
Unreached Potentials of
RGB-D Segmentation

Pascal Benschop

Version of July 4, 2024





Unreached Potentials
of RGB-D

Segmentation
by

Pascal Benschop
to obtain the degree of Master of Science

at the Delft University of Technology,
to be defended publicly on Thursday July 11, 2024 at 13:00.

Student number: 5052270
Project duration: November 13, 2023 – July 11, 2024
Thesis committee: Dr. J. van Gemert TU Delft, supervisor

Prof. Dr. E. Eisemann, TU Delft

An electronic version of this thesis is available at http://repository.tudelft.nl/.





1 Introduction to the thesis
Computer vision, the technology enabling machines to ’see’ and interpret the visual world, is used in many technologies and
devices that we use today. For example, face recognition for unlocking smartphones, quality evaluation of fruits and vegetables
with cameras, and even combining sensors such as LiDAR with cameras for autopilot functionality in cars. Images taken by
your phone or any camera are typically in an RGB format, where RGB stands for Red, Green, and Blue pixels that together
determine the colors in the image. These images can be complemented with depth information from sensors that measure the
distance of objects from the camera.

Depth information is beneficial for computer vision tasks because it provides spatial information and robustness to variations
in color and lighting. Integrating RGB and depth information, referred to as RGB-D fusion, holds promise for enhancing
the capabilities of neural networks (also referred to as models in this thesis) in computer vision tasks. However, current
neural networks designed for RGB-D segmentation often underutilize the information from the RGB or depth modality when
confronted with unfamiliar variations in the other modality.

This research focuses specifically on image segmentation, a task where neural networks predict the class of each pixel in an
image. Effective segmentation allows both humans and computers to precisely identify which parts of an image correspond to
specific classes, such as distinguishing the "Person" class in Figure 1.

Figure 1. Sample from the NYUDepthV2 dataset showing the RGB image, depth image, and segmentation label, with the
"Person" class marked in green.

The organization of this thesis is as follows.
• A research article; with the main results, in the format as acceptable for a suitable computer vision venue.
• Background material in supplementary; to introduce concepts and background for a non-expert audience.

Research article. In the research article, I investigate the following scenarios for neural networks aimed at segmentation
using RGB and depth information as input:

1. The capability of neural networks to disregard either the RGB or depth modality when it provides no useful information
for the segmentation task. When one modality varies unexpectedly, it can reduce the accuracy of neural networks that
use both modalities.

2. The capability of neural networks to ignore irrelevant backgrounds with the use of depth information. The neural
network can separate the foreground from the background based on the difference in depth, but this benefit is not
always realized.

Improving robustness to unseen variations is essential for developingmore reliable and versatile neural networks, particularly
for real-world applications. A neural network leveraging RGB-D information should demonstrate adaptability in scenarios
where using either RGB or depth alone produces superior results compared to using RGB-D. This flexibility demonstrates the
network’s ability to remain accurate despite encountering different data conditions.

Background material. In the supplementary materials section, background information for concepts mentioned in the
research article is provided. The sections in the technical background explain the concepts and methods used in the research
article, ensuring that readers can understand the technical details if they wish to delve deeper. This section covers several key
topics. First, it provides an introduction to the basics of neural networks and their application in computer vision. It then
delves into RGB-D segmentation, explaining in detail the workings of this technique and the benefits of combining RGB with
depth data. Furthermore, the importance of robustness to unseen variations is discussed. Finally, the section explains how and
why SynthDet is used to create synthetic datasets for testing.

1



Unreached potentials of RGB-D segmentation
Pascal Benschop

Delft University of Technology
The Netherlands

Sander Gielisse

Delft University of Technology
The Netherlands

Jan van Gemert

Delft University of Technology 
The Netherlands

Abstract
It is commonly believed that image recognition based on RGB
improves when using RGB-D, ie: when depth information
(distance from the camera) is added. Adding depth should
make models more robust to appearance variations in colors
and lighting; to recognize shape and spatial relationships
while allowing models to ignore irrelevant backgrounds. In
this paper we investigate how robust current RGB-D models
truly are to changes in appearance, depth, and background
where we vary one modality (RGB or depth) and compare
RGB-D to RGB-only and depth-only in a semantic segmenta-
tion setting. Experiments show that all investigated RGB-D
models show some robustness to variations in color, but
might severely fail for unseen variations in lighting, spatial
position and backgrounds. Our results show that we need
new RGB-D models that can exploit the best of both modali-
ties while remaining robust to changes in a single modality.
All code and models are publicly available1.

Keywords: RGB-D, segmentation

1 Introduction
Automatic image recognition models can benefit by exploit-
ing depth information, i.e., the per-pixel surface distance
to the camera [4, 19, 20, 24, 26], but this is often taken for
granted without explaining why. Here, we make the observa-
tion that depthmay not always help, see Figure 1 for example,
where an RGB-only model (SegFormer [30]) outperforms an
RGB-D model (DFormer [33]) that uses the same RGB image
with additional depth information. In this paper we investi-
gate information fusion from onemodality (depth) to another
modality (RGB) –and vice versa– to better understand the
effect of adding depth to image recognition models.
The most often mentioned reason for using depth in-

formation is the inherent emphasis on geometric informa-
tion [11, 16, 25, 28, 31–33]. This geometric information can
indicate the shape, size, and layout of objects in 3D space.
The depth differences can identify the (non)existence of ob-
ject boundaries in case of occlusions or abrupt appearance
changes. A model can also learn absolute depth values to ex-
ploit typical foreground-background scene configurations. In
addition, depth can help make computer vision models more
robust to variations in color and illumination [1, 8, 11, 18, 21].
Conceptually, this makes sense because a depth map lacks
color, texture, light, and shadows, making depth invariant

1Url: https://github.com/pascalbenschopTU/Testing-RGBD-segmentation

Figure 1. While depth is useful for computer vision tasks in
most scenarios, there exist cases where depth has a negative
effect on the prediction. In this example of a whiteboard
(green label), using only RGB as input does better than using
RGB together with depth through RGB-D input. In this paper
we investigate why adding more information can deteriorate
results in state-of-the-art deep RGB-D models.

to appearance changes. Depth is an increadibly powerful
percept, and adding depth information to RGB appearance
is only expected to improve accuracy. Or.. does it?

In principle, having both RGB and depth modalities avail-
able should do better for image recognition than having just
one of them. Yet, current image recognition models are based
on deep learning, which potentially makes them vulnerable
to shortcut-learning [7] where the network does not learn
true generalization, but instead exploits spurious correlations
between the training data and the output. We hypothesize
that such spurious correlations exist between RGB and depth
modalities, which might explain why RGB-only outperforms
RGB-D in Figure 1. Our hypothesis is inspired by findings in
other modalities, where multi-modal neural networks often
prioritize the dominant modality [9, 27], yet, the impact of

1

https://github.com/pascalbenschopTU/Testing-RGBD-segmentation


Pascal Benschop

variations in less informative modalities, like depth, on over-
all accuracy remains unclear. To address these issues, we
conduct experiments with synthetic and real-world RGB-D
data, to evaluate the segmentation accuracy of neural net-
works across variations in RGB, depth, and backgrounds. The
empirical findings from these experiments aim to answer
the following research questions:
• RQ1: How do neural networks designed for RGB-
D segmentation handle unseen variations in ei-
ther modality?
• RQ2: How does variation in the background af-
fect the prediction of the foreground?

The contributions of this work are as follows. 1. We give,
for the first time, empirical evidence for existing claims about
RGB-D robustness to variations in color and illumination
compared to RGB-only models. 2. We evaluate the robustness
of RGB-D compared to depth-only models. 3. We test RGB-D
robustness to background changes. We evaluate 3 state-of-
the-art RGB-Dmodels and start in a fully controlled synthetic
setting, followed by experiments on real data to corroborate
our findings. Our conclusions are important for the field, as
we call for new RGB-D models that can use the best of both
modalities while remaining robust to changes in a single
modality.

2 Related work
On the usefulness of depth information in computer
vision. Jiawei et al. [35] question the need for depth estima-
tion in salient object detection. Their network uses depth
as supervision in the training stage. While this method can
improve upon models performing salient object detection
with only RGB as input, unseen variations in RGB will likely
break the model without ground-truth depth as input. They
mention that the errors in predicted depth typically occur
in semantically ambiguous regions, highlighting the need
for accurate ground-truth depth data. Yan et al. [13] high-
light the usefulness of depth information in varying lighting
conditions for indoor visual odometry. They demonstrate
that traditional methods without depth information struggle
to find matching points between images with significant
lighting changes. Depth data can enhance computer vision
tasks, but depth sensors present challenges. Lucia et al. [14]
noted issues with detecting small objects, depth shadows
from blocked IR light, and undefined depth values for objects
too close or far. Martin et al. [3] highlighted noise in depth
sensors without salient objects and stressed the need for
careful RGB-depth calibration.

Exploiting depth for ignoring irrelevant backgrounds.
Humans also benefit from depth in separating foreground
from background, as Nonie et al. found [6]. In an experiment
where participants need to select a target symbol which is
similar to distracting symbols, separating these symbols on
a different depth plane decreases the average search time.

While neural networks have no trouble with finding a target
between distractions, placing the target on the background
instead of the foreground could break the model. Enrique
et al. [5] propose an adaptation of the Codebook algorithm
which can be implemented efficiently and is robust to shad-
ows, lighting conditions and variations in backgrounds, both
in RGB and depth. While this would be an ideal baseline
to improve foreground-background separation in segmenta-
tion networks, the Codebook algorithm works optimal on a
sequence of frames, whereas training data is often random
images with no temporal coherence. Christopher et al. [29]
use two networks where the first creates initial masks from
depth only, and the second network refines the masks to-
gether with RGB input for unseen instance segmentation.
Separating depth from RGB in the first model ensures that
noise in RGB does not hinder the model from separating
foreground from background. While this approach enhances
robustness to unseen backgrounds, it does not fully exploit
the potential advantages offered by modality fusion tech-
niques.
Synthetic RGB-D data. Several authors have created

synthetic RGB-D datasets with different purposes. John et
al. [15] created SceneNet RGB-D, a dataset providing pixel-
perfect ground truth data. The RGB-D images are generated
in a pipeline from physics engine to rendering engine and are
customizable in terms of lighting, textures, scene layout and
camera trajectory within a scene. This dataset is then used to
improve computer vision models focused on indoor settings
without needing (expensive) real-world data. Aakash et al.
[17] generate a high-resolution RGB-D dataset by render-
ing scenes from the game Grand Theft Auto V. The RGB-D
images are then used to improve transformer-based models
that perform monocular depth estimation. Mohammad et al.
[12] create a new synthetic dataset called synROD, which
contains object models that closely resemble the categories
defined by the real-world dataset ROD. Their dataset is used
to evaluate domain adaptation methods, where the source
data is labeled while the target data is not. No research has
yet used synthetic RGB-D data as a benchmark to evaluate
the accuracy of neural networks on datasets with variations
in either modality and in backgrounds that were not present
during training.

RGB-D models. We evaluate three different state-of-the-
art RGB-D semantic segmentation models: TokenFusion [26],
CMX [34] and DFormer [33]. TokenFusion [26] is a multi-
modal transformer that adaptively fuses multiple single-
modal transformers. They employ a strategy of pruning
multiple single-modal transformers which can be re-utilized
for multimodal fusion. CMX [34] is a cross-modal fusion
transformer that is able to fuse multiple modalities for seg-
mentation.With a Cross-Modal Feature RectificationModule
bi-modal features are calibrated and better aligned for the fu-
sion module. DFormer [33] uses an efficient architecture and
employs RGB-D pretraining to get impressive segmentation

2



Unreached potentials of RGB-D segmentation

results on benchmarks with less parameters and operations
per second than competitors.
RGB-only and Depth-only models. For a neural net-

work that uses only RGB information as input, SegFormer [30]
is used as a baseline. SegFormer is an RGB segmentation neu-
ral network that unifies Transformers with lightweight MLP
decoders. Since no models exist that perform segmentation
using only depth information, the DFormer model is adapted
to create a variant that takes only depth information as input.

3 Experimental Setting
Neural networks that combine information from RGB and
depth are tasked with performing semantic segmentation,
which involves labeling each pixel with a class value. The
objectives of the experiments to be conducted are to provide
insights in how current multi-modal neural networks han-
dle variations in either modality, and to identify unreached
potentials of RGB-D segmentation. Synthetic data is used to
introduce controlled variations, highlighting the limitations
of current state-of-the-art RGB-D neural networks. Realistic
data is then employed to validate the findings from experi-
ments with synthetic data, ensuring the results are applicable
to real-world scenarios.
Synthetic RGB-D datasets For the experiments con-

ducted on synthetic data, datasets are created with the help
of SynthDet Unity project [10]. The project contains scripts
called Randomizers that can alter the scene from which
dataset samples are generated. For example, these random-
izers can decide how objects are placed, apply scaling, rota-
tion, lighting and camera effects to the scene and more. The
project also already contains 3D assets, namely 63 high qual-
ity models of commonly found grocery products. For more
details and parameters on creating datasets see Appendix A,
Table 7.

Implementation details All experiments are conducted
with python, using the PyTorch framework for building neu-
ral networks. We make all PyTorch code, datasets and Unity
scripts freely available online2. All models used in the experi-
ments are initialized with pretrained weights provided by the
respective authors of the original models. Due to differences
between synthetic datasets and the benchmark datasets on
which the models were trained, new hyperparameters were
selected through hyperparameter optimization using Op-
tuna [2]. The hyperparameter search ranges can be seen in
Table 5 in Appendix A. All results are expressed in mean In-
tersection over Union (mIoU) scaled to (0, 100), unless stated
otherwise. This metric is commonly used for segmentation,
it measures the overlap of the predicted segmentation with
the ground truth.
In all experiments using synthetic data, smaller model

sizes are employed compared to those used in experiments
with realistic data. The simpler nature of synthetic datasets

2Url: https://github.com/pascalbenschopTU/Testing-RGBD-segmentation

Figure 2. Example of groceries objects with changes in satu-
ration, brightness, hue and light angle. Best viewed in color.
Contrary to the other properties, the angle of the light source
cannot be simulated for augmentation during training.

allow the models to achieve almost perfect accuracy with
fewer parameters. For a detailed comparison of all the models
and the respective configurations see Appendix A, Table 6.

4 Does adding depth enhance robustness
against unseen variations of RGB?

This section addresses RQ1 for the RGB modality, focusing
on how the network handles unseen RGB variations during
testing. The hypothesis is that RGB-D segmentation models
are more robust to appearance changes not encountered
during training compared to RGB-only models. Since depth
is invariant to color, texture, luminance, and shadows, it may
enhance the network’s robustness to scenery changes. To
test this, variations in saturation, brightness, hue, and light
angles were examined, representing common and significant
real-world appearance changes. This selection provides a
comprehensive, though not exhaustive, evaluation of the
network’s robustness to these visual variations.

Since there is little variation in colors present in the dataset
(see themiddle row of Figure 2), ColorJitter augmentation [23]
is applied during the training process. This technique in-
volves modifying the colors of images in a controlled way to
improve the robustness of neural networks.

4.1 Setup
See Figure 2 for examples of variations that are applied to
the dataset in the following ways:

1. Objects with color saturation values in the test set
that are both lower than min(𝑆train) and higher than
max(𝑆train).

3

https://github.com/pascalbenschopTU/Testing-RGBD-segmentation


Pascal Benschop

(a) Models trained without ColorJitter augmentation and tested on extreme variations. For every property that is adjusted there are
values at which either the RGB or depth only model outperforms the RGB-D models.

(b) Models trained with ColorJitter augmentation and tested on extreme variations. For the variations in brightness and light angle,
there exist situations where RGB-D models perform worse than RGB or depth alone.

Figure 3. Variation in RGB can unnecessarily affect the models trained on RGB and depth. Standard deviations, represented by
shaded regions, are computed from 3 repeats.

2. Objects where the brightness of the pictures in the
test set is both lower thanmin(𝐵train) and higher than
max(𝐵train).

3. Objects with a set of color hues 𝐶test where 𝐶test ∉

𝐶train.
4. Simulated shadows from varying light angles, which

cannot be simulated by augmenting the training data.

The dataset used in this experiment consists of grocery
objects placed in front of a neutral background of white
objects. The objects in this dataset are consistent in rotation
and scale, ensuring that a model trained solely on depth can
segment these adequately. With variations in rotation and
scale, some box shaped objects are hard to distinguish using
only depth information. The depth-only variant of Dformer
is used for comparison with RGB-D models.

4.2 Results
For all experiments the RGB-D (and depth only) segmenta-
tion networks are compared to a RGB-only segmentation
network. The prediction accuracy of the RGB-only baseline
is set to 0, and the difference in accuracy per data point
relative to the baseline is plotted for all other models.

The results from testing the models on a dataset with vary-
ing factors such as Saturation, Brightness, Hue, and Light
Angle are depicted in Figure 3. Models trained both with
and without ColorJitter augmentation were evaluated under
extreme variations of these properties. The findings indicate
that without ColorJitter augmentation, RGB-D models do

not demonstrate increased robustness to changes in satura-
tion, brightness, or light angles compared to the RGB-only
model. Even when trained with ColorJitter augmentation,
only the TokenFusion model consistently outperforms the
SegFormer RGB-only model.
However, a notable exception occurs when brightness is

reduced to 20% of its original value. In this specific scenario,
all RGB-D models perform worse than both the RGB-only
and depth-only models. Figure 4 provides a detailed illustra-
tion of this shortcoming, highlighting that the depth features
are negatively affected by variations in RGB features. This
interaction may explain why the fusion of RGB and depth
features results in lower performance compared to models
trained exclusively on either depth or RGB.

Furthermore, in extreme low-light conditions, RGB-Dmod-
els fail to effectively utilize depth information, leading to
inaccurate predictions. This failure suggests that the depth
features are not only influenced by the compromised RGB
features, but also that the fusion strategy employed by the
models is not robust enough to handle variations which
are not encountered during training. Consequently, while
RGB-D models hold potential, the current implementations
require better fusion mechanisms to improve robustness
under challenging conditions.

4



Unreached potentials of RGB-D segmentation

Figure 4. The figure illustrates the performance of models
trained with augmentation at very low brightness values. No-
tably, all RGB-D models are less accurate in low-brightness
scenarios compared to an RGB-only model. The different To-
kenFusion outputs reveal that while the depth input remains
consistent across brightness levels, the predictions from the
depth output branch are affected. This suggests that the in-
teractions between the RGB and depth inputs, when faced
with unseen variations in brightness, likely contribute to
the observed degradation in performance. Consequently, the
RGB-D models are less effective in handling the variations
introduced by low brightness conditions.

5 Are networks robust to unseen variations
in spatial position?

This section aims to address RQ1 for the depth modality,
varying the spatial positions of objects between training
and testing. A neural network should be able to adapt to
different arrangements in the depth map, such as objects at
varying distances from the camera. To test this hypothesis
five datasets are created where objects are placed at different
positions and ranges along the axis parallel to the direction
of the camera.

The different dataset settings can be seen in Figure 5, ob-
jects are placed at specific ranges between the near and far
clipping plane of the Unity camera’s view frustum. See Fig-
ure 6 for an example of the scene. In Unity, the camera’s
view frustum defines the visible area in the 3D scene. The
frustum is a pyramid-like shape with the top cut off. The
camera lens is positioned at the top, the near clipping plane
is at the cut-off point, and the base of the pyramid is at the
far clipping plane. The planes determine the minimum and
maximum distances from the camera at which objects are
rendered. Objects within this range are visible in the camera
view. Varying the spatial position of objects in a scene af-
fects the depth from the camera but also the size of objects in
RGB. This difference is accounted for by comparing the rela-
tive performance of an RGB-D model and a RGB model, as
both models are affected by changes in scale. The challenge

Figure 5. Visualization of foreground objects at various dis-
tances from the camera. In the depth images (second col-
umn), darker pixels indicate objects closer to the camera,
while lighter pixels indicate objects further away. Objects
are placed between the near plane and the far plane of the
camera’s view. From left to right, objects are placed near the
camera, midway, at the far plane, between the first and third
quartiles of the range, and spanning the entire range.

Figure 6. Example of spacing objects between the near and
far clipping planes in a scene, outside these planes objects
are not rendered.

is whether RGB-D networks can handle large variations in
absolute depth values.

5.1 Results
Table 1 displays the results of this experiment for both RGB-
only and RGB-D models combined. The RGB-only model
decreases in accuracy with large variations in scale (from ob-
jects placed far away to nearby), yet it can generally handle
changes in spatial position well. In contrast, RGB-D models
are significantly more affected by changes in spatial position

5



Pascal Benschop

Table 1. Results of training RGB-only and RGB-D networks
on varying spatial position. Results are displayed in mean
IoU score with standard deviations computed from 3 repeats.
The changes in depth have little effect on an RGB-only model
in contrast to RGB-D models. Except for the full range set-
ting, there is at least one instance in all other settings that
the models are trained on where the RGB-only model out-
performs the RGB-D models.

Predicted on

Trained on

RGB-D

RGB-only

91.99
±0.99

88.63
±6.42

10.32
±10.7

80.57
±12.1

74.45
±6.86

91.40
±0.27

94.69
±0.33

89.59
±0.58

94.72
±0.34

93.53
±0.33

RGB-D

RGB-only

78.33
±6.99

95.77
±1.44

16.31
±19.8

89.52
±5.95

76.43
±5.34

87.28
±0.32

96.79
±0.11

93.98
±0.29

96.57
±0.10

94.03
±0.14

RGB-D

RGB-only

43.80
±7.09

90.07
±2.17

94.97
±0.86

87.37
±2.13

73.60
±4.37

61.46
±5.18

93.29
±1.87

94.55
±2.07

92.15
±2.16

83.66
±3.47

RGB-D

RGB-only

85.42
±2.91

95.96
±1.66

24.65
±32.4

95.96
±1.61

86.76
±3.53

88.85
±0.33

96.56
±0.28

94.22
±0.56

96.51
±0.28

94.77
±0.29

RGB-D

RGB-only

89.29
±1.14

96.60
±0.39

93.04
±1.06

96.64
±0.34

94.89
±0.34

90.02
±0.85

95.10
±0.93

92.74
±1.33

95.11
±0.94

93.99
±0.98

compared to the RGB-only model. The RGB-D models ex-
perience the greatest loss in accuracy when there are large
changes in absolute depth values. For results per model see
Appendix C, Table 8, 9 and 10.

These results highlight potential improvements for RGB-D
segmentation models to handle variations in depth that are
not present in the training data. While the changes to depth
are artificial and might not occur in real-world scenarios, a
miscalibration of a depth sensor or a software error could
result in similar, unnecessary reductions in accuracy.

Figure 7. Datasets where the foreground is exactly the same
but the background is changed, best viewed in color. From left
to right, the objects in the backgrounds are white, randomly
colored, and textured.

6 How do neural networks use depth for
separating foreground from background?

Depth provides extra information about the spatial position
of objects, so it can be used to separate foreground from
background. The hypothesis for RQ2 is that current neural
networks designed for RGB-D segmentation rely on back-
ground features to segment foreground objects. This depen-
dency can cause a reduction in accuracy when the network
faces unseen backgrounds.

6.1 Evaluation method
To test the hypothesis that neural networks rely on irrele-
vant backgrounds, three datasets are generated with differ-
ent backgrounds only observed in the RGB modality. For
all datasets, the foreground segmentation objects are kept
identical (see Figure 7). These foreground objects are placed
with variations in spatial position, rotation, and scale. This
setup forces an RGB-D network to rely on RGB input for
foreground segmentation, while it could use depth informa-
tion to distinguish the foreground from the background. The
objective for a neural network with RGB and depth inputs
is to accurately segment the foreground objects, even when
the backgrounds differ from the backgrounds in the training
dataset.

6.2 Results
Models trained on RGB-D inputs are still influenced by un-
seen backgrounds that provide no useful information for the
foreground. Optimal neural networks should score the same
mean IoU score for the different backgrounds, but this is not
the case as can be seen in Table 2. The models trained on
the dataset with the most noisy background, colored objects,
are more robust to variations in background. Nonetheless,
there is still a performance drop when testing on out-of-
distribution backgrounds, which indicates room for improve-
ment.

6.3 Potential of RGB-D segmentation
To highlight the limitations of existing RGB-D models, the
models are compared to a two-stage pipeline based on adap-
tations of the DFormer [33] model, which can take a single

6



Unreached potentials of RGB-D segmentation

Table 2. Combined results of training RGB-D neural net-
works on datasets with varying backgrounds. Standard devi-
ations are computed from 3 repeats per model. Ideally, the
models should achieve consistent results regardless of the
background.

Background predicted on

Background
trained on

W
hi
te

B
G

C
ol
or

B
G

Te
xt
ur

e
B
G

White BG 91.75
±4.77

76.68
±11.7

80.43
±8.04

Color BG 90.52
±1.65

91.07
±1.51

85.64
±4.36

Texture BG 80.39
±8.01

75.96
±9.54

91.56
±2.01

Table 3. Demonstrating the limitations of current RGB-D
models using a two-stage adaptation of DFormer: first seg-
menting foreground from background using depth-only, then
predicting foreground using RGB-only. This two-stage adap-
tation shows superior handling of background variations.

Background predicted on

Method for all
datasets

W
hi
te

B
G

C
ol
or

B
G

Te
xt
ur

e
B
G

Depth→ RGB 90.20
±1.59

89.43
±1.52

89.97
±1.70

input modality. Initially, the adapted model uses only depth
information to distinguish foreground objects from the back-
ground, effectively filtering out irrelevant RGB data. Sub-
sequently, another adaptation of the model uses only RGB
information to segment the foreground without distraction
from the background. The results can be seen in Table 3.
Compared to RGB-D models, this pipeline achieves higher
accuracy on unseen backgrounds but lower accuracy when
tested on the same background as in the training data.

7 Experiments on NYUDepthV2 dataset
While the results on synthetic datasets are interesting, mod-
els trained on real data such as from theNYUDepthV2 RGB-D
dataset [22] might be more robust because there are larger
variations in the appearance and shape of objects. The dataset
contains 1449 densely labeled pairs of aligned RGB and depth
images. The images are captured using a Microsoft Kinect

Figure 8. Varying the brightness across the NYUDepthV2
sets and testingmodels trained on the dataset without modifi-
cations. While the DFormer model is the most robust overall,
the TokenFusion model can better handle the scenario where
the image is dark.

sensor, which may introduce noise in the depth data. To mit-
igate this, noisy regions in the depth map are filled in with
information from nearby regions. Similar experiments test-
ing variation in appearance, spatial position and background
are conducted on the NYUDepthV2 dataset.

7.1 RQ1: Variations in RGB
The RGB-D models were affected by large variations in hue,
saturation, and brightness, albeit to a lesser extent than
an RGB-only model. These results support the claims that
depth can help make computer vision models more robust to
changes in color and illumination. However, there is room
for improvement in RGB-D segmentation; for instance, un-
der very low brightness conditions, all models struggled to
effectively utilize depth information. The DFormer model
trained only with depth information outperforms both mod-
els trained With RGB-only and RGB-D inputs (see Figure 8).
The results for variation in hue and saturation can be seen
in Appendix B in figures 12 and 13.

7.2 RQ1: Variations in spatial position
The RGB-D models are more affected by variations in depth,
for example when the absolute values of the depth map
differ from the default range on which the model is trained
on. See for example Figure 9 where different ranges of the
depth map are visualized. Training the model on the original
NYUDepthV2 dataset and testing on differently scaled depth
reduces the accuracy of models trained with RGB-D inputs.
There is room for improvement because the same model
trained with RGB-only inputs performs better than the multi-
modal model for unseen variations of depth.

As an ablation study, the results are also plotted at differ-
ent spatial positions, for example close to the camera. The
models are tested on different depth ranges at varying spatial

7



Pascal Benschop

Figure 9. Example of scaling the depth to different min and max values, for these all min values are 0.

Table 4. Testing models on different scales of depth. RGB-
D10 stands for RGB-Depth scaled to 10% of the original range
(see Figure 9).While the spatial relationships between objects
remain intact, the models trained on RGB-D are impacted
by a difference in depth values.

Model RGB-D RGB-D33 RGB-D20 RGB-D10
DFormer 47.36 43.60 41.17 37.47
TokenFusion 44.43 40.88 38.82 35.83
CMX 42.41 38.38 35.88 32.17

SegFormer (RGB) 43.34
DFormer (RGB-only) 44.16

positions (ranging from near the camera to far from the cam-
era). The models show some variation for different distances
from the camera, but are more affected by the range of depth.
The results per model can be seen in Appendix C in figures
14, 15 and 16.

While the mean Intersection over Union (IoU) score for
most classes degrades when the depth is scaled to 33% of its
original range, the IoU score for the whiteboard class actu-
ally improves by around 9%. Interestingly, this class is also
segmented less accurately by the RGB-D model compared to
the RGB-only model (see Figure 1). This finding highlights
that depth can also negatively affect a multi-modal neural
network.

7.3 RQ2: Variations in background
There is also room for improvement in ignoring irrelevant
backgrounds with depth information. To demonstrate this
potential for improvement, an experiment was conducted
to assess the impact of adding noisy backgrounds behind
objects belonging to a specific class. The procedure for this
experiment can be seen in Algorithm 1. An example of an im-
age with corresponding depth where the background behind
class "Person" is replaced with a noisy background is visible
in Figure 10. Only pixels that have a depth value larger than
the furthest depth of any instance of the class of interest
are replaced. The depth from the noisy background is also
adjusted such that every pixel in the noisy background has
a greater (further) depth value than the pixels within the
region defined by the class of interest.

In Figure 11 the difference between the DFormer model
tested on classes with noisy backgrounds and classes with
the original background is plotted in mean accuracy per class.
The results for othermodels, which exhibit similar reductions
in accuracy, can be found in Appendix D in Figure 17. An
optimal RGB-D model would predict each class with a noisy
background at least as well as with the original background.
Interestingly, some classes actually benefit from the added
noisy backgrounds, the increased contrast from the noisy
background can cause a pop-out effect for the objects from
those classes.

Algorithm 1 Adapting the dataset with noisy backgrounds
1: Input: dataset, classes, model
2: Output: Class-wise accuracy comparison
3: bg← background (class)
4: dataset_bg, dataset_orig← copy(dataset)
5: for class in classes do
6: for (img, depth, label) in dataset do
7: if label contains class then

8: class_mask[i,j]←
{
1 if 𝑙𝑎𝑏𝑒𝑙 [𝑖, 𝑗] = 𝑐𝑙𝑎𝑠𝑠
0 else

9: label[class_mask]← class
10: label[∼class_mask]← bg
11: max_depth←max(depth[class_mask])
12: bg_mask← depth > max_depth
13: bg_img[bg_mask]← noisy_img
14: bg_img[∼bg_mask]← img
15: bg_depth[bg_mask]← noisy_depth
16: bg_depth[∼bg_mask]← depth
17: else
18: label← bg
19: end if
20: update dataset_bg with (bg_img, bg_depth, label)
21: update dataset_orig with (img, depth, label)
22: end for
23: test model on dataset_bg
24: test model on dataset_orig
25: end for
26: compare accuracy per class

8



Unreached potentials of RGB-D segmentation

Figure 10. Example of adding a noisy background behind the class "Person" in the image based on depth.

Figure 11. Experiment with the DFormer RGB-D model: adding a noisy background behind classes in the image based on
depth. The network gets unnecessarily affected by the noisy background.

8 Conclusions and future work
The RGB-D neural networks employed in this research ex-
hibit limited robustness to variations in either modality when
trained with relatively small datasets. The networks also
degrade in accuracy when confronted with irrelevant back-
grounds which were not in the training data. Under condi-
tions where the model predicts on data similar to the train-
ing distribution, combining RGB with depth information
consistently improves the mean prediction accuracy. How-
ever for some classes, such as the whiteboard class in the
NYUDepthV2 dataset, the addition of depth information de-
teriorates the accuracy of a multi-modal neural network.
When a variation is applied to depth that the model has not
been trained on, the predictions of the whiteboard class actu-
ally improve in accuracy. These findings highlight unreached
potentials of RGB-D segmentation. Addressing these issues
when developing robust multi-modal neural networks can

enhance the reliability of computer vision in real-world ap-
plications and help bridge the gap between machine learning
and machine intelligence.
While this work highlights room for improvements for

RGB-D neural networks performing segmentation, it does
not provide concrete solutions that can help improve the
networks. Increasing the amount of training data could be
beneficial for most cases, however it does not guarantee
optimal model behaviour in unseen scenarios. Additionally,
depth-awaremethods that weigh the importance of neighbor-
ing pixels based on the relative depth difference could help
with ignoring irrelevant backgrounds. To conclude, future
research evaluating the effectiveness of depth information
in various challenging scenarios can guide the development
of smarter and more robust multi-modal neural networks.

Acknowledgments
To Sander, for explaining in detail how some of my ideas
could work, and others definitely not. And to Jan, for guiding

9



Pascal Benschop

my ideas and experimental work towards systematically
addressing the research questions of my thesis.

References
[1] Andreas Aakerberg, Kamal Nasrollahi, and Thomas Heder. 2017. Im-

proving a deep learning based RGB-D object recognition model by
ensemble learning. In 2017 Seventh International Conference on Im-
age Processing Theory, Tools and Applications (IPTA). 1–6. https:
//doi.org/10.1109/IPTA.2017.8310101

[2] Takuya Akiba, Shotaro Sano, Toshihiko Yanase, Takeru Ohta, and
Masanori Koyama. 2019. Optuna: A Next-generation Hyperparameter
Optimization Framework. 2623–2631. https://doi.org/10.1145/3292500.
3330701

[3] Martin Brenner, Napoleon Reyes, Teo Susnjak, and Andre Barczak.
2023. RGB-D and Thermal Sensor Fusion: A Systematic Literature
Review. IEEEAccess PP (01 2023), 1–1. https://doi.org/10.1109/ACCESS.
2023.3301119

[4] Isa El Doori. 2019. Deep Learning Based Image Segmentation of RGB-
D Data in Warehouse Automation. Available at http://resolver.tudelft.
nl/uuid:d95c85ed-f96b-4956-ad17-e8e5194a3e8c.

[5] Enrique J. Fernandez-Sanchez, Javier Diaz, and Eduardo Ros. 2013.
Background Subtraction Based on Color and Depth Using Active
Sensors. Sensors 13, 7 (2013), 8895–8915. https://doi.org/10.3390/
s130708895

[6] Nonie Finlayson, Roger Remington, James Retell, and Philip Grove.
2013. Segmentation by depth does not always facilitate visual search.
Journal of vision 13 (07 2013). https://doi.org/10.1167/13.8.11

[7] Robert Geirhos, Jörn-Henrik Jacobsen, Claudio Michaelis, Richard
Zemel, Wieland Brendel, Matthias Bethge, and Felix A Wichmann.
2020. Shortcut learning in deep neural networks. Nature Machine
Intelligence 2, 11 (2020), 665–673.

[8] Yulan Guo, Mohammed Bennamoun, Ferdous Sohel, Min Lu, and
Jianwei Wan. 2014. 3D Object Recognition in Cluttered Scenes with
Local Surface Features: A Survey. IEEE Transactions on Pattern Analysis
and Machine Intelligence 36, 11 (2014), 2270–2287. https://doi.org/10.
1109/TPAMI.2014.2316828

[9] Yu Huang, Junyang Lin, Chang Zhou, Hongxia Yang, and Longbo
Huang. 2022. Modality Competition: What Makes Joint Training
of Multi-modal Network Fail in Deep Learning? (Provably). In Pro-
ceedings of the 39th International Conference on Machine Learning
(Proceedings of Machine Learning Research, Vol. 162), Kamalika Chaud-
huri, Stefanie Jegelka, Le Song, Csaba Szepesvari, Gang Niu, and Sivan
Sabato (Eds.). PMLR, 9226–9259. https://proceedings.mlr.press/v162/
huang22e.html

[10] You-Cyuan Jhang, Adam Palmar, Bowen Li, Saurav Dhakad,
Sanjay Kumar Vishwakarma, Jonathan Hogins, Adam Crespi,
Chris Kerr, Sharmila Chockalingam, Cesar Romero, Alex Thaman,
and Sujoy Ganguly. 2020. Training a performant object detec-
tion ML model on synthetic data using Unity Perception tools.
https://blogs.unity3d.com/2020/09/17/training-a-performant-object-
detection-ml-model-on-synthetic-data-using-unity-computer-
vision-tools/.

[11] Yabei Li, Junge Zhang, Yanhua Cheng, Kaiqi Huang, and Tieniu Tan.
2018. DF2Net: A Discriminative Feature Learning and Fusion Net-
work for RGB-D Indoor Scene Classification. In Proceedings of the
Thirty-Second AAAI Conference on Artificial Intelligence and Thirti-
eth Innovative Applications of Artificial Intelligence Conference and
Eighth AAAI Symposium on Educational Advances in Artificial Intel-
ligence (New Orleans, Louisiana, USA) (AAAI’18/IAAI’18/EAAI’18).
AAAI Press, Article 862, 8 pages.

[12] Mohammad Reza Loghmani, Luca Robbiano, Mirco Planamente, Kiru
Park, Barbara Caputo, and Markus Vincze. 2020. Unsupervised Do-
main Adaptation Through Inter-Modal Rotation for RGB-D Object

Recognition. IEEE Robotics and Automation Letters 5, 4 (2020), 6631–
6638. https://doi.org/10.1109/LRA.2020.3007092

[13] Yan Lu and Dezhen Song. 2015. Robustness to lighting variations: An
RGB-D indoor visual odometry using line segments. In 2015 IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS). 688–
694. https://doi.org/10.1109/IROS.2015.7353447

[14] LuciaMaddalena and Alfredo Petrosino. 2018. Background Subtraction
for Moving Object Detection in RGBD Data: A Survey. Journal of
Imaging 4, 5 (2018). https://doi.org/10.3390/jimaging4050071

[15] John McCormac, Ankur Handa, Stefan Leutenegger, and Andrew J.
Davison. 2017. SceneNet RGB-D: Can 5M Synthetic Images Beat
Generic ImageNet Pre-training on Indoor Segmentation?. In 2017 IEEE
International Conference on Computer Vision (ICCV). 2697–2706. https:
//doi.org/10.1109/ICCV.2017.292

[16] Lingfeng Qiao, Zhongliang Jing, Han Pan, Henry Leung, and Wuji Liu.
2021. Private and common feature learning with adversarial network
for RGBD object classification. Neurocomputing 423 (2021), 190–199.
https://doi.org/10.1016/j.neucom.2020.07.129

[17] Aakash Rajpal, Noshaba Cheema, Klaus Illgner-Fehns, Philipp
Slusallek, and Sunil Jaiswal. 2023. High-Resolution Synthetic RGB-D
Datasets for Monocular Depth Estimation. In 2023 IEEE/CVF Confer-
ence on Computer Vision and Pattern Recognition Workshops (CVPRW).
1188–1198. https://doi.org/10.1109/CVPRW59228.2023.00126

[18] Xiaofeng Ren, Liefeng Bo, and Dieter Fox. 2012. RGB-(D) scene label-
ing: Features and algorithms. In 2012 IEEE Conference on Computer
Vision and Pattern Recognition. 2759–2766. https://doi.org/10.1109/
CVPR.2012.6247999

[19] Lukas Schneider, Manuel Jasch, Björn Fröhlich, Thomas Weber, Uwe
Franke, Marc Pollefeys, and Matthias Rätsch. 2017. Multimodal Neural
Networks: RGB-D for Semantic Segmentation and Object Detection.
In Image Analysis, Puneet Sharma and Filippo Maria Bianchi (Eds.).
Springer International Publishing, Cham, 98–109.

[20] Daniel Seichter, Mona Kohler, Benjamin Lewandowski, Tim Wenge-
feld, and Horst-Michael Gross. 2021. Efficient RGB-D Semantic Seg-
mentation for Indoor Scene Analysis. 13525–13531. https://doi.org/
10.1109/ICRA48506.2021.9561675

[21] Ling Shao, Ziyun Cai, Li Liu, and Ke Lu. 2017. Performance evalua-
tion of deep feature learning for RGB-D image/video classification.
Information Sciences 385-386 (2017), 266–283. https://doi.org/10.1016/
j.ins.2017.01.013

[22] Nathan Silberman, Derek Hoiem, Pushmeet Kohli, and Rob Fergus.
2012. Indoor Segmentation and Support Inference from RGBD Images.
In Computer Vision – ECCV 2012, Andrew Fitzgibbon, Svetlana Lazeb-
nik, Pietro Perona, Yoichi Sato, and Cordelia Schmid (Eds.). Springer
Berlin Heidelberg, Berlin, Heidelberg, 746–760.

[23] Luke Taylor and Geoff Nitschke. 2018. Improving deep learning with
generic data augmentation. In 2018 IEEE symposium series on compu-
tational intelligence (SSCI). IEEE, 1542–1547.

[24] Michal Varga and Ján Jadlovský. 2019. Evaluation of Depth Modality
in Convolutional Neural Network Classification of RGB-D Images. 18
(01 2019), 26–31. https://doi.org/10.15546/aeei-2018-0029

[25] WeiyueWang and Ulrich Neumann. 2018. Depth-Aware CNN for RGB-
D Segmentation. In Computer Vision – ECCV 2018, Vittorio Ferrari,
Martial Hebert, Cristian Sminchisescu, and Yair Weiss (Eds.). Springer
International Publishing, Cham, 144–161.

[26] Yikai Wang, Xinghao Chen, Lele Cao, Wenbing Huang, Fuchun Sun,
and Yunhe Wang. 2022. Multimodal Token Fusion for Vision Trans-
formers. In IEEE Conference on Computer Vision and Pattern Recognition
(CVPR). 12176–12185. https://doi.org/10.1109/CVPR52688.2022.01187

[27] NanWu, Stanislaw Jastrzebski, Kyunghyun Cho, and Krzysztof J Geras.
2022. Characterizing and Overcoming the Greedy Nature of Learning
in Multi-modal Deep Neural Networks. In Proceedings of the 39th
International Conference on Machine Learning (Proceedings of Machine
Learning Research, Vol. 162), Kamalika Chaudhuri, Stefanie Jegelka,

10

https://doi.org/10.1109/IPTA.2017.8310101
https://doi.org/10.1109/IPTA.2017.8310101
https://doi.org/10.1145/3292500.3330701
https://doi.org/10.1145/3292500.3330701
https://doi.org/10.1109/ACCESS.2023.3301119
https://doi.org/10.1109/ACCESS.2023.3301119
http://resolver.tudelft.nl/uuid:d95c85ed-f96b-4956-ad17-e8e5194a3e8c
http://resolver.tudelft.nl/uuid:d95c85ed-f96b-4956-ad17-e8e5194a3e8c
https://doi.org/10.3390/s130708895
https://doi.org/10.3390/s130708895
https://doi.org/10.1167/13.8.11
https://doi.org/10.1109/TPAMI.2014.2316828
https://doi.org/10.1109/TPAMI.2014.2316828
https://proceedings.mlr.press/v162/huang22e.html
https://proceedings.mlr.press/v162/huang22e.html
https://blogs.unity3d.com/2020/09/17/training-a-performant-object-detection-ml-model-on-synthetic-data-using-unity-computer-vision-tools/
https://blogs.unity3d.com/2020/09/17/training-a-performant-object-detection-ml-model-on-synthetic-data-using-unity-computer-vision-tools/
https://blogs.unity3d.com/2020/09/17/training-a-performant-object-detection-ml-model-on-synthetic-data-using-unity-computer-vision-tools/
https://doi.org/10.1109/LRA.2020.3007092
https://doi.org/10.1109/IROS.2015.7353447
https://doi.org/10.3390/jimaging4050071
https://doi.org/10.1109/ICCV.2017.292
https://doi.org/10.1109/ICCV.2017.292
https://doi.org/10.1016/j.neucom.2020.07.129
https://doi.org/10.1109/CVPRW59228.2023.00126
https://doi.org/10.1109/CVPR.2012.6247999
https://doi.org/10.1109/CVPR.2012.6247999
https://doi.org/10.1109/ICRA48506.2021.9561675
https://doi.org/10.1109/ICRA48506.2021.9561675
https://doi.org/10.1016/j.ins.2017.01.013
https://doi.org/10.1016/j.ins.2017.01.013
https://doi.org/10.15546/aeei-2018-0029
https://doi.org/10.1109/CVPR52688.2022.01187


Unreached potentials of RGB-D segmentation

Le Song, Csaba Szepesvari, Gang Niu, and Sivan Sabato (Eds.). PMLR,
24043–24055. https://proceedings.mlr.press/v162/wu22d.html

[28] ZongweiWu, GuillaumeAllibert, Christophe Stolz, and Cédric Demon-
ceaux. 2021. Depth-Adapted CNN for RGB-D Cameras. In Computer
Vision – ACCV 2020, Hiroshi Ishikawa, Cheng-Lin Liu, Tomas Pa-
jdla, and Jianbo Shi (Eds.). Springer International Publishing, Cham,
388–404.

[29] Christopher Xie, Yu Xiang, Arsalan Mousavian, and Dieter Fox. 2019.
The Best of Both Modes: Separately Leveraging RGB and Depth for
Unseen Object Instance Segmentation. ArXiv abs/1907.13236 (2019).
https://api.semanticscholar.org/CorpusID:199000781

[30] Enze Xie, Wenhai Wang, Zhiding Yu, Anima Anandkumar, Jose M.
Alvarez, and Ping Luo. 2024. SegFormer: simple and efficient design
for semantic segmentation with transformers. In Proceedings of the
35th International Conference on Neural Information Processing Systems
(NIPS ’21). Curran Associates Inc., Red Hook, NY, USA, Article 924,
14 pages.

[31] Yajie Xing, Jingbo Wang, Xiaokang Chen, and Gang Zeng. 2019. 2.5D
Convolution for RGB-D Semantic Segmentation. In 2019 IEEE Inter-
national Conference on Image Processing (ICIP). 1410–1414. https:
//doi.org/10.1109/ICIP.2019.8803757

[32] Yajie Xing, Jingbo Wang, and Gang Zeng. 2020. Malleable 2.5D Con-
volution: Learning Receptive Fields Along the Depth-Axis for RGB-D
Scene Parsing. In Computer Vision – ECCV 2020, Andrea Vedaldi, Horst
Bischof, Thomas Brox, and Jan-Michael Frahm (Eds.). Springer Inter-
national Publishing, Cham, 555–571.

[33] Bowen Yin, Xuying Zhang, Zhongyu Li, Li Liu, Ming-Ming Cheng,
and Qibin Hou. 2023. DFormer: Rethinking RGBD Representation
Learning for Semantic Segmentation. arXiv preprint arXiv:2309.09668
(2023).

[34] Jiaming Zhang, Huayao Liu, Kailun Yang, Xinxin Hu, Ruiping Liu,
and Rainer Stiefelhagen. 2023. CMX: Cross-Modal Fusion for RGB-X
Semantic Segmentation With Transformers. IEEE Transactions on
Intelligent Transportation Systems 24, 12 (2023), 14679–14694. https:
//doi.org/10.1109/TITS.2023.3300537

[35] Jiawei Zhao, Yifan Zhao, Jia Li, and Xiaowu Chen. 2020. Is Depth
Really Necessary for Salient Object Detection?. In Proceedings of the
28th ACM International Conference on Multimedia (Seattle, WA, USA)
(MM ’20). Association for Computing Machinery, New York, NY, USA,
1745–1754. https://doi.org/10.1145/3394171.3413855

Table 5.Model training settings and hyperparameter ranges
for tuning. *For large models the batch size is kept between
4 and 8.

Parameter Synthetic NYUDepthV2
Images for training 200 795
Epochs 40 100
Warm up epochs 10 10
Number of hyperpa-
rameter tuning trials

15 20

Tuneable parameters
Learning Rate (1e-5, 1e-3) (1e-5, 1e-3)
Batch Size [4,8,16*] [4,8,16*]
LR Power (0.8, 1.0) (0.8, 1.0)
Momentum (0.9, 0.99) (0.9, 0.99)
Weight decay (1e-4, 1e-2) (1e-4, 1e-2)

Table 6. Model configurations used, each first row displays
the names of the backbones and the second row the amount
of parameters of the model for each backbone. M stands for
million.

Model Synthetic NYUDepthV2
DFormer Small Base
parameters: 18.7M 29.5M

CMX mit_b1 mit_b2
parameters: 44.5M 66.6M

TokenFusion mit_b1 mit_b2
parameters: 15.0M 26.0M

SegFormer mit_b1 mit_b2
parameters: 13.7M 27.4M

A Experiment Setting
All images are generated at a resolution of 400 by 400 pixels,
this saves both time in rendering and preprocessing since
the images do not have to resized for the neural networks.
Using scripts, the depth maps with depth measured in Unity
meters from the camera are converted to (normalized) depth
images. The format used by Unity to store the labeled data
is then converted to a COCO (Common Objects in Context)
format, which is subsequently transformed into a format
compatible with the training and testing framework inspired
by DFormer [33].
For an overview of the parameters used for creating syn-

thetic datasets see Table 7. The settings used for training the
model are displayed in Table 5 and the model configurations
in Table 6.

11

https://proceedings.mlr.press/v162/wu22d.html
https://api.semanticscholar.org/CorpusID:199000781
https://doi.org/10.1109/ICIP.2019.8803757
https://doi.org/10.1109/ICIP.2019.8803757
https://doi.org/10.1109/TITS.2023.3300537
https://doi.org/10.1109/TITS.2023.3300537
https://doi.org/10.1145/3394171.3413855


Pascal Benschop

Table 7. The settings used in Unity to create the synthetic datasets. *The depth is normalized using min-max normalization in
code to (0,1). "U" stands for "Uniform", "z-pos" for spatial position on the z axis.

Experiment Near-Far plane bg z-pos bg color rotation (x,y,z) fg z-pos fg scale

RGB OOD 90 - 110 U(98-100)* white (-90, 0, 0) U(96-98)* 0.5

Spatial

Close 50 - 110 U(100-110) white (-90, 0, 0) U(50-55) 0.5
Midway 50 - 110 U(100-110) white (-90, 0, 0) U(72.5-77.5) 0.5
Far 50 - 110 U(100-110) white (-90, 0, 0) U(95-100) 0.5
Medium Range 50 - 110 U(100-110) white (-90, 0, 0) U(65-85) 0.5
Whole Range 50 - 110 U(100-110) white (-90, 0, 0) U(50-100) 0.5

FgBg Separation

White Bg 50 - 110 U(90-110)* white U(0-360) all axes U(50-90)* U(0.4-0.7)
Color Bg 50 - 110 U(90-110)* Colors U(0-360) all axes U(50-90)* U(0.4-0.7)
Texture Bg 50 - 110 U(90-110)* Green Textures U(0-360) all axes U(50-90)* U(0.4-0.7)

B Variations in RGB on NYUDepthV2
See figures 12 and 13 for more results from RGB-D mod-
els tested on variations applied to the RGB images of the
NYUDepthV2 dataset.

Figure 12. Testing the robustness of RGB-D models com-
pared to a baseline RGB models on varied saturation levels
applied to the NYUDepthV2 dataset. The dataset is in its
original state when the saturation level is at 0. All models
that use RGB-D information show increased robustness to
very low and high saturation values compared to the base-
line.

C Varying spatial position results per
model

Tables 8, 9 and 10 show results of the variation in spatial
position experiment with synthetic data for each RGB-D
model.

Figure 13. Testing the robustness of RGB-D models com-
pared to a baseline RGB models on varied hue values applied
to the NYUDepthV2 dataset. The dataset is in its original
state when the hue value is at 0. Only DFormer shows in-
creased robustness across all hue values compared to the
baseline.

C.1 NYUDepthV2 Spatial experiments
Figures 14, 15 and 16 provide results for models trained on
the NYUDepthV2 dataset and tested on the dataset with
variations applied to depth.

D Results of adapting the background per
class on NYUDepthV2 for different
models

Figure 17 displays results for the TokenFusion, CMX and
SegFormer model from varying the background of classes.

12



Unreached potentials of RGB-D segmentation

Table 8. Results of training the DFormer model and varying
the spatial dimension.

Predicted on

Trained on

92.0
±0.12

94.84
±0.33

23.82
±7.17

92.61
±1.01

82.24
±1.35

71.73
±7.70

94.03
±0.25

43.66
±6.94

93.87
±0.27

82.95
±2.06

44.19
±4.17

88.78
±1.25

95.10
±0.48

86.85
±1.47

74.59
±1.81

84.66
±0.04

94.15
±0.25

70.41
±1.96

94.23
±0.21

90.1
±0.11

88.93
±0.47

96.31
±0.39

93.65
±0.70

96.47
±0.38

94.93
±0.45

Table 9. Results of training the CMX model and varying the
spatial dimension.

Predicted on

Trained on

90.81
±0.32

85.17
±1.82

1.40
±0.09

68.82
±1.23

67.45
±0.38

80.94
±0.69

97.05
±0.04

1.42
±0.11

82.82
±5.73

71.41
±2.41

38.92
±9.19

92.84
±0.80

95.89
±0.04

88.94
±2.76

70.89
±6.52

88.44
±0.21

98.14
±0.09

1.66
±0.32

98.08
±0.08

87.95
±0.92

88.23
±0.03

97.01
±0.06

93.38
±0.35

96.96
±0.06

94.86
±0.11

Table 10. Results of training the TokenFusion model and
varying the spatial dimension.

Predicted on

Trained on

93.17
±0.09

85.88
±7.87

5.74
±3.09

80.27
±12.5

73.66
±5.37

82.32
±4.51

96.24
±1.11

3.85
±2.41

91.87
±1.99

74.92
±2.36

48.28
±2.22

88.6
±0.62

93.91
±0.01

86.33
±0.21

75.31
±0.45

83.15
±3.25

95.59
±0.2

1.87
±0.56

95.55
±0.21

83.23
±1.86

90.7
±0.67

96.48
±0.16

92.09
±1.18

96.05
±0.19

94.87
±0.37

Figure 14. Varying the scale of depth on the NYUDepthV2
dataset, the DFormer model drops in accuracy for depth with
a different scale than trained on.

13



Pascal Benschop

Figure 15. Varying the scale of depth on the NYUDepthV2
dataset, the TokenFusion model drops in accuracy for depth
with a different scale than trained on. It is the most robust
out of the three RGB-D segmentation neural networks.

Figure 16. Varying the scale of depth on the NYUDepthV2
dataset, the CMX model drops in accuracy for depth with
a different scale than trained on. It is the least robust out
of the three RGB-D segmentation neural networks, with
a reduction of almost 5 percent in mean Intersection over
Union for depth scaled between 33% and 66% of the original
values.

14



Unreached potentials of RGB-D segmentation

(a) TokenFusion model (RGB-D)

(b) CMX model (RGB-D)

(c) SegFormer model (RGB)

Figure 17. Adding a noisy background behind classes in the image based on depth. The CMX and TokenFusion models get
unnecessarily affected by the noisy background, especially since the RGB SegFormer model is less affected.

15



Unreached potentials of RGB-D segmentation

Supplementary Materials

Additional Information Supporting the Thesis

1



Pascal Benschop

A Neural networks
Neural Networks are like giant mathematical formula’s with parameters that can be tuned to approximate almost any
distribution of data. As we have seen in recent times, ChatGPT (based on the Generative Pre-trained Transformer model) can
learn to understand basic language. But first going back to basics: the method of least squares or linear regression can be seen
as the predecessor of the modern neural networks, for these methods the mean squared errors between calculated outputs and
targets are minimized by adjusting weights.

In its simplest form, linear regression involves finding the best-fitting straight line through a set of points on a graph. This
line is determined by the equation:

𝑦 =𝑚𝑥 + 𝑏
where:
• 𝑦 is the predicted value,
• 𝑥 is the input variable,
• 𝑚 is the slope of the line, and
• 𝑏 is the bias term or y-intercept, which is the value of 𝑦 when 𝑥 is 0.

The goal is to adjust𝑚 and 𝑏 such that the line minimizes the difference between the predicted values and the actual data
points.
Understanding linear regression is crucial because it lays the groundwork for more complex models like neural networks.

At its core, a neural network can be seen as an extension of linear regression, where instead of a single line, we have multiple
layers of transformations that enable the model to capture complex, non-linear relationships in the data.

Not all problems can be solved with linear methods. Take for example the first major non-linear problem: learning the XOR
function (see figure 18). Given points for class True: (0,1) and (1,0) and for class False: (0,0) and (1,1) there is no single line that
can separate these classes in such a way that the classes are completely separated.

Figure 18. No linear decision boundary can separate the classes in the XOR problem. Source: demystifying the xor problem

Neural networks introduce non-linearity through an activation function, allowing it to solve more complex problems. An
example of an activation function is the sigmoid, that exponentially goes to 0 when the input is smaller than 0 and exponentially
to 1 when the input is larger than 0. In this research the networks mainly use Rectified Linear Unit and the Leaky Rectified
Linear Unit, which are methods that change directly at the boundary (0).
The simplest neural network is the perceptron, which can be thought of as a single-layer linear classifier. A perceptron

takes multiple input signals, applies weights to them, sums them up, and passes the result through an activation function to
produce an output (see equation 1).

𝑦 = 𝜎

(
𝑛∑︁
𝑖=1

𝑤𝑖𝑥𝑖 + 𝑏
)

(1)

Where:
• 𝜎 : denotes the activation function.
• ∑𝑛

𝑖=1𝑤𝑖𝑥𝑖 + 𝑏 calculates the weighted sum of inputs and adds a bias term for a linear transformation of the input data.
The first deep learning neural network was the multilayer perceptron (MLP), in this network perceptrons are used in

multiple layers that together define a pipeline from input to output. The weights in the perceptrons were first optimized by
stochastic gradient descent, which is an iterative algorithm that approximates the gradient and updates the weights in the

2

https://dev.to/jbahire/demystifying-the-xor-problem-1blk


Unreached potentials of RGB-D segmentation

direction of this gradient. Thereafter backpropagation was invented, an important algorithm that calculates the gradient of a
loss function with respect to the weights of a network starting from the last layer. A loss function is a function that takes
an input and a ground truth, and computes how far the input is from the ground truth. By starting from the last layer, the
derivatives of the input with respect to the layer after the current can be cached and used in the gradient calculations of the
current layer, avoiding redundant calculations. The result of backpropagation is a set of gradients for each parameter in the
neural network, these gradients represent the change of the loss function with respect to each parameter. The parameters can
then be optimized by performing a step, controlled by the learning rate, in the opposite direction of the gradient to reduce the
loss.

A.1 Loss functions
Several loss functions exist that compute how far a prediction is from the ground truth, for segmentation a popular loss
function is Cross entropy loss. Cross entropy loss is also commonly used as a loss function for classification tasks. It measures
the performance of a classification model whose output is a probability value between 0 and 1.

For a single instance, the cross entropy loss is defined as:

𝐿(𝑦,𝑦) = −
𝐶∑︁
𝑖=1

𝑦𝑖 log(𝑦𝑖 )

where:
• 𝑦 is the true label, often represented as a one-hot encoded vector.
• 𝑦 is the predicted probability vector.
• 𝐶 is the number of classes.
• 𝑦𝑖 is the binary indicator (0 or 1) if class label 𝑖 is the correct classification for the current instance.
• 𝑦𝑖 is the predicted probability of class 𝑖 .

For a dataset with 𝑁 instances, the total cross entropy loss is the average of the individual losses:

𝐿 = − 1
𝑁

𝑁∑︁
𝑛=1

𝐶∑︁
𝑖=1

𝑦𝑛,𝑖 log(𝑦𝑛,𝑖 )

where:
• 𝑁 is the number of instances in the dataset.
• 𝑦𝑛,𝑖 is the binary indicator if class 𝑖 is the correct classification for instance 𝑛.
• 𝑦𝑛,𝑖 is the predicted probability of class 𝑖 for instance 𝑛.

A.2 Components of a Neural Network
Neural networks are intricate systems composed of several essential components, each contributing uniquely to their func-
tionality. The backbone or encoder serves as the foundational framework, initiating the process by extracting fundamental
features from raw (or preprocessed) input data. This initial feature extraction is pivotal in tasks like image recognition, where
layers within the backbone identify patterns such as edges and textures.
Once the encoder has encoded the input data into a latent representation (see Figure 19), the decoder comes into play.

This component decodes the learned representations, translating them into understandable outputs that align with the task
requirements. For instance, the decoder outputs predictions per pixel based on the encoded features. The encoder and decoder
component consist of smaller building blocks such as convolution and attention.

A.3 Building Block: Convolution
Given the basic notion of a neural network, how can this be applied to an image? It is possible to convert all pixels in the image
into a giant vector which can be fed into a feed-forward network, but then all spatial relations between pixels are lost. With
the introduction of the convolution operation neural networks can exploit local correlation in images. Convolution works like
a sliding window that moves across the image, performing a mathematical operation at each position. Convolution in a neural
network is expressed as following:

(𝐼 ∗ 𝐾) (𝑥,𝑦) =
𝐻−1∑︁
𝑖=0

𝑊 −1∑︁
𝑗=0

𝐼 (𝑥 + 𝑖, 𝑦 + 𝑗) · 𝐾 (𝑖, 𝑗) (1)

3



Pascal Benschop

Figure 19. A visualization of an encoder and a decoder in a neural network. Source: A Perfect guide to Understand Encoder
Decoders in Depth with Visuals

Figure 20. A visual simplified example of convolution with an averaging kernel (calculating the average color from the 3
by 3 grid). In this example depth can help neural networks ignore irrelevant backgrounds (the blue and green pixels). The
diagonal line in the output is added for readers who experience trouble seeing differences between colors. A diagonal line to
the top left corner indicates correct behavior, while a diagonal line to the top right corner indicates incorrect influence from
the background.

Where I is the input image, K is the convolutional kernel or filter, and H and W are the height and width of the kernel. See
an example of a 3 by 3 convolutional kernel (with averaging weights) in Figure 20. Another advantage of using convolution is
that the weights of the filter are shared across all pixels, which reduces the complexity of the neural network.
When a convolutional kernel is applied to an image, it processes small overlapping regions of the image, computing a dot

product (like in Equation 1) between the kernel and the region it covers. This operation results in a new image, often of the
same size as the original (if padding is used), where each pixel value represents a feature extracted from the corresponding
region of the input image. This transformed image is referred to as a feature map.

In a convolutional layer, multiple such kernels (or filters) are applied simultaneously. Each filter is designed to detect specific
features or patterns within the input image. For instance, one filter might learn to detect edges in various orientations, while
another might recognize textures or specific shapes. As the convolutional layer learns through training, each filter adjusts its
parameters to become sensitive to different aspects of the input data.
By stacking these feature maps along the depth dimension, the convolutional layer captures a rich representation of the

input image, highlighting different aspects of its content. This hierarchical extraction of features through convolution and
pooling operations forms the basis of deep learning architectures like convolutional neural networks (CNNs), enabling them to
automatically learn and discriminate complex patterns within images.

4

https://medium.com/@ahmadsabry678/a-perfect-guide-to-understand-encoder-decoders-in-depth-with-visuals-30805c23659b
https://medium.com/@ahmadsabry678/a-perfect-guide-to-understand-encoder-decoders-in-depth-with-visuals-30805c23659b


Unreached potentials of RGB-D segmentation

Figure 21. A visualization of how the attention operation theoretically can assign importance of each part of the input for the
word "Fox".

A.4 Building Block: Attention
Attention is a sequence of operations, which are originally used for better text recognition and generation, for examle in GPT
models. The basic idea of attention is to look at the similarity of different parts of the input, for example the importance of the
word "Fox" in Figure 21. Self-attention, introduced in the paper "Attention is All You Need", extends this concept by combining
the calculation of importance with learnable weights. The self-attention operation is the basic building block of a transformer
architecture, it is expressed as following:

Attention(𝑋 ) = softmax
(
𝑋𝑄 (𝑋𝐾𝑇 )
√
𝑑𝑘

)
𝑉

Let’s break this formula down, The input 𝑋 is passed through three different linear layers (think of these as layers that
perform weighted sums of the input plus a bias like a Perceptron). These layers produce the Queries (Q), Keys (K), and Values
(V). This can be visualized as:

𝑄 = 𝑋𝑊𝑄 , 𝐾 = 𝑋𝑊𝐾 , 𝑉 = 𝑋𝑊𝑉

where𝑊𝑄 ,𝑊𝐾 , and𝑊𝑉 are weight matrices. By passing the input through different layers, the neural network can focus at
different parts of the input and capture more information.

We then calculate the similarity between queries and keys by taking the dot product of the query matrix with the transpose
of the key matrix:

𝑄𝐾𝑇

This step helps determine how much focus each word (or part) in the input should receive based on the similarity scores.
To prevent large values that can destabilize the learning process, we scale the dot product by the square root of the dimension

of the keys 𝑑𝑘 :

𝑄𝐾𝑇
√
𝑑𝑘

This scaling helps in maintaining stable gradients during training, making the learning process smoother. Specifically, large
gradients can cause the model parameters to update too drastically, leading to issues like overshooting the optimal solution or
causing numerical instability.
After scaling, softmax is applied to the scaled dot product. The softmax function converts the similarity scores into

probabilities that sum to 1:

softmax
(
𝑄𝐾𝑇
√
𝑑𝑘

)
This step helps in highlighting the important parts of the input while suppressing the less relevant ones.

5



Pascal Benschop

These probabilities are then used to weigh the values (V):

softmax
(
𝑄𝐾𝑇
√
𝑑𝑘

)
𝑉

This produces the output of the attention mechanism, which is a weighted sum of the values, focusing on the important
parts of the input.

Often multiple attention heads are used: the input is linearly divided into multiple sets of queries, keys, and values, allowing
the model to focus on different parts of the input sequence simultaneously. Each attention operation is performed in parallel,
after which the outputs are concatenated and linearly transformed to form the final output.
The main takeaway is that attention allows a model to assign weights to each part of the input, at the cost of having

exponential more parameters than other operations with respect to the input size. For this reason, vision transformers scale
down the input image, often into patches.

A.5 Neural Network Training
The training process begins by initializing the network’s weights. These weights are typically set to small random values. The
weights can also be copied from the same model trained on a different (or even the same) task. With the network initialized, a
dataset is fed into the network in batches, and the network makes predictions based on its current state.
The difference between the network’s predictions and the actual labels is calculated using a predefined loss function. In

our case this loss function is Cross Entropy Loss. The network’s weights are then adjusted to minimize this loss using an
optimization algorithm, commonly stochastic gradient descent (SGD) or one of its variants like Adam.
During training, the concept of convergence is critical. Convergence refers to the point where further training does not

significantly reduce the loss, indicating that the network has learned the underlying patterns in the data. However, training too
long can lead to overfitting, where the network performs exceptionally well on the training data but poorly on new, unseen
data. This happens because the network has learned to memorize the training data, including its noise and peculiarities, rather
than generalizing from it.
To avoid overfitting, several techniques are used. One common method is to split the data into training and validation

sets. The model is trained on the training set while periodically being evaluated on the validation set. This helps monitor the
model’s performance on unseen data, and allows for early stopping when the validation accuracy stops improving.

Regularization techniques, such as dropout and weight decay, are also employed to prevent overfitting. Dropout randomly
disables a fraction of neurons during training, forcing the network to learn redundant representations and thus generalize
better. Weight decay adds a penalty to the loss for large weights, discouraging the network from becoming too complex.
Lastly, it is crucial to use a diverse and representative dataset for training. This ensures that the network learns a wide

range of patterns and features, improving its ability to generalize to real-world data. Proper data preprocessing (for example
normalizing the input data) and augmentation (for example mirroring and randomly cropping + scaling the input data) can
also enhance the network’s robustness and performance.

A.6 Hyperparameters
Hyperparameters are constant parameters that are not optimized during training, these parameters are set by the user or can
be found through hyperparameter searching. Take for example the learning rate, which defines how much the weights of a
neural network are adjusted. Often the learning rate is changed over time, high at first and lower towards convergence. The
initial learning rate can have a large impact on the outcome of training: too high and the network never converges, too low
and the network never learns much outside of its initial assumptions.
By splitting the training data in a smaller set for training only and a validation set for testing, we can train the neural

network multiple times with different hyperparameters and find out based on the score from testing on the validation set
which hyperparameters are most effective. It is crucial that the test data is not used as the test data resembles a scenario that
the network has never seen. If the network is optimized with knowledge of the test data it could overfit and not generalize to
unseen data.

A.7 Modalities: RGB, Depth and RGB-D
A modality is a type of data that exhibits some structure. Take for example an RGB image, this is defined as a 3 dimensional
pixel array of dimensions channels, width and height. Whereas Depth has only one channel. Other popular modalities in
machine learing include: audio, video and text.

Most neural networks are defined on single modalities, these are called unimodal. The challenge of multi-modal networks,
which combine input data types, is to align data from one type with another. With RGB-D data this is relatively easy since

6



Unreached potentials of RGB-D segmentation

every pixel in the RGB image has a corresponding depth, it is still possible to misalign the pixels, for example if a rock captured
in an image is slightly to the left in the depth image.

B Computer Vision tasks
A simple visualization of computer vision tasks in figure 22 shows semantic segmentation, classification, object detection and
instance segmentation. The tasks are explained in increasing complexity: classification, followed by object detection, then
semantic segmentation, and finally instance segmentation.

Figure 22. Comparison of semantic segmentation, classification and localization, object detection and instance segmentation
(Li, Johnson and Yeung, 2017)

classification: In classification the final layer of a neural network is a list of probabilities for each class. This list can contain
very high (or low) values, therefore the result is normalized with softmax. The network then returns the class with the highest
probability.

Object detection A neural network that can do object detection has multiple output heads that each predict the location of
an object and the class of object. Often the location of the object is denoted with a bounding box describing the coordinates
of the object’s position within the image. These coordinates typically include the (𝑥,𝑦) position of the top-left corner of the
bounding box, as well as the width and height of the bounding box. The object class is predicted as a probability distribution
over a predefined set of classes.
Segmentation: In segmentation, the neural network predicts a pixel-wise classification of the input image. Each pixel in

the image is assigned a label corresponding to the object class it belongs to. There are two main types of segmentation:
• Semantic Segmentation: This involves classifying each pixel into a predefined set of classes. The network outputs a
segmentation mask where each pixel is labeled with the class it belongs to, without distinguishing between different
instances of the same class. For example, in an image with multiple cats, all cat pixels will be labeled as "cat," but
individual cats are not distinguished.
• Instance Segmentation: This extends semantic segmentation by also distinguishing between different instances of the
same class. The network outputs multiple segmentation masks, one for each object instance in the image. Each mask
indicates the pixels belonging to a specific instance of an object, allowing the model to differentiate between multiple
objects of the same class.

C Computer Vision models used
SegFormer SegFormer [30] is a lightweight neural network that uses the Transformer framework (with attention mechanism)
for semantic segmentation. While SegFormer is not a State-Of-The-Art RGB segmentation model anymore, it is still an efficient
neural network that can be used as baseline.

CMX The CMX model [34] employs the same backbone as SegFormer, but for multiple modalities (e.g., RGB, depth, thermal,
polarization, LiDAR). Between each layer, features (outputs) are rectified and fused, this ensures that features from different
modalities such as RGB and depth actually align with each other.

7



Pascal Benschop

Figure 23. Taken from DFormer [33]. The backbone from DFormer can generate more expressive feature maps for depth than
a backbone pretrained on RGB.

TokenFusion Similarly to CMX, TokenFusion [26] uses the SegFormer single-modal backbones. TokenFusion improves
Vision Transformers by combining two techniques: merging and pruning of tokens. Tokens are small, fixed-size pieces of
the image that can be processed individually and thus in parallel. For example, a token might represent a 20x20 pixel patch
extracted from the image, such as from the bottom left corner. These tokens undergo a linear transformation from a linear
layer in the neural network, to convert them into feature vectors.

Token pruning helps when the model is very sensitive to changes in the input images, such as resizing or scaling. It involves
removing less important tokens to focus on the most relevant parts of the image. On the other hand, token merging combines
similar tokens, which is useful when the model processes inputs in a straightforward manner, without being heavily affected
by small changes. This approach leads to better accuracy, efficiency, and robustness, meaning the model performs well even
when the input images vary.

DFormer DFormer [33] brings a new neural network architecture, but more importantly, a pretraining framework for a
RGB-D backbone that learns transferable RGB-D representations, see Figure 23. The pretrained backbone uses depth more
effectively than other networks that utilize a RGB pretrained backbone for depth inputs. The backbone is also more efficient as
Bowen et al found that a small amount of channels is enough to encode the depth information compared to RGB features.

D Out-of-Distribution Robustness
Out-of-distribution (OOD) robustness refers to the ability of a neural network to maintain its performance when it encounters
data that is significantly different from the data it was trained on. This is crucial because, in real-world applications, neural
networks often face unpredictable and novel scenarios that differ from their training data. Without robustness to these
variations, a model might fail in critical applications, such as autonomous driving, medical diagnosis, or security systems,
leading to potentially disastrous consequences.
Neural networks are not automatically robust to OOD data, and this lack of robustness can pose significant challenges

in practical applications. Neural networks often struggle with OOD data because they are trained on specific datasets that
might not capture the full diversity of real-world scenarios. When the training data is biased or limited, the network fails to
generalize to unseen situations. Especially deep neural networks (having many layers) are affected, since these tend to overfit
on the training data more easily. Overfitting happens when a model memorizes the training data’s noise and specific details
rather than learning the underlying patterns, resulting in poor performance on new data.

Furthermore, neural networks typically lack explicit mechanisms to detect when they encounter OOD data. Without these
mechanisms, they treat OOD inputs as if they were in-distribution, leading to incorrect and often overconfident predictions.
Neural networks can be highly sensitive to slight deviations from their training data, further undermining their robustness to
OOD scenarios.

In real-world applications such as autonomous driving, medical diagnosis, or security systems, the consequences of a lack
of robustness in neural networks can be severe. A model that performs well in controlled, in-distribution settings might fail
catastrophically when faced with novel, unpredictable situations. This underscores the need for developing neural networks
that can maintain performance across a wider range of inputs, including those from RGB and depth (RGB-D) sensors. Ensuring
OOD robustness is critical for the safe and reliable deployment of neural networks in these critical applications, where failures
can lead to disastrous outcomes.

8



Unreached potentials of RGB-D segmentation

Figure 24. A view of the Unity Editor with Randomizer scripts on the right. Each tab can be opened to adjust specific
parameters for that Randomizer. In the scene, grocery objects are placed in the front of a background of white objects with the
light position adjusted.

E Synthetic Data Generation
For this project all synthetic data is generated with Unity, using the the SynthDet project3. The project focuses on synthetic
data generation for RGB object detection, but it can also output segmentation labels and depth maps. These depth maps contain
depth values in Unity meters from the camera, so they need to be normalized / converted to depth images.

How does it work? The project contains scripts called Randomizers (see Figure 24), these scripts are executed sequentially.
Each script plays a part in the customization of the scene that is being rendered. The first Randomizers place objects at various
positions, then other Randomizers change color, light, rotations and more. The SynthDet project, by default, already includes
numerous Randomizers. However, a few Randomizer scripts are adjusted for the conducted experiments. The Light Randomizer
script has been modified to enable controlled changes in light direction. Additionally, a Perspective Randomizer script has
been incorporated to alter the camera’s direction, followed by a translation to ensure the camera remains focused on the
segmentation objects.
Data generation The rendered dataset is stored in a Unity SOLO (Synthetic Optimized Labeled Objects) format, which

includes JSON files for annotations and image files. While Unity provides a script to convert the SOLO format to COCO for
object detection, a different format is needed for segmentation tasks. Therefore, the dataset is first converted from SOLO to
COCO and then to a specific segmentation format. In the COCO format, segmentation data is stored in JSON files, but the
framework for training and testing requires annotations in the form of images where each pixel represents a class value. The
final format consists of folders containing RGB images, depth images, and labels.

F Extension to Salient Object Detection: HiDANet
This appendix explores the application of the Hierarchical Depth Awareness network (HiDAnet) for RGB-D saliency detection
to differentiate foreground and background regions in images. HiDAnet aims to accurately localize salient regions by fusing
and enhancing the discriminatory power of RGB and depth features through a granularity-based attention scheme. See Figure
25 for an overview of the architecture. Despite its robust design, including a cross dual-attention module for multi-modal and
multi-level fusion, HiDAnet’s performance can be significantly affected by variations in background appearance.
In the tests conducted, the background of images was modified while maintaining consistent depth information. These

modifications included changes in color, texture, and white backgrounds. See Table 11 for the results. The variations in
3https://github.com/Unity-Technologies/SynthDet

9

https://github.com/Unity-Technologies/SynthDet


Pascal Benschop

Figure 25. The architecture of the HiDANet salient object detection model, Multi Granularities are created by separating the
depth map using the Multi-Otsu tresholding algorithm. The model produces outputs for each modality separate and for the
fusion of both modalities. Source: HiDAnet: RGB-D Salient Object Detection via Hierarchical Depth Awareness (Wu et al.,
2023).

appearance (RGB), despite not affecting the depth modality, caused notable degradation in the network’s ability to accurately
distinguish between foreground and background regions. This indicates a limitation in the network’s robustness to background
changes, highlighting an area for potential improvement in RGB-D saliency detection models.

Table 11. Results of training the HiDANet model on datasets with varying backgrounds (see Figure 7). The model returns
outputs for each modality and for the combined modalities. The output for the depth modality remains accurate, while the
influence of variations in RGB also affect the RGB-D output.

Predicted on

Trained on Output modality W
hi
te

C
ol
or

Te
xt
ur

e

White
RGB 97.85 23.49 16.20
Depth 97.51 97.51 97.51
RGB-D 99.41 26.76 18.36

Color
RGB 96.45 97.55 16.25
Depth 98.01 98.01 98.01
RGB-D 99.41 99.45 20.89

Texture
RGB 16.70 18.28 97.76
Depth 97.68 97.68 97.68
RGB-D 17.31 19.86 99.39

G Discarded experiment: replacing the background with cars as foreground
For this experiment, the DFormer neural network has to correctly segment the cars with different backgrounds both in
appearance, shape and spatial layout. The network is trained on the subset of datasets excluding a flat white background
which is used as a baseline testing dataset. An ideal model would ignore unseen backgrounds when predicting the foreground
classes. To simulate such a model a pipeline is created where a depth-only model predicts the background such as in figure
26b, and then another model uses this as input to ignore the background.

10



Unreached potentials of RGB-D segmentation

(a) Datasets with different backgrounds. The top row shows RGB images and the bottom row shows Depth images. Best viewed in color.

(b) Example of RGB images where the background is predicted by a network and removed.

Figure 26. Comparison of datasets with different backgrounds and the process of predicting and removing the background.

G.1 Results
The DFormer model experiment is conducted twofold: first without using pretrained weights and then with pretrained weights.
For each iteration, results are compiled into tables, comparing the performance of the original model with that of the model
trained on images with backgrounds removed. The results from training and testing the model without pretrained weights are
detailed in Table 12, and with pretrained weights in Table 13. Interestingly, in both experiments, the mean Potential (which is
the mean difference between RGB-Depth and RGB-Background_Removed) reveals that the multi-modal models underperform
compared to a pipeline of unimodal models, which is an unexpected result. This indicates that the expected advantages of
multi-modal integration are not realized in these experiments, highlighting a need for further investigation into the underlying
causes.

H Discarded experiment: Comparing depth information with grayscale
Depth is useful because:
• It highlights shape, geometric information of the scene.
• It contains no distractions from color, texture or lighting.

For the reasons that depth is useful in addition to RGB information in computer vision tasks, experiments are carried out to
test whether results from training on synthetic datasets reflect these reasons.
For this experiment, synthetic datasets were generated using the SynthDet Unity project. The project includes scripts

called Randomizers that modify scene parameters to generate dataset samples. It also provides 63 high-quality 3D models of
commonly found grocery products. While most experiments used these assets, objects with similar shapes were observed

11



Pascal Benschop

Table 12. mIoU values for models trained and tested on different datasets. While fusing the RGB and Depth features leads to
better In Distribution accuracy, training first on Depth and then on a background removed RGB leads to better foreground-
background separation.

Testing Dataset
Training Dataset Model White Colors Texture Texture +

Shape
Texture +
PShift

Colors RGB-D 60.263 97.28 80.269 92.973 89.303
RGB-BR 97.362 96.903 94.25 95.456 94.554

Texture RGB-D 64.68 64.905 96.555 97.053 95.202
RGB-BR 97.141 94.901 95.807 96.199 93.364

Texture + Shape RGB-D 75.845 66.913 91.495 96.884 94.855
RGB-BR 95.839 94.912 94.278 94.936 92.347

Texture + PShift RGB-D 72.675 73.229 85.903 97.228 97.781
RGB-BR 97.025 96.697 95.569 96.083 96.523

𝑃𝑜𝑡𝑒𝑛𝑡𝑖𝑎𝑙 28.476 27.154 8.81 0.161 0.302

Table 13. mIoU values for pretrained models trained and tested on different datasets. While pretraining the models does help
the models separate foreground from background better, there is still room for improvement.

Testing Dataset
Training Dataset Model White Colors Texture Texture +

Shape
Texture +
PShift

Colors RGB-D 96.169 97.803 91.859 94.5 94.646
RGB-BR 97.78 97.505 94.196 97.443 95.561

Texture RGB-D 96.123 90.645 97.377 98.0 92.837
RGB-BR 98.058 97.771 97.606 97.887 95.647

Texture + Shape RGB-D 88.981 92.501 93.202 97.891 93.904
RGB-BR 97.839 97.571 97.299 97.772 95.562

Texture + PShift RGB-D 97.856 91.96 95.692 97.48 97.721
RGB-BR 98.149 97.849 97.264 97.559 97.159

𝑃𝑜𝑡𝑒𝑛𝑡𝑖𝑎𝑙 3.174 6.028 2.669 0.970 1.794

in depth alone, posing challenges even for neural networks. For experiments prioritizing shape over appearance, additional
assets representing gem structures were included.
With the synthetic datasets prepared, the multi-modal neural network DFormer was trained to compare RGB-Grayscale

with RGB-Depth inputs to evaluate the impact of depth information on segmentation performance. RGB-Grayscale was chosen
because grayscale encompasses the information present in the Red, Green, and Blue channels of an image. While grayscale
lacks color information, which complicates testing for robustness against color in comparison with depth, different colors
produce varying shades of grey. Using a black image as a depth map would unfairly bias the model parameters, providing an
advantage to RGB-Depth inputs.

H.1 Depth is useful because of its emphasis on geometric information
For this hypothesis, 5 datasets are created containing the groceries objects in front of a black wall. For the first dataset, named
default, the objects are placed at a random position at the same depth plane with no other modifications. Then the objects are
scaled randomly to test whether depth can recognize objects of different shape better. For the dataset with variation in spatial
position the objects are translated randomly along the axis aligned with depth. Another dataset tests whether depth helps with
variation in rotations. In the last dataset the segmentation groceries objects are swapped with gem objects that are better
distinguished by their distinctive shape. In this dataset the Hue of the objects is changed so that the network has to rely on
shape, not color to differentiate between the objects. See table 14 for the results.

12



Unreached potentials of RGB-D segmentation

Table 14. Results for experiment 1, the most notable difference in mean IOU score is for the spatial and shape experiment, all
experiments show a (small) improvement for using depth information

Dataset mAcc (%) mIOU (%)
RGB-G RGB-D RGB-G RGB-D Difference

Groceries (default) 99.13 98.89 96.65 95.35 1.3
· Scale varied 97.77 98.88 91.57 95.89 4.32
· Spatial position varied 96.33 98.93 89.54 96.35 6.81
· Rotation varied 95.52 96.1 88.22 89.16 0.94
Gems (Shape) 95.46 97.57 87.07 92.98 5.91

Table 15. Results for experiment 2, all experiments show a (small) improvement for using depth information

Dataset mAcc (%) mIOU (%)
RGB-G RGB-D RGB-G RGB-D Difference

Groceries + White Objects in Background 94.93 96.37 87.21 90.11 2.9
+ White Objects in Foreground 95.04 95.99 84.1 86.83 2.73
White→ Color 92.93 93.83 78.0 80.1 2.1
White→ Texture 93.56 94.23 80.27 81.29 1.02
White→ No Texture 97.47 97.68 91.73 92.32 0.59

Table 16. Results for experiment 3, all experiments show a (small) improvement for using depth information

Dataset mAcc (%) mIOU (%)
RGB-G RGB-D RGB-G RGB-D Difference

Varied Light Angle 85.3 89.48 59.91 65.75 5.84
Varied Light Intensity 93.49 94.63 79.2 81.97 2.77
Varied Light Color 85.74 88.92 57.64 64.22 6.58
Varied Perspective 91.3 94.42 74.4 80.41 6.01
Random Noise 93.62 94.74 79.57 82.88 3.31

H.2 Depth is useful for finding accurate object boundaries
To assess whether depth has an influence on object boundaries, background objects are added to the scene containing the
segmentation objects. In the first experiment, white objects are added as a distraction, which also creates a more realistic depth
map (compared to 1 for objects and 0 for background). In the second, third and fourth experiments, distraction objects are also
placed in front to occlude the segmentation objects. In the third and fourth dataset, colors and textures are respectively added
to the background and occluder objects. Finally a control dataset is made where each segmentation object’s texture is replaced
by a smooth color corresponding to the class. In this test the object’s borders should stand out and both the networks should
perform equal. See Table 15 for the results.
Depth is useful because it is robust to variations in color, illumination and rotation angle Perhaps the most

interesting set of experiments, assessing under what conditions adding depth makes the largest impact in model performance.
All experiments here are performed on the groceries segmentation object with a white background (except for the light &
color experiment) In the experiments with lighting the light is shifted and rotated, the luminance is changed and the color that
the light produces is changed. See Table 16 for the results.

13


	1 Introduction to the thesis
	Abstract
	1 Introduction
	2 Related work
	3 Experimental Setting
	4 Does adding depth enhance robustness against unseen variations of RGB?
	4.1 Setup
	4.2 Results

	5 Are networks robust to unseen variations in spatial position?
	5.1 Results

	6 How do neural networks use depth for separating foreground from background?
	6.1 Evaluation method
	6.2 Results
	6.3 Potential of RGB-D segmentation

	7 Experiments on NYUDepthV2 dataset
	7.1 RQ1: Variations in RGB
	7.2 RQ1: Variations in spatial position
	7.3 RQ2: Variations in background

	8 Conclusions and future work
	Acknowledgments
	References
	A Experiment Setting
	B Variations in RGB on NYUDepthV2
	C Varying spatial position results per model
	C.1 NYUDepthV2 Spatial experiments

	D Results of adapting the background per class on NYUDepthV2 for different models
	A Neural networks
	A.1 Loss functions
	A.2 Components of a Neural Network
	A.3 Building Block: Convolution
	A.4 Building Block: Attention
	A.5 Neural Network Training
	A.6 Hyperparameters
	A.7 Modalities: RGB, Depth and RGB-D

	B Computer Vision tasks
	C Computer Vision models used
	D Out-of-Distribution Robustness

	E Synthetic Data Generation

	F Extension to Salient Object Detection: HiDANet
	G Discarded experiment: replacing the background with cars as foreground
	G.1 Results

	H Discarded experiment: Comparing depth information with grayscale
	H.1 Depth is useful because of its emphasis on geometric information
	H.2 Depth is useful for finding accurate object boundaries


