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a Dataset for Detection and 
Segmentation of Underwater 
Marine Debris in Shallow Waters
antun Đuraš  1 ✉, Ben J. Wolf2, athina Ilioudi  3, Ivana Palunko1 & Bart De Schutter3

Robust object detection is crucial for automating underwater marine debris collection. While supervised 
deep learning achieves state-of-the-art performance in discriminative tasks, replicating this success on 
underwater data is challenging. The generalization of these methods suffers due to a lack of available 
annotated data considering different sources of variation in the unstructured underwater environment 
and imaging conditions. In this paper, we present the Seaclear Marine Debris Dataset, the first publicly 
available shallow-water marine debris dataset annotated for instance segmentation/object detection. 
The dataset contains 8610 images collected using ROVs at multiple locations and with different 
cameras, annotated for 40 object categories, encompassing not only litter but also observed animals, 
plants, and robot parts. as part of the technical validation, we provide baseline results for object 
detection using Faster RCNN and YOLOv6 models. Furthermore, we demonstrate the non-triviality 
of generalizing the trained model performance to unseen sites and cameras due to domain shift. this 
underscores the value of the presented dataset in further developing robust models for underwater 
debris detection.

Background & Summary
Persistent objects introduced into the marine environment intentionally or unintentionally, as a result of 
human-induced activities, can be defined as marine debris. Marine debris can injure or even kill marine and 
coastal wildlife; damage and degrade habitats; interfere with navigational safety; cause economic loss to fishing 
and maritime industries; degrade the quality of life in coastal communities; and threaten human health and 
safety1. Considering the negative social, economic, and ecological implications associated with pollution, there 
has been an increase in research dedicated to providing a framework for systematic monitoring and automated 
collection of marine debris2. In this context, two major modalities for detecting marine debris emerged: one 
focused on surface-floating debris and another dedicated to underwater debris detection. Floating debris detec-
tion methods utilize remote sensing technologies such as satellite imagery3 and aerial photography4,5. To locate 
underwater marine debris, the development of unmanned vehicles (UxVs) equipped with cameras6 and acoustic 
sensors7 is being pursued to detect debris on the seafloor.

Automated underwater marine debris detection from images shares characteristics and challenges of other 
automatic recognition vision-based tasks in the underwater domain. Geometric and photometric distortions, 
introduced to the imaging process by the underwater environment, result in numerous quality-diverse data 
domains8. Visual appearance of aquatic scenes can vary drastically based on the conditions such as depth, tur-
bidity, and type of camera sensors used to obtain the imagery. Thus, obtaining diverse data is crucial for the 
development and evaluation of robust underwater image processing methods.

Supervised learning methods, which achieve state-of-the-art results on discriminative tasks, e.g. object 
detection, instance segmentation, depend on the availability of annotated data. In the underwater domain such 
annotated data is sparse compared to the terrestrial domain, which results in an active research area focused on 
data augmentation6 and visual restoration for underwater images9.

1Authors are with the Laboratory for intelligent Autonomous Systems (LARiAt), Department of electrical 
engineering and computing, University of Dubrovnik, Dubrovnik, croatia. 2Author is with the Bernoulli institute, 
faculty of Science and engineering, University of Groningen, Groningen, netherlands. 3Authors are with the Delft 
center for Systems and control, Delft University of technology, Delft, netherlands. ✉e-mail: antun.djuras@unidu.hr
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Underwater marine debris detection. The only large publicly available repository of underwater marine 
debris images is the Deep-sea Debris Database (https://www.godac.jamstec.go.jp/dsdebris), curated by the Japan 
Agency of Marine Earth Science and Technology (JAMSTEC). Available data contains images of marine debris 
and various types of marine plants and animals captured in underwater surveys by remotely operated vehicles 
(ROVs), mainly in the sea of Japan. The first work on marine debris detection was done by Fulton et al.10 who 
annotated a selection of 5,720 images from the JAMSTEC database and trained the models for the task of plas-
tic debris detection based on four deep learning architectures for object detection - YOLOv2, Faster RCNN, 
Tiny-YOLO, and Single Shot MultiBox Detector (SSD). The same group of authors extended their previous 
work by making the TrashCan dataset11 public, increasing the dataset size to 7,212 images and providing addi-
tional annotations for instance segmentation task as well as more detailed classification of debris by material 
and instance type. In addition, a more consistent and balanced version of the TrashCan dataset named UNO12 
was produced. In this work, the TrashCan is further processed to correct wrong label annotations or misplaced 
bounding boxes, annotating missing objects, and mitigating category imbalance by fusing all trash categories 
into one category representing all non-natural objects. The key distinction between our dataset and those derived 
from the Deep-sea Debris Database lies in the data collection environment. Our data was collected in optically 
shallow waters (i.e. where light reaches the bottom), consequently making the images susceptible to variations 
in natural light conditions. Another factor that increases the difference between the appearance of objects in 
deep water with respect to shallow water and deteriorates the visual conditions is the growth of marine biolog-
ical fouling on underwater objects. This effect, however, rarely takes place in deep water due to the lack of light. 
Additionally, our dataset includes data from the same sites but captured with different cameras which can be used 
to test the generalization of models in the presence of cross-camera domain shift. All mentioned datasets are 
presented in Table 1, along with additional datasets13,14 of similar modality (i.e. RGB images taken at close range) 
containing land litter and floating marine litter.

The main contributions of the current paper are the following:

 1. We present Seaclear Marine Debris Dataset15 first publicly available underwater marine debris dataset in 
shallow-water environments, annotated for instance segmentation and object detection tasks. The dataset 
comprises images gathered from various locations, captured using different cameras, thereby creating a 
multi-domain dataset.

 2. As part of the technical validation we provide baseline results for marine debris detection with Faster 
RCNN and YOLOv6 models.

 3. To emphasize the significance of multi-domain data in building robust models, we demonstrate that 
enhancing objective image quality measures or addressing domain shifts in the input space through image 
enhancement methods does not improve detection performance or generalization ability in the presence of 
cross-site or cross-camera domain shifts.

Methods
This section provides information about the data acquisition setup, including the robots and camera sensors 
used to collect raw data for Seaclear Marine Debris Dataset15. Brief descriptions of each site where data col-
lection was performed are given, outlining the human activity in the area and potential sources of pollution. 
Additionally, we provide a brief summary of the methods used to analyse and demonstrate the non-trivial nature 
of performing underwater marine debris detection in multi-domain settings.

Degradations introduced by turbidity, floating particles, and the properties of light propagation in water, 
typically result in images of low visual quality i.e., with color distortion, contrast decrease, and haziness. In 
addition to camera and medium dependencies, shallow-water images have a strong dependency on natural 
lighting, which can result in drastically different images for the same site depending on capture time and weather 
conditions. Low visual quality and domain shift can impair the generalization ability for object detection using 
deep learning architectures8. These issues are typically addressed by image processing techniques categorized as 
image restoration methods, assuming a known image formation and degradation model, or image enhancement 
methods that use subjective quality criteria to produce visually pleasing images. Model-based image restoration 
methods used in underwater environments typically depend on parameters that vary depending on water type, 

Dataset Environment No. images Annotation type No. categories Year

Trash-ICRA1926 Underwater (Plastic, ROV, bio) 5720 Bounding Box 3 2019

TrashCan-Material 1.027 Underwater (Plastic, metal, paper, rubber, wood, etc.) 7212 Mask/Bounding Box 16 2020

TrashCan-Instance 1.027 Underwater (Bag, clothing, rope, wreckage, etc.) 7212 Mask/Bounding Box 22 2020

UNO12 Underwater (Bag, clothing, rope, wreckage, etc.) 5902 Bounding Box 4 2022

PlastOPol28 Land/floating (Litter) 2418 Bounding Box 1 2022

DeepPlastic29 Underwater (Plastic litter) 3200 Bounding Box 1 2021

TACO14 Land/floating (Cigarette, plastic film, broken glass, 
styrofoam piece, etc.) 1500 Mask/Bounding Box 60 2020

CleanSea30 Underwater (Litter) 1223 Mask/Bounding Box 19 2022

Table 1. Overview of annotated image datasets for underwater marine debris detection.
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depth, lighting, and camera parameters. The data available within the Seaclear Marine Debris Dataset is collected 
from multiple trials at different sites and captured with cameras of different characteristics. Thus estimating 
these parameters would be difficult if not impossible without performing a calibration procedure in situ for 
each conducted survey. Since image restoration is not applicable, in this paper we resort to image enhancement 
techniques that only require a single image as an input.

First, we describe UIQM and Underwater Index, quality assessment metrics used to gain insight into 
the visual characteristics of each domain. Finally, this is followed by a description of the fusion-based image 
enhancement method16 which we use as a preprocessing step to improve the visual characteristics of the data 
and reduce the domain shift.

Data acquisition. Data collection was performed by deploying camera-equipped Remote Operated Vehicles 
(ROVs) at different sites. A BlueROV2 was equipped with two cameras, a Bluerobotics Low-Light HD Camera and 
a Paralenz Vaquita, while the SST Mini-Tortuga ROV was equipped with a Smart Security SIP-E323CV camera. 
Through multiple trials, different lighting and turbidity conditions were encompassed, with each site having a 
characteristic source of pollution.

•	 Portoč (Island of Lokrum), Croatia - situated 600 meters away from the city of Dubrovnik, is used as a small 
port for docking of tourist ferries. Data includes footage of debris accumulated mostly as a result of tourist 
activity together with the vicinity of cruise ship and yacht anchorage. Moreover, some of the images collected 
from the Lokrum site contain debris that was intentionally placed on the seabed and in the water column by 
divers for Seaclear project demonstrations (an example can be seen in the LO-II labeled image in Fig. 7). The 
Lokrum site features clear transparent water and Posidonia Oceanica seabeds at 5–10 m depth.

•	 Bistrina, Croatia - situated in Mali Ston Bay, the largest production area of the European Flat Oyster (Ostrea 
edulis). Oyster farming activities commonly result in the marine environment being polluted with debris such 
as plastic shellfish trays, buoys, and nets, which is reflected in the imagery for this site, as seen in Fig. 7. The 
water is turbid, exhibiting lower visibility due to increased nutrient and sediment concentrations.

•	 Slano, Croatia - a small village with a harbor located 27 km northwest of Dubrovnik. Pollution is mostly the 
result of harbor and tourist activities along with improper disposal of construction waste. The debris is diverse 
and clustered, partially covered in construction rubble, which causes it to blend in with the background.

•	 L’Estaque (Marseille), France - suburb area located north of Marseille, in the vicinity of the old port. Most of 
the debris is the result of the industrial activity and waste dumping.

•	 Jakljan, Croatia - islet belonging to the Elaphites archipelago. The data features a smaller number of individual 
pieces of debris, mostly bottles and cans as a result of nautical tourism.

Underwater image quality assessment. The available quality metrics for terrestrial color images are 
limited in their applicability to underwater images since they fail to consider the extent of degradation and optical 
properties involved in underwater image formation. Since no reference image is available and subjective measures 
require time-consuming manual labeling, objective underwater quality measures that aim to capture the objectiv-
ity and perception of the human visual system (HVS) are utilized to provide a quality estimation on the SeaClear 
Marine Debris Dataset.

In literature17 it was observed on large amounts of underwater image data that the Lab color space has a 
strong capability of indicating the color distribution and that its (a,b) components can be used to differentiate 
between underwater and terrestrial images. Underwater images typically gather further away from the origin, 
while terrestrial images are usually distributed sparsely around it, which allows formulating the score called 
Underwater Index17 U representing the possibility of the image being taken underwater:

=U
d

Ld d10 (1)
o

a b

where L is an average value of the L channel, while do, da, and db are distances from the origin, along the a axis, 
and along the b axis, respectively.

UIQM18 is composed of UICM, UISM, and UIConM, representing a comprehensive quality of an under-
water image, where its sub-indexes evaluate colorfulness, sharpness, and contrast characteristics, respectively.

UICM is calculated in terms of the variance σ2 and the mean μ of the opponent colour components:

= − = + −R G R G BRG YB
2 (2)

where asymmetric alpha-trimmed statistics σ̂2 and μ̂ are used to avoid the effect of outlier intensities on the 
measure:

σ σ= − . + + . μ + μˆ ˆ ˆ ˆUICM 0 0268 0 1586 (3)RG YB RG YB
2 2

To account for the sharpness loss, first an edge image is obtained by applying the Sobel-Feldman operator 
S( )⋅ 19 on each color channel of the input image I. UISM is then defined as a linear combination based on the 
enhancement measure estimation function20 ε ⋅( ) measuring the contrast ratio of blocks in each edge image, as 
follows:
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where the weights for each channel are chosen to reflect the response of the human visual system.
The final component accounts for the contrast degradation typically caused by backward scattering using the 

logAMEE measure on the intensity image. logAMEE combines the logarithmic entropy of the Michelson 
Contrast and PLIP operators (⊗, ⊕, ⊖), which provide nonlinear representation consistent with HVS:

∑∑=
⋅

⊗
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where ⋅L M is the number of blocks and M ⋅( ) is the PLIP Michelson Contrast21.
The final value of the UIQM18 is given by:

c c cUIQM UICM UISM UIConM (6)1 2 3= ⋅ + ⋅ + ⋅

where the choice of the coefficients c1, c2, and c3 depends on the application, but generally a higher value of 
UIQM value corresponds to an image with a better quality.

Fusion based image enhancement. The Fusion based image enhancement method16 is a framework 
based on blending filters frequently used for image enhancement. This method can be summarized with 3 steps:

 1. Obtaining classical enhanced versions of a degraded image
 2. Deriving weight maps for each enhanced version
 3. Multi-scale fusion using the weight maps

The two derived enhanced versions represent the color-corrected version of the image and the 
contrast-enhanced version of the underwater image after noise reduction, respectively. These two enhanced ver-
sions are referred to as inputs for the Fusion algorithm. The first input is obtained by applying a white balancing 
technique, which improves the Gray-World illumination estimate by adding a weighting based on the size of 
the detected set of colors. To remove degradation caused by the scattering in the medium, the second input is 
derived by applying the local adaptive histogram equalization to a noise-free and color-corrected version of the 
original image.

Fusion enhancement utilizes 4 weight maps per input to enhance the contrast, saturation, and exposedness of 
the image. The Laplacian contrast weight (WL) tackles the issue of global contrast by applying a Laplacian filter 
to each luminance channel of the input and calculating the absolute value of the filter’s output. The local contrast 
weight (WLC) considers the relationship between each pixel and the average of its neighboring pixels. This meas-
ure enhances the visual effect of local contrast by emphasizing transitions, particularly in the highlighted and 
shadowed areas of the second input. The saliency weight (WS) enhances the visibility of objects that lose their 
distinctiveness by applying a saliency algorithm based on the biological concept of center-surround contrast. 
Additionally, to avoid prioritizing highlighted areas in WS and to protect the mid tones that might be altered in 
some specific cases, the exposedness weight (WE) is defined. Exploiting the fact that pixels tend to have a higher 
exposed appearance when their average normalized values are closer to 0.5, WE is defined as the Gaussian dis-
tance to the 0.5 value. This has the effect of tempering the saliency weight and preserving image appearance for 
non-highlighted areas.

The final enhanced image version is obtained by fusing the defined inputs and weights at multiple scales. 
Inputs Ik are decomposed into a pyramid by applying the Laplacian operator L( )⋅  to different scales. The weight 
maps for the k-th input are normalized to satisfy the constraint W 1k

∑ = . For each normalized weight map W  
a Gaussian pyramid ⋅G( ) is computed. Since both the Laplacian and Gaussian pyramids have the same number 
of levels l, mixing is performed independently for each level. Finally, to compute the enhanced image,  
we use:

∑=
=

E x y G W x y L I x y( , ) { ( , )} { ( , )}
k

K
l k l k

1

Several examples of Fusion enhanced images are shown in Fig. 4.

Data Records
This section describes the annotated image data in the Seaclear Marine Debris Dataset. Taxonomy of debris cate-
gories and debris instance distribution are visualized and followed by a brief overview of the dataset’s annotation 
format and directory structure. The dataset is made publicly available at 4TU.ResearchData repository15 under 
the CC BY 4.0 license.

Dataset structure. The Seaclear Marine Debris Dataset is comprised of 8610 underwater marine debris 
images, captured utilizing BlueROV and Mini-Tortuga ROVs and annotated for instance segmentation/object 
detection tasks. Object instances annotated in this dataset can be semantically grouped into 3 super-categories:

https://doi.org/10.1038/s41597-024-03759-2
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•	 debris - objects found in the marine environment as a result of human-induced activities,
•	 bio - marine vegetation and animals,
•	 robot - ROVs used for data collection and their parts.

Debris annotations are categorized by instance type and material, both encoded in the category name as 
{instance}_{material}. The taxonomy of the class categories is depicted in Fig. 2, while the distribution of the 
debris categories included in the dataset is shown in Fig. 1. For the bio category, the animal species was indicated 
in the annotations, while for the robot category the model of the ROV and specific robot parts such as cable or 
vehicle leg which frequently appeared in the images, were indicated. Proportions of specific debris materials in 
the total number of annotations are shown in Fig. 3.

Fig. 2 Visualization of the relations between the debris categories and super-categories.

Fig. 1 Distribution of debris instances in the dataset images by object categories and materials.

https://doi.org/10.1038/s41597-024-03759-2
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Images were labeled using labelme22, a tool that allows creating polygon annotations for instance segmenta-
tion and that provides easy conversion from the labelme JSON format to the frequently used VOC and COCO 
formats. The dataset directory structure reflects the site at which data was captured and the camera used to 
obtain the images as follows:

Information on the number of images and annotations for each sub-folder are provided in Table 2. Visualized 
samples of annotated images from the dataset can be seen in Fig. 7.

Technical Validation
To enable new research and to provide better insight into the characteristics of the provided data and open chal-
lenges, the following experiments were conducted as part of this work:

 1. Baseline results on combined data from all sites in Seaclear Marine Debris Dataset15 for the debris detection 
task are given with both a two-stage Faster RCNN and a one-stage YOLOv6 detector to provide a reference 
for future work.

 2. Analysis of domain effect on object detection performance in shallow-water imagery is conducted based 
on cross-camera and cross-site data splits. By comparing performance on source and fusion-enhanced data 
we investigate the effects of image enhancement on improving the generalization ability of trained models.

Fig. 3 A pie chart showing the proportions of annotated objects belonging to specific debris material, robot, 
animal and bio categories.

https://doi.org/10.1038/s41597-024-03759-2


7Scientific Data |          (2024) 11:921  | https://doi.org/10.1038/s41597-024-03759-2

www.nature.com/scientificdatawww.nature.com/scientificdata/

The results are summarized in Table 4 and Table 5. The experiments and the results are preceded by a brief 
overview of the architectures and design choices for Faster RCNN and YOLO V6 models used to conduct the 
experiments as part of the technical validation.

Baseline models. For obtaining the baseline results on the SeaClear Marine Debris Dataset for marine debris 
detection task we used the Faster RCNN and YOLOv623 models, which we briefly review in this section. Faster 
RCNN24 is a two-stage model and more computationally expensive; on the other hand, YOLOv6 is a lightweight 
model suited for real-time inference.

FasterRCNN. The Faster RCNN architecture can be divided into the following sub-modules:

•	 Backbone Network is a CNN used to extract features from the input image (e.g. ResNet, VGG, AlexNet), 
typically pre-trained on a large dataset such as ImageNet. The choice of the backbone model determines the 
number of model parameters and the representation ability of the model.

•	 Region Proposal Network (RPN): This is the first stage of the model that generates a set of region proposals, 
or regions of interest (RoIs), which are image areas likely to contain objects. The RPN is a lightweight CNN 
that is trained to predict the objectness score and to regress the offsets for a fixed number of anchor boxes at 
each spatial location.

•	 RoI Pooling is applied to the feature maps generated by the backbone network, it converts the generated RoIs 
into fixed-size feature maps, which can then be fed into the second stage of the model.

•	 Fast R-CNN Head: The second stage of the model consists of fully-connected layers that produce the final 
output by predicting class probabilities and bounding box coordinates.

YOLOv6. As in the Faster RCNN architecture, YOLOv6 uses a CNN backbone network to extract features 
from the input image; however, since YOLOv6 is a single-stage detector, it predicts the class probabilities and the 
bounding box without explicitly generating regions of interest. Single-stage detectors generally consist of two 
additional submodules: a neck and a head. The neck of the network is used for aggregation of low-level spatial 
features and high-level semantic features, which are used by the head to produce the final detection results. 

Site Camera Domain Label No. images

Bistrina,Croatia

Bluerobotics Low-Light BIS-I 1390

Paralenz Vaquita Gen 2 BIS-II 2069

SIP-E323CV BIS-III 193

Jakljan,Croatia
Bluerobotics Low-Light JA-I 241

Paralenz Vaquita JA-II 65

Lokrum,Croatia

Bluerobotics Low-Light LO-I 556

Paralenz Vaquita Gen 2 LO-II 77

SIP-E323CV LO-III 339

Marseille,France SIP-E323CV MS-I 3441

Slano,Croatia
Bluerobotics Low-Light SL-I 168

Paralenz Vaquita SL-II 71

Total 8610

Table 2. No. images per dataset domains, grouped by data collection sites and cameras.

Fig. 4 The top row showcases the original images from different data collection sites of our dataset, while the 
bottom row displays the corresponding Fusion enhanced versions. A more uniform color distribution can be 
observed in the Fusion-enhanced images.

https://doi.org/10.1038/s41597-024-03759-2
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Design choices for the YOLOv6 submodules are made aiming to improve the computational efficiency and 
accuracy trade-off when compared to its predecessors, specifically YOLOv5 and YOLOX models.

The EfficientRep backbone used in YOLOv6 utilizes the re-parametrization strategy inspired by RepVGG25 to 
decouple the multi-branch topology at learning time and to provide a simpler single path topology at inference 
time. The Rep-PAN neck is a modified version of the PAN topology from YOLOv4 and YOLOv5 models that 
replaces the CSP-Block with a RepBlock for small models and CSPStackRep for large models. Unlike YOLOv5 
the design of the YOLOv6 detection head decouples the classification and regression layers like YOLOX, but 
reduces the number of convolution layers to increase efficiency.

Experimental setup. Baseline results were obtained using a conventional approach to object detection. A 
two-stage Faster RCNN and a one-stage YOLOv6 model initialized with COCO dataset weights were finetuned 
to the Seaclear Marine Debris Dataset. We used a larger (41.6 M parameters) FasterRCNN model, utilizing a 
Resnet-50 backbone with FPN (Feature Pyramid Network) for feature extraction and a smaller YOLOV6 S model 
(17.2 M parameters).

Model Fusion Enhancement mAP (%) mAR(%)

mAP(%) per site

Bistrina Jakljan Lokrum Marseille Slano

Faster RCNN R50 + FPN 61.7 68.1 60.7 58.2 55.9 80.4 32.6

Faster RCNN R50 + FPN ✓ 59.0 65.6 57.2 51.9 52.4 79.2 28.7

YOLOv6 S 68.3 75.0 69.5 66.7 59.3 79.0 46.9

YOLOv6 S ✓ 68.9 75.4 69.6 70.2 60.3 80.6 46.2

Table 4. Stratified split baseline results.

Cross-camera Domain Generalization

Model Fusion Enhancement

Split

mAP (%) mAR (%)Train Test

Faster RCNN R50 + FPN BIS-II BIS-I 14.5 22.0

Faster RCNN R50 + FPN ✓ BIS-II BIS-I 14.21 23.45

YOLOv6 S BIS-II BIS-I 26.2 46.6

YOLOv6 S ✓ BIS-II BIS-I 24.4 44.5

Faster RCNN R50 + FPN BIS-I BIS-II 12.0 18.0

Faster RCNN R50 + FPN ✓ BIS-I BIS-II 14.16 21.41

YOLOv6 S BIS-I BIS-II 24.7 38.8

YOLOv6 S ✓ BIS-I BIS-II 26.0 40.4

Cross-site Domain Generalization

Faster RCNN R50 + FPN {BIS-*} {LO-*} 5.0 9.7

Faster RCNN R50 + FPN ✓ {BIS-*} {LO-*} 3.7 8.3

YOLOv6 S {BIS-*} {LO-*} 20.4 51.1

YOLOv6 S ✓ {BIS-*} {LO-*} 7.2 42.7

Table 5. Evaluation of generalization performance in cross-camera and cross-site setting.

UIQM Underwater Index

Source Fusion Enhanced Source Fusion Enhanced

BIS-I 1.544 3.358 ↑ 13.932 2.246 ↓

BIS-II 1.978 3.507 ↑ 22.672 2.122 ↓

BIS-III 1.898 3.212 ↑ 6.106 2.085 ↓

JA-I 2.692 3.426 ↑ 5.024 2.941 ↓

JA-II 2.252 3.490 ↑ 2.376 1.949 ↓

LO-I 2.279 3.274 ↑ 2.768 3.104 ↑

LO-II 1.991 3.443 ↑ 4.777 1.496 ↓

LO-III 1.598 3.136 ↑ 3.496 3.558 ↑

MS-I 1.606 3.291 ↑ 7.345 1.878 ↓

SL-I 2.928 3.416 ↑ 8.209 4.762 ↓

SL-II 2.084 3.447 ↑ 3.985 2.192 ↓

Table 3. Per domain UIQM and Underwater Index values, for source and fusion enhanced data.

https://doi.org/10.1038/s41597-024-03759-2


9Scientific Data |          (2024) 11:921  | https://doi.org/10.1038/s41597-024-03759-2

www.nature.com/scientificdatawww.nature.com/scientificdata/

Faster RCNN training was performed for 150 epochs using the cosine annealing (with warm restarts) learn-
ing policy with a base learning rate of λ = .0 0010  and =T 100  steps, with a multiplication factor of 2. Reported 
results were obtained using 640 360×  input images and mini-batches of size 2. For YOLOv6 S finetuning was 
done based on the implementation available in the official repository. The model was fine-tuned for 400 epochs 
with a batch size of 32 and an input image size of 640 × 360.

To mitigate the impact of categories with a small number of annotations we consolidated categories in the 
dataset that had fewer than 50 annotations by grouping them with appropriate, related categories. For example, 
snack_wrapper_plastic (8 annotations) and snack_wrapper_paper (172 annotations) were combined into snack_
wrapper (180 annotations) category. This process resulted in the final dataset of 34 categories used to conduct 
the experiments presented in further text.

Baseline results. To obtain the training and test set for the baseline evaluation we performed an 80%-20% 
random split on the whole dataset. Both models exhibited high performance in this setting with YOLOv6 S 
outperforming the Faster RCNN model by ≈7%. This is most likely due to better regularization of the smaller 
model on a dataset of this size and YOLOv6 using multiple data augmentation strategies, which were not utilized 
on Faster RCNN. Performance was consistent for both models across sites, as seen in Table 4, with both models 
showing the highest performance on the Marseille data, most likely due to the lowest inter-category variance 
(as seen in Fig. 5) and the static nature in which the data was collected. Also, both models exhibit the lowest 
performance on the Slano data, which is the most challenging site in our dataset due to the small sample size, 
various types of debris, and partial occlusion of objects by construction rubble causing them to blend with the 
background.

Fig. 5 Distribution of object categories for each site used in the evaluation of baseline results.

Fig. 6 Category distributions for domains used in cross-camera and cross-site experiments.
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Additionally, we evaluated both models on baseline data split with fusion-enhanced images. For Faster 
RCNN, we report a 2.7% performance drop in terms of mAP, compared to evaluation on unprocessed data; 
however, on YOLOV6, a slight improvement of 0.5% was achieved.

effects of image enhancement and evaluating generalization. As seen in Table 3 processing the 
images with Fusion-based image enhancement seems to provide a two-fold benefit by significantly improving the 
image quality as measured by UIQM and by lowering the Underwater Index. Visualizing the enhanced images 
versus the source images in terms of (a,b) components of Lab color space (see Fig. 8), shows that this sort of pro-
cessing eliminates the color distribution gap between different domains in the image input space. However, these 
improvements in terms of objective quality metrics do not correspond to consistent improvement of object detec-
tion performance nor a better generalization ability of the model. In a cross-site setting, both models perform 
poorly and no performance improvements are observed from applying image enhancement.

Evaluating in a cross-camera setting, where the model was trained on BIS-I data and evaluated on BIS-II data 
we observed an improvement of 2.1% in terms of mAP. However, this improvement does not hold for the inverse 
case where the model is trained on the BIS-II data and evaluated on BIS-I data. It is important to note that for 
these two domains, the shift was caused only by camera pose offset and camera type since both were mounted 
on the same ROV during the data collection survey. This results in a minimal difference in terms of category 
distribution between training and validation data as seen in Fig. 6. However, there is still a significant drop in 
performance compared to the baseline results where data from all domains is readily available. This suggests 
that a significant part of the domain shift can be attributed to using different cameras and the changes in point 
of view from how each camera was mounted.

In a cross-site setting, imbalanced category distributions between training and validation data are unavoid-
able because the marine life and type/quantity of debris depend on specific locations and human activity. This 
issue is exaggerated by the large number of categories as objects are less likely to belong to the same category. 
Using the full 34 categories of the dataset was not viable in the cross-site setting as there was little overlap 

Fig. 7 Annotated sample visualization from each domain of the dataset, showing both polygon masks and 
category labels.
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between the category distributions. In an attempt to produce a more balanced distribution, two strategies were 
explored: aggregating debris categories based on materials (plastic, metal, rubber, fiber, glass, and other 
debris) as previously done in literature10 and consolidating all debris categories into a single category. 
Non-debris categories were grouped into one of the appropriate categories: robot, animal or plant. Data from 
the Bistrina site is used as training data because it provides the most diverse domain. Lokrum site was chosen 
for validation data because it has data available from the same set of cameras as the training domain, allowing 
us to isolate the site effect on the domain shift and evaluate its impact on performance. As demonstrated in 
Table 4, the performance in terms of mAP degrades further in cross-site scenarios. This outcome is expected, 
as using different sites for training and validation significantly affects the variance in category distribution and 
increases intra-category variance. An outlier among the cross-site experiments is the top-performing one, 
reporting a mAP of 20 4%. . Upon inspecting the AP per category, it was observed that this result was driven by 
the model’s high average precision (AP) for the robot category and not by improved debris detection 
performance.

Fig. 8 Scatter plots of source and enhanced data per domain in terms of (a, b) components in Lab color space, 
showing the distinct grouping of the Fusion-enhanced data around the origin.
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We report the mean Average Precision (mAP) in Table 5 using the full 34 categories of the dataset for 
cross-camera experiments and using the 4 aggregated categories for cross-site experiments. Object category 
distributions for both sets of generalization experiments can be seen in Fig. 6.

Usage Notes
Annotations and additional information about the dataset are stored in COCO (Common Objects In Context) 
style format (single JSON file). Using this standard annotations format allows utilizing open-source tools, like 
COCO API (https://github.com/cocodataset/cocoapi) for easy access through multiple programming languages 
(Matlab, Lua, Python). More complex utility functions for visualizing and modifying annotations are available in 
open-source Python packages, such as KWCOCO (https://github.com/Kitware/kwcoco).

Code availability
The custom code used for generating figures, conducting image quality analysis, and image enhancement can 
be found in the repository associated with this publication (https://github.com/adjuras/seaclear-dataset). Our 
MATLAB code used for Fusion based image enhancement is a slightly modified version of an open-source 
implementation available online (https://github.com/fergaletto/Color-Balance-and-fusion-for-underwater-
image-enhancementr.-).

Official UIQM implementation used to obtain values presented in Table 3 is available for download per request 
on the author’s website (https://karen-panetta.squarespace.com/download). YOLOv6 S implementation used for 
the technical validation is available in the official repository (https://github.com/meituan/YOLOv6).
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