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Abstract

We examine and prove the Borsuk-Ulam theorem and its combinatorial equivalent Fan’s lemma.
The theory of simplicial complexes and triangulations plays an important role in this. The
Borsuk-Ulam theorem and Fan’s lemma will be used to provide proofs for the Brouwer fixed
point theorem and the combinatorial Sperner’s lemma. Lastly the Borsuk-Ulam theorem will
be applied in determining the chromatic number of Kneser graphs.
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Introduction

One of the versions of the Borsuk-Ulam theorem states that for every continuous mapping
f : Sn → Rn, where Sn := x ∈ Rn+1 : ‖x‖ = 1 is the n-sphere, there exists a point x ∈ Sn
such that f(x) = f(−x). For n = 2 this can be illustrated by an inflatible ball that first is
inflated and then, when the air is pushed out, is laid flat without tearing or cutting it. The
Borsuk-Ulam theorem then says that there are two points on the surface of the ball that first
were diametrically opposite (antipodal) and later, when the ball is laid flat, are lying on top of
each other.

We will examine and proof this theorem and are particularly interested in the connections it has
in the field of combinatorics. We will encounter a combinatorial equivalent of the Borsuk-Ulam
theorem: Fan’s lemma. The combinatorial proof given for this lemma provides an alternative
proof for the Borsuk-Ulam theorem using the equivalence of Fan’s lemma and the Borsuk-Ulam
theorem.

The theory of simplicial complexes and triangulations will play an important role throughout
this report and will be studied first.

Later the Borsuk-Ulam theorem and Fan’s lemma will be used to prove the Brouwer fixed point
theorem and the combinatorial Sperner’s lemma.

Finally, a version of the Borsuk-Ulam theorem will be applied in determining the chromatic
number of Kneser graphs, one of the earliest applications of topological methods in combina-
torics.

As part of this bachelor project a proof is given for a number of lemmas, many of which were
given as exercises in [Mat08]. These proofs will be marked with a *.
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Chapter 1

Simplicial Complexes

1.1 Geometric Simplicial Complexes

Simplicial complexes play an important role in the connection between topology and combi-
natorics. In this chapter we will provide an introducion to simplices and simplicial complexes
based on the first chapter of [Mat08]. The theory presented here will be of great importance
throughout the rest of this report.

An important notion in the theory of simplices is that of affine indepence.

Definition 1.1. Let v1, . . . ,vk be points in Rn. We call them affinely dependent if there are
real numbers α1, . . . , αk, not all of them 0, such that

∑k
i=1 αivi = 0 and

∑k
i=1 αi = 0. Otherwise

v1, . . . ,vk are called affinely independent.

For two points affine independence means that v1 6= v2; for three points it means that v1,v2,v3

do not lie on a common line; for four points it means that v1,v2,v3,v4 do not lie on a common
plane; and so on. Two other useful characterizations of affine independence are given in the
next lemma.

Lemma 1.2. Both of the following conditions are equivalent to affine independence of points
v1, . . . ,vk in Rn:

• The k − 1 vectors v1 − vk, . . . ,vk−1 − vk are linearly independent.

• The (n+ 1)-dimensional vectors (v1, 1), . . . , (vk, 1) ∈ Rn+1 are linearly independent.

Proof*. We start by showing the equivalence for the first condition. Assuming v1−vk, . . . ,vk−1−
vk are linearly dependent, we can find real numbers α1, . . . , αk−1 not all of them zero such that∑k−1

i=1 αi(vi − vk) = 0. Now define αk = −
∑k−1

i=1 αi, then
∑k

i=1 αi = 0, α1, . . . , αk are not all
zero and

k∑
i=1

αivi =

k−1∑
i=1

αivi + αkvk

=
k−1∑
i=1

αivi −
k−1∑
i=1

αivk

=
k−1∑
i=1

αi(vi − vk) = 0,
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so v1, . . . ,vk are affinely dependent.

For the other implication, assume that v1, . . . ,vk are affinely dependent, which means we can
find real numbers α1, . . . , αk not all of them zero, such that

∑k
i=1 αivi = 0 and

∑k
i=1 αi = 0.

Then it follows that αk = −
∑k−1

i=1 αi, so that

k−1∑
i=1

αi(vi − vk) =

k−1∑
i=1

αivi −
k−1∑
i=1

αivk

=

k∑
i=1

αivi = 0.

This means that v1 − vk, . . . ,vk−1 − vk are linearly dependent.

Now we show the equivalence of the second condition. Start by assuming that the vectors
(v1, 1), . . . , (vk, 1) are linearly dependent. This means we can find real numbers α1, . . . , αk, not
all of them zero, such that

∑k
i=1 αi(vi, 1) = 0. But then

∑k
i=1 αivi,= 0 and

∑k
i=1 αi = 0, which

means v1, . . . ,vk are affinely dependent.

For the other implication we assume that v1, . . . ,vk are affinely dependent. Therefore we can
find real numbers α1, . . . , αk, not all of them zero such that

∑k
i=1 αivi = 0 and

∑k
i=1 αi = 0.

Then
k∑
i=1

αi(vi, 1) = (
k∑
i=1

αivi,
k∑
i=1

αi)

= (0, 0) = 0,

so (v1, 1), . . . , (vk, 1) are linearly dependent.

Note that n + 1 is the largest size of an affinely independent set of points in Rn. Now we are
ready to give some definitions concerning simplices and simplicial complexes.

Definition 1.3. A simplex σ is the convex hull of a finite affinely independent set A in Rn. The
points of A are called the vertices of σ. The dimension of σ is dimσ := |A| − 1. Thus every
k-dimensional simplex, or k-simplex, has k + 1 vertices.

Definition 1.4. The convex hull of an arbitrary subset, possibly empty, of vertices of a simplex
σ is a face of σ. Thus every face is itself a simplex. Also, every simplex has ∅ as a face. A face
of σ of dimension dimσ − 1 is called a facet of σ.

The relative interior of a simplex σ arises from σ by removing all faces of dimension smaller
than dimσ.

Lemma 1.5. Let σ be a simplex with vertices v1, . . . ,vn. Then any point x ∈ σ can be uniquely
written as a convex combination of the vertices of σ:

x =

n∑
i=1

αivi with α1, . . . , αn ≥ 0 and

n∑
i=1

αi = 1.

Proof*. The existence of such a convex combination follows from the fact that σ is the convex
hull of its vertices. Now suppose we have two distinct convex combinations equal to x, say
x =

∑n
i=1 αivi and x =

∑n
i=1 βivi. Then by subtracting them we get

∑n
i=1(αi−βi)vi = 0 with
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(α1 − β1), . . . , (αn − βn) not all zero and
∑n

i=1(αi − βi) =
∑n

i=1 αi −
∑n

i=1 βi = 0, which is in
contradiction with the affine independence of v1, . . . ,vn. Therefore, the convex combination is
unique.

Definition 1.6. A nonempty family ∆ of simplices is a simplicial complex if the following two
conditions hold:

1. Each face of any simplex σ ∈ ∆ is also a simplex of ∆.

2. The intersection σ1 ∩ σ2 of any two simplices σ1, σ2 ∈ ∆ is a face of both σ1 and σ2.

The union of all simplices in a simplicial complex ∆ is called the polyhedron of ∆ and is denoted
by ‖∆‖.
The dimension of a simplicial complex ∆ is defined as the largest dimension of a simplex in ∆:
dim ∆ := max{dimσ : σ ∈ ∆}.
The vertex set of ∆, denoted by V (∆), is the union of the vertex sets of all simplices of ∆.

It is intuitively clear that the set of all faces of a simplex forms a simplicial complex. A proof
can be found in [Mat08].

A simplicial complex consisting of all faces of an arbitrary n-dimensional simplex, including the
simplex itself, will be denoted by σn. Note that ‖σn‖ is a geometric n-simplex.

All simplicial complexes we will encounter in this report will be finite, meaning that they contain
only finitely many simplices. Note that the polyhedron of a finite simplicial complex is always
a compact space.

Definition 1.7. The relative interiors of all simplices of a simplicial complex ∆ form a partition
of the polyhedron ‖∆‖: For each point x ∈ ‖∆‖ there exists exactly one simplex σ ∈ ∆
containing x in its relative interior. This simplex is denoted by supp(x) and is called the
support of x. When x is written as a convex combination of the vertices of its support all
coefficients α are greater than zero.

Definition 1.8. If f : V (∆)→ Rn is a mapping defined on the vertex set of a simplicial complex
∆, we define the function

‖f‖ : ‖∆‖ → Rn,

the affine extension of f , by extending f affinely to the relative interiors of the simplices of
∆ as follows: If σ ∈ ∆, with vertices v1, . . . ,vk, is the support of a point x ∈ ‖∆‖ then,
according to Lemma 1.5, x can be written uniquely as x =

∑k
i=1 αivi with α1, . . . , αk ≥ 0 and

x =
∑k

i=1 αi = 1. Then we put

‖f‖(x) =
k∑
i=1

αif(vi).

From the construction it is clear that the resulting function is continuous on ‖∆‖.

Definition 1.9. A subcomplex of a simplicial complex ∆ is a subset of ∆ that is itself a simplicial
complex.

An important example of a subcomplex is the k-skeleton of a simplicial complex ∆. It consists
of all simplices of ∆ of dimension at most k.
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1.2 Triangulations

Let X be a topological space. A simplicial complex ∆ such that X ∼= ‖∆‖, if one exists, is called
a triangulation of X.

Next we will give some examples of triangulations that we will encounter again later in this
report.

Definition 1.10. The n-dimensional cross-polytope is the convex hull

conv(e1,−e1, . . . , en,−en)

of the vectors of the standard orthonormal basis and their negatives. It can also be described
by {x ∈ Rn :

∑n
i=1 |xi| ≤ 1}.

For example, the 3-dimensional cross-polytope is a regular octahedron.

The boundary of the n-dimensional cross-polytope is homeomorphic to Sn−1, as can be seen
using a central projection. Hence, the natural triangulation of the boundary of the n-dimensional
cross-polytope provides a triangulation of the sphere Sn−1.

Lemma 1.11. Let σ be a simplex with vertices v1, . . .vn, and let P = σ × [0, 1] be the n-
dimensional “prism above σ”. Let the vertices of P be v′1, . . .v

′
n,v

′′
1, . . .v

′′
n, where each v′i =

(vi, 0) is a bottom vertex and v′′i = (vi, 1) is the top vertex above it. For i = 1, . . . , n define
σi = conv(v′1, . . .v

′
i,v
′′
i , . . .v

′′
n). Then σ1, . . . , σn triangulate P .

Proof*. We first establish that σi is an n-dimensional simplex for i = 1, . . . , n by showing that
v′1, . . .v

′
i,v
′′
i , . . .v

′′
n are affinely independent. By Lemma 1.2 this is equivalent to showing that

v′1 − v′i, . . .v′i−1 − v′i,v′′i − v′i,v′′i+1 − v′i, . . . ,v′′n − v′i are linearly independent. By taking these
vectors as the columns of a matrix we get(

v1 − vi . . . vi−1 − vi vi − vi vi+1 − vi . . . vn − vi
0 . . . 0 1 1 . . . 1

)
,

which is similar to(
v1 − vi . . . vi−1 − vi 0 vi+1 − vi . . . vn − vi
0 . . . 0 1 0 . . . 0

)
.

From the affine independence of v1, . . .vn and Lemma 1.2 it follows that the n − 1 vectors
v1 − vi, . . . ,vi−1 − vi,vi+1 − vi, . . . ,vn − vi are linearly dependent and the vector (0, 1) is
clearly linearly independent from the rest of the columns of this second matrix. This establishes
the linear independence of v′1−v′i, . . .v′i−1−v′i,v′′i −v′i,v′′i+1−v′i, . . . ,v′′n−v′i, so we can conclude
that the σi are indeed n-dimensional simplices.

Next we show that σ1, . . . , σn cover P . To this end, take (x, h) ∈ P with x ∈ σ and h ∈ [0, 1].
Then we can write x uniquely as x =

∑n
k=1 αkvk with

∑n
k=1 αk = 1 and α1, . . . , αn ≥ 0. Now

take 1 ≤ i ≤ n such that
∑n

k=i αk ≥ h and
∑n

k=i+1 αk ≤ h. Then, defining t := h−
∑n

k=i+1 αk,
we can write

(x, h) = α1v
′
1 + . . .+ αi−1v

′
i−1

+ αi
(
(1− t)v′i + tv′′i

)
+ αi+1v

′′
i+1 + . . .+ αnv

′′
n,

which shows that (x, h) is a convex combination of the vertices of σi, so in particular (x, h) ∈ σi.

7



The last thing we need to show, is that if two simplices of σ1, . . . , σn share a point, then this point
has to lie in a common face of the two simplices. Take a point (x, h) ∈ P that lies in both σi
and σj , with i < j. Then from the discussion above, we get that

∑n
k=i αk ≥ h,

∑n
k=i+1 αk ≤ h,∑n

k=j αk ≥ h and
∑n

k=j+1 αk ≤ h, from which the second and third condition can only be met
simultaneously when

∑n
k=j αk = h and αk = 0 for i < k < j. Therefore (x, h) must lie in the

common face conv(v′1, . . . ,v
′
i,v
′′
j , . . . ,v

′′
n).

Now we can conclude that σ1, . . . , σn together with all of their faces form a simplicial complex
that triangulates P .

1.3 The Barycentric Subdivision

In this section we will present a way to refine an existing triangulation. This means that simplices
in the triangulation are subdivided into simplices of smaller diameter. The next lemma gives
a useful characterization of the diameter of a simplex. Throughout this report we will use the
Euclidean norm and distance, unless stated otherwise.

Lemma 1.12. The diameter of an arbitrary simplex σ is equal to the distance between some
two vertices of σ.

Proof*. Let v1, . . . ,vn be the vertices of σ. The diameter of σ is defined in the usual way as
diam(σ) = max{‖x − y‖ : x,y ∈ σ}. Now suppose that for x,y ∈ σ, with y 6= v1, . . . ,vn, we
have ‖x − y‖ = diam(σ). Then, writing y =

∑n
i=1 αivi with α1, . . . , αn ≥ 0 and

∑n
i=1 αi = 1,

we get

‖x− y‖ = ‖
n∑
i=1

αix−
n∑
i=1

αivi‖

= ‖
n∑
i=1

αi(x− vi)‖

≤
n∑
i=1

αi‖x− vi‖

≤
n∑
i=1

αi max{‖x− vj‖ : vj ∈ {v1, . . . ,vn}}

= max{‖x− vj‖ : vj ∈ {v1, . . . ,vn}},

where the first inequality follows from the triangle inequality.

Thus, we have shown that if y 6= v1, . . . ,vn there is a vertex vj of σ such that ‖x−y‖ ≤ ‖x−vj‖.
Repeating the same argument for x, we get that

diam(σ) = max{‖vi − vj‖ : vi,vj ∈ {v1, . . . ,vn}},

which shows the diameter of σ is equal to the distance between some two vertices of σ.

Definition 1.13. Let ∆ be a simplicial complex. The (first) barycentric subdivision of ∆,
denoted by sd(∆), is the simplicial complex constructed as follows:

8



• For each simplex σ ∈ ∆, sd(∆) has a vertex at the gravitational center, or barycenter, of
σ. The gravitational center is the mean of all vertices of σ.

• If σ1 ⊂ . . . ⊂ σn is a chain of simplices in ∆, then the simplex spanned by the corresponding
vertices in sd(∆) is a simplex in sd(∆).

Note that this definition ensures that if σ is a simplex in sd(∆), then all faces of σ are simplices
of sd(∆) as well.

•v1

• v2

•
v3

• v4

∆ •

•

•

•

•
•

•

v1

v2

v3

sd(∆)

• v4

•

Figure 1.1: A simplicial complex ∆ and its first barycentric subdivision sd(∆).

To confirm that the barycentric subdivision sd(∆) of a simplicial complex ∆ is indeed a simplicial
complex and that it triangulates ‖∆‖, it suffices to show this for the case in which ∆ is the
simplicial complex σn.

Lemma 1.14. The barycentric subdivision sd(σn) is a triangulation of ‖σn‖.

Proof*. First we check that the n-simplices in sd(σn) cover ‖σn‖. To this end take an arbitrary
x ∈ ‖σn‖. Number the vertices of σn in such a way that we get

x =
n+1∑
i=1

αivi with α1 ≥ . . . ≥ αn+1 ≥ 0 and
n+1∑
i=1

αi = 1.(1.1)

Now define

vk :=
1

k

k∑
i=1

vi for k = 1, . . . n+ 1,

then conv(v1, . . . ,vn+1) is an n-simplex in sd(σn) since it corresponds to a chain of simplices in
σn. Further, define

βk := k(αk − αk+1) for k = 1, . . . , n and βn+1 := (n+ 1)αn+1,

then we get β1, . . . , βn+1 ≥ 0 since αi ≥ αi+1 ≥ 0 for i = 1, . . . , n and also

n+1∑
i=1

βi = (α1 − α2) + 2(α2 − α3) + . . .+ n(αn − αn+1) + (n+ 1)αn+1

=
n+1∑
i=1

αi = 1.
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Now observe that

n+1∑
i=1

βivi = αn+1(v1 + . . .+ vn+1) + (αn − αn+1)(v1 + . . .+ vn) + . . .

+ (α2 − α3)(v1 + v2) + (α1 − α2)v1

=

n+1∑
i=1

αivi

= x,

(1.2)

which means that x ∈ conv(v1, . . . ,vn+1).

Notice that if some of the αi are equal or zero then one or more of the vk do not contribute to
x. More precisely, x lies in the relative interior of the face of conv(v1, . . . ,vn+1) spanned by the
vk for which βk 6= 0. This face is also a simplex in sd(σn), as it corresponds to a subchain of
the chain corresponding to conv(v1, . . . ,vn+1). This simplex is uniquely determined since the
convex combination 1.1 is unique and it is clear from 1.2 that it does not matter in which order
the vi for which the αi are equal are numbered. Thus, this simplex is the support of x in sd(σn).

Each face of a simplex σ in sd(σn) is also a simplex of sd(σn), because it corresponds to a
subchain of the chain of simplices in σn corresponding to σ.

Further, if σ and τ are simplices of sd(σn) then σ∩τ is the convex hull of their common vertices,
which is a face of both σ and τ and therefore also a simplex in sd(σn). This can be shown
as follows: Suppose σ ∩ τ is not the convex hull of their common vertices. Then there is an
x ∈ σ ∩ τ that does not lie in the convex hull of their common vertices. However, supp(x) is a
face of both σ and τ and therefore also a face of the convex hull of their common vertices, so x
lies in the convex hull of the common vertices of σ and τ after all.

This confirms that sd(σn) is a simplicial complex. Thus, we have confirmed that sd(σn) is a
triangulation of ‖σn‖.

Now that we know that the barycentric subdivision of a simplicial complex ∆ is a triangulation
of ‖∆‖, we will show that, using the barycentric subdivision, we can construct arbitrarily fine
triangulations. We will do this using the following lemmas found in [Mun84].

Lemma 1.15. Let σ be an n-dimensional simplex with barycenter σ̂ := 1
n+1

∑n+1
i=1 vi, where

v1, . . . ,vn+1 are the vertices of σ. Then for all x ∈ σ

‖σ̂ − x‖ ≤ n

n+ 1
diam(σ).
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Proof. For any vertex vj of σ we get

‖σ̂ − vj‖ = ‖ 1

n+ 1

n+1∑
i=1

vi − vj‖

= ‖ 1

n+ 1

n+1∑
i=1

(vi − vj)‖

≤
n+1∑
i=1

‖ 1

n+ 1
(vj − vi)‖

≤ n

n+ 1
max{‖vj − vi‖}

≤ n

n+ 1
diam(σ),

where the first inequality follows from the triangle inequality, the second from the fact that the
term in the summation for i = j is zero and the last one from Lemma 1.12. Since this holds
for any vertex vj of σ we get that all vertices of σ lie in the closed ball with radius n

n+1diam(σ)
centered at σ̂. From the convexity of σ it follows that this closed ball contains σ, which concludes
our proof.

This result will be used in the proof of the next lemma.

Lemma 1.16. Let σ be an n-dimensional simplex and let τ be a simplex in the first barycentric
subdivision of σ, then

diam(τ) ≤ n

n+ 1
diam(σ).

Proof. The proof uses induction on the dimension n. For n = 0 the result is trivial. Now
suppose it is true in dimensions less than n. By lemma 1.12 and the definition of the barycentric
subdivision it suffices to show that if s and s′ are faces of σ such that ′s ⊂ s, then

‖ŝ− ŝ′‖ ≤ n

n+ 1
diam(σ).

If s equals σ itself, this inequality follows from lemma 1.15. If s is a proper face of σ of dimension
m < n we have

‖ŝ− ŝ′‖ ≤ m

m+ 1
diam(s)

≤ n

n+ 1
diam(σ).

The first inequality follows by the induction hypothesis and the second from the fact that
f(x) = x

x+1 is increasing for x > 0.

From this lemma the next corollary easily follows.

Corollary 1.17. Let ∆ be a simplicial complex. For every ε > 0 there is a k ∈ N such that the
diameter of all simplices in sdk(∆) (barycentric subdivision iterated k times) is at most ε.

Proof*. Let n be the dimension of ∆ and d the maximum diameter of any simplex in ∆. Take

k ∈ N such that
(

n
n+1

)k
≤ ε

d . Then, using Lemma 1.16, we get that the diameter of any simplex

in sdk(∆) is at most
(

n
n+1

)k
d ≤ ε

dd = ε.
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Chapter 2

The Borsuk-Ulam Theorem

2.1 Borsuk-Ulam Equivalents

The Borsuk-Ulam theorem has many equivalent versions. In the next theorem we will state four
equivalent statements that are all known as the Borsuk-Ulam theorem. We will also verify that
they are indeed equivalent.

Theorem 2.1 (Borsuk-Ulam theorem). The following statements are equivalent.

1. For every continuous mapping f : Sn → Rn there exists a point x ∈ Sn with f(x) = f(−x).

2. For every continuous antipodal mapping f : Sn → Rn, that is, f(−x) = −f(x) for all
x ∈ Sn, there exists a point x ∈ Sn satisfying f(x) = 0.

3. There is no continuous antipodal mapping f : Sn → Sn−1.

4. There is no continuous mapping f : Bn → Sn−1 that is antipodal on the boundary, that is,
satisfies f(−x) = −f(x) for all x ∈ Sn−1 = ∂Bn.

Proof. The equivalence of the four statements follows from the following implications, which are
based on a proof given in [Mat08].

1 =⇒ 2 If f : Sn → Rn is a continuous antipodal mapping, according to statement 1 there exists
a point x ∈ Sn with f(x) = f(−x). But since f is antipodal, we also get that f(−x) = −f(x),
which means that f(x) = 0.

2 =⇒ 1 Let f : Sn → Rn be a continuous mapping. Then g(x) := f(x)− f(−x) is a continuous
antipodal mapping. Statement 2 says that there is a point x ∈ Sn with g(x) = 0 and so
f(x) = f(−x).

2 =⇒ 3 Suppose, for contradiction, that there is a continuous antipodal mapping f : Sn → Sn−1.
Then, since Sn−1 ⊂ Rn, f would be a continuous antipodal mapping Sn → Rn without a zero,
which is in contradiction with statement 2. This means that there is no continuous antipodal
mapping f : Sn → Sn−1.

3 =⇒ 2 Assume, for contradiciton, that f : Sn → Rn is a continuous nowhere zero antipodal
mapping. Then the mapping g : Sn → Sn−1 given by g(x) := f(x)/‖f(x)‖ is a continuous
antipodal mapping Sn → Sn−1, so it contradicts statement 3. Thus every continuous antipodal
mapping Sn → Rn has a zero.
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3 =⇒ 4 First note that the orthogonal projection π : (x1, . . . , xn+1) → (x1, . . . , xn) is a home-
omorphism of the upper hemisphere U = {(x1, . . . , xn+1) ∈ Sn : xn+1 ≥ 0} of Sn to Bn. For
a continuous mapping g : Bn → Sn−1 that is antipodal on ∂Bn we can define a mapping
f : Sn → Sn−1 by f(x) = g(π(x)) and f(−x) = −g(π(x)) for x in the upper hemisphere U .
This specifies f on the whole of Sn and since g is antipodal on ∂Bn, which can be seen as
the equator of Sn, it is consistent. Further f is continuous since it is continuous on both of
the closed hemispheres. Thus f is a continuous antipodal mapping Sn → Sn−1 which contra-
dicts statement 3, so there is no continuous mapping f : Bn → Sn−1 that is antipodal on the
boundary.

4 =⇒ 3 From a continuous antipodal mapping f : Sn → Sn−1 we can construct a continuous
mapping g : Bn → Sn−1 that is antipodal on the boundary ∂Bn by g(x) = f(π−1(x)), where π−1

is the inverse of the projection π above. This contradicts statement 4, so there is no continuous
antipodal mapping f : Sn → Sn−1.

Another well know equivalent of the Borsuk-Ulam theorem is stated next.

Theorem 2.2 (Lyusternik-Schnirel’man theorem). For any cover U1, . . . , Un+1 of the sphere Sn

by n+ 1 sets, such that each of the first n sets of U1, . . . , Un+1 is either open or closed, at least
one of the n+ 1 sets contains a pair of antipodal points.

The case when all n+ 1 sets are closed is also known as the Lyusternik-Schnirel’man theorem,
just as the case when all n+ 1 sets are open. All versions are equivalent, but since Theorem 2.2
is the most general, we will only verify the equivalence of this version and the Borsuk-Ulam
theorem.

Theorem 2.3. The Borsuk-Ulam theorem (Theorem 2.1) and the Lyusternik-Schnirel’man the-
orem (Theorem 2.2) are equivalent.

Proof. This proof is based on proofs given in [AZ14] and [Mat08]. We first show that the first
statement of the Borsuk-Ulam theorem implies the Lyusternik-Schnirel’man theorem.
Let U1, . . . , Un+1 be a cover of the sphere Sn, such that U1, . . . , Un are either open or closed and
assume that no Ui contains a pair of antipodal points. We define a map f : Sn → Rn by

f(x) := (δ(x, U1), . . . , δ(x, Un+1)),

where δ(x, Ui) denotes the distance from x to Ui: δ(x, Ui) := inf{‖x − y‖ : y ∈ Ui}. From the
continuity of δ it follows that f is also continuous. From the first statement of Theorem 2.1 we
get that there is a point x ∈ Sn with f(x) = f(−x). Because Un+1 does not contain a pair
of antipodal points, at least one of the points x and −x must lie in one of the sets U1, . . . , Un.
After exchanging x with−x, if necessary, we may assume that x ∈ Uk for some 1 ≤ k ≤ n. This
yields δ(x, Uk) = 0 and since f(x) = f(−x) we get that δ(−x, Uk) = 0 as well.

If Uk is closed, then δ(−x, Uk) = 0 implies that −x ∈ Uk. But then both x and −x are in Uk,
which contradicts the assumption that no Ui contains a pair of antipodal points.

If Uk is open, then δ(−x, Uk) = 0 means that −x lies in the closure Uk of Uk. This Uk is
contained in Sn\(−Uk), since this is a closed subset of Sn that contains Uk (because Uk does
not contain a pair of antipodal points Uk ∩−Uk = ∅). This means that −x lies in Sn\(−Uk), so
it cannot lie in −Uk, and therefore x cannot lie in Uk. Again, we have reached a contradiction.
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Since the assumption that no Ui contains a pair of antipodal points leads to a contradiction in
both cases, our assumption must be false, which means that one of the Ui does contain a pair
of antipodal points.

Next we show that the Lyusternik-Schirel’man theorem implies the third statement of the
Borsuk-Ulam theorem. First note that if we take an n-simplex in Rn containing 0 in its in-
terior and we project the facets centrally from 0 on Sn−1, then the projection of a facet falls
within an open hemisphere of Sn−1. This hemisphere is defined by the (n − 1)-dimensional
hyperplane through 0 parallel to the facet. Now let F1, . . . , Fn+1 be the projections of the n+ 1
facets of the n-simplex on Sn−1, then no Fi contains a pair of antipodal points.

Now, assume that f : Sn → Sn−1 is a continuous antipodal mapping, so f(−x) = −f(x), then
the sets f−1(F1), . . . , f−1(Fn+1) are n+1 closed sets (since the Fi are closed and f is continuous)
containing no antipodal points (since f is antipodal) that cover Sn. This is in contradiction with
Theorem 2.2, so there can not be a continuous antipodal mapping f : Sn → Sn−1.

2.2 A Geometric Proof

In this section we present a geometric proof of the Borsuk-Ulam theorem, based on a proof given
in [Mat08]. For this proof we need a number of lemmas which will be stated and proved here
first.

Lemma 2.4. Let p(x1, x2, . . . , xn) = p(x) be a nonzero polynomial in n variables. Then the
zero set Z(p) := {x ∈ Rn : p(x) = 0} is nowhere dense, meaning that any open ball B ⊆ Rn
contains an open ball B′ with B′ ∩ Z(p) = ∅.

Proof*. Suppose there exists an open ball B with center a for which p(x) = 0 ∀x ∈ B. Take
the polynomial q(x) = p(x + a) which is zero on an open ball around the origin and therefore
all partial derivatives of q(x) are zero in 0. Let m be the maximum degree of any term of q.
Then, writing

q(x) =
∑

α∈{0,1,...,m}n
cαx

α, where xα :=
n∏
i=1

xαi
i ,

we get
n∏
i=1

∂αi

∂xαi
q(x) =

n∑
i=1

αi∏
k=1

kcα + r(x),

where
∑n

i=1

∏αi
k=1 k > 0 for α 6= 0 and r(x) is a polynomial without a constant term. This is

because taking α-repeated partial derivatives of a monomial xβ can only result in the following:

1. A nonzero constant if β = α.

2. A non-constant monomial if βi > αi for some i ∈ [n] = {1, . . . , n} and βi < αi for no
i ∈ [n].

3. Zero if βi < αi for some i ∈ [n].

Thus, for each α ∈ {0, 1, . . . ,m}n, plugging in 0 in the corresponding partial derivative (for
α = 0 this is just q(x)) then yields that all coefficients cα of q(x) must be zero and therefore
q(x) is the zero polynomial. But this implies that p(x) must also be the zero polynomial and
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this is in contradiction with our assumptions. Therefore every open ball B must contain a point
on which p(x) 6= 0.

Now suppose, for contradiction, that Z(p) is not nowhere dense, this means that there is an
open ball B so that for every open ball B′ ⊆ B there is an x ∈ B′ with p(x) = 0. Take B as
above and take a point a ∈ B with p(a) 6= 0. Now for every n ∈ N fix a point xn ∈ B(a, 1

n) so
that p(xn) = 0. From the construction it is clear that xn → a. The continuity of p(x) implies
that p(xn) → p(a). However p(xn) = 0 for all n ∈ N and p(a) 6= 0. This contradiction implies
that Z(p) is nowhere dense.

Lemma 2.5. Let A1, A2, . . . , An be a collection of nowhere dense sets. Then the union
⋃n
i=1Ai

is also nowhere dense.

Proof*. Suppose, as our induction hypothesis, that
⋃k
i=1Ai is nowhere dense. We show that⋃k+1

i=1 Ai is nowhere dense. Take an open ball B, then there is an open ball Bk ⊆ B with

Bk ∩
⋃k
i=1Ai = ∅. Since Ak+1 is nowhere dense, we can find an open ball Bk+1 ⊆ Bk with

Bk+1 ∩Ak+1 = ∅. This implies that Bk+1 ⊆ B and Bk+1 ∩
⋃k+1
i=1 Ai = ∅, so

⋃k+1
i=1 Ai is nowhere

dense. Since all the Ai are nowhere dense, our induction hypothesis holds trivially for k = 1, so
by induction it follows that

⋃n
i=1Ai is nowhere dense.

Let σ := conv(v1, . . . ,vn+2) be an n + 1 dimensional simplex in Rn+1 and h : σ → Rn be an
affine map, that is, a map of the form x 7→ Ax + b, where A is an n × (n + 1) matrix and
b ∈ Rn. We call h generic if h−1(0) intersects no face of σ of dimension smaller than n. This
means that h−1(0) is either empty or a segment lying in the interior of σ with endpoints lying
in the interior of two distinct n-dimensional faces of σ. If h is nongeneric then there must be a
point x lying in an (n− 1)-dimensional face of σ that gets mapped to 0. Assume the vertices of
this face are v1,v2, . . . ,vn. Then x is a convex combination of these n vertices:

x =

n∑
i=1

αivi with α1, . . . , αn ≥ 0 and

n∑
i=1

αi = 1.

Since x ∈ h−1(0) we get
0 = h(x) = Ax+ b

= A(

n∑
i=1

αivi) + b

=

n∑
i=1

αiAvi +

n∑
i=1

(αib)

=

n∑
i=1

αi(Avi + b)

=

n∑
i=1

αih(vi)

As the αi can not all be zero, we get that h(v1), . . . , h(vn) are linearly dependent.
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Lemma 2.6. Let X be an (n + 1)-dimensional subset of Rn+2 that has a triangulation T Let
H : X → Rn be a function that is affine on each simplex of T. Then there exists a generic map
G, a map that is generic on each full dimensional simplex of T, arbitrarily close to H, that is,
for all ε > 0 there is a generic map G such that ‖H(x)−G(x)‖ < ε for all x ∈ X.

Proof*. Let N = V (T) be the number of vertices in T. Then a function F : X → Rn that is
affine on each simplex of T is fully determined by the N values in Rn it takes on the vertices of
T and therefore each possible F can be associated with a vector in RnN .

Let Σ be the set of all (n− 1)-dimensional simplices in T and for each σ ∈ Σ let Aσ be the n×n
matrix with the images of the vertices of σ as columns. For each σ ∈ Σ the determinant det(Aσ)
can be written as a polynomial pσ in the nN coefficients of F . We know that if the n vertices
of an (n− 1)-dimensional simplex in T are mapped to n linearly independent vectors, then this
simplex does not contain a zero. So the vectors in RnN belonging to the maps F that lead to
a zero in a particular σ ∈ Σ lie in the zero set Z(pσ). Now, according to Lemma 2.4, the zero
set Z(pσ) is nowhere dense in RnN for all σ ∈ Σ and by Lemma 2.5 it follows that the union⋃
σ∈Σ Z(pσ) is also nowhere dense in RnN . Therefore the set of all vectors in RnN for which F

is nongeneric is nowhere dense in RnN and this means that there is a generic map G arbitrarily
close to H.

Before we begin our proof of the Borsuk-Ulam theorem, we will first state the exact version of
the theorem that we will prove.

Theorem 2.7. Let f : Sn → Rn be a continuous antipodal map. Then there exists a point
x ∈ Sn satisfying f(x) = 0. This is statement 2 of Theorem 2.1.

Proof. Let Ŝn = {x ∈ Rn+1 :
∑n

i=1 |xi| = 1} be the boundary of a cross-polytope. Since Ŝn is

homeomorphic to Sn we can use Ŝn instead of Sn and we will do so in the rest of the proof.
Because of the symmetry of Ŝn we can make sure that f is antipodal on Ŝn just like on Sn.
Suppose, for contradiction, that f : Ŝn → Rn has no zeros. Since Ŝn is compact, there is an
ε > 0 such that ‖f(x)‖ > ε for all x ∈ Ŝn. For this ε we can find δ > 0 such that for all
x,y ∈ Ŝn if ‖x − y‖ < δ then ‖f(x) − f(y)‖ < ε. We now construct a triangulation TS of Ŝn

by iterated barycentric subdivision of the natural triangulation of Ŝn such that all simplices in
TS have diameter smaller than this δ. The number of iterated barycentric subdivisions needed,
denoted by k, will be used later.

Let f̄ : Ŝn → Rn be the map that agrees with f on the vertex set V (TS) of TS and is affine
on each simplex of TS . Note that f̄ is antipodal since f is antipodal and the triangulation
TS is symmetric. For all y ∈ Ŝn we can write y =

∑n+1
i=1 αivi with v1, . . . ,vn+1 ∈ V (TS),

α1, . . . , αn+1 ≥ 0 and
∑n+1

i=1 αi = 1. Therefore we get

‖f(y)− f̄(y)‖ = ‖
n+1∑
i=1

αi(f(y)− f(vi))‖

≤
n+1∑
i=1

αi‖f(y)− f(vi)‖

<

n+1∑
i=1

αiε

= ε,
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so f̄ has no zeros in Ŝn. The inequality above follows from the triangle inequality and the fact
that y lies in the simplex with vertices v1, . . . ,vn+1, so the distance from y to either of these
vertices is smaller than δ.

Let g be an orthogonal projection from Ŝn to Rn in a “generic” direction such that the only two
zeros z1 and z2 lie in the interior of n-dimensional simplices of the triangulation TS . Note that
g is affine and antipodal, so in particular z1 = −z2.

Now we construct a space X := Ŝn × [0, 1] which can be seen as a “hollow cylinder” placed in
Rn+2 with two copies of Ŝn at the top and bottom. We will refer to Ŝn × {0} as the bottom
sphere and to Ŝn×{1} as the top sphere in X. In order to construct a triangulation T of X we
first triangulate the simplicial prisms σ × [0, 1] for all n-dimensional simplices σ in the natural
triangulation of Ŝn according to Lemma 1.11 in such a way that the triangulations of adjacent
prisms are mirror images of each other. This is possible since an even number of n-simplices of
the natural triangulation of Ŝn meets in each vertex, due to the symmetry of Ŝn. Next we refine
the triangulation by k iterated subdivisions. Note that then the triangulation T is the same as
TS on the top and bottom sphere.

Next we define the function F : X → Rn by F (x, t) = (1 − t)g(x) + tf̄(x). Let ν be the map
on X with ν(x, t) = (−x, t) and call it the antipodality on X. Since both g an f̄ are antipodal
it follows that F (ν(x, t)) = −F (x, t). By construction it is clear that F is affine and it has the
following two properties.

F has no zeros on the top sphere,(2.1)

and

F has exactly two zeros on the bottom sphere,
lying in the interiors of n-dimensional antipodal simplices.

(2.2)

The following step is to introduce a perturbation map P0 : V (T) → Rn satisfying P0(ν(v)) =
−P0(v) for each v ∈ V (T), which will be specified later. P0 is extended affinely on each simplex
of T to a map P : X → Rn and then we set F̃ = F + P . If the values of P0 lie sufficiently
close to 0, then the perturbed map F̃ still has properties 2.1 and 2.2. Since F has no zero on
the top sphere, then if the perturbation is small enough F̃ has no zero there either. Further,
if σ is a simplex on the bottom sphere containing one of the two zeros of F , then F maps this
simplex to some n-dimensional simplex τ in Rn containing the origin in its interior. Again, if
the perturbation, which causes a small movement of the vertices of τ is small enough, F̃ has
a zero in the interior of the same simplex σ. Similarly, a simplex that does not contain a zero
retains this property after a small enough perturbation. If T has 2N vertices, then the space of
all possible antipodal perturbation maps P0 on V (T) has dimension nN , since the value can be
chosen freely on a set of N vertices containing no two antipodal vertices. Then by Lemma 2.6
there exists a generic perturbed map F̃ arbitrarily close to F . Here we use the fact that no
simplex in T contains any two antipodal vertices. Otherwise all perturbed mappings would have
a zero on the middle of the edge connecting them and would be nongeneric for that reason. This
means that an arbitrarily small perturbation P0 exists, such that F̃ is generic.

Thus, there is a sufficiently small perturbation P0 such that the perturbed mapping F̃ is generic
and still has no zeros on the top sphere and exactly two zeros on the bottom sphere, lying in
the interiors of n-dimensional antipodal simplices. For this F̃ the zero set F̃−1(0) is a locally
polygonal path consisting of segments with no branchings. This is because each n-simplex τ ∈ T
is the face of exactly two (n + 1)-simplices, unless τ lies in the top or bottom sphere, in which
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case it is a face of only one (n+ 1)-simplex in T. Therefore the components of F̃−1(0) are zero
or more closed polygonal cycles and a polygonal path γ connecting z1 and z2.

This γ consists of finitely many segments and is symmetric under ν. This means that, depending
on whether the number of segments in γ is even or odd, either the middle vertex on γ has to
be its own antipode or the middle segment has to connect two antipodal vertices of T. However
X does not contain a point antipodal to itself and there are no segments in T connecting two
antipodal vertices since T uses the natural triangulation of the boundary of the cross-polytope.
We have reached a contradiction, so we can conclude that f does have a zero, which concludes
our proof.
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Chapter 3

Fan’s Lemma

3.1 Fan’s n+ 1 Lemma

In this section, based on [NS13] we will present Fan’s n + 1 lemma, which is a combinatorial
equivalent of the Borsuk-Ulam theorem. As we shall see in the next chapter, there is a direct
proof that Fan’s n+1 lemma implies Sperner’s lemma, a combinatorial equivalent to the Brouwer
fixed point theorem.

In order to state Fan’s n+ 1 lemma, we need to introduce some terminology.

A triangulation T of Sn is symmetric if when a simplex σ is in T, then −σ is also in T. Define
an m-labeling of a triangulation T to be a function ` that assigns to each vertex v of T one
of 2m possible integers: {±1, . . . ,±m}. We will call a labeling of a symmetric triangulation
anti-symmetric if the labels of each pair of antipodal vertices sum to zero. Further, a labeling
has a complementary edge if two adjacent vertices have labels that sum to zero.

We call an n-simplex in an m-labeled triangulation alternating if its vertex labels are distinct
in magnitude and alternate in sign when arranged in order of increasing absolute value, that is,
the labels have the form

{k0,−k1, k2, . . . , (−1)nkn} or {−k0, k1,−k2, . . . , (−1)n+1kn},

where 1 ≤ k0 < k1 < . . . < kn ≤ m. The sign of an alternating simplex is the sign of k0, that is,
the sign of the smallest label in absolute value. Depending on the sign we will call them positive
alternating simplices or negative alternating simplices.

Theorem 3.1 (Fan’s n+1 lemma). Let T be a symmetric triangulation of Sn that is a refinement
of the natural triangulation of Ŝn with an (n + 1)-labeling that is anti-symmetric and has no
complementary edge. Then T has a positive alternating n-simplex.

We will show now that Fan’s n + 1 lemma is equivalent to the Borsuk-Ulam theorem. We will
identify Sn again with the boundary of a concentric cross-polytope Ŝn through a projection
from the origin, which is a homeomorphism.

Theorem 3.2. The Borsuk-Ulam theorem and Fan’s n+ 1 lemma are equivalent.

Proof. We first show that the Borsuk-Ulam theorem implies Fan’s n+1 lemma. Let T be a sym-
metric triangulation of Ŝn with an anti-symmetric (n+1)-labeling L that has no complementary
edges. Let wi ∈ Rn+1 be the point with ith coordinate n and other coordinates −1:

wi = (−1, . . . ,−1, n,−1, . . . ,−1).
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Let W+ = {w1, . . . ,wn+1} and W− = {−w1, . . . ,−wn+1} and define w−i = −wi. Then the
2n + 2 points in W = W+ ∪ W− lie on the n-dimensional hyperplane H = {(x1, . . . , xn+1) :∑n+1

i=1 xi = 0}.

We now define a continuous map h : Ŝn → H as follows. For each v ∈ V (T), let

h(v) =

{
wL(v) if L(v) is odd

−wL(v) if L(v) is even.
(3.1)

Then h is affinely extended on each simplex of T. From the anti-symmetry of L it follow that
h(−x) = −h(x) for all x ∈ Ŝn. Therefore, by the Borsuk-Ulam theorem (the second statement
of Theorem 2.1) and our homeomorphism of Sn with Ŝn, we get that there is a z ∈ Ŝn such
that h(z) = 0.

Since the n-simplices in T cover Ŝn, z is in some n-simplex σ for which h(σ) contains the origin.
The images of the vertices of this σ form a set K, which is a subset of W of size n + 1 (or
smaller, in case L assigns the same label to more than one vertex of σ). Since there are no
complementary edges in T, we know that K contains no pair {wj ,−wj}. This means that we
can write K = {wj}j∈B ∪ {−wj}j∈B′ , where B and B′ are disjoint subsets of {1, . . . , n+ 1}.
Now define the vector v as the sum of all vectors in K:

v =
∑
j∈B

wj −
∑
j∈B′

wj ,

Note that for the dot product between two vectors in W+ we get wi · wi = n(n + 1) for all
i ∈ {1, . . . , n+ 1} and wi ·wj = −(n+ 1) for all j 6= i. Then, for i ∈ B, we get

wi · v = n(n+ 1)− (|B| − 1)(n+ 1) + |B′|(n+ 1) = (n+ 1)(n+ 1− |B|+ |B′|),

which is positive unless |B| = n+ 1 and |B′| = 0, meaning that K = W+. For i ∈ B′ we get

−wi · v = |B|(n+ 1)− n(n+ 1)− (|B′| − 1)(n+ 1) = (n+ 1)(|B| − |B′|+ n+ 1),

which is positive unless |B′| = n+ 1 and |B| = 0, meaning that K = W−. Since the convex hull
of K contains the origin, it cannot be the case that all vectors in K have a positive dot product
with v. This means that either K = W+ or K = W−.

If K = W+, then from (3.1) it follows that a vector with image wi must have label i if i is odd
and label −i if i is even. This means that σ has labels 1,−2, . . . , (−1)n(n+1). If K = W−, then
from (3.1) and the anti-symmetry of L it follows that a vector with image −wi must have label
i if i is odd and label −i if i is even. Again we get that σ has labels 1,−2, . . . , (−1)n(n+ 1), so
in all cases we find a positive alternating n-simplex.

Next we show that Fan’s n+ 1 lemma implies the Borsuk-Ulam theorem. Let h : Sn → Rn be a
continuous antipodal function. Again we use Ŝn instead of Sn, where our homeomorphism of Sn

and Ŝn ensures that h : Ŝn → Rn is antipodal as well, so h(−x) = −h(x) for all x ∈ Ŝn. Assume,
for contradiction, that there is no point z ∈ Ŝn such that h(z) = 0. If h(x) = (x′1, . . . , x

′
n), let

ĥ : ŜN → Rn+1 be the function defined by ĥ(x) = (x′1, . . . , x
′
n,−

∑n
i=1 x

′
i). Note that ĥ maps

Ŝn to the hyperplane H defined above and that it is continuous and antipodal, which follows
from the continuity and antipodality of h. Also there is no point z so that ĥ(z) = 0.

Let Tk be a symmetric triangulation of Ŝn such that the diameter of all simplices in Tk is smaller
than 1

k and let the set W be as above. Our next aim is to construct a labeling Lk of the vertices
of Tk that is antisymmetric.
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Define Lk(v) to be the index i of smallest absolute value such that for all j ∈ {±1, . . . ,±(n+1)}
we have ‖wi − ĥ(v)‖ ≤ ‖wj − ĥ(v)‖. To see that this is well defined, note that ĥ(v) is never
zero and that no other point than the origin can be equidistant from wi and w−i. This last fact
is not directly obvious, but can be explained by the following.

Since ‖wi‖ is the same for all i ∈ [n + 1] = {1, . . . , n + 1} and ‖wi −wj‖ is also equal for all
i 6= j ∈ [n + 1], we know that the points in W+ are evenly distributed round the origin on the
n-dimensional hyperplane H = {(x1, . . . , xn+1) :

∑n+1
i=1 xi = 0}. And in the same way the points

in W− lie at their negative positions. Also note that for i ∈ [n + 1] we have that ‖wi −w−j‖
is the same for all j ∈ [n + 1] \ i. Now let Pij be the hyperplane of points that have the same
distance to wi as to w−j . Then the collection of hyperplanes {Pij} with i 6= j ∈ [n+ 1] divides
H in 2n + 2 subsets where the points in each subset lie closest to some wi or w−i. The only
point that lies in all these subsets is the origin and because of the regular distribution of W+

and W− a point other than the origin cannot have equal distance to both wi and w−i without
being closer to one of the other points in W+ or W−.

Further Lk is anti-symmetric, because ĥ is anti-symmetric, so ĥ(v) is closest to wi if and only
if ĥ(−v) is closest to w−1.

Now for all 0 < k ∈ N we get a triangulation Tk with an (n + 1)-labeling Lk that is anti-
symmetric. Then from Fan’s n + 1 lemma we get that there is either a complementary edge
(+i,−i) for some i, or an alternating n-simplex with labels {1,−2, . . . , (−1)n(n + 1)} in each
Tk. This gives an infinite sequence of complementary edges and alternating simplices which, by
the compactness of Ŝn, has at least one of the following subsequences:

1. A subsequence of complementary edges of decreasing length, involving the same index i,
such that the two sequences formed by their vertices, for each distinct label one, both
converge.

2. A subsequence of alternating n-simplices of decreasing diameter, such that the n + 1
sequences formed by their vertices, for each distinct label from {1,−2, . . . , (−1)n(n + 1)}
one, all converge.

In the first case, let {yn}n∈N be the sequence of vertices with label i with yn → y and let {zn}n∈N
be the sequence of vertices with label −i with zn → z. Since ĥ(yn) = wi and ĥ(zn) = w−i for
all n ∈ N we get, by the continuity of ĥ that ĥ(y) = wi and ĥ(z) = w−i, so ĥ(y) lies closest to
wi and ĥ(z) lies closest to w−i. Now suppose that y 6= z, let ε > 0 and take N ∈ N such that
for all n ≥ N we get that ‖y − yn‖ < ε

3 , ‖z − zn‖ < ε
3 and ‖yn − zn‖ < ε

3 . This is possible
since yn → y, zn → z and the length of the complementary edges goes to zero. Then, by the
triangle inequality, we get for all n ≥ N

‖y − z‖ ≤ ‖y − yn‖+ ‖yn − zn‖+ ‖zn − z‖ < ε

Therefore y = z and we get a limit point ĥ(y) = ĥ(z) that lies closest to wi and lies closest
to w−i, which means that it is equidistant from both wi and w−i. Considering the discussion
above, the only point satisfying this condition is 0.

In the second case, we get in a similar way that the n + 1 sequences of vertices all converge to
the same limit point z, for which ĥ(z), by the continuity of ĥ, is equidistant from all points in
{w1,−w2, . . . , (−1)nwn+1}, and again the only point satisfying this condition is 0.

This means that in either case, the limit point z must satisfy ĥ(z) = 0 and therefore h(z) = 0,
contradicting our assumption. This means that h does have a zero.
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Note that if an anti-symmetric m-labeling of a symmetric triangulation T of Sn has no comple-
mentary edge, then m ≥ n + 1 since alternating n-simplices must have n + 1 labels of distinct
magnitude. Therefore if we have an n-labeling there cannot be an alternating n-simplex. The
contrapositive of Fan’s n+ 1 lemma then yields that there must be a complementary edge. This
result is known as Tucker’s lemma.

Theorem 3.3 (Tucker’s lemma). Let T be a symmetric triangulation of Sn that is a refinement
of the natural triangulation of Ŝn with an n-labeling that is antisymmetric. Then T has a
complementary edge.

Tucker’s lemma is also equivalent to the Borsuk-Ulam theorem (see e.g. [Mat08]), but there is
no known proof that it directly implies Sperner’s lemma.

3.2 A Combinatorial Proof of Fan’s Lemma

In order to provide a combinatorial proof of the Borsuk-Ulam theorem, we will prove a more
general version of Fan’s n+1 lemma, to which we will refer to as Fan’s lemma. We will closely
follow the proof given in [PS05]. The Borsuk-Ulam theorem then follows from its equivalence
with Fan’s n + 1 lemma. In order to state and prove Fan’s lemma, we first need to introduce
some terminology. If A is a set in Sn then −A is the antipodal set, so if x ∈ A then −x ∈ −A.
A flag of hemispheres in Sn is a sequence H0 ⊂ . . . ⊂ Hn where each Hd is homeomorphic to a
d-dimensional ball, and for 1 ≤ d ≤ n, ∂Hd = ∂(−Hd) = Hd ∩ −Hd = Hd−1 ∪ −Hd−1

∼= Sd−1,
Hn ∪ −Hn = Sn, and {H0,−H0} are antipodal points.

We call a symmetric triangulation T aligned with hemispheres if we can find a flag of hemispheres
such that Hd is the union of a number of d-simplices of the triangulation. The carrier hemisphere
of a simplex σ ∈ T is the minimal Hd or −Hd that contains σ. Note that the sign of a carrier
hemisphere is either positive or negative.

We define a simplex to be almost-alternating if it is not alternating, but by deleting one of the
vertices, the resulting simplex, which is a facet of the original simplex, is alternating. The sign
of an almost-alternating simplex without a complementary edge is defined to be the sign of any
of its alternating facets. To see that this is well defined, we look at the two possible cases in
which such a simplex σ is not alternating.

1. Two vertices of σ have the same label.

2. When placed in order of increasing absolute value, two adjacent vertex labels of distinct
magnitude of σ have the same sign.

Now, let σ be an almost-alternating simplex without a complementary edge.

In the first case, deleting either one of the vertices with the same label makes the resulting
simplex alternating and its sign does not depend on which of the two vertices is deleted.

In the second case, deleting either one of the vertices with adjacent labels of the same sign, when
placed in order of increasing absolute value, makes the resulting simplex alternating. Its sign
does not depend on which of the two vertices is deleted because they both have the same sign.

Thus, in both cases the sign of the almost alternating simplex is well defined. Further, note
that if an almost-alternating simplex does not have a complementary edge, it has exactly two
facets that are alternating simplices. For example a simplex with labels {−1, 3, 5,−7} has facets
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with labels {−1, 3,−7} and {−1, 5,−7} respectively, that are alternating simplices. Now we are
ready to present a constructive proof of Fan’s lemma, stated for more general triangulations
than Fan’s original version in [Fan52].

Theorem 3.4. Let T be a symmetric triangulation of Sn aligned with hemispheres. Suppose
that T has an anti-symmetric labeling by labels {±1, . . . ,±m} without a complementary edge.
Then there are an odd number of positive alternating n-simplices and an equal number of negative
alternating n-simplices in T. And, in particular, m ≥ n+ 1.

Proof. Suppose that the triangulation T of Sn is aligned with the flag of hemispheres H0 ⊂ . . . ⊂
Hn. We call an alternating or almost-alternating simplex agreeable if its sign matches that of
its carrier hemisphere. For example, the simplex with labels {−1, 3, 5,−7} discussed above, is
agreeable if its carrier hemisphere is −Hd for some d. Next we construct a graph G. A simplex
σ ∈ T with carrier Hd is a node of G if it is one of the following.

1. σ is an agreeable alternating (d− 1)-simplex.

2. σ is an agreeable almost-alternating d-simplex.

3. σ is an alternating d-simplex.

Further, two nodes σ and τ are adjacent in G, meaning that there is an edge between them if
all the following conditions are met.

a. σ and τ are not both of type 1.

b. σ is a facet of τ or τ is a facet of σ.

c. σ ∩ τ is alternating.

d. The sign of the carrier hemisphere of σ ∪ τ matches the sign of σ ∩ τ .

e. The difference between the carrier hemisphere dimensions of σ and τ is at most 1.

Conditions a and e were not mentioned in [PS05], but are necessary. We claim that all vertices
of G have degree 1 or 2 and a vertex has degree 1 if and only if its corresponding vertex in T
is carried by ±H0 or is an n-dimensional alternating simplex. We will verify this for all three
different types of nodes in G.

1. Let σ be an agreeable alternating (d− 1)-simplex with carrier ±Hd.
We first look at d-simplices that have σ as a facet. Because of condition a, only d-simplices
of type 2 or 3 can be adjacent to σ. This means that only the two d-simplices in the same
carrier as σ that have σ as a facet might qualify. For both types condition c and d are
satisfied since σ is alternating and agreeable, so its sign matches that of ±Hd, which is
also the carrier of the type 2 or type 3 d-simplex.
Next we look at (d − 2)-simplices that are a facet of σ. Because of conditions a and c,
(d−2)-simplices of type 1 and 2 cannot be adjacent to σ. A (d−2)-simplex of type 3 with
carrier ±Hd−2, cannot be adjacent to σ either, because of condition e.
Thus, σ has degree 2 in G.
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2. Let σ be an agreeable almost-alternating d-simplex σ with carrier ±Hd.
We start again by looking at simplices that have σ as a facet. Because of condition c, no
d+ 1-simplices can be adjacent to σ since σ is not alternating.
Next we look at the (d−1)-simplices that are a facet of σ. Because of condition c again, no
(d− 1)-simplices of type 2 are adjacent to σ. So the only facets of σ that can be adjacent
to σ are its two alternating facets, for which condition c is satisfied. Each of these facets is
either an agreeable alternating (d−1)-simplex with the same carrier as σ or an alternating
(d−1)-simplex with carrier ±Hd−1, so that condition e is met. Since σ is agreeable its sign
matches that of its carrier hemisphere, and because an almost-alternating simplex has the
same sign as its two alternating facets, condition d is also satisfied for both facets. So σ
is only adjacent in G to its two alternating facets, each of which is either of type 1 or 3,
which gives σ degree 2 in G.

3. Let σ be an alternating d-simplex σ carried by ±Hd.
Again, we first look at the simplices that have σ as a facet. Note that if d = n, the
number of such simplices is zero, so assume d < n. Since σ is carried by ±Hd it lies on
∂Hd+1 = ∂(−Hd+1), which means that it is a facet of exactly two (d + 1)-simplices, one
in Hd+1 and one in −Hd+1. If σ is carried by Hd it is adjacent to the one in Hd+1 and if
its carrier is −Hd it is adjacent to the one in −Hd+1. It cannot be adjacent to both, since
only one of them satisfies condition d.
Next we look at the facets of σ. Assume d > 0, since σ does not have any labeled facets if
d = 0. Because of condition c an almost-alternating facets of σ cannot be adjacent to σ.
Thus any facet of σ that is adjacent to σ must be alternating and has the same carrier as
σ or is carried by ±Hd−1. There are only two such facets of σ, which are obtained from σ
by deleting either the highest labeled or the lowest labeled vertex, when arranged in order
of increasing magnitude. Note that one of these is a positive alternating simplex and the
other one is a negative alternating simplex. They both satisfy adjacency conditions a, b,
c and e, but only one of them meets condition d and is therefore adjacent to σ. This is
because the sign of only one of them agrees with the sign of the carrier hemisphere of σ.
Thus σ has degree 2 in G, unless d = 0 or d = n. If d = 0, then σ is one of the points
±H0, so it has no labeled facets and therefore only has degree 1. If d = n, then σ can not
be the facet of any other simplex and therefore it also has degree 1.

We have now confirmed our claim that every node in G has degree 2 with the exception of the
points at ±H0 and all alternating n-simplices. This means that G consists of a collection of
disjoint paths with endpoints at ±H0 or at alternating n-simplices.

Since T is symmetric and has an anti-symmetric labeling, the antipode of each path in G is also
a path in G. Also, note that no path can have antipodal endpoints, since then the center edge or
node of this path would be antipodal to itself. In the first case, two antipodal simplices would be
adjacent in G, which is impossible because one cannot be a facet of the other. The second case
is also impossible since a simplex in T can never be equal to its antipodal simplex. Therefore a
path is never identical to its antipodal path, so all paths in G must come in pairs. This gives a
multiple of four endpoints of paths in G. Since all endpoints correspond to ±H0 or an alternating
n-simplex, we get that there is twice an odd number of alternating n-simplices. And, because
every positive alternating simplex has a negative alternating simplex as its antipode, half of
the alternating n-simplices are positive. Thus there is an odd number of positive alternating
simplices and an equal number of negative alternating simplices.

Since an alternating n-simplex has n+ 1 labels of distinct magnitude, it follows that m ≥ n+ 1.
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This proof also provides a procedure to find an alternating n-simplex. A path that begins at
H0 cannot terminate at −H0, since a path is never identical to its antipodal path. Therefore,
the path starting at H0 must terminate at an alternating n-simplex. So following this path we
eventually find an alternating n-simplex. Note that the antipode of this simplex is an alternating
n-simplex of the opposite sign.

It is an open question whether any symmetric triangulation of Sn can be aligned with a flag
of hemispheres. If it is possible, the proof above would be valid for all symmetric triangula-
tions of Sn. Also the procedure to find an alternating n-simplex would work for all symmetric
triangulations of Sn.

In [Mat08] two proofs of Tucker’s lemma are given, one of which somewhat resembles the proof of
Fan’s lemma given above, that through the equivalence of Tucker’s lemma and the Borsuk-Ulam
theory also provide combinatorial proofs of the Borsuk-Ulam theorem.
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Chapter 4

The Brouwer Fixed Point Theorem
and Sperner’s Lemma

The Borsuk-Ulam theorem and Fan’s lemma we have seen in the previous chapters all concern
the n-sphere. In this chapter we will discuss related theorems that concern the n-ball Bn =
{x ∈ Rn : ‖x‖ ≤ 1}. We start by introducing the Brouwer fixed point theorem.

Theorem 4.1 (Brouwer fixed point theorem). For any continuous mapping f : Bn → Bn, there
exists a point x ∈ Bn such that f(x) = x.

For the combinatorial equivalent of the Brouwer fixed point theorem we will consider the regular
n-simplex ∆n embedded in Rn+1:

∆n := {(x1, . . . , xn+1) : xi ≥ 0,
∑

xi = 1},

which is homeomorphic to Bn. Next, for any v = (v1, . . . , vn+1) ∈ ∆n, let

Z(v) = {i : vi 6= 0}

be the set of indices of coordinates of v that are non-zero. Suppose T is a triangulation of ∆n.
We call an (n+ 1)-labeling ` of T a Sperner labeling if for each vertex v of T we have

`(v) ∈ Z(v).

This forces each main vertex of ∆n to have a different label, which is the index of its only
non-zero coordinate. Further, any vertex on a face of ∆n must have one of the labels assigned
to the main vertices that span that face. We call an n-simplex in T fully-labeled if its vertices all
have distinct labels and therefore all labels {1, . . . , n + 1}. Now we are able to state Sperner’s
lemma.

Theorem 4.2 (Sperner’s lemma). Any Sperner labeled triangulation T of ∆n must have a
fully-labeled n-simplex.

A more general version of this lemma says that, in fact, the number of fully-labeled n-simplices
is odd. This statement is easily proved by induction on the dimension n.

As we shall see in this chapter the Borsuk-Ulam theorem implies the Brouwer fixed point theo-
rem. We will prove this by a direct construction. We also show that Fan’s n+ 1 lemma directly
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implies Sperner’s lemma. As mentioned before, through the equivalence of the Borsuk-Ulam the-
orem and Tucker’s lemma and the equivalence of the Brouwer fixed point theorem and Sperner’s
lemma, Tucker’s lemma also implies Sperner’s lemma, but there is no direct proof known of this
implication.

The original link between the Brouwer fixed point theorem and Sperner’s lemma was provided
by Knaster, Kuratowski and Mazurkiewicz and is known as the KKM lemma.

Theorem 4.3 (KKM lemma). Let C1, . . . , Cn be a collection of closed sets that cover ∆n such
that for each I ⊆ [n+ 1], the face spanned by the set {ei : i ∈ I} is covered by {Ci : i ∈ I}. Then⋂n
i=1Ci is non-empty.

This lemma is a set-covering theorem equivalent to the topological Brouwer fixed point theorem
and the combinatorial Sperner’s lemma. Similarly, the Lyusternik-Schnirel’man theorem is a
set-covering theorem equivalent to the topological Borsuk-Ulam theorem and the combinato-
rial Fan’s n + 1 lemma. This suggest that the Lyusternik-Schnirel’man theorem implies the
KKM lemma. A direct proof of this implication, using the closed version of the Lyusternik-
Schnirel’man theorem, can be found in [SS07].

4.1 Borsuk-Ulam implies Brouwer Fixed Point Theorem

In this section we will prove that the Brouwer fixed point theorem follows from the Borsuk-Ulam
theorem.

Theorem 4.4. The Borsuk-Ulam theorem implies the Brouwer fixed point theorem.

Proof*. Let f : Bn → Bn be a continuous mapping. Assume, for contradiction, that f has no
fixed point, so there is no x ∈ Bn for which f(x) = x. Now define a function g : Bn → Sn as
follows: let g(x) be the point in which the ray originating in f(x) and going through x intersects
∂Bn = Sn−1. Since we assume that f has no fixed point, this is well defined. Next we will show
that g is continuous.

Since f is continuous and has no fixed point and since Bn is compact, there exists some γ > 0
such that for all x ∈ Bn we have ‖f(x)− x)‖ > 2γ.

Now let ε > 0 and set ε1 = γ sin( ε2) Since f is continuous and Bn is compact, we get that f is
uniformly continuous, so there is a δ1 such that for all x,y ∈ Bn for which ‖x − y‖ < δ1 we
have ‖f(x)− f(y)‖ < ε1. Fix such a δ1 and then set

δ = min {δ1, ε1} .

Then, from figure 4.1 with BE = δ and AD = ε1 we get, using the similarity of the triangles
4ASD and 4BSE and the fact that δ ≤ ε1, that DS ≥ DE/2. Now if x is situated at E and
f(x) at D, we get that DE ≥ γ which yields sin(∠ASD) = AD

DS ≤
ε1
γ .

Further we have α := ∠FGH = ∠ASD since GH is parallel to AC and from the inscribed angle
theorem we get that the arc length FH is equal to 2α (since the radius of Bn is 1 the arc length
of a central angle is equal to the angle itself in radians).
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Figure 4.1: A cross section of Bn.

For ‖x− y| < δ we get from figure 4.1 that ‖g(x)− g(y)‖ is always smaller than when y would
lie at point B and f(y) at point A, so whenever ‖x− y‖ < δ we get

‖g(x)− g(y)‖ < CF

≤ arcFH

= 2α

= 2 sin−1(
AD

DS
)

≤ 2 sin−1

(
ε1

γ

)
= 2 sin−1

(
γ sin(ε/2)

γ

)
= 2 sin−1(sin(ε/2))

= ε,

where we use that the inverse sine is an increasing function. This proofs that g is (uniformly)
continuous. But since g(x) = x for every x on the boundary ∂Bn = Sn−1 of Bn, the function
g contradicts statement 4 of theorem 2.1. This means our assumption is false so f does have a
fixed point, proving the Brouwer fixed point theorem.

A different proof of this implication using a direct construction can be found in [Su97].
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4.2 Fan’s n+ 1 Lemma implies Sperner’s Lemma

The proof of the following theorem closely follows the proof given in [NS13].

Theorem 4.5. Fan’s n+ 1 lemma implies Sperner’s lemma.

Proof. Let S be a triangulation of ∆n with Sperner labeling `. Note that ∆n is a facet of the n+1-
dimensional cross-polytope. We extend S to a triangulation T of Ŝn the boundary of the cross-
polytope (T is then also a triangulation of Sn since Ŝn and Sn are homeomorphic) by reflecting
copies of S to the other orthants of Ŝn. Let G = {±}n+1 denote the group of symmetries of
Ŝn generated by reflections that change the sign of selected coordinates. Then the action of
g = (g1, . . . , gn+1) ∈ G on v = (v1, . . . , vn+1) ∈ Ŝn produces gv = (g1v1, . . . , gn+1vn+1) ∈ Ŝn.
This means that g reflects v in all coordinates i for which gi = −1.

For a simplex σ in S spanned by a set of vertices V , we define gσ to be the simplex spanned by the
vertices in gV = {gv : v ∈ V }. Now let T be the collection of simplices {gσ : σ ∈ S and g ∈ G}.
Then T is a triangulation of Ŝn since S is a triangulation of ∆n and because the reflection
method ensures that also on the boundary of reflected copies of ∆n all simplices in T meet face
to face.

Next we extend the labeling ` of the vertices of S to a labeling L on the vertices of T. We define

L(gv) = g`(v) · (−1)`(v)+1 · `(v)

for each vertex v of S. Note that a reflected vertex of a vertex v in S gets the same label as v,
but possibly with a change of sign. When g = (1, 1, . . . , 1), this defines L on S, where the factor
(−1)`(v)+1 turns fully labeld n-simplices into positive alternating n-simplices. For other g ∈ G
this defines L on the reflected copies of S in the other orthants of Ŝn.

To see that L is well defined where orthants meet, note that orthants meet where gv = ĝv̂ for
some g, ĝ ∈ G and some v, v̂ ∈ S. This means givi = ĝiv̂i for each i and since gi, ĝi = ±1, this
implies that vi = v̂i for each i. Then gi = ĝi for all i for which vi 6= 0, that is when i ∈ Z(v).
But since ` is a Sperner labeling, we have `(v) ∈ Z(v), which yields that g`(v) = ĝ`(v). Then
from the definition of L it follows that L(gv) = L(ĝv), so L is well defined.

Next we show that the triangulation T of Sn with labeling L satisfies the conditions of Fan’s
n + 1 lemma. Let −v = gv, where g = (−1,−1, . . . ,−1), be the vertex antipodal to a vertex
v of T. Then from the definition of L we get that L(−v) = −L(v), which means that L is
anti-symmetric. Now we only need to show that L has no complementary edges. The labeling
` has no complementary edges (since all labels are positive) and every edges in T is a reflected
copy of some edge in S via some g ∈ G. Then from the definition of L we get that for any
g ∈ G, two vertices v,w ∈ S have identical `-labels (`(v) = `(w)) if and only if gv and gw have
identical L-labels (L(gv) = L(gw)). Then, since ` has no complementary edges, it follows that
T has no complementary edges either.

Now from Fan’s n + 1 lemma it follows that there exists a positive alternating n-simplex in T.
And since ∆n is the only facet of Ŝn that contains the labels {1,−2, 3, . . . , (−1)n(n+ 1)}, there
must be a fully-labeled n-simplex in S.

When we use Fan’s lemma (Theorem 3.4) with m = n+ 1 instead of Fan’s n+ 1 lemma in the
proof above, we get the more general version of Sperner’s lemma that says that there is an odd
number of fully-labeled n-simplices in S.
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Chapter 5

An Application of Borsuk-Ulam in
Combinatorics

The Borsuk-Ulam theorem has a number of applications in combinatorics. In this chapter we will
focus on the problem of determining the chromatic number of Kneser graphs, a problem posed
in a slightly different form by the number theorist Martin Kneser in 1955. The combinatorial
problem was first solved 23 years later by Lásló Lovász, surprisingly using the Borsuk-Ulam
theorem from topology. The content of this chapter is based on [AZ14] and [Mat08]. For more
applications of the Borsuk-Ulam theorem in combinatorics see [Mat08].

5.1 The Chromatic Number of Kneser Graphs

We start by giving the definition of a Kneser graph.

Definition 5.1. Let n ≥ k ≥ 1 in N, then the Kneser graph KGn,k is defined as follows:

1. The vertex set of KGn,k is the family of all k-subsets of [n] = {1, . . . , n}. Thus, the number
of vertices of KGn,k is

(
n
k

)
.

2. Two vertices are connected if their corresponding k-sets are disjoint.

In Kneser graphs for which k = 1 any two k-subsets are trivially disjoint, which means every
two vertices are connected, so KGn,1 is the complete graph Kn. Another well known example is
KG5,2, the famous Petersen graph (see figure 5.1). Notice that if n < 2k any two k-sets intersect,
which means that KGn,k has no edges at all.

A proper m-coloring of a graph G = (V,E) is a mapping c : V (G)→ [m] such that c(u) 6= c(v)
whenever {u, v} ∈ E is an edge. The chromatic number χ(G) is defined as the smallest m such
that G has an m-coloring.

In figure 5.1 a 3-coloring of the Petersen Graph is shown. It is not possible to color it with less
than three colors, so χ(KG5,2) = 3.

The origninal proof of the following theorem was given by Lovász, but the proof given here is
based on a shorter one presented in [Gre02].
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Figure 5.1: The Petersen graph and its 3-coloring.

Theorem 5.2 (Lovász-Kneser theorem). For all k > 0 and n ≥ 2k − 1, the chromatic number
of the Kneser Graph KGn,k is χ(KGn,k) = n− 2k + 2.

Proof. First we show that there is a coloring of KGn,k with n − 2k + 2 colors. We color the
vertices of the Kneser graph by

c(F ) := min{min(F ), n− 2k + 2}.

This assigns a color c(F ) ∈ {1, 2, . . . , n − 2k + 2} to each k-subset F of [n]. If two k subsets
F, F ′ get the same color c(F ) = c(F ′) = i < n − 2k + 2, then they both contain the element i,
so they cannot be disjoint. If the two k-subsets both get the color n − 2k + 2, then they are
both contained in the set {n−2k+ 2, . . . , n}, which has only 2k−1 elements, which means they
cannot be disjoint either.

Next we prove that there cannot be a proper coloring of KGn,k with only n− 2k + 1 colors. To
this end set d := n− 2k+ 1 and take n points x1, . . . ,xn ∈ Rd+1 lying on Sd in general position,
meaning that no d+ 1 of them lie on a common hyperplane through the origin.

Now suppose, for contradiction, that there is a proper coloring of KGn,k by at most n−2k+1 = d
colors. We fix one such coloring and we define sets A1, . . . , Ad ⊆ Sd: For a point x ∈ Sd, we
have x ∈ Ai if there is at least one k-subset F of [n] that has been given color i contained in
the set of indices of the points from x1, . . . ,xn lying in the open hemisphere H(x) centered at
x (formally, H(x) = {y ∈ Sd : 〈x,y〉 > 0}). Finally, we put Ad+1 = Sd \ (A1 ∪ . . . ∪Ad).
From the construction it is clear that A1, . . . , Ad ⊆ Sd are open sets and Ad+1 is closed, and
together they cover Sd. Now, from the Lyusternik-Schnirel’man theorem (theorem 2.2) we get
that there is at least one i ∈ [d+ 1] such that Ai contains a pair of antipodal points x and −x.

If i ≤ d, we get two disjoint k-subsets of color i, one consisting of indices from points in H(x)
and the other consisting of indices from points in the opposite open hemisphere H(−x). Which
means that our fixed coloring is not a proper coloring of KGn,k.

In the other case, if i = d+ 1, H(x) contains at most k − 1 points of {x1, . . . ,xn}, and so does
H(−x). Therefore, since we took n points on Sd, the complement Sd \ (H(x) ∪H(−x)) has to
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contain at least n−2k+2 points of {x1, . . . ,xn}. But since Sd\(H(x)∪H(−x)) is an “equator”
(the intersection of Sd with a hyperplane through the origin), this contradicts the fact that the
n points x1, . . . ,xn were in general position.

In both cases we reached a contradiction, so we can conclude that there is no proper coloring of
KGn,k with only n− 2k + 1 colors, which proofs that χ(KGn,k) = n− 2k + 2.

The fact that the Borsuk-Ulam theorem that lies at the heart of the proof (in this case the
Lyusternik-Schirel’man theorem) has combinatorial equivalents, suggests that it may be possible
to give a purely combinatorial proof of the Kneser-Lovász theorem. Indeed, in [Mat04] Jǐŕı
Matoušek derives a proof from Tucker’s lemma (3.3) and even obtains a self contained purely
combinatorial proof of the Kneser-Lovász theorem that avoids any mentioning of topology or
triangulations.

32



Concluding Remarks

In this report we focused on the connections between the Borsuk-Ulam theorem and Combina-
torics which offered a lot of interesting results. However, even within this confined area we did
not cover everything. For further study [Mat08] gives a great survey of theory and applications
concerning the Borsuk-Ulam theorem.
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