
Solving Multi-Agent Pathfinding with Matching using A*+ID+OD

Ivar de Bruin1 ,
Supervisors: Jesse Mulderij1 , Mathijs de Weerdt1

1TU Delft

Abstract
This paper extends the Multi-Agent Pathfinding
(MAPF) algorithm, A*+ID+OD, to be able to solve
problems with matching. This extension still keeps
the optimal and completeness properties of the
original algorithm. Matching is added to the al-
gorithm in both an exhaustive and heuristic man-
ner. Exhaustive matching is further improved by
adding a new layer of Independence Detection (ID)
to reduce the number of matchings. Besides this,
the pruning efficiency is increased by sorting the
matchings based on the initial heuristic. The ex-
haustive matching method has been found to per-
form better than the heuristic matching method.
The exhaustive version of A*+ID+OD is finally
compared to other extended MAPF algorithms
which shows that on small maps, Conflict Based
Min-Cost Flow (CBM) performs best as it is the
only algorithm that does not use exhaustive match-
ing. A*+ID+OD and Enhanced Partial Expansion
A* (EPEA*) also perform well on open maps with
multiple teams when compared to other exhaustive
matching algorithms due to the addition of match-
ing ID.

1 Introduction
The Dutch Railways (NS) is tasked with the maintenance and
servicing of most of the trains in the Netherlands. During the
night these trains have to be cleaned and serviced. The related
scheduling and routing problems are collectively called the
Train Unit Shunting and Servicing (TUSS) problem and it is
NP-Hard [1].

Recently, efforts have been made to establish an upper
bound for this problem [1]. One way of doing this is by cre-
ating a relaxation of TUSS and solving this relaxation with a
complete and optimal algorithm. A first step in creating such
a relaxation is a Multi-Agent Pathfinding (MAPF) problem
which is extended with matching to a Multi-Agent Pathfind-
ing with Matching (MAPFM) problem [1]. To be able to use
this relaxation, the algorithm used for solving it must be com-
plete and optimal.

MAPFM is also useful for other MAPF applications where
it does not matter which specific agent goes to a goal, but

rather which type of agent goes to a goal. This is for example
the case for warehouse robots [2] but could also be used in
other logistics applications where it only matters what kind
of transport is used, not which specific ship or truck is used.

For solving MAPF, many algorithms have been developed
such as A*+ID+OD [3], Enhanced Partial Expansion A*
(EPEA*) [4], M* [5], Branch-and-Cut-and-Price (BCP) [6],
Increasing Cost Tree Search (ICTS) [7] and Conflict Based
Search (CBS) [8].

When it comes to extending MAPF problems with match-
ing, comparatively little research has been done. One of
the few works is an extension from CBS to Conflict Based
Min-Cost Flow (CBM) done by Ma and Koenig which uses
maximum flow to solve a Task Assignment and Pathfinding
(TAPF) problem [9]. TAPF is a term that describes the same
problem as MAPFM, however, Ma and Koenig optimize the
makespan instead of the Sum of Individual Costs (SIC).

It is quite clear that BCP and CBS are the top-performing
algorithms for solving MAPF problems [6], [10]. It is how-
ever not yet known what the best algorithms are when they
are extended to solve MAPFM.

This paper will focus on extending A*+ID+OD with
matching. A*+ID+OD utilizes Independence Detection (ID)
and Operator Decomposition (OD) to reduce the branching
factor of A* to make it viable to solve MAPF problems. Al-
though it is not the fastest MAPF solver, it is a good candidate
for MAPFM as it is complete and optimal and its utilization
of heuristics allows for simple adaption to include matching.

The matching is implemented in both a heuristic and ex-
haustive manner. The exhaustive matching method is further
improved by solving matchings independently when possi-
ble, as well as sorting the matchings based on the heuristic to
improve pruning performance. The exhaustive and heuristic
methods are then compared to find the best method. After
this, the extended A*+ID+OD is compared to extensions of
some of the other algorithms mentioned before to find the al-
gorithm most suited for MAPFM.

This paper will first give a formal definition for the exten-
sion from MAPF to MAPFM. After this, the necessary exten-
sions to A*+ID+OD will be explained. The different versions
of the algorithm will then first be compared to each other and
the best of these versions will be compared to other MAPFM
algorithms. Finally, the reproducibility of this paper will be
discussed.

Delft University of Technology, Bachelor Seminar of Computer Science and Engineering



2 Problem Description
This section will give a formal problem definition for both
Multi-Agent Pathfinding (MAPF) and its extension to Multi-
Agent Pathfinding with Matching (MAPFM).

2.1 Basic Multi-Agent Pathfinding
MAPF is a very general problem with many different applica-
tions and definitions. For this paper, the definitions proposed
by Stern et al. in [11] will be used.
Input The problem input can be described as a MAPF prob-
lem with k agents as 〈G, s, g〉 where:
• G = 〈V,E〉 is an undirected graph of vertices V and

edges E. 1

• s is a list of k starting vertices such that si ∈ V denotes
the starting vertex of agent ai
• g is a list of k goal vertices such that gi ∈ V denotes the

goal vertex of agent ai
Solution A solution to this problem describes a set of paths
π such that a path πi exists for each agent ai. This path de-
fines the location of agent ai at a moment t as πi[t], starts at
si, and ends at gi. These paths should not conflict.
Conflicts Stern et al. define multiple conflicts, of these, two
will be used in this paper [11].
• Vertex conflicts: A vertex conflict occurs when two

agents are at the same vertex at the same time.
• Edge conflicts: An edge conflict occurs when two agents

traverse the same edge at the same time in the opposite
direction.

Goal behaviour When an agent reaches its goal, two things
can happen: Either they disappear or they stay (also known
as stay-at-target [11]). This paper uses stay-at-target. This
means that even though the cost function will no longer in-
crease when an agent has reached its goal, these agents can
still cause vertex conflicts. If at any point an agent moves of
its goal node, the time they spent on the goal will be added to
the cost.
Objective There are two main objective functions that can
be used to optimize the cost:
• Makespan: Makespan optimizes the difference between

starting time and the point where all agents are finished.
When all agents start at the same time, the makespan
tries to keep the longest path as short as possible. This
means that path lengths of 5 and 6 are better than path
lengths of 1 and 7 as a maximum length of 6 is better
than a maximum length of 7.
• Sum of Individual Costs (SIC): SIC optimizes the total

sum of all the individual costs. This means that path
lengths of 1 and 7 are better than path lengths of 5 and 6
as a total of 8 is better than a total of 11.

For this research, SIC is used as it is the most common ob-
jective function for search-based MAPF [11]. It also most
closely resembles the real-life objective where minimizing
the total time and fuel is often the most important.

1A 4-connected grid will be used for ease of implementation and
comparison.

2.2 Extending Multi-Agent Pathfinding with
matching

Matching in the context of MAPF means agents no longer
have a specific goal to go to. Instead, both agents and goals
belong to a specific team. Now, each agent has to go to a
goal node that belongs to the same team as that agent. These
teams are denoted by labelling the start and goal positions
with a colour. This means our previous MAPF definition can
now be extended with two arrays sc and gc resulting in the
definition of a MAPFM problem as 〈G, s, g, sc, gc〉 where:

• sc is a list of k colours such that sci is the colour of si
(and as such of agent ai)

• gc is a list of k colours such that gci is the colour of gi
With this definition, every colour should occur an equal num-
ber of times in both sc and gc. A valid solution to a MAPFM
problem is a set of paths where each agent ai ends at a unique
goal node gj such that sci = gcj .

3 A*+ID+OD with Matching
This section will explain the developed algorithm. First, an
explanation of the base A*+ID+OD algorithm will be pro-
vided, followed by an explanation of the two matching possi-
bilities, heuristic and exhaustive. Finally, two improvements
for exhaustive matching are introduced.

3.1 A*+ID+OD
A*+ID+OD is a MAPF algorithm defined by Standley in
[3]. The algorithm is an extension of A* [12], a common
heuristic-based pathfinding algorithm. An advantage of A*
is that as long as the used heuristic is admissible, the algo-
rithm will be optimal and complete. The extension of A* to
A*+ID+OD keeps this property [3].

A big disadvantage of base A* is that its branching factor
increases exponentially with regards to the number of agents
when it is adapted to MAPF [3]. This is mitigated by extend-
ing the algorithm with Operator Decomposition (OD) and In-
dependence Detection (ID) which are both described in more
detail in [3].

Operator Decomposition In MAPF, A* states are ex-
panded by moving all agents at the same time. This causes the
exponential branching factor, as all combinations of moves
for all agents are calculated. OD reduces this branching factor
by moving agents one at a time. The branching factor under
OD is the number of possible moves for an agent, which is
constant. Moving agents one at a time does however increase
the path depth to a solution by a factor k where k is the num-
ber of agents. Combined, these two performance differences
result in a net performance increase.

Because OD moves agents one at a time, there are two
types of nodes. Nodes where all agents have yet to move are
called standard nodes, while nodes where some agents have
moved while others have not are called intermediate nodes.
Only standard nodes have to be put in the CLOSED list as
overlapping intermediary nodes can only be generated by the
same standard node, because agents always move in the same
order.



Figure 1: Benchmark showing heuristic matching will cause unnec-
essary conflicts. Squares are starting positions and flags are goal
positions

Independence Detection In many MAPF problems,
groups of agents never get in each other’s vicinity. In these
cases, it is a waste of performance to compute these agents at
the same time as their pathfinding is completely independent.
ID as such tries to find solutions for individual agents while
ignoring the other agents. It then tries to resolve any conflicts
between agents by giving priority to one and trying to find
a solution with equal cost for the other. If this fails for both
agents, it will merge them and solve them at the same time.
This process repeats until no more conflicts are found at
which time a valid solution has been found.

Conflicts are further avoided by adding a Collision Avoid-
ance Table (CAT) which keeps track of the paths of all agents.
This can then be used to keep track of any conflicts a new path
will cause with other groups. This number of conflicts is an
effective tiebreaker for node expansion in the A* solver [3].

3.2 A*+ID+OD with Heuristic matching

The first way of implementing matching is to change the
heuristic used by the basic A* solver. The normal heuristic
used in A* for MAPF is the distance for each agent to their
goal as calculated by a breadth-first search [3]. This heuristic
is quick to compute and a good relaxation from a multi-agent
problem to a single-agent problem.

The heuristic can be altered to instead give the distance to
the closest goal of a certain team by initializing the breadth-
first search with all goals belonging to that team instead of
just one goal node. The changed heuristic is still admissible
and the algorithm remains complete and optimal. The heuris-
tic has however become worse as it no longer keeps in mind
that agents need to go to unique goals. This can be shown
using Figure 1. Heuristic matching will send both agents to
the top left goal, causing a conflict and as such causing ID
to combine the agents into one group after trying to solve the
conflict. If the agents are instead sent to unique goals, no con-
flicts will occur and ID will never have to combine the agents
into one group.

3.3 A*+ID+OD with Exhaustive matching
The second matching option, exhaustive matching, tries to re-
duce the matching problem back to a normal MAPF problem
by solving the problem for all possible matchings, as can be
seen in Algorithm 1. This is done by first calculating all pos-
sible goal assignments, possibly in a lazy manner, and then
running the basic MAPF A*+ID+OD solver on each of the
goal assignments and choosing the best solution.

Algorithm 1 Exhaustive matching (ID adapted from [3])
1: function EXHAUSTIVE MATCHING
2: matchings← list of all possible valid matchings
3: best solution← null
4: best cost←∞
5: for all matchings do
6: solution, cost ← solve matching with IDSolver

with best cost as maximum
7: if cost < best cost then
8: best cost← cost
9: best solution← solution

10: end if
11: end for
12: return best solution
13: end function
14:
15: function IDSOLVER(matching, max cost)
16: assign each agent to a group
17: plan a path for each group
18: fill CAT with every path
19: repeat
20: Find a conflicts between two groups G1 and G2

21: if G1 and G2 have not conflicted before then
22: fill illegal move table with the G2 paths
23: find a set of paths with the same cost for G1

24: if failed to find such a set then
25: fill illegal move table with the G1 paths
26: find a set of paths with the same cost for

G2

27: end if
28: end if
29: if failed to find an alternative set of paths for G1

and G2 then
30: merge G1 and G2 into a single group G3

31: maximum ← max cost - sum of the path
costs for all agents not in G3

32: cooperatively plan G3 with maximum
33: end if
34: update CAT with new paths
35: until no conflicts occur
36: solution← paths of all groups combined
37: return solution
38: end function

A downside to this approach is that running the algorithm
fully for each matching is incredibly slow. To make this
matching method useful, some way of pruning the match-
ings needs to be added. This can be done by keeping track
of the cost of the best solution so far, and then discarding



any A* nodes with a higher f cost than this value, where
f = cost+ heuristic.

The presence of ID in the algorithm makes this more com-
plicated. Because ID initially runs A* on a subset of agents,
the cost for the solution to this sub-problem will be signif-
icantly lower than the cost for the full solution. To still be
able to prune in these sub-problems, the maximum cost for
a sub-problem needs to be calculated. This is done by sub-
tracting the cost of the path for each agent that is not present
in the sub-problem from the maximum cost. (See line 31,
Algorithm 1) If no such path has been found yet, the ini-
tial heuristic will be used instead. Any solution with a cost
higher than this maximum cost will cause the total solution to
go over the original maximum cost and as such, the matching
can be pruned immediately without affecting the optimality
of the algorithm. If a sub-problem now has no solution, the
full problem can also not be solved within the given maxi-
mum cost and the matching can be pruned.

Exhaustive matching with pruning is still limited by the
exponential growth of the matchings as it still needs to go
through a part of each matchings computation. As such this
method of matching will be limited to a certain number of
agents unless a way is found to prune large numbers of match-
ings without at least partially computing each one. This
method remains optimal and complete as all matchings are
attempted and only pruned if it is impossible for that match-
ing to be better than the current best matching.

3.4 Matching ID extension
To improve the performance of exhaustive matching, a ver-
sion of ID can be implemented on top of matching as can be
seen in Algorithm 2. The idea behind it is the same as the idea
behind the A* implementation of ID (Section 3.1): Solving
multiple sub-problems is faster than solving the whole prob-
lem at once. This also applies to generating matchings. Ini-
tially, all teams are solved individually, with teams only being
combined when they conflict with each other. Because there
are now fewer agents being solved simultaneously, there will
also be fewer matchings to evaluate.

To decrease the chances of conflicts occurring, a Collision
Avoidance Table (CAT) is added to this version of ID. This
means that the actual A* solver can get multiple tables, one
for each layer of ID in the algorithm.

Another optimization is to combine all teams with only
one agent immediately, as solving these groups together does
not create more matchings and the A* ID already attempts to
solve the agents individually.

This extension should increase the performance on maps
with few obstacles and multiple teams. On obstacle dense
maps such as mazes, it will however struggle to avoid con-
flicts and as such it will most likely just do unnecessary work,
similar to standard ID (experimentally tested in Section 4.3).

This algorithm remains limited by the exponential growth
of the number of matchings, similar to normal exhaustive
matching. However, this algorithm should be able to solve
problems with more agents and teams than normal exhaustive
matching because the number of matchings can be reduced on
certain maps.

Algorithm 2 Exhaustive matching ID
1: create a group for each team
2: combine all groups of size one
3: create empty CAT
4: for all groups do
5: solve the group with Exhaustive Matching passing

along the CAT
6: update the CAT with the found solution
7: end for
8: repeat
9: simulate execution of all paths until a conflict be-

tween two groups G1 and G2 occurs
10: combine G1 and G2 into G3

11: solveG3 with Exhaustive Matching passing along the
CAT

12: update the CAT with the new solution
13: until no conflicts remain
14: solution← paths of all groups combined
15: return solution

3.5 Sorting extension
The efficiency of the current exhaustive matching implemen-
tation relies for a large part on the efficiency of the pruning
of matchings. This pruning efficiency can be improved by
sorting the matchings based on the initial heuristic [13]. This
can be implemented by first putting the possible matchings
through a priority queue. Once the best matching in the queue
is worse than the best solution so far, all remaining matchings
in the queue can be discarded. This extension should increase
pruning efficiency, especially when the initial heuristics are
spread out (Experimentally tested in Section 4.3).

4 Experiment Results
This section will first describe the experimental setup as well
as an inherent problem with MAPFM comparisons. It will
then compare the different exhaustive matching implementa-
tions of A*+ID+OD and compare these to heuristic match-
ing. Finally, A*+ID+OD will be compared to other extended
MAPF algorithms.

4.1 Experimental Setup
All experiments were run on the same virtual computer with a
12 core 12 thread Intel Xeon E5-2683 running at 2 GHz with
8 GB of RAM and all benchmarks are proven solvable [13].

The algorithms are compared using two map types which
test different aspects of the algorithms:

• Maze maps: Maze maps are maps with small corridors
that are fully connected. These maps focus more on con-
flict resolution than conflict avoidance and matching as
agents cannot easily pass each other. They are represen-
tative of places such as shunting yards where trains also
cannot move around each other.

• Obstacle maps: Obstacle maps have an obstacle density
of around 10% These maps have a substantial amount of
space for agents to manoeuvre around each other and as
such focus more on matching and conflict avoidance.



All maps are 20 by 20 and were generated in sets of 200 for
each set of parameters. The solver has two minutes to solve a
map. This timeout was chosen as it is long enough to be able
to compare runtimes, while still making sure that the total
benchmark time remains reasonable. The benchmarks were
then run on an increasing number of agents that were either
in a single team or evenly spread over three teams.

In addition to these, Berlin 1 256 [11] was also used. For
this map, all 25 even scenarios given on https://movingai.
com/benchmarks/mapf/ were run with a uniform team assign-
ment. This map was used as it is larger and as such will hope-
fully amplify the difference between algorithms.

4.2 Survivorship bias
An inherent problem with benchmarking MAPFM is that the
difficulty of a problem only partially depends on the num-
ber of agents. Figures 5 and 7 show that for higher numbers
of agents the solvers are only able to complete a subset of
the problems within the timeout. The average runtime then
becomes less representative of the actual parameters as it is
only computed over the solved benchmarks, resulting in sur-
vivorship bias. This is mitigated by only using runtime plots
for lower numbers of agents.

4.3 Exhaustive matching
Three versions of exhaustive matching will be compared to
each other to find out which extensions improve performance:

1. Exhaustive matching as described in Section 3.3
2. Exhaustive matching with ID as described in Section 3.4
3. Sorted exhaustive matching with ID as described in Sec-

tion 3.5
Figure 2 shows the runtime performance of exhaustive match-
ing implementations on maze maps. It can be seen that
matching ID has a very minor effect on runtime while sorting
consistently improves runtime. This makes sense as it is diffi-
cult to solve teams independently on such dense maps, but the
initial heuristics will vary quite a bit based on the matching,
increasing the performance gain from sorting.

Figure 3 shows the runtime performance of exhaustive
matching versions on obstacle maps. For one team, ID has
no effect, however, for three teams it has a significant effect
for higher agent numbers. Adding sorting on top leads to a
further improvement for one team.

Figure 4 shows the clearest difference. This figure com-
pares the exhaustive matching methods on Berlin 1 256.
Here, 20 agents were uniformly spread over a varying number
of teams. The larger map size and larger maximum team size
has amplified the difference between the algorithms. It can be
seen that ID improves performance significantly, while sort-
ing improves performance even further. It can also be seen
that for smaller teams, sorting adds very little. This is likely
because ID already makes the problems significantly smaller
which reduces the usefulness of sorting.

Figures 5 and 7 show the percentage of mazes and obsta-
cles that have been solved within the timeout of two minutes
for all matching versions. These figures also show that ID in-
creases performance on obstacle maps and that adding sorting
increases performance on maze maps.

Figure 2: Exhaustive matching performance on Maze maps

Figure 3: Exhaustive matching performance on Obstacle maps

Figure 4: Exhaustive matching performance on Berlin 1 256

https://movingai.com/benchmarks/mapf/
https://movingai.com/benchmarks/mapf/


Figure 5: Percentage of solved Maze maps

Figure 6: Heuristic vs Exhaustive matching on Maze maps

4.4 Exhaustive versus heuristic
Next, heuristic matching will be compared to exhaustive
matching. Figures 5 and 7 compare how many maps each
algorithm was able to solve. They show that heuristic match-
ing with three teams is always worse than the best exhaustive
matching method. However, for one team, it is slightly bet-
ter for higher agent numbers as heuristic matching does not
scale exponentially with the number of matchings. However,
heuristic matching can only solve around 10% of those maps
and is way worse than exhaustive matching for all maps with
fewer agent numbers.

Figures 6 and 8 compare the runtime of sorted exhaustive
matching with matching ID to heuristic matching. From these
figures, it can be seen that even on the maps that can be solved
by heuristic matching, it is slower than exhaustive match-
ing. This makes it clear that the current matching heuristic
is worse than exhaustive matching as it is both slower and
able to solve fewer maps.

Figure 7: Percentage of solved Obstacle maps

Figure 8: Heuristic vs Exhaustive matching on Obstacle maps

4.5 Comparing A*+ID+OD to other algorithms
This subsection will compare different MAPF algorithms ex-
tended for solving MAPFM to find out which one can solve
the most maps. The following algorithms will be compared:

• A*+ID+OD with sorted exhaustive matching and match-
ing ID (3.5)

• CBM using flow to solve matching [14]

• EPEA* with sorted exhaustive matching and matching
ID [13]

• ICTS with approximate sorted exhaustive matching [15]

• M* with sorted exhaustive matching [16]

Figure 9 compares the algorithms on maze maps. For three
teams, the algorithm does not matter as the problem here is
often the number of collisions. However, CBM performs very
well for one team as it is the only algorithm that does not use
exhaustive matching.



Figure 9: MAPFM algorithm comparison on Maze maps

Figure 10 compares the algorithms on obstacle maps. It can
be seen that most algorithms perform similarly for obstacle
maps with one team. However, CBM outperforms all other
algorithms.

CBM is again the best on obstacle maps with three teams,
however, A*+ID+OD and EPEA* also perform well, due to
the fact that these are the only exhaustive matching algo-
rithms that use matching ID.

5 Reproducibility
This research was done in a way that allows for easy repro-
ducibility. The full code base for A*+ID+OD can be found
online.2 Furthermore, the randomly generated benchmarks
were stored in files and are available online, together with the
scripts that generated them.

The algorithm is also fully deterministic and as such all
results can be reproduced with the only differences occurring
due to computer performance differences.

The comparison between algorithms was done in a way
that is as fair as possible. All algorithms are implemented in
Python 3 with the focus being on optimizing the algorithms,
not the codebase. However, Conflict Based Min-Cost Flow
(CBM) does use libraries implemented in C++, granting it a
performance advantage. It is however not possible to negate
this.

6 Conclusion
This paper describes the extension from Multi-Agent
Pathfinding (MAPF) to Multi-Agent Pathfinding with Match-
ing (MAPFM). After this, various ways of introducing match-
ing to the MAPF algorithm, A*+ID+OD are shown and com-
pared. From this comparison, it can be concluded that ex-
haustive matching performs better than heuristic matching.

It was also found that both of the exhaustive matching ex-
tensions led to a performance increase. Matching Indepen-
dence Detection (ID) improved performance significantly on

2Online codebase: https://github.com/ivardb/Astar-OD-ID

Figure 10: MAPFM algorithm comparison on Obstacle maps

open maps with multiple teams and sorting the matchings led
to a further improvement on maps where the initial heuristics
vary significantly between matchings, such as mazes.

An important characteristic of the original A*+ID+OD al-
gorithm is that it is optimal and complete. Both of these
properties are still present for both exhaustive matching and
heuristic matching.

When different algorithms are compared, it is clear that
different exhaustive matching algorithms perform about the
same. The exception is on open maps with multiple teams.
Here A*+ID+OD and EPEA* perform much better compared
to the others, due to matching ID.

As CBM is the only algorithm that does not use exhaustive
matching, it performed much better with the exception being
maze maps with three teams, where all algorithms are equal,
as the number of collisions is the problem here.

7 Future work
There are two areas of improvement based on this paper.
Firstly, the current implementation of A*+ID+OD can still
be improved in a few ways. Secondly, the results from this
paper also raise questions that require further study.

7.1 Algorithm improvements
There are some areas in which the implementation of
A*+ID+OD can still be improved. First of all, there is the
implementation of partial expansion. This extension has al-
ready been described for the original A*+ID+OD algorithm
in an appendix of [4], which described how partial expansion
can be adapted to work with Operator Decomposition. Partial
expansion could reduce the high memory usage that occurs
when A*+ID+OD runs for a prolonged period of time. Par-
tial expansion only keeps track of nodes that do not increase
the f cost. If an expansion creates nodes with a higher f
cost than that of the parent, the parent will be put back in the
OPEN list with the lowest of these costs. This ensures that
partial expansion remains optimal and complete while using
less memory. However, as the given description for partial

https://github.com/ivardb/Astar-OD-ID


expansion in combination with OD was minimal, we were
unable to implement it successfully for this paper.

Another important improvement could be made by find-
ing a better matching heuristic, which could make the algo-
rithm scale better to higher numbers of agents. Exhaustive
matching will always be limited by the number of agents as
the number of matching grows exponentially with the num-
ber of agents. Heuristic matching on the other hand does not
have this limitation. As such, a new matching heuristic that
makes heuristic matching viable would make the algorithm
scale better.

7.2 Result improvements
There are two questions for further study that follow from
the results in this paper. The first problem is that the current
results have a standard deviation that is very high when prob-
lems are grouped based on the number of agents and the num-
ber of teams. This shows that it is not fully understood what
makes MAPF difficult. There are clearly other factors besides
the number of agents and the number of teams. The question
is then what other metrics are good indicators for difficulty
and how can benchmarks be reliably generated according to
these metrics. With such an improved metric, comparisons
between algorithms would also become more accurate as it
can more clearly be shown for which problems an algorithm
performs well and for which ones it does not.

The other question is related to larger maps. The current
results seem to indicate that on large open maps with multi-
ple teams A*+ID+OD and EPEA* should perform the best as
CBM scales worse with map size than these algorithms. This
is interesting to investigate as many real-world applications
take place in larger spaces and algorithms should not only
scale with the number of agents but also with map size.

References
[1] J. Mulderij, B. Huisman, D. Tönissen, K. van der Lin-

den, and M. de Weerdt, Train unit shunting and servic-
ing: A real-life application of multi-agent path finding,
2020. arXiv: 2006.10422 [cs.MA].

[2] P. R. Wurman, R. D’Andrea, and M. Mountz, “Coordi-
nating hundreds of cooperative, autonomous vehicles
in warehouses,” AI Magazine, vol. 29, no. 1, p. 9, 2008.
DOI: 10.1609/aimag.v29i1.2082.

[3] T. Standley, “Finding optimal solutions to coopera-
tive pathfinding problems,” in Proceedings of the AAAI
Conference on Artificial Intelligence, vol. 24, 2010,
pp. 173–178.

[4] M. Goldenberg, A. Felner, R. Stern, G. Sharon, N.
Sturtevant, R. C. Holte, and J. Schaeffer, “Enhanced
partial expansion A*,” Journal of Artificial Intelligence
Research, vol. 50, pp. 141–187, 2014, ISSN: 10769757.
DOI: 10.1613/jair.4171.

[5] G. Wagner and H. Choset, “M*: A complete mul-
tirobot path planning algorithm with performance
bounds,” in 2011 IEEE/RSJ international confer-
ence on intelligent robots and systems, IEEE, 2011,
pp. 3260–3267.

[6] E. Lam, P. Le Bodic, D. D. Harabor, and P. J. Stuckey,
“Branch-and-cut-and-price for multi-agent pathfind-
ing.,” in IJCAI, 2019, pp. 1289–1296.

[7] G. Sharon, R. Stern, M. Goldenberg, and A. Felner,
“The increasing cost tree search for optimal multi-
agent pathfinding,” Artificial Intelligence, vol. 195,
pp. 470–495, 2013.

[8] G. Sharon, R. Stern, A. Felner, and N. R. Sturte-
vant, “Conflict-based search for optimal multi-agent
pathfinding,” Artificial Intelligence, vol. 219, pp. 40–
66, 2015.

[9] H. Ma and S. Koenig, Optimal target assignment and
path finding for teams of agents, 2016. arXiv: 1612 .
05693 [cs.AI].

[10] G. Sharon, R. Stern, A. Felner, and N. Sturtevant,
“Meta-agent conflict-based search for optimal multi-
agent path finding,” in Fifth Annual Symposium on
Combinatorial Search, 2012, pp. 97–104.

[11] R. Stern, N. Sturtevant, A. Felner, S. Koenig, H. Ma, T.
Walker, J. Li, D. Atzmon, L. Cohen, T. K. S. Kumar, E.
Boyarski, and R. Bartak, Multi-agent pathfinding: Def-
initions, variants, and benchmarks, 2019. arXiv: 1906.
08291 [cs.AI].

[12] P. Hart, N. Nilsson, and B. Raphael, “A formal ba-
sis for the heuristic determination of minimum cost
paths,” IEEE Transactions on Systems Science and Cy-
bernetics, vol. 4, no. 2, pp. 100–107, 1968, ISSN: 0536-
1567. DOI: 10.1109/TSSC.1968.300136.

[13] J. de Jong, “Multi-Agent Pathfinding with Matching
using Enhanced Partial Expansion A*,” 2021.

[14] R. Baauw, “Adapting CBM to optimize the Sum of
Costs,” 2021.

[15] T. van der Woude, “Multi-Agent Pathfinding with
Matching using Increasing Cost Tree Search,” 2021.

[16] J. Dönszelmann, “Matching in Multi-Agent Pathfind-
ing using M*,” 2021.

Acronyms
A*+ID+OD A* with ID and OD. 1–4, 6–8
BCP Branch-and-Cut-and-Price. 1
CAT Collision Avoidance Table. 3, 4
CBM Conflict Based Min-Cost Flow. 1, 6–8
CBS Conflict Based Search. 1
EPEA* Enhanced Partial Expansion A*. 1, 6–8
ICTS Increasing Cost Tree Search. 1, 6
ID Independence Detection. 1–8
MAPF Multi-Agent Pathfinding. 1–4, 6–8
MAPFM Multi-Agent Pathfinding with Matching. 1, 2, 4–7
OD Operator Decomposition. 1, 2, 7, 8
SIC Sum of Individual Costs. 1, 2
TAPF Task Assignment and Pathfinding. 1
TUSS Train Unit Shunting and Servicing. 1

https://arxiv.org/abs/2006.10422
https://doi.org/10.1609/aimag.v29i1.2082
https://doi.org/10.1613/jair.4171
https://arxiv.org/abs/1612.05693
https://arxiv.org/abs/1612.05693
https://arxiv.org/abs/1906.08291
https://arxiv.org/abs/1906.08291
https://doi.org/10.1109/TSSC.1968.300136

	Introduction
	Problem Description
	Basic MAPF
	Extending MAPF with matching

	A*+ID+OD with Matching
	A*+ID+OD
	A*+ID+OD with Heuristic matching
	A*+ID+OD with Exhaustive matching
	Matching ID extension
	Sorting extension

	Experiment Results
	Experimental Setup
	Survivorship bias
	Exhaustive matching
	Exhaustive versus heuristic
	Comparing A*+ID+OD to other algorithms

	Reproducibility
	Conclusion
	Future work
	Algorithm improvements
	Result improvements


