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SEQUEL: Semi-Supervised Preference-based RL with Query Synthesis via
Latent Interpolation

Daniel Marta∗1, Simon Holk∗1, Christian Pek2, and Iolanda Leite1

Abstract— Preference-based reinforcement learning (RL)
poses as a recent research direction in robot learning, by
allowing humans to teach robots through preferences on pairs
of desired behaviours. Nonetheless, to obtain realistic robot
policies, an arbitrarily large number of queries is required
to be answered by humans. In this work, we approach the
sample-efficiency challenge by presenting a technique which
synthesizes queries, in a semi-supervised learning perspective.
To achieve this, we leverage latent variational autoencoder
(VAE) representations of trajectory segments (sequences of
state-action pairs). Our approach manages to produce queries
which are closely aligned with those labeled by humans,
while avoiding excessive uncertainty according to the human
preference predictions as determined by reward estimations.
Additionally, by introducing variation without deviating from
the original human’s intents, more robust reward function
representations are achieved. We compare our approach to
recent state-of-the-art preference-based RL semi-supervised
learning techniques. Our experimental findings reveal that we
can enhance the generalization of the estimated reward function
without requiring additional human intervention. Lastly, to
confirm the practical applicability of our approach, we conduct
experiments involving actual human users in a simulated social
navigation setting. Videos of the experiments can be found at
https://sites.google.com/view/rl-sequel

I. INTRODUCTION

Recent robot learning advances in RL lean towards lever-
aging human knowledge and guidance as an interactive and
efficient medium [1], [2]. By inferring reward functions from
humans, robot policies can be made user-specific [3], adapted
efficiently [4], [5] and even aligned with natural language [6],
[7]. Many recent works propose to leverage demonstrations,
preferences, or combinations of both [8]–[14]. Preference
learning [15]–[17] poses as a data-efficient learning approach
which is able to convey subtle and multi-modal nuances [18].
Indeed, preference-driven teaching introduces the critical
component of structural alignment [19]–[21], while also
fostering a significant diversity in trajectory paths (state-
action sequences), both essential for robot learning.
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While preference learning allows human users to label
large amounts of state-action sequences, current preference-
based approaches [16], [22] require large amounts of actual
human feedback to be applicable to realistic robot tasks [23].
While there are recent works which focus on pre-training
[23], [24] to tackle this issue, many feedback efficiency
challenges remain. For example, small sample sizes of la-
beled preferences can lead to reward exploitation — a failure
in reward inference which can lead to sub-par behaviours
[25], [26]. Moreover, preferences exhibit a strong correlation
with causality [27], [28]. That is to say, there is often an
underlying reason if one behaviour is favoured over another.
Ignoring this aspect can result in a distributional shift, which
leads to a phenomenon known as causal confusion [29],
[30], where additional interactions with the environment can
degrade performance. Moreover, Tien et al. [31] showed in
their study on preference-based RL that reward functions
often succumb to false correlations and reward hacking,
achieving minimal test errors but failing to extend to out-of-
distribution states. This leads to additional human burden and
ultimately necessitates the extraction of internal and implicit
representations via brute force by over-querying humans.

We introduce SEQUEL: SEmi-Supervised Preference-
based RL with QUEry Synthesis via Latent Interpolation.
In this work, we view the feedback inefficiency and gener-
alization problem of preference-based RL through the lens
of representation learning and semi-supervised learning [32].
Akin to the idea of using generative models to learn environ-
ment dynamics for policy learning [33]–[35], we address the
problem of limited human-labeled query data. We propose
to leverage a readily available policy space and expand the
available queries in a comprehensive way by interpolating
between query elements (trajectories) in the latent space.
There are numerous works which have endorsed the effec-
tiveness of latent space interpolation [36]–[39], particularly
in intricate input spaces like images, thereby facilitating
a seamless transition between data points. Through this
process, we can derive new queries from the interpolated
latent space vectors, which maintain an intrinsic connection
to the original queries, allowing us to delve into the decision
boundaries of the reward model. The objective is to introduce
minor yet correlated variations to the labeled queries, signifi-
cantly boosting the quality and diversity of the training data,
enhancing the reward function out-of-distribution robustness
and expediting learning. To demonstrate the effectiveness
of our method, we provide empirical evidence, including
comparisons with state-of-the-art approaches in preference-
based RL. We also evaluate SEQUEL against actual human
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data, further reinforcing its merits and performance.

II. RELATED WORK

Learning from preferences in RL. Preference-based
RL has an active research front and enjoys from an ever
growing body of literature [15]. Prior work in preference
learning [40]–[42] presents utility functions as linear func-
tions and offers closed-form solutions for the expected utility
of selection of pairs of demonstrations to better understand
the expert’s preferences and align a policy. There is also
previous work which improves policies through preferences
either by pre-defining features [43] or through Bayesian
approaches [44], [45]. However, the constraints and as-
sumptions imposed on the reward function space can be
hard to adapt to the intricate objectives of modern robotic
tasks [23]. Contemporary research approaches impose few
restrictions on reward function modality [13], [16], [46] and
show promising results on robotic benchmarks. Nonetheless,
they require extensive usage of human feedback which still
limits their applicability to real robotic tasks [23], [47]–[49].
While there is recent research which approaches the feedback
inefficiency challenge through pre-training [23], [24], or bi-
level optimization [50], we explore a representation learning
approach to exploit labeled human queries. While we do not
approach directly the preference explanation [49] problem,
our work can comprehensively utilize the latent space of
labeled queries to improve the robustness of preference-based
RL reward functions and can be used in other frameworks.

Data augmentation and semi-supervised learning.
Semi-supervised learning is a known and striving field
in machine-learning [32], [51]. Prior work considered en-
tropy minimization [52], consistency regularization [53], or
pseudo-labelling [53], [54] to improve generalization on sets
of unlabeled data. Kingma et al. [55] popularized generative
models to improve semi-supervised learning performance in
computer vision tasks. Unsupervised data augmentation has
been considered [56], where a clear link emerges between
better data augmentation leading to significantly better semi-
supervised learning. In RL, even simple data augmentation
techniques such as in the form of input perturbations [9],
[57] can effectively regularize and improve the robustness of
policies [58]. Unsupervised representations have also been
used to improve data efficiency and generalization of policies
[59], [60]. Closer to our work in preference-based RL, Park
et al. [48] propose to label unlabeled queries in a semi-
supervised learning approach by utilizing pseudo-labelling
and temporal cropping. We build on his work by proposing
to leverage generative models to synthesize newer queries
to improve out-of-distribution performance. Our work can
also be seen as a form of distillation [61]–[63] where
the generative (teacher) model can be used as an effective
regularizer to train a reward (student) model.

III. PRELIMINARIES

From a state st, a robot provides an action at following
policy πω(at, st) parameterized by ω. This action prompts a
reward r(st, at) and a new state st+1 from an environment

which is modelled as a Markov decision process (MDP).
The objective of the robot is to obtain an optimal policy
π∗
ω(at, st) which maximizes the expected discounted sum of

rewards. In this work, we estimate a model for the reward
function from humans in a feedback-efficient manner.

Preference-based RL. As in [16] we formulate the prob-
lem of estimating a reward function r̂ψ parameterized by
ψ from preferences as a supervised learning problem. The
goal of preference-based RL [15], [16] is to infer state-
action reward information from pairs of trajectory segments.
Trajectory segments [64] consist of sequences of state-action
pairs, denoted as σj = ((sjt , a

j
t ), . . . , (s

j
t+l−1, a

j
t+l−1)),

where j denotes the index of the segment, which contains
state-action pairs ranging from t to t+l, where l is the length
of the segment. Pairs of trajectory segments, denoted as
(σ0, σ1), are given to humans who then assign a preference
y ∈ {0, 0.5, 1}. If the human prefers σ0 over σ1 they provide
y = 0 which is noted as σ0 ≻ σ1, conversely y = 1
reads as σ1 ≻ σ0 and y = 0.5 denotes equal preference
of both segments. Following the Bradley-Terry model [65],
the probability of a human preferring σ0 ≻ σ1 assuming it
depends exponentially on the sum of rewards over the length
of the segments is given by:

Pψ[σ
0≻σ1]=

exp(
∑︁
t r̂ψ(s

0
t , a

0
t ))

exp(
∑︁
t r̂ψ(s

0
t , a

0
t ))+exp(

∑︁
t r̂ψ(s

1
t , a

1
t ))

(1)

In this formulation, the reward model r̂ψ can be trained as
a binary classifier to predict human preferences on unseen
segments, and used as a proxy for the reward function. The
preferences provided by humans are stored alongside the
corresponding segments and stored on a labeled dataset Dl
consisting of triplets (σ0, σ1, y). When optimizing r̂ψ we
sample from Dl and minimize the binary cross-entropy loss:

LCE(r̂ψ,Dl) = − E
(σ1,σ2,y)∼Dl

[(1−y) log Pψ(σ1 ≻ σ2)

+ y log Pψ(σ2 ≻ σ1)]
(2)

A. Semi-supervised learning techniques in preference-based
RL

Semi-supervised learning aims at leveraging unlabeled
samples to improve a model’s robustness and generalization.
Consider Lsu as a supervised loss and Lu as an unsupervised
loss, the semi-supervised loss [32] can be typically written as
LSSL = Lsu + λLu, where λ ∈ [0, 1] is a balancing param-
eter between both losses. Next, we discuss two techniques
presented in SURF [48].

Pseudo-labeling. We revisit pseudo-labeling [53], [54] in
the context of preference-based RL [48]. While we directly
obtain preferences y from humans, we may take an estima-
tion ŷ for unlabeled queries by picking the segment which is
more likely to be chosen. Consider unlabeled segments σ0

u

and σ1
u, then we define ŷ as:

ŷ =

{︄
0, if Pψ [σ0

u ≻ σ1
u] > 0.5

1, if otherwise.
(3)

Moreover, only queries which have a high confidence level
Pψ[σ

0
u ≻ σ1

u] > τ, τ ∈ [0, 1] are stored in triples alongside
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unlabeled segments to form Du. The semi-supervised loss is
as follows:

LSSL = LCE(r̂ψ,Dl) + λLCE(r̂ψ,Du) (4)

Temporal cropping. Temporal cropping is widely used
as a semi-supervised technique [53], [66]. In the context of
preference-based RL [48], considering our initial definition
of a segment, temporal crop of σj is another trajectory
segment σj

′
= ((sjt′ , a

j
t′), . . . , (s

j
t′+l′−1, a

j
t′+l′−1)), where

t ≤ t′ < t′ + l′ ≤ t + l and l′ ≤ l. Thus, a temporal
crop of σj

′
is any sub-sequence of σj .

IV. SEQUEL

Human data

Synthesized
Encoder Decoder

Fig. 1: An overview of SEQUEL: We start by collecting segments and
presenting them to humans, which in turn provide preferences. Then we train
a VAE to interpolate and synthesise new queries to improve the robustness
of r̂ψ .

In this section, we formalize SEQUEL: SEmi-Supervised
Preference-based RL with QUEry Synthesis via Latent In-
terpolation. Our proposition is to leverage the structural
composition of query elements to synthesize novel queries
by interpolating the latent space of labeled queries. Figure 1
provides a visual representation of our framework, while
Algorithm 1 offers an overview of the technique combined
with preference-based RL.

A. SEQUEL’s algorithm

First we start by acquiring trajectory segments σ obtained
from consecutively sampling a policy πω and store them in
a dataset Dσ = {σi}Dσ

i=1. Then, we sample segments from
Dσ to query humans resulting in triplets (σ0, σ1, y) stored in
Dl. As in standard preference-based RL, the policy training
is interleaved with reward training. We sample Dl to obtain
a new estimate of r̂ψ through Eq. 2, and use this estimation
to resume train policy of πω following PPO [67].

To build an informative latent space, we explore a compact
representation for segments. More concretely, we propose to
leverage a Variational Autoencoder (VAE) [68] on segments
collected from Dσ . We start by defining an encoder qϕ(z|σj)
which maps a trajectory segment σj to a distribution over
latent representations Z , where ϕ are the parameters of
the encoder network. Then, we define a decoder pθ(σj |z),
parameterized by θ which aims at reconstructing the original
segment σj . The objective is to precisely reconstruct the orig-
inal segments while encouraging the encoding distributions
Z to be close to a standard normal distribution. Following
Kingma et al. [68], the point-wise loss of σj can be written
as:

LV AE(θ, ϕ;σj) = E
z∼qϕ(z|σj)

[− log pθ(σ
j |z)]

+ β ·DKL(qϕ(z|σj)||N (0, I))
(5)

where DKL is the Kullback-Leibler divergence and β is
a hyperparameter which balances both objectives. Then
we sample mini-batches of size N to compute the total
loss where LV AE(θ, ϕ) =

∑︁N
i=1 LV AE(θ, ϕ;σi). The fine-

tunning process of the VAE is interleaved with training both
r̂ψ and πω , i.e., we obtain new segments by sampling πω ,
then we train the VAE on the full dataset Dσ and elicit
feedback from humans to train a new estimation of r̂ψ .

Algorithm 1 SEQUEL

Require: Queries per session M , Interpolation increment δ,
classification boundary τ , unlabeled batch ratio µ, loss
weight λ

1: for epoch = 1, 2, ... do
2: /* Train policy πω */
3: Collect trajectories Btemp by sampling πω

Btemp ← {(st, at, st+1, rψ(st, at))}
Btemp
j=1

4: Optimize πω via PPO with Btemp

5: Sample πω to obtain Dnew
σ = {σi}Dσ

i=1

6: Store new trajectories Dσ ← Dσ ∪ Dnew
σ

7: /* Train enc. qϕ(z|σ) and dec. pθ(σ|z) */
8: Train qϕ(z|σ) and pθ(σ|z) via Eq.5

with Dσ
9: /* Obtain Human-feedback */

10: Form pairs of segments {(σ0, σ1)}Mi=1

by sampling (σ0, σ1) ∼ Dnew
σ

11: Inquire humans for preferences and store
them on Dl ← Dl ∪ {(σ0, σ1, y)}Mi=1

12: /* Train reward function r̂ψ */
13: for each (σ0, σ1, y) ∈ Dnew

l do
14: ζ ← 0, z0 ∼ qϕ(z|σ0), z1 ∼ qϕ(z|σ1)
15: repeat
16: ζ ← ζ + δ
17: z0interp = (1− ζ) · z0 + ζ · z1
18: z1interp = (1− ζ) · z1 + ζ · z0
19: σ̂0

interp ∼ pθ(σ|z0interp)

20: σ̂1
interp ∼ pθ(σ|z1interp)

21: Store interpolated queries
Du ← Du ∪ (σ̂0

interp, σ̂
1
interp, y)

22: until Pψ[σ̂0
interp ≻ σ̂

1
interp] < τ

23: end for
24: Train r̂ψ via Eq.4 with Dl and Du

and hyperparameters λ, µ
25: end for

B. Query-based latent space interpolation for semi-
supervised preference-based RL

A significant limitation of relying solely on pseudo-
labeling (see Sec. III) in preference-based RL is that the
reduced query sizes from human labelers hinder the ability to
develop an effective segment representation. This challenge
makes it difficult to distinguish similar segments, and it
enforces an overly strict classifier decision boundary when
pseudo-labeling. Consequently, this can lead to over-fitting
and noisy predictions, issues that SURF partially addresses
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through temporal cropping. In SEQUEL, we chose not to
focus on temporal cropping, since it only yielded improve-
ments of ∼ 4% on average on Cheetah and Walker2d,
when combined with our interpolation approach. In order to
interpolate and synthesize newer queries from labeled data,
we use both the encoder qϕ(z|σ) for interpolation and the
decoder pθ(σ|z) for query augmentation to obtain a more
robust reward function r̂ψ . Consider a query (σ0, σ1, y),
from the posterior latent distribution qϕ(z|σ) we sample both
z0 and z1, such as z0 ∼ qϕ(z|σ0) and z1 ∼ qϕ(z|σ1)
respectively. Following the reparameterization trick [68], we
take the output of the encoder as a mean µ and perform
element-wise multiplication with a standard normal such as
z0 = µ0 + ϵ0 ·

√
Σ0 where Σ0 is sampled from N (0, 1) and

has the same size as µ0.
We synthesize new queries by interpolating near the de-

cision boundary of both σ0 and σ1, more concretely, we
complement pseudo-labeling by allowing a much larger τ
by inferring on segments which are equally spaced in the
latent space. Given z0 and z1, we can interpolate such that:

z0interp = (1− ζ) · z0 + ζ · z1, (6)

z1interp = (1− ζ) · z1 + ζ · z0 (7)

where ζ is an interpolation parameter. Then, for each
interpolation, we decode it back to the original space such
that σ̂0

interp ∼ pθ(σ|z0interp) and σ̂1
interp ∼ pθ(σ|z1interp). The

VAE is capable of learning continuous and smooth latent
space representations, where similar data points are posi-
tioned closely together. However, the resulting structure may
not exhibit linear properties. To safeguard against noisy latent
interpolations, we vary ζ in small increments δ until the
decoded representations form a query which is under the
decision boundary τ , i.e Pψ[σ̂

0
interp ≻ σ̂1

interp] < τ, τ ∈
[0, 1]. This approach allows for a nuanced handling of the
environment-dependent variations in the latent space struc-
ture (refer to Sec.V-C). Finally, we pseudo-label by main-
taining the initial label of the original segments, and store
the generated queries (σ̂0

interp, σ̂
1
interp, y) into the unlabeled

dataset Du. Following [48], [53] we sample a larger labeled
minibatch by a factor of µ and optimize r̂ψ following Eq. 4.

V. EXPERIMENTAL EVALUATION

We proceed to investigate the effectiveness of SEQUEL:
(1) We assess the performance of SEQUEL against a baseline
and semi-supervised techniques introduced by SURF [48];
then (2) we elicit actual human feedback to access the
real world applicability of our approach; and finally (3) we
explore the latent space of the queries produced by SEQUEL
during the human feedback collection.

A. Synthetic Benchmark Performance

Environments. We benchmark SEQUEL on a variety
of tasks: four environments, Hopper, Walker, Cheetah and
Swimmer [69] which were used for testing in the original
preference-based RL baseline [16]; Reacher from the Deep-
Mind Control Suite [70]; and four complex robotic manipu-

lation task from Meta-world [71]: DoorClose, DrawerClose,
WindowClose, 3DReacher.

Implementation Details. We compare our approach with
two algorithms: (1) a baseline without data augmentation
following Christiano et al. [16] and refer to it as PPO; (2)
we implement pseudo-labeling and temporal cropping intro-
duced in SURF but use PPO [67] instead of SAC [72], which
we refer to as SURF-PPO. We keep the same hyperparam-
eters and implementation design across the experiments for
the policy πω trained following PPO, the reward function
r̂ψ , the query selection strategy, and the amount of feedback
collected. We optimize all networks using ADAM [73]. To
select queries, we use a strategy based on the variance
across ensemble members, i.e. ensemble disagreement, of the
estimated reward model r̂ψ . For the semi-supervised learning
parameters, we use the same loss weight ζ = 1 and unlabeled
batch ratio µ = 4 for both SURF-PPO and SEQUEL, and
use their parameters for both the and threshold parameter
τ = 0.99. Where in SURF their ablation study finds lower
values of τ yields lower learning performance, our approach
is able to set lower values of τ . We set τ = 0.9 and make
interpolation increments of δ = 0.025.

Results Discussion. To test the query efficiency of SE-
QUEL, we perform extensive testing on a variety of envi-
ronments with different dynamics and settings to test if our
interpolation hypothesis of considering latent representations
of segments holds. The full results of these experiments can
be seen in Figure 2. At first glance, we see both semi-
supervised approaches to improve on the baseline, indicating
these methods help reward function training and conse-
quently policy learning. For all environments, we observe
the asymptotic performance of SEQUEL to be either on-par
or above SURF-PPO and baseline. The largest differences
in performance stem from Walker and DoorClose. Across
environments, we also observe a common trend of SEQUEL
accelerating learning earlier than other methods. While when
considering pseudo-labeling, noisy reward estimations at the
beginning of training will not yield high levels of confidence
τ of choosing a segment over another Pψ [σ0 ≻ σ1], our
method is able to immediately create synthetic queries near
the original boundary improving reward function robustness.
To probe the effects of SEQUEL on achieving a more
regularized reward function, and to distinguish the role of
the latent queries created by SEQUEL in enhancing segment
representations, we examine the accuracy of the reward
function. In Figure 3, we depict the reward model accuracy
throughout all phases of training for the three most complex
tasks. During each feedback session, which occurs every 20K
timesteps, we sample a thousand queries from the policy
πω and plot the reward accuracies for each condition. Our
analysis confirms that SEQUEL consistently performs at a
higher level when compared to the other conditions.

B. Eliciting Human-feedback with SEQUEL

To access the effectiveness of SEQUEL with actual human
feedback, we use SocialNav [74], a social navigation task
environment developed in Unity [75] implemented by the
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Fig. 2: Learning curves for the different environments. The titles indicate the environment used followed by the total queries collected from a synthetic
oracle. The solid lines represent the mean and shaded areas of the standard error.

Fig. 3: Curves showing the accuracy on queries sampled after each training
loop of the reward function, showing the generalization to unseen queries.

SocialNav
SEQUEL SURF+PPO PPO

Rwd. 0.813 0.719 0.717
Acc. 67.52% 64.94% 62.11%

TABLE I: Reward and accuracy observed in SocialNav using real human
feedback.

authors to better visualize the synthesized queries produced
by SEQUEL in Sec. V-C. As noted by the findings of
[23] when performing preference-based RL with real users,
maximizing information when picking queries by ensemble
disagreement, can produce queries difficult to answer for
being hard to distinguish. We followed their suggestion by
introducing a ”skip” option and increased the number of
randomly sampled uniform queries to 30%. We start from a

pre-trained policy πω trained on the default reward of the en-
vironment for 5×105 timesteps to acquire a pool of segments
which are more suitable for preference elicitation, saving
human queries in the process. We conduct a comparative
analysis between baseline, SURF-PPO, and SEQUEL. We
gathered feedback by requesting humans to favor segments
in which the robot collects stars safely as it traverses through
the corridor. To evaluate if a reward function generated by
SEQUEL is superior in forecasting the selection of segments,
thus offering better generalization, we reserve 20% of the
collected queries for accuracy testing. We proceed with
training under all conditions and the reward results are
presented in Table I. We notice that SEQUEL demonstrates
the highest final reward, closely trailed by SURF-PPO and
the baseline, substantiating the findings made in Section V-
A. Furthermore, we also confirm a marginally increased
accuracy, backing our hypothesis of a more robust reward
function.

C. Latent space of queries produced by SEQUEL

We delve deeper into the unlabelled queries synthesized
by SEQUEL. A downside to relying exclusively on reward
estimations for pseudo-labeling of unlabelled queries is that
in the early stages of training, these estimations can be fairly
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Fig. 4: On the left side, the TSNE projection of query pairs. On the right, the reconstructed query segments. The original preferred segment is highlighted
in green, and the non-preferred one in red. The segments colored in cyan and magenta represent interpolated and decoded segments that are ζ = 0.025
(2.5%) and ζ = 0.05 (5%) respectively, away from the preferred segment. Similarly, yellow and orange depict segments that are 2.5% and 5% distant
from the non-preferred segment.

uncertain due to data scarcity. Consequently, the network’s
intermediate layers may not have a precise representation
of the input, which can hinder the differentiation between
similar segments. To mitigate this issue, SURF employs
a high threshold parameter τ of 0.99. SEQUEL offers a
solution to this challenge by utilizing the latent space of
segments, which can be acquired from a dataset of segments
Dσ . This dataset is gathered through a sequential sampling
of a policy, eliminating the necessity for further human
intervention. We can capitalize on our prior knowledge of
the distribution of segments to interpolate and improve the
generalizability of our reward function. This is realized by
incorporating correlated variations, enhancing the speed of
developing an internal representation of the reward function.
We use our SocialNav environment to intuitively illustrate
SEQUEL’s strength. We start by pre-training πω with the
default reward function of the environment. We then follow
the SEQUEL Algorithm 1 and proceed to acquire Dσ , and
both the VAE encoder qϕ(z|σ) and decoder pθ(σ|z). In
Figure 4, the latent space of labeled and synthesized queries
is explored by illustrating trajectories, using only the position
variables (x, y) extracted from the complete state. Consider
an example of a query presented to humans, characterized by
encoded representations z0 and z1, and graphically represent
it in green and red respectively, in Figure 4. We interpolate
on both query elements with interpolation parameter δ =
0.025. Observe that the interpolated points do not align
perfectly, as this is a TSNE projection originating from a
space with more than two dimensions. Finally, we decode the
interpolated points back to the original input space following
pθ(σ|z). By inspection, we observe all the reconstructed
interpolated segments to be highly correlated to the original
ones, supporting our hypothesis of being able to extend the
preference of the labelled query provided by the human to
the interpolated ones. We observe a gradient to be expected
from ζ = 0.025 to ζ = 0.05 on the synthesized segments.

However, at ζ = 0.05 we get a correspondent confidence
level of Pψ[σ̂

0
interp ≻ σ̂1

interp] ≈ 0.96 which would be
discarded if we considered a cut-off of τ = 0.99 by sampling
using pseudo-labeling.

VI. DISCUSSION

Future Research. SEQUEL seamlessly integrates with
any preference-based RL framework, offering improved re-
ward function generalization without the need for additional
human-labeled samples. While SEQUEL poses as a stepping
stone in improving preference-based RL, it requires some
assumptions and leaves future research open.

Quality of the latent representation. If feature vectors
are poorly represented in the latent space, it can result
in incorrect interpolation of latent segments, causing our
approach to revert to pseudo-labeling. This highlights an
intriguing area of research: the potential to train generative
models in a manner that enables the latent space to reflect not
only the policy space but also to align with the perspectives
and annotations of human evaluators.

Active Learning. While we chose ensemble disagreement
as a query selection strategy, we could potentially leverage
the latent representation of segments to create queries that
maximize reward information while not being too similar for
humans to be able to distinguish.

Conclusion. We presented SEQUEL, a novel semi-
supervised learning approach for preference-based RL which
advances the field. As shown by our experiments, our ap-
proach is on-par or above performance when compared to the
state-of-the-art, on a variety of complex scenarios relevant to
robotics. We also presented visual evidence to better under-
stand the effectiveness of our method, and hope to motivate
other works in exploring the query space produced by labeled
queries to better reason through human intents. Finally, we
tested SEQUEL with human feedback and corroborated our
previous findings on the synthetic benchmarks.
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