of entity (unambiguous) 22
C6: No topical entity (ambiguous) 3

Total 100

Table 3.8: The overview of the error analysis. We randomly sample 100 questions from
each dataset respectively and these questions are ones whose top-ranked 10 documents
retrieved by BM25 from Wikipedia do not contain the answer. Error types with *
indicate that the reason for these questions whose top-ranked 10 documents do not
contain the answer is not due to the questions or the retrieval model BM25. The
error type of each dataset in the open-domain setting which has the largest number of
questions is in bold (except for error types with *).

A2 – Question: "when do the stated Treaties apply?"

– Analysis: This question contains an entity "Treaties" and this entity be-
comes an ambiguous entity in the open-domain setting, as BM25 does
not know what exactly "Treaties" refers to. BM25 might retrieve many
Wikipedia articles contain "Treaties" but without the answer. However, in
this scenario, BM25 has retrieved the ground truth article of this question
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successfully which is "European Union law", but this Wikipedia article
does not contain the answer to this question. This is because the version of
Wikipedia in our retrieval test is different from that used for the production
of dataset SQuAD, so some Wikipedia articles have a few changes.

– Error type: The question contains an ambiguous entity, but BM25 has
retrieved the ground truth article. However, this article does not have the
ground truth answer.

A3 – Question: "what day was the game played on?"

– Analysis: This question contains an entity "the game" and this entity be-
comes an ambiguous entity in the open-domain setting, as BM25 does not
know what exactly "the game" refers to. BM25 might retrieve Wikipedia
articles of "Video games" and "Olympic Games" that contain "game" many
times, but without the answer. In this scenario, the ground truth article
of this question is not retrieved successfully in top-ranked 10 documents
retrieved by BM25 from Wikipedia.

– Error type: The question contains an ambiguous entity since it does not
have the topical entity to specify what the ambiguous entity refers to.

A4 – Question: "the Yuan was the first time all of China was ruled by whom?"

– Analysis: This question contains an entity "the Yuan" and this entity be-
comes an ambiguous entity in the open-domain setting. The name of this
ambiguous entity incomplete and it is supposed to be "the Yuan Dynasty".
In this scenario, BM25 has retrieved many Wikipedia articles containing
"China" and "Yuan" such as the article of "Law of the Republic of China",
but none of them contains the answer.

– Error type: The question contains an ambiguous entity with an incom-
plete name.

A5 – Question: "what are the only states where ABC doesn’t have a licensed
affiliate?"

– Analysis: This question contains an entity "ABC" and this entity becomes
an ambiguous entity in the open-domain setting, since it is an acronym of
the entity. The specific entity "ABC" refers to is "American Broadcast-
ing Company", but there are some other entities with the same acronym in
Wikipedia. For example, BM25 might retrieve Wikipedia articles of "Aus-
tralian Broadcasting Corporation" and "Another Bad Creation", but they
do not contain the answer.

– Error type: The question contains an ambiguous entity and the name of
this entity is an acronym.

A6 – Question: "where did Super Bowl 50 take place?"

– Analysis: This question contains an entity "Super Bowl 50" and this entity
is an unambiguous entity10 in the open-domain setting. "Super Bowl 50"

10The unambiguous entity refers to the entity whose name is not a pronoun, an acronym or incomplete.
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has its own Wikipedia article which is the ground truth article of this ques-
tion, but BM25 fails to retrieve it. This is due to the long name of "Super
Bowl 50" and this name is considered at word-level11 independently in-
stead of as a connective phrase in the process of retrieval. Therefore, BM25
has retrieved Wikipedia articles of "Peyton Manning" and "Super Bowl
XXXVIII halftime-show controversy" in which words "Super", "Bowl" and
"50" appear independently.

– Error type: The question contains an unambiguous entity, but the name
of this entity is long.

A7 – Question: "what is the enrollment of undergraduates at Harvard?"

– Analysis: This question contains an entity "Harvard" and this entity is an
unambiguous entity in the open-domain setting. "Harvard" has its own
Wikipedia article which is the ground truth article of this question, but
BM25 fails to retrieve it. We check this ground truth article and find that
there is a lexical variation12 between the text of question and the ground
truth article. Specifically, the text of the ground truth article is "there are
16,000 staff and faculty, including 2,400 professors, lecturers, and instruc-
tors teaching 7,200 undergraduates and 14,000 graduate students" which
contains the answer "7,200". However, the text of the question "enroll-
ment of undergraduates" is different from the text "instructors teaching
7,200 undergraduates" of the article, but they indicate the same meaning.

– Error type: The question contains an unambiguous entity and there is
a lexical variation between the text of the question and the ground truth
article.

A8 – Question: "what is the Dutch word for the Amazon rainforest?"

– Analysis: This question contains an entity "Amazon rainforest" and this
entity is an unambiguous entity in the open-domain setting. "Amazon
rainforest" has its own Wikipedia article which is the ground truth arti-
cle of this question, but BM25 fails to retrieve it. We check this ground
truth article and find that the word in the question "Dutch" only appears
in the ground truth article once. Instead, BM25 has retrieved Wikipedia
articles of "Belem" and "White Brazilians" which contain many times of
word "Dutch" but without the answer.

– Error type: The question contains an unambiguous entity but with some
words that have low term frequency in the ground truth article.

A9 – Question: "what is European Union Law?"

– Analysis: This question contains an entity "European Union Law" and this
entity is an unambiguous entity in the open-domain setting. "European
Union Law" has its own Wikipedia article which is the ground truth article
of this question and BM25 has retrieved the ground truth article of this

11As we described in Section 2.2, the indexed unit of text is usually a word.
12Two pieces of text indicate the same information need but with different words (e.g., synonym).
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question successfully. However, this ground truth article does not contain
the answer to this question. This is because the version of Wikipedia in
our retrieval test is different from that used for the production of dataset
SQuAD, so some Wikipedia articles have a few changes.

– Error type: The question contains an unambiguous entity and BM25 has
retrieved the ground truth article. However, this article does not have the
answer.

A10 – Question: "What was the percentage of whit people in Fresno in 2010?"

– Analysis: This question contains an entity "Fresno" and this entity is an
unambiguous entity in the open-domain setting. "Fresno" has its own
Wikipedia article which is the ground truth article of this question, but
BM25 fails to retrieve this article. The word "whit" in the question should
be "white".

– Error type: The question contains an unambiguous entity but with a spelling
error of words.

Error Analysis of HotpotQA in the open-domain setting

B1 – Question: "the birthplace of George McCall Theal is a port city of what
bay?"

– Analysis: This question contains an unambiguous entity "George McCall
Theal" which has its own Wikipedia article and a bridge entity "a port
city". Based on top-ranked 10 documents retrieved by BM25, one of the
ground truth articles13 of this question "George McCall Theal" has been
retrieved by BM25 in top-ranked 10 documents. However, BM25 fails to
retrieve the other ground truth article "Saint John, New Brunswick" which
contains the answer to this question and "Saint John, New Brunswick" is
also the name of the bridge entity "a port city". This is due to the reason
that the real name of the bridge entity "Saint John, New Brunswick" does
not appear in the question and it is replaced by a descriptive phrase "a port
city". BM25 thus cannot retrieve the Wikipedia article of "Saint John, New
Brunswick" based on the bridge entity "a port city" in the question.

– Error type: The question contains an unambiguous entity and a bridge
entity. BM25 has retrieved the ground truth article of the unambiguous
entity but fails to retrieve the ground truth article of the bridge entity, as
the real name of the bridge entity does not appear in the question.

B2 – Question: "when did the baseball draft with which Alex Lange was the
30th pick began?"

13As we described in Section 3.1, each question of HotpotQA was generated over two paragraphs
from two different Wikipedia articles. Hence, there are two ground truth Wikipedia articles for each
question of HotpotQA.
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– Analysis: This question contains an unambiguous entity "Alex Lange"
which has its own Wikipedia article and a bridge entity "the baseball draft".
Based on top-ranked 10 documents retrieved by BM25, none of the ground
truth articles have been retrieved in top-ranked 10 documents. The unam-
biguous entity "Alex Lange" only appears in the ground truth article few
times and the bridge entity "the baseball draft" does not have the real name
in the question.

– Error type: The question contains an unambiguous entity and a bridge
entity. BM25 does not retrieve any of the ground truth articles in top-
ranked 10 documents, as the name of the unambiguous entity has low term
frequency in the ground truth article and the real name of the bridge entity
does not appear in the question.

B3 – Question: "show ’Em (What You’re Made Of) is a song written by a group
of people including an American singer/songwriter who was inducted into
what on April 10, 2015?"

– Analysis: This question contains an unambiguous entity "What You’re
Made Of " which has its own Wikipedia article and a bridge entity "a group
of people". Based on top-ranked 10 documents retrieved by BM25, none
of the ground truth articles have been retrieved in top-ranked 10 docu-
ments. The unambiguous entity "What You’re Made Of " contains many
stopwords (e.g., "what", "you" and "of ") and the bridge entity "a group of
people" does not have the real name in the question.

– Error type: The question contains an unambiguous entity and a bridge en-
tity. BM25 does not retrieve any of the ground truth articles in top-ranked
10 documents, as the name of the unambiguous entity contains many stop-
words and the real name of the bridge entity does not appear in the ques-
tion.

B4 – Question: "how far from Sacramento is the flight school in Atwater?"

– Analysis: This question contains a bridge entity "the flight school". How-
ever, in this scenario, BM25 has retrieved two ground truth articles of this
question in top-ranked 10 documents, but they do not have the answer in
the text. This is because the version of Wikipedia in our retrieval test is
different from that used for the production of dataset HotpotQA, so some
Wikipedia articles have a few changes.

– Error type: The question contains a bridge entity and BM25 has retrieved
all ground truth article. However, these articles do not have the answer.

B5 – Question: "the most popular temple in terms of attractions is located in
what part of the city?"

– Analysis: This question contains a bridge entity "the city". Based on top-
ranked 10 documents retrieved by BM25, none of the ground truth articles
have been retrieved in top-ranked 10 documents. The bridge entity "the
city" does not have the real name in the question and the description "the
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most popular temple in terms of attractions" is not specific and lacks top-
ical entity in the question which is ambiguous in the open-domain setting
for BM25.

– Error type: The question contains a bridge entity and an ambiguous de-
scription. BM25 does not retrieve any of the ground truth articles in top-
ranked 10 documents, as the real name of the bridge entity does not appear
in the question and the description lacks topical entity.

B6 – Question: "M.F.A. starred the actress known for starring in what E! reality
series?"

– Analysis: This question contains an ambiguous entity "M.F.A." and a bridge
entity "the actress". Based on top-ranked 10 documents retrieved by BM25,
none of the ground truth articles have been retrieved in top-ranked 10 doc-
uments. The bridge entity "the actress" does not have the real name in
the question and the name of the entity "M.F.A." is an acronym, which is
ambiguous in the open-domain setting for BM25.

– Error type: The question contains an ambiguous entity and a bridge entity.
BM25 does not retrieve any of the ground truth articles in top-ranked 10
documents, as the real name of the bridge entity does not appear in the
question and the name of the other entity in the question is an acronym
which is ambiguous in the open-domain setting.

B7 – Question: "what crossroads is the town located 10 km north of the Char-
coal Tank Nature Reserve located?"

– Analysis: This question contains an unambiguous entity "Charcoal Tank
Nature Reserve" and a bridge entity "the town". Based on top-ranked 10
documents retrieved by BM25, none of the ground truth articles have been
retrieved in top-ranked 10 documents. The unambiguous entity has a long
name which is not considered as a connective phrase in the process of
retrieval. The bridge entity "the town" does not have the real name in the
question.

– Error type: The question contains an unambiguous entity and a bridge
entity. BM25 does not retrieve any of the ground truth articles in top-
ranked 10 documents, as the real name of the bridge entity does not appear
in the question and the name of the unambiguous entity is long.

B8 – Question: "who was born first Am Rong or Ava DuVernay?"

– Analysis: This question contains two unambiguous entities "Am Rong"
and "Ava DuVernay" in comparison, which both have their own Wikipedia
articles. The Wikipedia articles of these two unambiguous entities are
ground truth articles of this question. Based on top-ranked 10 documents
retrieved by BM25, BM25 only has retrieved the article of "Ava DuVernay"
without the article of "Am Rong", as the word "Am" is a stopword.

– Error type: The question contains two unambiguous entities in compari-
son. BM25 only retrieves one of the ground truth articles of one entity, as
the other entity whose name contains a stopword.
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B9 – Question: "who died last Vladimir Arnold or George Cantor?"

– Analysis: This question contains two unambiguous entities "Vladimir Arnold"
and "George Cantor" in comparison, which both have their own Wikipedia
articles. The Wikipedia articles of these two unambiguous entities are
ground truth articles of this question. Based on top-ranked 10 documents
retrieved by BM25, BM25 has retrieved ground truth articles for both en-
tities, but the answer in one of the ground truth articles is partially correct
compared to the ground truth answer ("Vladimir Arnold" vs "Vladimir Ig-
orevich Arnold").

– Error type: The question contains two unambiguous entities in compar-
ison. BM25 has retrieved ground truth articles for both entities, but the
answer is partially correct.

Error Analysis of TriviaQA in the open-domain setting

C1 – Question: "Who was the male star of the movie The Man of La Mancha?"

– Analysis: This question contains an unambiguous entity "The Man of La
Mancha" which has its own Wikipedia article. Based on top-ranked 10
documents retrieved by BM25, the article of this entity is retrieved suc-
cessfully, but the answer appearing in this article is partially correct (i.e.,
not the same) ("peter o’toole" vs "peter otoole").

– Error type: The question contains an unambiguous entity. BM25 has
retrieved the Wikipedia article of this unambiguous entity which contains
the answer, but the answer is not the same as the ground truth answer.

C2 – Question: "Long An Provence is in which Asian country?"

– Analysis: This question contains an unambiguous entity "Long An Provence"
which has its own Wikipedia article. Based on top-ranked 10 documents
retrieved by BM25, the article of this entity is not retrieved. The word
"Provence" has a spelling error and it should be "Province".

– Error type: The question contains an unambiguous entity with a spelling
error.

C3 – Question: "What was Warren Beatty’s first movie?"

– Analysis: This question contains an unambiguous entity "Warren Beatty"
which has its own Wikipedia article. Based on top-ranked 10 documents
retrieved by BM25, the article of this entity is not retrieved, as the name
of this entity appears in this article a few times. Therefore, BM25 has
retrieved Wikipedia articles that contain these two words more times such
as Wikipedia article of "Dick Tracy (1990 film)".

– Error type: The question contains an unambiguous entity but with some
words that have low term frequency in the article.

C4 – Question: "Which musical featured the song The Street Where You Live?"

42



3.3. ANALYSIS OF RETRIEVAL TEST

– Analysis: This question contains an unambiguous entity "The Street Where
You Live" which has its own Wikipedia article. Based on top-ranked 10
documents retrieved by BM25, the article of this entity is not retrieved, as
the name of this entity contains some stopwords such as "The", "Where"
and "You".

– Error type: The question contains an unambiguous entity but the name of
this entity contains some stopwords.

C5 – Question: "Mr Worldly Wisemen appears in which 17th Century book?"

– Analysis: This question contains an unambiguous entity "Mr Worldly Wise-
men", but Wikipedia has no article of this entity. This is because questions
of TriviaQA were not generated based on Wikipedia articles as we de-
scribed in Section 3.1. Therefore, some entities in the questions of Trivi-
aQA do not have their corresponding Wikipedia articles.

– Error type: The question contains an unambiguous entity but this entity
does not have the corresponding Wikipedia article.

C6 – Question: "In which year did St George die?"

– Analysis: This question contains an ambiguous entity "St George". in the
open-domain setting, Wikipedia has many articles of this entity, so BM25
cannot retrieve accurate articles containing the answer to this question. In
addition, the topical entity is not provided in the question to help specify
what the entity "St George" is related to.

– Error type: The question contains an ambiguous entity, as it does not have
the topical entity to specify what the ambiguous entity is related to.

3.3.2 Conclusion

As we can see from the overview of error analysis (Table 3.8), SQuAD, HotpotQA
and TriviaQA in the open-domain setting have different main error types of questions
respectively. We give an overall description of error types of questions of datasets
following.

• The majority of error types of questions which were sampled from dataset SQuAD
are based on questions with ambiguous entities and the number of these ques-
tions is 6414 out of all 100 sampled questions. The error type A3: No topical
entity (ambiguous) is the most prominent one, which has 52 questions. There-
fore, we can conclude that questions with ambiguous entities of SQuAD are
the main questions that have a negative impact on the retrieval performance
of traditional IR models TF-IDF, BM25 and QL. The ambiguity of entities in
the open-domain setting existing in SQuAD is also referred to in some previous
works [17, 136]. Furthermore, we randomly sample 100 questions from the de-
velopment set of SQuAD to manually analyze the number of questions with a
certain type of entity out of 100 sampled questions in the open-domain setting,
which can be found in Table 3.9.

14This number does not include the error type A2: No answer in ground truth article (ambiguous).
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• The majority of error types of questions which were sampled from dataset Hot-
potQA are based on questions with bridge entities and the number of these ques-
tions is 9115 out of all 100 sampled questions. The error type B1: No name of
bridge entity (bridge) is the most prominent one, which has 57 questions. There-
fore, we can conclude that questions with bridge entities of HotpotQA are the
main questions that have a negative impact on the retrieval performance of
traditional IR models TF-IDF, BM25 and QL. Furthermore, we randomly
sample 100 questions from the development set of HotpotQA to manually an-
alyze the number of questions with a certain type of entity out of 100 sampled
questions in the open-domain setting, which can be found in Table 3.9.

• The majority of error types of questions which were sampled from dataset Triv-
iaQA are based on questions with unambiguous entities and the number of these
questions is 3416 out of all 100 sampled questions. The error type C3: Low term
frequency (unambiguous) is the most prominent one, which has 23 questions.
Therefore, we can conclude that questions with unambiguous entities of Triv-
iaQA are the main questions that have a negative impact on the retrieval
performance of traditional IR models TF-IDF, BM25 and QL. Furthermore,
we randomly sample 100 questions from the development set of TriviaQA to
manually analyze the number of questions with a certain type of entity out of
100 sampled questions in the open-domain setting, which can be found in Table
3.9.

Dataset # ques (ambiguous) # ques (unambiguous) # ques (bridge)

SQuADopen 42 58 0
HotpotQA∗f ullwiki 4 15 85
TriviaQAwiki 4 96 0

Table 3.9: The number of questions with ambiguous, unambiguous and bridge en-
tities out of 100 questions sampled from SQuAD, HotpotQA and TriviaQA respec-
tively. The number of questions is analyzed in the open-domain setting. Note that
HotpotQA∗f ullwiki has some questions with ambiguous and bridge entities simultane-
ously, so these questions not only belong to questions with ambiguous entities but
also questions with bridge entities. The largest number of questions with ambiguous,
unambiguous and bridge entities among all datasets is in bold.

In conclusion, the result and analysis of the retrieval test above can give us some
insights that can help us answer RQ1 and RQ2 as we described in Section 1.2.

RQ1: In the task of open-domain QA, different QA datasets have different impacts on
the retrieval performance of traditional IR models that are used in the retrieval
stage of open-domain QA. This is due to the reason that different QA datasets
contain questions with different types of entities (i.e., ambiguous, unambiguous

15This number does not include the error type B4: No answer in ground truth article (bridge).
16This number does not include the error type C1: Answer partially correct (unambiguous) and C5:

No Wikipedia article of entity (unambiguous).
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and bridge entities) and they differ in difficulty of being dealt with by traditional
IR models.

RQ2: As we can see from Table 3.9, compared to TriviaQA, SQuAD and HotpotQA
contain a much larger number of questions with ambiguous entities and bridge
entities respectively (42% and 85%). In contrast, TriviaQA contains a much
larger number of questions with unambiguous entities (96%). Therefore, the
performance gap shown in Table 3.7 is due to the reason that SQuAD and Hot-
potQA contain a large number of questions with ambiguous entities and bridge
entities respectively and these questions are much harder to be handled by tradi-
tional IR models than questions with unambiguous entities. Error types based on
questions with ambiguous entities and bridge entities are prominent error types
of questions of SQuAD and HotpotQA respectively that have a negative impact
on traditional IR models.

3.4 Hypothesis

In this section, we propose three hypotheses that we think might alleviate the negative
impact on the retrieval performance of traditional IR models resulting from error types
of questions of SQuAD and HotpotQA. There are some reasons for focusing on error
types of questions of SQuAD and HotpotQA, which are described following.

• In the open-domain setting, the retrieval performance of traditional IR models
on SQuAD and HotpotQA are much worse than that on TriviaQA (Table 3.7).
Hence, it is more significant to improve the retrieval performance of traditional
IR models on datasets SQuAD and HotpotQA, as these two QA datasets in the
open-domain setting are much harder than the dataset TriviaQA for traditional
IR models.

• In the open-domain setting, the error types of questions of TriviaQA are included
in the error types of questions of SQuAD and HotpotQA (Table 3.8). Hence, if
the retrieval performance17 of traditional IR models is improved on SQuAD and
HotpotQA under our hypotheses, it indicates that error types of questions of
TriviaQA can be handled by our hypotheses to some extent.

3.4.1 Hypothesis I (H1)

In the retrieval test as we described in Section 3.2, we employ traditional IR models
TF-IDF, BM25 and QL to retrieve documents from Wikipedia to questions of different
datasets. The knowledge source Wikipedia used in the retrieval test is indexed based
on each Wikipedia article as the retrieval document unit.

However, we think that Wikipedia with smaller retrieval document units can be
beneficial to the retrieval performance of traditional IR models on dataset SQuAD and
HotpotQA. The reasons for this are analyzed as follows:

17Especially the retrieval performance of traditional IR models on questions with unambiguous enti-
ties in SQuAD and HotpotQA is increased.
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• As we described in the selection of datasets (Section 3.1), questions of SQuAD
were generated based on a single paragraph of a Wikipedia article and ques-
tions of HotpotQA were generated based on two paragraphs of two different
Wikipedia articles. Hence, traditional IR models retrieving Wikipedia articles
that are relevant to questions that were generated based on paragraph-level is
harder than IR models retrieving smaller pieces of text (e.g., paragraphs or sen-
tences of Wikipedia articles) that are relevant to questions. A Wikipedia arti-
cle generally describes a topic about an entity, but there are various sub-topics
about this entity in this article. For example, the Wikipedia article of the en-
tity "Super Bowl 50" contains sub-topics about the background, broadcasting,
entertainment, game summary, etc. Therefore, smaller retrieval document units
can be more topic specific than each Wikipedia article as the retrieval document
unit, which we think can help improve the retrieval performance of traditional
IR models on error types of questions of SQuAD and HotpotQA.

• One of the error types of questions of SQuAD and HotpotQA is related to the
query term which has the low term frequency in the ground truth article. Hence,
smaller retrieval document units can increase the term frequency since the total
number of words of a paragraph or a sentence is much smaller than that of a
Wikipedia article (e.g., the Wikipedia article "Super Bowl 50" has 8,008 words).

In conclusion, our first hypothesis is that if the retrieval document unit of tradi-
tional IR models for Wikipedia is smaller than the retrieval document unit that
is based on each Wikipedia article, the retrieval performance of traditional IR
models on SQuAD and HotpotQA in the open-domain setting can be improved.

3.4.2 Hypothesis II (H2)

As we can see from the overview of error analysis (Table 3.8), the error type of ques-
tions A3: No topical entity (ambiguous) and the one B1: No name of bridge entity
(bridge) are the error type of questions with the largest number of questions of SQuAD
and HotpotQA respectively. If the topical entity and the name of the bridge entity are
expanded into the original question, traditional IR models are likely to retrieve docu-
ments that contain the answer based on the revised question. The reasons for this are
analyzed as follows:

• In terms of the example of the error type A3 of SQuAD, the question "what
day was the game played on?" contains the ambiguous entity "the game" in the
open-domain setting. If some relevant terms, that are related to the topical entity
"Super Bowl 50" and this question, are provided in this question, these relevant
terms then can help specify what the ambiguous entity "the game" is related to.
As a result, traditional IR models are more likely to retrieve the ground truth
article of "Super Bowl 50" from Wikipedia that contains the answer.

• In terms of the example of the error type B1 of HotpotQA, the question "the
birthplace of George McCall Theal is a port city of what bay?" contains the
bridge entity "a port city" which is a descriptive phrase. The real name of
this bridge entity is not provided in this question, which is "Saint John, New-
Brunswick". If some relevant terms, that are related to the name of this bridge
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entity and this question, are provided in this question, traditional IR models are
more likely to retrieve one of the ground truth articles18 of "Saint John, New-
Brunswick" from Wikipedia that contains the answer.

In conclusion, our second hypothesis is that if some relevant terms, that are
related to questions with ambiguous entities and questions with bridge entities,
are provided into the original question, the retrieval performance of traditional
IR models on SQuAD and HotpotQA in the open-domain setting can be improved
by retrieving documents based on the revised question.

3.4.3 Hypothesis III (H3)

As we described in Section 1.1, some previous [42, 63, 84, 125] works have demon-
strated that adding the neural ranker after traditional IR models in open-domain QA has
shown some retrieval improvements over the traditional IR models without the neural
ranker, but they did not conduct fine-grained error analyses of traditional IR models
like we did in Section 3.3. Therefore, it is still unknown whether the neural ranker can
be valid to error types of questions of SQuAD and HotpotQA. We thus attempt to add
a neural ranker after traditional IR models to see whether the neural ranker can han-
dle error types of questions of SQuAD and HotpotQA, thereby improving the retrieval
performance of traditional IR models on these two datasets.

In conclusion, our final hypothesis is that adding a neural ranker after tradi-
tional IR models can improve the retrieval performance of traditional IR models
on SQuAD and HotpotQA in the open-domain setting.

3.5 Methodology

This section aims to describe methodologies that we adopt for implementing H1, H2
and H3 that we proposed in Section 3.4.

3.5.1 Paragraph and Sentence Based Retrieval Document Unit (H1)

We attempt to index the knowledge source Wikipedia by considering each paragraph
and each sentence of Wikipedia articles as the retrieval document unit of traditional IR
models for implementing H1. In the retrieval test (Section 3.2), we used Anserini to
index Wikipedia by considering each Wikipedia article as the retrieval document unit
of traditional IR models. To make the retrieval document unit smaller, we use Anserini
to index Wikipedia in two ways: (1) by considering each paragraph of Wikipedia
articles as the retrieval document unit; (2) by considering each sentence of Wikipedia
articles as the retrieval document unit. We define the paragraph and the sentence as
follows:

• Paragraph: The piece of text ends up with one or more line breaks in Wikipedia
articles. Some paragraphs of the Wikipedia article "Super Bowl 50" can be seen
in Figure 3.4.

18The other one is the Wikipedia article of the unambiguous entity "George McCall Theal" and the
real name of the bridge entity "a port city" appears in this Wikipedia article.
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Figure 3.4: Some paragraphs of the Wikipedia article "Super Bowl 50".

• Sentence: The piece of text starts with capital letters (i.e., "A-Z") and ends up
with punctuation ".", "!" and "?" in Wikipedia articles. Some sentences of the
Wikipedia article "Super Bowl 50" can be seen in Figure 3.5.

Figure 3.5: Some sentences of the Wikipedia article "Super Bowl 50".

The overview of the retrieval process of the traditional IR model with the index
based on each paragraph or each sentence of Wikipedia articles as the retrieval docu-
ment unit is depicted in Figure 3.6.

Figure 3.6: The overview of the retrieval process of the traditional IR model with the
index based on each paragraph or each sentence of Wikipedia articles as the retrieval
document unit.
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3.5.2 Query Expansion by Pseudo Relevance Feedback (H2)

We attempt to use the relevance model RM3 based on pseudo relevance feedback
(PRF) for implementing H2. As we described in Section 2.2.2, RM3 is an approach
based on PRF to do query expansion. In terms of a question (i.e., query), the traditional
IR model firstly retrieves initial round of documents from Wikipedia and top-ranked
k documents are assumed to be relevant to this question. Subsequently, RM3 builds a
document language model for each document in top-ranked k documents and expands
a number of relevant terms into the question based on these document language mod-
els. Finally, the traditional IR model retrieves the second round of documents from
Wikipedia based on the new revised question. There are three hyperparameters of
RM3 that need to be tuned for the best retrieval performance: (1) fbDocs indicates the
number of relevance feedback documents; (2) fbTerms indicates the number of terms
that are expanded into the original question based on relevance feedback documents;
(3) λ indicates the weight assigned to the original question language model, which can
be seen in Equation 2.14.

The overview of the retrieval process of the traditional IR model with RM3 model
is depicted in Figure 3.7.

Figure 3.7: The overview of the retrieval process of the traditional IR model with RM3
model.

3.5.3 Neural Paragraph Ranker (H3)

We attempt to adopt a neural ranker named Paragraph Ranker proposed by Lee et al.
[63] for implementing H3. The overview of the retrieval process of traditional IR
models with Paragraph Ranker can be found in Figure 3.8. As we can see from the
pipeline in Figure 3.8, the goal of Paragraph Ranker is to re-rank all paragraphs of top-
ranked N documents retrieved by the traditional IR model and then select top-ranked
M paragraphs as the input to the RC model19.

19The RC model is not depicted in the pipeline.
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Figure 3.8: The overview of the retrieval process of the traditional IR model with
Paragraph Ranker.

Paragraph Ranker is a representation-focused neural IR model [87] as we described
in Section 2.2.3 and it consists of a question encoder and a paragraph encoder. The
question encoder and paragraph encoder are both based on Bidirectional Long-Short
Term Memory networks (Bi-LSTMs) [46], which is a variant of recurrent neural net-
works (RNNs) [41]. The overview of the question encoder and paragraph encoder is
depicted in Figure 3.9.

Figure 3.9: The overview of the question encoder and paragraph encoder. The input
of the question encoder is word embeddings of question terms and the input of the
paragraph encoder is word embeddings of paragraphs terms.

In terms of a question q, the traditional IR model retrieves top-ranked N docu-
ments and each document contains T paragraphs on average. The question q and each
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paragraph pi where i ranges from 1 to NT are encoded into a question embedding and
NT paragraph embeddings by the question encoder (Q) and paragraph encoder (P) re-
spectively. The computation of encoding can be seen in Equation 3.2, where q̂ is the
question embedding, p̂i is the paragraph embedding and E(·) converts each question
term or paragraph term into a pre-trained word embedding of Glove [91]. Finally,
Paragraph Ranker can rank all NT paragraphs based on the probability of relevance
of each paragraph with respect to the question q and this probability is computed in
Equation 3.3, where the similarity function s(·, ·) is the dot product of q̂ and p̂i.

q̂ = BiLST MQ(E(q)) p̂i = BiLST MP(E(pi)) (3.2)

P(pi|q) =
1

1+ e−s(p̂i,q̂)
(3.3)

The question encoder and paragraph encoder are trained using a negative sampling
of irrelevant paragraphs and the loss function which is a binary cross-entropy loss can
be found in Equation 3.4, where P(p|q) is the probability of relevance of the paragraph
p with respect to the question q and y indicates the actual label of paragraph (relevant:
y = 1, non-relevant: y = 0). Θ indicates parameters to be trained to minimize the loss
function. Therefore, Paragraph Ranker which consists of the question encoder and
paragraph encoder outputs the probability of relevance of a paragraph to a question and
then Paragraph Ranker can rank paragraphs based on their probabilities. The reason for
using negative sampling is that it can help accelerate the convergence of loss function
and balance positive training samples and negative training samples

L(Θ) =−(y · log(P(p|q))+(1− y) · log(1−P(p|q)) (3.4)

3.5.4 RC Models

In Chapter 1, we depicted the two-stage working pipeline of the open-domain QA sys-
tem, which can be found in Figure 1.1. In the retrieval test (Section 3.2), we only
focused on the first stage (i.e., retrieval stage) of the open-domain QA system to eval-
uate the retrieval performance of traditional IR models across datasets. However, the
final goal of improving the retrieval component is to improve the QA performance in
the second stage (i.e., answer extraction stage) and a better retrieval component can
benefit to the RC model, thereby boosting the QA performance. Therefore, to validate
our hypotheses regarding the retrieval component, we not only consider the improve-
ment of retrieval performance but also take the QA performance of the open-domain
QA system into consideration.

We adopt two RC models for dataset SQuAD and HotpotQA respectively. Specif-
ically, we use the neural network based RC model of DrQA [17] named Document
Reader for dataset SQuAD and the neural network based RC model used in the work
of HotpotQA [136] for dataset HotpotQA. The reasons are described as follows:

1. In terms of the dataset SQuAD in the open-domain setting, DrQA is the baseline
model of combining the IR technique and the neural RC model in the task of
open-domain QA. Some previous works [63, 125, 135] all compared their works
with the open-domain QA system DrQA on SQuAD in the open-domain setting.

51



CHAPTER 3. EXPLORATORY ANALYSIS OF SQUAD, HOTPOTQA AND TRIVIAQA

Therefore, we attempt to use the same neural RC model of DrQA to validate our
hypotheses about the retrieval component of the open-domain QA system and
compare our QA performance with that of the baseline model DrQA.

2. In terms of the dataset HotpotQA in the open-domain setting, the original work
of HotpotQA proposed an open-domain QA system that can be used to evaluate
the performance of open-domain QA on HotpotQA. This system is also consid-
ered as a baseline model on HotpotQA [29, 75]. Hence, we use the same neural
RC model of this baseline model on HotpotQA to validate our hypotheses about
the retrieval component of the open-domain QA system.

Document Reader of DrQA
We have described the overview of DrQA in Section 2.1.2 and it is in Figure 2.2. We
thus pay our attention on the neural RC model of DrQA and the architecture of Doc-
ument Reader can be found in Figure 3.10. Given a question q containing l terms
{q1,...,ql} and a paragraph p containing m terms {p1,...,pm}, the embedding of each
paragraph term can be computed in Equation 3.5, where E(·) converts each paragraph
term into a pre-trained word embedding of Glove [91]. Question encoding is similar to
paragraph encoding, but the final question embedding is the combination of each ques-
tion term embedding: q̂ = ∑ j b jq̂ j where b j encodes the importance of each question
term. The computation of b j can be found in Equation 3.6, where w is a weight vector
to learn. In terms of the prediction, Document Reader uses a bilinear term to capture
the similarity between p̂i and q̂ and computes the probabilities of each paragraph term
being start of the answer and end of the answer in Equation 3.7. Therefore, the text
span of the answer is the maximum of Pi

start ×Pi′
end and i≤ i′ ≤ i+15.

{ p̂1, ..., p̂m}= BiLST M({E(p1), ...,E(pm)}) (3.5)

b j =
exp(w · q̂ j)

∑ j′ exp(w · q̂ j′)
(3.6)

Pi
start ∝ exp(p̂iWsq̂) Pi

end ∝ exp(p̂iWeq̂) (3.7)

Neural RC model of HotpotQA
The architecture of the RC model of HotpotQA can be found in Figure 3.11. This
neural RC model is based on the RC model proposed by Clark and Gardner [20] with
additional technical advances, including character-level models20 [54], self-attention
[128] and bi-attention [104].

20For RNN or LSTM, the input is each character of a word instead of the entire word.
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Figure 3.10: The architecture of Document Reader of DrQA.
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Figure 3.11: The architecture of the neural RC model of HotpotQA.
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Chapter 4

Experiments for Validating
Hypotheses

The goal of this chapter is to conduct experiments using methodologies we described
in Section 3.5 for validating our hypotheses proposed in Section 3.4. The pipeline of
our experiments is depicted in Figure 4.1.

We begin this chapter with the experimental setup, in which the hyperparameter
tuning and training1 for our methodologies are performed (Section 4.1). Then, we
describe the evaluation of our methodologies on the development set of each dataset
(Section 4.2) and we end up with this chapter by presenting the results and analysis of
experiments for answering RQ3 (Section 4.3).

Figure 4.1: The pipeline of our experiments.

4.1 Experimental Setup

In this section, we describe the experimental setup for our experiments, including the
datasets, evaluation metrics and traditional IR models we use in experiments. In ad-

1We only need to train neural Paragraph Ranker for the methodology that implements H3.
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dition, this section also includes the hyperparameter tuning for methodologies we de-
scribed in Section 3.5.

4.1.1 Datasets and The Knowledge Source

As we described in the retrieval test (Section 3.2), we used three different QA datasets
SQuAD, HotpotQA and TriviaQA with the knowledge source Wikipedia to conduct
the retrieval test in the open-domain setting. In this chapter, we attempt to use almost
the same setup as that of the retrieval test in our experiments except that we do not con-
duct experiments on the dataset TriviaQA. This is due to the reason that our hypotheses
proposed in Section 3.4 all concentrate on improving the retrieval performance of tra-
ditional IR models on datasets SQuAD and HotpotQA in the open-domain setting and
we gave detailed explanations about why our hypotheses only focus on SQuAD and
HotpotQA at the beginning of Section 3.4.

Therefore, we use datasets SQuAD and HotpotQA with the knowledge source
Wikipedia in our experiments for validating our hypotheses. The statistics of datasets
SQuAD and HotpotQA, as well as the description of Wikipedia, can be found in the
retrieval test setup of Section 3.2.

4.1.2 Evaluation Metrics

As we described in the retrieval test (Section 3.2), we used the metric top-k recall
(TOP-k) to evaluate the retrieval performance of traditional IR models across datasets
in the open-domain setting, which indicates whether the ground truth answer to the
question appears in the top-ranked k documents retrieved by the retrieval component.
We employ TOP-k in our experiments to evaluate the retrieval performance of our
methodologies in the task of open-domain QA.

In addition to the metric TOP-k, we make use of evaluation metrics Exact Match
(EM) and F1 score (F1) to evaluate the QA performance of the RC model in the an-
swer extraction stage of the open-domain QA system. EM and F1 can help us validate
whether our hypotheses can benefit the RC model for achieving a better QA perfor-
mance in the task of open-domain QA.

4.1.3 Traditional IR Models

In our experiments, we employ the same traditional IR models that were used in the
retrieval test (Section 3.2) and they are TF-IDF, BM25 and QL. In addition, the rele-
vance model RM3 is used for query expansion to implement H2. These traditional IR
models are implemented using the open-source toolkit Anserini, which was also used
in the retrieval test for implementing TF-IDF, BM25 and QL.

4.1.4 Hyperparameter Tuning

Traditional IR models BM25, QL and RM3 contain hyperparameters to be tuned for
the best retrieval performance. We will describe the process of hyperparameter tuning
based on each methodology we use in our experiments. Note that all hyperparame-
ters are tuned on the training set of each dataset in the open-domain setting and then
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traditional IR models with the best-performing hyperparameters are evaluated on the
development set of each dataset.

Paragraph and Sentence Based Retrieval Document Unit (H1)
According to the definitions of paragraph and sentence we described in the methodol-
ogy for implementing H1 (Section 3.5.1), we split all 5,075,182 Wikipedia articles into
37,281,878 paragraphs and 102,188,601 sentences respectively. Hence, a Wikipedia
article contains 7.4 paragraphs and 20 sentences on average respectively. We then use
Anserini to build two indexes for Wikipedia by considering each paragraph and each
sentence as the retrieval document unit respectively. Finally, we perform hyperparam-
eter tuning for traditional IR models BM25 and QL based on these two indexes.

In the retrieval test (Section 3.2), we performed hyperparameter tuning for BM25
and QL based on the index which considered each Wikipedia article as the retrieval
document unit and hyperparameter tuning was performed on the training set of each
dataset for the best retrieval performance of the metric TOP-10. The metric TOP-10
in the retrieval test was based on the top-ranked 10 Wikipedia articles retrieved by
BM25 and QL, as the retrieval document unit was each Wikipedia article. Therefore,
to do hyperparameter tuning on two indexes which consider each paragraph and each
sentence of Wikipedia articles as the retrieval document unit respectively, we perform
hyperparameter tuning on paragraph-based retrieval document unit and sentence-based
retrieval document unit for the best retrieval performance of the metric TOP-74 and
TOP-200 respectively, as 10 Wikipedia articles are estimated to have the same amount
of text of 74 (7.4 × 10) paragraphs and 200 (20 × 10) sentences.

The overview of the range of hyperparameters’ values can be found in Appendix
A. The best-performing hyperparameters are adopted in our experiments and they can
be found in Table 4.1. We denote a traditional IR model retrieving documents from
Wikipedia considering each paragraph and each sentence of Wikipedia articles as the
retrieval document unit by appending "Para" and "Sent" to its original name respec-
tively (e.g., BM25+Para, BM25+Sent).

Model Hyperparameter SQuADopen (tuned) HotpotQA f ullwiki (tuned)

BM25+Para
k1 0.4 0.3
b 0.3 0.5

QL+Para λ 0.3 0.2

BM25+Sent
k1 0.2 0.4
b 0.5 0.1

QL+Sent λ 0.7 0.5

Table 4.1: The fine-tuned hyperparameters of BM25 and QL based on the indexes
which consider each paragraph (+Para) and each sentence (+Sent) of Wikipedia articles
as the retrieval document unit. Hyperparameters are tuned on the training set of each
dataset in the open-domain setting.
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Query Expansion by Pseudo Relevance Feedback (H2)
The relevance model RM3 contains three hyperparameters fbDocs, fbTerms and λ

which we described in Section 2.2.2 and we make use of RM3 to do query expan-
sion based on relevance feedback documents retrieved by traditional IR models TF-
IDF, BM25 and QL. Hence, traditional IR models with query expansion by RM3 have
three combinations and they are TF-IDF with RM3 (TF-IDF+RM3), BM25 with RM3
(BM25+RM3) and QL with RM3 (QL+RM3).

Note that the index for Wikipedia in this methodology considers each Wikipedia
article as the retrieval document unit, so we perform hyperparameter tuning for RM3 to
achieve the best TOP-10 based on fine-tuned hyperparameters of BM25 and QL which
were fine-tuned in the retrieval test (Section 3.2). The overview of the range of hyper-
parameters’ values can be found in Appendix A. The best-performing hyperparameters
are adopted in our experiments and they can be found in Table 4.2.

Model Hyperparameter SQuADopen (tuned) HotpotQA f ullwiki (tuned)

TF-IDF+RM3
f bDocs 5 5

f bTerms 200 200
λ 0.9 0.9

BM25+RM3

k1 0.1 0.3
b 0.1 0.4

f bDocs 5 15
f bTerms 150 150

λ 0.9 0.9

QL+RM3

λQL 0.1 0.1
f bDocs 5 5

f bTerms 100 100
λ 0.5 0.7

Table 4.2: The fine-tuned hyperparameters of traditional IR models with RM3. Hyper-
parameters are tuned on the training set of each dataset in the open-domain setting.

Neural Paragraph Ranker (H3)
As we depicted the pipeline of the traditional IR model with Paragraph Ranker in
Figure 3.8, the traditional IR model initially retrieves top-ranked N documents from
Wikipedia for re-ranking by Paragraph Ranker. The knowledge source Wikipedia is
indexed by considering each Wikipedia article as the retrieval document unit. Hence,
the hyperparameters of BM25 and QL we adopt in this methodology are those tuned
in the retrieval test (Section 3.2), which can be found in Table 3.6.

In addition to the hyperparameters of traditional IR models, Paragraph Ranker con-
tains some hyperparameters to be decided for training, such as the number of layers of
Bi-LSTMs, the number of retrieved documents N and dropout rate, etc. We adopt the
same hyperparameters setting as that of the original work of Paragraph Ranker [63] for
training Paragraph Ranker on datasets SQuAD and HotpotQA. Concretely, Paragraph
Ranker uses 3-layer Bi-LSTM networks with 128 hidden units and Adamax [55] as the
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optimization algorithm. Dropout is applied to Bi-LSTMs and word embeddings with
the dropout rate of 0.4 and Paragraph Ranker retrieves 20 documents from Wikipedia.
We denote the traditional IR model with Paragraph Ranker by appending "Ranker" to
its original name (e.g., BM25+Ranker).

4.2 Evaluation

In this section, we aim to evaluate the performance of our methodologies in the task of
open-domain QA on datasets SQuAD and HotpotQA, including the retrieval perfor-
mance and the QA performance of each methodology.

4.2.1 Paragraph and Sentence Based Retrieval Document Unit (H1)

We evaluate the performance of traditional IR models TF-IDF, BM25 and QL in the
task of open-domain QA on datasets SQuAD and HotpotQA and these IR models have
paragraph-based and sentence-based retrieval document units for Wikipedia. Specif-
ically, we evaluate the retrieval performance of traditional IR models by the metric
TOP-37 (i.e., top-ranked 5 articles) and TOP-74 (i.e., top-ranked 10 articles) based
on Wikipedia considering paragraph-based retrieval document unit and TOP-100 (i.e.,
top-ranked 5 articles) and TOP-200 (i.e., top-ranked 10 articles) based on Wikipedia
considering sentence-based retrieval document unit and this is due to two reasons. On
one hand, we need to compare the retrieval performance of this methodology with
that of traditional IR models in the retrieval test (Section 3.2). On the other hand, as
we described in the experimental setup (Section 4.1), a Wikipedia article contains 7.4
paragraphs and 20 sentences on average respectively.

Subsequently, we evaluate the QA performance by Document Reader of DrQA
and the neural RC model of HotpotQA for SQuAD and HotpotQA respectively based
on the retrieved documents above. The descriptions of Document Reader and the
neural RC model of HotpotQA are described in Section 3.5.4. To fairly compare the
QA performance of this methodology with that of original work of DrQA [17] and
HotpotQA [136], RC models need to extract the answer from the same amount of text
used in the original work of DrQA and HotpotQA2.

4.2.2 Query Expansion by Pseudo Relevance Feedback (H2)

The index for Wikipedia for this methodology considers each Wikipedia article as the
retrieval document unit, hence we evaluate the retrieval performance of traditional IR
models by the metric TOP-5 and TOP-10. Also, we use Document Reader of DrQA
and the neural RC model of HotpotQA to evaluate the QA performance on SQuAD
and HotpotQA respectively.

4.2.3 Neural Paragraph Ranker (H3)

We use traditional IR models to retrieve top-ranked 20 articles from Wikipedia and
employ Paragraph Ranker to re-rank all paragraphs of these 20 Wikipedia articles. As

2In their works, Document Reader of DrQA extracts the answer from top-ranked 5 articles, while the
RC model of HotpotQA extracts the answer from top-ranked 10 paragraphs.
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a result of re-ranking by Paragraph Ranker, we select top-ranked 37 paragraphs and
top-ranked 74 paragraphs to represent the same amount of text of top-ranked 5 articles
and top-ranked 10 articles respectively. We evaluate the retrieval performance and the
QA performance of this methodology based on the retrieved paragraphs.

The number of documents retrieved by traditional IR models from Wikipedia for
re-ranking is 20 in the original work of Paragraph Ranker [63]. Therefore, to ex-
plore the impact of the number of documents retrieved by traditional IR models from
Wikipedia for re-ranking on the performance of this methodology, we evaluate the re-
trieval performance and the QA performance of traditional IR models with Paragraph
Ranker based on the increased number of documents retrieved by traditional IR mod-
els. However, we cannot increase the number of retrieved documents without consid-
ering the computational memory that Paragraph Ranker requires. Hence, we evaluate
the performance of this methodology on SQuAD and HotpotQA from retrieving 20
documents to 200 documents with the size of 20 documents increasing.

4.3 Results and Analysis

In this section, we aim to present the experimental results of our methodologies on
datasets SQuAD and HotpotQA in the task of open-domain QA. Based on the exper-
imental results, we give an analysis of each methodology for validating whether the
corresponding hypothesis is able to improve the retrieval performance of traditional IR
models on SQuAD and HotpotQA in the open-domain setting. Consequently, we can
give the answer to our RQ3 based on the results and analyses.

4.3.1 Results and Analysis Based on H1

The experimental results of the methodology that implements H1 can be found in
Table 4.3 and this methodology is based on Wikipedia considering paragraph-based
and sentence-based retrieval document units.

Analysis of the Results on SQuAD in the open-domain setting
As we can see from the results on SQuAD in the open-domain setting in Table 4.3,
traditional IR models TF-IDF, BM25 and QL have better retrieval performance (i.e.,
TOP-5 and TOP-10) and QA performance (i.e., EM and F1) with smaller retrieval doc-
ument units for Wikipedia (i.e., paragraph-based and sentence-based retrieval docu-
ment unit) over traditional IR models with the retrieval document unit of each Wikipedia
article. Specifically, TF-IDF with sentence-based retrieval document unit achieves the
best performance over TF-IDF with article-based and paragraph-based retrieval docu-
ment unit. However, in terms of BM25 and QL, they both achieve the best performance
with paragraph-based retrieval document unit instead of the sentence-based retrieval
document unit. Overall, BM25 with paragraph-based retrieval document unit achieves
not only the best retrieval performance but also the best QA performance compared
to other retrieval components in Table 4.3. Furthermore, BM25 with paragraph-based
retrieval document unit achieves EM of 28.62 which is better than EM of 27.1 of the
original work of DrQA [17].
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Model
SQuADopen HotpotQA f ullwiki

TOP-5 TOP-10 EM F1 TOP-5 TOP-10 EM F1

TF-IDF 10.45 17.21 2.38 5.54 21.48 27.15 3.76 8.11
TF-IDF+Para 17.84 24.90 8.07 11.91 28.96 34.49 6.16 12.80
TF-IDF+Sent 43.34 49.90 20.15 25.12 33.87 39.54 7.99 15.57

BM25 68.06 74.33 18.83 24.04 60.92 67.68 11.21 20.73
BM25+Para 80.49 84.63 28.62 35.38 64.60 69.70 15.23 26.86
BM25+Sent 74.09 77.66 23.93 29.98 55.10 60.10 11.73 22.53

QL 56.86 66.04 14.31 20.05 58.76 65.51 10.95 20.41
QL+Para 77.22 81.97 27.13 33.70 63.19 68.85 14.97 26.10
QL+Sent 73.23 77.12 23.93 29.96 53.82 58.92 12.16 22.73

Table 4.3: The experimental results of the methodology on SQuAD and HotpotQA in
the open-domain setting, which is based on Wikipedia considering paragraph-based
(+Para) and sentence-based (+Sent) retrieval document units. For each traditional IR
model, the best performance on each metric is in bold. Note that the performances of
"TF-IDF", "BM25" and "QL" are ones with article-based retrieval document unit from
the retrieval test in Table 3.7.

The reason why TF-IDF with paragraph-based retrieval document unit does not
achieve better performance than TF-IDF with sentence-based retrieval document unit
is that the performance of TF-IDF is sensitive to the term frequency in documents.
As we described TF-IDF in Section 2.2.2, TF-IDF weighting scheme is dependent on
the combination of term frequency and inverse document frequency. In our work, a
paragraph contains 2.7 sentences on average3, so a paragraph contains a larger number
of terms in text than a sentence. Therefore, TF-IDF with sentence-based retrieval
document unit is able to match question terms with relevant documents easier than TF-
IDF with paragraph-based or article-based retrieval document unit, as each document
to be evaluated is shorter in text and does not have too much distracting text for TF-
IDF. This is also the reason why BM25 and QL with sentence-based retrieval document
unit can have better performance than they with article-based retrieval document unit.

However, BM25 and QL with paragraph-based retrieval document unit perform
better than they with sentence-based retrieval document unit. This is due to the reasons
as follows.

(1) Unlike TF-IDF, BM25 is not that sensitive to term frequency in documents, as
term frequency of BM25 can be scaled by document length with the hyperpa-
rameter b. This can be found in Equation 2.8 which we described in Section
2.2.2.

(2) Also, for BM25 and QL, the sentence-based retrieval document unit has a draw-
back which is that BM25 and QL are more likely to miss some important docu-
ments that might contain the answer to the question. This is due to the document

3As we described in Section 4.1, Wikipedia in our work contains 37,281,878 paragraphs or
102,188,601 sentences.
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sparseness for the question based on small retrieval document units [72]. For ex-
ample, a question from SQuAD is "Where did Super Bowl 50 take place?" and
its supporting reasoning facts are given as follows.

A: "Super Bowl 50 was an American football game to determine the champion
of the National Football League (NFL) for the 2015 season."

B: "The American Football Conference (AFC) champions Denver Broncos de-
feated the National Football Conference (NFC) champions Carolina Pan-
thers, 24–10."

C: "The game was played on February 7, 2016, at Levi’s Stadium in Santa
Clara, California, in the Bay Area."

Based on the sentence-based retrieval document unit, BM25 and QL are more
likely to miss documents B and C since they do not contain any query term,
but the answer to this question appears in document C (i.e., "Levi’s Stadium").
Hence, this drawback decreases the performance of BM25 and QL with sentence-
based retrieval document unit.

Analysis of the Results on HotpotQA in the open-domain setting
As we can see from the results on HotpotQA in the open-domain setting in Table
4.3, the case of traditional IR models on HotpotQA is similar to that of traditional IR
models on SQuAD. Concretely, TF-IDF with sentence-based retrieval document unit
performs better than TF-IDF with paragraph-based and article-based retrieval docu-
ment, while BM25 and QL with paragraph-based retrieval document unit have better
performance than they with sentence-based and article-based retrieval document unit.
The reasons for this can be found in the analysis of results on SQuAD above. An
example of document sparseness based on sentence-based retrieval document unit for
HotpotQA is given as follows. For a question of HotpotQA "Brown State Fishing
Lake is in a county that has a population of how many inhabitants?", some supporting
reasoning facts of this question are the following:

A: "Brown County (county code BR) is a county located in the northeast portion of
the U.S. state of Kansas."

B: "As of the 2010 census, the county population was 9,984."

Based on the sentence-based retrieval document unit, BM25 and QL might not
be able to retrieve document B which contains the answer "9,984", despite document
B contains question term "county" and "population". If BM25 and QL retrieve doc-
uments from Wikipedia based on paragraph-based retrieval document unit, these two
sentences are more likely to be retrieved by BM25 and QL, as the paragraph containing
these two sentences has more question terms.

Furthermore, we find that even though BM25 and QL with sentence-based re-
trieval document unit have worse retrieval performance than they with article-based
retrieval document unit (e.g., for BM25, TOP-5: 55.10 vs 60.92, TOP-10: 60.10 vs
67.68), BM25 and QL with sentence-based retrieval document unit still achieve better
QA performance than they with article-based retrieval document unit (e.g., for BM25,
EM: 11.73 vs 11.21, F1: 22.53 vs 20.73). This is due to that the amount of text
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for TOP-5 (i.e., TOP-100 sentences) and TOP-10 (i.e., TOP-200 sentences) based on
sentence-based retrieval document unit is less than that based on article-based retrieval
document unit. As we described in the experimental setup (Section 4.1), a Wikipedia
article is averagely equivalent to 20 sentences in the amount of text. However, for the
questions of HotpotQA in the open-domain setting, the average amount of text of a
Wikipedia article retrieved by BM25 and QL contains a larger number of sentences
than 20. We use BM25 and QL with article-based retrieval document unit to retrieve
top-ranked 5 articles for each question of HotpotQA (6947 questions) respectively, so
the number of articles retrieved by BM25 and QL is both 34,735. We split these articles
into sentences and they end up with 3,609,386 sentences and 2,644,169 sentences for
BM25 and QL respectively, so the average number of sentences of a Wikipedia article
retrieved by BM25 and QL for questions of HotpotQA is 103.9 and 76.1 respectively,
which are both larger than 20. Despite BM25 and QL with sentence-based retrieval
document unit retrieve less text for measuring the retrieval performance, they still have
higher EM and F1. This indicates that relevant documents of questions of HotpotQA
can be retrieved and ranked by BM25 and QL with sentence-based retrieval document
unit to the top positions.

Overall, BM25 with paragraph-based retrieval document unit achieves the best re-
trieval and QA performance and its EM is 15.23 which is lower than the EM of 24.68
in the original work of HotpotQA [136]. This is due to the reason that the knowl-
edge source (i.e., Wikipedia) in our work is broader and contains much more docu-
ments than the Wikipedia used in the original work of HotpotQA. As we described the
knowledge source in the retrieval test (Section 3.2), the Wikipedia in the original work
of HotpotQA only retains the first paragraph of each Wikipedia article for retrieval, so
our work is much more difficult than the original work of HotpotQA.

4.3.2 Results and Analysis Based on H2

The experimental results of the methodology that implements H2 can be found in Table
4.4 and this methodology is based on the relevance model RM3 to expand relevant
terms from retrieved documents to questions for refinement.

Analysis of the Results on SQuAD in the open-domain setting
As we can see from the results on SQuAD in the open-domain setting in Table 4.4, the
relevance model RM3 is beneficial to the traditional IR models BM25 and QL, whereas
TF-IDF with RM3 has the performance degradation. This is due to the evidence found
in many previous works [123, 141], which is that the performance of query expansion
based on pseudo relevance feedback strongly relies on the quality of the documents
retrieved by the retrieval component in the initial round. We depicted the retrieval
process of the traditional IR model with RM3 in Figure 3.7. From the results, we can
see that the quality of initially retrieved documents by TF-IDF is much worse than
that of documents initially retrieved by BM25 and QL (e.g., TOP-5: 10.45 vs 68.06 vs
56.86). Hence, RM3 decreases the retrieval performance of TF-IDF.

Overall, BM25 with RM3 achieves the best retrieval and QA performance than
other traditional IR models with RM3, but its EM is still lower than that of the original
work of DrQA (19.16 vs 27.1).
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Model
SQuADopen HotpotQA f ullwiki

TOP-5 TOP-10 EM F1 TOP-5 TOP-10 EM F1

TF-IDF 10.45 17.21 2.38 5.54 21.48 27.15 3.76 8.11
TF-IDF+RM3 9.28 15.23 2.11 5.04 18.11 24.60 2.81 6.63

BM25 68.06 74.33 18.83 24.04 60.92 67.68 11.21 20.73
BM25+RM3 69.12 75.46 19.16 25.33 60.46 66.94 10.97 20.54

QL 56.86 66.04 14.31 20.05 58.76 65.51 10.95 20.41
QL+RM3 62.66 73.81 17.03 22.91 58.10 65.04 10.72 20.15

Table 4.4: The experimental results of the methodology on SQuAD and HotpotQA
in the open-domain setting, which employs RM3 (+RM3) to do query (i.e., question)
expansion. For each traditional IR model, the best performance on each metric is
in bold. Note that the performances of "TF-IDF", "BM25" and "QL" are ones with
article-based retrieval document unit from the retrieval test in Table 3.7.

Analysis of the Results on HotpotQA in the open-domain setting
As we can see from the results on HotpotQA in the open-domain setting in Table 4.4,
none of the traditional IR models can benefit from RM3 on the retrieval performance
or QA performance. As we analyzed in the error analysis in Section 3.3, the overview
of the error analysis in Table 3.8 indicates that the error type B1: No name of bridge
entity (bridge) is the most prominent error type for HotpotQA. In this type, the real
name of the bridge entity does not appear in the question and the question only has
the descriptive phrase to represent the bridge entity instead. For example, the question
of HotpotQA "the birthplace of George McCall Theal is a port city of what bay?"
belongs to this error type containing the descriptive phrase of the bridge entity "a port
city". However, in this error type, traditional IR models are able to retrieve the ground
truth article of the unambiguous entity "McCall Theal", in which the real name of the
bridge entity appears. Therefore, we expected to employ RM3 to expand the terms of
the real name or some other terms that are related to the bridge entity to the question,
then traditional IR models are more likely to retrieve the ground truth article of the
bridge entity that contains the answer based on the revised question.

However, the results of traditional IR models with RM3 on HotpotQA demonstrate
that this is not the case as we expected above. Therefore, we check the ground truth
article of the unambiguous entity "McCall Theal". We find that this article is long in
the text which contains 666 words with 302 unique words, but the real name of the
bridge entity "Saint John, NewBrunswick" only appears once in this article. Therefore,
it is difficult for RM3 to expand the term in the real name of the bridge entity to the
question, as the term has a low term frequency in the document.

4.3.3 Results and Analysis Based on H3

The experimental results of the methodology that implements H3 can be found in Table
4.5 and this methodology employs a neural ranker to re-rank all paragraphs within the
documents retrieved by the traditional IR model.
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Model
SQuADopen HotpotQA f ullwiki

TOP-5 TOP-10 EM F1 TOP-5 TOP-10 EM F1

TF-IDF 10.45 17.21 2.38 5.54 21.48 27.15 3.76 8.11
TF-IDF+Ranker 23.99 25.15 4.82 9.10 34.27 34.81 8.45 14.65

BM25 68.06 74.33 18.83 24.04 60.92 67.68 11.21 20.73
BM25+Ranker 63.70 69.01 22.73 28.76 56.60 63.51 10.05 16.52

QL 56.86 66.04 14.31 20.05 58.76 65.51 10.95 20.41
QL+Ranker 63.16 68.13 19.73 25.90 57.90 64.16 10.38 16.92

Table 4.5: The experimental results of the methodology on SQuAD and HotpotQA in
the open-domain setting, which employs Paragraph Ranker (+Ranker) to re-rank all
paragraphs of top-ranked 20 Wikipedia articles retrieved by the traditional IR model.
For each traditional IR model, the best performance on each metric is in bold. Note that
the performances of "TF-IDF", "BM25" and "QL" are ones with article-based retrieval
document unit from the retrieval test in Table 3.7.

Analysis of the Results on SQuAD in the open-domain setting
As we can see from the results on SQuAD in the open-domain setting in Table 4.5,
Paragraph Ranker help TF-IDF and QL improve the retrieval performance and the QA
performance. Also, we can find that even though BM25 with Paragraph Ranker obtains
worse retrieval performance than BM25 without Paragraph Ranker (e.g, TOP-5: 63.70
vs 68.06), BM25 with Paragraph Ranker still has a better QA performance than BM25
without Paragraph Ranker (e.g., EM: 22.73 vs 18.83). This is due to the reason that
the amount of text retrieved by BM25 with Paragraph Ranker for measuring retrieval
performance is not fully equivalent to the amount of text retrieved by BM25 without
Paragraph Ranker. Concretely, as we described in the experimental setup (Section
4.1), a Wikipedia article is averagely equivalent to 7.4 paragraphs in the amount of
text. However, the average number of paragraphs of a Wikipedia article retrieved by
BM25 without Paragraph Ranker for questions of SQuAD is much larger than 7.4. We
make use of BM25 without Paragraph Ranker to retrieve 5 Wikipedia articles for each
question of SQuAD (10,570 questions) and we split these articles (52,850 articles) into
paragraphs. Finally, we end up with retrieving 6,504,151 paragraphs in total, so the
average number of paragraphs of a Wikipedia article retrieved for questions of SQuAD
is 123.1. Therefore, BM25 with Paragraph Ranker retrieves less text for measuring the
retrieval performance than BM25 without Paragraph Ranker, but it achieves a better
QA performance. This indicates that the relevant documents of questions of SQuAD
can be ranked by Paragraph Ranker to top positions.

Despite Paragraph Ranker only re-ranks paragraphs of top-ranked 20 Wikipedia ar-
ticles retrieved by TF-IDF, BM25 and QL, these traditional IR models with Paragraph
Ranker can still outperform these traditional IR models without Paragraph Ranker.
Furthermore, the impact of the number of Wikipedia articles for re-ranking by Para-
graph Ranker on the performance of traditional IR models can be found in Figure 4.2.

As we can see from Figure 4.2, Figure 4.2a and Figure 4.2c, which indicate TF-
IDF and QL with Paragraph Ranker respectively, show that the retrieval performance
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a Performances of TF-IDF w/o Paragraph
Ranker on SQuAD in the open-domain setting

b Performances of BM25 w/o Paragraph
Ranker on SQuAD in the open-domain setting

c Performances of QL w/o Paragraph Ranker
on SQuAD in the open-domain setting

Figure 4.2: The performance of traditional IR models on SQuAD in the open-domain
setting with Paragraph Ranker re-ranking the increased number of documents. The
metrics with "Ori-" indicate that these performances are under the traditional IR model
without Paragraph Ranker.

(i.e., TOP-5) and the QA performance (i.e., EM and F1) are consistently better than
that of these IR models without Paragraph Ranker based on the increased number
of retrieved documents for re-ranking by Paragraph Ranker. Specifically, the perfor-
mance gap (Figure 4.2a) between TF-IDF with Paragraph Ranker and TF-IDF without
Paragraph Ranker increases continuously with respect to the increased number of re-
trieved documents. In terms of the performance gap (Figure 4.2c) between QL with
and without Paragraph Ranker, it is not as significant as that of Figure 4.2a. The per-
formance gap on EM and F1 keeps stable after about 60 retrieved documents and the
performance gap on TOP-5 does not increase after around 100 retrieved documents.
Therefore, TF-IDF can benefit more significantly from Paragraph Ranker than QL, as
TF-IDF without Paragraph Ranker performs worse than QL without Paragraph Ranker
(e.g., TOP-5: 10.45 vs 56.86). As a result, TF-IDF can be easier and have a larger
space to be improved by Paragraph Ranker than QL. Furthermore, another reason is
that the top-ranked documents retrieved by TF-IDF without Paragraph Ranker con-
tain a small amount of text. For example, three top-ranked documents retrieved by
TF-IDF without Paragraph Ranker for the question of SQuAD "Which NFL team rep-
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resented the AFC at Super Bowl 50?" are Wikipedia articles of "NFL playoff records
(team)", "NFL Honors" and "Johnny Rembert". The total number of paragraphs of
these three articles is 3, which means each article only has one paragraph in the text.
However, three top-ranked documents4 retrieved by QL without Paragraph Ranker for
the same question contain 91 paragraphs in total. Hence, with the increased number
of documents for re-ranking by Paragraph Ranker, TF-IDF can have more significant
performance improvements, as there are more and more paragraphs to be re-ranked by
Paragraph Ranker to find more relevant documents for TF-IDF.

Figure 4.2b shows the performance of BM25 with and without Paragraph Ranker.
We can see that the retrieval performance of BM25 with Paragraph Ranker is con-
stantly lower than that of BM25 without Paragraph Ranker, whereas the QA perfor-
mance of BM25 with Paragraph Ranker is consistently better than that of BM25 with-
out Paragraph Ranker. This is due to the reason that the amount of text retrieved by
BM25 with and without Paragraph Ranker for measuring the retrieval performance is
not fully equivalent, as we described above. This also indicates that Paragraph Ranker
is able to re-rank relevant documents for questions of SuAD to top positions. Further-
more, the performance gap on EM and F1 does not increase after ranking 60 retrieved
documents.

Analysis of the Results on HotpotQA in the open-domain setting
As we can see from the results on HotpotQA in the open-domain setting in Table
4.5, when Paragraph Ranker re-ranks all paragraphs of top-ranked 20 Wikipedia ar-
ticles retrieved by traditional IR models, it only helps TF-IDF improve the retrieval
performance and the QA performance. BM25 and QL with Paragraph Ranker have
performance degradation compared to BM25 and QL without Paragraph Ranker. To
see whether Paragraph Ranker can improve the performance of BM25 and QL based
on the different number of retrieved documents for re-ranking, we test the performance
of traditional IR models with Paragraph Ranker based on the increased number of re-
trieved documents for re-ranking and the results can be found in Figure 4.3.

As we can see from Figure 4.3, Paragraph Ranker can still improve the perfor-
mance of TF-IDF, while it has a negative impact on BM25 and QL. The reasons for
the different impacts of Paragraph Ranker between TF-IDF and the other two tradi-
tional IR models are described as follows.

(1) As we can see from Figure 4.3a, TF-IDF obtains performance improvements
with Paragraph Ranker and the performance gap keeps stable after a certain
number of documents. Concretely, the EM and F1 of TF-IDF with Paragraph
Ranker do not appear to increase after 80 documents and even appear to decrease
after 150 documents. In contrast, the retrieval performance TOP-5 of TF-IDF
with Paragraph Ranker keeps increasing from 20 documents to 200 documents.
This indicates that many paragraphs re-ranked by Paragraph Ranker at the top
positions are false positive paragraphs, which only contain the answer to the
question, but cannot be used for the RC model to extract the answer correctly.
Hence, the QA performance of TF-IDF with Paragraph Ranker does not appear
to increase and even drops based on these false positive paragraphs. These false

4They are Wikipedia articles of "Super Bowl LI", "Super Bowl" and "NFL (video game)".
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a Performance of TF-IDF w/o Paragraph
Ranker on HotpotQA in the open-domain set-
ting

b Performance of BM25 w/o Paragraph Ranker
on HotpotQA in the open-domain setting

c Performance of QL w/o Paragraph Ranker on
HotpotQA in the open-domain setting

Figure 4.3: The performance of traditional IR models on HotpotQA in the open-
domain setting with Paragraph Ranker re-ranking increased number of documents.
The metrics with "Ori-" indicate that these performances are under the traditional IR
model without Paragraph Ranker.

positive paragraphs demonstrate that Paragraph Ranker is not robust to some
noisy paragraphs that contain the ground truth answer to the question but cannot
be used to answer the question successfully.

(2) Paragraph Ranker’s inability of robustness to false positive paragraphs becomes
more obvious when it needs to re-rank more amount of text. In Figure 4.3a,
TF-IDF with Paragraph Ranker has the QA performance degradation after re-
ranking around 150 documents. To demonstrate that this inability is severer
when re-ranking a larger amount of text, we make use of Paragraph Ranker to
re-rank 500 documents retrieved by TF-IDF for each question of HotpotQA. As
a result of re-ranking 500 retrieved documents for each question, we find that
compared to the performance of TF-IDF with Paragraph Ranker re-ranking 200
documents, not only the QA performance decreases (i.e., EM: 8.69 vs 7.97, F1:
15.30 vs 14.14), but also the retrieval performance decreases (i.e., TOP-5: 48.97
vs 48.41). In this case, Paragraph Ranker even ranks some paragraphs that do
not contain the answer to the top-ranked positions. In terms of the amount of text
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of a certain number of documents retrieved by BM25 and QL, it is larger than
that of the same number of documents retrieved by TF-IDF5. Therefore, BM25
and QL have performance degradation with Paragraph Ranker, as the documents
retrieved by BM25 and QL have much text to be re-ranked by Paragraph Ranker,
so BM25 and QL with Paragraph Ranker suffer from the performance drop eas-
ily with just re-ranking a few retrieved documents. For instance, as we can see
from the results on HotpotQA in Table 4.5, the performance of BM25 and QL
with Paragraph Ranker re-ranking just 20 retrieved documents is worse than that
of BM25 and QL without Paragraph Ranker.

4.4 Conclusion

Based on the results and the analysis of each experiment above, we can draw some con-
clusions of the validity of our hypotheses proposed in Section 3.4 as follows, thereby
answering RQ3 that we described in Section 1.2.

• In the task of open-domain QA on datasets SQuAD and HotpotQA, the knowl-
edge source Wikipedia considers each paragraph of articles or each sentence of
articles as the retrieval document unit of traditional IR models TF-IDF, BM25
and QL and these two units can improve the retrieval performance of these tra-
ditional IR models. Specifically, TF-IDF can benefit more from sentence-based
retrieval document unit, while BM25 and QL can have more retrieval perfor-
mance improvements based on paragraph-based retrieval document unit. In
conclusion, our H1 is valid on datasets SQuAD and HotpotQA in the open-
domain setting.

• In the task of open-domain QA on datasets SQuAD and HotpotQA, the relevance
model RM3 can benefit the traditional IR models BM25 and QL on SQuAD
in the open-domain setting. However, traditional IR model TF-IDF with RM3
cannot be improved the retrieval performance on SQuAD or HotpotQA in the
open-domain setting. In addition, BM25 and QL do not benefit from RM3 on
HotpotQA in the open-domain setting. In conclusion, our H2 based on the
relevance model RM3 for query expansion is only valid to traditional IR
models BM25 and QL on dataset SQuAD in the open-domain setting.

• In the task of open-domain QA on datasets SQuAD and HotpotQA, adding
a neural ranker named Paragraph Ranker6 after traditional IR models for re-
ranking can improve the retrieval performance of traditional IR models TF-IDF,
BM25 and QL on SQuAD in the open-domain setting. Also, Paragraph Ranker
can help TF-IDF improve the retrieval performance on HotpotQA in the open-
domain setting when re-ranking a certain number of documents retrieved by
TF-IDF. However, Paragraph Ranker following BM25 and QL decreases their
retrieval performance on HotpotQA in the open-domain setting. In conclusion,
our H3 based on adding Paragraph Ranker after traditional IR models is

5For example, TF-IDF, BM25 and QL retrieve 40 documents for each question of HotpotQA and
they contain 789,792, 7,984,922 and 6,225,160 paragraphs in total respectively.

6Paragraph Ranker was proposed by Lee et al. [63].
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valid to traditional IR models TF-IDF, BM25 and QL on dataset SQuAD
in the open-domain setting as well as TF-IDF on dataset HotpotQA in the
open-domain setting, but it is not valid to BM25 and QL on HotpotQA in
the open-domain setting. Therefore, we can learn that some previous works,
such as the work of Paragraph Ranker [63], proposed the neural ranker, which
is not applicable and beneficial to all questions of different QA datasets.
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Chapter 5

Conclusion and Future Work

In this chapter, we give a conclusion of our work (Section 5.1) and then we describe
some aspects that are involved with future work (Section 5.2).

5.1 Conclusion

Our work focused on the task of retrieval-based open-domain question answering
(QA), which enables the retrieval component to retrieve relevant documents from a
large-scale knowledge source for a question and the answer extraction component to
extract the answer to this question based on the retrieved documents. As many pre-
vious works focused on the answer extraction component, our work concentrated on
the retrieval component and explored the impact on the retrieval component across
different QA datasets, which previous works did not explore. Therefore, we proposed
three research questions in our work to explore and mitigate the negative impact on the
retrieval component across QA datasets.

We selected QA datasets SQuAD, HotpotQA and TriviaQA in our work that all
consider the full Wikipedia as the knowledge source. In terms of the retrieval compo-
nent in the task of open-domain QA, traditional but efficient information retrieval (IR)
models TF-IDF, BM25 and QL were usually considered as the retrieval component
to retrieve documents from a large-scale knowledge source in many previous works.
We made use of these traditional IR models to conduct the retrieval test on datasets
SQuAD, HotpotQA and TriviaQA in the open-domain setting based on the knowl-
edge source Wikipedia. As a result, we found that different QA datasets have different
impacts on the traditional IR models and are differently hard to be dealt with by the
traditional IR models.

Based on the results of the retrieval test on datasets SQuAD, HotpotQA and Trivi-
aQA in the open-domain setting, we conducted the error analysis of these three datasets
for figuring out the error types of questions of each dataset. From error analysis, we
learned that the prominent error types of questions of SQuAD, HotpotQA and QL
in the open-domain setting are based on questions with ambiguous entities, bridge
entities and unambiguous entities respectively. The error types based on ambiguous
entities and bridge entities are much more difficult to be handled by traditional IR
models than the error types based on unambiguous entities, so the retrieval perfor-
mance of traditional IR models in our work on TriviaQA in the open-domain setting
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is much better than the retrieval performance on SQuAD and HotpotQA in the open-
domain setting. Therefore, we hypothesized three methodologies that might mitigate
the negative impact of the error types of questions of SQuAD and HotpotQA in the
open-domain setting, thereby improving the retrieval performance of traditional IR
models on SQuAD and HotpotQA in the open-domain setting.

We implemented our methodologies that are involved with our proposed hypothe-
ses and they are based on smaller retrieval document units of traditional IR models, the
relevance model RM3 and a neural Ranker Paragraph Ranker respectively. We then
conducted experiments with these methodologies on datasets SQuAD and HotpotQA
in the open-domain setting for validating these hypotheses. From our experiments,
we found that not all of the hypotheses we proposed can mitigate the negative impact
of the error types of questions of SQuAD and HotpotQA in the open-domain setting.
Traditional IR models with smaller retrieval document units (i.e., paragraph-based or
sentence-based retrieval document unit) can have performance improvements on both
datasets SQuAD and HotpotQA in the open-domain setting, whereas this is not the
case for traditional IR models with the relevance model RM3 for query expansion and
with Paragraph Ranker for re-ranking documents retrieved by traditional IR models.
Traditional IR models based on RM3 and Paragraph Ranker can have performance
improvements on SQuAD instead of HotpotQA in the open-domain setting.

In conclusion, we believe that our work is a step forward to obtaining more insights
into the retrieval component of the open-domain QA system and will contribute to the
development of the retrieval component for a better open-domain QA system. More-
over, our work can give our users guidance on how to issue a more suitable question
that can be processed by the open-domain QA system for giving a more accurate and
better answer.

5.2 Future Work

For the future work, there are some aspects related to our work can be concentrated on
to either improve or extend our research. Hence, we describe these relevant aspects as
follows.

5.2.1 Performance Improvement on A Specific Error Type

In our work, we proposed hypotheses that are aimed at mitigating the error types of
questions of datasets SQuAD and HotpotQA in the open-domain setting, thereby im-
proving the retrieval performance of traditional IR models in our work on SQuAD and
HotptoQA in the open-domain setting. For performance improvements on SQuAD
and HotpotQA in the open-domain setting by some methodologies in our work, we
can analyze the performance improvement based on a specific error type of questions
for future work. As a result of this, we can have a clear insight into whether the
methodology we employ can benefit this specific error type.

5.2.2 Integration of Our Methodologies

As we can see from our experimental results (Section 4.3), some traditional IR models
in our work with RM3 and Paragraph Ranker do not showcase the performance im-

72



5.2. FUTURE WORK

provement on datasets HotpotQA in the open-domain setting. For future work, we can
integrate traditional IR models based on paragraph-based or sentence-based retrieval
document unit with the relevance model RM3 or Paragraph Ranker to see whether
the integration of our methodologies can improve the retrieval performance of these
traditional IR models on HotpotQA in the open-domain setting.

5.2.3 Impact of Different Aspects of Questions

In our work, we explored the impact on the traditional IR models across datasets
SQuAD, HotpotQA and TriviaQA in the open-domain setting. We focused on the
characteristics1 of entities that appear in the questions of these three datasets. For fu-
ture work, we would like to collect more different questions and attempt to explore
the impacts of different aspects of questions on traditional IR models. For example,
we can explore the impacts on traditional IR models between short questions and long
questions in the text, between cross-lingual questions and single-lingual questions, etc.

1Questions with ambiguous, bridge and unambiguous entities in the open-domain setting.
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Appendix A

Hyperparameter Tuning

This is the overview of the values to be tested for hyperparameter tuning of traditional
IR models BM25 and QL as well as the relevance model RM3.

Model Hyperparameter Values to be tested

BM25 k1 {0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0, 1.2, 1.4, 1.6, 1.8, 2.0}
b {0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0}

QL λ {0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9}

f bDocs {5, 10, 15, 20, 25, 30}
RM3 f bTerms {50, 100, 150, 200, 250, 300}

λ {0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9}

Table A.1: Values to be tested by grid search for hyperparameter tuning of traditional
IR models used in our work. All hyperparameters are tuned on the training set of each
dataset in the open-domain setting.
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