
On the robustness
of ORB matching
in feature-based
SLAM
M. Coroz
Student number: 4430565

Supervisors: Dr. J.F.P. Kooij & Dr. Y. Li

Date: 28-11-2022

On the
robustness of

ORB matching in
feature-based

SLAM
by

M. Coroz
to obtain the degree of Master of Science
at the Delft University of Technology,

to be defended publicly on Monday November 28, 2022 at 11:00 AM.

Student number: 4430565
Project duration: March 1, 2022 – November 30, 2022
Thesis committee: Dr. J.F.P. Kooij, TU Delft, supervisor

Dr. Y. Li, Lely Technologies, supervisor
Dr.ir. Y.B. Eisma, TUDelft

This thesis is confidential and cannot be made public until November 28, 2024.

An electronic version of this thesis is available at http://repository.tudelft.nl/.

http://repository.tudelft.nl/

Abstract
A robotic vehicle must continuously determine its position within the map to traverse a path safely; this
is called self-localization. Current localization methods use mainly sensors like LIDARS. However, a
LIDAR does not return data points if the environment is an empty field; the laser scan of the LIDAR
does not reflect without obstacles, making self-localization in those environments impossible. Self-
localization with visual information from cameras can be an alternative for vehicles operating in an
open environment, such as the Lely Juno, an agricultural robot operating on farms. A widely used visual
Simultaneous Localization and Mapping (SLAM) method in literature, ORB-SLAM3, lacks robustness
on Lely Juno’s visual data; the track is lost multiple times due to a sudden drop in the number of feature
matches.

This work aims to experimentally determine (a) the cause of the drop in the feature matches that
eventually causes the tracking error and (b) the robustness and accuracy of ORB-SLAM3 compared to
a simple visual odometry (VO) system. The cause of the drop in feature matches is investigated outside
the ORB-SLAM3 pipeline by replicating the matching thread of ORB-SLAM3 with OpenCVORB feature
matching. The robustness and accuracy of ORB-SLAM3 are compared with a simple visual odometry
system by comparing the trajectories and the minimum number of matches found in the sequences.

The sudden drops in feature matches could not be replicated outside the ORB-SLAM3 pipeline with
the brute-force-based ORBmatcher in OpenCV. While in some cases, the decrease in feature matches
is related to the image itself (e.g., blur, movement), the leading cause is complicated. In this work, the
leading cause is further reduced to the quality of the disparity map, the type of matcher used, and
the use of grids when extracting features. The simple VO system is more robust than ORB-SLAM3.
However, the absolute pose error is worse and unsuitable for reliable navigation for long trajectories.

For the Lely Juno, a simple visual odometry system can only be used for short distances outside.
Therefore, investigating the issues in ORB-SLAM3 is an excellent direction from the project’s point of
view. More understanding is needed of the exact effects of the disparity map, the type of matcher used,
and the use of grids on the number of feature matches.

The contributions of this work are insights into the reasons behind the tracking errors, exploring the
effect of different ORB parameters and datasets on the matching performance, and creating two new
datasets in low-textured and repetitive agricultural environments. Investigating the exact impact of the
disparity map, the type of matcher used, and the use of grids on the number of feature matches is left
for future work.

iii

Preface
After spending seven years at the TU in Delft, my time as a student is ending. My journey started with
aerospace engineering. I soon discovered that aerospace was not the degree I wanted to study for the
coming few years. I ended up pursuing mechanical engineering for my bachelor’s. During this time, I
developed an interest in software development and autonomous vehicles. This interest led me to the
master’s in robotics, which I am completing with this final work.

I want to thank my supervisors, Julian Kooij and Yan Li, for their support and guidance during the
final phase of my studies. I also would like to thank the ORB-SLAM3 community for answering my
questions about the code, which has helped me understand the pipeline better.

Finally, I would like to thank my friends and family that supported me during my time as a student
and everyone that took the time to proofread my work.

M. Coroz
Delft, November 2022

v

Contents

1 Introduction 1

2 Related Work 3
2.1 Visual Odometry . 3
2.2 Visual Place Recognition. 4
2.3 Visual SLAM . 4
2.4 SLAM evaluation . 8
2.5 Contributions . 9

3 Methods 11
3.1 Feature extraction and matching . 11
3.2 ORB-SLAM3 . 12

3.2.1 The tracking thread. 13
3.2.2 The local mapping thread . 14
3.2.3 The loop & map merging thread . 14
3.2.4 The ATLAS . 15

3.3 ORB Features . 15
3.4 Bags of binary words . 18
3.5 Stereo visual odometry. 19
3.6 Triangulation . 20
3.7 Correlation factors and plots . 22

4 Experiments and Results 23
4.1 Datasets . 23
4.2 Effect of RANSAC . 26

4.2.1 Results . 27
4.3 Effect of ORB settings on matching performance. 28

4.3.1 Results on the original images . 28
4.3.2 Results on the equalized images . 31

4.4 Qualitative results and discussion . 33
4.5 Replicating the problem . 47
4.6 Correlations . 47

4.6.1 Results . 49
4.7 Tuning ORB-SLAM3 matcher . 51

4.7.1 Results . 52
4.8 A simple stereo visual odometry implementation . 54

4.8.1 Results . 54

5 Discussion & Conclusion 69
5.1 Discussion . 69
5.2 Conclusion . 70
5.3 Future Work. 71

vii

1
Introduction

Localizing a robotic vehicle is essential to perform tasks without human intervention safely. The vehicle
needs to know its position on a map to follow a planned route and perform tasks.

Current low-cost sensors that generate a point cloud, such as a 2D-LIDAR, do not provide data
in an open outdoor environment as there are no objects that reflect the laser rays on the vehicle.
A Global Positioning System (GPS) solely is not accurate enough to use for localization and is not
able to provide data indoors without setting up beacons. An Inertial Navigation System (INS) uses
accelerometers and gyroscopes to calculate a pose. An INS cannot provide accurate pose estimation
when there is no acceleration, which is the case for most ground robots operating at a constant speed.
Moreover, the pose is estimated by integrating the accelerations twice. A small measurement error can
result in significant errors in the estimated pose. This error accumulates over time as the new pose is
calculated from the previously determined position. This calculation method is called dead reckoning.
Wheel odometry also uses dead reckoning to calculate the current pose based on how many times the
wheels of the vehicle have rotated, given the wheels’ circumference. The positional error with wheel
odometry increases rapidly if the wheels slip.

This research focuses on localizing a robotic vehicle in an agricultural environment. The Lely Juno
vehicle follows a path from a charging station to multiple barns and eventually back to the charging
station. The charging station can be located inside a barn or on the farm property. The vehicle follows
an outdoor path to visit multiple barns and pushes feed for the cattle to the fences inside the barn.
The vehicle is equipped with a stereo camera, a 2D-LIDAR, an Inertial Measurement Unit (IMU), and
wheel encoders. The vehicle has limited computational capacity onboard. Multiple processes share
a single CPU, including localization. Moreover, the Lely Juno is a product that many customers in the
agricultural sector use. Therefore, the vehicle should operate without training on the data of the target
environment.

Many robotic vehicles are already equipped with low-cost cameras for object detection, including
the Lely Juno, which makes using cameras for localization attractive. Moreover, cameras provide rich
data compared to other sensors. Using a camera for self-localization is not yet common in the industry.
However, there is much ongoing research on visual self-localization for robotic vehicles. A well-known
method is ORB-SLAM(3) [8]. ORB-SLAM extracts and matches ORB features in frames and estimates
a camera pose based on these matches. A map of the unknown environment is created simultaneously
while localizing the vehicle on the map, which is the SLAM principle. SLAM is an extension of Visual
Odometry (VO). Visual Odometry only tracks the camera pose with dead reckoning. SLAM extends
this with place recognition to close loops, correct the pose that drifts over time, and simultaneously
build and optimize a map.

Much research is done in Visual Odometry and Visual SLAM, all focusing on improving the pose
estimation accuracy. Almost all research is conducted on specific robotic datasets, such as the EuRoC
MAV, KITTI, and TUM-VI. Testing ORB-SLAM3 on agricultural datasets, such as the Rosario and our
datasets, resulted in many tracking failures, impeaching the method’s robustness. The tracking failures
occur due to a drop in the number of ORB feature matches in the tracked frames (see Figure 1.1). The
drop in the number of feature matches does not always occur in the same frames when the sequence

1

2 1. Introduction

is rerun due to the randomness of the keyframe insertion of the ORB-SLAM3 pipeline, which makes
the issue difficult to trace.

(a) Frame t-2. Many feature matches can
be found in this frame. The total amount of
feature matches found in the whole map is
120.

(b) One frame later, at frame t-1, the num-
ber of feature matches starts to reduce. The
total amount of feature matches found in the
whole map is 17.

(c) No feature can bematched at frame t and
the rest of the map; this leads to a loss of
track. If this system is unable to re-localize,
ORB-SLAM3 will start a new empty map.

Figure 1.1: Three subsequent frames of a sequence of the Rosario dataset run on ORB-SLAM3. A green rectangle indicates a
feature match. Within three frames, the number of total feature matches in the whole map drops from 120 to a value under 15,
which is the minimum amount of feature matches needed for ORB-SLAM3 to calculate a pose. Visually, there is no apparent
reason why the number of feature matches could reduce.

This research focuses on the robustness of ORB features in feature-based SLAM or ORB-SLAM3.
There are two main research questions:

1. Why does feature matching often return a small number of matches for the agricultural datasets
in ORB-SLAM3?
Hypothesis: Two possibilities are expected for the cause of the drop in feature matches; 1. The
ORB feature descriptor might not be descriptive enough to robustly match features correctly. This
can cause drops in feature matches in scenes where the environment is especially repetitive or
textureless. 2. The drop in feature matches can be related to the ORB-SLAM3 pipeline itself. A
specific design choice or a bug in the pipeline can cause these drops.
To be able to answer the research question above, the following three subquestions will be an-
swered first.

(a) What ORB feature extraction settings can we use for our experiments that work well for all
datasets?
Hypothesis: The ORB feature extraction parameters can affect the feature responses’
strength. Weak responses can also be more challenging to match. To reduce the time
needed to execute the experiments, determining a good set of ORB feature extraction pa-
rameters that work well on all datasets would be crucial.

(b) Can we replicate the issue of sudden drops in feature matches outside of the ORB-SLAM3
pipeline?
Hypothesis: If the issue of the drop in feature matches also occurs outside of the ORB-
SLAM3 pipeline, it is more likely due to the ORB features. If not, the issue is probably within
the ORB-SLAM3 pipeline.

(c) Are feature matches affected by the type of dataset used, and which properties of the dataset
affect the feature matching?
Hypothesis: Specific scenes or frames might also affect the feature matches, such as blur
and illumination changes.

(d) Can we improve the ORB-SLAM3 matcher with tuning?
Hypothesis: Tuning the parameters of the matcher in the ORB-SLAM3 pipeline might help
to reduce the drops in feature matches.

2. Can we implement a simple camera pose estimator that outperforms ORB-SLAM3 in terms of
robustness without compromising too much of the accuracy?
Hypothesis: The ORB-SLAM3 pipeline might not be needed for the Lely Juno, as a simple
Visual Odometry system might suffice in terms of accuracy for the length of the trajectory of the
Lely Juno. A simple Visual Odometry is probably also more robust than the ORB-SLAM3 pipeline
with many different sub-components that work in parallel.

2
Related Work

2.1. Visual Odometry
Visual odometry [37] is a method used to estimate the relative camera pose using sequential images.
The robot’s pose can be determined without needing a prior database. It is a relative method, meaning
the pose is calculated relative to the previous frame(s), called dead-reckoning. The pose will drift more
and more over time unless corrected. The pose is optimized or corrected with bundle adjustment,
pose graph optimization or loop closures ([48]) which is often implemented in the map maintenance
part of visual SLAM applications (Chapter 2.3). Different approaches exist to optimize a camera pose,
such as geometric approaches where the pose is optimized with projective geometry, learning-based
approaches that solely use machine learning, or hybrid approaches that combine projective geometry
with machine learning.

Geometric approaches use projective geometry to calculate poses frommatches [48]. Themotion is
estimated by associating 3D to 3D points, 3D to 2D points, or 2D to 2D points (see Figure 2.1). Epipolar
geometry solves the camera pose in the 2D to 2D point association, while Perspective-n-Point is used
in the 3D-2D case. The 3D to 3D point association is done directly by extracting the 3D position from
the stereo-camera but is rarely used as it is not as accurate as the 3D-2D points association [39]. The
matching method is dense when all pixels are matched. The method is semi-dense if some pixels are
matched, such as those with a high gradient. The methods that try to minimize the number of pixels or
features matched are sparse methods.

Figure 2.1: Data association methods [48].

In general, there are two geometric approaches; feature-based and appearance-based. Feature-
based methods extract features from pixels and match these features to the features in the other image.
Appearance-based methods use the pixels without any feature extraction to match them to the pixels
in the other image.

Sometimes different versions of the same method exist for monocular, and stereo cameras [26].
Stereo cameras are convenient for directly extracting depth information; however, it is susceptible to
correct camera calibration. Shocks and vibrations during use can degrade the extrinsic calibration
over time. Furthermore, the stereo cameras’ baseline affects the depth information’s accuracy. Long
baselines can provide more accurate depth information for objects far away, while shorter baselines

3

4 2. Related Work

can provide accurate depth information for objects nearby. The baseline is, however, fixed and limited
by the vehicle’s size.

On the other hand, monocular methods are not limited by the baseline problem. A drawback, how-
ever, is that they need at least three different images to find the depth with triangulation. Because the
translation and rotation vectors between the first two images are unknown, the distance between the
first two frames is set to a predetermined value. This value needs to be deducted, for example, from
IMU or LiDAR data. Also, loop closures are crucial for handling scale drift ([49]), which happens due
to errors during triangulation.

Feature-based visual odometry methods have the limitation of failing in low-textured environments
([26]). Appearance-based methods are more robust to low-textured environments but less to illumina-
tion changes. Also, for the geometry-based methods with 2D to 2D association, epipolar geometry is
used to solve the essential matrix [48]. This solver generally works well, but in some cases, it cannot
estimate a camera pose; 1. When there is pure rotation, the rotation matrix becomes unsolvable. 2.
When the camera translation is small, the solution becomes unstable. 3. When the scale is ambigu-
ous. Monocular methods are also prone to scale drift unless corrected in SLAM methods by keeping a
scale-consistent map by performing global bundle adjustments for scale optimization or with additional
prior assumptions. SLAM methods perform well for long-term localization, primarily due to the long-
term data association with loop closures. However, when loop closures are not working because the
environment is too repetitive or there are no loops in the trajectory, it is hard to recover when tracking
failures happen or to keep an accurate estimation in the long term.

2.2. Visual Place Recognition
Visual place recognition [24] is a method to determine whether the robot is in a previously visited place
based on the sensory input from the camera(s) and a prior database. Visual place recognition can be a
means for camera pose estimation, or it can be used to correct for the drift in visual odometry (chapter
2.1) or SLAM (chapter 2.3) methods by detecting loop-closures.

Visual place recognition is challenging due to several reasons; The appearance of a place can
change drastically due to changes in day and night, seasons, viewpoints, and occlusions. Furthermore,
perceptual aliasing can occur due to multiple places that look similar. Visual place recognition systems
have, in general, three components;

1. The image processing component; interprets the incoming visual data.

2. The map; represents the robot’s knowledge of the environment.

3. Belief generation component; uses the sensor data in combination with the map to update the
systems’ belief of where the robot is localized.

Hand-crafted features are widely used to extract features from images. The feature descriptors
are subsequently matched to the descriptors in the database. The descriptors in the database can
be based on images or a 3D model. Although feature-based matching methods are quite outdated,
they are still competitive compared to learning-based methods [4]. Feature-based methods are still
state-of-the-art on medium and large-scale datasets.

In image-based approaches, hand-crafted features are used to extract features in the query image,
and the feature descriptors are matched to the feature descriptors from the database image. A popular
approach for image retrieval is the bag of visual words model and variations thereof ([41]; [17]; [21];
[9]; [10]) due to its efficiency. In this model, the feature descriptors are converted to codewords (sets
of similar features), and each image is represented by a frequency histogram of the features present in
the image. A similar image can be retrieved by comparing their frequency histogram. In this approach,
spatial relationships are lost. However, spatial verification and outlier removal are often done after-
ward with Random Sample Consensus (RANSAC) based methods ([17];[10]) during pose estimation
together with Perspective-n-Point (PnP).

2.3. Visual SLAM
SLAM stands for Simultaneous Localization and Mapping [48]. SLAM methods build a map during
localization, which also helps localization itself. SLAM methods can be filter-based or optimization-
based (also called keyframe-based). Most visual SLAM methods use the latter due to higher accuracy.

2.3. Visual SLAM 5

Visual SLAM approaches combine visual odometry with place recognition. Initialization, data associa-
tion, pose optimization, and keyframe management are part of visual odometry and SLAM. The place
recognition module detects loop closures. Map maintenance and map expansion modules are added
for the mapping part of visual SLAM to generate and correct the map and simultaneously the pose
estimation. Pure visual odometry methods do not have a global optimization module, such as the loop
closures in visual SLAM.

Figure 2.2: Flow-chart of a general keyframe-based visual SLAM method [48].

ORB-SLAM is a widely used feature-based method that is integrated into a visual SLAM method,
first introduced in 2015 [27]. The initial method was meant for monocular cameras and could operate
in real-time in small and large indoor and outdoor environments. The current version is called ORB-
SLAM3 [8]. It can perform visual, visual-inertial, and Multimap SLAM onmonocular and stereo cameras
in real time on a CPU. They show state-of-the-art results on the trajectory error compared to other
feature-based and appearance-based visual and visual-inertial methods in the EuRoC and the TUM
VI datasets (Figure 2.3 and Figure 2.4). The authors achieve remarkable accuracy in ORB-SLAM3 by
using short-term, mid-term, and long-term data associations.

Short-term data association matches map elements from the last few frames; the elements are
forgotten when they leave the view. Most visual odometry methods use this association which is prone
to drift. Mid-term data association matches map elements near the camera while the accumulated drift
is still small. Long-term data association uses place recognition to reset the accumulated drift. Most
visual SLAMmethods do not use all associations, which is the reason for the lower accuracy compared
to ORB-SLAM3, according to the authors of ORB-SLAM3.

6 2. Related Work

Figure 2.3: ORB-SLAM3 performance comparison on the EuRoC dataset. Systems that did not complete all sequences are
denoted by * and are not marked in bold. ([8])

Figure 2.4: ORB-SLAM3 performance comparison on the TUM VI dataset, measured with RMS ATE (m). * indicates that one
out of the three runs was not successful. ([8])

2.3. Visual SLAM 7

The authors claim that the leading failure cause of ORB-SLAM3 is low-textured environments. Also,
the matching of feature descriptors is less robust for tracking than the Lucas-Kanade method, which
uses photometric information. Another failure cause can be vehicles driving on a flat area with no roll
and pitch or with slow motions, which can cause the IMU sensor to have difficulty initializing in the
visual-inertial case. In that case, the stereo configuration should be used.

DM-VIO The appearance-based Delayed Marginalization Visual-Inertial Odometry (DM-VIO) [42] is
the only method that slightly outperforms ORB-SLAM3 in terms of localization accuracy. This monoc-
ular method builds on top of DSO ([11]) by adding IMU integration and two novel adjustments; delayed
marginalization (removal of unused map points and keyframes) and pose graph bundle adjustment. In
delayed marginalization, a second factor graph is maintained where marginalization is delayed com-
pared to the first graph. The delayed graph can be used to get an updated marginalization prior and
enables the addition of IMU information into already marginalized states. The Pose Graph Bundle
Adjustment (PGBA) combines pose graph optimization and bundle adjustment, which is faster than
applying full bundle adjustment and more accurate than pose graph optimization. PGBA uses the
delayed graph for IMU initialization. The system starts with visual-only odometry and runs an IMU
initializer in parallel. The scale is initially unobservable due to the monocular camera, so the method
continuously optimizes scale and the direction of gravity in the main system after IMU initialization is
done. Monocular visual-inertial methods are generally less accurate than stereo-inertial methods as
scale is hard to determine with a monocular camera. The inertial system can be used to find scale.
However, this fails when the motion is constant. DM-VIO has excellent robustness compared to other
visual-inertial methods (Figure 2.5); it even outperforms stereo-inertial methods. DM-VIO copes with
a scale that is initially unobservable by continuously optimizing the scale and gravity direction in the
primary system after IMU initialization.

The results show that DM-VIO is more robust in terms of accuracy with an increasing number of
runs on the TUM-VI and 4Seasons dataset compared to different mono- and stereo-inertial methods
(Figure 2.5). DM-VIO even outperforms the stereo-inertial ORB-SLAM3, which uses loop closures.
Note that all experiments in the paper are performed in real-time mode on the datasets on a CPU.

(a) robustness in terms of accumulated drift with an increasing
number of runs on the TUM-VI dataset. DM-VIO outperforms
ORB-SLAM3 and VI-DSO. On some sequences, ORB-SLAM3 has
better performance due to its loop-closure system.

(b) robustness in terms of accumulated drift with an increasing
number of runs on the 4Seasons dataset. The 4Seasons dataset
is challenging for monocular visual-inertial systems as scale can
not be observed due to constant motion and, therefore, challeng-
ing for IMU initialization.

Figure 2.5: Robustness of DM-VIO compared to different visual-inertial methods on the TUM-VI and 4Seasons dataset. ORB-
SLAM3 uses loop closures. All other methods are without loop-closing.

The RMS ATE on the TUM-VI dataset (Figure 2.6) and the EuRoC dataset (2.7) further show that
DM-VIO outperforms other methods on most sequences in terms of RMSE, even stereo-inertial meth-
ods. Basalt is the closest competitor in terms of RMSE on the TUM-VI dataset (Figure 2.6).

8 2. Related Work

Figure 2.6: RMSE ATE (m) on the TUM-VI dataset. The methods do not have loop closing. A full SLAM system using loop
closures could achieve even more accurate results.

Figure 2.7: RMSE ATE (m) on the TUM-VI dataset. The methods do not have loop closing.

2.4. SLAM evaluation
Most of the literature focuses on improving the accuracy of a visual SLAM or visual odometry (VO)
system. Some literature focus on robustness in terms of repeatability of the same accuracy [32]. The
accuracy of a SLAM/VO system is often measured with the root mean squared absolute trajectory error
(ATE) [50]. However, ATE is sensitive to the time an estimation error occurs. An estimation error at
the beginning of the trajectory gives a larger ATE than an error at the end. Therefore, relative position
error (RPE) is also used in addition to the ATE to provide a more informative error.

The datasets used in most SLAM/VO literature can be found in Tabel 2.1. Most datasets are
recorded in an urban or indoor environment with relatively many (distinctive) features compared to
an agricultural setting. Therefore, most visual localization methods are not tested extensively in low-
textured environments.

Evaluation of the pose estimation seems biased in most cases [4]. The performance of the method
depends on how the ground truth is obtained. For example, if a SLAM method is used to generate

2.5. Contributions 9

ground truth data, the accuracy is often higher if the bench-marked method is similar; this is due to the
similar optimized cost functions, which have the same local minima.

Table 2.1: Commonly used datasets in visual SLAM research. A ’-’ means not present and ’x’ means present.

Dataset Setting Pose data Camera Seasons Illumination Image capture
CMU Seasons
([36]) Suburban 6 DoF Stereo x - Trajectory

RobotCar Seasons
([36]) Urban 6 DoF Stereo x x Trajectory

KITTI Vision Benchmark Suite
([18]) Urban 6 DoF Stereo - - Trajectory

TUM monoVO
([12]) Indoor, Suburban 6 DoF Mono - - Trajectory
TUM RGB-D
([43]) Indoor 6 DoF Stereo - - Trajectory
TUM LSI

([46]) Indoor 6 DoF,
GPS Mono - - Sets of contiguous

captures
TUM VI Benchmark
([38]) Indoor, Suburban 6 DoF Mono - - Trajectory
EuRoC MAV

([6]) Indoor
6 DoF,
3D position
from laser

Stereo - - Trajectory

7 Scenes
([40]) Indoor 6 DoF Stereo - - Trajectory

2.5. Contributions
The literature focuses on improving localization accuracy and robustness in terms of repeatability of
the accuracy. To the best of our knowledge, there is no literature about the understanding of tracking
failures. Failures in feature matching in low-textured or repetitive environments are addressed; how-
ever, it needs further investigation or improvement. The general cause of sudden low feature matches
that cause tracking failures in any environment is not yet clear. The main contributions of this work can
be summarized as follows:

• The robustness of ORB-SLAM3 regarding tracking errors due to sudden low feature matches is
investigated for agricultural datasets and the commonly used datasets in the literature. The num-
ber of feature matches is recorded in an OpenCV implementation of the ORB feature matching
outside the ORB-SLAM3 pipeline.

• The effect of different ORB extraction parameters on the matching performance is investigated
for the different datasets, giving insights for proper parameter tuning.

• Two new datasets are created on existing Lely machines for the agricultural application. One
dataset contains recordings of a machine working on a grass field. The cameras point down-
wards, which means that the cameras see mainly grass; therefore, the environment is visually
repetitive. The second dataset contains recordings of a machine working in the barn environment.
The cameras point straight to the horizon. The dataset contains many distinct features inside the
barn. However, the environment is texture-less when the machine travels outside to the different
barns due to concrete floor slabs.

3
Methods

This work focuses mainly on the feature extraction and matching part of ORB-SLAM3. The ORB-
SLAM3 feature extractor is compared to a general OpenCV-based feature extraction pipeline for the
experiments. A general approach for feature extraction and matching is explained in Chapter 3.1. The
ORB-SLAM3 pipeline is explained in Chapter 3.2. ORB features, which are the baseline for the tracking
in ORB-SLAM3, are explained in Chapter 3.3. The Bag of Binary Words method, which ORB-SLAM3
uses for feature matching, is explained in more detail in Chapter 3.4. For the second research question,
a simple visual odometry system is implemented. Therefore, the principles of stereo visual odometry
can be found in Chapter 3.5. In stereo visual odometry, triangulation is used for pose estimation after
the general feature extraction and matching principle, which is explained in more detail in Chapter 3.6.
Correlation factors and plots are used to evaluate specific experiments, which is explained in Chapter
3.7.

Figure 3.1: The relationship between methods used in this work.

3.1. Feature extraction and matching
Features [44] are local interest points or areas in an image. These features include lines, edges,
corners (also called interest points), patches, and more. Feature detection and matching are used
to find point correspondences in an image pair. There are many applications for using these feature
correspondences; they can be used to align images for image stitching, to construct a 3D model, or to
estimate a camera pose in visual odometry or SLAM systems.

The features can be hand-crafted or extracted with deep networks. However, the most popular
features that are used for matching are hand-crafted corners [25]. These corners are easy to extract
and are simple to describe. A good feature is distinctive and fast to compute.

After feature extraction, the feature is described with a local patch descriptor; this is needed to
recognize a feature in different images and subsequently match the features. There are also several
different descriptors, such as binary descriptors commonly used with ORB features or non-binary de-
scriptors commonly used with, for example, SIFT features. Different features can be combined with
different descriptors. An advantage of binary descriptors is that they are fast to compute. However,
they are less distinctive compared to non-binary descriptors.

11

12 3. Methods

Thematching is generally done with Brute Forcematching or a Fast Library for Approximate Nearest
Neighbors (FLANN) based matching [5]. The Brute Force matcher is slower than the FLANN matcher
as each feature in an image is matched to all features in the corresponding image. The best k matches
can be found with the k-nearest neighbor algorithm. The FLANN matcher is based on algorithms opti-
mized for fast nearest neighbor search in large datasets and high dimensional features. After matching
with Brute Force or FLANN, many matches can still be incorrect. Most of the incorrect matches can be
filtered with Lowe’s ratio test [23] and Random Sample Consensus (RANSAC) [14] outlier filtering after-
ward. Matches that remain after RANSAC filtering are called inliers. The OpenCV library [5] provides
many feature extractors and matching functions that are widely used for computer vision applications.
For the experiments, ORB features are combined with a Brute-force matcher to find feature matches.
The outliers are subsequently filtered with Lowe’s ratio test. Note that this implementation differs in two
major ways from the ORB extractor and matcher in ORB-SLAM3:

• In ORB-SLAM3, the image is divided into grids. The features are extracted from each grid to
make the spread of the features more homogeneous over the image.

• ORB-SLAM3 uses a Bag of Words model to compare features initially with a brute force matching,
assuming that features close in the descriptor space will also be close in the bag of words model.
Subsequently, there are no parameters for the k-nearest neighbor in ORB-SLAM3. It also means
that descriptors are only compared if the visual words are close enough.

The exact steps in the pipelines of ORB-SLAM3 are as follows;

1. Extracting ORB features from each grid of the image.

2. Calculating the descriptors of the extracted features.

3. Finding correspondences between features in two images by comparing only the features asso-
ciated with the same nodes at a preset level in the vocabulary tree of the Bag of Words model
(see Chapter 3.4).

4. The correspondences are further filtered by comparing their descriptors and keeping the corre-
spondences that have a distance in the feature space under a certain threshold and also pass
the Lowe’s ratio test.

The steps in the OpenCV implementation are as follows;

1. Extracting ORB features from the image

2. Calculating the descriptors of the extracted features.

3. Finding correspondences by applying a brute-force matcher.

4. The correspondences are further refined with Lowe’s ratio test and possibly RANSAC.

As the ORB-SLAM3 implementation does not use RANSAC, the OpenCV implementation will be
tested with and without RANSAC in an experiment to determine if RANSAC is needed.

3.2. ORB-SLAM3
ORB-SLAM3 [8] is a state-of-the-art feature-based visual localization method. ORB-SLAM3 uses ORB
features, which are lightweight and widely used for real-time applications. The appearance-based DM-
VIO [42] is the only method that slightly outperforms ORB-SLAM3 in terms of localization accuracy.
However, unlike DM-VIO, ORB-SLAM3 has a very active code repository, which also played a role in
choosing this method. Furthermore, our main concern is robustness in tracking failures. Both methods
were only tested for accuracy and not for tracking robustness in the literature. We use the stereo
configuration in ORB-SLAM3, which is more accurate than the monocular configuration. Fusing inertial
information does not work for our use case since the Lely Juno runs with constant speed. Therefore, we
will explain the ORB-SLAM3 pipeline for the stereo configuration. Furthermore, ORB-SLAM3 also has
a localization mode, where the local mapping and loop closing threads are disabled. The localization
mode uses visual odometry and relocalization to localize within an existing map. The pipeline consists
of the tracking, local mapping, loop- and map merging threads.

3.2. ORB-SLAM3 13

Figure 3.2: The full ORB-SLAM3 pipeline [8] .

3.2.1. The tracking thread
The tracking thread tracks the pose of the camera. The thread extracts ORB features from incoming
frames. The features are matched between the last frame and its reference keyframe to make an initial
pose estimation of the last frame. This matching is done by projecting the feature points seen in the
previous frame with a motion model (TrackWithMotionModel() in Figure 3.4). The pose is estimated
if enough matches are found by minimizing the re-projection error. If there are not enough matches,
the tracking matches all features in the reference keyframe to the features in the last frame that have
a similar visual word (TrackReferenceKeyframe() in Figure 3.4). The bag of words model used for
place recognition and feature matching is explained in detail in Chapter 3.4. If this step fails due to
insufficient matches for pose estimation, the system will relocate or start a new map if relocalization
fails. Relocalization is done with place recognition. The relocalization thread matches ORB features
from the current frame to the features in each candidate place from the query database. A pose is
estimated if a candidate has enough matches.

Figure 3.3: The tracking component of ORB-SLAM3 [8].

Suppose there are enough matches from the tracking, either from the motion model, the tracking
with the reference keyframe, or relocalization. In that case, the system continues tracking the local
map. Initially, there are some feature matches in the frame and an initial camera pose estimation. The
camera pose can be further refined by projecting the local map to the frame and searching for map
point correspondences. The local map consists of a set of keyframes that share map points with the
current frame and a set of their co-visible keyframes. The local map has a reference keyframe that
shares most map points with the current frame. After refining the pose, the tracking thread determines
if the current frame should become a new keyframe depending on the following conditions [27]:

• More than 20 frames have passed from the last global relocalization.

• Local mapping thread is idle, or more than 20 frames have passed from the last keyframe inser-
tion.

• Current frame tracks at least 50 map points.

• Current frame tracks less than 90% map points than the reference keyframe.

14 3. Methods

Figure 3.4: The initial pose estimation flow in more detail. The track local map thread is only triggered if an initial pose estimation
can be made.

3.2.2. The local mapping thread
The local mapping thread [27] inserts the keyframe and updates the co-visibility graph if a new keyframe
insertion is decided in the tracking thread. To ensure correct data association, the tracking thread
continues to cull recent map points observed by less than three keyframes. Map points can at any time
be seen by less than three keyframes when a keyframe is removed or when local bundle adjustment
removes outliers. New map points are created if ORB matches between the inserted keyframe and the
connected keyframes from the co-visibility graph can be triangulated after the positive depth in both
cameras, the parallax, re-projection error, and scale consistency are checked. Afterward, a local bundle
adjustment is performed with the new keyframe, the co-visible keyframes, and all the map points seen
by the keyframes. All other keyframes that see the same map points are also used for the optimization
but remain fixed. The local keyframes culling removes redundant keyframes in the co-visible keyframes
set whose 90% of the map points have been seen in at least three other frames on the same or finer
scale. The scale condition ensures that the map points that originate from the keyframe, measured
with the most accuracy, are maintained.

Figure 3.5: The local mapping thread [8].

3.2.3. The loop & map merging thread
This thread performs place recognition and corrects the loop subsequently. For place recognition, the
bag of words database in the Atlas is queried to find the three most similar keyframes to the active
keyframe, excluding the co-visible keyframes of the active keyframe. Subsequently, a local window is
defined for each candidate keyframe, including the keyframe, its best co-visible keyframes, and all the
map points observed. A rigid body transformation is calculated that aligns the map points in the local
window of the candidate keyframe and the map points of the active keyframe. All the map points in the
local window are transformed using the transformation found to find more matches with the key points
in the active keyframe and vice versa. The transformation can be further optimized with non-linear

3.3. ORB Features 15

optimization using all the matches found.
Place recognition is verified by searching two keyframes in the active map co-visible with the active

keyframe, where the number of matches with map points in the local window is over a certain threshold.
The validation continues until three keyframes verify the transformation or fail if two consecutive new
keyframes fail to verify it.

The map merging process is initiated if the keyframes matched by place recognition belong to dif-
ferent maps. The active map is brought to the reference of the matched map. Merging the whole map
could take a long time. Therefore, the merging process is split into two operations. First, the merge is
performed in a welding window defined by the neighbors of the active and the matched keyframe in the
co-visibility graph. In the second operation, the correction is propagated to the rest of the merged map
with a pose-graph optimization. Loop closing is analogous to map merging, but keyframes matched by
place recognition belong to the same active map.

Figure 3.6: The loop and map merging thread [8].

3.2.4. The ATLAS
The ATLAS consists of a set of disconnected maps. The local mapping thread continuously grows
the active map with new keyframes and map points. The non-active maps can become active after
relocalization or map merging. A bag of words database is also maintained in the ATLAS, consisting
of keyframes. This database is used for relocalization, loop closing, and map merging.

Figure 3.7: The ATLAS [8].

3.3. ORB Features
ORB features [35] consists of Oriented FAST keypoint detectors and Rotated BRIEF descriptors. ORB
was introduced as an efficient alternative to SIFT and SURF features. ORB features are rotation in-
variant and resistant to noise.

FAST keypoint detector The FAST (Features from Accelerated Segment Test) keypoint detector
[34] is a high-speed keypoint detector suitable for real-time applications. The initial segment test takes a
circle of sixteen pixels around a candidate corner or keypoint 𝑝 (see Figure 3.8). The candidate corner is
classified as a corner when at least 𝑛 = 12 contiguous pixels in the circle are brighter or darker than the
candidate corner, including a threshold value (fastThreshold parameter in ORB OpenCV). The reason
to check 12 contiguous pixels is that the test can be sped up by only considering pixel numbers 1, 5, 9,
and 13 in the circle. If 𝑝 is a corner, then at least three pixels are darker or brighter than the candidate
corner 𝑝, and a full segment test can be done to check the remaining pixels in the circle. Otherwise, 𝑝
can not be a corner. There are, however, several problems with this approach:

1. The high-speed test does not generalize well for 𝑛 < 12

16 3. Methods

2. The choice and the ordering of the fast test pixels contain implicit assumptions about the distri-
bution of feature appearance

3. Knowledge from the first four tests (the high-speed test) is discarded

4. Multiple features are detected adjacent to one another
The first three problems are addressed using machine learning for the corner detector. The corner

detector consists of two stages; First, the corners are detected using the slow segment test that tests
all 16 pixels in the circle (for a given n and threshold). This is done on a set of images, preferably from
the target application domain. For each corner, the 16 pixels with their location 𝑥 around it are stored
as a vector. A feature vector 𝑃 is created by doing this for all images. For every corner, all 16 pixels are
either classified as darker, similar, or brighter than the corner 𝑝. Depending on the states, the feature
vector 𝑃 is divided into three subsets; 𝑃𝑑, 𝑃𝑠, or 𝑃𝑏. A Boolean variable 𝐾𝑝 is created, which is true if
𝑝 is a corner and false otherwise. The second stage consists of making a decision tree. This stage
starts with selecting the circle pixels at location 𝑥, which contain the most information about whether
the candidate pixel is a corner measured with the entropy of 𝐾𝑝:

𝐻(𝑃) = (𝑐 + �̄�)𝑙𝑜𝑔2(𝑐 + �̄�) − 𝑐𝑙𝑜𝑔2(𝑐) − �̄�𝑙𝑜𝑔2(�̄�) (3.1)
where 𝑐 = |𝑝|𝐾𝑝 is true | (number of corners) and �̄� = |𝑝|𝐾𝑝 is false | (number of non corners)

The information gained with the choice of x is equal to:

𝐻(𝑃) − 𝐻(𝑃𝑑) − 𝐻(𝑃𝑠) − 𝐻(𝑃𝑏) (3.2)

This process is applied to all three subsets. Each 𝑥 is chosen to yield maximum information about
the set to which it applies. The process stops when a subset’s entropy is zero, meaning that all 𝑝 in
the subset are either all corners or all non-corners. The decision tree created can be used for FAST
detection in other images.

An indirect non-maximum suppression is applied to address the last problem. A score function V is
computed for each detected corner. This 𝑉 is the sum of the absolute difference between the corner
𝑝 and the 16 surrounding pixel values. The score functions of two adjacent corners are compared the
one with a lower 𝑉 value is discarded.

Figure 3.8: The 12-point segment test corner detection in an image patch [34]

The original FAST keypoint detector is not invariant to rotation and scale. The FAST keypoint de-
tector is made rotation and partially scale invariant in ORB. Rotation invariance is done by using the
intensity centroid as a corner orientation measure, which assumes that a corner’s intensity is the offset
from its center. This vector is used to define an orientation.

Figure 3.9: Illustration of the orientation measure 𝜃. Defined through the line between the center of mass C and the center O of
a patch.

3.3. ORB Features 17

The moments of a patch have to be found first to calculate the center of mass:

𝑚𝑝𝑞 =∑
𝑥,𝑦
𝑥𝑝𝑦𝑞𝐼(𝑥, 𝑦) (3.3)

The center of mass is then:

𝐶 = (𝑚10𝑚00
, 𝑚01𝑚00

) (3.4)

Furthermore, the orientation can be found with (see Figure 3.9):

𝜃 = 𝑎𝑡𝑎𝑛2(𝑚01, 𝑚10) (3.5)

Scale invariance is partially achieved by using an image pyramid. Each pyramid level consists
of a downscaled version of the original image. Keypoints are detected at each level of this pyramid,
which makes ORB partially scale invariant. It is partially invariant to scale as the image can only be
downsampled. Larger features than the features in the original image will not be detected.

BRIEF descriptors
The BRIEF (Binary Robust Independent Elementary Features) descriptor [7] describes the feature

point in a binary feature vector. The feature vector is described as a 𝑛𝑑-dimensional bit string with 𝑛𝑑
being the bit size:

𝑓𝑛𝑑(𝑝) = ∑
1≤𝑖≤𝑛𝑑

2𝑖−1𝜏(𝑝; 𝑥𝑖 , 𝑦𝑖) (3.6)

where
𝑝 = patch of size 𝑆𝑥𝑆
and 𝜏(𝑝; 𝑥𝑖 , 𝑦𝑖) is the test at bit 𝑖. The test is defined as:

𝜏(𝑝; 𝑥, 𝑦) = {1, if 𝑝(𝑥) < 𝑝(𝑦)
0, otherwise

(3.7)

where 𝑝(𝑥) and 𝑝(𝑦) are the pixel intensity values in the smoothed 𝑝. These (𝑥, 𝑦) pairs are chosen
randomly within the patch. The smoothing is done to reduce the effect of noise, as this method uses
pixel-level tests.

The (𝑥, 𝑦) pairs can be randomly drawn from different distributions. The ORB method uses the
Gaussian distribution centered around the key point. ORB also uses a vector length of n = 256.

The ORB method steers BRIEF according to the orientation of the key points to make the BRIEF
descriptors invariant to in-plane rotation. A 2𝑥𝑛 matrix is defined for 𝑛 binary tests for any feature set
at location (𝑥𝑖 , 𝑦𝑖).

𝑆 = (𝑥1, ...𝑥𝑛𝑦1, ...𝑦𝑛) (3.8)

A rotation matrix found from the calculated patch orientation in (3.5) is used to transform the matrix to
the steered 𝑆:

𝑆𝜃 = 𝑅𝜃𝑆 (3.9)

The steered BRIEF feature vector subsequently becomes:

𝑔𝑛(𝑝, 𝜃) = 𝑓𝑛(𝑝)|(𝑥𝑖 , 𝑦𝑖) ∈ 𝑆𝜃 (3.10)

A lookup table is subsequently generated of precomputed BRIEF patterns from discretized angles
(per 2𝜋/30) to speed up computation time.

The OpenCV implementation of the ORB feature extractor has different parameters that can be
tuned:

• Number of features The number of features limits the total number of features found in an image
to the value set. More features are better for increasing feature matches. However, it is a trade-off
between speed and performance.

18 3. Methods

• FAST threshold The FAST threshold is the parameter that determines when a pixel around a ref-
erence pixel is counted as a distinct pixel. When a certain amount of pixels around the reference
pixel are distinct, the reference pixel becomes a feature point.

• Patch size The patch size is a defined neighborhood around a pixel, which is used to compare
the brightness between the reference pixel and the surrounding pixels to detect key points (see
Figure 3.8).

• Scale factor The scale factor is the factor at which the image is downsampled each level in the
pyramid.

• number of levels The number of levels represents the layers of the image pyramid. It is the
number of times the image is downsampled. Keypoints are detected at each level to detect
features at different scales.

• Edge threshold The edge threshold is the size of the border where the features are not detected.

3.4. Bags of binary words
ORB-SLAM3 uses a hierarchical bags of binary words model [17] [28] for loop detection. Moreover, as
a novelty compared to other bag-of-word approaches, ORB-SLAM uses the bag-of-words vocabulary
also to find initial feature matches efficiently by approximating the nearest neighbor distance ratio policy
[23] to speed up the feature matching process. The latter is crucial for this research, as this affects how
many correspondences can be found for feature matching.

Figure 3.10: example of the hierarchical vocabulary tree and the direct and inverse indexes [17]
.

Creating the vocabulary tree (offline)
The hierarchical bag of words is created using a vocabulary structured as a tree (see Figure 3.10).

The vocabulary is created (offline) as follows:

1. ORB features are extracted from approximately 10k training images (Bovisa 2008-09-01 dataset),
unrelated to the images used online.

2. The descriptors are discretized in binary clusters by k-medians clustering with k-means++ seed-
ing. The clusters with a value of 0 forms the first level of nodes in the vocabulary tree.

3. More levels are created by repeating this process with the descriptors associated with each node,
up to 𝐿𝑤 times.

The ORB-SLAM3 vocabulary consists of a vocabulary of 6 levels and 10 clusters per level, with in
total of one million words (the leaves in the vocabulary tree). Each word has a weight associated with

3.5. Stereo visual odometry 19

the word’s relevance in the training set. Words that are seen more frequently are given a lower weight
as it is less discriminative.

Converting an image into a bag-of-words vector (online)
ORB features are extracted, and the descriptors of the features traverse the tree from the root to

the leaves (top node to leaves in the bottom in Figure 3.10) to convert an image into a bag-of-words
vector. At each level, the nodes that minimize the Hamming distance are selected.

An inverse index is maintained by storing for each word in the vocabulary the list of images where
the word is present to quickly access the weight of the word in the image. The inverse index is updated
every time a new image is added to the online database.

As a novelty compared to other bag-of-word approaches, a direct index is also created and main-
tained. For each image, the nodes that are ancestors of the words present in the image are stored
for each level. A list of local features associated with each node is stored as well. This direct in-
dex is used to speed up the feature matching process for both geometrical verification in loop closing
candidates, and for feature matching, in general, to find initial correspondences in the TrackWithRef-
erenceKeyframe function (see Chapter 3.2.1). Correspondences between features in two images are
found by comparing only the features associated with the same nodes at a preset level in the vocabulary
tree.

There is a trade-off between the number of correspondences and computation speed. Setting this
preset level to the top node (level 6) means that no speed in computation is gained and that all features
are compared. Setting the level to a lower value means that only very similar features are compared
(level 0 compares only features belonging to the same word), resulting in less computation time as
fewer features are compared and fewer correspondences.

3.5. Stereo visual odometry
The main components of a feature-based visual odometry system can be simplified in a block diagram
[15] (see Figure 3.11).

Figure 3.11: Main components of a visual odometry pipeline simplified in a block diagram [15]. Features are detected from the
incoming image sequence. The features are matched or tracked. A motion is estimated with the preferred association (3D-2D,
2D-2D or 3D-3D) [15]. The estimation is further optimized with local optimization methods such as bundle adjustment.

Feature matching (or tracking) After features are detected in the images, there are two methods
to find corresponding features in the other image; through feature matching or feature tracking. The
difference is that when features are matched, the features are detected independently in all images
and subsequently matched. With feature tracking, features are detected in one image and tracked in
the following images using a local search technique such as correlation, a sum of squared differences
(SSD), KanadeLucasTomasi (KLT) tracker, and many more [16].

Motion estimation Most motion estimation methods for stereo cameras use 3D-to-2D feature cor-
respondences [15]. 3D-to-2D correspondences are more accurate than 3D-to-3D correspondences
because it minimizes the image re-projection error instead of the feature position error. With 3D-to-2D
association, the features in the previous image are in 3D (found through triangulating the 2D features
in the stereo image pair), and the features in the current image are the corresponding 2D re-projections

20 3. Methods

on the current image. The general formulation is to find a transformation 𝑇𝑘 that minimizes the image
re-projection error:

argmin
𝑇𝑘

∑
𝑖
||𝑝𝑖𝑘 − �̂�𝑖𝑘−1||2 (3.11)

where 𝑝𝑖𝑘 is a 2D-feature point in the current image and �̂�𝑖𝑘−1 the re-projection of the 3D point in
the previous image onto the current image according to the transformation 𝑇𝑘. Estimating a pose by
minimizing the re-projection error of a 3D-to-2D correspondence is also known as the Perspective-n-
Point (PnP) problem. The motion estimation algorithm is summarized in Figure 3.12.

Figure 3.12: The 3D-to-2D feature correspondence algorithm [15].

Windowed (or Local) Bundle Adjustment After pose estimation, a bundle adjustment can be
performed over the last frames to obtain a more accurate camera pose estimation, and 3D landmarks
[16]. A windowed bundle adjustment takes a window of n images and performs parameter optimization
of the camera poses and the 3D landmarks for this window. This optimization is done by minimizing
the image re-projection error:

argmin
𝑋𝑖 ,𝐶𝑘

∑
𝑖,𝑘
||𝑝𝑖𝑘 − 𝑔(𝑋𝑖 , 𝐶𝑘)||2 (3.12)

where 𝑝𝑖𝑘 is the ith image point of the 3D landmark 𝑋𝑖 in the kth (current) image and 𝑔(𝑋𝑖 , 𝐶𝑘) is the
image projection of 𝑝𝑖𝑘 according to the current camera pose 𝐶𝑘. As this optimization is a non-linear
function, it is usually solved using the Levenberg-Marquardt algorithm [22].

3.6. Triangulation
Triangulation of 3D points is done with the epipolar geometry (see Figure 3.13). From similar triangles,
depth can be written as [45]:

𝑍 = 𝑏 ∗ 𝑓
𝑥𝐿 − 𝑥𝑅

= 𝑏 ∗ 𝑓
𝑑 (3.13)

where Z is the depth of the 3D world coordinate P, b is the camera baseline, f is the focal length, 𝑥𝐿
and 𝑥𝑅 are the x coordinates of the point in the left and right image planes, and d (𝑑 = 𝑥𝐿 − 𝑥𝑅) is the
disparity.

3.6. Triangulation 21

Figure 3.13: Epipolar geometry with parallel optical axes [45].

A correspondence problem has to be solved to determine the disparity of a pixel in an image. These
correspondences form the disparity map of an image. The widely used method in OpenCV, called
StereoSGBM, is a modified version of the H. Hirschmuller algorithm [19], which solves the correspon-
dences problem with the so-called Semi-Global Matching. The differences between the StereoSGBM
and the H. Hirschmuller algorithm are [5]:

• By default, the algorithm is single-pass, which means that only five directions are considered
instead of 8 to reduce memory usage.

• By default, the algorithm matches blocks instead of pixels. Setting the blockSize to 1 reduces the
blocks to pixels.

• Instead of the mutual cost function, a simpler Birchfield-Tomasi sub-pixel metric [3] is imple-
mented.

• Certain pre- and post-processing steps are included, such as the x-Sobel pre-filter and post-filters,
such as a uniqueness check, quadratic interpolation, and speckle filtering.

The OpenCV StereoSGBM has specific parameters that can be tuned. The most trivial parameters
are;

• minDisparity, which sets the minimum possible disparity value.

• numDisparity, which is the maximum disparity minus the minimum disparity. This value should be
a multiple of 16. Note that high values of numDisparity create a large black column in the disparity
map, as no correspondences can be matched to the right image. The camera baseline affects
how large this value can be set. The smaller the camera baseline, the larger the disparities that
can be calculated.

• blockSize, the block size that is used for matching. A value of 1 matches individual pixels.

• The parameters P1 and P2 control the disparity smoothness. P1 is the penalty for the disparity
change of ±1 between neighboring pixels, while P2 is the penalty for more than one between the
neighboring pixels.

22 3. Methods

3.7. Correlation factors and plots
Calculating a correlation factor or plotting data points of one or multiple variables can show if there is
a relationship between the variables. There are two widely used correlation coefficients; Spearman’s
rank correlation coefficient and Pearson’s product-moment correlation coefficient [2]. Spearman’s cor-
relation coefficient calculates the monotonic correlation between the different variables. Spearman’s
correlation coefficient is a more general approach than Pearson; while Pearson only describes linear
relationships, Spearman can describe monotonic relationships for linear as well as non-linear relation-
ships.

In addition to a correlation coefficient, a visual plot of the data points of the different variables can
also show a relationship between the different variables. Each variable can have a different (unknown)
distribution. A transformation can be done to transform the data to a normal distribution to determine
if there is a relationship between the datasets [33]. For the transformation, percentile rank scores are
calculated for each variable (similar to how Spearman’s rank correlation is calculated). Subsequently,
the inverse of the cumulative distribution function is taken of the percentile rank score to get a z-score.
The relationship can subsequently be visualized by plotting the z-scores of the variables against each
other.

4
Experiments and Results

4.1. Datasets
Besides using publicly available datasets, we also want to be able to experiment with the Lely data.
Different Rosbag recordings are created on two different machines; the Exos and Juno. The machines
already save videos with left and right images during their daily operation on the farm. These videos
are converted to a ROS1 (Melodic Morenia) [47] Rosbag with a playback function. The Rosbag is
used to run the sequences on ORB-SLAM3. The ground truth pose is generated with the current
Adaptive Monte Carlo Localization (AMCL) method running on the machines. The ground truth poses
are generated with the same frequency as the frame rate; each frame in the video corresponds to a
ground truth value with an identical timestamp. The ground truth poses are saved in the TUM format
[20]. Recording rotation was not possible. Therefore the quaternion value of each pose point is set
to the identity quaternion. The rotation is not necessary for evaluating the positional error, as the x,y,
and z positions are used for evaluation. However, evaluating rotational error is not possible with only
positional ground truth values.

The Exos operatesmainly outside on grass fields, cutting the grass and bringing the freshly cut grass
into the barn. The Lely Juno visits each barn and pushes feed to the fences. The Lely Juno operates
inside the barn and travels on the outside terrain to the barns. Even though we also experiment on the
Exos machine, this research’s primary purpose is to localize robustly on the Juno machine visually.

23

24 4. Experiments and Results

(a) The Lely Exos

(b) The Lely Juno

The Exos dataset consists of recordings on one farm with the same machine. The recordings are
made on three separate days in different conditions (rainy, at night, and cloudy weather with occasional
sun) and split into smaller sequences (barn environment, grass field, road). Example frames can be
seen in Figure 4.2

The Juno dataset consists of recordings on two different farms, thus also on two different Juno
machines. On each farm, we have recorded the Juno operating the entire trajectory in ’sunny,’ ’dark,’
and ’after rain’ conditions. On one farm, we also have ’during rain’ conditions. An entire sequence
consists of the following actions; detaching from the charging station, traveling to a barn, pushing feed
inside the barn and traveling to other barns, and finally back to the charging station. Example frames
can be seen in Figure 4.3.

Properties of all datasets used in the experiments are summarized in Table 4.1 (own datasets and
publicly available datasets that are commonly used in the literature).

4.1. Datasets 25

(a) The ’barn dark’ sequence (b) The ’barn day’ sequence (c) The ’grass dark’ sequence

(d) The ’grass normal’ sequence (e) The ’grass rain’ sequence (f) The ’road dark’ sequence

(g) The ’road normal’ sequence (h) The ’road rain’ sequence

Figure 4.2: Example frames in the sequences of the Exos dataset

26 4. Experiments and Results

(a) The ’den Boer sunny’ sequence (b) The ’den Boer rain’ sequence (c) The ’den Boer dark’ sequence

(d) The ’den Boer after rain’ sequence (e) The ’van Adrichem sunny’ sequence (f) The ’van Adrichem dark’ sequence

(g) The ’van Adrichem after rain’ sequence

Figure 4.3: Example frames in the sequences of the Juno dataset

Table 4.1: Overview of all datasets and their properties

Dataset Width (px) Height (px) Frame rate (Hz)
4Seasons 800 400 30
EuRoC MAV 752 480 20
KITTI 1241 376 10
Flourish 752 480 25
Rosario 672 376 15
Lely-Juno 720 480 10
Lely-Exos 672 376 15

4.2. Effect of RANSAC
ORB-SLAM3 does not use RANSAC in its feature-matching pipeline. ORB-SLAM3 uses a BoW model
to match only the descriptors with similar visual words, which can be seen as a replacement for the
brute force k-NN matcher with RANSAC filtering. This is done because the BoW model can match
and filter matches faster than the standard Brute Force (with k-NN) matcher and RANSAC. To deter-
mine if RANSAC is needed in the OpenCV pipeline to filter wrong matches, an ORB extractor with the
same settings as the setting in ORB-SLAM3 (𝑛𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑠 = 2000, 𝑠𝑐𝑎𝑙𝑒𝐹𝑎𝑐𝑡𝑜𝑟 = 1.2, 𝑛𝑙𝑒𝑣𝑒𝑙𝑠 = 8,
𝑒𝑑𝑔𝑒𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 = 19, 𝑓𝑖𝑟𝑠𝑡𝐿𝑒𝑣𝑒𝑙 = 0, 𝑊𝑇𝐴𝐾 = 2, 𝑠𝑐𝑜𝑟𝑒𝑇𝑦𝑝𝑒 = 𝐻𝐴𝑅𝑅𝐼𝑆_𝑆𝐶𝑂𝑅𝐸, 𝑝𝑎𝑡𝑐ℎ𝑆𝑖𝑧𝑒 = 31,
𝑓𝑎𝑠𝑡𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 = 40 or 14) is implemented. The matcher is a brute-force matcher combined with a
k-nearest neighbor, which is set to k=2. We filter the two nearest neighbors with the Lowe ratio test
where the ratio is equal to 0.75, which removes most incorrect matches (Figure 4.4) [23].

4.2. Effect of RANSAC 27

Figure 4.4: The probability that a match is correct (solid line) or incorrect (dotted line) based on a database of 40000 key points
[23]

4.2.1. Results
Figure 4.5 shows a visible result of our implementation. We can see that after using Lowe’s filtering
method, there are still a lot of wrong matches (see the diagonal matches). Using RANSAC can help
filter these out, which we did not initially add because ORB-SLAM3 does not use RANSAC at the stage
where the failures happen in the TrackReferenceKeyframe function.

Figure 4.5: Matches made with the OpenCV ORB in an image of the Juno that failed in ORB-SLAM3. Outliers are only filtered
with Lowe’s ratio test.

After adding a RANSAC filter (with 𝑟𝑎𝑛𝑠𝑎𝑐𝑅𝑒𝑝𝑟𝑜𝑗𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 = 5), it is clear that most of these
matches are false matches (see Figure 4.6). The amount of inliers after RANSAC filtering drops to 42.
Because the difference is significant, RANSAC is added to the OpenCV pipeline.

28 4. Experiments and Results

Figure 4.6: Matches made with the OpenCV ORB in an image of the Juno that failed in ORB-SLAM3. Outliers are filtered with
Lowe’s ratio test and RANSAC.

4.3. Effect of ORB settings on matching performance
Tuning the ORB parameters is essential for finding distinct key points affecting the matching perfor-
mance. To determine which settings are essential for the performance of the feature matching and to
determine settings that work for all datasets without a greedy search, the effect of the settings on the
mean and minimum matching performance for each parameter is investigated in the OpenCV pipeline.
For each sequence in each dataset, the mean and the minimum amount of inliers are recorded for
different parameter settings. The results are summarized as follows;

• the average mean and the average minimum inliers for each setting across all sequences and
their standard deviation

• the coefficient of variance across the settings for both the mean and minimum matches

We keep two parameters fixed; the number of features and the edge threshold. The number of
features is kept at 2000, which should be enough for large images such as the images in the KITTI
dataset. We also determined that ORB-SLAM3 can run in real time with the number of features set to
2000. For the edge threshold, we follow the recommendation of the OpenCV ORB documentation to
set the value roughly equal to the patch size. We set the edge threshold to the exact value of the patch
size parameter.

The number of inliers is recorded for each sequence of each dataset. This is done by an ordered
tuning approach. We start by changing the FAST threshold while keeping all other parameters fixed
to the default value of OpenCV ORB. Subsequently, we try out different patch sizes while using the
best FAST threshold based on the maximum average minimum inliers for most datasets and keeping
all other parameters fixed to the default value. We continue the same approach for the scale factor and
number of levels. The reason for this ordered approach is that some default values only work well for
some datasets. Specific orders result in zero average mean and average minimum matches no matter
the change in the setting. We have discovered that tuning the FAST threshold first and patch size
second prevents this from happening. The mean inliers for each sequence and setting are averaged
and represented by a single average mean value for each dataset, including their standard deviations.
The same is done for the minimum amount of inliers.

We compare different settings of ORB and the feature extractor for each parameter separately.
We experiment twice, first on the original images and second on the images that are equalized with
histogram equalization. The results can be found in the following subsections.

4.3.1. Results on the original images
FAST threshold The results in Table 4.2 show that, in general, a low FAST threshold setting results
in more mean inliers and a higher minimum in the inliers. When looking at the coefficient of variance
across the settings, the average mean and minimum inliers in most datasets are not affected much by
the FAST threshold setting, especially on the KITTI dataset. Both of our datasets (Exos and Juno) are
the most sensitive to the FAST threshold setting. This sensitivity might be explained by low-contrast

4.3. Effect of ORB settings on matching performance 29

images in our datasets, which we further investigated (see Chapter 4.3.2) by applying histogram equal-
ization on the images to increase the contrast.

There is also a significant difference between the frames in the sequences of some datasets; The
average minimum amount of inliers deviates significantly from the mean in the Exos and Juno datasets,
which deviates more than its average value. Euroc, Flourish, and the 4Seasons datasets are easy to
the feature-matcher based on the average mean inlier values. Based on the absolute best average
minimum matches for each dataset, ORB performs the best on Rosario, Flourish, and the 4Seasons
datasets. The Exos and Juno datasets contain, on average, complex frames in the sequences for the
ORB to match features successfully.

Table 4.2: The average and standard deviation of the mean inliers (noted as avg mean ±std) and minimum inliers (noted as avg
min ±std) of each dataset are shown for different FAST thresholds. Also, the coefficient of variance of the average mean and
average minimum inliers across all settings is noted (last column).

Fast threshold 5 10 20 40

coeff of
variance
of the
setting

EUROC avg mean 659.8 ±105.6 652.0 ±113.4 605.6 ±152.0 459.4 ±200.5 0.2
avg min 65.6 ±44.0 54.6 ±35.7 39.5 ±34.7 14.3 ±14.7 0.5

KITTI avg mean 316.3 ±58.8 316.1 ±58.8 315.2 ±59.5 297.3 ±66.0 0.0
avg min 74.0 ±37.7 72.9 ±37.0 72.8 ±38.6 74.0 ±38.0 0.0

ROSARIO avg mean 433.0 ±87.6 433.9 ±87.9 418.5 ±82.4 329.5 ±72.0 0.1
avg min 129.8 ±53.7 133.2 ±59.5 127.7 ±52.8 98.0 ±48.8 0.1

FLOURISH avg mean 786.2 ±5.5 786.0 ±6.9 786.4 ±5.8 659.4 ±9.5 0.1
avg min 444.5 ±149.2 435.5 ±132.2 444.0 ±116.0 164.5 ±21.9 0.4

EXOS avg mean 295.0 ±241.8 241.1 ±225.9 87.7 ±121.0 9.0 ±14.0 0.8
avg min 59.4 ±101.9 38.6 ±83.5 4.3 ±12.0 0.0 ±0.0 1.1

JUNO avg mean 540.3 ±234.9 498.7 ±250.8 357.4 ±274.5 155.7 ±170.1 0.4
avg min 64.3 ±82.1 50.9 ±81.0 27.7 ±50.2 6.6 ±12.6 0.7

4SEASONS avg mean 744.0 ±126.9 731.5 ±132.6 666.3 ±146.4 465.2 ±166.9 0.2
avg min 161.0 ±83.6 152.1 ±81.9 111.3 ±62.4 34.2 ±30.5 0.5

Patch size The results in Table 4.3 show the average mean and average minimum inliers for dif-
ferent patch sizes on each dataset. All datasets seem to be affected comparably for all datasets; The
coefficient of variance of the various patch sizes is relatively close for all datasets, between 0.4 and
0.6, except for 0.3 for the average mean inliers of the Juno dataset. The value is not negligibly small,
so tuning the patch size is still important. Patch size of 48 works for almost all datasets based on the
average mean and minimum inliers. Which can mean that a large patch results in more distinct fea-
tures as you look at a larger patch of the image, which can be related to the scale of the subjects in the
image. The average minimum matches are not always optimal at patch size 48. However, the optimal
value does not seem to differ much from the value at patch size 24, so a patch size of 48 is still a good
setting for the patch size.

30 4. Experiments and Results

Table 4.3: The average and standard deviation of the mean inliers (noted as avg mean ±std) and minimum inliers (noted as avg
min ±std) of each dataset are shown for different patch sizes. Also, the coefficient of variance of the average mean and average
minimum inliers across all settings is noted (last column).

Patch size 6 12 24 48

coeff of
variance
of the
setting

EUROC avg mean 236.6 ±44.2 397.4 ±62.9 602.0 ±88.1 719.5 ±129.9 0.4
avg min 17.9 ±8.6 40.5 ±24.0 73.1 ±42.9 54.5 ±33.3 0.5

KITTI avg mean 105.3 ±24.1 186.6 ±35.5 287.1 ±52.8 296.9 ±63.0 0.4
avg min 16.1 ±11.1 47.5 ±23.1 71.5 ±35.3 68.8 ±32.4 0.5

ROSARIO avg mean 124.4 ±33.0 237.0 ±52.5 379.4 ±75.9 437.3 ±100.6 0.5
avg min 26.8 ±11.7 83.0 ±27.8 121.5 ±44.9 101.7 ±59.3 0.5

FLOURISH avg mean 174.3 ±11.7 390.5 ±11.5 673.9 ±10.1 888.3 ±12.0 0.6
avg min 72.5 ±14.8 206.5 ±60.1 383.5 ±84.1 480.0 ±169.7 0.6

EXOS avg mean 98.1 ±82.4 185.3 ±138.8 278.3 ±207.4 254.2 ±244.4 0.4
avg min 19.1 ±28.4 46.3 ±61.6 68.6 ±94.0 50.1 ±90.7 0.4

JUNO avg mean 250.2 ±116.7 365.9 ±153.8 501.9 ±205.3 538.2 ±248.8 0.3
avg min 22.7 ±27.1 43.3 ±48.2 60.9 ±68.8 51.0 ±65.5 0.4

4SEASONS avg mean 310.8 ±121.0 469.2 ±127.2 666.0 ±126.7 735.7 ±129.8 0.4
avg min 31.5 ±22.1 90.3 ±39.7 155.0 ±71.6 162.9 ±85.4 0.6

Scale factor The scale factor does not seem to affect the datasets much, as the coefficient of
variance across the settings is very low. The default scale factor of 1.2, recommended in the OpenCV
implementation of ORB, works well for all datasets based on the average mean and average min
matches.

Table 4.4: The average and standard deviation of the mean inliers (noted as avg mean ±std) and minimum inliers (noted as
avg min ±std) of each dataset are shown for different scale factors. Also, the coefficient of variance of the average mean and
average minimum inliers across all settings is noted (last column).

Scale factor 1.1 1.2 1.3 1.4

coeff of
variance
of the
setting

EUROC avg mean 586.9 ±126.1 570.9 ±140.2 549.8 ±147.8 518.8 ±143.7 0.1
avg min 67.5 ±41.9 74.2 ±42.5 62.7 ±39.9 55.8 ±37.8 0.1

KITTI avg mean 316.3 ±54.8 291.1 ±55.0 262.1 ±53.0 241.3 ±50.1 0.1
avg min 70.4 ±39.1 74.7 ±35.1 66.1 ±33.9 56.5 ±32.3 0.1

ROSARIO avg mean 399.8 ±81.8 395.0 ±95.2 373.0 ±82.9 348.6 ±79.1 0.1
avg min 141.8 ±55.3 125.0 ±51.5 111.7 ±41.8 103.8 ±34.3 0.1

FLOURISH avg mean 857.8 ±14.7 888.3 ±12.0 788.0 ±15.1 737.4 ±16.3 0.1
avg min 478.5 ±217.1 480.0 ±169.7 435.5 ±147.8 419.5 ±125.2 0.1

EXOS avg mean 293.9 ±214.9 267.9 ±218.7 241.9 ±216.6 225.3 ±208.5 0.1
avg min 79.3 ±104.8 68.9 ±93.8 53.4 ±74.4 48.3 ±74.6 0.2

JUNO avg mean 479.3 ±208.3 466.9 ±220.4 441.4 ±227.6 413.0 ±216.1 0.1
avg min 60.7 ±67.7 61.0 ±68.1 53.1 ±61.4 53.0 ±66.1 0.1

4SEASONS avg mean 710.4 ±130.6 704.6 ±134.2 649.3 ±128.1 607.2 ±121.4 0.1
avg min 161.9 ±85.0 172.1 ±82.1 151.1 ±73.8 143.1 ±74.2 0.1

Number of levels The coefficient of variance across the settings shows that these parameters do
not affect the datasets much. The average mean and minimum of inliers are quite close for all settings.
The number of levels can be set to 8 for all datasets, resulting in a reasonable amount of inliers. At the
same time, it is also computationally less expensive than setting the number of levels to 12 or 16.

4.3. Effect of ORB settings on matching performance 31

Table 4.5: The average and standard deviation of the mean inliers (noted as avg mean ±std) and minimum inliers (noted as avg
min ±std) of each dataset are shown for the different number of levels. Also, the coefficient of variance of the average mean and
average minimum inliers across all settings is noted (last column).

Number of
levels 4 8 12 16

coeff of
variance
of the
setting

EUROC avg mean 553.8 ±151.8 574.7 ±143.4 575.3 ±143.4 564.4 ±142.9 0.0
avg min 50.6 ±28.4 76.4 ±43.9 81.8 ±42.3 85.5 ±44.0 0.2

KITTI avg mean 280.4 ±59.0 298.1 ±61.6 291.7 ±68.0 283.9 ±68.4 0.0
avg min 68.4 ±37.3 77.5 ±35.2 72.3 ±32.6 71.0 ±36.5 0.1

ROSARIO avg mean 344.4 ±76.3 399.8 ±81.8 433.9 ±87.5 444.1 ±76.8 0.1
avg min 129.2 ±44.1 141.8 ±55.3 150.0 ±62.2 150.7 ±49.2 0.1

FLOURISH avg mean 836.0 ±14.4 874.0 ±8.2 834.1 ±63.8 822.8 ±109.5 0.0
avg min 491.5 ±125.2 496.0 ±192.3 455.0 ±200.8 435.5 ±222.7 0.1

EXOS avg mean 265.4 ±209.7 293.4 ±215.6 305.0 ±219.2 309.5 ±220.6 0.1
avg min 70.5 ±105.5 79.4 ±104.7 81.6 ±105.5 76.6 ±93.7 0.1

JUNO avg mean 434.1 ±219.6 476.6 ±211.7 484.9 ±214.2 482.3 ±213.4 0.1
avg min 65.0 ±81.3 63.9 ±69.9 61.4 ±63.0 62.3 ±66.8 0.1

4SEASONS avg mean 679.7 ±146.5 707.0 ±134.2 691.2 ±127.7 665.0 ±117.9 0.0
avg min 159.7 ±81.0 177.9 ±83.4 168.4 ±78.2 159.8 ±73.2 0.1

4.3.2. Results on the equalized images
The previous experiment is repeated with images on which histogram equalization [1] is applied before
extracting and matching features. Histogram equalization improves contrast in the image by stretching
the intensity range in the image. Histogram equalization is used to make the images from the different
datasets more equal.

FAST threshold The results of the effect of the FAST threshold settings on the matching perfor-
mance for equalized images can be seen in Table 4.6. The coefficient of variance of the setting is
lower for all datasets compared to the coefficient for non-equalized images (see Table 4.2). This result
means that the datasets are less sensitive to the FAST threshold setting, including the Exos and Juno
datasets which were highly sensitive during the previous experiment (see Chapter 4.3.1). The absolute
average minimum inliers affect the KITTI and the Juno datasets negatively. All other datasets do not
show a significant change.

Table 4.6: The average and standard deviation of the mean inliers (noted as avg mean ±std) and minimum inliers (noted as avg
min ±std) of each dataset are shown for different FAST thresholds on the equalized images. Also, the coefficient of variance of
the average mean and average minimum inliers across all settings is noted (last column).

Fast threshold 5 10 20 40

coeff of
variance
of the
setting

EUROC avg mean 662.0 ±122.0 660.2 ±123.9 641.3 ±141.7 534.3 ±189.4 0.1
avg min 50.4 ±32.9 50.1 ±32.9 48.3 ±35.3 21.5 ±18.5 0.3

KITTI avg mean 261.2 ±53.8 261.5 ±53.9 261.2 ±53.9 250.7 ±52.0 0.0
avg min 36.2 ±24.4 37.4 ±26.2 36.9 ±24.9 35.0 ±23.7 0.0

ROSARIO avg mean 411.6 ±89.7 411.3 ±89.2 412.2 ±89.1 384.0 ±76.2 0.0
avg min 125.2 ±62.6 126.0 ±60.3 120.8 ±58.7 113.3 ±50.5 0.0

FLOURISH avg mean 812.8 ±14.6 811.1 ±14.5 811.1 ±13.3 810.9 ±14.2 0.0
avg min 555.5 ±0.7 552.5 ±10.6 526.0 ±0.0 538.0 ±4.2 0.0

EXOS avg mean 307.8 ±247.5 307.5 ±247.6 294.2 ±240.2 212.6 ±183.9 0.2
avg min 68.4 ±99.4 66.4 ±95.8 57.6 ±95.7 19.5 ±24.0 0.4

JUNO avg mean 490.0 ±238.6 489.2 ±239.1 471.4 ±243.4 358.4 ±214.3 0.1
avg min 20.0 ±15.1 19.3 ±16.2 18.4 ±17.1 11.0 ±10.4 0.2

4SEASONS avg mean 721.2 ±116.4 721.4 ±116.2 715.7 ±119.5 630.1 ±150.3 0.1
avg min 157.4 ±74.4 155.8 ±73.8 151.6 ±79.9 122.0 ±84.8 0.1

32 4. Experiments and Results

Patch size Equalizing the images with histogram equalization did not affect the response of the
datasets to different patch sizes; the coefficient of variance of the settings did not change significantly
for both the average mean and average minimum inliers compared to the results of non-equalized
images. The absolute values of the average minimum inliers are affected negatively for the KITTI,
Rosario, and Juno datasets. All other datasets do not show a significant change compared to the
results of non-equalized images.

Table 4.7: The average and standard deviation of the mean inliers (noted as avg mean ±std) and minimum inliers (noted as avg
min ±std) of each dataset are shown for different patch sizes on the equalized images. Also, the coefficient of variance of the
average mean and average minimum inliers across all settings is noted (last column).

Patch size 6 12 24 48

coeff of
variance
of the
setting

EUROC avg mean 227.5 ±44.0 392.4 ±70.9 597.1 ±102.5 707.9 ±144.8 0.4
avg min 13.2 ±5.0 35.2 ±22.4 61.5 ±36.5 43.5 ±27.4 0.5

KITTI avg mean 78.6 ±21.8 152.7 ±32.4 236.1 ±46.9 250.8 ±56.8 0.4
avg min 8.9 ±1.7 21.9 ±18.8 36.6 ±25.6 34.0 ±20.9 0.5

ROSARIO avg mean 112.4 ±33.5 219.9 ±53.0 355.9 ±79.0 415.3 ±112.0 0.5
avg min 17.2 ±13.1 73.8 ±28.7 116.3 ±52.1 95.8 ±58.2 0.6

FLOURISH avg mean 180.8 ±12.1 408.4 ±13.8 691.4 ±15.5 913.6 ±16.1 0.6
avg min 87.5 ±4.9 252.0 ±15.6 440.5 ±16.3 614.5 ±23.3 0.7

EXOS avg mean 104.6 ±88.0 192.3 ±143.0 285.8 ±210.7 269.2 ±254.1 0.4
avg min 19.5 ±30.2 49.9 ±58.9 74.0 ±95.2 50.5 ±85.4 0.5

JUNO avg mean 217.6 ±109.8 323.4 ±152.3 447.9 ±207.3 498.3 ±237.8 0.3
avg min 9.7 ±2.9 15.6 ±8.9 23.9 ±16.8 16.9 ±12.3 0.4

4SEASONS avg mean 274.2 ±107.3 435.9 ±116.3 632.6 ±119.6 729.2 ±127.4 0.4
avg min 30.7 ±18.4 87.8 ±40.0 146.7 ±63.5 157.6 ±88.9 0.6

Scale factor Histogram equalization did not affect the response of the datasets to different scale
factors either; the coefficient of variance of the settings did not change significantly for both the average
mean and average minimum inliers compared to the results of non-equalized images. The absolute
values of the average mean and minimum inliers did not change significantly for most datasets com-
pared to the non-equalized images except for the KITTI, Flourish, and Juno datasets. The KITTI and
Juno datasets are affected negatively regarding average minimum inliers, while the Flourish dataset is
affected positively.

4.4. Qualitative results and discussion 33

Table 4.8: The average and standard deviation of the mean inliers (noted as avg mean ±std) and minimum inliers (noted as avg
min ±std) of each dataset are shown for different scale factors on the equalized images. Also, the coefficient of variance of the
average mean and average minimum inliers across all settings is noted (last column).

Scale factor 1.1 1.2 1.3 1.4

coeff of
variance
of the
setting

EUROC avg mean 566.2 ±147.4 553.1 ±162.6 529.1 ±168.4 496.0 ±162.5 0.0
avg min 53.3 ±30.7 61.9 ±36.0 56.6 ±36.9 48.4 ±29.6 0.1

KITTI avg mean 258.9 ±49.1 245.1 ±51.6 222.4 ±48.4 204.6 ±45.4 0.1
avg min 31.5 ±25.2 40.3 ±25.1 33.5 ±21.7 29.3 ±20.2 0.1

ROSARIO avg mean 360.2 ±66.6 355.9 ±79.0 344.7 ±82.8 322.4 ±77.4 0.0
avg min 120.8 ±62.0 116.3 ±52.1 99.3 ±48.6 96.5 ±47.0 0.1

FLOURISH avg mean 879.4 ±20.6 913.6 ±16.1 813.8 ±13.0 764.7 ±13.7 0.1
avg min 627.5 ±46.0 614.5 ±23.3 516.0 ±14.1 480.0 ±31.1 0.1

EXOS avg mean 295.3 ±213.9 275.9 ±221.9 253.3 ±225.0 232.4 ±212.8 0.1
avg min 85.3 ±102.2 74.3 ±94.9 57.8 ±73.0 52.1 ±79.6 0.2

JUNO avg mean 426.1 ±218.3 428.0 ±223.3 404.5 ±226.3 376.9 ±214.5 0.1
avg min 17.9 ±11.9 24.9 ±15.7 22.4 ±13.3 18.9 ±12.9 0.2

4SEASONS avg mean 670.9 ±141.2 682.7 ±148.5 628.5 ±128.7 584.8 ±121.3 0.1
avg min 163.7 ±81.8 168.4 ±83.1 149.9 ±76.0 138.5 ±71.5 0.1

Number of levels Tabel 4.9 shows that the number of levels parameter is not affected by the his-
togram equalization in the same manner as the scale factor and patch size. The absolute values of the
average mean and minimum inliers did not change significantly for most datasets compared to the non-
equalized images except for the KITTI, Flourish, and Juno datasets. The KITTI and Juno datasets are
affected negatively regarding average minimum inliers, while the Flourish dataset is affected positively.

Table 4.9: The average and standard deviation of the mean inliers (noted as avg mean ±std) and minimum inliers (noted as avg
min ±std) of each dataset are shown for different numbers of levels on the equalized images. Also, the coefficient of variance of
the average mean and average minimum inliers across all settings is noted (last column).

Number of
levels 4 8 12 16

coeff of
variance
of the
setting

EUROC avg mean 527.0 ±165.1 558.4 ±151.6 558.3 ±142.9 542.0 ±126.9 0.0
avg min 43.7 ±28.0 64.5 ±37.7 66.6 ±37.1 67.0 ±39.5 0.2

KITTI avg mean 228.6 ±50.5 243.3 ±52.3 230.8 ±51.7 221.7 ±48.9 0.0
avg min 30.1 ±20.9 40.7 ±24.9 36.7 ±24.2 36.8 ±26.3 0.1

ROSARIO avg mean 310.3 ±63.9 353.6 ±73.1 374.5 ±90.1 386.3 ±106.3 0.1
avg min 104.7 ±43.6 124.7 ±57.8 139.3 ±66.1 140.2 ±75.3 0.1

FLOURISH avg mean 868.5 ±4.6 898.1 ±5.8 869.3 ±54.1 859.0 ±102.0 0.0
avg min 614.0 ±15.6 629.0 ±43.8 589.5 ±57.3 573.0 ±56.6 0.0

EXOS avg mean 258.3 ±205.8 288.8 ±216.0 303.1 ±223.8 309.3 ±228.9 0.1
avg min 69.0 ±91.7 85.8 ±101.8 88.4 ±98.6 89.3 ±92.7 0.1

JUNO avg mean 382.4 ±227.8 418.3 ±205.7 405.5 ±188.8 397.6 ±183.8 0.0
avg min 18.7 ±16.7 26.0 ±16.3 27.1 ±18.1 26.0 ±16.9 0.2

4SEASONS avg mean 644.4 ±156.7 676.3 ±148.8 651.2 ±136.8 628.1 ±130.6 0.0
avg min 156.3 ±81.2 175.6 ±86.7 157.1 ±75.0 152.1 ±71.4 0.1

4.4. Qualitative results and discussion
Using the ORB extraction parameters that maximize the average minimum inliers (𝑛𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑠 = 2000,
𝑠𝑐𝑎𝑙𝑒𝐹𝑎𝑐𝑡𝑜𝑟 = 1.2, 𝑛𝑙𝑒𝑣𝑒𝑙𝑠 = 8, 𝑒𝑑𝑔𝑒𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 = 𝑝𝑎𝑡𝑐ℎ𝑆𝑖𝑧𝑒, 𝑓𝑖𝑟𝑠𝑡𝐿𝑒𝑣𝑒𝑙 = 0, 𝑝𝑎𝑡𝑐ℎ𝑆𝑖𝑧𝑒 = 48,
𝑓𝑎𝑠𝑡𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 = 5), example frames are saved when the inliers were at the maximum of the sequence
and the minimum for both the regular and equalized images.

34 4. Experiments and Results

Figure 4.7b of the MH01 sequence of the Euroc dataset shows that images with less texture cause
a drop in the features extracted. However, in this example, the minimum features of 1550 in Figure
4.7b are still close to the aimed value of 2000 features. The minimum inliers seem to be caused by blur
in Figure 4.7f and 4.7d. After equalization, the images where the maximum and minimum features and
the maximum and minimum inliers are found did not change (Figures 4.7g - 4.7j). Also, the number of
features extracted and matched is similar to the non-equalized images. The most significant impact of
equalization seems to be on the number of features extracted in Figure 4.7b. The extracted features
increased to 1850 in Figure 4.7h.

4.4. Qualitative results and discussion 35

Figure 4.7: Qualitative examples of the MH01 sequence of the Euroc dataset

(a) Maximum features of 2000 (b) Minimum features of 1550

(c) Maximum inliers of 1839, current image of the pair (d) Minimum inliers of 62, current image of the pair

(e) Maximum inliers of 1839, previous image of the pair (f) Minimum inliers of 62, previous image of the pair

(g) Maximum features of 2000 on the equalized images (h) Minimum features of 1850 on the equalized images

(i) Maximum inliers of 1836 on the equalized images, current im-
age of the pair

(j) Minimum inliers of 65 on the equalized images, current image
of the pair

36 4. Experiments and Results

(k) Maximum inliers of 1836 on the equalized images, previous
image of the pair

(l) Minimum inliers of 65 on the equalized images, previous image
of the pair

The ORB extractor can extract the aimed amount of features in the images of sequence A of the
Flourish dataset as the maximum and minimum features are 2000 features. The number of inliers
drops to 600 at the minimum (Figures 4.7f and 4.7d). The previous and the current image are very
similar, and there is no apparent difference between the images of the maximum inliers (Figures 4.7e
and 4.7c) that could explain this drop. Although there is a drop in inliers, it is not problematically
low. After equalization, the images where the maximum and minimum features and the maximum and
minimum inliers are found did not change (Figures 4.8g - 4.8j). Also, the number of features extracted
and matched is similar to the non-equalized images.

4.4. Qualitative results and discussion 37

Figure 4.8: Qualitative examples of sequence A of the Flourish dataset

(a) Maximum features of 2000 (b) Minimum features of 2000

(c) Maximum inliers of 1680, current image of the pair (d) Minimum inliers of 600, current image of the pair

(e) Maximum inliers of 1680, previous image of the pair (f) Minimum inliers of 600, previous image of the pair

(g) Maximum features of 2000 on the equalized images (h) Minimum features of 2000 on the equalized images

(i) Maximum inliers of 1683 on the equalized images, current im-
age of the pair

(j) Minimum inliers of 563 on the equalized images, current image
of the pair

38 4. Experiments and Results

(a) Maximum inliers of 1683 on the equalized images, previous
image of the pair

(b) Minimum inliers of 563 on the equalized images, previous im-
age of the pair

The results on the 00 sequence of the KITTI dataset show that the minimum inliers can drop signifi-
cantly depending on the scene. In Figure 4.10c, the maximum amount of inliers of 1708 is found, while
the amount of inliers in Figure 4.10d drops to 52. A possible cause can be the reflections on the road,
which seem to result in overexposure in parts of the image. Applying histogram equalization results
in a different image with the maximum number of features in the sequence (Figure 4.10a compared to
Figure 4.10g). This result means that an image that did not have 2000 features and is temporally seen
before Figure 4.10a has 2000 features after equalization. The minimum inliers found after equalization
has dropped to 13 (Figure 4.10j) on a different scene. In this case, histogram equalization had a nega-
tive effect; a scene that did not have such a low amount of inliers in the non-equalized images now has
the worst amount of inliers of the whole scene. Visually, the image looks noisy. Histogram equalization
might have increased the noise in this image, which decreased the matching performance.

4.4. Qualitative results and discussion 39

Figure 4.10: Qualitative examples of the 00 sequence of the KITTI dataset

(a) Maximum features of 2000 (b) Minimum features of 1896

(c) Maximum inliers of 1708, current image of the pair (d) Minimum inliers of 52, current image of the pair

(e) Maximum inliers of 1708, previous image of the pair (f) Minimum inliers of 52, previous image of the pair

(g) Maximum features of 2000 on the equalized images (h) Minimum features of 1910 on the equalized images

(i) Maximum inliers of 1703 on the equalized images, current im-
age of the pair

(j) Minimum inliers of 13 on the equalized images, current image
of the pair

(k) Maximum inliers of 1703 on the equalized images, previous
image of the pair

(l) Minimum inliers of 13 on the equalized images, previous image
of the pair

The drop in inliers for the rainy barn sequence of the Exos dataset can not be explained from the
qualitative examples. A very similar pathway with the same lighting conditions has 1604 inliers in one
frame (Figure 4.11c) and only 272 inliers in the other frame (Figure 4.11d). Equalizing the images
does not affect the number of features and inliers much; minor differences in the number of inliers and
features extracted cause various frames to appear in the equalized results.

40 4. Experiments and Results

Figure 4.11: Qualitative examples of the rainy barn sequence of the Exos dataset

(a) Maximum features of 1982 (b) Minimum features of 1903

(c) Maximum inliers of 1604, current image of the pair (d) Minimum inliers of 272, current image of the pair

(e) Maximum inliers of 1604, previous image of the pair (f) Minimum inliers of 272, previous image of the pair

(g) Maximum features of 2000 on the equalized images (h) Minimum features of 1970 on the equalized images

4.4. Qualitative results and discussion 41

(i) Maximum inliers of 1653 on the equalized images, current im-
age of the pair

(j) Minimum inliers of 255 on the equalized images, current image
of the pair

(k) Maximum inliers of 1653 on the equalized images, previous
image of the pair

(l) Minimum inliers of 255 on the equalized images, previous image
of the pair

The drop in amount of inliers in the den Boer sunny sequence of the Juno dataset is dramatic (Figure
4.12d) compared to the maximum amount of inliers of 1869 that could be found in Figure 4.12c. The
reason seems to be a textureless floor in combination with a lot of shadows. Equalization did not help
to improve the minimum number of inliers nor the frame at which the minimum number of inliers is
present. Equalization did, however, help to increase the number of features that could be extracted.
Figure 4.12a is no longer the frame with the minimum amount of features extracted in the sequence.

42 4. Experiments and Results

Figure 4.12: Qualitative examples of the den Boer sunny sequence of the Juno dataset

(a) Maximum features of 2000 (b) Minimum features of 1113

(c) Maximum inliers of 1869, current image of the pair (d) Minimum inliers of 15, current image of the pair

(e) Maximum inliers of 1869, previous image of the pair (f) Minimum inliers of 15, previous image of the pair

(g) Maximum features of 2000 on the equalized images (h) Minimum features of 1925 on the equalized images

4.4. Qualitative results and discussion 43

(i) Maximum inliers of 1892 on the equalized images, current im-
age of the pair

(j) Minimum inliers of 15 on the equalized images, current image
of the pair

(k) Maximum inliers of 1892 on the equalized images, previous
image of the pair

(l) Minimum inliers of 15 on the equalized images, previous image
of the pair

Sequence 1 of the Rosario dataset also shows significant drops in the number of inliers. However,
there are no significant differences between the image with the maximum inliers (Figure 4.13c) and the
image with the minimum inliers (Figure 4.13d) to hypothesize about the reason for this drop. Equaliza-
tion does not show any significant improvements. The minimum amount of inliers has dropped to 35
for a different frame (Figure 4.13j).

44 4. Experiments and Results

Figure 4.13: Qualitative examples of sequence 1 of the Rosario dataset

(a) Maximum features of 1955 (b) Minimum features of 1909

(c) Maximum inliers of 1657, current image of the pair (d) Minimum inliers of 49, current image of the pair

(e) Maximum inliers of 1657, previous image of the pair (f) Minimum inliers of 49, previous image of the pair

(g) Maximum features of 1959 on the equalized images (h) Minimum features of 1918 on the equalized images

(i) Maximum inliers of 1644 on the equalized images, current im-
age of the pair

(j) Minimum inliers of 35 on the equalized images, current image
of the pair

4.4. Qualitative results and discussion 45

(k) Maximum inliers of 1644 on the equalized images, previous
image of the pair

(l) Minimum inliers of 35 on the equalized images, previous image
of the pair

Loop 1 of the business campus sequence of the 4Seasons dataset shows that the amount of fea-
tures extracted (Figure 4.14b) and inliers Figure 4.14d) can drop dramatically due to underexposed
areas caused by shadow in the image. Histogram equalization does increase the amount of extracted
features (Figure 4.14h) and inliers (4.14j). However, the minimum inliers in Figure 4.14j can not be
explained well as the image seems to have good lighting and enough objects for texture.

46 4. Experiments and Results

Figure 4.14: Qualitative examples of loop 1 of the business campus sequence of the 4Seasons dataset

(a) Maximum features of 1985 (b) Minimum features of 1375

(c) Maximum inliers of 1868, current image of the pair (d) Minimum inliers of 109, current image of the pair

(e) Maximum inliers of 1868, previous image of the pair (f) Minimum inliers of 109, previous image of the pair

(g) Maximum features of 2000 on the equalized images (h) Minimum features of 1913 on the equalized images

(i) Maximum inliers of 1857 on the equalized images, current im-
age of the pair

(j) Minimum inliers of 126 on the equalized images, current image
of the pair

(k) Maximum inliers of 1857 on the equalized images, previous
image of the pair

(l) Minimum inliers of 126 on the equalized images, previous image
of the pair

4.5. Replicating the problem 47

4.5. Replicating the problem
In this experiment, the feature extraction and matching pipeline is replicated with an OpenCV imple-
mentation of ORB in Python. The results are subsequently compared to the results of the ORB-SLAM3
pipeline. This experiment is executed in the SLAM mode of ORB-SLAM3, as the localization mode
does not work correctly. Images with too few matches for tracking (under 15 matches) in ORB-SLAM3
are saved for the Juno dataset. The images are saved within the TrackReferenceKeyFrame function
before and after outlier removal. From this, it could be determined that all failures in the TrackRefer-
enceKeyframe function happen before outlier removal for the Juno dataset.

Results can be seen in Table 4.10. Note that we could not save a set of images for each sequence
due to issues with reading the Rosbags during the run in ORB-SLAM3. The ‘den Boer after rain‘ and
‘van Adrichem sunny‘ sequences are missing in Table 4.10 because there was only one failure and too
few samples as ORB-SLAM3 crashed close to the start of the sequence.

Table 4.10: The average matches and the standard deviation found in the frames of the sequences of the Juno dataset in ORB-
SLAM3 and our OpenCV implementation. The average features found for each sequence in ORB-SLAM3 and the OpenCV
implementation are recorded to see any relation with the total number of features found in a frame. The ORB settings in ORB-
SLAM3 and the OpenCV implementation are: (𝑛𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑠 = 2000, 𝑠𝑐𝑎𝑙𝑒𝐹𝑎𝑐𝑡𝑜𝑟 = 1.2, 𝑛𝑙𝑒𝑣𝑒𝑙𝑠 = 8, 𝑒𝑑𝑔𝑒𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 = 19,
𝑓𝑖𝑟𝑠𝑡𝐿𝑒𝑣𝑒𝑙 = 0, 𝑝𝑎𝑡𝑐ℎ𝑆𝑖𝑧𝑒 = 31, 𝑓𝑎𝑠𝑡𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 = 14)

Sequence van Adrichem
dark

van Adrichem
after rain

den Boer
dark

den Boer
rain

den Boer
sunny

Amount of failures
total samples 6/391 3/458 193/3809 4/2353 5/3940

Averaged
matches

ORB-SLAM3 8.0 ±2.2 13.7 ±0.5 4.7 ±4.1 8.0 ±3.0 11.4 ±0.8
OpenCV 219.2 ±80.7 393.0 ±92.7 31.0 ±20.1 90.5 ±127.7 49.8 ±44.5

Averaged
features

ORB-SLAM3 599.7 ±52.1 1717.7 ±146.1 1242.7 ±98.1 356.0 ±211.0 842.2 ±644.9
OpenCV 1058.3 ±153.7 2000.0 ±0.0 1302.0 ±101.5 352.3 ±149.3 902.8 ±717.7

Table 4.11: The average matches and the standard deviation found in the frames of the sequences of the Juno dataset in ORB-
SLAM3 and our OpenCV implementation. The average features found for each sequence in ORB-SLAM3 and the OpenCV
implementation are recorded to see any relation with the total number of features found in a frame. The ORB settings in
ORB-SLAM3 and the OpenCV implementation are the best settings found in the previous experiment: (𝑛𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑠 = 2000,
𝑠𝑐𝑎𝑙𝑒𝐹𝑎𝑐𝑡𝑜𝑟 = 1.2, 𝑛𝑙𝑒𝑣𝑒𝑙𝑠 = 8, 𝑒𝑑𝑔𝑒𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 = 𝑝𝑎𝑡𝑐ℎ𝑆𝑖𝑧𝑒, 𝑓𝑖𝑟𝑠𝑡𝐿𝑒𝑣𝑒𝑙 = 0, 𝑝𝑎𝑡𝑐ℎ𝑆𝑖𝑧𝑒 = 48, 𝑓𝑎𝑠𝑡𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 = 5)

Sequence van Adrichem
dark

van Adrichem
after rain

den Boer
dark

den Boer
rain

den Boer
sunny

Amount of failures
total samples 6/896 2/590 23/4616 0/5248 0/5248

Averaged
matches

ORB-SLAM3 10.7 ±2.9 12.0 ±0.0 11.6 ±2.4 x 14.0 ±0.0
OpenCV 328.5 ±204.9 667.5 ±155.5 32.0 ±33.0 x 44.5 ±22.5

Averaged
features

ORB-SLAM3 1641.7 ±446.7 1991.0 ±0.0 1815.3 ±75.6 x 1314.0 ±0.0
OpenCV 1655.3 ±420.5 1980.0 ±2.0 1801.8 ±78.2 x 1227.5 ±99.5

For both the standard and best settings found in the previous experiment, the OpenCV implemen-
tation can find many matches on the images where ORB-SLAM3 failed to find a sufficient number for
pose estimation. The average feature matches for the Juno dataset (run with the best settings, Table
4.11) in OpenCV is 268.125, and the average feature matches in ORB-SLAM3 is 12.075; The OpenCV
pipeline outperforms ORB-SLAM3 with a factor of 22.2.

4.6. Correlations
To determine the reasons that affect the feature matches, we record the sharpness, optical flow, con-
trast, average intensity, percentage of black pixels, and percentage of white pixels for each frame for
all datasets. The recorded variables are calculated as follows:

• Sharpness is calculated by taking the variance of the Laplacian, as described in [30].

• The optical flow is calculated with Gunnar Farneback’s algorithm [13].

48 4. Experiments and Results

• The contrast is calculated with the root mean square contrast method, which describes the stan-
dard deviation of the pixel intensities [31].

• For the average intensity, the mean gray intensity value is calculated in the image.

• For the percentage of black pixels, all pixel values between 0 and 5 are counted and divided by
the total amount of pixels in the image.

• For the percentage of white pixels, a similar calculation is done for the percentage of black pixels.
The difference is that the counted pixel values are between 250 and 255.

Based on the previous experiments, we run this experiment on the non-equalized images with
the following ORB feature extractor settings: (𝑛𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑠 = 2000, 𝑠𝑐𝑎𝑙𝑒𝐹𝑎𝑐𝑡𝑜𝑟 = 1.2, 𝑛𝑙𝑒𝑣𝑒𝑙𝑠 = 8,
𝑒𝑑𝑔𝑒𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 = 𝑝𝑎𝑡𝑐ℎ𝑆𝑖𝑧𝑒, 𝑓𝑖𝑟𝑠𝑡𝐿𝑒𝑣𝑒𝑙 = 0,𝑊𝑇𝐴𝐾 = 2, 𝑠𝑐𝑜𝑟𝑒𝑇𝑦𝑝𝑒 = 𝐻𝐴𝑅𝑅𝐼𝑆_𝑆𝐶𝑂𝑅𝐸, 𝑝𝑎𝑡𝑐ℎ𝑆𝑖𝑧𝑒 =
48, 𝑓𝑎𝑠𝑡𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 = 5). The reason for running this experiment on non-equalized images is that even
if histogram equalization makes the performance less sensitive to the proper tuning of the FAST thresh-
old, it degrades the matching performance overall (see Chapter 4.3).

In this experiment, all variables are calculated for each frame and combined per dataset or sequence
to calculate Spearman’s correlation coefficient. In addition to Spearman’s correlation, plots are made
of the relationships between the different variables against the amount of inliers variable. As each
variable has a different (unknown) distribution, a transformation is done to transform the data to a
normal distribution. The relationship is visualized by plotting the z-scores of the variables against each
other.

The Spearman’s correlation and the z-scores are calculated for all datasets combined and for each
sequence of Exos and Juno separately. To cross-validate, the data (which contains all recorded vari-
ables per frame) is shuffled with random state one and split in half to make a train and test set.

4.6. Correlations 49

4.6.1. Results

Figure 4.15: Transformed 2D-histograms of all datasets combined. Z-scores are plotted for different variables compared to the
z-score of the number of inliers.

(a) Spearman correlations: train data = -0.14, test data = -0.14 (b) Spearman correlations: train data = 0.07, test data = 0.07

(c) Spearman correlations: train data = -0.6, test data = -0.6 (d) Spearman correlations: train data = 0.14, test data = 0.14

(e) Spearman correlations: train data = 0.18, test data = 0.19 (f) Spearman correlations: train data = 0.15, test data = 0.15

50 4. Experiments and Results

Figure 4.16: Transformed 2D-histograms of other correlations seen in the Juno and Exos datasets. Z-scores are plotted for
different variables compared to the z-score of the number of inliers.

(a) Exos barn dark sequence. Spearman correlations: train data
= 0.65, test data = 0.66

(b) Juno den Boer sunny sequence. Spearman correlations: train
data = 0.28, test data = 0.31

(c) Juno den Boer rain sequence. Spearman correlations: train
data = 0.33, test data = 0.35

(d) Juno van Adrichem dark sequence. Spearman correlations:
train data = 0.66, test data = 0.66

The results on all datasets combined can be seen in Figure 4.15. All plots are clusters with no appar-
ent relationship except the optical flow plot in Figure 4.15c. As all datasets are combined, the data is
averaged out. The optical flow shows a strong relationship, nevertheless. The Spearman’s coefficient
is -0.6, a relatively strong negative correlation with the number of inliers; this means fewer inliers are
found if there is more apparent motion in a frame. For the separate sequences in the Exos and Juno
datasets, plots that show other correlations besides optical flow are shown in Figure 4.16. Only sharp-
ness shows a relatively strong correlation with the number of inliers in some sequences in the Exos
and Juno datasets.; this means that the less blur there is in the frame, the more inliers can be found.
To further investigate if motion blur could explain the inlier drops, the transformed 2D-histograms be-
tween sharpness and optical flow are plotted in the following Figure (Figure 4.17). Note that we can
not directly deduce causality from correlations. However, hypothetically it is unlikely that blur causes
apparent motion that is mainly caused by pure motion than the other way around.

4.7. Tuning ORB-SLAM3 matcher 51

Figure 4.17: Transformed 2D-histograms of other correlations seen in the Juno and Exos datasets. Z-scores are plotted for
different variables compared to the z-score of the number of inliers.

(a) Exos road rainy sequence. Spearman correlations: train data
= 0.76, test data = 0.78

(b) Exos grass dark sequence. Spearman correlations: train data
= 0.50, test data = 0.44

(c) Exos road normal sequence. Spearman correlations: train data
= 0.87, test data = 0.86

From the Exos and Juno datasets’ sequences, only three sequences from the Exos dataset show
a strong correlation between the optical flow and sharpness. The correlation is positive, which means
that more apparent motion causes sharper images in the frame or the other way around. From a practi-
cal point of view, it is unlikely that pure motion causes sharper images. A more likely explanation is that
the optical flow measurement in these frames can not be purely seen as motion only; the change in illu-
mination is significant, and the sharpness and optical flow calculations are based on similar properties
in the image.

4.7. Tuning ORB-SLAM3 matcher
The TrackReferenceKeyframe function in ORB-SLAM3 uses the Bag-of-Words model to find feature
correspondences between two given frames. The Bag-of-Words model finds similar initial features by
their nodes, without directly comparing the descriptors, through the direct index as explained in Chapter
3.4. The ORB-matcher subsequently compares the descriptors of the features returned by the direct
index afterward. The node level, which the Bag-of-World model uses to compare features associated
with each node, can be tuned. The default value in ORB-SLAM3 is set to level 4.

52 4. Experiments and Results

The ORB-matcher also has two parameters that can be tuned; The nearest neighbor ratio and the
descriptor distance threshold. The descriptor distance threshold ensures the closest match is under a
certain distance in the descriptor space. As explained in [23], the nearest neighbor ratio filters most
incorrect matches by checking the distance ratio between a descriptor in one image to the first and
second closest match from the other image in the descriptor space. The two distances should be
different enough to assume that the closest match is the possible correct match. A ratio close to one
allows more ambiguous matches, while a lower value keeps only well-discriminative matches.

Different values for the three parameters are used to record the resulting matches and inliers found.
Also, the number of total features found is recorded to not falsely relate a drop in feature matches to
the change in parameters but to a general drop in the number of features extracted. The number of
maps created is also recorded, which is eventually the consequence of the drop in feature matches that
also needs to be minimized; a new map is started when both tracking and relocalization fail. A failure
in the TrackReferenceKeyframe occurs when the number of matches is under 15 and if, after outlier
filtering, the number of inliers is under 10. We record the number of occurrences the matches drop
under 15 and the number of inliers falls under 10. Also, the mean of the number of matches and inliers
is recorded for the whole sequence. This experiment is only run on the den Boer sunny sequence, as
it is time-consuming to run on all sequences. The standard value of the nearest neighbor ratio set in
ORB-SLAM3 is 0.7, and the descriptor distance threshold is set to 50. For each parameter, we use
different values while keeping all other parameters fixed to their default value.

4.7.1. Results
In Table 4.12, the effect of changing the node level can be seen. With increasing node level, the number
of times the number of matches falls under 15 also decreases. After outlier filtering, the number of times
the inliers are under ten is also reduced, indicating that the increase in the number of matches did not
increase the number of false matches.

Table 4.12: effect of changing the node level on the den Boer sunny sequence.

Node level 2 4 6
Number of
maps created 25 11 5

Features mean 1829.6 1831.6 1826.6
min 1231 1111 1111

Matches mean 51.6 86.5 117.8
<15 136 54 34

Inliers mean 51.6 86.5 117.8
<10 38 12 10

The effect of changing the nearest neighbor ratio can be seen in Table 4.13. A value of 0.5 results
in many matches under 15, as the ratio is too discriminative. A higher ratio seems to decrease the
failure up until a certain point. After a ratio of 0.9, the effect seems less clear. The randomness in the
trend after 0.9 can be explained by the randomness of the keyframe insertion and, thus, the selected
features to be matched in ORB-SLAM3. This randomness becomes more dominant when the ratio
change does not significantly affect the feature matching.

4.7. Tuning ORB-SLAM3 matcher 53

Table 4.13: effect of changing the nearest neighbor ratio on the den Boer sunny sequence.

Nearest neighbor
ratio 0.5 0.7 0.9 0.95 0.99

Number of
maps created 22 11 10 11 12

Number of
features

mean 1834.8 1831.6 1825.7 1826.4 1828.1
min 1347 1111 1111 1111 1111

Number of
matches

mean 62.9 86.5 106.5 104.0 109.8
<15 107 54 30 35 31

Number of
inliers

mean 62.9 86.5 106.5 104.0 109.8
<10 16 12 13 11 17

Changing the descriptor distance threshold to a smaller value increases the number of times the
matches drop under 15. The larger the distance threshold, the less strict the difference in pixel intensi-
ties, and the more matches can be made. Increasing the distance threshold too much, as in the case
of 100, does depreciate the performance again. A possible explanation is that more descriptors are
kept, which makes matching more difficult, as too many descriptors in an area can be seen as noise.

Table 4.14: effect of changing the descriptor distance threshold on the den Boer sunny sequence.

Descriptor distance
threshold 20 50 80 100

Number of
maps created 4 11 6 8

Features mean 1850.8 1831.6 1831.4 1831.4
min 1397 1111 1169 1111

Matches mean 42.3 86.5 116.2 114.5
<15 123 54 20 27

Inliers mean 42.3 86.5 116.2 114.5
<10 12 12 6 9

In Table 4.15, the experiment is rerun with the best settings for the den Boer sunny sequence based
on the settings that minimize the number of times the number of matches drops under 15. The number
of times the matches fall under 15 is reduced to 15. However, seven maps were started, which means
that tracking was lost and unable to relocalize seven times.

Table 4.15: Results on the matching with node level=6, descriptor distance threshold=80, nearest neighbor ratio=0.9 on the den
Boer sunny dataset.

Number of maps created 7

Features mean 1818.2
min 1111

Matches mean 193.6
<15 15

Inliers mean 193.6
<10 7

In Table 4.16, the experiment is run with the same best setting as in Table 4.16, but this time with
the descriptor distance threshold set to 20 as this threshold resulted in the least amount of maps in
Table 4.14. The number of maps started is slightly lower. However, there are many more matches that
did drop under 15.

54 4. Experiments and Results

Table 4.16: Results on the matching with node level=6, descriptor distance threshold=20, nearest neighbor ratio=0.9 on the den
Boer sunny dataset.

Number of maps created 6

Features mean 1842.4
min 1347

Matches mean 51.0
<15 110

Inliers mean 51.0
<10 13

4.8. A simple stereo visual odometry implementation
This chapter explores the possibility of using a simple visual odometry (VO) system instead of ORB-
SLAM3; to explore the robustness of a simple VO system and compare it to ORB-SLAM3. There will be
a trade-off between robustness and accuracy, as the simple visual odometry system is less optimized
than ORB-SLAM3. Also, the error builds up over time as we explore an odometry system. For Lely
Juno, this error is expected to be reasonable, as the trajectory is relatively short.

An online repository is used for the stereo visual odometry implementation [29]. The repository is
adjusted to match features with a brute force matcher. The original implementation works as follows;
The image is divided into patches to extract more evenly distributed features. Features are extracted
from each patch in frame t-1. An estimation of the location of the features in frame t is made with an
optical flow tracker. A disparity map is created from the left and right images at time t, and the inbound
feature points with the minimum and maximum disparity are used to triangulate the features to get 3D
points. A pose is calculated by selecting six feature points and minimizing the re-projection error with
the least squares for x amount of iterations. The pose estimation with the least amount of error from
these iterations is the final estimated pose.

In the adjustments, the estimate of the feature points in frame t with the optical flow is replaced by a
brute-force feature match. Moreover, features are extracted from the full image size instead of patches.
The reason for not using patches is that the parameters of the ORB extractor need to be set relatively
small to detect features in a small patch; this resulted in many wrong matches, even after RANSAC
filtering. A plausible explanation for the incorrect matches is that the feature response of the features
is too weak. The feature extractor becomes sensitive to any response, even noise. Thus, the feature
descriptors become too indistinct to correctly match the correct feature point in the following image.
Therefore, the features are extracted from the entire image instead with the previously determined
parameters (𝑛𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑠 = 2000, 𝑠𝑐𝑎𝑙𝑒𝐹𝑎𝑐𝑡𝑜𝑟 = 1.2, 𝑛𝑙𝑒𝑣𝑒𝑙𝑠 = 8, 𝑒𝑑𝑔𝑒𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 = 𝑝𝑎𝑡𝑐ℎ𝑆𝑖𝑧𝑒,
𝑓𝑖𝑟𝑠𝑡𝐿𝑒𝑣𝑒𝑙 = 0, 𝑊𝑇𝐴𝐾 = 2, 𝑠𝑐𝑜𝑟𝑒𝑇𝑦𝑝𝑒 = 𝐻𝐴𝑅𝑅𝐼𝑆_𝑆𝐶𝑂𝑅𝐸, 𝑝𝑎𝑡𝑐ℎ𝑆𝑖𝑧𝑒 = 48, 𝑓𝑎𝑠𝑡𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 = 5) for
the feature extractor.

The settings for the disparity map are set to: 𝑚𝑖𝑛𝐷𝑖𝑠𝑝𝑎𝑟𝑖𝑡𝑦 = 1, 𝑛𝑢𝑚𝐷𝑖𝑠𝑝𝑎𝑟𝑖𝑡𝑖𝑒𝑠 = 48, 𝑏𝑙𝑜𝑐𝑘𝑆𝑖𝑧𝑒 =
3, 𝑃1 = 𝑖𝑛𝑡(𝑏𝑙𝑜𝑐𝑘 ∗ 𝑏𝑙𝑜𝑐𝑘 ∗ 8 ∗ 𝑠𝑚𝑜𝑜𝑡ℎ), 𝑃2 = 𝑖𝑛𝑡(𝑏𝑙𝑜𝑐𝑘 ∗ 𝑏𝑙𝑜𝑐𝑘 ∗ 32 ∗ 𝑠𝑚𝑜𝑜𝑡ℎ), 𝑠𝑝𝑒𝑐𝑘𝑙𝑒𝑅𝑎𝑛𝑔𝑒 = 0,
𝑠𝑝𝑒𝑐𝑘𝑙𝑒𝑊𝑖𝑛𝑑𝑜𝑤𝑆𝑖𝑧𝑒 = 0 with the smoothness factor for P1 and P2 set to 𝑠𝑚𝑜𝑜𝑡ℎ = 3.0.

4.8.1. Results
KITTI The estimated paths of the three different methods (ORB-SLAM3, VO with brute force matcher,
and VO with optical flow tracker) for the KITTI sequences can be seen in Figure 4.18. The localization
mode of ORB-SLAM3 did not work properly; therefore, the sequences are evaluated with loop closure.
Not all sequences have loops. The sequences without loops (Figures 4.18b, 4.18d, 4.18e, and 4.18i)
are fairer to compare the VO methods to the ORB-SLAM3 performance.

In sequence 00 (Figure 4.18a), ORB-SLAM3 is the most accurate method based on their paths
and absolute position error (APE, as defined in [32]). However, ORB-SLAM3 shows a sudden straight
line connecting two positions. The reason can be because of different maps that are not connected
correctly or failed place recognition. In sequence 01 (Figure 4.18b), all methods fail to estimate the
path accurately. The most accurate method seems to be the VO with feature matching based on the
APE.

The results of sequence 02 (Figure 4.18c) show that ORB-SLAM3 lost track and started a new map
at the end of the trajectory. However, it could not merge this map with any other existing maps. The

4.8. A simple stereo visual odometry implementation 55

APE is low for ORB-SLAM3, but this is only based on a small part of the trajectory. The VO with optical
flow tracking seems to be the most robust and accurate method for this sequence. The same holds for
sequence 10 (Figure 4.18k).

All methods are quite accurate in sequence 02, especially for the first part. The error builds up
toward the end of the sequence. ORB-SLAM3 is the most accurate of all methods, followed by VO with
optical flow. The same holds for sequence 04 (Figure 4.18e).

In sequence 05 (Figure 4.18f) ORB-SLAM3 outperforms both VO methods by a large margin, which
is also the case in sequence 06 (Figure 4.18g).

Regarding APE, ORB-SLAM3 outperforms both VO methods again in sequence 07 (Figure 4.18h).
However, ORB-SLAM3 misses a large part of the trajectory again, which is also the case in sequence
08 (Figure 4.18i) and sequence 09 (Figure 4.18j). When looking at the entire trajectory, the VO method
with the feature matcher is the most accurate in sequence 08 based on the APE, while the VO method
with the optical flow is more accurate in sequence 09.

Both VO methods did not have any problems finding enough feature matches for pose estimation,
unlike ORB-SLAM3. The minimum amount of matches (and inliers for the VO method) can be seen in
Table 4.17.

Table 4.17: Minimum amount of matches seen in the sequences of the KITTI dataset for ORB-SLAM3 and the matching-based
VO. The average minimum matches of the matching based VO is 49 times more than the average minimum matches in ORB-
SLAM3, even when compared with the minimum number of inliers in the VO method, the factor is still 48.9.

KITTI
sequence 00 01 02 03 04 05 06 07 08 09 10

ORB-SLAM3 min
matches 0 12 0 1 39 0 2 0 0 2 0

VO
min
matches 218 274 157 350 493 305 246 312 240 272 159
min
inliers 185 247 140 324 484 280 220 258 191 262 150

Figure 4.18: Estimated trajectories of the KITTI sequences. The trajectories are estimated with ORB-SLAM3, the VO method
with the brute force matcher, and the VO method with the optical flow tracker.

(a) KITTI sequence 00. ORB-SLAM3: APE𝑟𝑚𝑠𝑒 = 8.5m. VO with feature
matcher: APE𝑟𝑚𝑠𝑒 = 30.3m. VO with optical flow: APE𝑟𝑚𝑠𝑒 = 15.6m.

(b) KITTI sequence 01. ORB-SLAM3: APE𝑟𝑚𝑠𝑒 = 574.3m. VO with
feature matcher: APE𝑟𝑚𝑠𝑒 = 279.1m. VO with optical flow: APE𝑟𝑚𝑠𝑒 =
591.6m.

56 4. Experiments and Results

(c) KITTI sequence 02. ORB-SLAM3: APE𝑟𝑚𝑠𝑒 = 0.02m. VO with feature matcher: APE𝑟𝑚𝑠𝑒 = 49.0m. VO with optical flow: APE𝑟𝑚𝑠𝑒 = 16.1m.

(d) KITTI sequence 03. ORB-SLAM3: APE𝑟𝑚𝑠𝑒 = 3.3m. VO with feature matcher: APE𝑟𝑚𝑠𝑒 = 9.6m. VO with optical flow: APE𝑟𝑚𝑠𝑒 = 8.4m.

4.8. A simple stereo visual odometry implementation 57

(e) KITTI sequence 04. ORB-SLAM3: APE𝑟𝑚𝑠𝑒 = 1.5m. VO with feature
matcher: APE𝑟𝑚𝑠𝑒 = 3.8m. VO with optical flow: APE𝑟𝑚𝑠𝑒 = 1.9m.

(f) KITTI sequence 05. ORB-SLAM3: APE𝑟𝑚𝑠𝑒 = 2.0m. VO with feature
matcher: APE𝑟𝑚𝑠𝑒 = 12.0m. VO with optical flow: APE𝑟𝑚𝑠𝑒 = 11.3m.

(g) KITTI sequence 06. ORB-SLAM3: APE𝑟𝑚𝑠𝑒 = 3.6m. VO with feature matcher: APE𝑟𝑚𝑠𝑒 = 13.8m. VO with optical flow: APE𝑟𝑚𝑠𝑒 = 15.4m.

58 4. Experiments and Results

(h) KITTI sequence 07. ORB-SLAM3: APE𝑟𝑚𝑠𝑒 = 0.51m. VO with fea-
ture matcher: APE𝑟𝑚𝑠𝑒 = 11.3m. VO with optical flow: APE𝑟𝑚𝑠𝑒 = 3.3m.

(i) KITTI sequence 08. ORB-SLAM3: APE𝑟𝑚𝑠𝑒 = 1.0m. VO with feature
matcher: APE𝑟𝑚𝑠𝑒 = 20.9m. VO with optical flow: APE𝑟𝑚𝑠𝑒 = 28.9m.

(j) KITTI sequence 09. ORB-SLAM3: APE𝑟𝑚𝑠𝑒 = 1.4m. VO with feature matcher: APE𝑟𝑚𝑠𝑒 = 11.7m. VO with the optical flow: APE𝑟𝑚𝑠𝑒 = 7.4m.

4.8. A simple stereo visual odometry implementation 59

(k) KITTI sequence 10. ORB-SLAM3: APE𝑟𝑚𝑠𝑒 = 1.5m. VO with feature matcher: APE𝑟𝑚𝑠𝑒 = 13.2m. VO with optical flow: APE𝑟𝑚𝑠𝑒 = 4.1m.

The sequences where ORB-SLAM3 did not fail are sequences 01, 03, 04, 05, and 06. From these
sequences, sequences 05 and 06 contain loop closures. The APE𝑟𝑚𝑠𝑒 of the best VO method in
sequence 01 is 0.48 times better than the APE𝑟𝑚𝑠𝑒 of ORB-SLAM3. The APE𝑟𝑚𝑠𝑒 of the best VO
method in sequence 03 is 2.5 times worse compared to ORB-SLAM3 and 1.26 times worse in sequence
04. The sequences with loop closure show that APE𝑟𝑚𝑠𝑒 of the best VO method is even worse if ORB-
SLAM3 can make loop-closures; the factor is 5.65 for sequence 05 and 3.83 for sequence 06.

The accuracy of the VO methods is affected a lot by correct matches and a good disparity map,
as there are no continuous optimization steps like in ORB-SLAM3. The paths in sequence 00 and
sequence 02 show that the VO methods estimate the shape of the trajectory well but not the depth.
The more noise there is in the disparity map, the less accurate the depth estimation, which can be seen
in Figure 4.20. If the features used for pose estimate correspond to noisy locations in the disparity map,
the pose estimation becomes worse. An example of a noisy and smoothed disparity map is given in
Figures 4.19a and 4.19b as well as (the locations of) the feature matches in the image in Figure 4.19c.

60 4. Experiments and Results

(a) Disparity map without smoothing (KITTI 00 sequence frame number 0)

(b) Disparity map with smoothing (KITTI 00 sequence frame number 0)

(c) ORB feature matches extracted between KITTI 00 sequence frame number 0 and 1

Figure 4.20: Path of KITTI sequence 00. VO with feature matching run with a smooth and noisy disparity map. Smooth disparity
map (smooth factor set to 3.0): APE𝑟𝑚𝑠𝑒 = 30.3m. Noisy disparity map (smooth factor set to 0.0): APE𝑟𝑚𝑠𝑒 = 47.4m. This is a
factor of 1.56 difference in the APE𝑟𝑚𝑠𝑒.

Juno The estimated paths of the two different VO methods (VO with brute force matcher and VO
with optical flow tracker) can be seen in Figure 4.21 for the Juno sequences. There are no results

4.8. A simple stereo visual odometry implementation 61

of the ORB-SLAM3 path due to an unsolvable bug that crashed the ORB-SLAM3 program before a
trajectory could be saved. Both VO methods failed for all dark sequences due to too few inbound
features that could be extracted with the minimum and maximum disparity. Both VO methods could
follow the trajectory well for the Van Adrichem sequences, and both methods have a similar 𝐴𝑃𝐸𝑟𝑚𝑠𝑒
score. The results for the den Boer sequence are less promising. Both VO methods fail to follow the
ground truth after the turn (around x=42 and y=94). The shape of the trajectory is still somewhat similar
to the ground truth for the VO method with the feature matcher. However, the VO with optical flow fails
almost completely for the den Boer sunny and den Boer after rain sequence.

The disparity maps and feature matches around this turn at x=42 and y=94 can be seen for each
den Boer sequence in Figures 4.25, 4.23, and 4.24.

The disparity map of the den Boer sunny sequence is relatively smooth compared to the disparity
maps of the den Boer rain (Figure 4.24b) and after rain (Figure 4.25b) sequences. Also, more features
are extracted from the floor because of the feed spread on the floor.

The feature matches in the den Boer rain sequence (Figure 4.24) show that most features are
extracted from the fence and the feed that is close to the fence. The disparity map contains very noisy
patches. The reason for the noise can not be explained by looking at the images.

The feature matches in the den Boer after rain sequence (Figure 4.25) show that most features are
extracted from the fence and less from the floor as the floor does not have much texture. The disparity
map is quite noisy; a noisy patch is present on the left side of the disparity map and the upper right
side. The reason for this noise can not be explained by looking at the images.

62 4. Experiments and Results

Figure 4.21: Estimated trajectories of the Juno sequences. The trajectories are estimated with the VO method with the brute
force matcher and the VO method with the optical flow.

(a) Van Adrichem sunny sequence. VO with feature matcher: APE𝑟𝑚𝑠𝑒 = 55.7m. VO with optical flow: APE𝑟𝑚𝑠𝑒 =
55.6m.

(b) Van Adrichem after rain. VO with feature matcher: APE𝑟𝑚𝑠𝑒 = 55.6m. VO with optical flow: APE𝑟𝑚𝑠𝑒 = 60.6m.

4.8. A simple stereo visual odometry implementation 63

(c) den Boer Sunny sequence. VO with feature matcher: APE𝑟𝑚𝑠𝑒 = 40.9m. VO with optical flow: APE𝑚𝑒𝑎𝑛 = 38.6m,
APE𝑟𝑚𝑠𝑒 = 40.6m.

(d) den Boer rain sequence. VO with feature matcher: APE𝑟𝑚𝑠𝑒 = 52.4m. VO with optical flow: APE𝑟𝑚𝑠𝑒 = 53.0m.

64 4. Experiments and Results

(a) den Boer after rain sequence. VO with feature matcher: APE𝑟𝑚𝑠𝑒 = 45.3m. VO with optical flow: APE𝑟𝑚𝑠𝑒 =
59.3m.

4.8. A simple stereo visual odometry implementation 65

Figure 4.23: The matches and disparity map during the turn around x=42 and y=94 for the den Boer sunny sequence.

(a) Matches made between t and t-1 for the den Boer sunny sequence.

(b) Disparity map at time t for the den Boer sunny sequence.

66 4. Experiments and Results

Figure 4.24: The matches and disparity map during the turn around x=42 and y=94 for the den Boer rain sequence.

(a) Matches made between t and t-1 for the den Boer rain sequence.

(b) Disparity map at time t for the den Boer rain sequence.

4.8. A simple stereo visual odometry implementation 67

Figure 4.25: The matches and disparity map during the turn around x=42 and y=94 for the den Boer after rain sequence.

(a) Matches made between t and t-1 for the den Boer after rain sequence.

(b) Disparity map at time t for the den Boer after rain sequence.

5
Discussion & Conclusion

5.1. Discussion
While determining suitable ORB parameters for the experiments, it became clear that a specific change
in the settings had similar effects on the outcome of the number of feature matches in most datasets.
From this, a single setting for the ORB features is found that works well for all datasets; this means
that if suitable parameters are used, it should only affect the number of feature matches a little when a
different dataset is used. From qualitative results in Chapter 4.4, the effect of the image on the matches
became slightly more apparent; the number of feature matches reduced due to apparent reasons such
as blur, overexposure, and underexposure in the image. However, there were also many examples
without an apparent reason for such a sudden drop in feature matches. Equalizing the images did
not positively affect the number of matches, probably due to the noise it introduced. The noise could
be seen clearly in some qualitative examples. Moreover, the drop in the number of feature matches
happens in agricultural datasets and the widely used indoor and outdoor robotics datasets.

Although the images affect the feature matches in a way, a more significant reason for the drop in
the number of feature matches in ORB-SLAM3 is the type of matcher used. Tuning the matcher and
the ORB extraction parameters did improve the drop in the number of matches (Chapter 4.7). The
mean number of inliers increased from 86.5 to 193.6 compared to the default matcher settings, and the
number of times the inliers dropped under ten was reduced from 12 to 10. However, it did not eliminate
the problem. The brute-force-based matcher consistently found enough matches and inliers needed for
pose estimation compared to ORB-SLAM3’s bag-of-words-based matcher (Chapter 4.5); the OpenCV
pipeline outperforms ORB-SLAM3 on average by a factor of 22.2 on the Juno dataset.

Moreover, ORB-SLAM3 divides the images into patches before features are extracted. These
patches significantly affect the number of correct matches in the simple visual odometry implemen-
tation. The ORB settings must be set to small values to extract features in a small patch, which causes
the ORB extractor to extract noise as feature points. The simple visual odometry system failed to
match features extracted from small patches in Chapter 4.8. Therefore, the patches are not used in
the experiment.

Furthermore, it is essential to have a disparity map of good quality. The camera baseline should
match the environment. The baseline should be based on where most features are extracted in a
dataset. Suppose the camera baseline is not suitable for generating a specific disparity range where
most features are extracted. In that case, many features are discarded because there is no depth
information on the locations of the features. The baseline should be large (for example, 60 cm as in
the KITTI dataset) if most features are extracted on the horizon and small (11 cm as in the EUROC
MAV dataset) if most features are extracted close to the camera. The noise in the disparity image
also affects the quality of the depth estimation at noisy locations and, thus, the pose estimation. An
example of the KITTI dataset in Chapter refch:simpleVOresults shows that the trajectory’s APE𝑟𝑚𝑠𝑒 is
1.56 times worse when a noisy disparity map is used. The low texture in the image can cause noise.
The H. Hirschmuller algorithm could have difficulty matching correct blocks or pixels for the disparity
map if the texture in the image is low, the camera calibration parameters are not accurate, or if there
are illumination differences in the images from the two cameras.

69

70 5. Discussion & Conclusion

Thus, ORB features are not the direct cause of the drop in the number of feature matches and are
suited for real-time visual SLAM. Aspects in the implementation of ORB-SLAM3, such as the division
of the image in patches and the type of matcher, are likely causes of the drop in feature matches. Also,
the dataset’s quality is trivial to extract a good disparity map from the images.

For the Juno project, a simple visual odometry system would suffice for tiny distances. It is recom-
mended to use the current systemwith 2D-lidar for indoor navigation and to switch to visual odometry for
outdoor localization. For the long-term future goal of using the camera solely, more research in ORB-
SLAM3 is needed. A starting point would be to test ORB-SLAM3 without using patches for feature
extraction and different types of matchers and to experiment on a high-quality disparity map dataset.

5.2. Conclusion
This work aimed to understand the reasons behind the tracking errors caused by the drop in feature
matches in ORB-SLAM3 in agricultural datasets. To conclude this work, the two previously determined
research questions are answered based on the results seen in the experiments:

• Why does feature matching often return a small number of matches for the agricultural datasets
in ORB-SLAM3?
The experiments showed that the drop in the number of feature matches is not necessarily only
present in agricultural datasets but also in the widely used indoor and outdoor robotics datasets.
There are multiple reasons for this sudden drop in the number of feature matches, which are:

– Blur, apparent motion, under- and over-exposure in the image. Spearman’s correlation co-
efficient showed a correlation between the number of inliers and optical flow (or apparent
motion) of -0.6 on all datasets combined. The sharpness strongly correlates in some of the
Exos and Juno sequences with a Spearman’s coefficient of 0.66.

– The type of matcher used can affect the number of matches that can be made. The brute-
fore matcher could consistently find more matches and inliers than the bag-of-words-based
matcher in ORB-SLAM3, even in frames where ORB-SLAM3 failed. The OpenCV pipeline
outperforms ORB-SLAM3 on average by a factor of 22.2 concerning the average number of
feature matches on the Juno dataset.

– The division of the image in patches negatively affects the number of matches. The ORB
extraction parameters must be set small to find features in small patches. The features
found in such a small patch are mostly noise that the matcher cannot match due to the
indistinctiveness of these noisy features.

– The quality of the disparity map affects the number of feature matches that are used for
pose estimation. The disparity map should have accurate depth information at the locations
where most features are extracted from the dataset; otherwise, many feature matches are
discarded. Moreover, noise in the disparity map causes wrong depth information at the
noisy locations and affects the pose estimation accuracy. An example of the KITTI dataset
shows that the trajectory’s APE𝑟𝑚𝑠𝑒 is 1.56 times worse when a noisy disparity map is used.
However, more work is needed to determine at which stage in the ORB-SLAM3 pipeline the
disparity map affects the matches; this is left for future work.

So the initial hypotheses are both true; however, there is more to the story. The ORB feature
descriptor is not descriptive to match features correctly because of multiple reasons, such as
the image quality and the division of the image in patches. The drop in the number of feature
matches can be related to the ORB-SLAM3 pipeline itself, such as the type of matcher used and
the implementation of the image divisor. Additionally, the quality of the disparity map also affects
the number of feature matches which was not in the hypothesis initially.

• Can we implement a simple camera pose estimator that outperforms ORB-SLAM3 in terms of
robustness without compromising too much of the accuracy?
In the final experiment, a visual odometry system is implemented and compared toORB-SLAM3 in
terms of absolute trajectory error, amount of maps started, and the number of featurematches and
inliers. ORB-SLAM3 is the most accurate system in the KITTI dataset, as expected, especially

5.3. Future Work 71

when loop closures are made. The sequences where ORB-SLAM3 did not fail are sequences
01, 03, 04, 05, and 06. From these sequences, sequences 05 and 06 contain loop closures. The
APE𝑟𝑚𝑠𝑒 of ORB-SLAM3 is lower than the APE𝑟𝑚𝑠𝑒 of the VO methods for all sequences except
sequence 01. The APE𝑟𝑚𝑠𝑒 of the best VO method in sequence 03 is 2.5 times worse compared
to ORB-SLAM3 and 1.26 times worse in sequence 04. The sequences with loop closure show
that APE𝑟𝑚𝑠𝑒 of the best VO method is even worse if ORB-SLAM3 can make loop-closures; the
factor is 5.65 for sequence 05 and 3.83 for sequence 06. However, there are still many cases
where tracking is lost, after which ORB-SLAM3 could not recover. This resulted in a new map
that could not be merged with the previous maps. In general, the visual odometry methods are
much more robust compared to ORB-SLAM3. The matching-based VO system has, on average,
49 times more the minimum number of inliers compared to ORB-SLAM3 in the KITTI dataset.
However, both VO systems fail in Lely Juno’s dark sequences. So, in conclusion, a simple camera
pose estimator that outperforms ORB-SLAM3 in terms of robustness could be implemented, but
the accuracy is compromised a lot. The initial hypothesis that a simple visual odometry system
is more robust than ORB-SLAM3 is true. However, better accuracy is needed for the entire
sequences of the KITTI and Lely Juno datasets.

5.3. Future Work
Future work could investigate the effect of the patches in the ORB-SLAM3 pipeline, with larger patches
or no patches. Furthermore, the exact effect of the disparity map on the feature matches in ORB-
SLAM3 can be investigated further in more detail by analyzing the pipeline and by experimenting with
the camera baseline as well as exposure changes and different texture difficulties. Also, the reason for
random noisy patches in the disparity maps can be investigated with this approach.

Another future work could be to investigate the effect of different types of matchers in ORB-SLAM3,
such as brute force with k-NN, FLANN-based matcher, or any other matcher found in the literature.
Preferably matchers that still allow the system to run in real time. For the Juno project, a comparison
can be made between the wheel and visual odometry. Wheel odometry can also suffice for the small
distance Juno has to travel outside the barn.

Bibliography
[1] Tinku Acharya and Ajoy K Ray. Image processing: principles and applications. John Wiley &

Sons, 2005.
[2] Pritha Bhandari. Correlation coefficient. en. https://www.scribbr.com/statistics/

correlation-coefficient/. Accessed: 2022-10-7. Aug. 2021.
[3] Stan Birchfield and Carlo Tomasi. “A pixel dissimilarity measure that is insensitive to image sam-

pling”. In: IEEE Transactions on Pattern Analysis and Machine Intelligence 20.4 (1998), pp. 401–
406.

[4] Eric Brachmann et al. “On the limits of pseudo ground truth in visual camera re-localisation”. In:
Proceedings of the IEEE/CVF International Conference on Computer Vision. 2021, pp. 6218–
6228.

[5] G. Bradski. “The OpenCV Library”. In: Dr. Dobb’s Journal of Software Tools (2000).
[6] Michael Burri et al. “The EuRoC micro aerial vehicle datasets”. In: The International Journal of

Robotics Research 35.10 (2016), pp. 1157–1163.
[7] Michael Calonder et al. “Brief: Binary robust independent elementary features”. In: European

conference on computer vision. Springer. 2010, pp. 778–792.
[8] Carlos Campos et al. “Orb-slam3: An accurate open-source library for visual, visual–inertial, and

multimap slam”. In: IEEE Transactions on Robotics 37.6 (2021), pp. 1874–1890.
[9] Gabriella Csurka et al. “Visual categorization with bags of keypoints”. In:Workshop on statistical

learning in computer vision, ECCV. Vol. 1. 1-22. Prague. 2004, pp. 1–2.
[10] Mark Cummins and Paul Newman. “Appearance-only SLAM at large scale with FAB-MAP 2.0”.

In: The International Journal of Robotics Research 30.9 (2011), pp. 1100–1123.
[11] Jakob Engel, Vladlen Koltun, and Daniel Cremers. “Direct sparse odometry”. In: IEEE transac-

tions on pattern analysis and machine intelligence 40.3 (2017), pp. 611–625.
[12] Jakob Engel, Vladyslav Usenko, and Daniel Cremers. “A photometrically calibrated benchmark

for monocular visual odometry”. In: arXiv preprint arXiv:1607.02555 (2016).
[13] Gunnar Farnebäck. “Two-frame motion estimation based on polynomial expansion”. In: Scandi-

navian conference on Image analysis. Springer. 2003, pp. 363–370.
[14] Martin A Fischler and Robert C Bolles. “Random sample consensus: a paradigm for model fitting

with applications to image analysis and automated cartography”. In: Communications of the ACM
24.6 (1981), pp. 381–395.

[15] Friedrich Fraundorfer and Davide Scaramuzza. “Visual odometry: Part i: The first 30 years and
fundamentals”. In: IEEE Robotics and Automation Magazine 18.4 (2011), pp. 80–92.

[16] Friedrich Fraundorfer and Davide Scaramuzza. “Visual odometry: Part ii: Matching, robustness,
optimization, and applications”. In: IEEE Robotics & Automation Magazine 19.2 (2012), pp. 78–
90.

[17] Dorian Gálvez-López and Juan D Tardos. “Bags of binary words for fast place recognition in
image sequences”. In: IEEE Transactions on Robotics 28.5 (2012), pp. 1188–1197.

[18] Andreas Geiger, Philip Lenz, and Raquel Urtasun. “Are we ready for Autonomous Driving? The
KITTI Vision Benchmark Suite”. In: Conference on Computer Vision and Pattern Recognition
(CVPR). 2012.

[19] Heiko Hirschmuller. “Stereo processing by semiglobal matching andmutual information”. In: IEEE
Transactions on pattern analysis and machine intelligence 30.2 (2007), pp. 328–341.

[20] Informatik IX Computer Vision Group. Mar. 2016. URL: https://vision.in.tum.de/data/
datasets/rgbd-dataset/file_formats.

73

https://www.scribbr.com/statistics/correlation-coefficient/
https://www.scribbr.com/statistics/correlation-coefficient/
https://vision.in.tum.de/data/datasets/rgbd-dataset/file_formats
https://vision.in.tum.de/data/datasets/rgbd-dataset/file_formats

74 Bibliography

[21] Hervé Jégou et al. “Aggregating local descriptors into a compact image representation”. In: 2010
IEEE computer society conference on computer vision and pattern recognition. IEEE. 2010,
pp. 3304–3311.

[22] Kenneth Levenberg. “A method for the solution of certain non-linear problems in least squares”.
In: Quarterly of applied mathematics 2.2 (1944), pp. 164–168.

[23] David G Lowe. “Distinctive image features from scale-invariant keypoints”. In: International jour-
nal of computer vision 60.2 (2004), pp. 91–110.

[24] Stephanie Lowry et al. “Visual place recognition: A survey”. In: IEEE Transactions on Robotics
32.1 (2015), pp. 1–19.

[25] Jiayi Ma et al. “Image matching from handcrafted to deep features: A survey”. In: International
Journal of Computer Vision 129.1 (2021), pp. 23–79.

[26] Sherif AS Mohamed et al. “A survey on odometry for autonomous navigation systems”. In: IEEE
Access 7 (2019), pp. 97466–97486.

[27] Raul Mur-Artal, Jose Maria Martinez Montiel, and Juan D Tardos. “ORB-SLAM: a versatile and
accurate monocular SLAM system”. In: IEEE transactions on robotics 31.5 (2015), pp. 1147–
1163.

[28] Raúl Mur-Artal and Juan D Tardós. “Fast relocalisation and loop closing in keyframe-based
SLAM”. In: 2014 IEEE International Conference on Robotics and Automation (ICRA). IEEE. 2014,
pp. 846–853.

[29] N.H. Nielsen.ComputerVision. https://github.com/niconielsen32/ComputerVision/
tree/master/VisualOdometry. 2022.

[30] José Luis Pech-Pacheco et al. “Diatom autofocusing in brightfield microscopy: a comparative
study”. In: Proceedings 15th International Conference on Pattern Recognition. ICPR-2000. Vol. 3.
IEEE. 2000, pp. 314–317.

[31] Eli Peli. “Contrast in complex images”. In: JOSA A 7.10 (1990), pp. 2032–2040.
[32] David Prokhorov et al. “Measuring robustness of Visual SLAM”. In: 2019 16th International Con-

ference on Machine Vision Applications (MVA). IEEE. 2019, pp. 1–6.
[33] Vijay K Rohatgi and AK Md Ehsanes Saleh. An introduction to probability and statistics. John

Wiley & Sons, 2015.
[34] Edward Rosten and Tom Drummond. “Machine learning for high-speed corner detection”. In:

European conference on computer vision. Springer. 2006, pp. 430–443.
[35] Ethan Rublee et al. “ORB: An efficient alternative to SIFT or SURF”. In: 2011 International con-

ference on computer vision. Ieee. 2011, pp. 2564–2571.
[36] Torsten Sattler et al. “Benchmarking 6dof outdoor visual localization in changing conditions”. In:

Proceedings of the IEEE conference on computer vision and pattern recognition. 2018, pp. 8601–
8610.

[37] Davide Scaramuzza and Friedrich Fraundorfer. “Visual odometry [tutorial]”. In: IEEE robotics &
automation magazine 18.4 (2011), pp. 80–92.

[38] David Schubert et al. “The TUM VI benchmark for evaluating visual-inertial odometry”. In: 2018
IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). IEEE. 2018,
pp. 1680–1687.

[39] Myriam Servières et al. “Visual and visual-inertial slam: State of the art, classification, and exper-
imental benchmarking”. In: Journal of Sensors 2021 (2021).

[40] Jamie Shotton et al. “Scene coordinate regression forests for camera relocalization in RGB-D
images”. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.
2013, pp. 2930–2937.

[41] Josef Sivic and Andrew Zisserman. “Video Google: A text retrieval approach to object matching in
videos”. In: Computer Vision, IEEE International Conference on. Vol. 3. IEEE Computer Society.
2003, pp. 1470–1470.

https://github.com/niconielsen32/ComputerVision/tree/master/VisualOdometry
https://github.com/niconielsen32/ComputerVision/tree/master/VisualOdometry

Bibliography 75

[42] Lukas von Stumberg andDaniel Cremers. “DM-VIO: DelayedMarginalization Visual-Inertial Odom-
etry”. In: IEEE Robotics and Automation Letters 7.2 (2022), pp. 1408–1415.

[43] Jürgen Sturm, Wolfram Burgard, and Daniel Cremers. “Evaluating egomotion and structure-from-
motion approaches using the TUM RGB-D benchmark”. In: Proc. of the Workshop on Color-
Depth Camera Fusion in Robotics at the IEEE/RJS International Conference on Intelligent Robot
Systems (IROS). Vol. 13. 2012.

[44] Richard Szeliski. Computer vision: algorithms and applications. Springer Nature, 2022.
[45] Raad H Thaher and Zaid K Hussein. “Stereo vision distance estimation employing SAD with

canny edge detector”. In: International Journal of Computer Applications 107.3 (2014).
[46] F. Walch et al. “Image-based localization using LSTMs for structured feature correlation”. In:

ICCV. Oct. 2017.
[47] Wiki. URL: http://wiki.ros.org/melodic.
[48] Georges Younes et al. “Keyframe-based monocular SLAM: design, survey, and future directions”.

In: Robotics and Autonomous Systems 98 (2017), pp. 67–88.
[49] Huangying Zhan et al. “Visual odometry revisited: What should be learnt?” In: 2020 IEEE Inter-

national Conference on Robotics and Automation (ICRA). IEEE. 2020, pp. 4203–4210.
[50] Zichao Zhang and Davide Scaramuzza. “A tutorial on quantitative trajectory evaluation for vi-

sual (-inertial) odometry”. In: 2018 IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS). IEEE. 2018, pp. 7244–7251.

http://wiki.ros.org/melodic

	Introduction
	Related Work
	Visual Odometry
	Visual Place Recognition
	Visual SLAM
	SLAM evaluation
	Contributions

	Methods
	Feature extraction and matching
	ORB-SLAM3
	The tracking thread
	The local mapping thread
	The loop & map merging thread
	The ATLAS

	ORB Features
	Bags of binary words
	Stereo visual odometry
	Triangulation
	Correlation factors and plots

	Experiments and Results
	Datasets
	Effect of RANSAC
	Results

	Effect of ORB settings on matching performance
	Results on the original images
	Results on the equalized images

	Qualitative results and discussion
	Replicating the problem
	Correlations
	Results

	Tuning ORB-SLAM3 matcher
	Results

	A simple stereo visual odometry implementation
	Results

	Discussion & Conclusion
	Discussion
	Conclusion
	Future Work

