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A B S T R A C T

In recent years, several fitting techniques have been presented to reconstruct the parameters of a plate from its
Lamb wave dispersion curves. Published studies show that these techniques can yield high accuracy results and
have the potential of reconstructing several parameters at once. The precision with which parameters can be
reconstructed by inverting Lamb wave dispersion curves, however, remains an open question of fundamental
importance to many applications. In this work, we introduce a method of analyzing dispersion curves that
yields quantitative information on the precision with which the parameters can be extracted. In our method,
rather than employing error minimization algorithms, we compare a target dispersion curve to a database of
theoretical ones that covers a given parameter space. By calculating a measure of dissimilarity (error) for every
point in the parameter space, we reconstruct the distribution of the error in that space, beside the location
of its minimum. We then introduce dimensionless quantities that describe the distribution of this error, thus
yielding information about the spread of similar curves in the parameter space. We demonstrate our approach
by considering both idealized and realistic scenarios, analyzing the dispersion curves obtained numerically
for a plate and experimentally for a pipe. Our results show that the precision with which each parameter is
reconstructed depends on the mode used, as well as the frequency range in which it is considered.
1. Introduction

In a variety of fields, from medical research to industrial applica-
tions, measurements of the propagation of a mechanical wave through a
medium are used to reconstruct its structure and material properties [1–
9]. In the simple case of a fluid bulk medium, the propagation speed
of a wave is proportional to the inverse square root of the density
and the compressibility of the medium. However, when the object
under investigation is a solid plate or a plate-like geometry, waves are
characterized by sets of symmetric and antisymmetric dispersive wave
modes. Waves characterized by these modes are referred to as Lamb
waves [10]. The propagation speed of these wave modes depends not
only on the elastic properties of the medium, but also on the product
of its thickness and the frequency of the wave [10,11]. Thanks to their
low attenuation and their sensitivity to shape variations, Lamb waves
have been the object of intense research in the fields of non-destructive
testing and defect detections [12–20]

Due to the dispersive behavior of Lamb waves, time-of-flight mea-
surements of wave speed cannot be employed directly to reconstruct

∗ Corresponding author.
E-mail address: a.sabbadini@tudelft.nl (A. Sabbadini).

the properties of a medium [21,22]. Rather, a common approach
consists in assuming that a given combination of shear speed (𝑐𝑇 ),
compressional speed (𝑐𝐿) and thickness (ℎ) defines uniquely a set of
dispersion curves; based on this assumption, these three parameters
can be reconstructed by extracting the dispersion curves from a mea-
surement and then finding the parameters that generate the same (or
most similar) curves [23–30]. Several techniques have already been
developed to extract the dispersion curves from measured data and
to solve the so-called inverse problem for one or more parameters
simultaneously [24,28,29,31–35]. In most of these studies, the accuracy
of the techniques is then compared with benchmarking methods, such
as mechanical testing or pulse-echo measurements. However, little to
no information is available on the reliability of the Lamb dispersion
curve approach: whether the solution is unique and independent of the
inversion algorithm employed, how robust this approach is with respect
to noise, how sensitive different modes are to the three parameters
and whether this sensitivity depends on the frequency range available,
and, in general, how precise the results are. This information, however,
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is crucial to assess whether and when this approach can be used in
practical applications. If, for instance, two different sets of material
properties generated similar A0 curves, and if noise would cause these
curves to become indistinguishable, the inversion would not necessarily
be able to distinguish between the two sets in practice.

In the first part of this work we present our approach to simulta-
neously extract 𝑐𝑇 , 𝑐𝐿 and ℎ from measured or simulated dispersion
urves. In addition to parameter extraction, the data extracted by our
pproach can be analyzed to retrieve quantitative information on how
ensitive a mode is to each of the three parameters, as well as an
ndication of whether a solution is at least locally unique. We then
mploy this method to show numerically how random noise applied
o the dispersion curves in the wavenumber direction can affect the
esults. Moreover, we show how the sensitivity of the zeroth order
ave modes (A0 and S0) to variations of 𝑐𝑇 , 𝑐𝐿 and ℎ changes between

modes and how it depends on the frequency range available. Finally,
we employ our approach for the analysis of experimental and simulated
data, demonstrating its relevance for realistic applications (e.g. pipe
measurements) as well as for the more idealized, numerical cases.

2. Setup

2.1. Numerical setup

The Finite Element software package PZFlex (Onscale, Redwood
City, CA, USA) was used to run 2D simulations of the acoustic wave
propagation of Lamb waves in a ℎ = 1 mm thick stainless steel plate,
which was simulated using nominal values of 𝑐𝐿 = 5800 m∕s, 𝑐𝑇 =
3100 m∕s and density 𝜌 = 7900 kg∕m3. Damping was included by em-
ploying the Zener model built-in in PZFlex (a Kelvin–Voigt viscoelastic
model in series with a linear spring), resulting in a linear damping
of 0.3 dB/cm per MHz. Guided waves were excited in the plate by
placing a small transducer on one of the surfaces and exciting it with
a broadband ultrasound pulse with a center frequency of 2.7 MHz.
Considering the lowest sound speed of the geometry, a mesh consisting
of square grids with a length of 30 points per wavelength was defined
to properly sample the guided waves. Along one of the surfaces of the
plate, virtual receivers were placed every 0.1 mm over a distance of
90 mm, to record the time signals of these waves. Finally, a 2D Fast
Fourier Transform (FFT) was applied to visualize the propagating wave
modes, i.e. the dispersion curves, in the 𝑓–𝑘𝑥 domain.

2.2. Experimental setup

The experiments were conducted on a 40 mm -inner diameter 304-
stainless steel pipe (nominal values: 𝑐𝐿 = 5920 m∕s and 𝑐𝑇 = 3141 m∕s,
ensity 𝜌 = 8000 kg∕m3) with a wall thickness of ℎ = 1 mm. Due to
he large diameter compared to the wavelength of the guided waves
onsidered, the propagation modes are expected to be comparable
o those one would observe in a stainless steel plate with the same
hickness [36]. Two ATL P4-1 probes (Philips, Bothell, WA, USA), one
unctioning as an ultrasound source and the other as a receiver, were
laced in line on the pipe wall (see Fig. 1), with a center-to-center
istance of 10 cm, and were driven with a Verasonics Vantage 256
Verasonics Inc., Kirkland, WA, USA) system. Each probe had a total
f 96 elements with a pitch of 0.295 mm, corresponding to a total
perture of ≈ 28.32 mm. A 1-cycle pulse with a center frequency of
.25 MHz was used to excite one element of the source probe, and all
6 elements of the receiver probe were used to record the propagating
uided waves.
2

w

. Methods

.1. Dispersion curve extraction

easured data
As can be seen in Fig. 3, the data recorded experimentally presents

large number of side-lobes around the dispersion modes. These are
ikely windowing artifacts connected to the aperture of the probe. In
rinciple, it could be possible to reduce these artifacts by applying a
patially-tapered window to the recorded data, but this would increase
he width of the main lobes (i.e. the dispersion curves), with the risk of
esulting in overlapping modes. Rather than optimizing the aperture-
indowing trade-off, which would be beyond the goal of this work, we
dapted the following processing technique from [35] to isolate and
xtract the A0 and S0 modes (see Fig. 2). First, all the local maxima
f the 𝑓–𝑘𝑥 surface were found and connected by straight lines, so
s to generate a new, smoother dataset. This interpolation removes
he valleys between consecutive peaks, e.g. turning a sawtooth pattern
nto a straight line. The new dataset, converted to decibel scale, was
hen squared (to increase the prominence of the highest peaks) and
hresholded (to remove the lower values), thus partially isolating the
odes and removing noise. The local maxima of the treated data were

hen extracted again and stored into a database (e.g. ‘‘𝑑𝑎𝑡𝑎𝐴’’).
The mode identification was then executed as a search for chains of

eighboring maxima: starting from a point in 𝑑𝑎𝑡𝑎𝐴, it was determined
hich (if any) other local maximum was the closest neighbor within a
iven radius; if such a point was found, the starting point would be
oved from 𝑑𝑎𝑡𝑎𝐴 into a different database (e.g. ‘‘𝑚𝑜𝑑𝑒𝐼 ’’), and the
eighbor would become the next starting point. Once no neighbor was
ound within the searching radius, a new starting point was chosen
rom dataA and a new database (e.g. ‘‘𝑚𝑜𝑑𝑒2’’) was created to store
he next chain. Finally, spurious chains were separated from the real
odes on the basis of chain length because a mode, being a set of points

rdered along a curve, forms a consistently longer chain than randomly
istributed spurious clusters of maxima). The modes themselves were
dentified on the basis of the order of appearance along the 𝑘𝑥 direction:
t every frequency, the 𝑘𝑥 belonging to the A0 mode have a higher
alue than those belonging to the S0 mode.

imulated data
The extraction of dispersion curves from the simulated data was

ore straightforward, thanks to the comparatively low level of noise
nd absence of windowing-related artefacts: the curves were found by
xtracting directly the local maxima in the untreated 𝑓–𝑘𝑥 domain,
nd were then sorted out according to the last step of the procedure
escribed above. The results of the curve extraction algorithms are
hown for both experiment and simulation in Fig. 3.

.2. Curve fitting and error volumes

Once an experimental or simulated curve has been extracted, a
itting procedure can be used to identify the set of 𝑐𝑇 , 𝑐𝐿 and ℎ (shear

bulk wave speed, compressional bulk wave speed and thickness) that
generates a theoretical curve that best matches the extracted ones.
Typically, such fitting procedures consist in defining an error function
that describes the discrepancy between the target and the model, and
then applying an optimization algorithm to minimize this error. For
instance, a least squares fitting algorithm can be used [24,32].

In contrast with other studies, the present work does not make use
of an optimization algorithm to find the best fitting curve. Instead, a
3D parameter space of 𝑐𝑇 ∈ [2000–4000] m∕s, 𝑐𝐿 ∈ [4500–7500] m∕s
nd ℎ ∈ [0.1–4.0] mm was considered, with speed resolution of 50 m/s
nd thickness resolution of 0.1 mm. For each point in this space the
heoretical curves of A0 and S0 were computed at frequencies com-
rised between 50 kHz and 3.6 MHz, sampled every 50 kHz. Each curve
as then stored in a database. Similarly to other fitting procedures, an
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Fig. 1. Experimental setup, consisting of two ATL P4-1 probes held in contact with a 1 mm thick stainless steel pipe.
Fig. 2. Algorithm to extract the dispersion curves from experimental data in the frequency–wavenumber domain.
Fig. 3. Magnitude of a 2D FFT applied to time signals obtained on the surface of a 1 mm-thick simulated stainless steel plate (left) and measured on the surface of a 1 mm-thick
stainless steel pipe (right). The white lines show the reconstructed S0 curve, the black lines indicate the reconstructed A0 mode.
error function 𝐸 was then introduced, defined here as a Mean Absolute
Percentage Error (MAPE),

𝐸 = 100
𝑁

𝑁
∑

𝑖
|𝑘𝑇ℎ𝑖 − 𝑘𝑖|∕𝑘𝑇ℎ𝑖 (1)

where 𝑁 is the number of frequencies considered, the index 𝑖 runs
from 1 to 𝑁 , 𝑘𝑖 is the wavenumber corresponding to the 𝑖th frequency
of the measured dispersion curve, and 𝑘𝑇ℎ𝑖 is the wavenumber of the
theoretical curve at the same frequency.

The extracted curves were compared to every theoretical curve
in the corresponding database, and the MAPE of each comparison
was added to a 3D plot. The resulting image shows the volumetric
3

distribution of the MAPE in the entire parameter space. We will refer
to this distribution as ‘‘error volume’’. Once the error volume has
been reconstructed, it is possible to identify the best fitting theoretical
curve by finding the coordinates of the global minimum of the MAPE.
Moreover, this approach allows one to observe the distribution of the
error in the parameter space.

3.3. Fitting reliability

To study how noise can affect the correct identification of 𝑐𝑇 , 𝑐𝐿
and ℎ, we employed as target curves the theoretical dispersion curves
of the A0 and S0 modes, thus excluding the influence of other factors
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(e.g. experimental artifacts, discretization-related errors) on the final
result. The theoretical curves were calculated by solving numerically
the Lamb equations [11] using a built-in zero-crossing search algorithm
of Matlab (version r2018b, MathWorks, Natick, MA, U.S.A.). Random
noise was then assigned to the wavenumber coordinate of each point on
the curves. At each point, the noise applied was drawn from a uniform
distribution of values between −0.5% and 0.5% of the wavenumber
value of the point. The boundaries of the noise distribution were
chosen so that the minimum MAPE would be comparable to that of the
simulated data, lying between 0.2% and 0.4%, the observed the global
minimum MAPE of the simulated A0 and S0, respectively. Repeating
the analysis for ten different realizations of the noise, we observed that
the minimum MAPE value could vary by up to approximately 0.1 times
its average value.

Within the resolution of the database, it is possible to determine
whether the minimum is global, as well as how sensitive the error is
to the different parameters. For instance, if many points along the 𝑐𝐿
axis correspond to comparably low values of MAPE, similar curves can
be generated by different values of compressional speed; the optimal
value of 𝑐𝐿 may therefore be not reliable.

A traditional sensitivity analysis would be ill suited to describe
he reliability of MAPE minimizations, due to its local nature (see
Appendix). Instead, to quantify this concept of reliability based on
he error volume analysis, we introduce two parameters: a low error
olume (LEV) and a spread around the minimum (SAM). The LEV value
ndicates the number of theoretical curves whose MAPE is at most 1.1
imes the global minimum; this boundary was chosen based on the
actor 0.1 variation in minimum MAPE that was observed to come from
andom noise. Notably, the points within the LEV form a curved shape
ithin the 3D space, thus the LEV cannot be described as a rectangular
olume (i.e. as the product of three orthogonal coordinates). The SAM
alues indicate how far away from the minimum the other low error
oints are spread, along each axis. The SAM values are computed as
weighted mean absolute percentage deviation from the coordinates
ith minimum MAPE:

𝐴𝑀𝑋 = 100
𝑖𝑚𝑖𝑛𝑋

∑

𝑖∈𝐿𝐸𝑉

|𝑖𝑋 − 𝑖𝑚𝑖𝑛𝑋 |
𝐸𝑖 − 𝐸𝑚𝑖𝑛

(

∑

𝑖

1
𝐸𝑖 − 𝐸𝑚𝑖𝑛

)−1

(2)

where SAM𝑋 is the SAM value along the 𝑋 axis (e.g. compressional
speed), 𝒊(𝑋, 𝑌 ,𝑍) = (𝑖𝑋 , 𝑖𝑌 , 𝑖𝑍 ) is a point within the LEV, 𝑖𝑋 is the 𝑋
coordinate of the 𝒊 point, 𝐸𝑖 is its corresponding MAPE, 𝑖𝑚𝑖𝑛𝑋 is the
𝑋 coordinate of the point with minimum MAPE, 𝐸𝑚𝑖𝑛 is the minimum
value of MAPE, and the sum runs over all the points 𝒊 ∈ 𝐿𝐸𝑉 , excluding
the global minimum (the point with minimum MAPE). This function
was chosen so as to give more relevance to the points whose MAPE is
the most similar to the minimum. The percentage term 100∕𝑖𝑚𝑖𝑛𝑋 was
included to allow the comparison of SAM values of different axes.

4. Results

4.1. Error volumes

Simulated data
Fig. 4 shows slices of the error volume computed for an A0 curve

extracted between 1.5 and 3.1 MHz from simulated data. A global min-
imum exists within the parameter space considered, and corresponds to
a MAPE of 0.218% at coordinates 𝑐𝐿 = 4800±25 m∕s, 𝑐𝑇 = 3200±25 m∕s,
and ℎ = 1.1±0.05 mm. The indicated variations are due to the step-sizes
of the parameters. The material properties corresponding to the best
fitting curve, therefore, are in poor agreement with the actual values
𝑐𝐿 = 5800 m∕s, 𝑐𝑇 = 3100 m∕s and ℎ = 1 mm. As can be seen in
the plot, however, there is an extended volume in the parameter space
in which the MAPE is within 1%. In fact, the third-lowest error point
corresponds to a MAPE of 0.225% at coordinates: 𝑐𝐿 = 5850 ± 25 m∕s,
𝑐𝑇 = 3100 ± 25 m∕s, and ℎ = 1.0 ± 0.05 mm, which are in much better
4

agreement with the input parameters of the simulation.
Table 1
Values of LEV and SAM for the A0 and S0 modes extracted from a simulated 1 mm
thick stainless steel plate (above) and from an experiment on a 1 mm thick stainless
steel pipe (below) at frequencies between 1.5 MHz and 3.1 MHz.

Simulated data 1 mm thick stainless steel plate

Mode LEV SAM𝑐𝐿 SAM𝑐𝑇 SAMℎ

A0 50 20.8% 3.2% 10.0%
S0 14 0.8% 0.0% 0.0%

Experimental data 1 mm thick stainless steel pipe

Mode LEV SAM𝑐𝐿 SAM𝑐𝑇 SAMℎ

A0 209 13.0% 2.1% 7.0%
S0 7 3.8% 0.4% 0.0%

The same analysis was performed for the S0 mode extracted from
the simulated data, see Fig. 5. Once again, there is a global minimum
error within the parameter space, corresponding to a MAPE of 0.551%
at coordinates 𝑐𝐿 = 5850 ± 25 m∕s, 𝑐𝑇 = 3100 ± 25 m∕s, and ℎ =
.0 ± 0.05 mm. As can be seen in Fig. 5, the distribution on the 𝑐𝐿–
𝑇 plane is similar to that of the A0 mode, while the distribution on
he other planes is clearly different. Interestingly, while the coordinates
f the global minimum are much closer to the expected values than
hose of A0, overall the MAPE is higher. This result suggests that,
t the frequencies considered, variations in the parameter space of
aterial properties causes greater variations in S0 than in A0 curves.
s a consequence, an extracted S0 curve that deviates more from the

heoretical one may still yield parameters that are closer to the actual
nes, as compared to the A0 case.

Comparing the A0 and S0 error volumes, we can observe that they
how a similar trend for the distribution of the low errors along the
ompressional speed axis (almost uniform for 𝑐𝐿 > 5000 m∕s, indicating
low sensitivity to overestimations of this parameter), whereas the dis-

ribution in the 𝑐𝑆–ℎ plane is different: for the S0 mode, the coordinates
f low error points on the 𝑐𝑆 axis increase with increasing thickness,
hile for the A0 mode the distribution along ℎ is similar to that along
𝐿, indicating low sensitivity to thickness overestimations.

easured data
Figs. 6 and 7 show the error volumes computed for the A0 and S0

urves extracted from the experiment. Qualitatively speaking, the vol-
mes appear very similar to those of the simulated data. The material
roperties identified by the minimum of the error volume of A0 are
𝐿 = 5500 ± 25 m∕s, 𝑐𝑇 = 3100 ± 25 m∕s, and ℎ = 1.0 ± 0.05 mm; those

extracted from S0 are 𝑐𝐿 = 5250 ± 25 m∕s, 𝑐𝑇 = 3250 ± 25 m∕s, and
ℎ = 1.0 ± 0.05 mm.

Subsequently, the LEV and SAM values were computed for the two
modes for both simulated and experimental data, and are reported in
Table 1. For each dataset, the S0 mode appears more sensitive than
the A0: the LEV and all the SAM values are smaller, confirming that
variations in the parameter space of material properties lead to greater
variations in S0 than in A0.

4.2. Robustness against noise

The theoretical curves of A0 and S0 were calculated between 50 KHz
and 3.5 MHz for a 1 mm thick stainless steel plate. As described in
Section 2.3, random noise was added to the wavenumber coordinates
of both curves. For each curve, the error volume was reconstructed and
used to identify the best fitting curve, i.e. the curve with minimum
error . This procedure was repeated ten times for each mode. Table 2
shows the average and highest minimum MAPE, and the mean absolute
error (MAE) and maximum error of 𝑐𝑇 , 𝑐𝐿 and ℎ, compared to their true

values (𝑐𝐿 = 5800 m∕s, 𝑐𝑇 = 3100 m∕s, and ℎ = 1.0 mm), for each mode.
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Fig. 4. The top-left panel shows slices of the error volume for the simulated A0 mode of a stainless steel plate at frequencies between 1.5 and 3.1 MHz . The slices represent
planes at the fixed values 𝑐𝐿 = 5800 m∕s, 𝑐𝑇 = 3100 m∕s, and ℎ = 1 mm, which are the actual values of these parameters . Each other panel shows the frontal view of a single plane
(𝑐𝐿–𝑐𝑇 , 𝑐𝑇 –ℎ, 𝑐𝐿–ℎ, in clockwise order). Colors represent the value of MAPE at each coordinate in the parameter space. The white dashed lines show where the planes intersect
in each view.
Fig. 5. The top-left panel shows slices of the error volume for the simulated S0 mode of a stainless steel plate at frequencies between 1.5 and 3.1 MHz . The slices represent
planes at the fixed values 𝑐𝐿 = 5800 m∕s, 𝑐𝑇 = 3100 m∕s, and ℎ = 1 mm, which are the actual values of these parameters . Each other panel shows the frontal view of a single plane
(𝑐𝐿–𝑐𝑇 , 𝑐𝑇 –ℎ, 𝑐𝐿–ℎ, in clockwise order). Colors represent the value of MAPE at each coordinate in the parameter space. The white dashed lines show where the planes intersect
in each view.
Table 2
Results of generating ten A0 and ten S0 curves affected by uniformly distributed random noise applied to the wavenumber coordinates. Entries
in the table show, from left to right: the average minimum MAPE (�̄�), the highest value of minimum MAPE (𝐸𝑚), the mean and maximum
absolute error of 𝑐𝐿 compared to the true value (MAE 𝑐𝐿 and 𝛥𝑐𝐿𝑚𝑎𝑥

), the mean and maximum absolute error of 𝑐𝑇 compared to the true value
(MAE 𝑐𝑇 and 𝛥𝑐𝑇𝑚𝑎𝑥 ), and the mean and maximum absolute error of h compared to the true value (MAE ℎ and 𝛥ℎ𝑚𝑎𝑥.

Mode �̄� (%) 𝐸𝑚 (%) MAE 𝑐𝐿 (m/s) 𝛥𝑐𝐿𝑚𝑎𝑥
(m/s) MAE 𝑐𝑇 (m/s) 𝛥𝑐𝑇𝑚𝑎𝑥 (m/s) MAE ℎ (mm) 𝛥ℎ𝑚𝑎𝑥 (mm)

A0 0.25 0.27 95 1000 10 100 0.01 0.1
S0 0.24 0.26 5 50 0 0 0.00 0.0
5
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Fig. 6. The top-left panel shows slices of the error volume for the A0 mode extracted from an experiment on a 1 mm thick stainless steel pipe at frequencies between 1.5 and
3.1 MHz . The slices represent planes at the fixed values 𝑐𝐿 = 5800 m∕s, 𝑐𝑇 = 3100 m∕s, and ℎ = 1 mm, which are the actual values of these parameters . Each other panel shows
the frontal view of a single plane (𝑐𝐿–𝑐𝑇 , 𝑐𝑇 –ℎ, 𝑐𝐿–ℎ, in clockwise order). Colors represent the value of MAPE at each coordinate in the parameter space. The white dashed lines
show where the planes intersect in each view.
Fig. 7. The top-left panel shows slices of the error volume for the S0 mode extracted from an experiment on a 1 mm thick stainless steel pipe at frequencies between 1.5 and
3.1 MHz . The slices represent planes at the fixed values 𝑐𝐿 = 5800 m∕s, 𝑐𝑇 = 3100 m∕s, and ℎ = 1 mm, which are the actual values of these parameters . Each other panel shows
the frontal view of a single plane (𝑐𝐿–𝑐𝑇 , 𝑐𝑇 –ℎ, 𝑐𝐿–ℎ, in clockwise order). Colors represent the value of MAPE at each coordinate in the parameter space. The white dashed lines
show where the planes intersect in each view.
4.3. Frequency range analysis

During data analysis, we observed that theoretical curves gener-
ated for different values of one parameter could be more similar to
each other at certain frequencies than at others. For example, the
MAPE between two S0 curves corresponding to thicknesses of 1 mm
and 1.2 mm, for shear and compressional speeds fixed at 3100 and
5800 m/s respectively, was less than 1% at frequencies between 0 and
1 MHz and around 18% between 1.5 and 2.5 MHz.

To investigate how different frequency regions affected the LEV and
SAM results, comparison of noiseless theoretical A0 and S0 curves to
the database was performed at various frequency ranges. The frequency
6

ranges considered included bands with a width of 0.2 to 2.9 MHz,
within an overall range of 0.1–3.1 MHz. For each frequency range, the
LEV and SAM values were computed and plotted. For this calculation
only, the LEV was defined as all the curves whose MAPE was within
110% of the second-lowest error, instead of the lowest error. This
choice was made because the lowest error was always zero, since
theoretical curves were considered and the database contained the
theoretical curves themselves.

Figs. 8 and 9 show the values of LEV and SAM at different frequency
ranges for the noiseless theoretical A0 and S0 curves, respectively,
of a 1 mm thick stainless steel plate. The vertical axis represents
the starting frequency for each of the ranges considered, while the
horizontal axis represents the bandwidth of each range. Since only
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Fig. 8. LEV, SAM 𝑐𝐿, SAM 𝑐𝑇 , and SAM ℎ for a theoretical A0 curve at different frequency ranges. The colors represent the amplitude of each variable, with each point corresponding
to a different combination of bandwidth and starting frequency.
frequencies between 0.1 and 3.1 MHz were considered in this analysis,
the maximum bandwidth of the frequency ranges decreases with the
increase of the starting frequency. Each point in the plots shown in
Figs. 8 and 9 thus corresponds to an analysis performed at a different
frequency range, determined as the combination of a starting frequency
and a bandwidth.

For A0, considering only higher frequencies introduces a greater
variability of compressional speeds within the LEV, while the highest
precision seems to be achievable for all three parameters within the
first MHz; the value of SAM of the shear speed appears to be relatively
low (within 50 m/s) at most frequencies. The LEV itself can vary
considerably depending on the frequency band considered. In contrast,
the SAM values for the S0 mode are almost uniformly low at the higher
frequencies, while there is a region of frequencies around 0.5 MHz in
which they increase, especially for the thickness.

5. Discussion

Several studies can be found in literature detailing techniques to
extract Lamb dispersion curves and inversion methods to reconstruct
material properties [23,24,27–29,31–35,37,38]. However, these studies
rely on minimization techniques that only yield information about the
(possibly) global minimum of a given error function. When employing
such an approach, therefore, all information about how the error is
distributed over the parameter space is lost. One of the advantages of
the comparison approach presented in this paper is that information
about the matching error of the dispersion curves (the MAPE defined in
Eq. (1)) is extracted along with the coordinates of the global minimum,
at the cost of having to initially compute and store dispersion curves
for the entire parameter space. This additional information is necessary
to assess how reliable the results of the inversion are, both in a general
sense (i.e. how precise can we expect a multi- or single-parameter
inversion to be) and for a specific measurement (e.g. how reliable a
measurement is performed with a given setup under specific experi-
mental conditions and corresponding experimental noise). Moreover,
our results identify which zeroth order wave mode is the most sensitive
to what material property at what frequencies, and the approach we
have presented here could also be employed to extend these results
to higher order modes and higher frequencies, providing a toolset to
maximize the precision of the results of inversion. Finally, while it may
7

be possible to further improve the accuracy of the data acquisition and
preprocessing (i.e. the dispersion mode extraction) steps, identifying
the parameters of a sample with high accuracy was beyond the purpose
of our work. We did, however, explore a range of accuracy of the
target curve by considering different levels of idealization (from curves
derived directly by the Lamb equations, to experimental data), showing
the relevance of the information provided by our approach in all
scenarios.

To better understand how information on the MAPE is connected
to the precision of the inversion, let us consider the following: if,
along a given axis (e.g. compressional wave speed), there are multiple
coordinates at which the MAPE is comparable to the global minimum,
then many curves corresponding to different material properties are
comparably similar to the target one (e.g. the one extracted from
experiments). Small variations in the target curve, for instance due to
experimental noise or poor reconstruction of the wave mode, could
then greatly shift the location of the global minimum and therefore
the values of the reconstructed properties. Knowing the distribution of
the MAPE, then, allows one to know how much the material properties
can vary with small variations of this error. Intuitively, the larger the
range of parameters with a low error, the less reliable are the properties
corresponding to the global minimum.

To provide a quantitative measure of the sensitivity described
above, we have introduced the values of Low Error Volume (LEV)
and Spread Around Minimum (SAM). The LEV value represents how
many different curves have a MAPE comparable to the minimum one.
Here, ‘comparable’ is defined as a threshold of up to 10% higher than
the minimum MAPE. By itself, however, the LEV is not sufficient to
tell whether a result is reliable: if there were 100 curves represented
within the LEV, but all located at similar coordinates, even if the global
minimum was shifted to another point (e.g. due to noise), the result
would not be affected greatly. The SAM values represent how the
error spreads along each parameter axis: a lower spread along one axis
means a higher precision with respect to the corresponding parameter.
This is different from a standard sensitivity analysis, in that the SAM
values consider all the points within the LEV to determine how much
a coordinate could vary, whereas the sensitivity analysis only looks
at the derivatives in the neighborhood of the minimum, fixing two
coordinates out of three at a time. A more detailed explanation of why
this local information is not sufficient is given in the Appendix.
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Fig. 9. LEV, SAM 𝑐𝐿, SAM 𝑐𝑇 , and SAM ℎ for a theoretical S0 curve at different frequency ranges. The colors represent the amplitude of each variable, with each point corresponding
to a different combination of bandwidth and starting frequency.
Practical observations guided the choices made for the LEV and
SAM thresholds: the LEV boundary (110% of the minimal MAPE) was
established based on the observed variability in minimal MAPE when
the target curve was a theoretical curve with uniformly distributed
random noise on the wavenumber coordinates; the SAM values were
computed as an average weighted by the inverse of the MAPE, to
reflect that lower error curves are more likely to be mixed up with the
curve of the global minimum. As long as LEV and SAM are defined
consistently, they allow to compare different curves of the same wave
mode, different wave modes and frequency ranges, and even different
experiments.

By employing the LEV and SAM parameters, it was also possible to
analyze how the sensitivity of the A0 and S0 modes varies with the
frequency range over which the curves are compared. In particular,
Figs. 8 and 9 show that the A0 mode can be more reliable than S0
in estimating the compressional wave speed and the thickness when
only low frequencies are available, i.e. up 1 MHz for a 1 mm plate.
At higher frequencies, the S0 mode appears to provide more precise
information about all three parameters. Notably, in our study we have
only focussed on zeroth order modes, and these two modes were only
analyzed separately. As mentioned above, however, our approach can
be used also to analyze higher order modes. It would be interesting to
investigate, then, if combining multiple modes at their ‘‘best’’ frequency
ranges, e.g. by combining their error volumes by sum or multiplication,
could improve precision or accuracy.

Low values of LEV and SAM, however, do not guarantee that the
minimum error curve corresponds to the true values of the properties
of the medium; they should be interpreted as a measure of precision,
rather than accuracy. In fact, when comparing the A0 and S0 modes in
the experimental data, the SAM and LEV values are lower for S0, but
the parameters identified by the minimum of the error volume of A0 are
more accurate compared to the expected nominal properties of the pipe.
This result means that, in this one measurement, the curves extracted
from the experiment yield a more accurate result for A0 than for S0;
however, given the higher values of SAM and LEV, it is reasonable to
expect that repeated experiments would show a greater variation in
results for A0 than for S0. It is also worth mentioning here that the
central assumption of this paper, i.e. that we can use the Lamb charac-
teristic equations to describe our measurements, is verified only in an
approximate sense: the equations, in fact, are defined for infinite plates
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with perfectly parallel, smooth surfaces and elastic, homogeneous and
isotropic materials, while a real metal plate necessarily presents surface
roughness and imperfections, warping, and anisotropic behaviors due
to sheet fabrication process. For finite element simulation, moreover,
the applied discretization scheme (size and shape of the elements,
interpolation between nodes) can alter the accuracy with which results
are calculated. All of these factors are likely to cause deviations from
the theoretical curves, and it is reasonable to expect that different
modes will be affected differently, due to their different particle motion
patterns and wave velocities.

Besides providing information on the distribution of the matching
error, the approach we employ in this study has several other advan-
tages over traditional optimization algorithms. For one, its results do
not depend on initial guesses. Moreover, most of the computational
cost lies in the generation of the database of theoretical curves that
is used for the comparisons with the target curve; once the database
exists, it can be used any number of times on any number of different
experimental or simulated curves. In contrast, every time an optimiza-
tion algorithm runs, it has to re-compute each theoretical curve it uses.
While the number of curves thus computed is usually lower than that
necessary to create a database, the cost for the database is paid only
once, whereas that of the optimization is paid every time it is employed.
In terms of real-world applications, this approach could benefit greatly
the efficiency of in-situ non-destructive tests, such as pipe inspections,
where the database could be computed during the fabrication of the
testing instrument, ready to be used at every subsequent test.

A drawback of the database approach, however, is that it only
provides results within its parameter space, which is defined at the
moment of the creation of the database. Moreover, there is a trade-
off between accuracy (limited by the resolution of the database), range
of parameters explored (defined by the boundaries of the database)
and size of the database itself (for reference, the database used in the
present work has a size of 55 Mb). This problem can be circumvented
by preparing various application-specific databases, in which resolution
and boundaries of a database are tailored to the use it has to serve,
e.g. analyzing a steel pipe with nominal thickness of 1 mm.

Finally, the results presented in Table 2 highlight a potential general
weakness in the approach of inverting dispersion curves to reconstruct
material properties. In fact, while the S0 curve showed less sensitivity
to the random noise, one out of ten noise-affected A0 curves yielded
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Fig. 10. Left panel: the ℎ–𝑐𝐿 slice of Figure 5.6. Right panel: the LEV of this dataset, collapsed onto the ℎ–𝑐𝐿 plane. Highlighted are 𝑃1 and 𝑃2, the points corresponding to the
lowest and second-lowest values of MAPE, respectively. The colors in both panels represent the MAPE.
a compressional speed 1000 m/s lower than the true value. Repeating
the same analysis with noise randomly distributed across a wider range
(between −1% and 1% of each wavenumber coordinate), comparable
to the average variations observed in the experiment, yielded three
cases out of ten in which the compressional speed extracted from the
A0 curve was between 800 and 1000 m/s lower than the true value.
These results would suggest that the properties found by inverting
the A0 curve can be considerably affected by noise, undermining
their reliability in practical applications. Moreover, here all three pa-
rameters (shear and compressional wave speeds, and thickness) were
extracted simultaneously, but it would also be reasonable to investigate
whether prior knowledge on some of the parameters would improve
the results. Indeed, for a noise-affected theoretical A0 curve in which
three-parameters estimation yielded 𝑐𝐿 = 4800 m∕s, we observed that
fixing the thickness at 1.0 mm corresponded to a minimum error curve
generated by 𝑐𝐿 = 5500 m∕s; fixing both the thickness at 1.0 mm and the
shear speed at 3100 m/s yielded an estimated 𝑐𝐿 = 5850 m∕s, suggesting
that a priori knowledge of some parameters can increase the robustness
of results against noise.

In principle, using our results, it could even be possible to extract
a single property using the most precise combination of mode and
frequency range, then use that property as input fixed value and extract
the second property, again based on its corresponding best mode and
frequency range, and iterate until all properties are extracted. This
boot-strapping approach could be very useful in applications where a
priori knowledge is not available; however, it remains to be proven
whether it would have the same effect, which likely depends on the
accuracy with which the first property is extracted. In any case, it
would be interesting to perform a more extensive analysis, both on
noise-affected theoretical curves as well as on repeated experiments,
to determine what percentage of cases leads to significant over- or
underestimations of material properties.

6. Conclusions

In this work we have presented a new approach for the analysis of
Lamb dispersion curves for material characterization. In addition to pa-
rameter extraction, the data extracted by our approach can be analyzed
to retrieve quantitative information on the precision with which the
information is extracted. We have observed that low amplitude random
noise can affect the results of Lamb wave dispersion curve inversion,
with few A0 curves yielding compressional speeds far off their true
value, thus highlighting the importance of having such a measure of
precision. Moreover, using the proposed method, we have shown that
the S0 mode is more sensitive than the A0 mode to all three properties
at higher frequencies, and that both modes are more sensitive to shear
speed and thickness than to compressional speed. These results could
therefore be employed to increase the precision with which the material
properties are reconstructed, by identifying the optimal combination of
wave mode and frequency range for each.
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Appendix. Sensitivity analysis

In the main text, we often refer to the reliability of extracting param-
eters by comparing dispersion curves of Lamb modes, or the sensitivity
of such a procedure to each parameter. A well-known approach to
quantify this information is to perform a so-called sensitivity analysis.
In our case, this could be done by considering the error function 𝐸
(corresponding to the MAPE values) and computing its first derivatives
around the minimum. For example, the sensitivity of 𝐸 with respect to
variations on the compressional speed axis can be calculated as:

𝑆(𝑐𝐿, 𝑃 ) = (𝜕𝐸∕𝜕𝑐𝐿)|𝑃 (3)

where 𝑆 is the sensitivity, 𝑐𝐿 is the compressional speed, and |𝑃
indicates that the derivative is evaluated at the coordinates (𝑐𝑃𝐿 , 𝑐𝑃𝑇 , ℎ𝑃 )
of the point 𝑃 , which corresponds to the minimum MAPE value. This
value of 𝑆 expresses how fast the function 𝐸 grows for small variations
of the 𝑐𝐿 coordinate. However, it does not provide any information on
the existence and location of the local minima of comparable depth that
can exist within the MAPE space. As such, the sensitivity analysis does
not show that a small variation in MAPE could lead to large variations
in e.g. 𝑐𝐿. The SAM and LEV values were introduced to provide this
necessary information.

In Fig. 10, the left panel is the same as in Fig. 6, while the right
panel shows all the points within the LEV, projected onto the ℎ–𝑐𝐿
plane. The points highlighted as 𝑃1 and 𝑃2 in the right panel correspond
to the minimum and second-minimum MAPE points, respectively. The
coordinates of 𝑃1 are: 𝑐𝐿 = 5500 m∕s; 𝑐𝑇 = 3100 m∕s; ℎ = 1.0 mm; The
coordinates of 𝑃 2 are: 𝑐𝐿 = 4850 m∕s; 𝑐𝑇 = 3150 m∕s; ℎ = 1.1 mm. The
MAPE of 𝑃1 is 0.439%, the MAPE of 𝑃2 is 0.441%. These numbers show
that the two curves corresponding to 𝑃1 and 𝑃2 are very similar to each
other; the smallest alteration of 𝑃1 could turn it into 𝑃2, resulting in an
extracted compressional speed of 4850 m/s instead of 5500 m/s.

The sensitivity analysis of 𝐸 in the 𝑐𝐿 direction around
𝑃1, 𝑆(𝑐𝐿, 𝑃1) = 0.5 ms/m (i.e. the MAPE grows by approximately 6% in
a step of 50 m/s on the 𝑐 axis) is limited to a local description along
𝐿
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a single axis, and it does not provide any information to describe the
situation shown in Fig. 5.10. The SAM 𝑐𝐿 value of 604 m/s, on the other
hand, accounts for the entire LEV (across all three axes), and it does
show that small variations of the MAPE could potentially lead to large
variations in compressional speed. As such, in this situation the LEV
and SAM values are necessary to provide the quantitative description
that a standard sensitivity analysis cannot supply.
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