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Chapter 6
Learning About the Adversary

Azqa Nadeem, Sicco Verwer, and Shanchieh Jay Yang

1 � Introduction: “Know thy Enemy”

Understanding the capabilities of an adversary is one of the first principles of war-
fare (McFate, 2005). It allows to categorize adversaries based on their capabilities, 
and thus help with designing effective and targeted countermeasures. Attacker mod-
eling aims to quantify the risks associated with an adversary. Specific abuse cases 
can be designed using these models and security guarantees can be provided. To this 
end, several threat assessment models have been proposed. For example, the 
Capability, Opportunity, Intent (COI) model, also referred to as the Capability, 
Opportunity, Motivation, Behavior (COM-B) model is one of the most widely used 
threat assessment models in psychology, business management, and military defense 
(Michie et al., 2011; Steinberg, 2005, 2007). “Capability” is defined as an attacker’s 
capacity to undertake the task at hand. “Opportunity” refers to the presence of an 
operating environment that enables the attacker to perform the task, and “Intent” 
refers to the brain processes that make the attacker act upon the task. A “behavior” 
is an act of performing the task itself, and is directly influenced by the attacker’s 
capability, opportunity and intent (Michie et al., 2011). Risk can be measured as a 
product of the attacker’s intent and capability.

Tactics, Techniques and Procedures (TTP) describe the abilities and behavior of 
a cyber adversary. TTPs are usually an expression of an attacker’s training, and thus 
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are extremely difficult to alter, once detected. TTPs relate to an adversary’s capabil-
ity of employing a strategy to obtain their objectives. These strategies are often 
visible in observable data generated by a targeted system, e.g., network traffic and 
intrusion alerts. A vulnerability in the target system presents as an opportunity for 
the adversary, while the adversary’s intent is often implicitly inferred through their 
actions via observables.

1.1 � Learning from Observable Data

Obtaining threat intelligence regarding TTPs from observables is extremely diffi-
cult, as indicated by the Pyramid of Pain (Bianco, 2013). The Pyramid of Pain 
describes the difficulty of obtaining various kinds of Indicators of Compromise 
(IoCs), where the difficulty increases as one goes up the pyramid, see Fig.  6.1. 
Lockheed Martin’s Cyber Kill Chain (Hutchins et al., 2011) and MITRE’s ATT & 
CK (Strom et al., 2018) are two of the most popular frameworks to study the struc-
ture of a cyber-attack in terms of tactics and techniques. The Cyber Kill Chain, 
shown in Fig. 6.2, models the attack process as a sequential chain of seven steps that 
an attacker must complete in order to obtain their objective, and thus implementing 
countermeasures to break the chain may be a useful defense strategy. ATT & CK is 
a popular behavioral model for the TTPs used by cyber adversaries. Though 
extremely comprehensive, the attack types in ATT & CK cannot be easily linked to 
observable signatures. Recently, Moskal et al. (Moskal & Yang, 2020) have devel-
oped an Action-Intent framework (AIF) based on the ATT & CK framework that 
links attacker intent with intrusion alert signatures.

There are two main approaches to building adversary behavioral models: expert-
knowledge-driven and data-driven approaches. Expert-knowledge based approaches 
rely on human expertise curated over several decades’ worth of experiences, which 
makes them largely manual and time-consuming in nature. Many existing tech-
niques are expert-knowledge driven. Consequently, these models must be updated 
periodically to accurately reflect the evolving threat landscape. For example, 

•Tough!TTPs

•ChallengingTools

•AnnoyingNetwork/
Host artifacts

•SimpleDomain names

•EasyIP addresses

•TrivialHash values

Fig. 6.1  The Pyramid of 
Pain (Bianco, 2013) shows 
the difficulty of obtaining 
various levels of Indicators 
of Compromise (IOCs)
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Reconnaissance

Weaponization

Delivery
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Command & 
Control

Actions on 
Objectives

Fig. 6.2  The Cyber Kill Chain categorizes a cyber-intrusion in seven phases, starting with scan-
ning for reconnaissance and ending with actions on objectives

malware detectors often use handcrafted template-based signatures, which are 
straightforward to evade, as indicated by several studies (Afianian et  al., 2020; 
Marpaung et al., 2012). Attack graphs are another example of adversary behavioral 
models. Traditional attack graphs are based on Topological Vulnerability Assessment 
(TVA), which correlates extensive expert input and system vulnerabilities (Noel 
et  al., 2009). As such, the process of constructing such attack graphs is labor-
intensive, and it is ineffective to constantly rely on vulnerability scanning to accu-
rately capture the threat landscape, since not all vulnerabilities are known in advance 
(Jha et al., 2002).

Data-driven approaches can be automated since they utilize observable artifacts 
collected from intrusion alerts, network traffic, software code, or shared threat intel-
ligence feeds. In recent years, there has been an explosion of data-driven approaches 
for malware detection (Nadeem et al., 2022a; Souri & Hosseini, 2018), malware 
analysis (Ucci et al., 2019; Piplai et al., 2020; Nadeem et al., 2021a), attacker strat-
egy extraction (Alsaheel et al., 2021; Moskal & Yang, 2021a; Nadeem et al., 2022b), 
and intrusion detection (Buczak & Guven, 2016; Rimmer et al., 2022), among other 
tasks. Although quite promising, building effective and reliable data-driven agents 
is difficult: The challenges are related to the quality and availability of the observ-
able data, the assumptions on the used models, and the interpretability and robust-
ness of these models. For example, reconstructing adversary behavior from intrusion 
alerts would only be successful for actions that generated alerts: the actions for 
which the attackers managed to evade detection cannot be observed in the data, and 
consequently cannot be modeled.

6  Learning About the Adversary
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1.2 � Definitions

In this chapter, we primarily focus on data-driven autonomous cyber defense agents 
because of their life-long ability to learn without too much human involvement.

For clarity, we define the following terms:

•	 Cyber adversary: A cyber adversary is a single or group of human actors or 
automated agents that intend to perform malicious actions that harm other cyber 
resources. The actions can also have physical aspects, e.g., as in the case of 
social engineering attacks. The risk associated with a cyber adversary is related 
to their perceived capabilities and intent.

•	 Adversary behavior: A behavior is a learnt abstraction (model or pattern) from 
observable data that can be interpreted and transferred to other systems.

•	 Adversary intent: Intent is defined as the relationship between an adversary and 
their action, which lends insights into the motivations that lead to an attack. 
Intent is inferred through observed actions. A framework such as ATT & CK or 
Action-Intent framework aims to connect the intended attack stage with the cor-
responding tactics, techniques and procedures (TTPs).

•	 Observables: Autonomous cyber defense agents extract observables from data 
sources (via sensing) to learn about adversary behavior. These include, but are 
not limited to, software logs (network traffic, intrusion alerts, system logs), soft-
ware code (malware binaries decompiled or otherwise), threat intelligence 
(feeds shared among organizations, collected through open source threat intel-
ligence (OSINT)). “Features” are attributes derived from observables that model 
the adversary behavior. Note that obtaining real-world and usable observables 
is one of the biggest challenges in constructing autonomous cyber defense 
agents, as described later in the chapter.

In addition, we define an autonomous intelligent cyber defense agent (AICA) as 
being an autonomous, data-driven software agent that learns contextually meaning-
ful cyber adversary behaviors.

•	 Autonomous: A white box machine learning based semi-supervised or unsuper-
vised agent (model) that does not require frequent human intervention for (re-)
learning. The white box model enables a human-in-the-loop setting where a 
security analyst can debug and understand the inner-workings of the agent.

•	 Data-driven: An agent (model) that learns from observable data artifacts.
•	 Contextually meaningful: An agent (model) that produces contextually meaning-

ful output by correlating several temporally-linked observables from different 
modalities in order to provide a holistic view of the threat landscape, instead of 
viewing a single observable in vacuum. The output must also be multi-faceted 
and adjusted according to the operator’s level of understanding.

In the rest of the chapter, we describe the challenges of designing effective data-
driven autonomous agents, followed by detailed illustrations of three state-of-the-
art data-driven autonomous cyber defense agents. We specifically focus on agents 
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that learn from traffic induced data. We close with recommendations and future 
research directions for R & D practitioners who are looking to get into developing 
and utilizing data-driven autonomous cyber defense agents.

2 � Challenges for Data-Driven Autonomous Cyber Agents

Data-driven autonomous agents utilize some form of machine learning to extract 
patterns from observables in order to learn cyber adversary behaviors, and to detect 
and analyze nefarious activities. Several challenges need to be addressed in order to 
design an effective agent. These challenges are related to the learning environment 
captured by the threat landscape, the availability of observable data, the assump-
tions that go into modeling cyber adversary behavior, and the open-world evaluation 
of said agent. We briefly describe these challenges below:

2.1 � Evolving and Adversarial Threat Landscape

In cybersecurity, there is a continual arms-race between attackers and defenders, 
which causes the threat landscape to evolve rapidly, making it near-impossible for 
autonomous agents to rely on supervised learning, or much of a priori expert knowl-
edge. An autonomous agent is expected to perceive the changing adversary behav-
iors and relearn along with them. This can be done by detecting the changing data 
distributions (also known as Concept Drift). Change detection is commonly utilized 
in anomaly detection agents to keep up with the evolving systems. An anomaly 
detector typically models the normal state of a system in order to detect deviations 
from it. Over time, the system behavior may evolve, either due to system upgrades 
or new features, which may trigger the anomaly detector to raise false alarms for 
normal behavior that no longer fits its criteria of normality (Hammerschmidt et al., 
2016; Jordaney et al., 2017. Hence, the agent must detect when the data distribution 
has changed sufficiently and relearn what the ‘new’ normal behavior looks like.

Cyber adversaries also actively try to evade detection by obscuring their activi-
ties. An autonomous agent must expect such evasion attempts and proactively 
defend against them. For instance, malware authors often evade detection by obfus-
cating malware (e.g., by encoding or encrypting it). Malware detector agents can 
fail if the attributes (features) used to model the malware are based on its appear-
ance rather than its behavior. Behavioral features are shown to be more resilient to 
obfuscation attempts (Cai et al., 2019).

With the recent rise of adversarial machine learning for offensive security, a new 
breed of evasive attacks has surfaced that challenge the fundamental laws of machine 
learning. Deep learning models have shown to be particularly brittle to this kind of 
evasion attempts. Firstly, evasive malware samples can be crafted by either perturb-
ing an existing malware sample to look like goodware, or by perturbing it to the 
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extent that it no longer belongs to the training data distribution (a phenomenon 
known as “Out Of Distribution” sample detection). In a study, Kolosnjaji et al. were 
successful in fooling several state-of-the-art classifiers by altering less than 1% of 
the malware code (Kolosnjaji et al., 2018). Secondly, the data on which an agent 
learns can be poisoned so it no longer performs as expected (Chen et al., 2018). 
Thirdly, backdoors may be planted in a trained model so it becomes blind to 
adversary-chosen targets (Severi et al., 2021). These troubling results were followed 
by the proposal of several robust/hardened classifiers that include adversarial exam-
ples in the training process in order to identify and eliminate the so-called “blind 
spots” of the malicious domain. Despite recent advances, many classifiers are 
unable to provide robustness guarantees, making their use and deployment in the 
real-world tricky.

2.2 � Data Availability and Quality

The concerns regarding the quality and availability of observable data to train 
autonomous agents is a known problem with multiple facets (Du et  al., 2018; 
Nadeem et al., 2022a). Industry practitioners are hesitant, and are often contractu-
ally not allowed to share observables since they may contain sensitive information 
about their clients. It takes significant efforts and resources to make datasets pub-
licly available. However, open source datasets quickly become obsolete due to the 
rapidly evolving threat landscape. Besides, open source data is often collected in 
isolated lab environments that do not accurately capture reality. For example, the 
well-known CTU-13 dataset (García et al., 2014) contains network traffic collected 
by running botnet-infected virtual machines, where the source IP and source port 
number are highly indicative of malicious hosts. Thus, using these features alone 
results in almost perfect classification. Such a situation almost never occurs in real-
ity. Moreover, seamlessly incorporating real (benign) traffic into synthetic mali-
cious traffic is non-trivial, since the differences in underlying network properties 
makes certain features unusable. For example, timestamps are generally unusable 
for such synthetically generated datasets, while in reality, these are among the most 
critical factors for threat intelligence and are indicative of attacker behavior.

Furthermore, open source datasets often have noisy ground truth labels. For 
example, the malware family names linked to open source malware datasets have 
repeatedly been shown to be noisy and unreliable. To partially resolve this issue, 
VirusTotal (VT) executes multiple Anti-Virus vendors and aggregates their results 
to determine whether a binary is indeed malicious. AVClass (Sebastián et al., 2016) 
was developed specifically to determine the true malware family label among the 
(many) VT labels. This unreliable nature of ground truth makes supervised learning 
very challenging, since the model is learning from faulty labels. Recent works have 
proposed learning from noisy labels as a potential countermeasure (Croft et  al., 
2022), though it is unclear how such methods fare when deployed in the real-world. 
Semi-supervised and unsupervised learning techniques appear to be more suitable 
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paradigms for training autonomous cyber defense agents. For instance, Nadeem 
et al. have utilized unsupervised learning to construct network behavioral profiles of 
malware samples to characterize them, instead of relying on noisy family labels 
(Nadeem et al., 2021a).

Finally, open source datasets are often not at the desired granularity required for 
a specific task. For example, threat intelligence feeds are often too generic to be 
useful (Sauerwein et al., 2017; Schaberreiter et al., 2019. In addition, the majority 
of the traces in network induced observables, such as intrusion alerts and network 
traffic, often reflect benign behavior, while those related to malicious activities are 
rare. Thus, it is often easier to perform anomaly detection on network traffic, rather 
than multi-class classification of the anomalies themselves. Learning with infre-
quent data remains an open problem in the machine learning community (Lu et al., 
2020). A solution for obtaining good quality experimental data is to use honeypots. 
Honeypots are bogus, deceptive systems that lure adversaries into attacking it, and 
enable security practitioners to investigate how a particular threat actor operates. 
Honeypots have been used occasionally to collect granular observables (and threat 
intelligence) in order to understand an adversary’s TTPs (Alata et al., 2006). Though, 
the design of realistic and robust honeypots is an open area of research (Surber & 
Zantua, 2022).

2.3 � Modeling Adversary Behavior

The Pyramid of Pain (Fig. 6.1) shows the various levels of Indicators of Compromise 
(IOCs) that can be extracted from observables. As one moves up the pyramid, the 
IOCs get harder to extract. The IOCs regarding adversary behavior and strategy (the 
TTPs) are at the very top of the pyramid. Extracting insights regarding adversary 
strategies is difficult due to a multitude of reasons, one of them being the noisy 
nature of the observables, and another being the arbitrary nature of human actions.

When designing an autonomous agent, one must determine whether to model an 
attack or the attacker, since the former is relatively simpler to model. For example, 
a botnet detector that models the periodicity between network requests is more 
likely to succeed in its objective (Eslahi et al., 2015), compared to an autonomous 
agent that models the time it takes a human adversary to complete a task, which can 
be arbitrarily difficult. As such, autonomous threat actors, e.g., malware are much 
more deterministic than human actors. Thus, the observable features that character-
ize malware and human actors must be different. For example, in order to character-
ize a malware, observable features regarding its functionality are chosen, while to 
characterize a malware’s author, features related to the code writing style are cho-
sen, such as a function’s name, or length of added comments (Nadeem et al., 2022a). 
Ultimately, it is important to borrow insights from clinical psychology and crimi-
nology to understand the role certain features play in order to effectively model 
adversary behavior.

6  Learning About the Adversary



112

2.4 � Modeling Context

The context (or semantics) of observables is crucial to accurately model adversary 
behavior. In order to comprehend an attacker’s intent, it is paramount to view the 
observable data in the context of different perspectives. For example, one can assess 
a) temporal anomalies such as a host becoming excessively active during early 
morning or weekend hours, when less traffic is observed typically, b) irrational 
access attempts with mismatched port numbers, c) correlated increase in activity 
from multiple sources, and d) unexpected outbound traffic from specific internal 
hosts. An effective autonomous cyber defense agent is expected to learn such con-
textually meaningful adversary behaviors.

Additionally, investigating multiple data sources is important to establish confi-
dence in an agent’s judgment. For example, if an agent detects a data exfiltration 
attempt, only investigating an intrusion alert with data exfiltration signature does 
not provide sufficient evidence. Instead, the corresponding host’s system logs 
should be cross correlated to see if a sensitive file was accessed and transmitted over 
the network. This is known as multimodal learning, i.e., learning from different data 
sources. Multimodal learning is a highly coveted property of autonomous agents, 
but presents a few challenges: (1) Data from different modalities often exist in dif-
ferent dimensionalities that must be brought to a common representation before 
learning, e.g., consider diverse data sources like threat intelligence feeds and net-
work traffic. (2) Aligning and reasoning over semantically-linked events from dif-
ferent modalities is often not straightforward, e.g., a network packet that causes a 
denial of service attack may not have a corresponding entry in the system logs at the 
same timestamp since the system was unresponsive for the duration of the attack. 
Nevertheless, some of the challenges also present as opportunities: (1) Co-learning, 
or transferring what is learnt from one modality across different modalities is a 
promising avenue to handle the unlabeled nature of some modalities, e.g., Knowledge 
graphs can be used as a domain knowledge-rich modality to model adversary behav-
ior from intrusion alerts. (2) Translating one modality to another could prove useful 
for creating synthetic anonymized observables that can be easily shared with the 
research community.

2.5 � Interpretable Approaches

Although repeated human intervention is not required to train an autonomous cyber 
defense agent, removing a human analyst entirely from the loop makes it difficult to 
understand what the agent is learning (Sejnowski, 2020). This is more so the case 
for the recently proposed deep learning models and complex ensembles of machine 
learning pipelines that turn the whole agent into a black box. Metrics alone cannot 
adequately capture the performance of such a black box. Without a qualitative anal-
ysis, the metrics may give a false sense of how well an agent is actually working. 
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For example, in a recent study, it was observed that a highly performant “Wolf vs. 
Husky” image classifier in fact did not learn the distinguishing features of the two 
animals, but rather looked at the image background to make its decision (Ribeiro 
et al., 2016). As it turned out, the training data contained all wolf images in snowy 
backgrounds, while husky images in non-snowy backgrounds. This is known as the 
“Clever Hans phenomenon” (Samhita & Gross, 2013). Machine learning models 
can easily learn such biases if the training data contains them, and it becomes 
extremely difficult to debug them if they are black boxes (Rudin, 2019). Aside from 
ethical and moral repercussions, these biases may be exploited by adversaries in 
their favor.

Recent studies show that there does not necessarily have to be a trade-off between 
explainability and performance, i.e., interpretable models can sometimes even 
achieve better performance (Letham et al., 2015). In fact, when a model is interpre-
table, it allows humans to learn from it, which ultimately also elevates human per-
formance. The cybersecurity field has placed a renewed focus on designing 
interpretable and explainable autonomous agents in recent years. There are several 
approaches that attempt to explain the inner workings of a black box model, e.g., by 
learning a simpler surrogate model (Szczepański et al., 2020), or by providing fea-
ture importance (Apruzzese et al., 2020), to name a few. While promising for verify-
ing the correctness of black box models, the fidelity and trustworthiness of these 
explanations themselves can be subjected to attacks (Slack et al., 2020). Therefore, 
there is an increasing emphasis on interpretable by-design models for decision sup-
port, where human analysts are kept in the loop. These approaches enable the 
debugging and auditing of an agent to ensure that it learns exactly what it is intended 
to learn. For example, a recent study proposed a multi-step explanation system to 
make network intrusion detection systems more interpretable (Liu et  al., 2021). 
Their system explains the model internals, its decisions, and also provides explana-
tions based on the level of expertise of the operator. These types of autonomous 
agents are more likely to be deployed and used by security operators since they keep 
the human in the loop and allow them to intervene when necessary.

2.6 � Open-World Evaluation

The evaluation of an autonomous cyber defense agent must be designed with care. 
For instance, when dealing with datasets that have noisy ground truth, matching 
predicted labels with true labels is an unreliable and dangerous evaluation tech-
nique. Similarly, for unsupervised tasks such as clustering, the traditional definition 
of a true positive does not hold since data may be assigned to arbitrary clusters in 
different executions. Thus, a pair-wise co-occurrence method that looks at whether 
data items from one class are placed in the same cluster is a more suitable choice 
(Manning et al., 2010).

Furthermore, the choice of certain metrics may lead security practitioners to mis-
leading conclusions (Jordaney et  al., 2016). For example, an anomaly detector 
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trained on a highly imbalanced dataset may not detect even a single anomaly, while 
still achieving impressive accuracy. This is why it is imperative that practitioners do 
not rely entirely on metrics, and attempt to understand the inner workings of the 
autonomous agent. One way to achieve this is by explaining a detected anomaly. Li 
et al. (Li et al., 2019) explain network anomalies using a local explanation method 
that ranks the most important features that led to a network flow being classified as 
an anomaly. These insights not only help security operators generate effective pre-
ventative policies, but also enable them to debug the anomaly detector, if necessary.

Finally, open-world studies investigating the generalizability of autonomous 
agents are imperative to get a glimpse of whether such an agent behaves as expected 
when deployed. Any number of reasons may cause the agent’s performance to 
decline, including incorrect assumptions, mishandled edge cases, data quality, con-
cept drift, and evasion attempts. Recognizing the unique challenges that emerge 
when machine learning meets cybersecurity is the first step towards the solution. 
Sethi et al. (Sethi & Kantardzic, 2018) coin this crossroads between cybersecurity, 
machine learning, and streaming data mining as “Dynamic Adversarial Mining”, 
which considers the combined problems of streaming data mining and adversarial 
learning in order to build generalizable autonomous cyber defense agents.

3 � Approaches and Advancements

Below, we describe three cutting-edge cyber defense agents that model contextually 
meaningful adversary behavior with little to no ground truth labels, namely ASSERT 
(use case 1), SAGE (use case 2), and HeAT (use case 3). Although they are not fully 
autonomous, these approaches are certainly pushing the boundary of what can be 
learnt from observables. Note that these use cases specifically design agents that 
learn from traffic induced data, such as intrusion alerts.

In typical enterprise networks, intrusion detection and prevention systems (IDS) 
act as gatekeepers for adversaries, and raise alerts if any malicious activity is 
detected. Intuitively, intrusion alerts can provide insights into the attacker intent and 
it should be possible to reverse engineer attacker behavior from them. However, it is 
a challenging task for supervised learning, since intrusion alerts are rarely accom-
panied by ground truth labels. In this section, we describe three autonomous cyber-
defense agents that extract insights about adversary behavior and attack campaigns 
from intrusion alerts.

3.1 � Use Case 1: Attack Model Synthesis (ASSERT)

In this example, Yang et al. (2021; Okutan & Yang, 2019) aim to monitor the evolv-
ing threat landscape by continuously synthesizing and updating emerging attack 
behavior models. To this end, they develop ASSERT – an unsupervised information 
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theoretic learning framework that analyzes an endless stream of intrusion alerts to 
either dynamically generate a new model when an emerging attack is identified, or 
to update existing models if attack behaviors change. These models aggregate 
numerous related alerts to describe the “type of host” an adversary is targeting, 
“how” they are doing it, and the “intended outcome” they are trying to accomplish. 
Analysts can utilize their time more efficiently by focusing on critical attack models 
instead of the overwhelming streaming alerts. The overall component diagram of 
ASSERT is shown in Fig. 6.3.

ASSERT is an information theoretic, unsupervised, continual learning system 
that consumes streaming alerts to synthesize statistical attack models in near real-
time without requiring expert knowledge. It takes intrusion alerts generated by 
Suricata (https://suricata.io/) and produces attack models, with both the I/O pipe-
lines in JSON format. ASSERT analyzes aggregated intrusion alerts as non-
parameterized data distributions in order to identify and separate emerging attack 
models. There are three main components in the core engine of ASSERT: (a) alert 
transformation into attack action aggregates, (b) unsupervised information theoretic 
synthesis of attack models, and (c) interpretation of attack models.

The first component aims to transform heterogeneous alert attributes into a set of 
contextually meaningful attack features. Specifically, ASSERT focuses on the fol-
lowing attack action dimensions:

•	 Attack Intent Stages (AIS) (Moskal & Yang, 2020): a condensed version of 
MITRE’s ATT & CK categories to imply the intended consequences of an 
observed attack action. A Pseudo Active Transfer Learning (PATRL) (Moskal & 
Yang, 2021a) approach has been developed to automatically transform alert sig-
natures into AIS.

Fig. 6.3  The system architecture of ASSERT. It takes intrusion alerts as input and produces visual 
representations of attack behavior models. (Adapted from Yang et al., 2021)
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•	 Targeted Services: Contextually, the targeted services, as implied by the port 
numbers, are one of the most indicative characteristics for an attacker’s behavior. 
This is done through a regularly updated mapping of port numbers to known 
services or labels indicating reserved or other uses of TCP and UDP ports.

•	 Attack Maneuver: This is a mapping of IP addresses to categorical maneuvers, 
reflecting both, the direction of the observed action (i.e., inbound, outbound, 
internal) and the change(s) in source and destination IPs between consecutive 
alerts (e.g., the src IP of the new alert is the dst IP of the last alert, or the new 
alerts has the same src IP but a different dst IP) in the same alert stream.

•	 Attack Speed: This feature is derived based on the time elapsed between con-
secutive alerts in the same alert stream. The time is discretized in a logarithmic 
manner to reflect the significant variation (from nano-secs to mins or hours) in 
attack speed.

•	 Attack Source: This feature reflects the “region” and the “blacklistness” of the 
source of the attack based on the IP address(es). Note that the source can be the 
source or destination IP, depending on which one is external to the targeted net-
work and the type of attack actions. For example, the external destination IP of a 
data exfiltration attack would be the attack source, instead of blindly treating all 
the IPs in the src-IP field as the attack source.

The second component is the main algorithm that enables the unsupervised attack 
model synthesis process. Figure 6.4 shows the high-level process, where X is an 
aggregate of attack actions transformed from intrusion alerts by processing small 
batches of alerts, and Q* is the best attack model that matches the characteristics 
exhibited by X. The H() function represents the cross-entropy between the two dis-
tributions, PX and PQ, and serves as a proxy of Kullback-Leibler divergence (KLD) 
since H(PX) is the same in the argmin process. The use of Hmax threshold provides a 
computationally efficient and effective heuristic to determine whether the new 
aggregate sufficiently resembles the best-matched model or should be used to create 
a new model. The Model Quality Index (MQI) measures the overall quality of 

Fig. 6.4  The unsupervised attack model synthesis process of ASSERT. (Adapted from Yang 
et al., 2021)
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model separation in the joint attack feature space, by integrating Jensen-Shannon 
divergence (JSD) and the notion of Wemmert-Gancarski Index (WGI).1

The final component of ASSERT aims to provide an interpretable set of charac-
teristics for each attack model. Continuing the information theoretic framework, the 
characteristic feature for each attack action dimension of model Q is as follows:

	
x p pQ x Q Q Q x Q x
�

� � � � �� � �argmax log#
	

where pQ(x) and pQ x� �  are the probabilities of the feature x in Q and Q  (all other 
models that are not Q), respectively. Intuitively, this finds the feature that is promi-
nent (not necessarily the most) in Q but very rare or non-existent in any other model. 
The characteristic features provide an intuitive way for the analysts to comprehend 
and differentiate the attack models.

The authors worked with a real-world Security Operations Center (SOC) to pro-
cess streaming Suricata alerts and to synthesize attack behavior models. Over a 
month of continuously running ASSERT, the system maintains approximately 20 to 
25 attack models even with tens of millions of intrusion alerts. Fig. 6.5 shows a 
cropped screenshot from ASSERT output. In this case, there were 21 unique attack 
models. One of the attack models drew the analyst’s attention: It shows a potential 
critical persistent code execution attack through Kerboros authentication. This is a 
persistent attack because most of the observed actions are inbound traffic with no 
change on the source or target IPs. There are other malicious activities observed in 

1 https://cran.r-project.org/web/packages/clusterCrit/vignettes/clusterCrit.pdf

Fig. 6.5  (Top) A screenshot of attack models produced by ASSERT with a persistent arbitrary 
code execution through Kerberos. (Bottom) The pie charts show the model’s attack features in 
Attack Speed, Attack Intent Stage, and Attack Maneuver. (Adapted from Yang et al., 2021)
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this persistent attack, including privilege escalation and data exfiltration. 
Recognizing this critical attack model by using the autonomous ASSERT helps the 
analysts to focus on the relevant intrusion alerts and system logs, and determine 
effective remediation to treat the vulnerabilities, and to defend against the adversary.

3.2 � Use Case 2: Attacker Strategy Extraction (SAGE)

In this example, Nadeem et al. (Nadeem et al., 2022b; Nadeem et al. 2021b) propose 
a data-driven attack graph approach to extract attacker strategies without a priori 
expert input. Attack graphs (AG) are well-known models of attacker strategies that 
assess pathways utilized by a cyber adversary to penetrate a network. Existing tech-
niques to construct attack graphs are based on Topological Vulnerability Assessment 
(TVA), which requires significant expert input to correlate system vulnerabilities. 
However, it is expensive and ineffective to constantly rely on expert input and vul-
nerability scanning in real-world operations. Meanwhile, SOC analysts often inves-
tigate millions of intrusion alerts on a daily basis. Alert correlation techniques help 
to reduce the overall load of intrusion alerts by aggregating alerts that originate from 
the same attacker action. While useful in its own right, alert correlation does not 
show attack progression and attacker strategies. Instead, in this study, the authors 
define a novel adversary behavioral model, i.e., an “Alert-driven Attack Graph”, that 
learns attacker strategies directly from intrusion alerts without a priori expert input.

The authors develop SAGE – an interpretable sequence learning pipeline that 
constructs attack graphs from the actions observed through intrusion alerts, without 
a priori expert knowledge. SAGE utilizes an unsupervised statistical model, known 
as a suffix-based probabilistic deterministic finite automaton (S-PDFA) to learn 
attacker strategies from intrusion alerts, and display them in the form of attack 
graphs. The authors discuss two application scenarios for alert-driven attack graphs: 
(1) SAGE is designed to augment existing intrusion detection systems for triaging 
critical attack scenarios that might require urgent attention. Thus, instead of investi-
gating thousands of tabular alerts, SOC analysts can visualize attacker strategies, 
and investigate only a selection of intrusion alerts relevant to a critical attack path. 
They can use these AGs to understand how an attack transpired, and to extract threat 
intelligence about adversaries based on historically observed malicious activities. 
(2) Alert-driven attack graphs can monitor and rank red-teaming exercises. For 
instance, AGs can be reviewed after a training exercise to determine which team 
member(s) managed to find the shortest path to an objective, or to find redundant 
paths indicative of communication problems between the team members.

The overall component diagram of SAGE is given in Fig. 6.6. SAGE consumes 
Suricata alerts in JSON format as input, and generates images of the resulting attack 
graphs as output. The steps for learning alert-driven attack graphs are given as 
follows:
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Fig. 6.6  An overview of SAGE. It aggregates intrusion alerts into episode sequences, which are 
used by the S-PDFA to learn temporal and probabilistic relationships between them. Alert-driven 
attack graphs are extracted from the S-PDFA for each victim host and exploited objective. (Adapted 
from Nadeem et al., 2022b)

Fig. 6.7  The S-PDFA learnt from over a million intrusion alerts collected through the Collegiate 
Cyber Defense Competition. The states (vertices) are colored according to severity: the darker the 
color, the more critical the attacker action is. The edges describe an episode as a combination of 
the attack stage and the targeted service. (Adapted from Nadeem et al., 2022b)

•	 Intrusion alerts are pre-processed and augmented with the Attack Intent Stages 
(AIS) from the Action-Intent Framework (Moskal & Yang, 2020). Similar to the 
previous use case, the attack stages indicate the intended consequence of an 
attacker action.

•	 The alerts are aggregated into “Episodes” (Moskal et al., 2018) such that an epi-
sode characterizes an attacker action.

•	 The episodes are arranged in sequences for each attacker-victim IP pair.
•	 The episode sequences are partitioned for each attack attempt. The start of a new 

attack attempt is indicated by observing a low-severity episode followed by a 
high-severity episode. These episode subsequences form the training data for 
the S-PDFA.

•	 An S-PDFA is learnt using the FlexFringe automaton learning framework 
(Verwer & Hammerschmidt, 2017). An example of the S-PDFA learnt from over 
a million alerts is given in Fig. 6.7.

•	 The episode subsequences are replayed through the S-PDFA. This step augments 
the episodes with their respective contextual information (i.e., state identifiers).
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•	 Finally, the augmented subsequences are transformed into attack graphs, where 
one attack graph is generated for every objective exploited on each of the victim 
host(s).

Nadeem et  al. identify three design challenges for learning alert-driven attack 
graphs: (1) Alert-type imbalance: Severe or critical alerts are infrequent, while non-
severe alerts (e.g., related to network scans) are common. Frequency-analysis meth-
ods discard infrequent events as noise, thus making most machine learning methods 
unsuitable for this application. (2) Modeling context: The same alert signature may 
be involved in different strategies. This is indicated by the neighboring alerts, which 
can be used to model an alert’s context so as to distinguish between similar attacker 
strategies. (3) Interpretable model: SOC analysts are often contractually obligated 
to investigate all alerts, making black box models inherently unsuitable since it is 
often not possible to reverse engineer the alerts behind a classifier decision.

The S-PDFA is responsible for addressing the design challenges: (1) A suffix-
based model is specifically chosen to highlight infrequent episodes, without dis-
carding any low-severity episodes. Since severe episodes always appear at the end 
of the episode subsequences, a suffix-based model is a natural choice. (2) The state 
identifiers of the S-PDFA model capture an episode’s context. Using the Alergia 
heuristic (Carrasco & Oncina, 1994) for state merging, states having similar futures 
and pasts are merged, while those leading to significantly different outcomes are 
not. (3) The Markovian property of the S-PDFA, together with Sink states make the 
model components interpretable. Sinks are states that occur too infrequently to 
learn from. The authors remove low-severity sinks from the S-PDFA, making the 
model cleaner and easier to follow. Additionally, the Markovian property ensures 
that the input transition symbols of a state are unique, making it easier to interpret 
the meaning of a state. In this case, the states represent milestones achieved by an 
attacker. Overall, the S-PDFA shows a bird’s eye view of all the attacker strategies 
that can be observed in an alert dataset. The deterministic nature of the S-PDFA 
makes it algorithmically-transparent. The parameters of the model are selected 
through trial-and-error of visualizing the S-PDFA until it matches the authors’ intu-
ition about the data, making it design-transparent (Roscher et al., 2020).

A notional alert-driven attack graph is shown in Fig. 6.8. The root node of an 
alert-driven attack graph shows the IP address of a victim host and the objective 
exploited on that host. The graph shows all the attempts made by the attackers to 
reach the objective. The vertices reflect actions (characterized by episodes) taken by 
the attackers to obtain the objective, while the edges are annotated with timestamps. 
All adversaries that achieve the objective are shown in the same graph to aid strat-
egy comparison. The authors compare the complexity of the attack graphs (in terms 
of vertices and edges) against several baselines, and find that SAGE generates the 
most succinct graphs.

The authors learn attacker strategies used by participating teams in the Collegiate 
Penetration Testing Competition (CPTC) (Munaiah et al., 2019), and the Collegiate 
Cyber Defense Competition (CCDC) from 2018. The CPTC alert dataset is com-
posed of 330,270 Suricata-based alerts generated by 6 participating teams, while the 
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Fig. 6.8  A notional alert-driven attack graph showing paths towards an objective. Each vertex 
represents an episode. The vertex labels are <mcat, mServ, sID>, reflecting the AIF attack stage, 
targeted service, and state identifier from S-PDFA. The vertex shape indicates the episode severity. 
The root nodes reflect the attacker’s objective and the victim host. The dotted vertices reflect the 
sink states. The edges show attack progression and are annotated with the time since the first alert 
was captured. The attacker’s IP address is stated next to the first action in an attack path. (Adapted 
from Nadeem et al., 2021c)

CCDC dataset is composed of over one million alerts. SAGE compresses all the 
CPTC alerts into 93 attack graphs, and all the CCDC alerts into 139 attack graphs. 
These graphs show the strategies employed by the various attackers to obtain their 
objectives. By visualizing the alert-driven attack graphs, the authors observe several 
insights regarding attacker strategies: First, the attackers seem to follow shorter 
paths to re-exploit objectives in 84.5% of the cases, which also appeals to common 
sense, since an attacker does not necessarily need to go through reconnaissance and 
scanning when they already know how to exploit a vulnerability. Second, they dis-
cover potentially scripted attacks by observing identical attack graphs for several 
hosts. The intuition is that the automated nature of a scripted attack targets several 
hosts simultaneously, which results in identical attack graphs for these hosts. An 
example of a potentially scripted data exfiltration attempt is given in Fig. 6.9 that 
shows identical attack graphs for two different victim hosts. In addition, the authors 
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Fig. 6.9  The alert-driven attack graphs from two different victim hosts. They show that two 
attackers attempt to exfiltrate data over the HTTP service on both hosts, where one team takes 
significantly more actions to obtain the objective than the other. Both the attack graphs are identi-
cal in terms of the attacker actions and their timestamps, indicating a potentially scripted attack 
attempt. (Adapted from Nadeem et al., 2022b)

posit that the rarity of certain attack paths can serve as fingerprints for attacker re-
identification. They also propose a metric based on weighted average percentage to 
rank the participating teams based on the fraction of observed critical actions. This 
metric can provide a faster and cheaper alternative to manually ranking teams. 
Finally, by comparing the S-PDFA models of different alert captures, the authors 
conclude that it might be easier to break the cyber kill chain, and to place 
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countermeasures in some network infrastructures, depending on the reachability of 
critical milestones.

3.3 � Use Case 3: Attack Campaign Discovery (HeAT)

In this example, Moskal et al. (Moskal & Yang, 2021b) aim to reverse engineer an 
attack campaign, given a critical intrusion event. They develop HeAT  – a semi-
supervised learning system that incorporates analyst domain knowledge regarding 
the contribution of intrusion alerts to an attack campaign in a so-called “Alert 
Episode HeAT” value. For a given critical event, prior alerts are grouped into alert 
episodes and each alert episode is given a HeAT value estimating its contribution 
towards the critical event. A HeAT value of 0 indicates no contribution, and a higher 
value indicates increasing contribution towards the critical event. This way, HeAT 
sorts out the relevant alert episodes and gives an estimated progression of how past 
malicious activities have led to the critical event. HeAT tries to mimic and automate 
the triaging process of human analysts by learning their emphasis on particular 
features (such as port-service, attack intent stages, and IP addresses) to reconstruct 
an attack campaign. The system overview of HeAT is shown in Fig. 6.10.

Moskal et  al. define an “Attack Campaign” as a sequence of attacker actions 
showing how an attacker(s) gained initial access to the network and eventually 
obtained their objectives. In other words, an attack campaign enumerates multi-
stage actions leading up to a critical event, by taking into consideration the net-
work’s context (e.g., services running, IP subnets) and the relationship between 
prior alerts and the critical event, similar to that used for ASSERT (Use case 1). An 
“Alert Episode HeAT” is a numeric value between 0 and 3 that captures the analyst 
opinion about the contribution of a given alert episode to a critical event. To this 
end, the authors curate a small labeled dataset composed of intrusion alerts and their 

Fig. 6.10  The system overview of HeAT. It aggregates intrusion alerts into episodes, and extracts 
features from them. These features are used in a tabular model to predict their corresponding epi-
sode’s HeAT value. Given a critical event, the episodes with high HeAT values are used to recon-
struct an attack campaign. (Adapted from Moskal & Yang, 2021b)
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corresponding HeAT values that are manually assigned by security analysts. They 
train a tabular model on this labeled dataset to predict HeAT values of other 
unseen alerts.

The process of attack campaign extraction is as follows:

•	 Intrusion alerts are aggregated into episodes using a Gaussian smoothing 
approach on a per-attack stage basis. Note that the concept of an episode is simi-
lar to that of SAGE (Use case 2) with a different implementation.

•	 Several network agnostic features are used to characterize the timing-related, 
IP-related, and action-related differences between two episodes. These network 
agnostic features allow to uncover similar attack campaigns across different net-
work infrastructures.

•	 The features are given to the tabular model to predict the HeAT values. Naturally, 
the HeAT values are predicted for alerts that had appeared before a selected criti-
cal alert.

•	 Finally, the alerts with non-zero HeAT values are used to reconstruct the attack 
campaign.

The authors also propose an entropy-based “HeAT-gain” metric to evaluate the 
quality of extracted attack campaigns. This metric is based on the diversity and 
completeness of attack stages in the attack campaign, the reduction of irrelevant 
alerts in the attack campaign, and the overall coherence between analyst opinions 
and the predicted HeAT values for the alerts in the attack campaign. The authors 
envision that HeAT-gain can also be used to prioritize attack campaigns.

The authors extract attack campaigns from the Collegiate Penetration Testing 
Competition (CPTC) (Munaiah et  al., 2019), and the Collegiate Cyber Defense 
Competition (CCDC) from 2018. They observe that the CodeRed exploit appears 
several times in both datasets. Specifically, in the CPTC dataset, they present an 
example of two different types of adversaries that exploit CodeRed in significantly 
different ways, i.e., a script kiddie and a calculated adversary. The authors find 144 
episodes showing that the script kiddie targets multiple different hosts with approxi-
mately uniform time between attempts, indicating a scripted attempt. On the con-
trary, there are 19 episodes related to the calculated adversary, showing that they 
consistently target a single host with significant time between attempts. HeAT suc-
ceeds in discarding a remarkable amount of irrelevant alerts for this exploit in the 
given time-frame, i.e., a reduction of 71% and 92% episodes for the script kiddie 
and the calculated adversary, respectively. They also demonstrate that the HeAT 
values learnt from the CPTC dataset can be used to identify similar exploits in the 
CCDC dataset, which was collected in a significantly different environment. 
Figure 6.11 shows an attack campaign extracted from the CCDC dataset for the 
CodeRed exploit. The authors find striking similarities between the campaigns from 
both datasets. Namely, the adversary found a vulnerable SMB share that enabled 
them to deliver malware to the victim host. POP and IMAP are targeted due to a 
vulnerability in the mail server, which is used to gain initial access to the victim 
host. They also use the Shellshock vulnerability and SMTP verification of root 
access to gain further access to the victim host. Even though this attack campaign is 

A. Nadeem et al.



125

Fig. 6.11  HeATed attack campaign for the CodeRed exploit from the CCDC dataset. (Adapted 
from Moskal & Yang, 2021b)

not exactly identical to the ones found in the CPTC dataset, the authors demonstrate 
that HeAT generalizes to other network infrastructures and enables analysts to find 
similar attack campaigns.

4 � Thoughts and Future Opportunities

The three cyber defense agents described in Sect. 3, namely ASSERT (use case 1), 
SAGE (use case 2), and HeAT (use case 3) actively address the challenges listed in 
Sect. 2:

•	 The three agents are designed specifically to help security analysts manage the 
rapidly evolving threat landscape. Particularly, ASSERT continuously creates 
and updates attack behavior models as new intrusion alerts come in. All three 
agents use several open source unlabeled experimental datasets that resemble 
real-world operations.

•	 They also conduct extensive qualitative analysis since they operate in either 
semi-supervised or unsupervised settings. The three agents model adversary 
behavior differently, i.e., ASSERT builds attack models with an emphasis on 
continual learning, HeAT reconstructs attack campaigns with an emphasis on 
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forensic analysis, and SAGE models attacker strategies with an emphasis on 
threat intelligence.

•	 In addition, they all model contextual information using some combination of 
temporal and statistical features. SAGE particularly also discovers probabilistic 
patterns in intrusion alerts to model their semantics.

•	 Finally, the three agents utilize visual analytics to communicate their findings 
with security analysts. SAGE specifically uses an interpretable model, and has a 
detailed explainability analysis of all its components.

Needless to say, developing a data-driven autonomous cyber defense agent is a chal-
lenging task. When designed carefully, such an agent can increase the productivity 
of security analysts by tenfold. However, it is not always straightforward to realize 
when an agent works as expected. Below, we list a few recommendations for R & D 
practitioners and researchers who are getting started in this field:

•	 While observable data reveals a lot about an adversary, it does not show the full 
picture: It requires carefully selected data sources to form a reliable picture of an 
adversary’s behavior, and even then, putting those data sources together is not so 
straightforward (recall the challenges from, e.g., Multimodal learning). 
Oftentimes, the ideal dataset is not even available, and one must make do with 
noisy and unlabeled datasets.

•	 Beware of spurious and undesired correlations learnt by autonomous agents: 
First, if there is bias in an observable dataset, it will likely be learnt by the auton-
omous agent, making it behave unexpectedly, especially for minority classes. 
Second, an autonomous agent will find patterns even when there are none in the 
training dataset. For example, a clustering algorithm will always find clusters, 
even when the dataset does not have any. Therefore, it is important to run an 
autonomous agent on drastically different use cases and verify its output, when-
ever possible.

•	 Be prepared to handle a lot of false positives, but also be on the lookout for false 
negatives: Autonomous agents will likely never achieve a 100% accuracy in 
modeling adversary behavior, owing to the complexity of the real world and the 
noise in observables. These errors can either appear as false positives (false 
alarms) or false negatives (missed opportunities). False alarms are often investi-
gated manually. In real-world SOC operations, even 0.1% of false alarms can be 
too much to handle on a daily basis (Axelsson, 2000). False negatives can be 
even more dangerous because they give a false sense of security. These could 
either refer to adversary behaviors not picked up by the autonomous agent, or not 
yet executed by the adversary in the first place. While there is little that can be 
done about the latter, the former is a big problem since there are typically insuf-
ficient traces in the observables to learn about them. Infrequent pattern mining is 
currently an open area of research.

•	 Beware of misleading metrics: It is convenient to choose from several autono-
mous agents when their performance can be quantified in terms of metrics. 
Metrics like accuracy, F1 score, Area Under the Curve (AUC) are widely used in 
the machine learning world. However, metrics can mislead if not correctly cho-
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sen: It is easy to obtain impressive accuracy on highly imbalanced datasets when 
the autonomous agent does not even work. Qualitative studies, although time-
consuming and frequently subjective, provide much deeper insights into how an 
agent actually works, and whether it works as expected.

•	 Choose interpretable models: It is understandable to get swept away by the giant 
state-of-the-art models. However, understanding how they actually reach their 
decisions is extremely difficult. When practitioners are able to understand the 
model internals, they can debug and fine-tune those models for further perfor-
mance optimizations. Spotting bugs in interpretable models is much easier than 
debugging a black box model. The recent emphasis on explainable AI and inter-
pretable models by-design has given evidence that white box models achieve 
competitive performance compared to their deep learning counterparts. It is also 
easier to trust the decisions of an interpretable model over a black box model, 
even when post-hoc explanations are provided, which themselves can be manip-
ulated. Besides, adversaries are known to exploit weaknesses in cyber defenses. 
Recent studies have also shown that robust models are more interpretable since 
they provide more human intelligible explanations (Ross & Doshi-Velez, 2018).

•	 Multi-faceted explanations: An intuitive explanation that does not accurately 
explain an agent’s behavior is more dangerous than a poor explanation. The 
faithfulness of an agent and its explanations are both equally important. Multi-
faceted explanations from different perspectives can help identify any discrepan-
cies between an agent’s decision and an analyst’s intuition. For example, finding 
indicators of compromise from multiple data sources can ensure that an intrusion 
alert is not a false alarm. To understand why an agent assigns a particular label to 
an observable, it can be helpful to investigate the labels of similar observables 
that receive a different label. This is known as contrastive explanations, and it 
can help answer “what-if” questions about the agent’s reasoning.

•	 Realistic assumptions: Having unrealistic expectations of what an autonomous 
agent may be able to do can set one up for failure. Despite recent advances, it is 
important to understand that machine learning can only do so much, especially 
with noisy observables. Instead, it is better to identify the key strengths of auton-
omous agents. For example, we know that autonomous agents are much better at 
monotonous tasks, and can browse through large volumes of observables much 
faster than human analysts. Realizing this strength, Holder et  al. (Holder & 
Wang, 2021) design an autonomous cyber defense agent to serve as a junior ‘sup-
port’ analyst for human security analysts. The autonomous agent takes over the 
repetitive and time-consuming jobs, such as scouring the Internet for resources, 
correlating patterns in large volumes of intrusion alerts, and presenting them to 
their human counterparts. The human analysts are then free to spend their time 
doing more complex tasks, such as investigating critical attacks and threat 
hunting.

Given the increasing number of cyber-attacks in recent times, autonomous cyber 
defense agents will become a necessity in dealing with large volumes of observ-
ables. However, there is still much to be done regarding the adversarial robustness 
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and effectiveness of these agents. We discuss a few prominent research direc-
tions below:

•	 Learning from temporal features is challenging since features are often out-of-
sync. Although temporal features provide a lot of contextual cues, it is not always 
apparent how to represent and learn from them effectively. There are two inter-
esting problem classes: Picking an event at present and looking backwards in 
time can provide forensic and provenance analysis capabilities, while looking 
forward can provide threat intelligence and predictive capabilities.

•	 Learning from infrequent observables that reflect the rare adversary behaviors is 
an important open problem.

•	 We expect that multimodal learning and multi-faceted explanations will play a 
key role in designing trustworthy and robust cyber defense agents that learn con-
textually meaningful adversary behaviors.

•	 Incorporating concise reporting and visualization tools that reduce the cognitive 
load on security analysts is important for effective communication between ana-
lysts and autonomous cyber defense agents.

•	 Cyber defense agents with threat prioritization capabilities that can present their 
findings at the right level of abstraction (based on an analyst’s expertise) are 
important for usability and deployability.

5 � Summary and Conclusions

This chapter discusses how an autonomous cyber defense agent can gain insights 
into the behaviors and intents of cyber adversaries. The popular Capability, 
Opportunity, and Intent (COI) model helps categorize various types of adversaries, 
while the Cyber Kill Chain and ATT & CK frameworks describe the tactics, tech-
niques and procedures (TTPs) of cyber adversaries. Specifically, the Action Intent 
Framework (AIF) is derived from MITRE ATT & CK that infers the intent of cyber 
adversaries from traffic induced observable data.

The rapidly evolving threat landscape and adversary TTPs have made it near-
impossible for autonomous agents to rely on a priori expert knowledge. Instead, the 
emphasis should be on the design and deployment of data-driven autonomous 
agents that learn contextual meaningful adversary behaviors from observable data. 
Although enticing, designing effective and reliable data-driven agents is diffi-
cult due to:

•	 The evolving and adversarial threat landscape that requires proactive and robust 
machine learning models,

•	 The unavailability of good quality observable data with corresponding ground 
truth that makes supervised learning paradigm unsuitable,

•	 The unpredictable nature of cyber adversaries and their tactics that require con-
text modeling to adequately capture their behavior,
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•	 The challenges of open world evaluation of black box machine learning models 
to ensure that the agent behaves as expected.

This chapter illustrates three state-of-the-art use cases for autonomous cyber defense 
agents that learn adversary behavior from traffic induced observables in order to 
assist security analysts in defending against the adversary in a timely manner.

•	 ASSERT is an unsupervised continual learning system that synthesizes and 
updates emerging attack behavior models from intrusion alerts in a streaming 
setting without expert input. The behavior models provide a statistical summary 
of the various attacks conducted by cyber adversaries.

•	 SAGE follows a two-step approach to reconstruct attacker strategies from intru-
sion alerts by first learning an unsupervised interpretable model that discovers 
temporal and probabilistic patterns in intrusion alerts, and then representing the 
discovered attacker strategies as targeted attack graphs, without any expert input. 
The attack graphs provide a dynamic view of the network by showing how spe-
cific attacks transpired, and enable visual analytics regarding attacker behavior 
dynamics.

•	 HeAT is a semi-supervised learning system that integrates analyst domain knowl-
edge and reverse engineers multi-stage attack campaigns given a critical intru-
sion alert. This system helps analysts in uncovering the chain of actions that led 
to a critical alert while discarding thousands of irrelevant alerts.

A brief discussion of how the use cases address the aforementioned challenges is 
given, together with some words of caution for practitioners getting started in the 
field, pertaining to observable data, spurious correlations, misleading metrics, and 
interpretable approaches. Finally, a few prominent future research directions are 
provided with respect to learning paradigms and reporting techniques.
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