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abstract
Scatterometry is a non-destructive metrology technique widely used in the semicon-
ductor industry for the reconstruction of periodic structures from diffraction mea-
surements. This involves solving a so-called inverse problem, which can be done
by tuning the geometry parameters of a forward model such that the discrepancy
between the measured diffraction pattern and the diffraction pattern computed us-
ing a Maxwell solver, are minimized. In order to meet with current semiconductor
metrology demands, soft x-ray (SXR) scatterometry has been introduced. In SXR
a short wavelength and broad band illumination source is used, allowing for the
reconstruction of smaller and more complex structures. However, this does require
the use of a computationally expensive forward model. This also complicates the
assessment of the sensitivity of the measurement setup to the various grating param-
eters and whether the parameters can be determined independently. The current
approach to this problem is strictly local. In order to address these issues, the use
of a surrogate model for the Maxwell solver based on Polynomial Chaos Expansion
(PCE) is investigated in this report. The performance of the PCE based surrogate
model is accessed for for the SXR metrology application on a simple 1D line grating.

* Master student Applied Physics, TU Delft.
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1 introduction
Progress in semiconductor manufacturing has been driven by Moore’s law for over
half a century now. To achieve this goal, existing device designs were scaled, until
physical and practical limitations forced the adaption of newer and more complex
designs.This lead to overall smaller and more complex structures as outlined e.g. in
[1]. This also meant that more advanced metrology techniques had to be developed
and introduced to assist in the manufacturing process. The next generation devices
are the so-called gate-all-around (GAA) devices. The scale and three-dimensional
nature of these devices imposes new metrology challenges, as outlined e.g. in [2]
and [3].

Soft x-ray scatterometry is a promising metrology solution for dealing with some
of these challenges.[4] Scatterometry, in general, is a is a non-destructive metrology
technique for the reconstruction of periodic structures from diffraction measure-
ments. This technique works by solving the inverse problem of determining the
geometry parameters, that characterizes the periodic structure, from the diffracted
light. Solving this problem requires a forward model (Maxwell solver), that can
be used to predict a measured diffraction pattern based on the illumination source
used and the geometry parameters. In SXR scatterometry a small-wavelength and
broadband illumination source (10-20 nm) is used to ensure that accurate estimates
of all parameters can be obtained from the ill-posed inverse problem. The problem
faced by scatterometry, however, is that as the complexity of the structures increases
so does the complexity of the forward model, resulting in an ever increasing com-
putational cost. In SXR scatterometry the broad-band nature of the illumination
source adds to this problem.

To mitigate this problem the use of surrogate models, approximations to the for-
ward model that are easier to evaluate in terms of computation cost, in (EUV)
scatterometry was investigated in [5]. The polynomial chaos expansion (PCE) was
shown to be the most promising candidate. This replaces the forward model by a
(set of orhogonal) polyniomial(s), thereby drastically lifting the computational bur-
den. This surrogate can be obtained in an non-intrusive fashion based on a number
of calls to the forward model, meaning that it does not require any changes to the
forward model. Over recent years effort was put in introducing more efficient and
generally applicable schemes to obtain this surrogate.[6][7][8][9] In [8] a regression
based approach using the optimal sampling, outlined in [10], for obtaining a PCE
based surrogate in (visible light) scatterometry was introduced. This approach has
been implemented in the Python package Pythia [11].

An additional benefit of the PCE based surrogate model is that it also facilitates
a global sensitivity analysis, as demonstrated by [12]. The aim of global sensitivity
analysis is to quantify sensitivity of a non-linear function with respect to its input
parameters that does not limit itself to the local change of the function. This can be
quantified by the Sobol indices, that can be efficiently approximated based on the
PCE of the function.[12] In scatterometry the insight gained by the global sensitiv-
ity analysis could be useful in predicting how accurately the geometry parameters
can be obtained from noisy diffraction measurements. In fact, [7] concluded that
uncertainty estimates of the geometry parameters obtained using Bayesian inver-
sion were in-line with expectations set by the Sobol coefficients. This is particularly
relevant for SXR scatterometry as the current approach is strictly local and the use
of naive global methods is impeded by the computational cost of the forward model.

In this work the use of PCE based surrogate models in the context of SXR scat-
terometry is investigated. The PCE are computed using Pythia [11]. This reports
starts with briefly summarizing the relevant theory on scatterometry and polyno-
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mial chaos expansions in Chapter 2. In Chapter 3 the performance of the PCE based
surrogate model is accessed for a typical use case in SXR scatterometry, the Simeon
after develop inspection (ADI) grating. This report ends with some concluding re-
marks in Chapter 4.

This investigation was carried out as part of a three month long internship (equiv-
alent to 18 ECTs) at ASML, as part of the non-academic internship (AP3911) of the
Master Applied Physics program at the TU Delft. This reports also serves as the
internship report that is required to complete the course.
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2 theory
In this chapter the relevant theory is summarized. In Section 2.1 scatterometry is
briefly introduced. In Section 2.2 the polynomial chaos expansions (PCE), as used
here, are introduced. For a more detailed discussion the reader is referred to [12]
and [13].

2.1 Scatterometry

Scatterometry is a non-destructive metrology technique widely used in semicon-
ductor industry for the reconstruction of periodic structures from diffraction mea-
surements. These periodic structures are often referred to as gratings and are
parametrized by a vector of grating parameters, denoted as x. In this study, the
scope is limited to 1D gratings, that are periodic in one direction and constant
along the perpendicular direction.

This technique works by illuminating the grating with a light source and measuring
the resulting diffraction pattern in a defined plane. The problem of determining the
grating parameters x from the diffraction pattern is referred to as the inverse prob-
lem. Typically, this is solved by studying the forward problem, which predicts the
diffraction pattern for a given set of grating parameters x using information on the
illumination source. For scatterometry this is done by solving Maxwell’s equations
using a rigorous solver, e.g. [14]. In the context of this study, the forward model can
be understood as a function fi(x) that maps the grating parameters x to the pixels i
of the detector in the measurement plane.

Then, the inverse problem can be solved by obtaining the grating parameters for
which the discrepancy between measured and predicted diffraction pattern is min-
imized. The inverse problem, in general, is ill-posed. Therefore, it is a priori un-
known whether there is an unique set of grating parameters that explains the mea-
sured diffraction pattern. Moreover, the diffraction pattern must be sensitive to the
grating parameters, so that in the presence of measurement noise accurate grating
estimates can be obtained.[2] In SXR scatterometry a small-wavelength and broad-
band illumination source (10-20 nm) is used to ensure that accurate estimates of all
parameters can be obtained from the ill-posed inverse problem.

2.2 Polynomial Chaos expansions

Polynomial Chaos Expansions are defined for functions f (x) of a random vector
xRM that are distributed according to ρ (x). The used expansion functions Φj (x)
are orthonormal with respect to ρ (x), i.e.∫

Φj (x)Φi (x) ρ (x)dx = δi,j, (1)

where δi,j is the Kronecker delta. Then, the function f(x) can be decomposed as
follows:

f (x) = ΣjcjΦj (x) , (2)

where the expansion coefficients cj follow from the orthonormality given in Eqn. 1:

cj =

∫
Φj (x) f (x) ρ (x)dx. (3)

In literature these expansions are also referred to as generalized polynomial chaos
expansions (gPC). The equality given by Eqn. 2 holds for functions f(x) that have
finite variance, due to the prove by [15] as cited by e.g. [12] and [5].
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Here we consider only uniform distributions on some interval I = [xmin, xmax], as
done in [6] and [9]. In this case the basis functionsΦj(x) are products of normalized
Legendre polynomials Lli(xi):

Φj (x) = ΠMi=1Llij(xi). (4)

For convenience the M dimensional multi-index lj = (l1j, l2j, . . . , lMj) is intro-
duced and used interchangeably with the index j. Then, the total order of a basis
function Φj can be defined as : ΣMi=1lij. The series given in Eqn. 2 can be truncated
based on this convention, by only including all basis functions Φαj up to order P.
This truncated series contains Nc coefficients, as can be found in [12]:

Nc =
(M+ P)!
M!P!

. (5)

2.2.1 Computation

The expansion coefficients can be computed directly from Eqn. 3, using numerical
integration. This approach, however, suffers from the dimensionality curse. In-
stead, we cast the problem of obtaining the coefficients as an regression problem,
by introducing the following objective function:∫ (

f (x) − fPCE (x)
)2
ρ (x)dx. (6)

The objective function in Eqn. 6 can be approximated using Monte-Carlo integra-
tion, as noted in [8], based on Ns samples of the function f(x). Then, Eqn. 6 can be
approximated (upto some constant) by the following cost function:

ΣNsk=1wkR (xk) , (7)

where the residual R(xk) = f (xk) − fPCE (xk) and wk = ρ(xk). Minimization of
this cost function is a straight forward weighted linear least-squares problem. In
order to formulate this problem in terms of a matrix equation, the vector C ∈ RNc

containing all expansion coefficients is introduced. Then, the expansion coefficients
vector C follows from solving:

GC = F, (8)

where the vector F ∈ RNc and the square matrix G are given by:

Fi = Σ
Ns
k=1wkΦi (xk) f (xk) , (9)

Gi,j = Σ
Ns
k=1wkΦi (xk)Φj (xk) . (10)

Note that G must be invertible in order for Eqn. 8 to have an unique solution. This
means that Ns > Nc. In [16] it is stated that Ns = kNc, with k > 2, samples
typically is sufficient. Of course this depends on the used sampling strategy. We
can investigate whether enough samples were used by computing the condition
number K:

K =
σmax

σmin
, (11)

where σ are the singular values of the matrix G. This number indicates how well-
conditioned the matrix is. In particular, this is motivated by the fact that the defini-
tion of Gi,j in Eqn. 10 indicates that K → 1 as Ns → ∞, since the basis functions
Φi(x) satisfy Eqn. 1.
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2.2.2 Sampling

A lot of sampling strategies can be found in literature, e.g. in [12] and [13]. Here the
scope is limited to the strategies implemented in Pythia. The first option is to use a
pre-computed data-set. The other sampling strategies follow from using importance
sampling in the the Monte-Carlo integration used to approximate the objective func-
tion in Eqn. 8. Suppose that we draw Ns samples from some distribution µ(x), than
Eqn. 8 can be approximated by:

ΣNsi=1wiR (xi) , (12)

where wi = ρ(x)µ−1(x). An option could be to sample according to ρ(x). In [10] it
was shown, as cited by [8], that sampling according to:

µ(x) = ρ(x)
1

Nc
ΣNcj=1|Φj (x)|

2, (13)

is optimal in the sense of number of samples Ns required to obtain a well-condition
matrix G, defined in Eqn. 10. According to [8] the number of samples Ns must
satisfy: Ns/ln(Ns) > 4Nc, following the results shown in [10]. In [9], however, it
was observed that this condition is far to stringent.

2.2.3 Sobol indices

The aim of global sensitivity analysis is to quantify sensitivity of a non-linear func-
tion with respect to its parameters that does not limit itself to the local change of
the function. In variance-based global sensitivity analysis this is quantified by eval-
uating the so called Sobol indices, which can be thought of as partial variances that
represent the contribution of a set of input parameters to the variance of an output
function. Here a short derivation is provided, following the same steps as in [12].

For a function f (x) of a random vector x ∈ RM distributed according to ρ(x), the
variance Var (f (x)) is given by:

Var(f) =
∫ (
f2 (x) − f2mean

)
ρ (x)dx, (14)

Before the Sobol indices can be defined, the Sobol decomposition must be intro-
duced. The Sobol decomposition decomposes f (x) in 2M functions of the unique
combinations of xi:

f(x) = f0 + ΣMi=1f (xi) + Σj>iΣ
M
i=1f

(
xi, xj

)
+ · · ·+ f (x1, . . . , xM) , (15)

that are orthogonal with respect to ρ (x). Note that fmean = f0 and the orthogonal-
ity of the expansion functions imply that:

Var(f) = ΣMi=1Di + Σj>iΣ
M
i=1Di,j + · · ·+D1,2,...,M, (16)

where Di1,...,is for s 6M and 1 6 i1 < i2 < · · · < is 6M is given by:

Di1,...,is =

∫
f2 (xi1, ..., xis) ρ (x)dx. (17)

This leads to the definition of the Sobol coefficients Si1...is:

Si1,...,is =
Di1,...,is

Var(f)
, (18)

as given in [12]. Note that the Sobol decomposition and the PCE expansion are
related. Let x ∈ R2 be distributed according to an uniform distribution on some
interval I = [xmin, xmax], then the PCE of truncation order P = 2 is given by:

fPCE (x) = c(0,0)L0(x1)L0(x2) + c(0,1)L0(x1)L2(x2) + c(1,0)L1(x1)L0(x2)+

c(1,1)L1(x1)L1(x2) + c(2,0)L2(x1)L0(x2) + c(0,2)L0(x1)L2(x2),

where Lli(xi) are the normalized Legendre polynomials. Note that the first term is
a constant.



theory 7

Then, we can approximate for example f(x1) given in Eqn. 15 by:

f (x1) ≈ c(1,0)L1(x1)L0(x2) + c(2,0)L2(x1)L0(x2). (19)

Consequently, the Sobol index S1 can be approximated as follows:

S1 ≈
|c(1,0)|

2 + |c(2,0)|
2

|c(1,0)|
2 + |c(0,1)|

2 + |c(1,1)|
2 + |c(2,0)|

2 + |c(0,2)|
2

. (20)

Thus, we can approximate the Sobol coefficients based on the PCE expansion, as
claimed in [12]. The general formula for the Sobol coefficients based on an or-
thonormal PCE can be found in [7].
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3 simeon gratings
In this chapter the performance of the PCE based surrogate model is tested for a
particular use case. The use case considered here is the Simeon after-develop inspec-
tion grating (ADI) with four varying parameters: bottom critical dimension dBCD,
top critical dimension dTCD, asymmetry dasym and height h.

In order to limit the scope we only consider the positive first diffraction orders
extracted from the diffraction pattern by taking the column wise sum (CWIS). Thus,
the forward model is the mapping of the grating parameters x = (dBCD,dTCD,dasym,h)
to each pixel i in the CWIS: fi (h,dBCD,dTCD,dasym).

This forward model is approximated by the following PCE for each pixel i:

f
(i)
PCE(x) = Σjc

(i)
j Φj (x) , (21)

for x ∈ D and Φj(x) is the product of(normalized) Legendre polynomials, as given
by Eqn. 4. From here on this approximation will be referred to as the PCE based
surrogate model.

The number of expansion coefficients Nc in these expansions is specified by the
truncation order P, as given by Eqn. 5. The expansion coefficients are obtained us-
ing Pythia [11], which implements the regression approach outlined in Section 2.2.1.
In this approach the PCE based surrogate model is trained using Ns pre-computed
train samples from the forward model. The accuracy of the surrogate model can be
accessed by evaluating the normalized cost of the solution:

χtrain =

∑
i

∑
xtrain

∣∣∣f (xtrain) − fPCE (xtrain) ∣∣∣2∑
i

∑
xtrain

∣∣∣f (xtrain) ∣∣∣2 . (22)

In order to quantify the actual relative error of the PCE based surrogate model, the
following error metric is also used:

etrain =

∑
i

∑
xtrain

∣∣∣f (xtrain) − fPCE (xtrain) ∣∣∣∑
i

∑
xtrain

∣∣∣f (xtrain) ∣∣∣ . (23)

In order to validate the obtained surrogate model is also accurate for samples not
included in the regression, the same error metrics are evaluated for Ntest samples,
xtest:

χtest =

∑
i

∑
xtest

∣∣∣f (xtest) − fPCE (xtest) ∣∣∣2∑
i

∑
xtest

∣∣∣f (xtest) ∣∣∣2 , (24)

etest =

∑
i

∑
xtest

∣∣∣f (xtest) − fPCE (xtest) ∣∣∣∑
i

∑
xtest

∣∣∣f (xtest) ∣∣∣ . (25)

We first investigate the accuracy of the PCE for a given truncation order P, by eval-
uating the train error etrain of the PCE based surrogate model for a range of P.
Then, we investigate how many samples Ns are required to obtain the PCE based
surrogate model for a range of P. Thereafter, we investigate how many expansion
functions are actually needed, by evaluating the error metrics for a PCE based sur-
rogate model that consists of a reduced number of expansion functions. This is
repeated for the dense domain D1 and coarse domain D2, specified in table 1. Both
domains D1 and D2 are sampled by a regular grid, consisting of Ns = 101871 and
Ns = 45056 points, respectively.
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Table 1: The upper and lower bounds of the grating parameters of the Simeon ADI-grating
for the domains D1 and D2.

D1 D2
Min Max Min Max

dBCD [nm] 40 42 30 60

dTCD [nm] 40 42 30 60

dasym [nm] 0 1 -5 5

h [nm] 89 91 80 110

3.1 Truncation order

First we consider the truncation order P required to obtain an accurate PCE based
surrogate for both domains. Therefore, we compute the PCE based surrogate mod-
els using all available samples for a range of truncation orders P. For these surrogate
models the train error etrain is evaluated and shown in Figure 1. It can be observed
that the relative train error etrain decreases significantly over the considered range
of truncation orders P for the PCE based surrogate model on the dense domain. In-
creasing P from 4 to 9 for the PCE based surrogate model on the coarse domain has
no significant impact on performance, i.e. the relative train error barely decreases.
Perhaps this could be related to the domain size relative to the wavelength. A sim-
ple metric to quantify this could be the typical dimension V1/MD , where VD is the
volume of D, relative to the used wavelength. Perhaps this can be used to compare
the results shown here to [6] and [8].

Figure 1: The train error etrain of the PCE based surrogate model versus the truncation
order P for the dense domain D1 and the coarse domain D2 on the left and right,
respectively. All samples of the forward model were used to train the surrogates.
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3.2 Number of samples

Next, we investigate the number of samples required to obtain an accurate surrogate
model on the dense domain D1 for the range P = [2, 3, 4]. This is done by evaluat-
ing the error metrics χtrain and etrain of the PCE based surrogate model trained
using Ns train samples. To validate the results, Nt = Ns test samples are used to
evaluate the error metrics χtest and etest. We repeat the process Nruns = 10 times
to account for variance in these metrics that would occur when a different set of
samples is used. We also evaluate the condition number K of G, given by Eqn. 11,
as motivated in Section 2.2.1.

Note that the number of expansion coefficients Nc depends on the truncation order
P, as given by Eqn. 5. Therefore, we evaluate the error metrics for a fixed range of
Ns/Nc = 1.5 . . . 6.

In Figure 2 the results are shown. In these figures a clear discrepancy between
train and test metrics can be observed, that decreases for increasing Ns/Nc as both
approach the same limit. Moreover, the train metrics approach this limit from below,
whereas the opposite can be observed for the test metrics. This could be explained
by assuming that for the forward model there exists a unique PCE expansion, whose
coefficients we approximate based on a number of samples Ns. This approximation
becomes more accurate for increasing number of samples, so that eventually the
discrepancy between train and test metrics vanishes. The results presented here
suggest that Ns/Nc ≈ 4 is sufficient. Note that the expansion coefficients obtained
using the regression approach will be biased such that the cost function in Eqn. 2.2.1
is minimized. Meaning that error metrics based on train points will not accurately
represent the performance of the PCE based surrogate model.

Furthermore, the results suggest that the condition number K is a good indicator
for how well the obtained PCE based surrogate model generalizes. Note that this
can be computed before the actual forward model is sampled, as G given in Eqn.
10 only depends on the used expansion basis.
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Figure 2: The different error metrics for a range of truncation orders P of the PCE based
surrogate model on the dense domain D1 trained using Ns samples.

3.3 Sparsity PCE

The obtained PCE based surrogate model appears to be sparse for both domains D1
and D2, in the sense that a lot of expansion coefficients are negligible. To demon-
strate this, we compute the PCE with truncation order P1 = 4 and P2 = 6 obtained
based on Ns = 5Nc samples on the domains D1 and D2, respectively, for all pixels
i in the CWIS. To validate the solution Nt = Ns test samples are used. In order
to do so, we compute the standard deviation of all coefficients c(i)j along the pixel
range i and sort the coefficients accordingly. Then, we evaluate the error metrics
etrain and etest for the PCE based surrogate model that includes the first nc sorted
coefficients.

In Figure 3 the results are shown for D1 and D2 on the left and right, respectively.
The sparsity of the PCE based surrogate is illustrated by the rate at which the train
error etrain decreases for increasing nc, which falls of significantly. For the coarse
domain it can be observed the test error etest increases, when etrain starts to level
of. Perhaps this suggest that the absolute error in these expansion coefficients is
larger than the actual expansion coefficients themselves. Hence, could motivate the
introduction of a thresholding scheme in which expansion coefficients below a set
threshold are dropped from the PCE based surrogate model.
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Figure 3: The train error etrain and test error etest for the PCE based surrogate models
containing an increasing number of expansion coefficients c(i)j , ordered by the
standard deviation over the pixel range i. The results shown on the left and right
correspond to the PCE based surrogate model for the dense domain D1 (P1 = 4)
and the coarse domain D2 (P2 = 6). The surrogate models are trained using
Ns = 5Nc train samples and validated using Nt = Ns test samples.

Based on these results we can access the truncation strategy, by plotting the order
of the nth

c expansion function as included in Figure 3. In general, this indicates
that truncating the PCE based on total order is a good starting point. Perhaps
slight improvements in performance can be obtained by introducing a truncation
strategy that is tailored to the importance of the grating parameters, e.g. include
basis functions Φj(x) containing higher order Legendre polynomials in the height
h.
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4 concluding remarks
In this study the use of PCE based surrogate models in SXR scatterometry was
studied. It was observed that for a simple 1D line grating in soft x-ray scatterome-
try the forward model can be approximated by a PCE based surrogate model on a
sufficiently small subdomain of the parameter space, using a reasonable number of
samples of the forward model. Extending the validity of the PCE based surrogate
model to larger domains proved difficult. The problem, in general, is that approxi-
mating increasingly complicated functions requires higher P and as a consequence
a large number of expansion functions Nc. In turn this drives up the number of
samples of the forward model, as Nc > Ns in the regression approach. This is
partly due to the simplistic truncation scheme used here, in which the number of
expansion functions grows exponentially with P. Note that the sparsity of the of
the obtained PCE based surrogate models indicates that this problem could be miti-
gated. Therefore, the use of sparse adaptive schemes such as presented in [16] could
be interesting. It is important to note that the same problem is encountered when
instead of complexity (domain size) the number of variables of the forward model
is increased. Unfortunately this is inherent to PCE expansion and suggest the use
of so-called low-rank approximations instead. Further research on the use of Sobol
coefficients in SXR scatterometry is required.
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