
3D Route Builder
Bachelor Thesis

TU Delft

Computer Science and Engineering
Bachelor End Project

by

Rowdy Chotkan

Mika Kuijpers

Paul van der Laan

Brian Planje

Bachelor Project Coordinator
Otto Visser TU Delft
Huijuan Wang TU Delft

Bachelor Project Coach
Sander van den Oever TU Delft

Client
Relive B.V.
Yousef El-Dardiry Relive - Co-Founder
Frikkie Snyman Relive - Project Supervisor

To be defended on July 2, 2019 at 4pm.

2

Abstract

Relive is a sports application that seeks to increase the retention rate of its user base. The project

entails a route builder that can be incorporated in the Relive app. A route builder has several

challenges, both in supporting user-friendly interaction, rendering the map and calculating the route.

These challenges lead to design goals, such as a user experience focus, optimization of performance,

and continuation of the project. To achieve these goals, the project is approached in an agile way

with weekly planning meetings and tri-weekly stand-ups to keep it organized and well planned.

The front-end features are based on a specific target audience: the Relive users that do not use a

third party app for sporting activities. The screen is intuitive and supports storing of planned routes.

A route can be created, edited and loaded in the Record functionality of the Relive app.

To support the front-end, the back-end handles route calculation and route storing. The route

calculation is done using Dijkstra’s shortest path algorithm. In addition, a proof of concept customized

route calculation is created that focuses on popularity oriented routing. Route storing makes use of

the internal databases of Relive and is integrated in the existing systems.

Each feature is tested with automated end-to-end and unit tests. Additionally, user tests are

performed to get valuable feedback from external users. Apart from active user participation, random

users were selected to join a route builder experiment. During the project, more than 22 thousand

users obtained the route builder feature. Each click is timed and tracked to make sure that the feature

performed as expected.

Based on the events and user surveys, another iteration of the application was made by making

improvements based on the acquired information. These improvements are validated using event

tracking to measure the desired improvements.

3

Preface

This report describes the 3D Route Planner project concluded by Rowdy Chotkan, Mika Kuijpers,

Brian Planje, and Paul van der Laan, at Relive. This project has been done as part of the Bachelor

End Project for the Bachelor Computer Science and Engineering at Delft University of Technology.

Over the course of 10 weeks, we have worked at Relive to build a fully mobile route planner for both

iOS and Android, with 3D capabilities and a routing algorithm based on the most popular routes.

This project has been a great learning experience for our software engineering, project planning, and

time management skills. It has been quite an experience to put three years of our Computer Science

study into practice in order to create a full software solution that actually aids people all over the world.

At Relive, we would like to thank Yousef El Dardiry and Lex Daniels for hosting this project and

giving us the opportunity to take on this challenge. We also like to thank them for the great provided

input, support, and advice. Furthermore, we would like to extend our gratitude to Frikkie Snyman

for his excellent guidance, in planning, providing feedback, and his advice on implementation and

design. Finally, we would like to thank all of Team Relive for their support, giving feedback, testing

our application, and their overall hospitality.

At TU Delft, we would like to thank Sander van den Oever for his excellent guidance, feedback,

and support throughout the project.

We hope that this report is able to guide the reader through the entire design process of the 3D Route

Planner and get them as excited as we are.

Rowdy Chotkan,

Mika Kuijpers,

Brian Planje &

Paul van der Laan

Delft, July 2019

4

Contents

1 Introduction 8

2 Research 10

2.1 Problem Definition . 10

2.1.1 Problem Statement . 10

2.1.2 Formal Definition . 11

2.2 Problem Analysis . 12

2.2.1 Relive . 12

2.2.2 Project Environment . 12

2.2.3 Target Audience . 13

2.2.4 Usage Scenario . 13

2.2.5 Custom route calculation . 14

2.2.6 Map Matching . 14

2.3 Development Tools . 15

2.3.1 Mobile Development Technologies . 15

2.3.2 Map Visualization Tools . 16

2.3.3 Routing Tools . 17

2.4 Map Matching Tool . 19

2.5 Web Server Technologies . 19

2.6 Overview . 19

3 Project Organization Processes 20

3.1 Agile Development . 20

3.2 Meetings . 20

4 Design 22

4.1 Requirements . 22

4.2 Design Goals . 23

4.2.1 User Experience . 23

4.2.2 Performance . 23

4.2.3 Continuation . 23

4.3 High Level Overview . 24

4.3.1 Front-end Application . 24

4.3.2 Web Server . 25

4.3.3 Database . 26

4.4 Design Modifications . 26

4.4.1 Requirement Modifications . 27

5 Features 28

5.1 Route Tab . 28

5.2 Route Builder . 30

5

6 Implementations 32

6.1 Front-end . 32

6.1.1 Route Tab Screen . 33

6.1.2 Route Builder . 33

6.1.3 Relive’s Record Screen . 35

6.1.4 Website (Route sharing) . 36

6.1.5 Offline capability . 36

6.1.6 Code structure . 37

6.2 Routing Engine . 38

6.3 Database . 40

6.4 Back-end Flow . 41

7 Testing 42

7.1 Web Server Tests . 42

7.2 Routing Engine Tests . 42

7.3 Front-end testing . 43

8 Validation 44

8.1 Retention rate analysis . 44

8.2 A/B testing . 44

8.3 Event driven validation . 44

8.4 User Surveys . 46

8.5 UX Improvements . 47

8.6 Requirement Fulfillment . 47

9 Software Improvement Group (SIG) 48

10 Ethical implications 49

11 Discussion 50

12 Conclusion 51

13 Recommendations 52

References 53

Appendices 54

A Results 54

B Implementation Diagrams 56

C MoSCoW 57

D Feature Screenshots 59

6

E Testing 67

E.1 Front-end Cucumber Scenario . 67

F Survey Set-up & Results 68

F.1 Survey Questions . 68

F.2 Survey Results . 69

G Persona & User Stories 71

G.1 Persona . 71

G.2 User Stories . 71

H Interviews 73

I Software Improvement Group (SIG) 75

J Project Description 76

K Info Sheet 78

L Asana 80

7

1 Introduction

Relive1 is a relatively new sports application with

more than 4 million users. With Relive, users can

create a 3D movie of their sports activities. Even

though Relive has a unique 3D movie feature, the

competition is still strong in the app market (Pai &

Li, 2014). Relive is currently focusing on improv-

ing their user retention rate, in order to build an

advantage over the competition. Hence, the long

term goal of this project is to increase the reten-

tion rate of the Relive app.

Considering the large user base, the new feature

needs to be useful for a diverse amount of activi-

ties. Relive supports a limited number of activities

but aims to increase this amount in the near

future. Non-sporting activities can be considered

for the new feature, for example road-tripping or

vacations in general.

The new feature is 3D route planning, such that

users can easily plan new routes for their activi-

ties. The original project description can be found

in Appendix J. Currently, users have to use third-

party apps to plan their activities. The new feature

allows users to plan their routes inside the Relive

app and use the planned route immediately, whilst

staying in the same app. The feature helps users to

efficiently create new personalized routes, using the

given tools and tips of the feature. A popular ori-

ented routing algorithm, 3D maps, route statistics,

user-friendly interaction, and more aim to provide

the best route planning experience.

Figure 1: Route Planner Screenshot

The new feature needs to function in the existing Relive app, which has implications for the

available tools. The Relive app is mainly written in React Native2, since it allows for a single code

base that supports both iOS and Android. Relive has experience with 3D graphics, and therefore, has

several suggestions for 3D libraries to use for the 3D route planning feature.

Additional libraries can be used to support the actual route planning. To achieve the best results

for Relive app users, information such as route popularity can be taken into account. This requires

customization or extension of the libraries that support route calculation.

In this report, research on the problem and possible solutions is defined in section 2. The organi-

zation and development processes are described in section 3. The design of the solution is described

1Website: https://www.relive.cc
2Website: https://facebook.github.io/react-native/

8

https://www.relive.cc
https://facebook.github.io/react-native/

and justified in section 4. A general overview of the app is showcased in section 5 and the implemen-

tation of these features are elaborated upon in section 6. The testing methods and the results of this

implementation can be found in section 7. To validate the requirements, several methods are used.

These methods are described in section 8. Apart from internal validation, the SIG3 provided valuable

feedback, which is elaborated upon in section 9. The ethical implications of the solution can be found

in section 10. Lastly, the discussion, conclusion and recommendations can be found in section 11, 12,

and 13 respectively.

3Software Improvement Group

9

2 Research

This section includes the research and the corresponding solutions. First, the problem is defined and

analyzed. After that, this section covers an analysis of the tools available to solve this problem. All

options are analysed and the best fitting choices are explained.

2.1 Problem Definition

To build the route builder, several problems need to be solved. In this subsection, the problem is

introduced. The problem statement was defined before the project started and refined in the first

week. The problem is explored and a formal definition of the problem statement is stated.

2.1.1 Problem Statement

The project entails the planning of routes for sports trips such as hiking and cycling. Currently, Re-

live records routes during a sports activity, but includes no functionality to plan the trips beforehand.

Users need to rely on third-party solutions to plan their routes. Relive also has a continuous goal

of improving user retention rates for their application. This feature attempts to remove this third-

party dependency and increase the user retention of the Relive app. As an additional unique and

competitive edge, the map used for planning is visualized in 3D and fully available on mobile. This

project will tackle the problem of route planning in a (3D) world map for different types of activities

with a focus on cycling and hiking, with the additional long term goal of improving user retention rates.

This problem can be split up into three sub-problems:

1. Route calculation based on information such as activity type or road popularity.

2. User interaction with a map.

3. Map rendering.

By splitting up the problem, a more formal definition can be created. This formal definition will

be discussed next.

10

Figure 2: Problem Overview

2.1.2 Formal Definition

The aforementioned sub-problems (subsection 2.1.1) can be represented by the following actors:

• User: The agent interacting with the application.

• World map: The User Interface handling user input and visualization.

• Route Planner: The algorithm that calculates the routes.

The different actors coordinate as displayed in Figure 2. The User selects waypoints M =

m1,m2, ...,mn with n ≥ 1 on the World Map. Subsequently, the waypoints are converted into a

set of coordinates P and are sent to the Route Planner. The Route Planner generates a valid route,

represented by a set of coordinates P ′, based on the coordinates P . Planning a route can be based

on minimizing the distance total distance of route R, given coordinates P . However, other route

information (I) can be taken into account during the calculation, such as the popularity of certain

routes. The coordinates P ′ are subsequently visualized on the World Map as Route R back to the

User.

11

2.2 Problem Analysis

In this section, an analysis of the problem is given. Subsequently, a general description, the identified

target audience, and a typical usage scenario are discussed.

2.2.1 Relive

Relive is an outdoor activity tracker application for both Android and iOS. It allows users to track

their outdoor activities, such as running, cycling, hiking, skiing or snowboarding, and turn them into

a video story. The video follows the route in a 3D landscape. Additional photos and statistics are

shown in the video, such as Figure 3. The application is free, but also offers a subscription that

enables additional features.

Figure 3: Relive 3D video

The existing code-base of Relive influences the approach and planning of the project. Relive’s

codebase is separated into two main repositories: the front- and back-end. The front-end deals with

user interaction and displaying elements. It communicates with the back-end, which subsequently

handles the data storage, processing, and analysis.

The users use Relive as a way to remember their trip and have a way of reliving this trip in the

form of a video. Another reason is to share their trip with friends in a more appealing fashion, as

opposed to simply having a map with a line, like a lot of the current tracking apps.

2.2.2 Project Environment

Together with the client, it was decided to develop the project inside the existing code base. This pro-

vides both benefits as well as drawbacks. The added benefits include a completely set-up development

environment, allowing for quick prototyping and deployment to actual users, and easily requesting

12

code reviews from Relive developers. However, additional challenges include adhering to existing code

styling rules and conventions, possible longer set-up time for getting the existing code base running

and possible merge conflicts with the existing code base. Another important drawback is related to

safety: in case the produced code contains vulnerabilities, it could have catastrophic effects for the

Relive application if these flaws make it to production. Finally, Relive uses a weekly development cycle

to release new features. This weekly cycle requires a corresponding feature development planning.

2.2.3 Target Audience

The largest user base of Relive participates in outdoor activities. This user base can be divided into

two groups of people:

1. Performance-oriented users: people who perform a sport with the main goal of increasing their

skill and/or performance over time.

2. Recreational users: people who perform a sport with the main goal of recreational use; focusing

on the experience and not on the performance.

The audience group that is most focused on is group containing recreational users. According to

Relive, there are more recreational than performance-oriented users and they are most in line with

the functionality that the app provides, namely a focus on the experience instead of performance

tracking. The possible target audiences for the route builder are slightly different:

1. Relive Record Users (uses the Record functionality of Relive)

(a) External route planning app users

(b) Users that only use the Relive app

2. External Record App users (merely uses the video render functionality of Relive)

The performance-oriented target audience of Relive roughly matches the External Record App

users audience, since other apps provide more in-depth insights into their activities, which is useful

for analyzing a performance-oriented sports activity. Recreational users fall in the Relive Record users

category, which can be split up in two groups that are relevant for the route planner feature. The main

focus is on Relive Record users that do not use an external route planning app. Based on experience

relating to other Relive features, the retention rate of users can be increased by adding a new feature

to the app.

2.2.4 Usage Scenario

The following usage scenario is an aggregation of the usage scenario’s given in the interviews (Ap-

pendix H) and user stories (Appendix G).

Before a user goes out on a trip, the user has to decide on where to go. The user could decide

where to go during or before the trip. It seems that a lot of users want to plan the route beforehand

in order to see new places and to explore the environment. These users currently have to use a third

party app to plan their route and use navigation during the trip to follow the route.

The Relive app or an external app can be used to record the trip of the user. Whenever the user

decides to use the Relive Record feature, the user can see the currently traversed route on the map

in the Record screen.

13

2.2.5 Custom route calculation

An important part of the route planner is the way in which paths are calculated between user-selected

points on the map. The most obvious way is to calculate the shortest path between points, however,

this may result in less optimal roads (e.g., non-paved roads when cycling).

Instead of calculating the shortest path, other information can be included in the route calculation

to increase the quality of the planned route. The popularity of roads can be useful for users, as

it filters out bad roads and prioritizes the well-known and proper roads. Relive has a considerable

database that contains over routes of Record users. These routes can be used to derive

the popularity of roads. Other information might be considered as well, for example the road types.

The main trade-off is that popularity prioritization can increase the distance between the points

that the user picks. Therefore, the user has less control over their route. In minimizing this conse-

quence, it is important to analyze various algorithms that include popularity in route calculation by

distance and popularity.

An important part of custom route calculation is experimenting with options and analyzing the

results. Each user can prioritize certain factors, while those factors might be redundant for other

users. A dynamic approach to support a wide range of users can be helpful to increase the usefulness

of the app.

2.2.6 Map Matching

As mentioned in the previous section, the routes of the activities of the Relive users will be used

in a custom routing algorithm. These routes are recorded through the built-in Relive tracker. The

problem is that the custom routing algorithm uses OpenStreetMap (OSM) data for route calculations

and GPS locations do not match OSM locations. In order to obtain the correct OSM locations, the

recorded locations need to be matched. This problem is known as the map matching problem4.

4Map matching problem: https://en.wikipedia.org/wiki/Map matching

14

https://en.wikipedia.org/wiki/Map_matching

2.3 Development Tools

In this section, development tools will be discussed. First, the frameworks used to develop and

deploy the application will be discussed. Afterward, the tools used to create the application will be

discussed. There are two main types of tools that are used during development: mapping and routing

tools. Mapping tools are the tools or frameworks used to visualize the map for the user, whilst routing

tools are the tools or API’s that are used to create the routes for the user.

2.3.1 Mobile Development Technologies

In this section, it will be discussed what technologies are available for mobile development and which

of them is the most optimal for the solution, which, given the requirements, must be an Android and

iOS application.

• Android SDK (Java)5

The Android SDK uses Java and is used to develop Android applications.

The main benefits are:

– Prior experience with Java by all team members, which will bring the project up to speed

quickly.

– Ability to provide a native experience for Android users resulting in a faster and smoother

user experience, which works towards the performance design goal.

The main drawbacks are:

– No support for iOS users.

• iOS SDK (Swift/Objective-C)6

Native development for iOS applications is done using the iOS SDK, generally done with the

usage of the programming language Swift.

The main benefits are:

– Ability to provide a native experience for iOS users.

The main drawbacks are:

– The members of the team don’t have much experience with Swift or Objective-C program-

ming.

– In order to develop an application for iOS using Swift or Objective-C an Apple device is

needed.

– The iOS SDK can only be used for iOS and not for Android.

• Progressive Web Applications (Web)7

Progressive Web Applications are an upcoming technology able to create native-like experiences

for mobile exclusively through the use of web technology (HTML/CSS/Javascript). This is done

by enabling a number of native features on mobile such as notifications and offline usage.

The main benefits are:

5Website: https://developer.android.com/studio
6Website: https://developer.apple.com/ios/
7Website: https://developers.google.com/web/progressive-web-apps/

15

https://developer.android.com/studio
https://developer.apple.com/ios/
https://developers.google.com/web/progressive-web-apps/

– Prior experience with web technologies by all team members which will bring the project

up to speed quickly.

The main drawbacks are that:

– The user experience lacks compared to a native application since it essentially still is a

web-page and is unable to make use of native components of the device. A web page can

not make use of all the system features of a phone, compared to a native application. With

the user experience design goal in mind, this is a less user friendly experience.

• React Native (Javascript)8

React Native is a framework that allows building native mobile apps using JavaScript and

React9. With React being a JavaScript library used to build interactive user interfaces, it is

commonly used for websites. In contrast to Progressive Web Applications, React Native renders

native controls which makes the experience comparable to native implementations such as the

Android SDK or the iOS SDK.

The main benefits are:

– Cross-platform development for iOS and Android. This greatly increases the development

power since the alternative is creating an application for iOS and Android separately.

– Prior experience with Javascript/Typescript in the team will allow for a faster ramp-up

time during development.

– Easier interoperability and possible integration between the existing application and our

solution, since the original application is made with this technology.

– Native user experience since React Native uses the native components of the respective

mobile device (iOS/Android).

The main drawbacks are:

– The amount of available libraries for React Native components is not as big as for example

the Android SDK or the web, due to the smaller size of the development community.

– Android and iOS respectively have some functionality that the other platform does not

have. When using these functionalities, platform-specific code will have to be written.

From this selection of technologies React Native is the most optimal, due to the fact that it aligns

best with the design goals we have formulated in subsection 4.2 and the fact that we have prior

experience with the used language Typescript. This will most likely result in a faster development

time, which is useful to combat the small time frame of 10 weeks.

2.3.2 Map Visualization Tools

There exist several map solutions that can be used in this project. In Table 1 an overview of alter-

natives is provided. As can be seen in the table, features do not differ much between native tools

and third-party tools, therefore user experience was considered a higher priority in the final decision.

There has been decided to use native maps instead of a third-party map visualization tool since these

will most likely result in the best user experience. For iOS devices, Apple Maps will be used, which

has 3D maps and for Android devices, Google Maps is the chosen alternative.

8Website: https://facebook.github.io/react-native/
9Website: https://reactjs.org/

16

https://facebook.github.io/react-native/
https://reactjs.org/

Google Maps Apple Maps Leaflet

3D No Yes No

Mobile friendly Yes Yes Yes

Free Yes Yes Yes

Offline Yes Yes Yes

iOS Yes Yes Yes

Android Yes No Yes

Table 1: Map Visualization Tool Comparison

2.3.3 Routing Tools

As mentioned in the problem statement, a sub-problem that needs to be solved is the route creation

for different types of activities given a set of coordinates and a map. There are multiple options

available which will discussed briefly, followed by a comparison and reasoning for the final choice.

Google Directions Apple MapKit GraphHopper Valhalla OSRM

Map Google Maps Apple Maps OSM10 OSM OSM

Running/Walking Yes Yes Yes Yes Yes

Bicycling Yes No Yes Yes Yes

Driving Yes Yes Yes Yes Yes

Number of activities 4 3 9 13+ 3+

Waypoint support Yes No Yes Yes Yes

Directions Yes Yes Yes Yes Yes

Multiple route suggestions Yes Yes Yes Yes Yes

Offline routing No Yes No Yes Yes

Round trips with 1 point No No Yes No No

Custom route suggestions No No Yes No No

Cost e0,009/request Free* e304/month Free Free

Table 2: Routing tools options

* The MapKit API is free but in order to publish an application, one requires a paid developer ac-

count. However, the company already owns such an account and thus Apple Mapkit can be considered

free to use.

Google Maps

Google’s tool is called Google Maps which includes Routing support through a Directions API

(Developer Guide | Directions API , n.d.). The tool supports driving, walking, cycling, and public

transport. An interesting feature of the Directions API is related to winter sport. According to

TechCrunch (Google Adds Trail Maps For 100 Additional Ski Resorts To Google Maps, n.d.), Google

added ski routes, which indicates that winter sport routes are a possibility. The Google documen-

tation (Developer Guide | Directions API , n.d.) supports gondola lifts (which are used in ski areas)

17

as a vehicle type as well. Currently, the downside is that Google does not support a wide range of

sporting activities. However, it possibly could be added in the future and most activities fall under

the general activities that Google supports.

Apple MapKit

Apple’s tool is called MapKit and has a wide range of features that developers can use (MapKit |
Apple Developer Documentation, n.d.). The supported transport types are limited to driving, walking,

public transport, and ‘other’. The major drawback is that Apple does not support cycling, which is a

common activity type for Relive app users. Similarly to Google’s tool, a route is calculated between

two points, multiple route suggestions can be given, and directions are provided to follow the route.

GraphHopper

GraphHopper is a routing tool that uses OpenStreetMap as map source (GraphHopper Directions API

with Route Optimization, n.d.; OpenStreetMap, n.d.). Most features are similar to the previous tools.

Additionally, GraphHopper supports a wide range of activity types: car, truck, scooter, foot, hike,

bike, mountainbike, motorcycle, and racingbike. GraphHopper has custom algorithms that are useful

for a route planner. It supports round trips (same origin and destination) and alternative routes (all

different fastest routes). Additionally, specific distances, random seed (for multiple route generation)

and ranges (how much longer the alternative routes is allowed to be) can be specified to customize

and personalize the route.

OSRM

OSRM (Open Source Routing Machine) (Project OSRM , n.d.) is an open source routing engine im-

plemented using C++. The main focus of this project is the free-to-use nature as shown by the open

source code and support for OpenStreetMap. The engine needs to be self-hosted which will add com-

plexity compared to a service, however, this does allow a great degree of customization. The built-in

transport types supported are driving, cycling, and walking. However, through the use of custom

made profiles, new types of transport can be supported.

Valhalla

Vahalla (Valhalla Routing Engine, 2019) is also an open source routing engine implemented in C++.

While it does use a different routing algorithm compared to OSRM, it also offers many of the same

features such as multiple waypoints and directions. The main difference, compared to OSRM, is that

Valhalla contains more built-in features, such as the largest variety of built-in activity types and nar-

rative based turn-by-turn navigation in multiple languages.

The tools Google Directions and Apple MapKit will not be used since the number of activities is

very limited compared to the other alternatives and since they are more focused on transport instead

of sport and recreational activities. GraphHopper, Valhalla, and OSRM are all strong contenders in

terms of activity types. After experimenting, it was decided to use GraphHopper since GraphHopper

has the best support for activities, round trips, and allows for custom routing algorithms. Round trip

support provides a valuable opportunity, as it allows a route to be calculated given one point and a

distance. This can act as a route suggestion tool.

18

2.4 Map Matching Tool

The previously chosen routing engine, GraphHopper, also provides a library that implements an algo-

rithm that handles map matching 11. The algorithm that is implemented in this library is explained

by (Newson & Krumm, 2009) and is described as follows:

This paper describes a novel, principled map matching algorithm that uses a Hidden

Markov Model (HMM) to find the most likely road route represented by a time-stamped

sequence of latitude/longitude pairs. (Newson & Krumm, 2009, p. 1)

Two important requirements to ensure a high accuracy in the algorithm are that the sample

interval and the noise in the tracker routes are minimized. The current tracker implementation works

only with a GPS location service. It does not use multilateral location tracking from cell phone towers

which would be too inaccurate for the algorithm. Furthermore, according to Relive the sampling rate

is approximately 1 second which means that every second a location is recorded. This would amount

to an error rate that is close to 0% (Newson & Krumm, 2009, p. 7), which is accurate enough for our

use-case.

2.5 Web Server Technologies

In this section the research and the choice on the web framework will be elaborated upon. There

are hundreds of frameworks available, thus a number of conditions are set-up to ensure a good fit for

the project. The first condition is that it must be a major framework in order to ensure that there

exists enough community support for issues that will eventually arise. There are a number of major

frameworks to choose from as can be seen in the latest Stackoverflow Developer Survey12. This leads

to a number of options in the top 10: Express, Spring, and Django in particular. Respectively these

frameworks use Javascript, Java and Python which are all mastered by the members in the team.

The frameworks themselves are comparable functionality wise, since they are all written in a major

programming language with a large amount of libraries available. From this selection Express was

chosen, due to the fact that it allows the team to write in the same programming language on both the

front- and back-end, namely TypeScript. This enables higher productivity since any team-member

will be able to write in either code bases without the need to switch language contexts.

2.6 Overview

To conclude, an overview is given in Table 3 on the major tools chosen to be used based on the

research in this section,

Programming Language Library / Runtime

Front-end Typescript React Native (Library)

Back-end (web-server) Typescript Node JS (Runtime)

Back-end (routing engine) Java GraphHopper (Library)

Table 3: Overview of the major technologies that will be used in the project

11GraphHopper Map Matching Library: https://github.com/graphhopper/map-matching
12https://insights.stackoverflow.com/survey/2019#technology

19

https://github.com/graphhopper/map-matching
https://insights.stackoverflow.com/survey/2019#technology

3 Project Organization Processes

During the software development, organizational processes are essential to deliver the correct product

on time and to handle the changing technical circumstances and demands of the client. Relive has a

certain organizational approach towards new projects, which was used as inspiration for the project

organization together with knowledge of Bachelor courses on Software Engineering. In this section,

we cover the overall project organization processes.

3.1 Agile Development

Throughout the project, a form of Agile development is used to structure the process and increase

value. According to (Highsmith & Cockburn, 2001), Agile developments shows slightly better business,

quality, and customer performance and increases morale. This is based on a survey result of 200 people

from a wide range of organizations. Additionally, we have learned that Agile development increases

the ability to react to requirement changes during our study Computer Science and Engineering. The

last point is particularly relevant for the route builder project, as the initial requirements are created

at the start of the project without user input. In the last part of the project, user input is collected

and has requirements changes and additions as a consequence.

Since the project allows for daily face-to-face communication, a less common approach to SCRUM

is used. The word SCRUM is not specifically mentioned during the project, but the used approach

and SCRUM show similarities. (Schwaber, 2004, p. 5-8) argues that the heart of Scrum is iteration.

The project involved weekly iterations of structured planning. This was done in the form of tri-weekly

progress meetings. During the week, daily meetings took place in an informal face-to-face fashion.

The team and supervision figured out the tasks for the week based on the backlog and the team was

free to choose how to achieve those tasks during the iteration. The backlog was kept in the form

of MoSCoW product requirements, as visible in subsection 4.1, and was updated for all requirement

changes.

Although the Agile development approach sounds like traditional SCRUM, the daily meetings were

informal and unstructured. Additionally, as a traditional sprint is 30 days according to Ken Schwaber,

the route builder project had informal sprints of 1 week. This approach was possible due to the small

team and face-to-face communication possibilities. Due to these advantages, all uncertainties were

easily solved and known by the whole team. The informalities allowed for faster iterations and less

planning overhead. As mentioned before, SCRUM was not specifically mentioned during the project.

The project can be seen as an informal approach to SCRUM based on the similarities and differences.

3.2 Meetings

A number of meetings have been held with the team members of Relive on various topics which all

had an influence on our decision making. The most important meetings will be discussed here.

As discussed in subsection 3.1, tri-weekly progress meetings were held in the Agile development

process. Each Monday, items from the backlog were confined and defined into tasks for that week.

Each task had an assignee and detailed description if needed. The MoSCoW requirements functioned

20

as backlog. The organization of these tasks was performed with the help of the tool Asana13. This

is a project management tool used within Relive and allows for delegation and organization of tasks.

The logbook of the tasks during the project can be found in Appendix L.

In addition to the previously mentioned formal meetings, there are three informal stand-ups at

Relive per week we participated in. In these meetings, everyone updates the team on what their

weekly goals are and the status of these goals. The knowledge of the status of the team members

helps in gauging whom to collaborate with or ask help from that week.

Remarkable meetings

During the project, some meeting had an impact on the development process. These meetings present

an important part of the project organization process.

The project commenced with a roadmap meeting, in which the requirements of the client were

discussed. Out of these requirements came the aforementioned (in subsection 3.1 and subsection 3.2)

MoSCoW model. The requirements were continuously discussed with the client in order to fine-tune

and improve the prioritization of the MoSCow. Another roadmap meeting was held in Week 5 of the

project, in which the priority slightly shifted and features were re-prioritized as necessary. This is

discussed more thoroughly in subsection 4.4.1.

The product manager meeting, having occurred in the middle of the project at the 14th of May,

with Lee, discussed whether the requirements that were set-up were still on track on solving the real

problems of the users. Other aspects that have been discussed are ways of validating whether demands

are met using experiments, interviews, and surveys which are further elaborated upon in section 8.

In order to improve the flow and user-experience within the application, a meeting with the designer

of Relive, Sander, was held on the 7th of June. During this meeting, the flow of the application was

discussed and each User Interface (UI) element was introduced. Out of this meeting came several points

of improvements on User Experience (UX) and UI. These results will be discussed in subsection 8.5.

In week 6, after about half of the project was concluded, a midterm-review was held. This review

accompanied the client and supervisor from Relive and the coach from the TU Delft. During this

meeting the progress of the project was shown, future plans were discussed and feedback was given.

13Website: https://asana.com/

21

https://asana.com/

4 Design

In this section, the initial design of the system and its requirements are stated and explained. This

design is derived from the research done in the earlier parts of the project. The section will start with

a set of initial requirements. For clarity, the design goals of the front- and back-end are discussed

separately. During the project, some requirements and focuses shifted to other elements. These

changes are documented in the last part of this section.

4.1 Requirements

A set of requirements is created for the project which lays out which features are essential and which

are not. In order to prioritize tasks and build a road-map of all the to be implemented features,

the ‘MoSCoW’ methodology was used14. This is created based on the user stories (Appendix G),

the problem statement, and the requests from the client. This subsection contains the requirements

and the reasoning behind the major requirement choices. Furthermore, a summary of the initial re-

quirements is given. As expected, the requirements shifted during the project, which is discussed in

subsection 4.4.1. A more detailed overview of the requirements can be found in Appendix C.

Relive follows the Minimal Viable Product (MVP) methodology. According to Relive and (Moogk,

2012), an MVP is a way to get a product as fast as possible on the market for user tests, which allows

for user feedback. This way, requirements can be changed accordingly early on in the development

process.

The MoSCoW and MVP work together, as the ‘Must Haves’ of the MoSCoW are equal to the

MVP. The MVP of the route builder consists of an interactable 2D map that allows the user to plan

and view a route. That route must be visible in the Record functionality of the app, so it can actually

be used and followed during an activity. Additionally, the application must be able to calculate a

route between the given waypoints.

Apart from the MVP, the MoSCoW contains more tasks that extend the functionality of the

route builder. For example: the routes should be stored in a personal route list that a user can

access and edit; additional information of the route should be visible; and the map should support 3D

functionality.

Low on the priority are the Could Haves in the MoSCoW. These tasks include a heatmap of

other routes, customized routing calculation, more route information, collaborative functionality, and

extended personal route list organization functionality.

The ‘Would Not Haves’ of the MoSCoW consist of interesting ideas that can be useful, but require

too much work for the duration of the project. These include navigation of the route, transforming a

planned route into a 3D Relive video, and alternative route suggestions.

14MoSCoW https://en.wikipedia.org/wiki/MoSCoW method

22

https://en.wikipedia.org/wiki/MoSCoW_method

4.2 Design Goals

Three design goals are defined which are adhered to during the development process. During the

research phase, these goals aid in defining the requirements by prioritizing certain options over others.

4.2.1 User Experience

A major design goal that has been identified is optimizing the user experience in such a way that the

user can intuitively use the solution without a learning curve. A method that is focused on to improve

this is continuous in-house testing of the user experience and using the results to incrementally improve

the product.

During the analysis of the current Relive application, it became apparent that the app itself strictly

enforces this design goal as well. This can be derived from the fact that the application, in essence, has

one main feature users come for: delivering 3D videos from a fitness trip. This allows the application

to have a small set of controls. Since the goal is that the solution will eventually be integrated into

the Relive application, it is important to adhere to this design goal when developing our solution.

4.2.2 Performance

The solution that is to be delivered should be as lightweight and fast as possible. The reason for

this is that, as stated, the solution will be implemented on Android and iOS mobile devices, which,

especially Android devices, have a wide range of hardware capabilities. The final solution will need

to have good performance on this range of devices in order to deliver a good user experience. This

entails elements such as non-excessive load times, smooth animations and smooth visualizations of

the map when interacting.

4.2.3 Continuation

The continuation of the project entails that the solution, preferably, is able to be integrated into the

original application. This means that there has to be focused on non-functional requirements which

will aid the integration. This includes testing, code interoperability with the original code-base, and

code style adherence. Functionality wise, the overall engineering style of the solution must be as

similar as possible to the original application.

23

4.3 High Level Overview

The high level design of the project consists of a front- and back-end (Figure 4). The front-end will

be a React Native application, as discussed in subsection 2.3, which will handle the user interface for

the mobile applications. The back-end will consist of three separate parts:

Figure 4: Overview of system components

The structure of a separate front-end and back-end is used since it is already in place at Relive

and allows for a modular design. A separate front-end means that the application is potentially

usable offline as well since it can be downloaded onto the device and work with offline caches. The

routing engine will also be separated into its own system since it will not share any responsibilities

with the web server and can not be run on the Node.JS server, it will consist of merely a Java server.

Furthermore, the decoupling increases control over the system by allowing the systems to restart and

crash separately without them affecting each other. This decoupling also allows for the swapping or

addition of modules such that for example a development routing engine can be used.

4.3.1 Front-end Application

The front-end will allow users to interact with the application, this will be referred to as the ‘client-

side’ of the application. The client-side of the application will be implemented, as discussed in subsec-

tion 2.3, using React Native and TypeScript. The Route Planner will be accessible for the user as both

a tab in the bottom bar of the Relive application and from a button placed in Relive’s Record screen.

From this screen, the user will be able to start the creation of a new route. The user is then able to

add waypoints to a map, implemented using react-native-maps, which are subsequently sent to the

back-end, together with the user selected activity type. The back-end will return a calculated route

between each marker, which is then displayed on said map using a Polyline (a polyline is explained

in section 4.3.3). The user will be able to save each created route and have an overview displaying all

created routes. Each saved route will also be able to be loaded into Relive’s Record screen using the

Polyline returned by the back-end.

24

4.3.2 Web Server

The web server needs to communicate with the front-end, routing-engine, and database to fulfill all

the given requirements. Furthermore, the API will be implemented in the production server of Relive.

The following set of design goals were set-up beforehand.

Security

All API endpoints should be secured in such a way that a malicious attacker can not access someone

else is resource without their permission. To ensure this, the following points are dealt with:

• Validation: incoming requests with data from the user should be validated and sanitized.

• Authentication: the identity of the users behind the incoming requests should be verified.

• Authorization: users should only be able to access their own planned routes (or routes that

other users have given permission to share).

It is convenient that Relive already has security in place, which automatically protects new endpoints.

Instead of writing duplicate code, the same security is used to protect the routing endpoints.

Performance

The API should be designed in such a way that it supports a large number of requests, considering

the size of Relive’s userbase. The following roadblocks should be taken into account:

• Database query time: query times on databases should be fast.

• Route calculation time: the calculation time on the calculation of the routes should be fast.

• Purpose-oriented usage: the use of the API should only be for the given purpose, namely

planning routes inside the Relive app. Measures should be taken to prevent third-parties from

potentially using the API to make their own services.

The front-end and back-end will communicate over HTTP using the following API specification.

Action HTTP Verb URL Payload

Create a planned route CREATE /route-builder/routes A Route

Retrieve a planned route GET /route-builder/routes/:id -

Update a planned route PUT /route-builder/routes/:id A Route

Delete a planned route DELETE /route-builder/routes/:id -

Table 4: API Design of the planned route resource

This specification is made using the CRUD convention15 since it the most established convention

for handling resources on the web and already in use within Relive. The actual business logic that

handles authorization, validation and calculation of routes will be hidden away behind this interface.

In its most basic form, the payload the end-user will be supplied to the server is a list of waypoints

as specified in the problem definition (subsection 2.1). The back-end then uses this payload to perform

the following tasks:

• Take the payload and calculate a new route: e.g., a new list of geolocations that will navigate

the user through the waypoints.

• Handle the persistent storage of these calculated routes.
15https://en.wikipedia.org/wiki/Create, read, update and delete

25

https://en.wikipedia.org/wiki/Create,_read,_update_and_delete

4.3.3 Database

The database needs to store the planned routes such that users can access them from any device. A

planned route consists of several properties, which are shown in Table 5. The database of Relive will

be used with a new table named planned route.

Table 5: Properties and usages of the planned route table

Property Usage

User The user the planned route belongs to.

Polyline
Stores all points that are needed to show the entire line of

the planned route on a map.

Waypoints Stores all points that the user made in the route planner.

Metadata
Chosen name of the route, distance and elevation. Can be

extended without altering the database table.

These properties are the bare minimum to store in the planned route table. In order to link a

planned route to a user, the user id needs to be stored as well. In addition, the planned route needs

an identifier, which will be used to query on the planned route table. And finally, dates about the

creation and the last update of the route need to be stored.

The polyline of a route contains all coordinates of the route. On the database, this is stored

using a special encoding, called the polyline encoding16. This encodes the array of coordinates into

a string of characters that represent the coordinates. This polyline encoding simplifies the storing of

the coordinates by simply needing to store a single string instead of storing all coordinates.

4.4 Design Modifications

During the course of the project, there was a pivot point in the organization of the requirements. This

was due to an extensive analysis and a deeper understanding of the problem. An important factor

was the segmentation of the target audience as seen in Figure 5. From the meeting with the product

manager on May 14th, the target audience shifted to the ’Not Using Route Planning App’ group.

This is the group that makes heavy use of the built-in Record functionality but does not use a route

planner app next to it. This group is known for mainly using the Relive app. The hypothesis is that

this group has the biggest advantage of improving the Record functionality of the app. The Record

functionality is improved by allowing users to plan a route and follow that route during the recording

of an activity.

16Polyline encoding: https://developers.google.com/maps/documentation/utilities/polylinealgorithm

26

https://developers.google.com/maps/documentation/utilities/polylinealgorithm

Figure 5: Overview of user segmentation for Relive Users

The shift of focus is based on the following observations:

• To correctly prioritize requirements for an application used by end-users, the user segment must

be as specific as possible.

• Relive currently experiences the divergence of two segments: power users who make use of

external applications and Record users who make solely use of Relive.

• The external route planning group containing power users is hard to capture and satisfy since

they need to stop using their current application and switch over. This conversion problem

requires to implement advanced features which their current applications support.

• The Record users without a planning do not have this conversion problem. Furthermore, since

the segment consists of users who do not use a solution, a more simple and novel approach can

be taken.

• The Record users within Relive are considered active and represent a large part of the user base.

Retaining those users and increasing the retention rate is useful.

4.4.1 Requirement Modifications

The shift in user group led to a shift in development priority. The main implication of this is less

focus on advanced features, which would mainly be appreciated by ‘power users’. The features that

gained a lower priority are the following:

• Routes in the route list should be importable from/exportable to a GPX file

This feature was moved down on the list of prioritization since it was concluded that this feature is

used by ‘power users’ to import/export routes to third-party accessories (e.g. cycling trackers). This

conclusion was made based on discussions with the client.

• Advanced statistic (e.g. road types & calories)

This feature was deemed too advanced for the average user, as it was concluded that extra statistics

decreases the overall user-friendliness of the application.

27

5 Features

This section outlines the features of the application. Each screen is discussed, together with all

functionality and responsibility the screen incorporates.

5.1 Route Tab

The Route Tab (Figure 6 & 45) is incorporated

into the the bottom navigation bar present in

the Relive app. It is created as a separate tab in

order to allow easy distinguishment between the

two code bases. With the two code bases being

Relive’s codebase and the codebase created during

this project.

This tab allows the user to perform the following

actions:

• Start the creation of a new route by pressing

the plus-button.

• Share an already existing route.

• Edit an already existing route.

• Delete an already existing route.

• Load a route into Relive’s Record screen.

The user is able to edit, delete, share or load a

route by selecting the appropriate option in the

dropdown menu. This menu can be opened by

pressing on an already created route. This can be

seen in Figure 28

Creating a new route

When pressing the plus button at the bottom of

the screen, the user gets redirected to the ‘Route

Builder’. More on this in subsection 5.2.

Figure 6: Route Tab Screenshot
Share menu

When selecting the ‘Share route’ option in the menu prompted in Figure 28, the user is prompted

with a share menu. This share menu can be seen in Figure 7; In this menu, the user can share his

or her created route via a link on various social media. When the user presses this shared link are

redirected to either the website (see Figure 44 and 12) or the Relive app, after which the shared route

is imported to his or her account.

28

Editing routes

When selecting the ‘Edit route’ option, the user is redirected to the ‘Route Builder’ (see subsec-

tion 5.2). In this screen, the user can edit his or her already existing route. Finally, when selecting

the ‘Delete route’ option, the user has his route removed from the database and the front end.

Loading routes into Record

When selecting the option ‘Use in Record’, the user is redirected to Relive’s Record screen and the

route is loaded into the Record map. See Figure 33. This screen was already created by Relive,

however, there have been made some alterations for the project. Firstly, the route is drawn, as visible

in the image, is a route planned using the Route Planner. Subsequently, the ‘clear’ button allows the

route to be deselected. Secondly, the button in the top right corner redirects the user to the ‘Route

Record’ screen. This screen can be seen in Figure 35 and is identical in functionality to the ‘Route

Tab’ screen. It was chosen to make two screens, since allowing access to the route planner through the

bottom navigation bar aids in users finding out the feature exists. Similarly, allowing access through

Relive’s Record screen eases the ability to load created routes when being out on an activity outside.

29

5.2 Route Builder

The Route Builder screen, as visible in Figure 6 is

the main gateway to route planning. This screen

allows for the actual route calculation. The user

is introduced to this screen by pressing either the

‘create new route’ button or editing a new route

from within either the ‘Route Tab’ screen or ‘Route

Tracker’ screen. The Route Builder allows for the

following interactions:

• Add new markers to the map.

• Edit existing markers on the map.

• Delete existing markers on the map.

• Center on user location.

• Statistics of the current route.

• Select up to 7 map-types (platform depen-

dent).

• Select activity type.

• Name the created route.

• Show instructions.

Create route

The user can create a route by placing markers on

the map by tapping it. By placing at least two

markers, a route is calculated between each way-

point via a calculation done on the back-end. The

route can be closed to create a loop by tapping

the first marker in case at least three markers are

placed.

Figure 7: Route Tab Share Menu

Edit route

In case a user wants to edit a route, they can do so by moving and/or removing existing markers.

Moving a marker is done by long pressing said marker and dragging said marker to the desired loca-

tion, after which the route is recalculated. Deleting a marker is done by long pressing said marker

and dragging it into the trash bin, as can be seen in Figure 29.

Activity Type

The Relive application has support for a vast amount of activities, the route planner currently offi-

cially supports both hiking and cycling, but also allows for ‘other’ as an activity type which allows

the user to plan any other activity that requires roads. The user can select the desired activity from

the activity menu. This can be accessed by pressing on the bottom right button, see Figure 30.

When an activity type is selected the route is recalculated based on said activity type. An example

30

of this can be seen in Figure 31. The routing engine takes different types of roads into account based

on the selected activity type. E.g., when cycling paved roads are preferred over their unpaved variants.

Figure 8: Route Builder Map Types

Map Types

The user has a vast selection of map types to choose

from. The user can choose the following, as visible

in Fig. 8:

• Standard: Standard map type. See Fig-

ure 36.

• Plain Standard: Standard map with fewer

street/ city names and no roads. See Fig-

ure 37.

• Satellite: Satellite images. See Figure 40.

• Satellite 3D: Same as ‘Satellite’, but with 3D

models of buildings and scenery etc. See Fig-

ure 41.

• Plain Satellite: Satellite images with fewer

street/ city names and no roads. See Fig-

ure 38.

• Plain Satellite 3D: Same as ‘Satellite 3D’, but

with fewer street/ city names and no roads.

See Figure 39.

Apart from these map types, the user can also

enable the heatmap. The heatmap draws the

routes of all activities the user has taken in the

Relive App. Via this feature, the user can plan

new routes without having to travel the same

route again. This can be seen in Figure 42 and 43.

Miscellaneous features

A user can also start planning at his or her location by centering to it. This can be done by pressing

the ‘move to location’ button located at the top button in the bottom right corner. There are also

instructions that are opened the first time a user creates a route or if the info button in the top left

corner is pressed. See Figure 32.

A user can further personalize his or her route by naming it. This can be done by pressing the title

on the top of the screen. See Figure 34.

The last major feature implemented is the ability for the user to use their created routes offline, which

is, e.g., useful for when a user is hiking in an area with low coverage.

31

6 Implementations

The implementation of the system is largely based on our initial requirements (subsection 4.1), the

design goals we set-up initially and the fact that we are working with an existing code-base. We

will state our implementation details, the reasoning for these choices and the factors that changed

throughout the project that lead to different choices being made than our initial design choices.

The implementation of the following parts are described in this section:

• The front-end interface implemented using React Native for Android and iOS.

• The Node.JS API facilitating the connection between the front-end, the database, and the

routing engine.

• The MySQL database storing the data.

• The external routing engine (GraphHopper) for the calculation of routes.

• The self-hosted routing engine based on GraphHopper in Java.

To understand the solution, it is important to have an overview of the implementation. This high

level overview is described in subsection 4.3.

6.1 Front-end

As discussed in subsection 2.3 the front-end is implemented using React Native and Typescript as a

separate project within the Relive app. The front-end is deployable on both iOS and Android and

allows the user to exploit all features of the route builder. The front-end can be split up into five

separate entities: ‘Route Tab’, ‘Route Builder’, ‘Route Record’, ‘Relive’s Record Screen’17 and the

website. The separate features of these screens can be found in section 5. This section delves into the

implementation of each screen.

17Note: this screen was already created by Relive, however, has been altered as part of the project.

32

6.1.1 Route Tab Screen

The ‘Route Tab’ screen is implemented

as visible in Figure 9. The main com-

ponent is named RouteList and incor-

porates the route cards, RouteListItem.

The RouteList is implemented using Re-

act Native’s ScrollView, allowing for

the scrolling interaction. The other

worth mentioning components are the

RouteScreenHeader and PlusButton.

Both these components are implemented

using React Native’s PureComponent.

These type of component aid perfor-

mance by only visibly updating in case

the shallow comparison of state variables

yields a difference. A shallow comparison

is that of comparing primitives and ob-

ject references.

Due to the similarities between the im-

plementations of the ‘Route Record’

screen and ‘Route Tab’ screen, the imple-

mentation details of the ‘Route Record’

are screen omitted.

Figure 9: Route Tab Screen Outline

6.1.2 Route Builder

The ‘Route Builder’ screen is implemented as visible Figure 10. The main component is the MapView

which is implemented using the package react-native-maps (as discussed in Section 2.3) allowing

for mobile friendly map interfaces. The map consists of the following elements:

1. The map uses a MapView component from react-native-maps. On Android the Google map

provider is used and on iOS the native Apple Maps provider is used. Various map types are

supported which can be found in section 5 where all features are showcased. When tapping this

component a Marker component is created.

2. Markers are implemented using the react-native-maps’ Marker components using a custom

View to create the custom look.

3. The line used to draw the route is created using a Polyline component of react-native-maps

with the coordinates of the route.

33

The top header component RouteBuilderHeader contains information about the current route and

is made up of the following elements:

1. Route name, clicking this route opens a popup to rename the route (Figure 34).

2. The info button opens a popup for explanation which is implemented using a modal (Figure 32).

3. Route stats shows statistics of the current route such as the length of the route and the height

gain.

4. Done button to exit the route builder screen and save the route.

Figure 10: Route Builder Screen Outline

The MapViewButtons component consists of two different parts which are formatted using flexbox18:

1. Interactable buttons to change map type, go to current location and change activity type. All

of these are implemented using the same button component, however, varying the icon and

callback method used.

2. The delete area which is only shown when dragging a marker. When a marker is dragged to this

area, the marker is deleted.

18Flexbox: https://facebook.github.io/react-native/docs/flexbox

34

https://facebook.github.io/react-native/docs/flexbox

6.1.3 Relive’s Record Screen

The main functionality added to the

Record screen is that of the drawn

route. The route is drawn using the

Polyline component. The other func-

tionality added are the two buttons: the

ClearRouteButton, which clears the se-

lected route from the screen, and the

Route Planner button, which redirects

the user to the ‘Route Record Screen’.

Both of these buttons are formatted us-

ing Flexbox and are implemented using

a PureComponent for the added perfor-

mance.

Figure 11: Relive Record Screen Outline

Figure 12: Route Sharing Website on Desktop

35

6.1.4 Website (Route sharing)

A shared route can be found on the website once a

user decides to share a route. This is implemented

on the Relive website using React19, including both

a mobile and desktop interface. The page contains

the following elements:

1. Route title which displays the name of the

route on the top of the screen. This title is

fetched from the back-end.

2. Route creator which displays the user that

created a route as a subtitle. This name is

fetched from the back-end.

3. The map containing the route in the center

of the screen to give the user a visual of what

route is being imported. This route is visual-

ized via the Polyline stored in the database.

4. An import button to import the route in the

Relive app. On desktop a user is not able to

import the route, thus a message is shown to

open this page in on mobile. When pressing

the import button, the user is redirected to

the app through deep linking20.

Figure 13: Route Sharing Website on

Mobile

6.1.5 Offline capability

The solution supports support partial offline capability, namely being able to load an existing planned

route into the tracker. This is done through a caching mechanism that makes use of the AsyncStorage

API provided by React Native. On Android, this is an abstraction over an SQLite database and on iOS

a serialized dictionary. To refresh the cache some sort of cache invalidation needs to be implemented

and this is a hard problem since many different events such as logging out, logging in and losing

internet connection can trigger many different data changes such as adding a single route and deleting

all routes. Covering all these possibilities in the code can easily lead to bugs. Furthermore, the cache

used is small, it only consists of a JSON payload of the routes. For these reasons, a naive approach

to cache invalidation is used where om all events that change the routes of a user, the routes are

cleared and stored again into the cache. This will not cause a performance problem however since the

serialized routes in JSON are very small in size.

19Website: https://reactjs.org
20Website: https://developer.android.com/training/app-links/deep-linking

36

https://reactjs.org
https://developer.android.com/training/app-links/deep-linking

6.1.6 Code structure

The component-wise structuring of the main screens RouteTabScreen and RouteBuilderScreen can

be seen in Figure 14 and 15, respectively. In these figures the main components, as discussed in the

previous subsections, are outlined and the internal communication becomes apparent. Due to the sim-

ilarities between the screens RouteTabScreen and RouteRecordScreen, has the RouteRecordScreen

been omitted.

Figure 14: RouteTabScreen Code Structure

Figure 15: RouteBuilderScreen Code Structure

37

6.2 Routing Engine

The routing engine that is used in the application that is live in production is one using the external

GraphHopper API service. The web server communicates with this service over an HTTP interface21.

The service provides routing calculation for any place in the world for a range of activities, as discussed

in subsection 2.3.3.

Additionally, a custom routing engine is implemented as a proof-of-concept, based on a routing

library that GraphHopper provides. This library is available in Java and imported as a base for the

project. This custom routing engine is deployed on a server within Relive but is not used in production

since the proof-of-concept has the limitation that it only works on data of the city Rotterdam. The

map data of the Netherlands is used from OpenStreetMaps (OSM) which can be downloaded online22.

The team deemed setting up an instance of the engine for the entire world out of the scope of

the project, since the size of the map data of the entire world is upwards of 1TB23 and will take a

significant amount of time to process. On top of that, running an instance of GraphHopper for the

entire world will take upwards of 64GB RAM which the team does not have access to24.

Figure 16: Batch pre-processing pipeline

Several steps need to be performed in order to incorporate popularity in route calculation. It can

be viewed as a pipeline as displayed in Figure 16. The data used to produce the routes is that of

Relive’s Record functionality. Relive has a dataset of more than recorded activities of

users available. All recorded activities are stored in a MySQL database containing the GPS locations

of the activity in a geography column.

The process of setting up the custom routing engine, based on the most popular routes, is as

follows. First, a query is used to fetch all GPS locations of 100 activities inside a small area in the

map (for the query, see Appendix B, Listing 1). For the proof-of-concept is the area of Rotterdam

and its surroundings used. Any area can be used, as long as it is a valid location within the OSM map

that is loaded into the routing engine. The second step is to match the GPS points to roads in the

OSM map. However, GPS points are not 100% accurate and are not always present in the OSM map,

which can cause mismatches between GPS points and roads. This is solved using map matching.

21GraphHopper service API documentation: https://docs.graphhopper.com/
22https://www.geofabrik.de/data/download.html is used in this research
23Map data of the whole world: https://wiki.openstreetmap.org/wiki/Planet.osm
24RAM usage discussion on GraphHopper: https://discuss.graphhopper.com/t/how-much-ram-to-importing-planet-

osm-feb-2018/2799/2

38

https://docs.graphhopper.com/
https://wiki.openstreetmap.org/wiki/Planet.osm
https://discuss.graphhopper.com/t/how-much-ram-to-importing-planet-osm-feb-2018/2799/2
https://discuss.graphhopper.com/t/how-much-ram-to-importing-planet-osm-feb-2018/2799/2

Figure 17: Badly snapped waypoints: the right side contains GPS locations, the left side the matched

points.

For example, Figure 17 shows a small GPS-point-to-road mismatch. On the right side, all GPS

points are displayed; in this case, the GPS points are accurate. There exists a sidewalk underneath

the tree at the location of the GPS points, however, the red points on the left side of the picture show

that a different road is matched, snapping falsely to the road going downwards. A small side note

here is that it proved to be cumbersome to find an error since most of the roads (> 99%) are matched

correctly, as can be seen in Figure 18.

Figure 18: Correctly snapped waypoints: the right side contains GPS locations, the left side the

matched points.

The last step of the prepossessing is to cache the number of times each edge is visited. This can be

done in memory, however, this requires a massive amount of memory since there exist a vast amount of

roads and activities. To achieve this, GraphHopper’s memory management was extended and altered

to include several extra bytes of information. These bytes are used to store the number of activities

for each way. All information is cached and stored for later use in multiple files.

39

The goal of the self-hosted routing engine is to incorporate popularity in the routing calculation.

Dijkstra’s shortest path algorithm is used for the route calculations. The graph consists of edges

(roads on the map) and nodes (crossroads on the map). Each edge has as weight the distance of the

road. Dijkstra used bread first search to traverse the graph while keeping note of the smallest weight

to each node. After the traversal, the path with the smallest weight is picked. The weight of each

edge can be altered to include the activities. Decreasing the weight of an edge based on the number

of activities results in an equal or smaller weight in the final path. A path is therefore more likely to

be chosen in the end, if it contains popular edges. To achieve this idea, the popularity needs to be

incorporated in the edges. The pseudocode in Algorithm 1 shows a possible solution. The complexity

is O(n) where n = |matchedEdges|, if originalEdges is stored in an efficient data structure that

supports a complexity O(1) for the contains operation. An example of this is a hashmap.

Algorithm 1 Popularity inclusion in OSM edges

1: function IncludePopularity

2: originalEdges← edges of the OSM map

3: gpsPoints← GPS points of activities representing popular routes

4: matchedEdges← matched edges based on gpsPoints using the GraphHopper library

5: for edge ∈ matchedEdges do

6: if originalEdges contains edge then

7: popularity of edge + 1

The main trade-off of a popular route is the ratio between time, distance and popularity. In

the test, percentages from 0 to 100 are used to decrease weights of edges based on the popularity.

In Appendix A, Figure 23 and Figure 24, the distances and estimated time are plotted for each

percentage between 0 and 100. In Appendix A, Figure 25, the routes of other users are displayed

as a blue line. Less blue means that fewer users visited that part of the map. The main goal is to

maximize the percentage since that means that the popular routes are preferred over others. However,

the time and/or distance needs to be minimized, to ensure that the resulting route is not too much

off the shortest path. In the image, a popular route is plotted with the percentage maximized and

the distance minimized manually (see Figure 25, image ’Percentage and distance optimized’).

6.3 Database

The database storing the planned routes is a MySQL database that is already in place at Relive. The

planned routes are stored in a table in this database, of which the schema can be seen in Figure 19.

40

Figure 19: Planned route table

The metadata json field is a special field that holds a serialized JSON object as a string. It contains

the metadata of a planned route as specified in Table 6. This field is deserialized and serialized on

the web server. Normally this is not an ideal solution since a database must be as normalized as

possible and these metadata fields should be their own fields on the table itself. However, it allows

the development team to quickly iterate and include new information in a planned route without the

need to perform database migrations. This is especially important since the databases are live in

production for millions of users.

Property Usage

Name The name of the planned route given by the user.

Distance The total distance of the route.

Time The total estimated time the route will take.

Elevation The total elevation gain one will encounter when following the route.

Activity Type The activity type the route is suited for.

Table 6: The metadata information of a route

6.4 Back-end Flow

The actions that follow from a user request are designed in such a way that the application feels as

responsive as possible for the user as per the design goal that can be seen in subsection 4.2. While

the UI can go a long way in helping realize this, the back-end should follow a model that optimizes

response time. The path that a request for a route calculation takes can be seen in: Appendix B,

Figure 26.

The path that a request from the front-end for a route calculation takes can be modeled in the

following manner. The request is firstly handled by the front-end itself, letting the user know that

something is happening through a loading icon. Secondly, the back-end receives this request and, after

validation, handles the fetching of the already existent route from the database. After processing the

existing route in order to determine what exactly needs to be calculated, a request is made to the

actual routing engine which in turn returns a complete route. The server passes this on to the front-

end so that the front-end can display the route, and subsequently, the new route is stored in the

database by the back-end.

41

7 Testing

In order to verify the correct functioning of the code, testing of code is important. Testing reassures

that new additions do not break any existing functionality without the need for time-consuming

manual testing. The written tests and thoughts behind them are elaborated on in this section. The

front- and back-end are tested separately and therefore discussed separately.

7.1 Web Server Tests

The back-end website, which holds the web API exposed to the front-end, is tested using a com-

bination of unit and integration tests. The testing framework Mocha25 is used together with the

assertion framework Chai26, due to these being the most established testing tools in the Javascript

community. This is important due to the team’s lack of experience testing in Javascript and the

subsequent assumption for the need of online troubleshooting. The results of these tests can be found

in Appendix E, Figure 51.

The main strategy to test the web server is to test every function that is directly used by an API

endpoint. For every one of these functions, a scenario is created that tests whether the functions work

in a regular use-case. For example, the delete route function is tested by deleting an already existent

route in the database and checking whether it still exists.

The tests are more akin to integration tests than unit tests. In normal unit tests, the aim is to

solely test the functionality of the unit, i.e., only testing the function that is being tested and to mock

any additional functionality that is needed for that unit. For some parts of the tests however, in

particular the database, there has been opted to use an in-memory SQLite database instead. This is

due to the difficulty in mocking the complex database at Relive, which holds a large number of foreign

key relations that need to be taken into account.

7.2 Routing Engine Tests

The self-hosted routing engine is made from the ground up and tested using unit tests. Originally,

there was not set any goals for a minimum coverage percentage. However, the idea to create a

self-hosted routing engine in a separate code repository was in week 5. Together with the client, it

was decided that 70% coverage is adequate for this project since this allows for ensuring that the

main functionalities of the project work as intended. Additionally, this percentage leaves room for

untestable code (e.g., direct library calls).

In the end, the code has a 76% weighted branch coverage using Jacoco for statistics, excluding

non-relevant files. The entire coverage result is visible in Appendix E , Figure 50 (the coverage includes

the excluded files). Several testing principles are taken into account:

• The tests should be independent of each other.

• The tests should be fast.

• If possible, the tests should make use of the three testing phases: Arrange, Act and Assert or

AAA in short.

• A test should not test too many functionalities.

25Website: https://mochajs.org/
26Website: https://www.chaijs.com/

42

https://mochajs.org/
https://www.chaijs.com/

• Anyone should be able to run the test.

Some files were excluded from the coverage results. Files were excluded if they rely mostly on

other frameworks. These frameworks have tests of their own. Examples of these files are the setup

of the GraphHopper engine and usage of a JFree plotting framework. Additionally, several classes

containing constants are excluded.

7.3 Front-end testing

The front-end is tested using end-to-end tests executed using Cucumber27 and Appium28. Cucumber

is used to define test scenarios. These scenarios give an outline of what is being executed and what is

expected. Appium is used to execute these test scenarios. This is a test automation framework used

for mobile applications. Appium handles all interaction between the tests and the mobile simulator.

The choice for end-to-end testing is because the front-end of an application requires all part of

an application to work together. End-to-end testing is a way to test the complete functionality of an

application. This is something especially suited to end-to-end testing. It is important to make sure

that all different parts work together well and that changes do not break the application. In that way,

it also serves as a regression test since any large bugs will break these tests.

Test design strategy

The end-to-end test scenarios are designed to execute basic use cases of the route builder. Each of

these scenarios covers a certain feature or step in the route builder. For example, creating a route

or renaming a route. By ensuring that each scenario tests a certain part of the feature it is easy to

track down bugs in the route builder. Also, scenarios that test entire aspects of the route builder are

created, in order to ensure all aspects are functioning together as expected. An example of a testing

scenario used can be found in subsection E.1.

Drawbacks

The team stumbled upon a couple of drawbacks during the process of testing the front-end.

By using end-to-end testing for the front-end, one major drawback was present. With major UI

changes, the tests will fail since the tests can’t account for major UI changes. This asks for test

corrections when these changes take place. Ideally, this is something you want to avoid when creating

tests. However, with end-to-end testing of a user interface, this is hard to avoid.

Another drawback is related to the library used to simulate touch input. It was not possible to

simulate click events at precise coordinates on the screen. This was due to a limitation in the library.

In the timespan used to make these end-to-end tests, it was not possible to find a solution to this

problem. The click simulations would only click in the middle of a certain element which asked for

some clever workarounds to make sure tests would work.

Another drawback or bug in the library used was that sometime a click event would not trigger.

This would cause test events to fail while the app was functioning as expected. This happened

infrequently but still is something that makes the tests less stable.
27Cucumber: https://cucumber.io
28Appium: http://appium.io

43

https://cucumber.io
http://appium.io

8 Validation

To ensure that the solution is on the right path and can be iterated upon, many processes have been

used to validate the current implemented solution for the problem. This is one of the key points

highlighted at Relive, which highly focuses on iterating over user feedback and analytics to ensure

the solution solves the user’s problem. Additionally, validation can also be performed through more

technical metrics. In this section, the methods used will be explained, accompanied by their results

and consequences. Additionally, the validation of the initial requirements will be validated.

8.1 Retention rate analysis

Relive has a system in place to analyze the influence of a new feature on the retention rate. First, an

experiment is created with two groups: a test and control group. Both groups are similar or equal in

size. The test group has access to the new feature while the control group has not. This allows for an

analysis of the impact of the new feature by comparing statistics of the test and control group.

For the route builder, the experiment started in week 5 and ended in week 9. Only new users are

included in the experiment, as per request by Relive. Over those 4 weeks, 0,7% of the test group is

still active and 0,64% of the control group. The percentage of active users represents a metric for

retention. Unfortunately, due to the short duration of the project, there is no long term retention

analysis available.

8.2 A/B testing

The route builder is a new feature and releasing it to all users immediately is a bad idea. If any bugs

are undetected, it is possible that the route builder breaks the application. Therefore, it is important

to not release the route builder to all users. This was done by applying A/B testing while releasing the

route builder feature. Within Relive, an experiment infrastructure was already set-up which allowed

for easy A/B testing.

The route builder is a completely new feature for Relive, therefore the decision was made to only

release it for new sign-ups. The reasoning behind this was that existing users already have a certain

expectation of the Relive app. By removing the variable of user expectation, more objective feedback

can be gathered. The feature was released only to new users to ensure that existing users would not

see any changes. For the first release in week 5, 20% of new users were added to the test group. This

resulted in around 100 to 200 users to be added to the test group per day. The following week 100%

of new users were added to the route builder test group, resulting in ± 800 new users to be added per

day. As of week 9, around 22.000 users were present in the test group.

8.3 Event driven validation

To validate the hypotheses set-up during UX design, the user behavior is tracked using an event-driven

solution. Events are set-up on all front-end elements such as creating a route, selecting a route, et

cetera. These events are stored in a database, allowing for future processing and analysis.

The information gathered from this system is used to identify whether there any bottlenecks in

the UX flow. This could indicate that users are having trouble with a certain feature or certain steps

are not as intuitive as expected. A snapshot of the event funnels can be seen in Figure 20 and 21.

44

Figure 20: Events funnel release 1 Figure 21: Events funnel release 2

Results

The event funnels show the percentage of users that have interacted with a certain feature or step at

least once. Both of these event funnels contain data of around 22.000 test users. The steps shown

in the event funnels are opening the route builder tab, starting the route creation process, actually

finishing route creation, and selecting the route in Relive’s Record screen.

The end goal of this event funnel analysis is to increase the number of users that use the route

while doing activities. This corresponds to the percentage of ‘Select route’ in the event funnels.

From Figure 20 can be concluded that for every step in the events funnel the number of users is

around a quarter of the previous step. So at each step in the route builder, only a quarter of the users

proceed to the next step. There are two major things that can be concluded from this events funnel:

both creating and selecting a route is not intuitive. Changes were made to improve the UX in order

to improve the number of users that select a route, these changes are documented in subsection 8.5.

After the second release, which included these improvements, a new events funnel (Figure 21) was

created to analyze the impact of these improvements. An optimal result would be increased ‘create

route’ and ‘select route’ percentages.

What immediately can be noticed is that the ‘Open tab’ percentage has decreased from 60.79% to

26.83%. The cause of this decrease was not clear and was believed to be an error in the event tracking

or query system since the tab had not been presented differently.

Both start route and finishing route creation had a marginal increase. What can be concluded from

this is that the introduction pop-up helped but not as much as anticipated to make a significant

impact. This could have been due to the longer instructions used in the introduction pop-up, shorter

instructions might have been less intimidating for new users.

Finally, ‘select route’ saw an increase from 0.76% to 2.71%. This is the desired results since it shows

that the changes made to the ‘Route Record’ and ‘Route Tab’ screen improved the user flow.

45

8.4 User Surveys

The users that tested the route planner were asked to fill out a short survey. The questions of this

survey can be found in Appendix F. The main goal of this survey was to gain insights into the usage

of the route planner and try to further interpret the results gained from event tracking discussed

in subsection 8.2. In case the user indicated not having used the route planner (Figure 52), they were

asked to explain as to why (Figure 53). In case the user indicated this was due to technical difficulties

they were asked to explain what went wrong. In case the user indicated having used the route planner

(Figure 22 & 54), they were asked as to how easy they found it to be used, how often they would use

it (Figure 55), and as to how we could further enhance their experience.

Figure 22: Survey Question 3

Results

The results of the survey are visible in Appendix F. As visible in the results, a third of the survey

responses indicated as to having used the feature. Surprisingly, almost 80 percent of the responses

indicate not knowing that the feature existed. This can be explained due to the fact that the users

tested were new users, hence a new screen in the app would not stand out to them. Another interesting

result is that no user indicated being unable to use the route planner all together, indicating that the

route planner was stable to use. The range of user-friendliness varies wildly, but does lean to the side

of ‘easy to use’. An attempt was made to improve on this by making several changes, more on this

can be read in subsection 8.5. Users also responded positively with their possible future usage, with

none of them indicating as to never using it again. The open questions yielded, unfortunately, no

usable information. On the other hand, the open questions answers did not indicate any complaints

relating to the route calculation.

46

8.5 UX Improvements

Throughout the project, the UI has seen several iterations. Based on the tracked events and user

surveys, there has been made a substantial change in order to improve the UX and flow to the Route

Record screen. In the first iteration, the user would only be able to select a route from this screen,

coming from Relive’s Record screen. Based on the event tracking and surveys, the conclusion was

made that this flow hindered people to load routes into Relive’s Record screen. Hence, the decision

was made to provide the ‘Route Record’ screen with the functionality of the Route Tab screen. This

improvement is visible in Figure 46.

The second iteration of UX and UI improvements were made after the design meeting mentioned

in subsection 3.2. The major change that came out of this meeting was that of the route cards.

The route cards already had two buttons but needed a new one for the sharing functionality. The

route cards were refactored accordingly to the meeting, this can be seen in Figure 47. The second

refactor was that of the ‘Clear selected route button’, this button allowed for the deselection of a route

loaded into Relive’s Record screen. This button was placed in the ‘Route Record’ screen, however,

it was moved to Relive’s Record screen, as depicted in Figure 48. The last improvement that was

implemented was that of the trash bin in the ‘Route Builder’. This button was formerly placed on

the activity change button, however, it was deemed to be unclear for users if UI components are used

for multiple interactions. This button was refactored to a separate component in order to be more

prominent. This change is visible in Figure 49.

8.6 Requirement Fulfillment

To conclude with the validation of the delivered product, the initial requirements will be validated

and compared to the delivered project. The requirements can be found in subsection 4.1.

To summarize, all must-have‘s have been implemented. All of the should-haves have been imple-

mented as well, except for some requirements related to the user interface and GPX import. This was

done due to the shift in target user group and thus was not a major downside. From the could-haves,

the heatmap functionality and storing routes on the Relive account have been implemented.

Considering that the must-haves, the should-haves and a number of could-haves have been imple-

mented, it can be concluded that there is an adequate fulfillment of the initial requirements.

47

9 Software Improvement Group (SIG)

The Software Improvement Group (SIG) has been consulted twice during the course of the project.

The code at that point in time was sent to the group after which feedback was given on said code. The

goal of the SIG submissions is to improve any code quality problems before the end of the project.

In this section, we will discuss the feedback that was received and what changes were implemented

based on said feedback in order to improve the quality of code.

The code submissions only contain the code that was written as part of the project and not the

in-house code of Relive, due to IP. Since our code is embedded in their code-base and partly makes

use of their libraries, some parts of the project are not executable. SIG, however, also uses static

analysis tools, hence this was not a problem. The submission is as follows:

• Front-end (React-Native - Javascript) code-base. This includes all the React components,

business logic and tests for the front-end.

• Back-end (NodeJS - Javascript) code-base. This includes the API section for the route

builder and the tests.

• Routing Engine (Java) code-base. Unlike the previous two items, this includes the whole

routing engine project including its tests.

The first code submission occurred in Week 6 of the project. At this point, most of the ’must have’

and ’should have’ requirements were completed. The feedback can be found in Appendix I. In short,

it contained the following critique points:

• Unit size that is too big.

(This was mainly caused by routing engine code, which contained a number of script-like debug

classes which greatly increases unit size.)

• No front-end test and too few unit tests.

The second point, the missing of tests, is of big importance since a lot of time was spent on front-end

testing. The front-end code changes a lot, thus regression issues came up frequently. The creation of

these tests would save the team a lot of development time.

These feedback points were converted to a number of concrete tasks that were completed before

the second code submission, which are as follows:

• Front-end: Automated end-to-end testing for the front-end application by using Cucumber

and Appium. This combination executes tests scenarios by simulating user interactions on a

simulator.

• Back-end: Unit/integration tests for all the functions in the back-end API using Mocha.

• Routing Engine: A full test suite using JUnit for the routing engine with the target of 80%

branch coverage.

• Routing-engine: Refactoring of the application to reduce the unit size and cleaning it to

remove any debug and benchmark code.

The results of the testing efforts are further elaborated upon in section 7.

The second code submission occurred in week 9. The results of this submission can be found in

Appendix I.

48

10 Ethical implications

The route planner has multiple ethical implications that need to be considered. Personal data is stored

and should be handled in a responsible manner. In this section, the ethical implications are discussed

and how these implications are dealt with.

At first glance, the route planner might be interpreted as innocent in terms of ethical implications.

However, consider the following list related to planned route data29:

1. Health information can be deduced from the number of planned routes. How many times a

person sports, together with the duration, gives a valuable health insight in the user. One of

the obvious risks is that this data can be used by insurance companies.

2. Housing location can be deduced from the planned routes. Often, the planned route will start

from that location.

3. Wealth information can be deduced from the number of times a route is planned without using

the house location. On vacation, users plan routes in other places, which indicate how often and

how long a user goes on vacation. An estimation of the costs can be made from the starting

place of the planned route (e.g., the costs of accommodation or the distance from the house

location to the vacation location). Together with the house location, a rough estimate could be

made of the wealth of the user. Customized pricing based on the user profile can be an ethical

implication of this information.

Not all implications are equally important and frequent. The house location is partly the respon-

sibility of the user since the user decides where to plan a route. The ‘personal’ information might not

be valid for the same reason.

All items can be considered personal information and should be handled with the necessary care-

fulness. The user needs to be informed about the data implications of planned routes in the privacy

statement or other documentation. The usage of personal data needs to be documented as well. Ad-

ditionally, the ethical implications are present, but may not be a risk if the data is not used apart

from helping the user to plan and travel a route.

29The assumption is made that a user plans a new route for each activity. Record information of the user can be

utilized to know when a planned route is traveled.

49

11 Discussion

During the project, several issues came to light that are up for discussion. In this section, issues,

remarkable events, and memorable situations are discussed. All information is based on the 10 weeks

at Relive, including both the research and coding phase.

A remarkable notion is that the project included two research phases in different weeks of the

project. The first is the expected research for the route builder in general. The second is regarding

including the most popular routes in the routing calculation. To increase the scientific value of the

project, the team decided to take the route calculation to the next level. Unfortunately, this was in

week 6 and there was limited time available. Instead of using the remaining time to solely perform

research, the team decided to implement a customized routing algorithm that was likely to work, based

on a minimum amount of research. Although it worked in the end, the scientific value would have been

higher if more time was spent on researching instead. A small side note of the resulting customized

routing algorithm is that there may be other ways to combine the two different problems. At the same

time, the algorithm tries to minimize the distance and maximize popularity. Another issue might be

that popularity and distance are not measured in the same units. An idea is to customize Dijkstra’s

algorithm in order to support two different weights instead of combining distance and popular in one.

Another thing to remember is the importance of choosing and focusing on a user group. From the

start, all users were considered. The product manager at Relive indicated that issues are easier to

prioritize if there is a user group to focus on.

50

12 Conclusion

The route builder is an extension of the current Relive application. It enables Relive users to plan a

route within the app and use the route for their sporting activities. This includes a fully embedded

user interface in the Relive app, an extension to the web server which delegates route calculation to a

routing engine service and handles data storage, and a proof-of-concept routing engine which favors

popular routes instead of shortest routes.

The initial requirements consisted of a functioning route builder and route calculation. With the

additional side goal of increasing the retention rate of users.

Surveys are used to test the functionality of the route builder. The route builder is used in an

experiment containing 22 thousand users. All users were tracked, analyzed and asked to fill in a

survey. The tracking results indicated that 60.00% of all test users opened the route builder feature

and 5.55% planned a route. A low percentage is expected since all users in the experiment are new

users, as requested by Relive. From the surveys we can conclude that users responded positively with

most indicating that they would continue to use the route builder.

The second major requirement is that routes need to be calculated. In the route builder experiment,

Dijkstra’s shortest path algorithm is used to calculate the routes. The surveys did not indicate any

complaints relating to the route calculation. In addition, as a proof of concept, custom routing is

explored, based on popular routes of users. Based on the results, the distance of the routes increases

as the degree of popular routes usage increases. By our own observation, the custom engine is able to

favor popular routes. However, the conclusion can not be drawn that the generated routes are also

favored by users in practice.

Unfortunately, the long term retention of users cannot be analyzed during the project due to time

constraints. In the short term, 0.70% of the test users are still active after 4 weeks in contrast to 0.64%

of the control group. These percentages seem rather low, however this can be explained due to the

fact that the experiment consists of new users only, as per request by Relive. There is a small increase

in retention of the users that have access to the route builder feature (the test group). However, there

can not be made any conclusions on the long term effects on the retention rate.

To conclude, there is an adequate fulfillment of the initial requirements. The route builder is able

to be used by users in a real production environment and provides all functionality one expects from

a route planner. The proof-of-concept custom routing engine is functional, however, it needs proper

testing and must be deployed on a large scale for it to be usable in a production environment. It can

be noted that generally speaking the 3D Route Planner project can be considered a success.

Today, the route builder is not available in the Relive app for all users, but in the future it might

help you plan your sporting activities!

51

13 Recommendations

During the project, multiple ideas were documented that might be useful but not realistic to implement

during the short timespan of the project. One of the recommendations is to use the planning tool

together with the video creation functionality. People go on vacation all the time and it is inconvenient

to record the entire trip if it spans several days or even weeks. These people might still value a video

of the trip. The route builder enables this functionality by allowing the users to recreate the route

they traveled and turning that route in a video.

The route planner can be optimized for off-road sports using previous activities of all users. Most

off-road sports like winter sports, hiking or mountain biking can use the planning tool but it will lack

some of the best off-road roads since those roads are not known to the map. These roads are still

traveled by other users and stored in the Relive databases. Using these previous activities, the route

planner can incorporate new routes to increase the support for off-road activity planning.

Although route sharing is implemented during the project, this can be extended. A recent new

feature of Relive allows users to have a feed with posts of other users. Sharing of planned routes can

be extended such that it is shared utilizing the feed feature.

Additionally, the route planner can be extended to increase the usefulness for other target audi-

ences. Performance-oriented users can use more advanced statistics, such as types of road and proper

time estimation.

Finally, the route planner could be extended to support round trip routes. The routing engine that

is used supports round trip routes, however, these are not implemented due to the short timespan.

This is something that can be added in the future as this could enhance the route planner feature for

users.

52

References

Developer Guide | Directions API. (n.d.). Retrieved 2019-04-25, from https://developers.google

.com/maps/documentation/directions/intro

Google Adds Trail Maps For 100 Additional Ski Resorts To Google Maps. (n.d.). Retrieved 2019-04-

25, from http://social.techcrunch.com/2013/03/25/google-adds-trail-maps-for-100

-additional-ski-resorts-to-google-maps/

GraphHopper Directions API with Route Optimization. (n.d.). Retrieved 2019-04-25, from https://

www.graphhopper.com/

Highsmith, J., & Cockburn, A. (2001, nov). Agile software development: The people factor. Computer ,

34 (11), 131-133. doi: 10.1109/2.963450

MapKit | Apple Developer Documentation. (n.d.). Retrieved 2019-04-25, from https://developer

.apple.com/documentation/mapkit

Moogk, D. R. (2012). Minimum viable product and the importance of experimentation in technology

startups. Technology Innovation Management Review , 2 (3).

Newson, P., & Krumm, J. (2009). Hidden markov map matching through noise and sparseness.

In Proceedings of the 17th acm sigspatial international conference on advances in geographic

information systems (pp. 336–343).

OpenStreetMap. (n.d.). Retrieved 2019-04-25, from https://www.openstreetmap.org/

Pai, N., & Li, Y. (2014, August). Pricing and competition in mobile app markets. In 2014 11th

International Conference on e-Business (ICE-B) (pp. 261–266).

Project OSRM. (n.d.). Retrieved 2019-04-26, from http://project-osrm.org/

Schwaber, K. (2004). Agile project management with scrum. Redmon, Wash: Microsoft press.

Valhalla routing engine. (2019, April). Valhalla. Retrieved 2019-04-26, from https://github.com/

valhalla/valhalla (original-date: 2016-01-19)

53

https://developers.google.com/maps/documentation/directions/intro
https://developers.google.com/maps/documentation/directions/intro
http://social.techcrunch.com/2013/03/25/google-adds-trail-maps-for-100-additional-ski-resorts-to-google-maps/
http://social.techcrunch.com/2013/03/25/google-adds-trail-maps-for-100-additional-ski-resorts-to-google-maps/
https://www.graphhopper.com/
https://www.graphhopper.com/
https://developer.apple.com/documentation/mapkit
https://developer.apple.com/documentation/mapkit
https://www.openstreetmap.org/
http://project-osrm.org/
https://github.com/valhalla/valhalla
https://github.com/valhalla/valhalla

Appendices

A Results

Figure 23: Customized routing algorithm results

Figure 24: Customized routing algorithm results

54

Figure 25: Customized routing algorithm results

55

B Implementation Diagrams

Figure 26: Route calculation flow

1 SELECT ∗
2 FROM route

3 WHERE MBRContains (

4 GeomFromText(LINESTRING(4 .3584268787 , 51 .894647852 , 4 .535612356 , 51 .991960882)) ,

5 route . l o c a t i o n s

6)

7 LIMIT 100 ;

Listing 1: SQL Query to get 100 routes inside a bounding box

56

C MoSCoW

Must Haves

Route creation

• A 2D map which can be interacted with (e.g., zoom-in, draggable, rotatable).

• Ability to add and change start and destination waypoints.

• Waypoints must be addable to the map.

• Waypoints must be deletable from the map.

• Waypoints must be editable by users (by changing the place name manually).

Route calculation

• A route must be calculated between all waypoints after each waypoint change.

• The user must be able to indicate the activity type and must get routes generated based on said

activity type.

• The distance of the current route must be visible.

• The current route must be highlighted on the map (using a colour).

Route visualization

• A route from the personal route list must be able to be loaded again as the current route.

• The route must be visible in the record feature.

• The route must be visible when offline.

Should Haves

Route creation

• Waypoints should be shown in an ordered waypoint list.

• Waypoints should be editable during route planning.

• Route should be editable during an activity.

• Routes in the route list should be importable from/exportable to a GPX file (a GPX file is a

standard file format capable of saving a route).

• A route should be deletable from a personal list

• A route in the personal route list should be share-able on various social media and Relive.

• The altitude gain of the current route should be visible.

Route

• A route must be savable to a personal route list for later use.

Map

• The map should be viewable in 3D.

• The map should have a button to toggle between a 2D/3D map.

57

Could Haves

Route calculation

• A heat map could be visible indicating the routes of previous activities.

• A heat map could be visible indicating the routes that others have travelled.

• Routes could be calculated based on activities of other users.

• A permutation of a route could be created by varying the route between each waypoint.

• Statistics such as the different types of roads and amount of calories burned could be visible.

• The personal route list should be saved on the account of the user.

Route creation

• Point of interests could be shown on the map (such as sightseeing locations & eat/drink locations)

• The route could indicate the road types by drawing specific colors.

• The user could be alerted when he is going off route.

• Specific maps should be downloadable to support offline functionality.

Collaboration

• The planner could incorporate collaborative planning.

Organization

• The ability to organize route plans, by grouping multiple routes.

Would/Won’t Haves

• Navigation instructions during activities when planned.

• Augmented reality or virtual reality.

• Marketplace to share routes.

• Automatically transform planned route into a “Relive Movie”.

• Suggestions for complete routes, created by other users.

• Auto-generate routes (with parameters such as: length, preferred route type, etc.).

• Suggest alternative routes based on already completed routes.

58

D Feature Screenshots

Figure 27: Route Tab Share Menu Figure 28: Route Tab Dropdown Menu

59

Figure 29: Route Builder Trash Bin Figure 30: Route Builder Activity Menu

Figure 31: Route Builder Activity Change

60

Figure 32: Route Builder Introduction

Figure 33: Route in Relive Record

Figure 34: Route Builder Name Changing

Figure 35: Route Record screen61

Figure 36: Map Type Standard

Figure 37: Map Type Plain Standard

Figure 38: Map Type Plain Satellite

Figure 39: Map Type Plain Satellite 3D62

Figure 40: Map Type Satellite

Figure 41: Map Type Satellite 3D

Figure 42: Heatmap Standard

Figure 43: Heatmap Satellite63

Figure 44: Route Sharing Website on Mobile Figure 45: Route Builder No routes

Figure 46: Route Record Improvements

64

Figure 47: Route Builder Activity Change

Figure 48: Clear Selected Route Improvements

65

Figure 49: Route Builder Trash Bin Improvements

66

E Testing

Figure 50: Coverage results for the JUnit tests of the routing engine

Figure 51: Results of the back-end tests.

E.1 Front-end Cucumber Scenario

1 Feature : Save Route

2 As a user , I would l i k e to save a c rea ted route .

3 Scenar io : Save Route

4 Given Route l ength i s g r e a t e r than 0

5 Then Wait f o r element : ” route b u i l d e r done button ”

6 And Cl i ck element : ” route b u i l d e r done button ”

7 Then Wait f o r element : ” route b u i l d e r l i s t item ”

8 And Wait f o r element : ” route b u i l d e r e d i t route ”

9 And Cl i ck element : ” route b u i l d e r e d i t route ”

10 Then Wait f o r element : ” route b u i l d e r done button ”

11 And Cl i ck element : ” route b u i l d e r done button ”

Listing 2: Front-end cucumber test scenario

67

F Survey Set-up & Results

F.1 Survey Questions

1. Did you have a chance to test the Relive route planner feature yet?

• Yes

• No

2. Why weren’t you able to test this feature yet?

• I didn’t use the Relive app recently

• I did not know this feature existed

• I couldn’t get the feature to work correctly

3. How easy was the feature to use?

• Impossible to use

• I found it hard to use

• It worked OK

• It was really easy to use

4. How often do you think you will use this feature in the future

• Never

• For some of my activities

• For most of my activities

• All of my activities

5. How could we improve this feature?

6. Can you tell us what went wrong?

68

F.2 Survey Results

Figure 52: Survey Question 1

Figure 53: Survey Question 2

Figure 54: Survey Question 3

69

Figure 55: Survey Question 4

70

G Persona & User Stories

In this section several user stories will be discussed, taking several types of users into account. The

types of users are as general as possible and are divided into: frequent but short activities, less frequent

and normal activities, and rare but long activities. This division is based on the main types of the

users. Different activity types are used for context, with relevant details of the users (training) goals.

Some user stories are applicable to all users, but they do only appear once to prevent duplication.

G.1 Persona

The main personas of the project that will be used for the user stories are described here. The personas

are based on a number of interviews (can be found in Appendix H) and our general understanding of

the target audience of Relive.

Bob (cyclist) Bob is a young man aged 25 years. He cycles 3 times a week, sometimes recre-

ationally and other times for commute. Each activity, Bob wants to take a different route. Bob likes

to keep track of the statistics for each activity.

Alice (hiker) Alice hikes one time a week for a couple of hours. She likes to visit interesting places.

Tom (road-tripper) Tom goes on a road trip once a year with friends. He intends to plan a road

trip that visits several cities, both popular and quiet spots.

Willem (runner) Willem runs a couple times a month. He likes to run a marathon and he is

training for that.

G.2 User Stories

For each person described in the persona, a user story can be found in this section. Each story is based

upon the estimated needs of the person. The user stories are focused on the route builder feature.

The stories provide an insight into the incentive of the users to use the route builder. Each user uses

the route builder in a different way and it is important that each use case is supported by the route

builder.

Bob the cyclist (three times a week, 1-3 hours)

• As Bob, I want to plan a new route to cycle, in order to have a different route each time.

• As Bob, I want to be able to quickly create new routes, since I need to plan three new routes a

week.

• As Bob, I want to see my previous activities in the map, since I don’t remember all routes that

I have cycled exactly, because I have cycled so much already.

• As Bob, I want to be able to change the route during the activity since it is possible that a route

is closed or that I came up with a new destination to visit.

• As Bob, I want to share the routes I planned with my friends, so that we can enjoy the routes

together, and to have the route available when we do the activity together.

71

• As Bob, I want to be able to use the application when I am not connected to the internet, so

that when I am out in nature without a connection I can still plan what I want to do.

• As Bob, I want to see the routes of other activities, since it is easier to cycle without having to

dodge runners or hikers.

Alice the hiker (one time a week, > 3 hours)

• As Alice, I want to spend time to plan a route since I only hike once a week and want the best

route possible.

• As Alice, I want to see useful information (e.g., sightseeing points, road type, food/drink spots)

regarding my planned route, so that I can make a more personalized and enjoyable route.

• As Alice, I want to see the route as detailed as possible (3D) in order to be able to realistically

visualize the route and change it if needed.

• As Alice, I want to edit the routes of previous activities since some parts were particularly nice

and I would like to hike those again.

• As Alice, I want to be able to see the paths others have travelled and see how popular certain

paths are since I may hike in other countries where I am not familiar with the terrain.

Tom the road-tripper (once a year with friends)

• As Tom, I do not want to plan the entire trip on my own since my friends have their own

preferences.

• As Tom, I want to be able to plan the entire trip (that takes several days) in advance, so that I

can enjoy the trip without having to make a plan for the next day each time.

• As Tom, I want to be able to group several route plans since they are all for the same road trip.

Willem the Runner (couple of times a month, 0-2 hour)

• As Willem, I want to plan a route for exactly X kilometers since I follow a scheme to train myself

for the next marathon of Amsterdam.

• As Willem, I want the same start and finish point and a circular route since I have just one

house and I don’t want to run the same route twice.

• As Willem, it would be nice to see the routes of other runners and cyclist since I want a road

with the least amount of cyclists.

72

H Interviews

Interview set-up questions & criteria

1. What & why (+/-) do you use other apps other than Relive for any fitness activity?

2. What fitness activity do you do the most?

3. What scenarios occur that might trigger the need for route planning?

4. How can this scenario be solved optimally?

5. Gather the general profile of the person (age/fitness/gender).

6. Gather the expectations people have for the proposed application.

7. Gather the point of view.

8. Ask for any other pains/problems that the user encounters.

Interviewee Sample Explanation

All the interviewee’s are employees at the Relive company. We used a primer question on whether

they used Relive actively or not to filter out people who do not use the app actively. The sample we

used is representative because most of the people working at Relive have sports such as hiking and

cycling as a hobby, thus the information we’ve gathered come from people who have experience and

would be included in the application’s target audience as described in Section 2.2.2.

Interview #1

1. Cycles a few times per week

2. Does not really care about highlights (sightseeing) when making a route, mostly random points

to make a route long enough

3. Creates a new route everytime when cycling long distances recreationally (to explore and prevent

it from being boring)

4. Does not create a new route when commuting (not needed)

5. Would switch over to built-in Relive route planner (if better or equal)

Interview #2

1. Likes to take a different route each time

2. Would like to see heat-map functionality in the map to aid in making a better route (prevent

seeing the same locations)

3. Would like to see 3D map in order to get a better overview of the terrain

4. Would like to see suggested sightseeing points in order to enhance the route

5. The weather when planning is not relevant (changes too much)

73

Interview #3

1. Mainly does cycling in a group

2. Currently uses a Garmin Tracker on the steering wheel of the bike to navigate throughout the

trip and uses Relive to record the trip seperately.

3. When cycling in a group, most of the time only a single person navigates and keeps tracks of

the road.

4. Mentions that other people mount their device on the wheel of the bicycle, however still uses

Garmin Tracker to keep track of performance/power more accurately.

5. Mentions that when hiking, it is very easy to use and may be preferabe to use phone instead of

a dedicated tracker/navigator.

Interview #4

1. Mainly cycles

2. Suggestion that it would be convenient to indicate one waypoint in the route planner to make it

as easy, fast and simplified as possible. A circular route (or several routes) should be calculated

around the point.

Interview #5

1. Mainly cycles on quiet roads

2. Given the activities of other users, it is best to follow roads that have previous activities of users

to avoid bad roads

3. Given the activities of other users, the preference would not be the road with the most activities

of other users (of any activity type), since that can possibly indicate that the road is too busy.

74

I Software Improvement Group (SIG)

First SIG Feedback

De code van het systeem scoort 3.9 sterren op ons onderhoudbaarheidsmodel, wat betekent dat de

code marktgemiddeld onderhoudbaar is. We zien Unit Sizevanwege de lagere deelscore als mogelijke

verbeterpunten.

Bij Unit Size wordt er gekeken naar het percentage code dat bovengemiddeld lang is. Dit kan

verschillende redenen hebben, maar de meest voorkomende is dat een methode te veel functionaliteit

bevat. Vaak was de methode oorspronkelijk kleiner, maar is deze in de loop van tijd steeds verder

uitgebreid. De aanwezigheid van commentaar die stukken code van elkaar scheiden is meestal een

indicator dat de methode meerdere verantwoordelijkheden bevat. Het opsplitsen van dit soort

methodes zorgt er voor dat elke methode een duidelijke en specifieke functionele scope heeft.

Daarnaast wordt de functionaliteit op deze manier vanzelf gedocumenteerd via methodenamen.

Voorbeelden in jullie project:

• BenchmarkScripts.main(String[])

• PolylineDecoder.decodePoly(String)

• HibernateUtil.getSessionFactory()

Als laatste nog de opmerking dat er geen (unit)test-code is gevonden in de code-upload. Het is

sterk aan te raden om in ieder geval voor de belangrijkste delen van de functionaliteit automatische

tests gedefinieerd te hebben om ervoor te zorgen dat eventuele aanpassingen niet voor ongewenst

gedrag zorgen. Op lange termijn maakt de aanwezigheid van unit tests je code ook flexibeler, omdat

aanpassingen kunnen worden doorgevoerd zonder de stabiliteit in gevaar te brengen.

Over het algemeen is er dus nog wat verbetering mogelijk, hopelijk lukt het om dit tijdens de rest van

de ontwikkelfase te realiseren.

Second SIG Feedback

In de tweede upload zien we dat het codevolume is gegroeid, terwijl de score voor onderhoudbaarheid

is gestegen.

We zien dat de verbeterpunten uit de feedback op de eerste upload zijn aangepast, en op

deze gebieden is dan ook een verbetering in de deelscores te zien. We zien ook dat de nieuwe code

ook op andere gebieden beter onderhoudbaar is geworden in vergelijking met de reeds bestaande code.

Het is goed om te zien dat er naast nieuwe productiecode ook nieuwe testcode is geschreven.

Uit deze observaties kunnen we concluderen dat de aanbevelingen van de vorige evaluatie grotendeels

zijn meegenomen in het ontwikkeltraject.

75

J Project Description

3D Route Builder

Key areas: Software Engineering + Data Visualisation

Based on our dataset of nearly GPS-tracked activities, can we build the perfect route

builder for any outdoor enthusiast?

Routing engines are a complex Software Engineering problem. Perhaps we can use an engine such

as Valhalla (https://github.com/valhalla)? Valhalla is an open source routing engine and accompany-

ing libraries for use with OpenStreetMap data. Valhalla also includes tools like time+distance matrix

computation, isochrones, elevation sampling, map matching and tour optimization (Travelling Sales-

man).

Suggested technologies:

• Open streetmap

• Valhalla

• Frontend web application using React

• Client-side map engine such as Leaflet, or the 3D javascript map engine such as used in our

Explorer tool (https://www.relive.cc/view/447820220/explore)

Inspiration:

• https://www.komoot.com/plan

76

About Relive

Join the 3D Outdoor Platform for Millions of Users

Built by ex-TU Delft students - used all around the world! In just two years, over a million cyclists,

runners, hikers and skiers have joined Relive to share their passion & adventures - making Relive one

of the top 30k websites world-wide and fastest growing Dutch startups.

Relive turns outdoor adventures into short video animations that people love to share with family

and friends. Relive is all about the total experience of your trip. No focus on performance metrics

and competition. Let’s leave that to traditional sports trackers.

Check out a Relive of our recent team-trip to Tenerife:

https://www.facebook.com/relivecc/videos/315334475537897

Early adopters include Laurens ten Dam, Lance Armstrong and Instagram founder Kevin Systrom!

On both the technical and business side; Relive offers many challenges in different areas (ranging

from Data Science, Mobile + Web Development, Infrastructure Engineering, 3D Computer Graphics).

Every day we process GPS data from 200.000+ activities, and turn these into a video using our

dynamically scaling infrastructure.

Your BSc. project at Relive

Look for Relive in the bepsys directory for different projects to give you an idea what you could be

working on at Relive. Of course there’s room for your own suggestions; drop by our office next to

Rotterdam CS and let’s find a fit with your interests!

77

K Info Sheet

On the next page the info sheet for this project can be found.

78

Info sheet
Project title 3D Route Builder
Client Relive B.V.
Final presentation July 2nd, 2019

Description
The last four years, the Relive sport app experienced rapid growth
and therefore the company aims to increase the retention rate of
the current 4 million users. Relive gained a healthy reputation due
to a feature that transforms an outdoor sporting activity to a
memorable 3D movie. The goal of the project is to develop a new
feature that increases the retention rate of the app.

This new feature entails a route builder that allows users to
plan routes for their hiking, biking and running activities. Other
route planner apps do exist; however, it is beneficial for Relive to
keep users inside the app to improve retention rates. During
development, agile processes are used to quickly adapt to
requirement changes that form out of new insights. The research
phase resulted in several tools and languages that are used
throughout the project.

The project tackles the calculation of a route based on a
given set of points, to allow for user interaction with a map, and to
render the routing result. Throughout the project, an experiment is
performed with 22.000 users to test the product and provide
feedback in the form of surveys and event tracking. The final
product is a feature inside the Relive app that allows users to plan
a route in several maps, including 3D. Additionally, a proof of
concept for a routing engine based on the most popular routes has
been successfully created.

Members of the project team
Name: Rowdy Chotkan
Interests: Computer Science, Front-end Development, User Experience, and Testing
Role and Contribution: Front-end Development and Testing, User Tests, and User Experience

Name: Mika Kuijpers
Interests: Web (full stack) development, creating user oriented solutions, Algorithm design
Role and Contribution: Full stack development and testing, User Experience

Name: Paul van der Laan.
Interests: Back-end development, algorithms, big and impactful applications and user contact
Contribution and Role: Developer and tester (mainly back-end), (customized) routing algorithm
implementation

Name: Brian Planje
Interests: Full Stack Web Development, UI/UX Design
Contribution and role: Developer and tester (mainly back-end), (customized) routing algorithm
implementation

Client
Relive, Yousef El-Dardiry (Co-Founder), Frikkie Snyman (Supervisor)

Coach
Sander van den Oever, Department of Computer Science

Contact
Paul van der Laan paulvanderlaan@live.nl
Rowdy Chotkan rowdy_chotkan@msn.com

The final report for this project can be found at: http://repository.tudelft.nl

L Asana

On the following pages follow the tasks completed during the project.

80

Id	 Name	 Created	 Done	
0	 Create	a	summary	of	the	app	 23-Apr	 24-Apr	
1	 Create	a	summary	of	app	users	and	how	they	use	the	app	 23-Apr	 24-Apr	
2	 Create	a	summary	of	what	other	apps	are	used	to	achieve	the	same	route	

building	experience	
23-Apr	 29-Apr	

3	 Familiarize	with	React	Native	 23-Apr	 29-Apr	
4	 Try	out	an	OSX	VM	 23-Apr	 01-May	
5	 Create	a	MoSCoW	requirement	document.	 23-Apr	 24-Apr	
6	 Find	a	solution	for	the	MacBook	issue.	 23-Apr	 25-Apr	
7	 Perform	in-house	interviews	to	gather	information.	 23-Apr	 25-Apr	
8	 Create	user	stories	&	a	persona.	 23-Apr	 24-Apr	
9	 Meet	with	Sander	(TU	Delft	coach)	 23-Apr	 25-Apr	

10	 Research	Report	 24-Apr	 	
11	 Find	useful	libraries	 24-Apr	 29-Apr	
12	 Research	Report	-	Introduction	 25-Apr	 26-Apr	
13	 Research	Report	-	Problem	Statement	 25-Apr	 26-Apr	
14	 Research	Report	-	Development	Tools	 25-Apr	 26-Apr	
15	 Research	Report	-	Requirements	 25-Apr	 26-Apr	
16	 Remove	duplication	from	report	 26-Apr	 29-Apr	
17	 Finish	routing	libraries	 26-Apr	 29-Apr	
18	 Read	through	report	 26-Apr	 26-Apr	
19	 Fix	typos	and	formatting	issues	 26-Apr	 26-Apr	
20	 Setup	the	Relive	app	locally	 29-Apr	 29-Apr	
21	 Choose	a	first	routing	API	 29-Apr	 30-Apr	
22	 Implement	an	adapter	pattern	for	Routing	API's	 29-Apr	 30-Apr	
23	 Set-up	connection	between	the	application	and	the	routing	API	 29-Apr	 30-Apr	
24	 Add	a	tab	to	the	Relive	app	 29-Apr	 30-Apr	
25	 Show	a	map	inside	the	new	tab	 29-Apr	 30-Apr	
26	 Ability	to	place	markers	on	the	map	 29-Apr	 30-Apr	
27	 Draw	a	route	between	markers	 29-Apr	 30-Apr	
28	 Implement	feedback	from	Coach	 30-Apr	 01-May	
29	 Extend	GraphHopper	connection	functionality	 30-Apr	 01-May	
30	 Start	with	OSRM	or	Valhalla	connections	 30-Apr	 01-May	
31	 Update	research	report	based	on	feedback	 30-Apr	 30-Apr	
32	 Store	whole	route	response	instead	of	route	markers	 01-May	 02-May	
33	 Show	route	stats	using	route	response	 01-May	 02-May	
34	 Add	waypoint	numbers	to	indicate	order	of	the	waypoints	 01-May	 02-May	
35	 Contact	about	a	possible	server	and	API	options	(in	particular	

GraphHopper,	very	good	API,	but	paid)	
01-May	 13-May	

36	 Display	route	on	tracker	screen	 01-May	 03-May	
37	 Look	into	deliverables	TU	Delft	 02-May	 02-May	
38	 Implement	route	overview	screen	 02-May	 09-May	
39	 Finalize	report	 02-May	 03-May	
40	 Update	route	between	new	waypoints	 03-May	 27-May	
41	 Refactor	RouteBuilder	 03-May	 06-May	
42	 Fix	POI	interaction	 03-May	 13-May	
43	 Change	marker	colour	 03-May	 03-May	

44	 Polyline	fix	 03-May	 03-May	
45	 Add	markers	on	route	between	markers	 03-May	 27-May	
46	 Snap	markers	to	road	after	receiving	route	from	API	 03-May	 08-May	
47	 Close	route	to	start	point	 03-May	 08-May	
48	 Provide	better	user	feedback	on	bad	request	 03-May	 22-May	
49	 To	delete	marker,	drag	to	recycle	bin	 03-May	 13-May	
50	 Improve	route	stats	bar	(readability	and	hh:mm)	 03-May	 10-May	
51	 Spread	info	on	top	bar	out,	instead	of	centering	everything	on	the	top	bar	 03-May	 10-May	
52	 Add	button	for	user	to	press	to	import	route	into	tracker	 06-May	 10-May	
53	 Save	route	to	database	 06-May	 10-May	
54	 Create	endpoint	save	the	route	 06-May	 10-May	
55	 Create	endpoint	to	get	route	 06-May	 10-May	
56	 Create	endpoint	to	delete	route	 06-May	 10-May	
57	 Set	up	skyhawk-website	 06-May	 07-May	
58	 Integrate	existing	route	api	into	skyhawk-website	 06-May	 10-May	
59	 Get	routes	from	server	to	local	device	for	offline	selection	 06-May	 22-May	
60	 Displaying	route	while	offline	 06-May	 10-May	
61	 Inform	about	possible	user	feedback	possibilities	for	the	test	'release'	 08-May	 13-May	
62	 Change	color	begin	and	end	marker	 09-May	 22-May	
63	 Delete	route	(front-end)	 09-May	 13-May	
64	 Clear	route	from	tracker	 09-May	 17-May	
65	 Use	navigation	parameters	instead	of	stores	while	navigating	 10-May	 	
66	 Edit	route	from	route	overview	screen	 13-May	 15-May	
67	 Goto	current	location	in	mapview	 13-May	 17-May	
68	 Map	type	button	in	mapview	 13-May	 14-May	
69	 onActivityChanged	doesn't	check	for	waypoints	>	1,	so	throws	error	 13-May	 13-May	
70	 Update	route	on	marker	drag	 13-May	 	
71	 Animate	route	drawing	 13-May	 	
72	 On	route	select,	snap	to	route	 13-May	 17-May	
73	 Reduce	size	select	route	button	in	tracker	screen	 13-May	 13-May	
74	 Update	Research	Report	 13-May	 	
75	 Update	Product	Planning		 13-May	 	
76	 backend:	add	checks	to	not	try	to	calculate	a	route	with	1	waypoint	 13-May	 16-May	
77	 Add	search	bar	 13-May	 	
78	 Get	a	paid	graphhopper	api	key	 13-May	 15-May	
79	 Demo	Goals	 13-May	 	
80	 GPX	export	from	route	 13-May	 	
81	 Event	tracking	 13-May	 15-May	
82	 Set	up	survey	 13-May	 31-May	
83	 Make	direction	of	route	clear	in	tracker	 13-May	 	
84	 Fix	Android	onscreen	back	button	 13-May	 15-May	
85	 Optimize	call	order	 13-May	 	
86	 Website	feedback	 14-May	 20-May	
87	 Look	into	a	fix	for	different	mapTypes	on	iOS	(3D	map)	 14-May	 27-May	
88	 Refactor	modals,	ListModalMenu	can	be	used	for	almost	all	modals	 15-May	 21-May	
89	 Add	done	button	in	route	builder	 15-May	 21-May	

90	 The	route	should	clear	when	done	recording	or	pressing	cancel	from	the	
record	screen	

15-May	 16-May	

91	 Update	code	formatting	 16-May	 16-May	
92	 Add	text	to	indicate	empty	route	list	on	`Select	Route`	screen	 16-May	 16-May	
93	 Catch	error	when	GPS	is	disabled	(RouteBuilderMap)	 17-May	 27-May	
94	 Make	introduction	text	non	sticky	 17-May	 17-May	
95	 Handle	iPhone	back	swipe	event	 17-May	 17-May	
96	 Make	the	card	button	on	create/select	screen	of	planned	routes	smaller	 17-May	 20-May	
97	 	Refactor	inline	styling	to	stylesheets	 17-May	 27-May	
98	 Add	current	location	button	 17-May	 27-May	
99	 Finish	saving/editing	route	names	 20-May	 20-May	
100	 Use	dictionaries	 20-May	 22-May	
101	 Get	access	to	the	routes	db	 20-May	 27-May	
102	 Set	up	graphhopper	locally	 20-May	 27-May	
103	 Deploy	our	own	grapphopper	 20-May	 27-May	
104	 Showcase	our	own	graphhopper	 20-May	 11-Jun	
105	 Display	activity	type	in	Route	Overview	Screen	 20-May	 23-May	
106	 Update	route	in	tracker	 20-May	 21-May	
107	 Add	select	route	button	to	tracker	recording	screen		 20-May	 24-May	
108	 Activity	type	get's	changed	to	default	on	route	edit	 21-May	 27-May	
109	 Remove	time	estimation	 21-May	 22-May	
110	 Add	user	profile	units	 21-May	 21-May	
111	 Link	backend	microprocessor	cache	to	end-to-end	cloud	mainframe	 21-May	 21-May	
112	 Fix	empty	route	list	background	position	 21-May	 03-Jun	
113	 Back-end	should	return	route	with	activity	type	 21-May	 22-May	
114	 No	internet	screen	in	route	editor	 21-May	 26-May	
115	 Disable	'your	location'	on	iOS	if	you	click	blue	dot	in	map	 21-May	 	
116	 Route	calculation	optimisation	 22-May	 27-May	
117	 Markers	between	markers	 22-May	 	
118	 Returning	to	route	list	and	quickly	tapping	on	map	adds	a	waypoint	 23-May	 	
119	 Move	trash	bin	to	separate	button		 24-May	 03-Jun	
120	 Fix	record	activity	types	 26-May	 27-May	
121	 Backlog	 27-May	 	
122	 Make	route	shareable	 27-May	 17-Jun	
123	 ETA	from	user's	activities	 27-May	 	
124	 3D	map	 27-May	 04-Jun	
125	 Frontend:	see	if	we	can	use	existing	heatmap	feature	to	show	user	where	

they	have	been	previously	
27-May	 04-Jun	

126	 Backend:	use	routes	database	to	get	most	popular	sections	(heatmap)	 27-May	 17-Jun	
127	 Heatmaps	 27-May	 11-Jun	
128	 Get	routes	is	called	for	users	not	in	the	experiment	 27-May	 30-May	
129	 Off	road	support	 27-May	 	
130	 Get	dashboard	up	 27-May	 30-May	
131	 Move	average	speed	PR	to	back-end	#1425	 29-May	 	
132	 Release	2	-	Week	7	 31-May	 11-Jun	
133	 UI	meeting	points	Sander	 31-May	 11-Jun	
134	 Make	route	name	editing	more	clear	 31-May	 03-Jun	

135	 Submit	to	SIG	 31-May	 31-May	
136	 Improve	first	usage	experience	 31-May	 03-Jun	
137	 Create	interactive	feature	intro	 03-Jun	 05-Jun	
138	 Move	tab	button	to	tracker	screen	 03-Jun	 05-Jun	
139	 Make	route	selectable	during	record	 03-Jun	 03-Jun	
140	 Send	more	surveys	 03-Jun	 05-Jun	
141	 Add	some	beta	testers	(opt-in)	 03-Jun	 11-Jun	
142	 See	if	more	users	go	from	start	to	create	 03-Jun	 	
143	 See	if	there	is	an	increase	from	create	to	select	 03-Jun	 	
144	 Create	a	start	button	from	the	route	list/mapview	 03-Jun	 05-Jun	
145	 Invite	some	users	for	a	Skype	interview	 03-Jun	 	
146	 Get	some	more	specific	usage	feedback	from	users	 03-Jun	 11-Jun	
147	 Increase	experiment	intake	to	current	users	 03-Jun	 	
148	 Arrange	meeting	with	Sander	 05-Jun	 07-Jun	
149	 Enable	route	tab	for	all	users	 06-Jun	 07-Jun	
150	 Route	is	still	selected	after	deleting	the	route	 06-Jun	 07-Jun	
151	 Draw	route	on	top	of	heatmap	 06-Jun	 06-Jun	
152	 Back	button	improvement	(see	description)	 06-Jun	 06-Jun	
153	 Bottom	button	reuse	(see	description)	 06-Jun	 06-Jun	
154	 Heatmaps	with	3D	map	not	working	nicely	 06-Jun	 	
155	 FIgure	out	why	Yousef's	app	crashed	 06-Jun	 17-Jun	
156	 While	tracking,	route	get	deselected	if	you	leave	app	for	some	time	 06-Jun	 07-Jun	
157	 Add	?	button	to	show	instructions	again	 06-Jun	 06-Jun	
158	 Optimisation:	remove	inline	functions	 07-Jun	 	
159	 Improve	RouteBuilderOnBoardingModal	(not	using	StartupModal)	 11-Jun	 	
160	 SIG	feedback	implementation	 11-Jun	 	
161	 Implement	UI/UX	changes	as	discussed	with	Sander	 11-Jun	 	
162	 Import	GPX	files	that	creates	a	route	 11-Jun	 	
163	 Final	Report	 11-Jun	 	
164	 Submit	to	SIG	 11-Jun	 	
165	 Fix	route	distance	 17-Jun	 	
166	 Finish	route	sharing	 17-Jun	 	

	

	Introduction
	Research
	Problem Definition
	Problem Statement
	Formal Definition

	Problem Analysis
	Relive
	Project Environment
	Target Audience
	Usage Scenario
	Custom route calculation
	Map Matching

	Development Tools
	Mobile Development Technologies
	Map Visualization Tools
	Routing Tools

	Map Matching Tool
	Web Server Technologies
	Overview

	Project Organization Processes
	Agile Development
	Meetings

	Design
	Requirements
	Design Goals
	User Experience
	Performance
	Continuation

	High Level Overview
	Front-end Application
	Web Server
	Database

	Design Modifications
	Requirement Modifications

	Features
	Route Tab
	Route Builder

	Implementations
	Front-end
	Route Tab Screen
	Route Builder
	Relive's Record Screen
	Website (Route sharing)
	Offline capability
	Code structure

	Routing Engine
	Database
	Back-end Flow

	Testing
	Web Server Tests
	Routing Engine Tests
	Front-end testing

	Validation
	Retention rate analysis
	A/B testing
	Event driven validation
	User Surveys
	UX Improvements
	Requirement Fulfillment

	Software Improvement Group (SIG)
	Ethical implications
	Discussion
	Conclusion
	Recommendations
	References
	Appendices
	Results
	Implementation Diagrams
	MoSCoW
	Feature Screenshots
	Testing
	Front-end Cucumber Scenario

	Survey Set-up & Results
	Survey Questions
	Survey Results

	Persona & User Stories
	Persona
	User Stories

	Interviews
	Software Improvement Group (SIG)
	Project Description
	Info Sheet
	Asana

