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Abstract

Automated vehicles represent an exciting advancement in transportation, offering a range of
benefits that have the potential to revolutionize how we travel. They can improve safety,
efficiency, accessibility, and sustainability, holding promise for transforming our cities and
communities. However, generating safe, comfortable, and efficient motion plans, especially in
interactive scenarios like forced lane merging, remains a significant challenge in the field.

Lane merging is a pivotal skill for automated vehicles, as it frequently involves changing
lanes to reach a destination. For instance, when approaching an intersection, a vehicle might
need to merge into a specific lane beforehand to execute a turn later. Traditional pipelines in
automated driving typically decouple prediction and planning. They assume perfect upstream
prediction and generate robust motion plans to avoid collisions with multi-modal predictions.
However, in dense traffic conditions, conservative planning might hinder the ego vehicle from
merging effectively, resulting in it becoming stuck. This underscores the necessity of combining
prediction and planning, a concept we term interaction-aware planning algorithms.

The first major contribution of this thesis is an efficient game-theoretic behavior planner that
captures interactions under different behavior modes. In this approach, we represent the be-
haviors of the vehicles as actions in a matrix game and select the Nash equilibrium to capture
their mutual influence. To generate the cost of the action pairs, we model the merging process
as a gap selection process and evaluate the trajectories generated by interactive models. The
effectiveness of the proposed planner is validated in the high-fidelity CARLA simulator.

In the real world, human drivers may not always adhere rationally to the equilibrium of a
game model. They could choose a behavior mode different from the game theory solution.
Therefore, it might be more beneficial to consider different motion modes simultaneously,
rather than favoring the “most likely” one while neglecting the others.

For this purpose, we also explore the usage of Branch Model Predictive Control (B-MPC)
in this thesis. By predicting the motion of the surrounding vehicle as a scenario tree, the
B-MPC approach can generate a trajectory tree as a motion plan. By executing only the
root node, the ego vehicle can consider different future scenarios simultaneously and plan
contingency motions. We further extend the B-MPC approach by incorporating interactive
policies, using different solving schemes, and including collision avoidance constraints that
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consider the orientations of the vehicles. The effectiveness of these proposed methods was
validated through experiments conducted in a handcrafted lightweight simulator.

Overall, this thesis focuses on developing interaction-aware planning methods to facilitate safe,
successful, and comfortable lane merging scenarios. Nevertheless, the major limitations lie in
the modeling error and the potential long-tail issues. To address these challenges and further
improve motion planning, future work could explore data-driven (learning-based) approaches
that leverage real-world driver behavior to generate more informed and adaptable motion
plans.
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Chapter 1

Introduction

In this chapter, we begin by laying out the motivation for this thesis through an introduction
to the lane merging challenge for automated vehicles (Section 1-1). Afterward, we outline
the contributions of this thesis (Section 1-2) and offer an overview of the thesis’s structure
(Section 1-3).

1-1 Motivation

Automated vehicles have the potential to revolutionize transportation by enhancing traffic
safety, reducing congestion, and providing mobility to non-drivers. For the first time, com-
panies have deployed fully automated taxis on public roads (see Figure 1-1(a)) [1] , allowing
passengers to experience the convenience and efficiency of self-driving vehicles. Moreover,
automated driving technologies are being developed to assist drivers in navigating various
scenarios (see Figure 1-1(b)) [2], offering features like lane-keeping assistance and adaptive
cruise control. These advancements highlight the significant progress in achieving safer and
more efficient transportation.

Despite the rapid development of automated vehicles, they still encounter challenges when
navigating complex traffic scenarios. One challenging scenario is lane merging in urban sites.
In this situation, the ego vehicle changes lanes by the routing requirements. It must identify
a suitable gap in the target lane and potentially force the upstream traffic to slow down,
ensuring a safe merging process [3]. Figure 1-2(a) visually depicts this challenging scenario,
which can pose difficulties for both human drivers and automated vehicles alike. Real-world
demonstrations have shown instances where automated vehicles struggle to merge into the
desired lane or endure prolonged waiting times [4], as illustrated in Figure 1-2(b).

Within this context, automated vehicles must effectively coordinate with other road users.
While communication is possible between robotic systems, exchanging messages with human
drivers directly is not always feasible. Consequently, automated vehicles must be capable of
planning the negotiations with surrounding vehicles, considering the potential variations in
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2 Introduction

(a) Automated taxi from Waymo (b) Autopilot system from Tesla

Figure 1-1: Illustration of the real-world applications of automated driving. (a) shows a fully
automated taxi from Waymo. (b) shows the autopilot system from Tesla.

their behavior. This necessitates the ability to plan safe and efficient trajectories, avoiding
being overly conservative or aggressive.

(a) Illustration of a forced lane merging scenario (b) A real-world failure case of merging

Figure 1-2: The forced lane merging scenario. In (a), the ego vehicle (shown in blue) needs to
change lanes to the upper lane due to an obstacle in the current lane, such as a slow-moving truck
(shown in orange). To safely merge into the target lane, the ego vehicle may need to negotiate
with other vehicles (shown in red), potentially forcing them to slow down. (b) shows a failure
case where a Waymo automated vehicle froze in front of the target lane and failed to merge.

The challenges in the forced lane merging scenario can be summarized as follows:

• Interaction with surrounding vehicles: The ego vehicle not only needs to predict
the motion of the surrounding vehicles during planning, but also needs to consider the
impact of its own motion on the surrounding vehicles.

• Multi-modal behavior of surrounding vehicles: In the lane merging scenario, the
surrounding vehicles may have different behaviors. For example, some vehicles may slow
down to let the ego vehicle merge, while others may not. This multi-modal behavior
poses a significant challenge for the planning algorithms.

1-2 Contribution

The goal of this master’s thesis is to develop planning algorithms for automated lane merging.
Specifically, this thesis makes the following contributions:

Shaohang Han Master of Science Thesis



1-3 Thesis Outline 3

• An Efficient Game Theoretic Behavior Planner: We propose a novel framework
that integrates game theory and interactive trajectory generation. Leveraging domain
knowledge of the lane merging scenario, we model the interaction as a gap selection
process. The multi-modal behavior of surrounding vehicles is formulated as actions in
a matrix game, and a socially compliant trajectory is determined by finding the Nash
equilibrium. We thoroughly validate the effectiveness of this framework using the high-
fidelity simulator CARLA [5], demonstrating its capability to generate efficient and safe
trajectories.

• A Branch Model Predictive Control Motion Planner: To address the challenges
posed by the multi-modal behavior of surrounding vehicles, we explore the use of branch
model predictive control (B-MPC) for motion planning. This approach constructs a
trajectory tree that captures the various potential behaviors of surrounding vehicles.
By optimizing the expected cost of the trajectory tree, B-MPC plans a trajectory with
branches. Operating in a receding horizon fashion, it executes the root branch, which
is shared by all scenarios. In this thesis, we implement a baseline B-MPC method
and compare several variants. Our results illustrate the capability of B-MPC in the
lane merging scenario: it can effectively accommodate the multi-modal behavior of
surrounding vehicles.

1-3 Thesis Outline

The remaining sections of this thesis are structured as follows. Chapter 2 comprehensively re-
views the existing literature on planning techniques for highly interactive scenarios. Chapter
3 introduces the preliminary concepts that form the basis for the subsequent chapters. Chap-
ter 4 presents our proposed behavior planning algorithm and the scientific findings. Chapter
5 shifts the focus to motion planning. We begin by introducing the B-MPC method and de-
tailing the baseline implementation. Following this, we explore several variants of the B-MPC
method and compare their performance in the lane merging scenario. Lastly, Chapter 6 serves
as the conclusion of this thesis, summarizing the key findings and insights. Additionally, it
discusses potential avenues for future research and development.
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Chapter 2

Literature Review

In this chapter, we conduct a literature review of algorithms for automated lane merging.
Firstly, we introduce classical methods that involve decoupling prediction and planning into
separate modules (Section 2-1). While these methods serve as the foundation for understand-
ing the solution pipeline, we also explore more advanced interaction-aware planning methods
that consider prediction and planning jointly (Section 2-2). Finally, we summarize the advan-
tages and disadvantages associated with these methods, providing a comprehensive overview
of the existing approaches in the field of automated lane merging (Section 2-3).

2-1 Decoupled Prediction and Planning

Traditionally, the decision-making pipeline in automated driving systems separates motion
prediction and motion planning into distinct modules. The prediction module generates
motion predictions for non-ego road users based on their motion history and the surrounding
environment. Since the motion prediction methods are out of the scope of this thesis, the
interested readers are referred to [6], [7] for further details in this area. Subsequently, the
planning module assumes flawless predictions of surrounding non-ego vehicle movements over
the planning horizon.

The trajectory planning problem can be challenging due to various constraints, including
collision avoidance and adherence to traffic laws, which render the problem constrained but
non-convex [8]. Consequently, the problem may exhibit multiple local minima, each con-
strained in different aspects [9]. To address this issue, modern automated driving frameworks
typically employ a two-layer approach consisting of behavior and motion planning layers. In
the behavior planning layer, algorithms select maneuvers globally, considering factors such as
lane changes, merging, and overtaking. The subsequent motion planning layer then generates
optimal trajectories that are not only feasible but also efficient and safe, taking into account
the specific constraints and objectives of the driving scenario.

Shaohang Han Master of Science Thesis



2-2 Interaction-aware Planning 5

2-1-1 Maneuver Selection

One representative approach involves constructing spatial-temporal graphs through sampling.
A uniformly sampled dense graph is commonly referred to as a lattice. In the state lattice
approach, states are connected using spirals [10] or polynomials [11]–[13]. Dynamic program-
ming [10], [13] is generally employed to find the optimal path. While the state lattice approach
is intuitive, it can be computationally expensive due to the curse of dimensionality. To miti-
gate this issue, states can be randomly and sparsely sampled when constructing graphs [14],
[15]. Recent work by De Groot et al. [16] utilizes a Visibility-PRM [17] to build a graph
from the start to the goal, enabling the determination of an optimal path using algorithms
such as A* search. However, this approach requires a pre-determined single target, which is
unsuitable for lane merging scenarios where the target is generally unknown.

Another approach to maneuver selection focuses on identifying patterns of maneuvers. This
method leverages domain knowledge of driving scenarios to classify maneuvers and impose
constraints [9], [14]. Recent work by Lim et al. [18] validates the effectiveness and compu-
tational efficiency of this approach through real-world experiments. By relying on domain
knowledge, this method is also more interpretable. However, generalizing this approach to
other scenarios, such as open spaces, is difficult.

2-1-2 Trajectory Generation

Once a maneuver decision has been made, the next crucial step is to generate a trajectory
that ensures both safety and dynamic feasibility. Trajectories can be represented either as
parameterized splines or as sequences of discrete states. The former, being more computa-
tionally efficient due to fewer decision variables involved [19], lacks the ability to represent
the dynamics as constraints explicitly. On the other hand, the latter allows for dynamic
constraints in the optimization problem but comes with a higher computational cost.

In the literature, researchers have explored the use of splines, such as piece-wise Bezier curves
[20] or piece-wise polynomials [21], [22], in conjunction with driving corridors or signed dis-
tance for collision avoidance constraints. Alternatively, discrete state representations have
been employed in studies such as [23]–[25]. Nonlinear dynamics constraints are sometimes
transformed into soft constraints [23], [25] or linearized iteratively [24].

2-2 Interaction-aware Planning

In the real world, the decoupled scheme may be overly conservative as it overlooks the po-
tential reactions of other vehicles to the motion plans of the ego vehicle. This conservative
approach can lead to hesitant behavior, commonly called the frozen robot problem [26]. To
address this issue, interaction-aware planning is a more natural and effective approach, which
involves jointly considering both planning and prediction. By incorporating prediction into
the planning process, the ego vehicle can anticipate how other vehicles might respond to its
motion plans, resulting in more proactive and confident behavior. Next, we will introduce two
behavior planning methods, namely Partially Observable Markov Decision Process (POMDP)
and Game Theory, along with a motion planning approach called trajectory tree.
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6 Literature Review

2-2-1 POMDP

One promising interaction-aware method is the Partially Observable Markov Decision Process
(POMDP) [27]. POMDP provides a rigorous mathematical framework for handling incom-
plete information, such as the unknown intentions of the surrounding vehicles. However,
solving a POMDP could be computationally demanding when the problem size is large.

Prior research has focused on applying POMDP to address the issue of unknown intentions in
lane-merging scenarios. Online solvers, such as POMCP [28], POMCPOW [29], and DESOPT
[30], employ sampling techniques to estimate the action-value function. Other approximations
of POMDP, such as QMDP [31], and heuristics [32], [33], have also been proposed.

2-2-2 Game Theory

Game theory can capture the complex interaction between multiple agents [34]. Previous re-
search has extensively explored equilibrium solutions in the context of automated lane merg-
ing. Some studies have focused on seeking a Nash equilibrium by jointly planning trajectories
for all vehicles [35], [36]. However, these methods are limited to finding local equilibria.
Therefore, the solutions rely heavily on the initial guess.

In contrast, alternative approaches employ semantic-level actions as strategies. Among them,
a leader-follower structure within a Stackelberg game has been proposed [3], [37], [38]. High-
level actions, such as motion primitives [3] or waiting time before merging [37], [38], represent
the vehicle strategies. However, determining the leader’s and follower’s relative roles can
pose challenges [3]. While most methods assume the ego vehicle as the leader, the rationale
behind this assumption is not always clear. Rather than the leader-follower structure of the
Stackelberg game, a Nash game treats all agents equally. A representative method based
on a Nash game is proposed in [39], although it lacks validation in a high-fidelity simulator.
Another approach utilizes level-k reasoning to model human drivers’ behavior [40]. However,
this framework incurs a substantial computational burden due to the need for modeling the
depth of human thinking [41].

2-2-3 Trajectory Tree

Another promising approach to interaction-aware planning is the concept of a trajectory tree,
also known as contingency planning [42], [43] or scenario tree planning [44], [45]. The trajec-
tory tree approach involves generating a trajectory with multiple branches, each representing
a potential future scenario capturing different behavior modes of the surrounding vehicles.
The ego vehicle then optimizes the tree by minimizing the expected cost. Only the shared
root node is executed to satisfy the safety requirements across all possible scenarios.

In comparison to the POMDP [27], which needs to plan in a discrete state and action space
due to computational constraints, the trajectory tree approach assumes only the unobservable
intentions of the surrounding vehicles to be discrete. This makes the trajectory tree more
scalable for real-world scenarios while actively gathering information as in POMDP [43], [45].

To address the nonlinear optimization problem over a tree structure, the authors in [43], [46]
employ the differential dynamic programming (DDP) method. Alternatively, the authors in
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2-3 Discussion 7

[44], [45], [47] utilize the nonlinear model predictive control (N-MPC) method. Addition-
ally, the authors in [47] adopt a real-time iteration scheme similar to sequential quadratic
programming (SQP) to achieve high computational efficiency.

Enforcing the constraints of all branches as hard constraints can lead to excessive conservatism
and potential infeasibility. To address this challenge, the authors in [44] propose a novel
approach by introducing dynamic chance constraints that adapt based on the prediction
outputs. This adaptive mechanism allows for a more balanced treatment of uncertainty and
promotes feasible solutions.

2-3 Discussion

The decoupled planning approach offers simplicity and efficiency but can sometimes result in
conservative motion plans. Conversely, interaction-aware methods explicitly model the behav-
ior of surrounding vehicles, enabling a more proactive approach. In the long run, interaction-
aware methods show greater promise as they have the potential to tackle highly interactive
scenarios, including highly congested traffic. Currently, there is a lack of comparative studies
evaluating the performance of these two approaches. This thesis addresses this gap through
a small-scale comparative study in Section 4-5-2.

The POMDP approach, although mathematically appealing, can suffer from computational
intractability due to its exponential complexity growth. On the other hand, game theory
utilizes equilibrium concepts to plan the trajectories of interacting vehicles jointly. Existing
studies primarily focus on modeling and formulating the game, leveraging the extensive re-
search in game theory. However, game-theoretic planners typically select a single equilibrium
solution, which may not align perfectly with real-world situations as human drivers may not
always act rationally. To mitigate this issue, the trajectory tree approach can be employed to
consider multiple scenarios and generate a contingency solution simultaneously. This thesis
explores both the game theory and trajectory tree approaches in the context of automated
lane merging.

2-4 Summary

The highlights of this chapter are summarized as follows:

• In this section, we thoroughly review the existing literature about planning in the con-
text of automated lane merging. Typically, these planning frameworks consist of two
layers: behavior planning and motion planning. We introduced some popular algorithms
for each layer.

• Our investigation reveals that interaction-aware planners show greater promise in highly
dynamic environments. This is mainly because they can account for the influence of
the ego vehicle’s motion plans on the predictions of surrounding vehicles.
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Chapter 3

Preliminaries

In this chapter, we discuss the preliminaries of the upcoming chapters. We start by presenting
the problem formulations in this thesis, which involve the matrix game (Section 3-1) and
optimal control problem (Section 3-2). Then, we describe the modeling choice in this thesis,
including a dynamics model (Section 3-3) and the knowledge-based behavior models (Section
3-4).

3-1 Matrix Game

A matrix game, also known as a normal form game [48], involves a set of players selecting
actions from a finite action set to minimize their individual costs. Formally, a matrix game
can be defined as a tuple (N , Π, J), where N is the set of players, Π = ×σ∈N Πσ represents
the joint action space, and J = ×σ∈N Jσ denotes the joint cost function. Here the sign ×
denotes the Cartesian product. Jσ is a function that maps the joint action space Π to the
real number space R for player σ.

A two player matrix game is commonly visualized as a table, where rows represent the actions
of player one and columns represent the actions of player two. The entries in the table
correspond to the costs associated with the joint actions. When there are more than two
players, the table extends into a multi-dimensional array.

Instead of focusing on optimality, the matrix game employs the concept of equilibrium to
characterize its solution. One recognized type of equilibrium concept is the pure-strategy
Nash equilibrium, which refers to a joint strategy where no player can unilaterally deviate to
achieve a better cost [49].

Definition 1. (Pure-strategy Nash equilibrium). A pure-strategy Nash equilibrium is a set of
players’ actions, {π∗

σ}σ∈N such that, for each player σ, it holds that

Jσ(π∗
σ, π∗

−σ) ≤ min
sσ∈Πσ

Jσ(sσ, π∗
−σ),

where π−σ represents the set of actions taken by all players except player σ.
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3-2 Optimal Control Problem 9

In contrast to the simultaneous decision-making in the Nash equilibrium, a Stackelberg equi-
librium represents a sequential solution where one player makes decisions before the other
players. This player, known as the leader, determines their strategy first, and the remain-
ing players, called followers, play the best response action [49]. The technical definition is
provided as follows.

Definition 2. (Stackelberg equilibrium). A Stackelberg equilibrium is a set of two players’
actions, {π∗

L, π∗
F(·)} such that

π∗
L = arg min

πL∈ΠL
JL(πL, π∗

F(πL)),

π∗
F(πL) = arg min

πF∈ΠF
JF(πL, πF),

where the subscripts, L and F, represent the leader and the follower, respectively.

3-2 Optimal Control Problem

The task of trajectory planning is often formulated as an optimal control problem (OCP) [50].
In this case, the trajectory can be represented as a sequence of discrete states x(0), . . . , x(N).
The objective is to find a sequence of control inputs that minimize a cost function while
satisfying various constraints. In discrete time, the OCP can be formulated as follows:

minimize
x(0),...,x(N),

u(0),...,u(N−1)

N−1∑
t=0

l(x(t), u(t)) + lN (x(N)) (3-1a)

subject to x(t + 1) = f(x(t), u(t)), ∀t ∈ [0, N − 1] (3-1b)
u(t) ∈ U , ∀t ∈ [0, N − 1] (3-1c)
x(t) ∈ X , ∀t ∈ [0, N ] (3-1d)
x(0) = xinit (3-1e)
x(N) ∈ Xf (3-1f)

where x(t) and u(t) represent the state and input, respectively, at time step t. The planning
horizon is denoted by N , l represents the stage cost, lN is the terminal cost, U represents the
control input constraint set, X denotes the state constraint set, and Xf represents the state
terminal constraint set. The OCP is solved by computing a sequence of control inputs and
states that minimize the cost function.

When only the first control input u(0) is applied to the system, and the optimization problem
is solved in a receding horizon fashion, the method is commonly referred to as model predictive
control (MPC). MPC is a powerful control technique that utilizes prediction to compute
control inputs over a finite horizon. If the system’s dynamic model is nonlinear, or the
constraints are non-convex, or the cost is non-convex, the optimization problem becomes a
nonlinear program (NLP). To address this NLP, one can implement algorithms like sequential
quadratic programming (SQP) [51] or utilize existing solvers like IPOPT [52].
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10 Preliminaries

3-3 Kinamic Bicycle Model

In this thesis, we employ the kinematic bicycle model to represent the dynamics of the vehicles.
The kinematic bicycle model is a simplified yet widely used model in the relevant literature
[3], [20], [23], [25]. Although the kinematic bicycle model may introduce errors at high speeds,
it remains a computationally efficient model that provides sufficient accuracy within certain
velocity and acceleration constraints [53]. Figure 3-1 illustrates the kinematic bicycle model.

Figure 3-1: An illustration of the kinematic bicycle model.

By assuming: (i) We only steer the front wheels; (ii) The tires are infinitely stiff; (iii) There
is no side slip. The kinematic bicycle model is described by the following continuous-time
differential equations:

ẋ = v cos(θ)
ẏ = v sin(θ)
v̇ = a

θ̇ = v

lwb
tan δ

where x and y are the Cartesian positions of the vehicle; v represents the speed of the vehicle;
a is the acceleration with the same direction as v; θ is the heading angle; δ is the front wheel
steering angle; lwb describes the length of the wheelbase. Thus, the state x = [x, y, θ, v]⊤. In
this model, the control inputs are the acceleration and the front-wheel steering, u = [a, δ]⊤,
which can be executed by an Ackermann steering vehicle.

3-4 Knowledge-based Behavior Model

In many literature discussed in Chapter 2, the human drivers are commonly modeled using
knowledge-based physical models. This thesis adopts a similar approach, and the design
choices related to this modeling strategy are discussed in the subsequent sections.

3-4-1 Lane Keeping Model

The Intelligent Driver Model (IDM) [54] and its variants are widely employed in the literature
as the predominant lane-keeping models. The IDM is a car-following model that characterizes
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3-5 Summary 11

the acceleration of a following vehicle based on factors such as the distance to the leading
vehicle, the speed difference with the leading vehicle, and the speed of the following vehicle.
The acceleration is computed as follows:

v̇ = a

(
1−

(
v

v0

)δ

−
(

s∗(v, ∆v)
s

)2)

s∗(v, ∆v) = s0 + max
(

0, vT + v∆v

2
√

ab

)
where v is the speed of the following vehicle, a is the maximum acceleration, v0 is the desired
speed, δ is the acceleration exponent, s is the distance to the leading vehicle, s0 is the
minimum gap, T is the time gap, ∆v is the speed difference between the following vehicle
and the leading vehicle, b is the comfortable deceleration. The IDM is a deterministic model,
which means that the acceleration is a function of the state of the following vehicle and the
leading vehicle.
To account for the reactive behavior of vehicles on the adjacent lane, the authors in [55]
introduce the Predictive Intelligent Driver Model (P-IDM). The P-IDM incorporates the
cooperative nature of following vehicles by predicting the future motion of preceding vehicles
on the adjacent lane. The acceleration is calculated using the same equation as in Equation
3-4-1, but the vehicles on the adjacent lane can also be regarded as leaders if their estimated
lateral position is in close proximity to the following vehicle.

3-4-2 Behavior Modes

In this context, we characterize the behavior of a vehicle through a collection of policies
πi, i = 1, . . . , M , where each πi represents a policy corresponding to a specific behavior mode.
Here we assume there are M behavior modes in total. Each policy πi is a function that maps
the joint state of the vehicles to a control input. Inspired by works such as [45], [47], we
adopt the “noisily rational” Boltzmann model from cognitive science [56]. The probability of
a vehicle selecting a particular policy πi is determined using a softmax function:

P (πi | xEV, xSV) = exp
(
Qi (xEV, xSV)

)∑M
i=1 exp (Qi (xEV, xSV))

where Qi is the expected reward of policy πi. xEV, xSV stand for the state of the ego vehicle
and the surrounding vehicles, respectively. The model assumes humans are exponentially more
inclined to choose a policy that offers a higher expected reward. This expected reward Qi

can be determined either through rule-based heuristics [47] or learned from data [57]. In this
thesis, we adopt the former approach due to its interpretability and ease of implementation.

3-5 Summary

The highlights of this chapter are summarized as follows:

• We introduce the tools we will use in this thesis, namely the matrix game and the OCP.

• We present the modeling choices in this thesis, including a kinematic bicycle model for
vehicle dynamics, a model for lane keeping, and a model for behavior selection.

Master of Science Thesis Shaohang Han



Chapter 4

Behavior Planning: An Efficient
Game-Theoretic Planner

In this chapter, we present a novel behavior planner that merges game theory with interac-
tive trajectory generation to address the challenge of automated lane merging. We initiate
by highlighting our contribution by contrasting the proposed method with the current state-
of-the-art approaches (Section 4-1). Subsequently, we delve into the problem formulation
through the utilization of a matrix game in the context of lane merging (Section 4-2). The
introduction of the game-theoretic planner follows (Section 4-3). Further insights into imple-
mentation specifics are covered (Section 4-4). Finally, our proposed method is validated via
numerical simulations (Section 4-5).

The contents of this chapter have been incorporated into a scientific paper, which has suc-
cessfully been accepted by the IEEE Intelligent Transportation Systems Conference (ITSC)
20231. For the sake of completeness, the scientific paper version is included in Appendix
A. The author acknowledges the possibility of repetition resulting from this inclusion and
apologizes for any inconvenience.

4-1 Introduction

Automated vehicles are facing a significant challenge when navigating in highly interactive
environments, such as the lane-merging scenario shown in Figure 4-1. Traditional methods
typically adopt a hierarchical structure where motion prediction [58], [59] and planning [20],
[25] are decoupled. Consequently, these methods might be overly conservative since they often
overlook the mutual interaction between the ego vehicle and the surrounding ones. Although
newly developed learning-based approaches [60]–[62] consider such interaction, they typically
require large amounts of data and might lack interpretability. Another popular interaction-
aware method is the Partially Observable Markov Decision Process (POMDP) [27], which

1https://2023.ieee-itsc.org/
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4-1 Introduction 13

provides a rigorous mathematical framework for handling incomplete information, such as
the unknown intentions of the surrounding vehicles. However, as the problem size grows,
solving a POMDP becomes computationally intractable.

As an approximation of the POMDP framework, the multiple policy decision making (MPDM)
method [63] and its extension EPSILON [64] have demonstrated promising results in gener-
ating practically reasonable trajectories while remaining computationally efficient. The ap-
proach involves conducting multi-vehicle forward simulations based on semantic-level policies,
followed by a trajectory evaluation step to select the best trajectory using handcrafted cri-
teria. However, the rule-based trajectory evaluation in EPSILON might be overly aggressive
or conservative when the surrounding vehicles have multiple behavior modes. Additionally,
although the open-loop planning strategy is computationally efficient, it sacrifices the advan-
tages of active information gathering in the original POMDP approach.

Figure 4-1: Lane-merging scenario in the CARLA simulator. The ego vehicle (blue) is merging
onto a lane in dense traffic.

To systematically evaluate the trajectories, we use game theory, which is a powerful mathe-
matical framework that captures the mutual influence between multiple agents [34]. Previous
research has explored equilibrium solutions extensively for automated lane merging. Some
studies have focused on jointly planning trajectories for all vehicles by seeking a Nash equi-
librium [35], [36]. However, these methods can only find a local equilibrium, and the quality
of the solution might heavily depend on the initial guess. In contrast, other approaches use
semantic-level actions as strategies. Among them, some studies propose a Stackelberg game
with a leader-follower structure [3], [37], [38]. However, determining the relative role of the
leader or follower might be difficult [3]. In contrast to the leader-follower structure in a Stack-
elberg game, a Nash game treats all agents equally. A representative method based on a Nash
game is proposed in [39], but it lacks validation in a high-fidelity simulator.

Contribution: We propose a novel approach that combines game theory with the idea of
interactive trajectory generation. To make the algorithm practical and efficient, we leverage
the semantic-level actions and model vehicle interaction as a gap selection process (Section
4-3-1). Additionally, to tackle the issue of multi-modality, we represent the behavior of the
surrounding vehicles as actions in a matrix game, and then select the Nash equilibrium with
the lowest social cost [65] (Section 4-3-3). We also investigate the existence of Nash equi-
libria and the relationship between Nash and Stackelberg equilibria through both theoretical
analyses (Section 4-3-4) and numerous numerical simulations (Section 4-5-1). Moreover, we
validate the effectiveness of the proposed planner in the high-fidelity CARLA simulator [5]
(Section 4-5-2).
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14 Behavior Planning: An Efficient Game-Theoretic Planner

4-2 Problem Formulation

In this chapter, we consider a mixed-traffic scenario where an automated ego vehicle interacts
with the surrounding vehicles, as shown in Figure 4-1. Specifically, the ego vehicle aims at
driving efficiently but a low-speed vehicle (SV0) travels in front of it. To avoid being blocked,
the decision-making system of the ego vehicle needs to consider the diverse driving behaviors
of the surrounding vehicles, select a suitable merging gap, and determine if/when to change
the lane. For example, in Figure 4-1, the ego vehicle can merge ahead of or after the pink
vehicle (SV2). In fact, if SV2 yields, then the gap enlarges and the ego vehicle merges ahead
of SV2. Otherwise, if the gap is not sufficiently wide, then the ego vehicle might slow down
and then merge after SV2.

Forward
Simulation

Trajectory
Evaluation

Trajectory SetSemantic-
level Action
Generation

Action Set

Game-Theoretic Behavior Planner

Optimization-based Motion Planner

Multi-Vehicle Trajectories

Smooth Trajectory of Ego Vehicle

Motion Controller

Vehicle States
Road Context

Figure 4-2: Structure of the proposed behavior and motion planner. The behavior planner,
motion planner, and controller will be presented in Section 4-3 and Section 4-4, respectively.

4-2-1 Structure of the Planner

We propose a game-theoretic planner as illustrated in Figure 4-2. Unlike other conventional
behavior planners that require a motion predictor as an upstream module, in our approach,
we combine motion prediction and behavior planning. Our proposed game-theoretic behavior
planner consists of three modules: semantic-level action generation, forward simulation, and
trajectory evaluation. First, we enumerate the possible semantic-level decision sequences of
the traffic participants over the decision horizon. For the ego vehicle, a semantic-level decision
can be making a lane change, accelerating or decelerating. Then, we form the action tuples by
combining the decision sequences of the ego vehicle and surrounding vehicles. For each action
tuple, the forward simulator generates the motion of the relevant vehicles. Subsequently, the
trajectory evaluator determines the costs of the trajectories for each action tuple. Next, we
construct a matrix game and seek an equilibrium. Finally, the trajectory evaluator selects
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4-2 Problem Formulation 15

the action tuple associated with the equilibrium and outputs the corresponding multi-vehicle
trajectories. The formulation using the matrix game is presented in Section 4-3.
Although we apply the kinematic bicycle model (see Section 3-3) to simulate the motion of the
ego vehicle, the trajectory generated by the behavior planner might not be sufficiently smooth
due to the coarse discretization step. Therefore, we employ an additional local motion planner
[25] to produce a kinematically feasible trajectory. To ensure safety, the simulated trajectories
of the surrounding vehicles are used to impose dynamic collision avoidance constraints. More
details of the motion planner and the subsequent controller will be presented in Section 4-4.

4-2-2 Lane Merging as a Matrix Game

We model the decision-making process as a matrix game with two players. In the game, each
player selects an action from its finite action set to optimize its individual cost. A two-player
matrix game is defined by a tuple (N , Π, J), where N is the set of two players, Π = ×σ∈N Πσ

is the joint action space, and J = ×σ∈N Jσ is the joint cost function. Other details, including
the equilibrium concepts, have already been introduced in Chapter 3. Next, let us introduce
the three ingredients of the matrix game for the lane-merging problem: players, actions and
cost functions.

Players

We consider the ego vehicle (EV) and the group of the surrounding vehicles (SV) as two
players, N := {EV, SV}. A set of assumptions is made to treat all surrounding vehicles as a
single group, which is elaborated on in Section 4-3-1. In later sections, we use σ to denote
one of the players, where σ ∈ N .

Actions

Human drivers typically make semantic-level decisions to make lane changes safely and effi-
ciently [64]. Inspired by human drivers, we represent the action of player σ by a semantic-level
decision sequence, denoted as πσ = {πσ,0, . . . , πσ,k, . . . , πσ,H−1}, where H is the decision hori-
zon. We provide more design details on the decision sets and the method for enumerating all
possible decision sequences later in Section 4-3-1.

Cost functions

Before computing the costs, the forward simulator, which is introduced in Section 4-3-2,
generates multi-vehicle trajectories. The cost function Jσ of vehicle σ evaluates the corre-
sponding trajectory based on user-defined metrics, such as safety, efficiency, comfort, and
navigation. We consider the surrounding vehicles as a whole by calculating the total cost as
JSV :=

∑N
σ=2 Jσ, where N is the number of vehicles. Technical details are provided in Section

4-3-3.
A matrix game is represented in Table 4-1, where each entry represents a cost tuple (J ij

SV, J ij
EV)

received by the group (SV) and the ego vehicle (EV) after performing their respective actions,
πi

SV and πj
EV. Next, we look for an equilibrium of the matrix game.
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16 Behavior Planning: An Efficient Game-Theoretic Planner

Table 4-1: Game in normal form.

π1
EV · · · πMEV

EV
π1

SV (J1,1
SV , J1,1

EV) · · · (J1,MEV
SV , J1,MEV

EV )
...

... . . . ...
πMSV

SV (JMSV,1
SV , JMSV,1

EV ) · · · (JMSV,MEV
SV , JMSV,MEV

EV )

As previously discussed in Section 3-1, two distinct types of equilibria have been identified:
the pure-strategy Nash equilibrium and the Stackelberg equilibrium. This thesis takes into
account both types. Furthermore, we should note that the roles of leader and follower are
not static on the road [3]. In other words, the ego vehicle can alternate between these roles.
Consequently, two variations of the Stackelberg equilibrium are considered: one with the ego
vehicle as the leader and another with the ego vehicle as the follower.

4-3 Game-Theoretic Behavior Planner

In this section, we present the details of the game-theoretic behavior planner.

4-3-1 Semantic-Level Action Generation

Actions of Ego Vehicle

In the lane-merging problem, the semantic-level decision involves selecting a gap and deter-
mining the desired lateral position. As shown in Figure 4-3, the ego vehicle in blue has three
potential gaps to choose from. To reach the target gap, the ego vehicle needs to perform
a sequence of lateral decisions. The common lateral decisions are lane changing and lane
keeping. Furthermore, we introduce one additional intermediate lane, represented by the
dashed blue line in Figure 4-3, to enable a probing decision. This allows the ego vehicle to
gather information and negotiate with the surrounding vehicles. Overall, the complete lateral
decision set can be defined as:

Dlat := {LaneKeep, LeftLaneChange, LeftLaneProbe}.

The semantic-level decision at decision step k is denoted by an action tuple πEV,k := (gk, dlat
k ),

where gk ∈ {Gap0, Gap1, Gap2} and dlat
k ∈ Dlat(gk). We note that the lateral decision set is

conditioned on the gap selection, which reduces the number of action tuples. For example,
if the ego vehicle chooses Gap0, then the only available lateral action is keeping the current
lane.

Next, we construct a decision tree to enumerate all the possible decision sequences. Each node
in the tree represents a decision tuple. The decision tree is rooted in the decision selected
in the last planning cycle and branches out at each decision step. Due to the exponential
growth of the number of decision sequences with the depth of the tree, it is necessary to prune
the decision tree to limit computational complexity. By employing human-understandable
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4-3 Game-Theoretic Behavior Planner 17

semantic-level decisions, we can establish rules for tree pruning. To begin, we introduce
a constraint on the number of decision changes across the planning horizon. This choice
aligns with the observed tendency of human drivers to maintain their chosen actions for
extended periods. In our implementation, we have imposed a restriction that within each
planning cycle, the action sequence can only encompass a single change of action. Given
the brief time span typically associated with each semantic-level action (around 1 second),
we have further assumed that the action sequence will remain unaltered when the tree’s
depth exceeds a certain value. This assumption is justifiable, as the distant future has less
impact on the current moment, and our planner operates in a receding horizon manner.
Additionally, we have excluded specific transitions that do not conform to the behaviors of
ordinary human drivers. For instance, we have disregarded transitions like moving from
(Gap1, LeftLaneChange) to (Gap2, LeftLaneChange). This action space refinement aids in
minimizing the computational cost associated with the planner.

Figure 4-3: Semantic-level decisions. Three gaps are available for the ego vehicle to choose
from: Gap0, Gap1 and Gap2. The red dashed lines represent the centerlines of the lanes, and the
blue dashed line represents the probing line. EV stands for the ego vehicle, while SV0, SV1, and
SV2 represent the surrounding vehicles. Specifically, SV0 represents a slow-moving trunk that
obstructs the path of the ego vehicle.

Actions of the Surrounding Vehicles

We make the following assumptions on the surrounding vehicles: (i) The surrounding vehicles
maintain their lanes and have only longitudinal motion - a common assumption in prior
work [3], [37]–[40]; therefore, we define their longitudinal decision set as {Assert, Yield}.
(ii) The surrounding vehicles maintain their decisions throughout each forward simulation.
This assumption is reasonable in practice since the planner runs in a receding horizon fashion.
(iii) The ego vehicle only directly interacts with at most one surrounding vehicle throughout
each forward simulation. For instance, as shown in Figure 4-3, if the ego vehicle selects Gap2,
its motion affects SV2 but not the vehicles ahead (SV0 and SV1). Therefore, we treat the
group of the surrounding vehicles as one single player in the matrix game so that we can
sum up the trajectory cost of every surrounding vehicle. The action set of the player is
ΠSV := {Assert, Yield}.
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18 Behavior Planning: An Efficient Game-Theoretic Planner

4-3-2 Multi-vehicle Forward Simulation

Vehicle Dynamics

Next, we intend to generate the trajectories by simulating the motion of the vehicles from the
initial states. We represent the dynamics of vehicle σ as a kinematic bicycle:

ẋσ = vσ cos (θσ), ẏσ = vσ sin (θσ), θ̇σ = vσ

lwb
tan(δσ), v̇σ = aσ,

where (xσ, yσ), θσ and vσ are the position, the heading angle, and the speed, respectively; aσ

and δσ are the acceleration and the steering angle; lwb represents the length of the wheelbase.
A detailed description with illustration has been done in Section 3-3. The state vector is
denoted as xσ = [xσ, yσ, θσ, vσ]⊤. Since we assume that the surrounding vehicles do not
make lane changes, their heading and steering angles are equal to zero during the forward
simulation (θσ = 0, δσ = 0). We discretize the dynamics via the Runge-Kutta 3 method.

Motion of the Ego Vehicle

SV0EV

SV2 SV1

Gap 2
Target

Virtual Vehicle
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Kppvi

xfront

Figure 4-4: Ingredients for controller designs. |xl−xf | and |yl−yf | represent the longitudinal and
lateral distances between the lane-changing vehicle (leader) and the interactive vehicle (follower),
respectively.

We use two separate controllers to simulate the longitudinal and lateral motion of the vehicle.
For the longitudinal motion, we track the target longitudinal position and the desired speed via
a PD controller. The target longitudinal position within the desired gap is illustrated in Figure
4-4. The desired gap, Gap2, is defined based on the positions of the front and rear vehicles,
denoted as xfront and xrear, respectively. Similar to [64], we establish the desired longitudinal
position and speed through a rule-based approach. For instance, a straightforward technique
involves incorporating a safe distance to the interactive vehicle’s current longitudinal position
to derive the target longitudinal position.

As for the lateral motion, we adopt a pure pursuit controller [66] that requires the cur-
rent vehicle speed and the target line as inputs. The steering angle is computed by δctrl

σ =
tan−1

(
2L sin(γσ)

Kppvσ

)
, where γσ represents the angle between the heading direction and lookahead

direction, Kpp is the feedback gain, and Kppvσ is the lookahead distance.
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4-3 Game-Theoretic Behavior Planner 19

Motion of the Surrounding Vehicles

To model the behavior of the surrounding vehicles, we propose a modified intelligent driver
model (IDM). Unlike the original IDM [54], which focuses solely on car following and dis-
regards vehicles on adjacent lanes, our modified model considers lane-changing vehicles by
projecting them onto their target lanes, resulting in virtual vehicles as shown in Figure 4-4.
Subsequently, we calculate the distance between the virtual leader and the follower using the
following approach:

didm = |xl − xf |eκ|yl−yf |, κ = 2 log(β)/wlane,

where wlane is the lane width, and β is a parameter characterizing the level of willingness to
yield. In fact, by adjusting the value of β, we can model different actions performed by the
group of surrounding vehicles. Specifically, a large value of β indicates that the vehicle on
the target lane is less likely to yield to the lane-changing vehicle because it perceives that the
projection is far away. When the lateral distance between two vehicles vanishes

(
|yl−yf | = 0

)
,

the virtual distance between them is equivalent to the true distance.

4-3-3 Trajectory Evaluation

After generating multi-vehicle trajectories for each action tuple, we proceed to select a specific
action tuple by solving a matrix game. For constructing the cost matrix, we first introduce
the cost function Jσ of vehicle σ, where σ ∈ N . The cost function is typically a combination of
several user-defined metrics, including safety, efficiency, comfort, navigation, and information
cost: Jσ = J saf

σ + Jeff
σ + Jcom

σ + Jnav
σ + J inf

σ . The value of the cost function Jσ depends on the
trajectories generated by the forward simulator, which are influenced by the semantic-level
decision sequences of the ego vehicle (πEV) and the surrounding vehicles (πSV). Given our
existing assumption of solely longitudinal motion, we can ignore the information cost for the
surrounding vehicles, as they are no longer capable of producing “probing” actions.

We calculate the safety cost by examining vehicle collisions. Here, the footprint of vehicle σ
is modeled as a rectangle Rσ(xσ). If the distance between two rectangles is less than a small
value d, indicating a potential collision, we assign a very large penalty to the corresponding
trajectory. With this in mind, we compute the safety cost as follows:

J saf
σ (πEV, πSV) :=

T∑
t=0

N∑
τ=1, τ ̸=σ

P (xσ(t), xτ (t))

where T is the planning horizon and N is the number of vehicles. We design P as follows:

P (xσ(t), xτ (t)) :=


wsaf

1 if 0 ≤ dστ (t) < d

wsaf
2 if d ≤ dστ (t) ≤ d̄

0 else

where dστ (t) represents the distance between Rσ(xσ(t)) and Rτ (xτ (t)), and wsaf
1 is large than

wsaf
2 . By giving a relatively small penalty wsaf

2 when dστ (t) falls within the range of [d, d̄], we
encourage the vehicle to keep a suitable distance from the surrounding vehicles. This can be
understood as slightly expanding the vehicle’s dimensions, as depicted in Figure 4-5.
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20 Behavior Planning: An Efficient Game-Theoretic Planner

Figure 4-5: The footprint of a vehicle. The dashed edges represent the inflated boundary of the
vehicle.

Next, we measure the efficiency of the trajectory by computing the sum of the squares of the
differences between the vehicle speed and its desired speed:

Jeff
σ (πEV, πSV) := weff

T∑
t=0

(vσ(t)− vdes
σ )2.

For the comfort cost, we consider the acceleration change, known as jerk. We use the finite
difference to approximate the jerk, and subsequently define the comfort cost as follows:

Jcom
σ (πEV, πSV) := wcom

T∑
t=1

(
aσ(t)− aσ(t− 1)

∆t

)2

.

Next, we penalize the differences between the vehicle’s lateral position and its desired lateral
position to encourage the lane-changing maneuver:

Jnav
σ (πEV, πSV) := wnav

T∑
t=0

(yσ(t)− ydes
σ )2.

In addition, inspired by [57], we introduce an information cost J inf
EV, which can motivate the

ego vehicle to identify the intentions of the surrounding vehicles actively. The behavior of
the surrounding vehicles group is determined by their intention, denoted as πSV, which is not
directly observable. Therefore, we consider πSV as a latent variable and introduce a belief
state b(πi

SV) to capture the uncertainty associated with the intention i. Following Bayesian
inference principles, we update the belief state using the following simplified equation:

b
(
πi

SV (t + 1)
)
∝ P

(
πi

SV (t + 1) | xSV(t), xSV(t)
)
· b
(
πi

SV(t)
)

We assume that surrounding vehicles exhibit an exponential preference for selecting intentions
with lower costs. This modeling choice has been motivated in Section 3-4-2 of this thesis.
Thus, given that EV follows action j, we have:

P
(
πi

SV (t + 1) | xSV(t), xSV(t)
)

=
exp

(
−J ij

SV

)
∑MSV

i=1 exp
(
−J ij

SV

)
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4-3 Game-Theoretic Behavior Planner 21

where i ∈ {1, , . . . , , MSV} and j ∈ {1, , . . . , , MEV}, the cost JSV = J saf
SV + Jeff

SV + Jcom
SV + Jnav

SV .
To quantify the information cost J inf

EV considering all the behavior modes of SV, we utilize the
entropy measure, denoted as H(·), similar to [40]:

J inf
EV = H

(
b
(
π1:MSV

SV (t + 1)
))
−H

(
b
(
π1:MSV

SV (t)
))

where b
(
π1:MSV

SV

)
stands for b

(
π1

SV
)

. . . b
(
πMSV

SV

)
.

In fact, the information cost motivates the ego vehicle to create motion plans that yield
distinct trajectory costs among the surrounding vehicles. This objective is accomplished by
maximizing the entropy of the belief state.

In practice, the ego vehicle needs to estimate the cost functions of other vehicles by ob-
serving their trajectories since it cannot directly access these costs. Similar to POMDP, we
account for the uncertainty in the aggregate cost of the surrounding vehicles by integrating
the probabilities into the cost function. The modified aggregate cost is computed as follows:

J̄ ij
SV := (1− p(πi

SV))J ij
SV,

MSV∑
i=1

p(πi
SV) = 1,

where p represents the probability associated with the action of the surrounding vehicles. This
design can be understood as incorporating prior knowledge about the behavior of the group
of surrounding vehicles into the aggregate cost. For example, if we have prior knowledge
suggesting that the group is likely to yield, then we can set the corresponding probability
close to 1, which reduces the modified aggregate cost. We use a similar estimation algorithm
as in [3] to recursively estimate p at the beginning of each planning cycle. Specifically, p can
be updated using the following equation:

p
(
πi

SV | xSV(t)
)

= N
(
ri(t), 0, W

)
p
(
πi

SV | xSV(t− 1)
)∑MSV

k N (rk(t), 0, W ) p
(
πk

SV | xSV(t− 1)
)

where N (r, 0, W ) is the probability density function of the multivariate normal distribution
with mean 0 and covariance W , evaluated at r. The residual r is given by the difference
between the observed position of SV and the predicted position of SV.

After constructing the cost matrix, we compute a Nash equilibrium for the matrix game by
enumerating all possible combinations of semantic-level actions. If multiple Nash equilibria
exist, we select the equilibrium with the lowest social cost. If a Nash equilibrium does not
exist, we choose the Stackelberg equilibrium with the ego vehicle as the follower as a backup
solution.

4-3-4 On Nash and Stackelberg Equilibria

In this section, we examine the conditions for the existence of a pure-strategy Nash equilibrium
and explore the relationship between the Nash and Stackelberg equilibrium. We consider a
specific cost matrix where π1

SV := Assert and π2
SV := Yield as mentioned in Section 4-3-1.

We call an action tuple (πSV, πEV) feasible if the corresponding multi-vehicle trajectories are
free from collisions, and we assume that there always exists at least one feasible action tuple.
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22 Behavior Planning: An Efficient Game-Theoretic Planner

Next, we show the existence of a Nash equilibrium for the matrix game. To obtain the results
of this section, we assume that for the group of the surrounding vehicles (SV), behaving
politely incurs a higher cost, while the ego vehicle (EV) achieves a lower cost if SV shows
polite behavior. This assumption is required by Propositions 1 and 2.

Proposition 1. Assume that the inequalities 0 ≤ J1m
SV ≤ J2m

SV and J1m
EV ≥ J2m

EV ≥ 0 hold
for all feasible action tuples and m ∈ {1, . . . , MEV}. If p(π1

SV) ≥ 0.5, then there exists
n ∈ {1, . . . , MEV} such that the action tuple (π1

SV, πn
EV) is a pure-strategy Nash equilibrium.

Proof. We select n such that J1n
EV ≤ J1m

EV for all m ∈ {1, , . . . , , MEV}. Then, πn
EV is the

best response to π1
SV. Using the assumptions in the proposition, we can conclude that 0 ≤

J1n
SV ≤ J2n

SV. Furthermore, the inequality (1−p(π1
SV))J1n

SV ≤ p(π1
SV)J2n

SV holds for p(π1
SV) ≥ 0.5.

Therefore, π1
SV is the best response to πn

EV, and (π1
SV, πn

EV) is a Nash equilibrium.

In the following, we establish a connection between a Nash equilibrium and a Stackelberg
equilibrium.

Proposition 2. If the action tuple (π2
SV, πn

EV) is a Nash equilibrium, then it is also a Stack-
elberg equilibrium with EV as the leader.

Proof. As (π2
SV, πn

EV) is a Nash equilibrium, π2
SV is the best response to πn

EV, and the inequality
J2n

EV ≤ J2m
EV holds for all m ∈ {1, , . . . , , MEV}. Based on the inequality J1m

EV ≥ J2m
EV ≥ 0, we

can conclude that J2n
EV ≤ J2m

EV ≤ J1m
EV . Therefore, (π2

SV, πn
EV) is a Stackelberg equilibrium with

EV as the leader.

4-4 Implementation Details

As illustrated in Figure 4-2, the proposed planning framework is structured into three subse-
quent layers: the behavior planning layer, the motion planning layer, and the control layer.
A coarse reference trajectory is generated in the behavior planning layer, then refined in the
motion planning layer to ensure safety and dynamic feasibility. While Chapter 4 extensively
discusses the interaction-aware behavior planning layer, we now provide detailed information
about the motion planning layer and the control layer.

4-4-1 Motion Planning Layer

We adopt the motion planner proposed in [25] and utilize their official codebase. This planner
is an optimization-based approach in the Cartesian frame, capable of explicitly enforcing
dynamic constraints. It employs an OCP formulation (see 3-2) and the kinematic bicycle
model (see Section 3-3) to generate a sequence of control commands. The state at time step
t is represented by x(t) = [x(t), y(t), θ(t), v(t)]T , where x(t) and y(t) denote the vehicle’s
position in the Cartesian frame, θ(t) is the heading angle, and v(t) is the velocity. The state
input is given by u(t) = [a(t), δ(t)]T , where a(t) stands for the acceleration, and δ(t) is the
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steering angle. The overall OCP can be written as:

minimize
x(0),...,x(N),

u(0),...,u(N−1)

J (4-1a)

subject to x(t + 1) = f(x(t), u(t)), ∀t ∈ [0, N − 1] (4-1b)
u(t) ∈ U , ∀t ∈ [0, N − 1] (4-1c)
x(t) ∈ X , ∀t ∈ [0, N ] (4-1d)
x(0) = xinit (4-1e)

Cost Function

The cost function of the OCP (Equation 4-1a) is quadratic and defined as:

J =
N∑

t=0

∥∥∥x(t)− xref(t)
∥∥∥2

+ wu · ∥u(t)∥2 (4-2)

where xref(t) represents the reference trajectory generated by the behavior planning layer and
wu is a non-negative weighting parameter. This cost function penalizes deviations from the
reference trajectory and control effort, which is a common choice for an OCP [50]. Originally
in [25], the reference trajectory was generated by a state lattice planner, as described in
Section 2-1-1. In this thesis, the reference trajectory is given by the output of the game-
theoretic behavior planner. We also use the reference trajectory as the warm-starting initial
guess at each planning cycle.

Constraints

The constraints of this OCP include simple bound constraints on both the states and the
control commands, collision avoidance constraints, and nonlinear dynamics constraints.

Bound Constraints: Here, we assume that both states and control inputs are subject to
limits, as commonly practiced in control applications. The bound constraints (Equation 4-1c,
4-1d) can be mathematically represented as xmin ≤ x(t) ≤ xmax and umin ≤ u(t) ≤ umax.
We also use boundary constraint to depict the initial state constraint (Equation 4-1e) of the
vehicle: x(0) = xinit. In our implementation, we disregard the terminal constraint since the
vehicle is driving on a continuous road.

Collision avoidance constraints: The safety of the ego vehicle must be ensured concerning
both surrounding vehicles and road edges, achieved through collision avoidance constraints
(Equation 4-1d). To deal with the non-convex and potentially non-differentiable collision
avoidance constraints [67], we first represent the ego vehicle as a set of circles, then construct
the spatial-temporal corridors to form linear collision avoidance constraints.

The ego vehicle can be approximated as a union of circles, similar to [44]. As illustrated in
Figure 4-6, we use nc = 3 circles to represent the vehicle’s footprint. Here, we have the radius
r = 1

2

√
(l/nc)2 + w2, where l and w are length and width of the vehicle, respectively. The
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24 Behavior Planning: An Efficient Game-Theoretic Planner

Figure 4-6: An illustration of collision avoidance constraints using circle approximation for vehi-
cles.

centers c can be expressed as

cj(t) = [xj(t), yj(t)]T ,

xj(t) = x(t) + l

2nc
(2j − nc − 1) cos(θ(t)),

yj(t) = y(t) + l

2nc
(2j − nc − 1) sin(θ(t)),

j = 1, · · · , nc

Next, we illustrate the process of creating a corridor by Figure 4-7(a) and 4-7(b). Initially, in
Figure 4-7(a), we generate an occupancy grid map by considering the road edges’ footprint,
the configuration of static obstacles, and the predicted positions of moving obstacles. To
account for the shape of the ego vehicle, the map is expanded by the radius r. This strategy
enables us to model the ego vehicle using the centers of circles. The predicted positions of the
surrounding vehicles are derived from the game-theoretic behavior planner. Then in Figure
4-7(b), the creation of local boxes involves iteratively evaluating the feasibility of incremental
expansions in the four axis-aligned directions. The local corridor at the time step t can be
represented as xlb(t), xub(t) and ylb(t), yub(t). A sufficient condition for collision avoidance is
then xlb(t) ≤ xj

EV(t) ≤ xub(t) and ylb(t) ≤ yj
EV(t) ≤ yub(t), with j = 1, · · · , nc.

Dynamics constraints: To uphold the dynamics constraints (Equation 4-1b) , we utilize
an iterative optimization framework. The core concept is to convert the dynamics constraints
into soft constraints and then iteratively minimize the associated cost. This iterative solving
scheme is demonstrated in Algorithm 1. During each iteration, the dynamics constraints are
translated into an extra weighted penalty term and integrated into the cost function defined
by Equation 4-2. This leads to creating an intermediate OCP (Line 6). The penalty term is
given by:

lpenalty =
N−1∑
t=0
∥x(t + 1)− f (x(t), u(t))∥2 (4-3)
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(a) Occupancy grid map that considers the road edges
and the obstacles.

(b) Formation of a local corridor.

Figure 4-7: Corridor creation in [25]: (a) depicts the generation of the occupancy grid map. (b)
demonstrates the formation of a local corridor through the expansion of local boxes.

In the intermediate OCP, the total cost function is:
N∑

t=0

∥∥∥x(t)− xref(t)
∥∥∥2

+ wu · ∥u(t)∥2 + wpenalty · lpenalty

while the constraints include Equation 4-1c, 4-1d and 4-1e. Then, we can solve the intermedi-
ate OCP using non-linear solvers such as IPOPT [52] (Line 7). The solution obtained in one
iteration serves as a warm start for the next iteration. Then, we can assess infeasibility by
computing lpenalty based on this solution (Line 8). This iterative process continues until the
penalty term becomes sufficiently small, ensuring improved feasibility of the OCP with each
iteration (Line 9). In each iteration, wpenalty is enlarged by a factor α. If the OCP is feasible,
the algorithm will end in advance. However, if the feasibility is not achieved, the algorithm
will provide the best-optimized trajectory that it has been able to compute.
The iterative optimization framework we have employed stands out for its efficiency and ease
of tuning. With the flexibility to adjust the parameter ϵ, we can effectively strike a balance
between ensuring feasibility and optimizing efficiency. In comparison to ensuring dynamics
feasibility through the concept of differential flatness [13], the explicit formulation of dynam-
ics constraints can provide better guarantees, particularly when the reference trajectories
exhibit curvature [25]. In contrast to methods that address the dynamics constraints by iter-
ative linearization [24], incorporating dynamics constraints within the cost function holds a
larger feasible region in each iteration. These characteristics make it a preferred method for
integrating dynamics constraints into the optimization process.
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Algorithm 1 An Iterative Trajectory Optimization Approach
1: procedure Solve(x̄ref, x̄opt) ▷ x̄ref: reference trajectory, x̄opt: optimized trajectory
2: x̄opt ← x̄ref

3: wpenalty ← wpenalty,0 ▷ wpenalty,0 is the initial value of wpenalty

4: i← 0
5: while i < imax do
6: OCP ← Form the Intermediate OCP
7: x̄opt ← Solve OCP by IPOPT
8: lpenalty ← Calculate by Equation 4-3
9: if (lpenalty < ϵ) then ▷ ϵ is a very small positive number

10: break
11: else
12: wpenalty ← wpenalty · α ▷ wpenalty is enlarged by α
13: i← i + 1
14: end if
15: end while
16: return x̄opt

17: end procedure

4-4-2 Control Layer

To control a vehicle within the high-fidelity simulator CARLA, generating low-level control
commands such as throttle, steering, and brake is necessary. For this purpose, a PID con-
troller was formulated to track a reference trajectory produced by the motion planning layer.
Consequently, the inputs for the controller encompass the reference states and control inputs,
while the controller’s output includes the low-level control commands for the subsequent time
step.

Specifically, the control input produced by the motion planning layer is utilized to establish a
feedforward component through a table lookup. Subsequently, a feedback term is computed by
the PID controller. The longitudinal and lateral control commands are computed separately
within the PID controller. To be precise, the throttle is determined based on the longitudinal
acceleration error, while the steering is calculated using the heading angle error.

4-4-3 Re-planning Scheme

When the vehicle drives on the road, it keeps taking new information from the perception
module. For example, it might detect new obstacles or road boundaries. Therefore, it is
necessary to conduct re-planning and run the planning layer in a receding horizon fashion.
At the beginning of each planning cycle, a straightforward approach is to use the current
state xreal of the ego vehicle as the starting point for re-planning. However, this approach
can lead to discontinuities, as depicted in Figure 4-8, and result in poor tracking performance
in the control layer due to a sudden reset of accumulated error. To overcome this, we initiate
re-planning from the corresponding state xplanned of the last planned trajectory’s time.

In our implementation, we assume a synchronous operation of the entire planning stack. This
implies that the processing time of each planning layer is disregarded, making the subsequent
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Figure 4-8: An illustration of the straightforward re-planning scheme. The red point represents
the actual state at the start of the planning cycle, while the blue point signifies the planned state.
Direct re-planning from the xreal can result in discontinuities in the trajectory output from the
planning layer.

layer run only after the completion of the previous one. However, in real-world scenarios,
the execution time of these planners cannot be neglected. To ensure trajectory smoothness
more effectively, an alternative approach might be planning from a future pose instead of the
current pose along the original trajectory, as suggested in [68]. In other words, the trajectory
should remain consistent within the processing duration.

Moreover, the authors of [68] propose a trajectory stitching technique. This method involves
binding the initial three states of the newly planned trajectory to the existing one, ensuring
a third-level continuity in the trajectory. The mathematical foundation for this approach,
involving variational analysis, is presented in [68].

4-5 Numerical Simulations

We consider a lane-merging scenario as introduced in Section 4-2. The red (SV1) and pink
(SV2) vehicles are considered interactive vehicles since the ego vehicle can influence their
motion, while the orange vehicle (SV0) is a non-interactive dynamic obstacle. We set the
initial beliefs on the interactive vehicles’ decisions to bSV1(π1

SV) = bSV2(π1
SV) = 0.5. To

simplify the notation, we use b1
SV1 and b1

SV2 to represent bSV1(π1
SV) and bSV2(π1

SV), respectively.
We use a planning horizon of T = 25, a discretization step of ∆t = 0.2 s, a decision time period
of ∆h = 1 s and a decision horizon of H = 5.

4-5-1 Open-loop Simlation

We conduct open-loop Monte Carlo simulations to empirically verify the existence of a Nash
equilibrium and investigate its relationship with the Stackelberg equilibrium. We first specify
nominal initial multi-vehicle states that are collision-free. Then, the state of the ego vehicle
is perturbed by ±10 m for the initial position, ±5 m/s for the initial longitudinal speed. We
run 500 simulations for each belief and compute three equilibria: Nash (NE), Stackelberg
with the ego vehicle as the leader (SEEV), and Stackelberg with the group of the surrounding
vehicles as the leader (SESV). The results are presented in Figure 4-9(a). A Nash equilibrium
is found in all simulations despite no theoretical guarantee in general. As mentioned before,
if there are multiple Nash equilibria, we select the one with the lowest social cost. We observe
that the selected Nash equilibrium coincides with one of the Stackelberg equilibria.
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28 Behavior Planning: An Efficient Game-Theoretic Planner

Figure 4-9(b) illustrates the statistical results on SV’s yielding decisions in different equilibria
over 500 simulations. Specifically, SV is more likely to yield when both players employ a
SEEV. In contrast, SV is less inclined to yield when both players select a SESV. This implies
that SV seems to behave cooperatively if the ego vehicle is the leader. On the contrary,
if the ego vehicle is the follower, then it tends to show conservative behavior because the
other vehicles are likely to assert. Overall, we conclude that adopting a Nash equilibrium
exhibits less interactive behavior than adopting a SEEV, but it is less conservative compared
to adopting a SESV. In other words, it seems that a vehicle can switch between interactive
and conservative behavior automatically by selecting a Nash equilibrium.
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Figure 4-9: Results of Monte Carlo simulations. (a) illustrates the relationship between Nash
and Stackelberg equilibria. (b) shows the percentage of yielding decisions made by SV in various
equilibria over 500 simulations. The notations NE, SESV and SEEV represent the Nash equilib-
rium, Stackelberg equilibrium with SV as the leader and Stackelberg equilibrium with EV as the
leader, respectively.

4-5-2 Closed-loop Simulation in CARLA

We conduct closed-loop simulations in the CARLA simulator to evaluate our proposed ap-
proach. CARLA is an open-source simulator for automated driving research, which provides
a realistic urban environment and a variety of vehicles. The experiments are conducted on a
laptop with a Ryzen 7 5800H CPU and an NVIDIA RTX 3060 GPU. The proposed planner is
implemented in Python, while the motion planner and tracking controller are implemented in
C++. Communication between these components is facilitated through the ROS framework
[69]. To focus on planning performance, we assume perfect state estimation and simulate

Shaohang Han Master of Science Thesis



4-5 Numerical Simulations 29

synchronous mode.

The scenario depicted in Figure 4-3 requires the ego vehicle to merge onto the target lane as
quickly as possible within a limited lane length of 100 m. To simulate a real-world scenario,
we add an additional surrounding vehicle behind the pink vehicle (SV2), resulting in three
surrounding vehicles on the target lane. A successful lane merge is defined as the ego vehicle
reaching a position within 0.5 m from the center of the target lane, with a heading parallel to
the target lane.

We choose to control the behavior of the surrounding vehicles by the P-IDM model intro-
duced in Section 3-4-1. Under this model, the surrounding vehicles use a constant velocity
assumption to predict the motion of the ego vehicle and make informed decisions based on the
prediction. Table 4-2 displays the P-IDM parameters used in the simulation. The cooperation
coefficient is sampled from a uniform distribution, denoted by U(·, ·). While the slow-moving
trunk is programmed to behave in a polite manner, the other surrounding vehicles on the
target lanes are programmed to behave in a selfish manner to simulate a traffic flow with
higher speeds. The initial positions of the surrounding vehicles are randomly generated while
maintaining a relative distance of 10 m to 15 m.

Table 4-2: IDM Parameters

IDM Parameter Polite Selfish

Desired velocity (m s−1) v0 5.0 10.0
Desired time gap (s) T 1.5 1.0
Jam distance (m) d0 3.0 2.0
Max acceleration (m s−2) a 2.0 2.0
Max deceleration (m s−2) b 2.0 3.0
Velocity exponent (1) δ 4.0 4.0
Cooperation coefficient (m) c U(0, 3.5) U(0, 3.5)

We compare the proposed planner with two interaction-aware planners and one classical
behavior planer that decouples planning and prediction. The two interaction-aware planners
are the planner proposed in EPSILON, which selects a trajectory with the lowest cost, and
a planner that selects a trajectory by seeking a Stackelberg equilibrium with the ego vehicle
as the leader. The classical behavior planner is based on the spatial-temporal lattice planner
adopted from the codebase of [25], which employs dynamic programming to determine the
optimal reference trajectory from the spatial-temporal lattice. We utilized a straightforward
yet practical constant velocity model for motion prediction of the surrounding vehicles, as
motivated by [70]. We conduct experiments on the planners using two initial traffic speeds.
For each initial condition, we run 200 simulations to ensure statistical significance. Screenshots
during different simulation scenarios can be seen in Figure 4-10(a) and 4-10(b).

Comparison to Interaction-aware Baselines

In Table 4-3, we observe that all the planners performed well at a low speed. However, as the
traffic speed increases, our proposed game-theoretic method achieves a higher success rate
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(a) Merging when the surrounding
vehicle (in pink) is polite.

(b) Merging when the surrounding
vehicle (in pink) is selfish.

Figure 4-10: Screenshots of simulation in CARLA. The red numbers represent the output of
the behavior planning layer, while the blue numbers stand for the trajectory generated by the
motion planning layer. In scenario (a), where the surrounding vehicle (in pink) is polite, the ego
vehicle can proceed to overtake. Conversely, in scenario (b), the surrounding vehicle (in pink)
acts selfishly, compelling the ego vehicle to wait until the former has cleared the way.

than the baselines while requiring approximately the same merging time.

Comparison to the Classical Baseline

From the obtained results, it is evident that the proposed behavior planner demonstrates
superior performance compared to the classical planner, particularly regarding success rate.
However, it is noteworthy that the classical planner is still capable of accomplishing success-
ful merges even in highly congested traffic scenarios. In fact, it may even require less time
to achieve a successful merge due to its gradual convergence towards the target trajectory.
Essentially, the classical planner selects a trajectory that closely aligns with the target lane,
thus exhibiting an “unconscious” probing behavior that can induce surrounding vehicles to
yield. Nevertheless, the classical planner often encounters difficulties in finding feasible so-
lutions despite extensive tuning. This limited feasibility region makes it impractical for use
in dense traffic conditions and real-world scenarios. These findings indicate that the classical
approach, utilizing the spatial-temporal lattice, poses challenges in terms of fine-tuning and
adaptability.

4-6 Discussion

While the proposed planner demonstrates the ability to capture interactions and generate
informed motion plans, it does have certain limitations.
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Table 4-3: Comparison of Planners in Closed-loop Simulations

Initial Speed Metric Nash Stackelberg EPSILON Classical

Low
(≈ 5 m/s)

success rate
collision rate

time to merge (s)
no solution rate

99 %
1 %
8.75
0 %

94 %
6 %
8.17
0 %

98 %
2 %
8.28
0 %

71 %
0 %
5.12
28 %

High
(≈ 10 m/s)

success rate
collision rate

time to merge (s)
no solution rate

95 %
5 %
6.92
0 %

89 %
11 %
6.90‘
0 %

70 %
30 %
6.78
0 %

39 %
1 %
3.98
57 %

• Computation time: The planner’s real-time performance is currently constrained
due to the computational demands of multi-vehicle forward simulation. However, this
limitation can potentially be mitigated by leveraging parallel computing acceleration,
which has the potential to reduce the computational cost significantly. Additionally,
future improvements to efficiency are anticipated through implementing the planner in
C++.

• Assumptions of the game theory: The proposed game-theoretic planner assumes
the rationality of surrounding vehicles by selecting a Nash equilibrium as the solution.
However, real-world human drivers may exhibit different behaviors influenced by cog-
nitive limitations, as highlighted in studies by [40], [57]. This motivates us to develop a
motion planning approach that is robust to a wide range of potential behaviors exhibited
by surrounding vehicles.

• Limited scalability: Despite strong interpretability, the proposed planner based on
gap selection can only be applied to lane merging scenarios. Therefore, we intend to
explore an interaction-aware but more general framework that can be applied to various
traffic scenarios. A potential solution framework will be discussed in Chapter 5.

4-7 Summary

The highlights of this chapter are summarized as follows:

• We propose a novel game-theoretic behavior planner that integrates planning and pre-
diction to generate informed motion plans.

• We validate the proposed planner through a benchmark evaluation in CARLA, demon-
strating its superior performance compared to both the state-of-the-art interaction-
aware behavior planners and a classical behavior planner.

• We discuss the limitations of the proposed planner and outline potential future research
directions.
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Chapter 5

Motion Planning: A Branch Model
Predictive Control Approach

In this chapter, we unveil a novel branch model predictive control (B-MPC) motion planner
that holds the promise of addressing the limitations presented by the behavior planner in
Chapter 4. To start, we provide motivation for the proposed approach by highlighting the
theoretical merits of the B-MPC approach (Section 5-1). Following this, we delve into the
details of B-MPC in Section 5-2. The chapter culminates with a series of numerical simulations
designed to assess the effectiveness of the proposed approach (Section 5-3).

5-1 Introduction

Despite the promising results, the game-theoretic behavior planning framework in Chapter
4 faces limitations when dealing with multi-modal behavior. The planner typically selects a
single trajectory based on the Nash equilibrium assumption, assuming fully rational behavior
from surrounding vehicles. However, in reality, the behavior of surrounding vehicles may
exhibit noise and rationality, introducing ambiguity and multiple behavior modes [40], [71].
This inherent stochastic behavior poses challenges to accurate motion prediction. While
efforts can be made to enhance prediction using game models, it is also intriguing to explore
design approaches on the planning side, aiming to address these uncertainties and improve
the overall effectiveness of the planning process.

One straightforward way to address this issue is through robust planning [72], which generates
trajectories that avoid all the possible motions of the surroundings. This method can be overly
conservative, which has been discussed in the literature review (see Sections 2-1-1 and 4-5-2).
Another approach is to generate a trajectory tree (also called contingency planning), the idea
of which is to create a branched motion plan that covers all the possible behaviors of the
surrounding vehicles. The relevant literature has already been reviewed in Chapter 2. In this
chapter, we will focus on the branch model predictive control (B-MPC) approach, which will
be shown as a promising solution for the problem above.
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Figure 5-1: Illustration of trajectories using B-MPC in the lane merging scenario. The red box
represents the surrounding vehicle (SV), while the blue box signifies the ego vehicle (EV). The
red and blue points correspond to the trajectory trees of SV and EV, respectively.

5-2 Branch Model Predictive Control (B-MPC)

The Branch Model Predictive Control (B-MPC) approach is proposed in [47] as a way to
generate a trajectory tree considering the multi-modal behavior of the surrounding vehicles.
For simplicity, we assume that the ego vehicle (EV) interacts with a single surrounding vehicle
(SV), as illustrated in Figure 5-1. This assumption is commonly adopted in the previous
literature [3], [37]–[39]. In this section, our initial step involves generating what we refer to
as the scenario tree, which comprises the motion predictions of the surrounding vehicle (SV).
Following this, we proceed to formulate an optimal control problem (OCP) aimed at deriving
an optimally structured trajectory tree for the ego vehicle (EV) that retains a similar topology
as the scenario tree.

5-2-1 Motion Prediction as a Scenario Tree

To understand the behavior of a traffic participant, leveraging domain knowledge has proven
to be an efficient approach [64]. In the context of lane merging, we assume that SV only
makes longitudinal semantic-level actions characterized by a discrete set of choices:

D = {LaneKeep, Yield}.

Each semantic-level action corresponds to a distinct behavior mode. This discretization is a
reasonable approach considering the multi-modal nature of SV’s future motion, as discussed in
previous research studies [58], [59], [61], [62]. What is more, it’s noteworthy that constraining
SV’s behavior to only longitudinal actions is a common assumption in the existing literature
[3], [37]–[40].

To further predict the motion of SV in the trajectory level, we associate each semantic-level
action with a pre-designed policy πi

SV(x̂EV, xSV), where i ∈ {1, · · · , MSV} stands for the
index of the policy. Here, we have MSV = 2 when given the semantic-level actions specified
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above. The state x = [x, y, θ, v]⊤ is given by the kinematic bicycle model as introduced in
Section 3-3. Here, x, y, θ, and v are the longitudinal position, lateral position, heading angle,
and speed, respectively. Instead of purely depending on the current state of SV [47], in this
thesis, we let the policy πi

SV maps the states of EV and SV to an appropriate control input
u = [a, δ]⊤. Here, a is acceleration, while δ stands for the steering angle. These policies can
either be manually crafted [64] or acquired through data-driven learning [62]. In this research,
we embrace a rule-based methodology for policy design. Further elaboration on this approach
can be found in Section 5-3-4.

It is crucial to recognize that these policies of SV depend not only on the simulated state of
SV but also on the states of EV. Consequently, the predicted motion of SV can be influenced
by the motion plans of EV, possibly leading to forced merging maneuvers. Although the
current motion plan of EV only affects the predicted motion of SV for the next time step,
the negotiation between the two exists due to the small time step duration (e.g., 0.1 s). An
experimental comparison can be found in Section 5-3-4.

Next, we present the structure of the scenario tree, which is illustrated in Figure 5-2. In
this design, each node, represented as a circle, corresponds to a predicted state pair of the
vehicles at time step t, denoted by (x̂EV(t), xSV(t)). A branch, depicted as a dashed rectangle,
encompasses multiple nodes generated by simulating SV’s behavior using a policy introduced
before. Therefore, a branch contains the states for a brief time interval. However, the root
branch comprises only one node, capturing the current state of the vehicles.

The child branches are established by iteratively cycling through SV’s policies at regular
intervals of N time steps. In a trajectory tree with depth d, we represent a branch as bk,
where the index k ∈ K = {0, · · · ,

MSV(Md−1
SV −1)

MSV−1 }. In the example depicted in Figure 5-2, the
tree has a depth of d = 3 and consists of branches b0, · · · , b6. We use the notation anc(k) to
indicate the index of a branch’s ancestor and ch(k) to signify the index of its children. For
example, we have the index anc(1) = {0} and ch(1) = {3, 4}. We further denote the state
pairs in a branch as

(
x̂EV(tk

0), xSV(tk
0)
)

, . . . ,
(
x̂EV(tk

f ), xSV(tk
f )
)
, where tk

0 and tk
f denotes the

time step of the first and last node of branch k.

Figure 5-2: An example of the scenario tree. In this example, we assume SV has two semantic-
level actions. The depth of the tree is denoted as d = 3, indicating the number of levels or stages
in the planning process. The tree branches at N = 3 time steps. The branching nodes, depicted
in orange, signify nodes with multiple predecessors, while the blue nodes represent nodes with
only one predecessor. The nodes inside one dashed rectangle use the same policy to generate
control inputs.

Shaohang Han Master of Science Thesis



5-2 Branch Model Predictive Control (B-MPC) 35

Here, we first predict the future states of EV, marked as x̂EV(tk
0), . . . , x̂EV(tk

f ), through for-
ward simulation using control inputs shifted from the previous time step’s B-MPC solution.
Subsequently, the predicted states of SV, represented by xSV(tk

0), · · · , xSV(tk
f ) are simulated

based on xSV(tanc(k)
f ), x̂EV(tk

0), · · · , x̂EV(tk
f ) using the corresponding policy πi

SV of branch bk.

To compute the probability of each behavior mode of SV, we can assess the cost Jk,i
SV for SV

within the branch using the same rule-based approach as explained in Section 4-3-3. Here, i
stands for the index of the policy used in branch k. Furthermore, we leverage the behavior
model introduced in Section 3-4-2 to compute the probability of branch bk as:

P (πi
SV | xSV(tanc(k)

f ), x̂EV(tk
0), · · · , x̂EV(tk

f )) =
exp

(
−Jk,i

SV

)
∑MSV

i=1 exp
(
−Jk,i

SV

) (5-1)

5-2-2 B-MPC Formulation

In this section, we will proceed with the computation of EV’s trajectory tree. As depicted in
Figure 5-3, the structure of EV’s trajectory tree closely resembles that of the scenario tree.
However, there’s a significant distinction: a branching node (highlighted in orange) only has
a single child. This one-step delay facilitates a contingency control input for EV, allowing it
to effectively handle all possible motions of SV.

Figure 5-3: An example of the trajectory tree of EV. The orange nodes correspond to the
branching nodes in the scenario tree.

To incorporate the probability of the multi-modal prediction of SV, we associate a weight
wk to each branch. While the root weight w0 = 1, the subsequent weights are calculated by
multiplying the conditional probabilities, i.e.,

wk = wanc(k)P
(
πi

SV | xSV(tanc(k)
f ), x̂EV(tk

0), · · · , x̂EV(tk
f )
)

We design a classical quadratic cost for each branch:

J0
EV = (xEV(t0

0)− xref(t0
0))T Q(xEV(t0

0)− xref(t0
0)) + uEV(t0

0)T RuEV(t0
0)

Jk
EV =

tk
f∑

t=tk
0

(xEV(t)− xref(t))T Q(xEV(t)− xref(t)) + uEV(t)T RuEV(t), ∀k ∈ K \ {0}

where Q and R are the state cost matrix and the control cost matrix, respectively. xref stands
for the reference state. When a branch has no children, uEV(tk

f ) is no longer a decision variable
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and the term uEV(t)T RuEV(t) is set to zero. The overall OCP for the B-MPC approach is
formulated as follows:

minimize
xEV,uEV

∑
k∈K

wkJk
EV (5-2a)

subject to xEV(t) = f (xEV(t− 1), uEV(t− 1)) , ∀k ∈ K,∀t = tk
0 + 1, . . . , tk

f (5-2b)

xEV(tk
0) = f

(
xEV(tanc(k)

f ), uEV(tanc(k)
f )

)
, ∀k ∈ K\{0} (5-2c)

w0 = 1 (5-2d)

wk = wanc(k)P
(
πi

SV | xSV(tanc(k)
f ), xEV(tk

0), · · · , xEV(tk
f )
)

(5-2e)

uEV ∈ U (5-2f)
xEV ∈ X (5-2g)
xEV(t0

0) = xinit
EV (5-2h)

xSV(t0
0) = xinit

SV (5-2i)

where
(
xinit

EV , xinit
SV
)

stands for the current state pair of EV and SV. We use xEV, uEV to
represent all the states and control inputs within the trajectory tree of EV.

The optimization problem depicted by Equation 5-2 encompasses nonlinear dynamics con-
straints (Equations 5-2b and 5-2c) and potentially non-convex collision avoidance constraints
(Equation 5-2g), making it a nonlinear programming problem (NLP). In this thesis, we per-
form a comparative analysis of various solving schemes for the NLP in Section 5-3-2, and we
investigate diverse formulations of collision avoidance constraints in Section 5-3-3. What is
more, we also add the bound constraints:

xmin
EV ≤ xEV(t) ≤ xmax

EV , umin
EV ≤ uEV(t) ≤ umax

EV , t ∈ {tk
0, . . . , tk

f}, ∀k ∈ K

as typically done in control applications. To further ensure motion comfort during driving,
we consider the slew rate constraints on the change of control inputs:

∥uEV(t)− uEV(t− 1)∥ < ϵu

where ϵu is a positive number.

By solving the aforementioned OCP problem, we can derive the states for the EV’s trajectory
tree. The B-MPC runs in a receding horizon manner. Only the control input of the root node
is executed. As the root node is the ancestor of all other branches, the resulting control input
can be viewed as a contingency plan that accounts for all potential future behaviors of the
SV. Here we summarize the connection between the scenario tree and EV’s trajectory tree:

• The scenario tree provides the motion prediction for SV. To create this prediction,
we perform forward simulations using the policies. As the policies also depend on EV’s
future state, we predict EV’s motion by shifting the B-MPC’s solution from the previous
time step.

• After constructing the scenario tree, we proceed to build a trajectory tree for EV with
a similar topology. Specifically, the branch probabilities derived from the scenario tree
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are used to adjust the corresponding weights in the trajectory tree. The motion predic-
tion of SV helps in formulating collision avoidance constraints. Moreover, EV’s motion
prediction from the scenario tree serves as an initial guess for the trajectory tree opti-
mization.

The complete B-MPC approach is summarized in Algorithm 2.

Algorithm 2 B-MPC Approach
1: procedure BMPC(xref

EV, u′
EV) ▷ xref: reference trajectory, u′

EV: last inputs
2: w0 ← 1
3:

(
xEV(t0

0), xSV(t0
0)
)
←
(
xinit

EV , xinit
SV
)

4: x̂EV(tk
0), · · · , x̂EV(tk

f ), ∀k ∈ K← Simulate EV’s motion using u′
EV

5: xSV(tk
0), · · · , xSV(tk

f ),∀k ∈ K← Generate SV’s prediction
6: OCP ← Form the OCP as Equation 5-2 using xref

EV and the scenario tree
7: xEV, uEV ← Solve the OCP
8: return uEV(t0

0)
9: end procedure

5-2-3 Real-time Iteration Scheme

Equation 5-2 represents an NLP, which can be computationally expensive to solve in general.
To mitigate this computational burden, we employ a real-time iteration (RTI) scheme [73] to
solve the OCP. The RTI scheme leverages the fact that the solution of the OCP of the current
time step is close to the solution of the previous time step. This approximation is reasonable
since the time step is typically small when the algorithm runs in a receding horizon manner.

The RTI scheme can be summarized as follows: In the first phase, we linearize the OCP
around the previous solution and formulate a Quadratic Programming (QP) problem. In the
second phase, we solve the QP problem to obtain the solution of the OCP. The overall RTI
scheme is outlined in Algorithm 3.

Algorithm 3 RTI Scheme for Solving B-MPC
1: Phase 1:
2: procedure Preparation(x′

EV, u′
EV) ▷ Using previous solution as input

3: (x̂EV, ûEV)← Shift (x′
EV, u′

EV)
4: Linearize the dynamics and constraints at (x̂EV, ûEV)
5: QP ← Formulate the QP problem
6: return QP
7: end procedure
8: Phase 2:
9: procedure Feedback(QP )

10: (δxEV, δuEV)← Solve QP by OSQP
11: (xEV, uEV)← (x̂EV, ûEV) + (δxEV, δuEV) ▷ Apply the full Newton step
12: return (xEV, uEV)
13: end procedure
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5-3 Numerical Simulations

5-3-1 Simulation Setup

In Chapter 4, we utilized the high-fidelity simulator CARLA to conduct our experiments.
CARLA offers robust physical simulations, thereby necessitating the generation of low-level
control inputs (throttle, brake, steering) for the ego vehicle. Consequently, we needed to
develop a comprehensive planning and control stack, resulting in a complex system. While
we successfully implemented this system in Chapter 4, we observed that it exhibited strong
coupling, making it challenging to evaluate the performance of individual planners.
Therefore, we apply a simplified handcrafted simulator in this chapter. The simulator, im-
plemented in Python, consists of two vehicles driving on a city road, as illustrated in Figure
5-1. The vehicles are simulated using the kinematic bicycle model introduced in Section 3-3.
We represent the vehicles as rectangles and detect collision via the separating axis theorem.
By ignoring the low-level control, we can evaluate the performance of the B-MPC approach
more objectively. Additionally, we simulate the behavior of SV by the P-IDM model, which
has been introduced in Section 3-4-1. The model parameters are the same as in Table 4-2.
In each simulation, the driving style of SV is randomly selected. The initial speeds of both
vehicles are set to be 10 m s−1. EV is initialized to be ahead of SV by a positive longitudinal
distance, chosen uniformly from 1 m to 5 m. The reference state xref

EV is defined by adding
10 m to the SV’s longitudinal state. In other words, EV is supposed to overtake SV.
In contrast to the simple unicycle model in [47], this thesis utilizes the more practical kine-
matic bicycle model and the B-MPC algorithm. The implementation of the algorithm is in
C++ to ensure real-time performance. For algorithmic differentiation and solving optimiza-
tion problems, we utilize the CasADi framework [74]. To facilitate message passing between
different programs, we rely on ROS [69]. To ensure statistical significance, we conduct 200
runs for each experiment setting. For simplicity, we set the depth of the tree to one. The be-
havior mode LaneKeep is represented by a constant velocity policy, while Yield is a constant
deceleration braking policy. The main experiment results are summarized in Table 5-1.

Table 5-1: Experiment results of B-MPC

Metric IPOPT + Clearance IPOPT + Circle RTI + Clearance RTI + Circle

success rate 41 % 59 % 51 % 97 %
collision rate 15 % 41 % 1 % 3 %
time to merge 4.72 s 1.78 s 3.88 s 2.10 s

computation time 0.23 s 0.47 s 0.02 s 0.02 s

5-3-2 Comparison of Solving Schemes

The results presented in Table 5-1 clearly demonstrate that the RTI scheme demands less
computational time compared to the nonlinear IPOPT solver while still achieving superior
performance. Nevertheless, it is worthwhile to mention that in our experiments, the RTI
scheme can encounter difficulties finding a solution when the tree depth increases. This
behavior may be attributed to its strong dependence on the initial guess.
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It’s noticeable that using the nonlinear solver results in a lower success rate and a higher
collision rate, which is contrary to expectations. Typically, a nonlinear solver should provide
a more precise solution to the OCP at the expense of increased computation time. This
unexpected experimental outcome might be attributed to the predefined xref

EV. In our exper-
iment, we utilize a single reference state with a constantly larger longitudinal position than
SV. This choice is consistent with the approach in [47]. However, this might not be the most
reasonable selection since SV’s continual movement renders the preset state invalid over time.
This strategy performs reasonably in the RTI solving scheme due to linearization errors, but
it could undermine performance when employing more accurate solving schemes like the non-
linear solver IPOPT. In the future, our plan is to address this issue by employing the output
of the behavior planner (discussed in Chapter 4) as the reference states. This approach aims
to provide a more accurate and contextually relevant reference for the trajectory optimization
process.

5-3-3 Comparison of Collision Avoidance Constraints

To prevent collisions, the original method in [47] represents vehicles as rectangles and enforces
clearance in both longitudinal and lateral directions. An illustration can be seen in Figure
5-4. The collision avoidance constraint is written as follows:

∆xeκ∆x + ∆yeκ∆y

eκ∆x + eκ∆y
≥ 1 (5-3)

where κ is a positive constant, ∆x = |xEV−xSV|
∆xmax and ∆y = |yEV−ySV|

∆ymax . Here, ∆xmax and ∆ymax

represent the predefined maximum longitudinal and lateral clearances, respectively. To satisfy
the constraint specified in Equation 5-3, it’s necessary for either the longitudinal or the lateral
clearance to be equal to or greater than the maximum clearance.

Figure 5-4: An illustration of the vehicle clearance. The blue and orange rectangles correspond
to the ego vehicle and the interactive surrounding vehicle, respectively. The disparity between
their longitudinal and lateral positions signifies the longitudinal and lateral clearance.

Equation 5-3 is computational efficiency and easy to implement. However, this approach
using clearance tends to be conservative since it overlooks the orientation of the vehicles. In
contrast, this thesis represents the EV as circles, as already demonstrated in Section 4-4-1.
Instead of applying the spatial-temporal corridors, we also represent the SV as circles, leading
to the collision avoidance constraints as:∥∥∥ci

EV − cj
SV

∥∥∥
2
− 2r ≥ 0, ∀i, j ∈ [nc] (5-4)
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where cEV and cSV denote the centers of EV and SV, respectively. The parameter nc signifies
the total number of circles used for each vehicle, while r stands for the radius of these circles,
as explained in Section 4-4-1. Though the introduction of additional dimensions escalates
computational demands, the constraints in Equation 5-4 account for the vehicle’s orientation,
leading to less overly conservative motion plans. In this chapter, We ignore the constraints
of the road edges for simplicity.

In Table 5-1, we observe that the collision avoidance constraints proposed in this thesis result
in a significantly higher success rate using both solving schemes. However, there is also a slight
increase in the collision rate, indicating that the relaxation of collision avoidance constraints
can lead to some risky situations.

5-3-4 Performance of Interactive Policy

In this thesis, we utilize the policy πi
SV(xEV, xSV) for SV. Unlike the original policy πi

SV(xSV)
described in [47], the proposed policy considers the states of both EV and SV. This approach
allows the motion prediction of SV to be influenced by the motion plans of EV, resulting in
less conservative motion plans. To validate the effectiveness of applying interactive prediction
for SV, we utilize a P-IDM model in LaneKeep mode while using a constant velocity model
as a baseline. To keep the evaluation simple, we limit the motion mode of SV to only
LaneKeep. Furthermore, we employ the RTI solving scheme in conjunction with the newly
proposed collision avoidance constraints, as they have demonstrated superior performance in
our experiments.

The results are shown in Table 5-2. It is evident that the rate of successful lane merging is
significantly higher when using interactive prediction, compared to employing the constant
velocity model. Meanwhile, the time cost of using interactive prediction is smaller. These
findings indicate that interactive prediction can leverage the nature of SV to react to EV’s
motions, resulting in the potential yield behavior of SV during lane merging.

Table 5-2: Performance of Interactive Prediction

Metric Interactive Prediction Constant Velocity Prediction

success rate
collision rate

time to merge (s)
computation time (s)

93 %
7 %

1.97 s
0.02 s

78 %
2 %

2.72 s
0.02 s

5-4 Discussion

In this chapter, we discuss the B-MPC approach, which is initially proposed in [47]. Never-
theless, the work in this thesis still holds some limitations:

• Branching Strategy: It is important to mention that there are different strategies for
approximating a trajectory tree, as discussed in [44]. However, the authors also report
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5-5 Summary 41

in [44] that not much improvement could be observed when using different strategies.
Therefore, in this thesis, we utilize a straightforward approach of creating branches at
regular intervals for simplicity.

• Influence of Behavior Planning: The motion planner proposed in this chapter
still relies on a reference line and an initial guess, which can significantly influence
the solution due to the nonlinear nature of the optimization problem. Consequently, a
behavior planning module is still necessary before applying the B-MPC motion planner.
As a part of future work, we aim to integrate the game theoretic behavior planner
proposed in Chapter 4 with the motion planner in this chapter to create a comprehensive
planning stack.

• Multiple Surrounding Vehicles: Although the B-MPC approach can perform well
when dealing with a single vehicle, directly applying it to multiple vehicles becomes chal-
lenging due to the exponential growth of the tree size, rendering the problem intractable.
However, a potential solution to simplify the problem is to assume that the ego vehicle
interacts with the surrounding vehicles in pairwise [3]. Under this assumption, we can
create branches without considering a second surrounding vehicle, making the problem
computationally cheaper. The adaptation of B-MPC to multiple surrounding vehicles
is regarded as another area for future work.

5-5 Summary

Our contribution to the B-MPC approach can be summarized as follows:

• We utilize the more complex kinematic bicycle model instead of the simple unicycle
model to ensure dynamics feasibility.

• We predict the trajectory tree of SV via policies depending on the states of SV and EV,
enabling the prediction of SV to be influenced by the motion plans of EV.

• We compare the RTI solving approach with solving by IPOPT, a general-purpose NLP
solver. The RTI solver can achieve faster computation and better performance with
parameter tuning, but it might encounter difficulties finding a solution when the horizon
becomes longer.

• We propose new collision avoidance constraints that consider the orientation of the
vehicles to make motion plans less conservative.

• We discuss the current limitations of the B-MPC approach and explore possible future
directions.
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Chapter 6

Conclusion

6-1 Summary

The highlights of this thesis can be summarized as follows:

• We present a novel approach combining game theory with interactive behavior planning.
To ensure practicality and efficiency, we leverage semantic-level actions and model ve-
hicle interactions as a gap selection process. Addressing the multi-modality challenge,
we represent the surrounding vehicles’ behavior as actions in a matrix game and then
select the Nash equilibrium with the lowest social cost. Our simulation study in CARLA
demonstrates the superior performance of our proposed method compared to the state-
of-the-art approaches.

• We have developed an implementation of the Branch Model Predictive Control (B-
MPC) planner that generates contingency motion plans by considering the multi-modal
behavior of the surrounding vehicles. In addition to reproducing the original planner
proposed in [47], we reproduced the algorithm in C++ and used a kinematic bicy-
cle model instead of a unicycle model. Apart from different solving schemes, we also
explored more commonly used collision avoidance constraints and incorporated an inter-
active policy while predicting the motion of the surrounding vehicles. The experiments
on a handcrafted lightweight simulator show the findings of our exploration.

6-2 Future Work

In the future, our first goal is to integrate the behavior planner and motion planner into
a comprehensive planning stack. To assess the effectiveness of this integrated system, we
plan to use datasets collected from real human drivers. Additionally, to evaluate real-time
performance, we intend to implement the algorithm stack on actual automated vehicles.
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While classical model-based approaches are appealing due to their determinism and explain-
ability, they may lack generalizability. For example, algorithms designed for straight roads
may not directly apply to curved roads. Moreover, model-based approaches could become
non-optimal when underlying modeling assumptions are violated. For instance, in previous
chapters, we assumed that the ego vehicle only directly interacts with a single surrounding
vehicle, which is commonly adopted but not necessarily valid in real-world scenarios. Hence,
model-based approaches may inherently be limited as “expert systems”.

In contrast, learning-based approaches are gradually showing promise despite not yet reaching
the same level of performance as classical approaches. One potential direction involves using
reinforcement learning (RL), allowing the ego vehicle to learn an optimal policy on its own.
A policy learned through RL is expected to capture all the relevant decision-making factors.
With the introduction of certificate functions, such as a control Lyapunov barrier function,
the safety guarantee of an RL policy becomes less challenging [75]. Notably, the paper [75] is
also a work by the thesis author during his master’s study, and a full copy can be found in
Appendix B. As another area of future work, the author intends to explore the usage of RL
to generate policies for lane merging of automated vehicles.
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Abstract— In this paper, we propose a novel behavior plan-
ner that combines game theory with search-based planning
for automated lane merging. Specifically, inspired by human
drivers, we model the interaction between vehicles as a gap
selection process. To overcome the challenge of multi-modal
behavior exhibited by the surrounding vehicles, we formulate
the trajectory selection as a matrix game and compute an equi-
librium. Next, we validate our proposed planner in the high-
fidelity simulator CARLA and demonstrate its effectiveness in

Luyao Zhang1,†, Shaohang Han2,† and Sergio Grammatico

An Efficient Game-Theoretic Planner for Automated Lane Merging
with Multi-Modal Behavior Understanding

1

handling interactions in dense traffic scenarios.

I. INTRODUCTION

Automated vehicles are facing a significant challenge
when navigating in highly interactive environments, such as
the lane-merging scenario shown in Figure 1. Traditional
methods typically adopt a hierarchical structure where mo-
tion prediction and planning are decoupled. Consequently,
these methods might be overly conservative since they often
overlook the mutual interaction between the ego vehicle and
the surrounding ones. Although newly developed learning-
based approaches [1], [2] consider such interaction, they
typically require large amounts of data and might lack
interpretability. Another popular interaction-aware method is
the Partially Observable Markov Decision Process (POMDP)
[3], which provides a rigorous mathematical framework
for handling incomplete information, such as the unknown
intentions of the surrounding vehicles. However, solving a
large-scale POMDP is computationally intractable.

As an approximation of the POMDP framework, the mul-
tiple policy decision-making (MPDM) [4] and its extension
EPSILON [5] have demonstrated promising results in gen-
erating practically reasonable trajectories while remaining
computationally efficient. The approach involves conducting
multi-vehicle forward simulations based on semantic-level
policies, followed by a trajectory evaluation step to select
the best trajectory using handcrafted criteria. However, the
rule-based trajectory evaluation in EPSILON might be overly
aggressive or conservative when the surrounding vehicles
have multiple behavior modes. Additionally, although the
open-loop planning strategy is computationally efficient, it
sacrifices the advantages of active information gathering in
the original POMDP approach.

To systematically evaluate the trajectories, we use game
theory, which is a powerful mathematical framework that

*This work is partially supported by NWO under project AMADeuS.
† Equal contribution. Luyao Zhang and Sergio Grammatico are with

the Delft Center for Systems and Control, TU Delft, The Netherlands.
{l.zhang-7, s.grammatico}@tudelft.nl

2Shaohang Han is with the Department of Cognitive Robotics, TU Delft,
The Netherlands. s.han-5@student.tudelft.nl

Fig. 1: Lane-merging scenario in the CARLA simulator. The ego
vehicle (blue) is merging onto a lane in dense traffic.

captures the mutual influence between multiple agents. Pre-
vious research has explored equilibrium solutions extensively
for automated lane merging. Some studies have focused
on jointly planning trajectories for all vehicles by seeking
a Nash equilibrium [6], [7]. However, these methods can
only find a local equilibrium, and the quality of the solution
might heavily depend on the initial guess. In contrast, other
approaches use semantic-level actions as strategies. Among
them, some studies propose a Stackelberg game with a
leader-follower structure [8], [9]. However, determining the
relative role of the leader or follower might be difficult [8].
In contrast to the leader-follower structure in a Stackelberg
game, a Nash game treats all agents equally. A representative
method based on a Nash game is proposed in [10], but it
lacks validation in a high-fidelity simulator.

Contribution: In this paper, we propose a novel approach
that combines game theory with interactive trajectory gen-
eration. To make the algorithm practical and efficient, we
leverage the semantic-level actions and model the interaction
between vehicles as a gap selection process (Section IV-
A). Additionally, to tackle the issue of multi-modality, we
represent the behavior of the surrounding vehicles as actions
in a matrix game, and then select the Nash equilibrium with
the lowest social cost [11] (Section IV-C). We also investigate
the existence of Nash equilibria and the relationship between
Nash and Stackelberg equilibria through both theoretical
analysis and numerous numerical simulations (Section V
and VI-A). Moreover, we validate the effectiveness of the
proposed planner in the high-fidelity CARLA simulator [12]
(Section VI-B).

II. RELATED WORK

POMDP for lane merging. Prior research has explored
POMDP for addressing the issue of unknown intentions in
lane-merging scenarios. Online solvers, such as POMCPOW
[13] and DESOPT [14], estimate the action-value function
through sampling. Other POMDP approximations, such as
QMDP [15] and heuristics [16], have been proposed as well.

© 2023 IEEE. Reprinted, with permission, from L. Zhang, S. Han, S. Grammatico,  "
An Effcient Game-Theoretic Planner for Automated Lane Merging with Multi-Modal 
Behavior Understanding," 2023 IEEE International Conference on Intelligent 
Transportation Systems (ITSC), Bilbao, Bizkaia, Spain
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Fig. 2: Structure of the proposed behavior and motion planner. The
focus of this paper is on the game-theoretic behavior planner.

Game-theoretic planning for lane merging. In methods
that use Stackelberg games, vehicle strategies are represented
by semantic-level actions such as motion primitives [8]
or waiting time before merging [9]. While most of these
methods assume the ego vehicle to be the leader, the rationale
behind this is not always clear. Another approach utilizes
level-k reasoning to model human drivers’ behavior [17].
However, the computational burden of this framework is
substantial due to the necessity of modeling the depth of
human thinking [18].

III. PROBLEM FORMULATION

In this paper, we consider a mixed-traffic scenario where
an automated ego vehicle interacts with the surrounding
vehicles, as shown in Figure 1. Specifically, the ego vehicle
aims at driving efficiently but a low-speed vehicle (SV0)
travels in front of it. To avoid being blocked, the decision-
making system of the ego vehicle needs to consider the
diverse driving behaviors of the surrounding vehicles, select a
suitable merging gap, and determine if/when to change lane.
For example, in Figure 1, the ego vehicle can merge ahead
of or after the pink vehicle (SV2). In fact, if SV2 yields,
then the gap enlarges and the ego vehicle merges ahead of
SV2. Otherwise, if the gap is not sufficiently wide, then the
ego vehicle might slow down and then merge after SV2.

A. Structure of the Planner

We propose a game-theoretic planner as illustrated in
Figure 2. Unlike other conventional behavior planners that
require a motion predictor as an upstream module, in our
approach, we combine motion prediction and behavior plan-
ning. Our proposed game-theoretic behavior planner consists
of three modules: semantic-level action generation, forward
simulation, and trajectory evaluation. First, we enumerate
the possible semantic-level decision sequences of the traffic
participants over the decision horizon. For the ego vehicle,
a semantic-level decision can be making a lane change,
accelerating or decelerating. Then, we form the action tuples
by combining the decision sequences of the ego vehicle
and surrounding vehicles. For each action tuple, the forward
simulator generates the trajectories of the relevant vehicles.
Subsequently, the trajectory evaluator determines the costs
of the trajectories for each action tuple. Next, we construct a
matrix game and seek an equilibrium. Finally, the trajectory

evaluator selects the action tuple associated with the equilib-
rium, and outputs the multi-vehicle trajectories.

Although we apply the kinematic bicycle model to simu-
late the motion of the ego vehicle, the trajectory generated
by the behavior planner might not be sufficiently smooth
due to the coarse discretization step. Therefore, we employ
an additional local motion planner [19] to produce a kine-
matically feasible trajectory. To ensure safety, the simulated
trajectories of the surrounding vehicles are used to impose
dynamic collision avoidance constraints.

B. Matrix Game
We model the decision-making process as a matrix game

with two players. In the game, each player selects an action
from its finite action set to optimize its individual cost. A
two-player matrix game is defined by a tuple (N ,Π, J),
where N is the set of two players, Π = ×i∈NΠi is the joint
action space, and J = ×i∈NJi is the joint cost function.
Next, we introduce the three ingredients of the matrix game:
players, actions and cost functions.

1) Players: We consider the ego vehicle (EV) and the
group of the surrounding vehicles (SV) as two players, N :=
{EV,SV}.

2) Actions: Human drivers typically make semantic-level
decisions to make lane changes safely and efficiently. In-
spired by human drivers, we represent the action of player
i ∈ N by a semantic-level decision sequence, denoted as
πi = {πi,0, . . . , πi,k, . . . , πi,H−1}, where H is the decision
horizon. We provide more design details on the decision
sets and the method for enumerating all possible decision
sequences later in Section IV-A.

3) Cost functions: Before computing the costs, the for-
ward simulator (Section IV-B) generates multi-vehicle tra-
jectories. The cost function Ji of vehicle i evaluates the
corresponding trajectory based on user-defined metrics, such
as safety, efficiency, comfort and navigation. We consider
the surrounding vehicles as a whole by calculating the total
cost as JSV :=

∑N
i=2 Ji, where N is the number of vehicles.

Technical details are provided in Section IV-C.
A matrix game is depicted in Table I, where each entry

represents a cost tuple (J ij
SV, J

ij
EV) received by the group (SV)

and the ego vehicle (EV) after performing their respective
actions, πi

SV and πj
EV. Next, we look for an equilibrium

TABLE I: Game in normal form.
π1

EV · · · π
MEV
EV

π1
SV (J1,1

SV , J1,1
EV ) · · · (J

1,MEV
SV , J

1,MEV
EV )

...
...

. . .
...

π
MSV
SV (J

MSV,1
SV , J

MSV,1
EV ) · · · (J

MSV,MEV
SV , J

MSV,MEV
EV )

of the matrix game. As previously mentioned in Section I,
there are two recognized types of equilibria in the context of
autonomous driving.

Definition 1. (Pure-strategy Nash equilibrium). A pure-
strategy Nash equilibrium is a set of players’ actions,
{π∗

i }i∈N such that, for each player i, it holds that

Ji(π
∗
i , π

∗
−i) ≤ min

si∈Πi

Ji(si, π
∗
−i),



where π−i represents the set of actions taken by all players
except player i.

The definition above indicates that no player can reduce its
cost by unilaterally changing its strategy [20].

In a Stackelberg game, the idea is that the leader can take
the action first, and then the follower plays the best response
action [20]. The technical definition is provided as follows.

Definition 2. (Stackelberg equilibrium). A Stackelberg equi-
librium is a pair {π∗

L , π
∗
F(·)} such that

π∗
L = arg min

πL∈ΠL
JL(πL, π

∗
F(πL)),

π∗
F(πL) = arg min

πF∈ΠF
JF(πL, πF),

where the subscripts, L and F, represent the leader and the
follower, respectively.

The leader and follower roles are not always fixed on the
road. In other words, the ego vehicle can switch between
being the leader and the follower. Thus, we consider two
Stackelberg equilibria: one with the ego vehicle as the leader
and the other with the ego vehicle as the follower.

IV. GAME-THEORETIC BEHAVIOR PLANNER

A. Semantic-Level Action Generation

1) Actions of Ego Vehicle: In the lane-merging problem,
the semantic-level decision involves selecting a gap and
determining the desired lateral position. As shown in Figure
3, the ego vehicle in blue has three potential gaps to choose
from. To reach the target gap, the ego vehicle needs to
perform a sequence of lateral decisions. The common lateral
decisions are lane changing and lane keeping. Furthermore,
we introduce one additional intermediate lane, represented
by the dashed blue line in Figure 3, to enable a probing
decision. This allows the ego vehicle to gather information
and negotiate with the surrounding vehicles. Overall, the
complete lateral decision set can be defined as:

Dlat := {LaneKeep,LeftChange,LeftProbe}.

The semantic-level decision at decision step k is denoted
by an action tuple πEV,k := (gk, d

lat
k ), where gk ∈

{Gap0, Gap1, Gap2} and dlat
k ∈ Dlat(gk). We note that the

lateral decision set is conditioned on the gap selection, which
reduces the number of action tuples. For example, if the ego
vehicle chooses Gap0, then the only available lateral action
is to keep the current lane. Next, we construct a decision
tree to enumerate all the possible decision sequences. Each
node in the tree represents a decision tuple. The decision
tree is rooted in the decision selected in the last planning
cycle and branches out at each decision step. Due to the
exponential growth of the number of decision sequences with
the depth of the tree, it is necessary to prune the decision tree
to limit computational complexity. By using semantic-level
decisions that can be easily understood by humans, we can
design some rules to prune the tree. For instance, we can
restrict the number of decision changes over the planning
horizon because human drivers tend to maintain their current

Fig. 3: Semantic-level decisions. Three gaps are available for
the ego vehicle to choose from: Gap0, Gap1 and Gap2. The
dashed red lines represent the centerlines of the lanes, and the
dashed blue line represents the probing line. EV stands for the
ego vehicle, while SV0, SV1, and SV2 represent the surrounding
vehicles. |xl − xf | and |yl − yf | represent the longitudinal and
lateral distances between the lane-changing vehicle (leader) and the
interactive vehicle (follower), respectively.

driving decisions for relatively long periods of time. In
addition, we can rule out certain transitions that would not be
considered by normal human drivers, such as the transition
from (Gap1,LeftChange) to (Gap2,LeftChange).

2) Actions of the Surrounding Vehicles: We make the
following assumptions on the surrounding vehicles: (i) The
surrounding vehicles maintain their lanes and have only
longitudinal motion - a common assumption in prior work
[8]–[10], [17], [21]; therefore, we define their longitudinal
decision set as {Assert,Yield}. (ii) The surrounding
vehicles maintain their decisions throughout each forward
simulation. This assumption is reasonable in practice since
the planner runs in a receding horizon fashion. (iii) The
ego vehicle only directly interacts with at most one sur-
rounding vehicle throughout each forward simulation. For
instance, as shown in Figure 3, if the ego vehicle selects
Gap2, its motion affects SV2, but not the vehicles ahead
(SV0 and SV1). Therefore, we can treat all surrounding
vehicles as a group, and the action set of the group is
ΠSV := {Assert,Yield}.

B. Multi-vehicle Forward Simulation

1) Vehicle Dynamics: Next, we intend to generate the
trajectories by simulating the motion of the vehicles from
the initial states. We represent the dynamics of vehicle i as
a kinematic bicycle:

ẋi = vi cos (θi), ẏi = vi sin (θi), θ̇i =
vi
l
tan(δi), v̇i = ai,

where (xi, yi), θi and vi are the position, the heading angle,
and the speed, respectively; ai and δi are the acceleration
and the steering angle; l represents the inter-axle distance.
The configuration vector is denoted as qi := [xi, yi, θi]

⊤.
Since we assume that the surrounding vehicles do not make
lane changes, their heading and steering angles are equal to
zero during the forward simulation (θi = 0, δi = 0). We
discretize the dynamics via the Runge-Kutta 3 method.

2) Motion of the Ego Vehicle: We use two separate
controllers to generate the longitudinal and lateral motion
for the ego vehicle. For the longitudinal motion, we track the
target longitudinal position and the desired speed via a PD



controller. One example of the target longitudinal position
within the desired gap is illustrated in Figure 3. The desired
gap, Gap2, is defined based on the positions of the front
and rear vehicles, denoted as xfront and xrear, respectively.
Similar to [5], we determine the target longitudinal position
and speed using a rule-based method.

As for the lateral motion, we adopt a pure pursuit con-
troller that requires the current vehicle speed and the target
line as inputs. The steering angle is computed by δctrl

i =

tan−1
(

2L sin(γi)
Kppvi

)
, where γi represents the angle between

the heading direction and lookahead direction, Kpp is the
feedback gain, and Kppvi is the lookahead distance.

3) Motion of the Surrounding Vehicles: To model the
behavior of the surrounding vehicles, we propose a modified
intelligent driver model (IDM). Unlike the original IDM
[22], which focuses solely on car following and disregards
vehicles on adjacent lanes, our modified model considers
lane-changing vehicles by projecting them onto their target
lanes, resulting in virtual vehicles as shown in Figure 3
Subsequently, we calculate the distance between the virtual
leader and the follower using the following approach:

didm = |xl − xf |eκ|yl−yf |, κ = 2 log(β)/wlane,

where wlane is the lane width, and β is a parameter charac-
terizing the level of willingness to yield. In fact, by adjusting
the value of β, we can model different actions performed by
the group of surrounding vehicles. Specifically, a large value
of β indicates that the vehicle on the target lane is less likely
to yield to the lane-changing vehicle because it perceives that
the projection is far away. When the lateral distance between
two vehicles vanishes

(
|yl − yf | = 0

)
, the virtual distance

between them is equivalent to the true distance.
C. Trajectory Evaluation

After generating multi-vehicle trajectories for each action
tuple, we proceed to select a specific action tuple by solving
a matrix game. For constructing the cost matrix, we first
introduce the cost function Ji of vehicle i, which is typically
a combination of several user-defined metrics, including
safety, efficiency, comfort and navigation cost: Ji = J saf

i +
J eff
i +J com

i +Jnav
i . The value of the cost function Ji depends

on the trajectories generated by the forward simulator, which
are influenced by the semantic-level decision sequences of
the ego vehicle (πEV) and the surrounding vehicles (πSV).

We calculate the safety cost by examining vehicle col-
lisions. Here, the footprint of vehicle i is modeled as a
rectangle Ri(qi). If the distance between two rectangles is
less than a small value d, indicating a potential collision, we
assign a very large penalty to the corresponding trajectory.
With this in mind, we compute the safety cost as follows:
J saf
i (πEV, πSV) :=

∑T
t=0

∑N
j=1, j ̸=i P (qi(t), qj(t)), where T

is the planning horizon and N is the number of vehicles. We
design P as follows:

P (qi(t), qj(t)) :=


wsaf

1 if 0 ≤ dij(t) < d

wsaf
2 if d ≤ dij(t) ≤ d̄

0 else

where dij(t) represents the distance between Ri(qi(t)) and
Rj(qj(t)), and wsaf

1 is large than wsaf
2 . By giving a relatively

small penalty wsaf
2 when dij(t) falls within the range of [d, d̄],

we encourage the vehicle to keep a suitable distance from
the surrounding vehicles. Next, we measure the efficiency
of the trajectory by computing the sum of the squares of
the differences between the vehicle speed and its desired
speed: J eff

i (πEV, πSV) := weff ∑T
t=0(vi(t) − vdes

i )2. For the
comfort cost, we consider the change in acceleration, which
is known as jerk. We use the finite difference to approximate
the jerk, and subsequently define the comfort cost as follows:
J com
i (πEV, πSV) := wcom ∑T

t=1(ai(t) − ai(t − 1))2/∆t2.
Next, we penalize the differences between the vehicle lateral
position and its desired lateral position to encourage the lane-
changing maneuver: Jnav

i (πEV, πSV) := wnav ∑T
t=0(yi(t) −

ydes
i )2. Additionally, we introduce an information gain metric

in the cost function, inspired by [23], to motivate the ego ve-
hicle to actively identify the surrounding vehicles’ intentions.

In practice, the ego vehicle needs to estimate the cost
functions of other vehicles by observing their trajectories
since it cannot directly access these costs. Similar to POMDP,
we account for the uncertainty in the aggregate cost of
the surrounding vehicles by integrating the beliefs into the
cost function. The modified aggregate cost is computed as
follows: J̄ ij

SV := (1 − b(πi
SV))J

ij
SV,

∑MSV
i=1 b(πi

SV) = 1,
where b represents the belief associated with the action of
the surrounding vehicles. This design can be understood
as incorporating prior knowledge about the behavior of the
group of surrounding vehicles into the aggregate cost. For
example, if we have prior knowledge suggesting that the
group is likely to yield, then we can set the corresponding
belief close to 1, which reduces the modified aggregate cost.
We use a Bayesian estimation algorithm [24] to recursively
estimate the beliefs at the beginning of each planning cycle.

After constructing the cost matrix, we compute a Nash
equilibrium for the matrix game by enumerating all possible
combinations of semantic-level actions. If multiple Nash
equilibria exist, we select the equilibrium with the lowest
social cost. If a Nash equilibrium does not exist, we choose
the Stackelberg equilibrium with the ego vehicle as the
follower as a backup solution.

V. ON NASH AND STACKELBERG EQUILIBRIA

In this section, we examine the conditions for the exis-
tence of a pure-strategy Nash equilibrium and explore the
relationship between the Nash and Stackelberg equilibrium.
We consider a specific cost matrix where π1

SV := Assert
and π2

SV := Yield as mentioned in Section IV-A. We call an
action tuple (πSV, πEV) feasible if the corresponding multi-
vehicle trajectories are free from collisions, and we assume
that there always exists at least one feasible action tuple.

Next, we show the existence of a Nash equilibrium for
the matrix game. To obtain the results of this section, we
assume that for the group of the surrounding vehicles (SV),
behaving politely incurs a higher cost, while the ego vehicle
(EV) achieves a lower cost if SV shows polite behavior. This
assumption is required by Propositions 1 and 2.



Proposition 1. Assume that the inequalities 0 ≤ J1m
SV ≤ J2m

SV
and J1m

EV ≥ J2m
EV ≥ 0 hold for all feasible action tuples

and m ∈ {1, . . . ,MEV}. If b(π1
SV) ≥ 0.5, then there exists

p ∈ {1, . . . ,MEV} such that the action tuple (π1
SV, π

p
EV) is a

pure-strategy Nash equilibrium.

Proof. We select p such that J1p
EV ≤ J1m

EV for all m ∈
{1, , . . . , ,MEV}. Then, πp

EV is the best response to π1
SV.

Using the assumptions in the proposition, we can conclude
that 0 ≤ J1p

SV ≤ J2p
SV. Furthermore, the inequality (1 −

b(π1
SV))J

1p
SV ≤ b(π1

SV)J
2p
SV holds for b(π1

SV) ≥ 0.5. Therefore,
π1

SV is the best response to πp
EV, and (π1

SV, π
p
EV) is a Nash

equilibrium.

In the following, we establish a connection between a Nash
equilibrium and a Stackelberg equilibrium.

Proposition 2. If the action tuple (π2
SV, π

p
EV) is a Nash

equilibrium, then it is also a Stackelberg equilibrium with
EV as the leader.

Proof. As (π2
SV, π

p
EV) is a Nash equilibrium, π2

SV is the best
response to πp

EV, and the inequality J2p
EV ≤ J2m

EV holds for
all m ∈ {1, , . . . , ,MEV}. Based on the inequality J1m

EV ≥
J2m

EV ≥ 0, we can conclude that J2p
EV ≤ J2m

EV ≤ J1m
EV .

Therefore, (π2
SV, π

p
EV) is a Stackelberg equilibrium with EV

as the leader.

VI. NUMERICAL SIMULATIONS

We consider a lane-merging scenario as introduced in
Section III. The red (SV1) and pink (SV2) vehicles are
considered potential interactive vehicles since the ego vehicle
can influence their motion, while the orange vehicle (SV0)
is a non-interactive dynamic obstacle. We set the initial
beliefs on the interactive vehicles’ decisions to bSV1(π

1
SV) =

bSV2(π
1
SV) = 0.5. To simplify the notation, we use b1SV1 and

b1SV2 to represent bSV1(π
1
SV) and bSV2(π

1
SV), respectively. We

use a planning horizon of T = 25, a discretization step
of ∆t = 0.2 s, a decision time period of ∆h = 1 s and a
decision horizon of H = 5.

A. Monte Carlo simulations

We conduct open-loop Monte Carlo simulations to em-
pirically verify the existence of a Nash equilibrium and
investigate its relationship with the Stackelberg equilibrium.
We first specify collision-free initial multi-vehicle states.
Then, the state of the ego vehicle is perturbed by ±10m
for the initial position, ±5m/s for the initial longitudinal
speed. We run 500 simulations for each belief and compute
three equilibria: Nash (NE), Stackelberg with the ego vehicle
as the leader (SEEV), and Stackelberg with the group of
the surrounding vehicles as the leader (SESV). The results
are presented in Figure 4a. A Nash equilibrium is found in
all simulations despite no theoretical guarantee in general.
As mentioned before, if there are multiple Nash equilibria,
we select the one with the lowest social cost. We observe
that the selected Nash equilibrium coincides with one of the
Stackelberg equilibria.
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Fig. 4: Results of Monte Carlo simulations. (a) illustrates the
relationship between Nash and Stackelberg equilibria. (b) shows the
percentage of yielding decisions made by SV in various equilibria
over 500 simulations. The notations NE, SESV and SEEV represent
the Nash equilibrium, Stackelberg equilibrium with SV as the leader
and Stackelberg equilibrium with EV as the leader, respectively.

Figure 4b illustrates the statistical results on SV’s yield-
ing decisions in different equilibria over 500 simulations.
Specifically, SV is more likely to yield when both players
employ a SEEV. In contrast, SV is less inclined to yield when
both players select a SESV. This implies that SV seems to
behave cooperatively if the ego vehicle is the leader. On the
contrary, if the ego vehicle is the follower, then it tends to
show conservative behavior because the other vehicles are
likely to assert. Overall, we conclude that adopting a Nash
equilibrium exhibits less interactive behavior than adopting
a SEEV, but it is less conservative compared to adopting a
SESV. In other words, it seems that a vehicle can switch
between interactive and conservative behavior automatically
by selecting a Nash equilibrium.

B. CARLA simulations

We conduct closed-loop simulations in the CARLA sim-
ulator to evaluate our proposed approach. The scenario
depicted in Figure 3 requires the ego vehicle to merge onto
the target lane as quickly as possible within a limited lane
length of 100m. To simulate a real-world scenario, we add
an additional surrounding vehicle behind the pink vehicle
(SV2), resulting in three surrounding vehicles on the target
lane. A successful lane merging means the ego vehicle stays
within 0.5m from the center of the target lane, with a
heading parallel to the lane.

We choose to control the behavior of the surrounding
vehicles by the Predictive Intelligent Driver Model [25]. In
this model, surrounding vehicles anticipate the ego vehicle’s
motion using a constant velocity model and respond when
the ego vehicle comes within a certain lateral distance, which
is determined by the behavior mode. The slow-moving trunk
follows polite behavior, while other surrounding vehicles on
the target lane exhibit selfish behavior, simulating a traffic
flow with higher speeds.

We compare the proposed planner with two other baseline
planners: the planner proposed in EPSILON, which selects
a trajectory with the lowest cost; and a planner that selects a
trajectory by seeking a Stackelberg equilibrium with the ego



vehicle as the leader. We track the trajectories generated by
each planner using a lower-level PID controller.

We conduct experiments on three different planners using
two initial traffic speeds. For each initial condition, we
run 200 simulations to ensure statistical significance. In
Table II, we observe that all the planners performed well
at a low speed. However, as the traffic speed increases, our
proposed game-theoretic method achieves a higher success
rate compared to the baselines while requiring approximately
the same merging time.

TABLE II: Evaluation in closed-loop simulation

Initial Speed Metric Nash Stackelberg EPSILON

Low

(≈ 5m/s)

success rate

collision rate

time to merge (s)

99%

1%

8.75

94%

6%

8.17

98%

2%

8.28

High

(≈ 10m/s)

success rate

collision rate

time to merge (s)

95%

5%

6.92

89%

11%

6.90

70%

30%

6.78

VII. CONCLUSION

This paper focuses on developing a game-theoretic plan-
ning algorithm for automated vehicles to perform lane
changes in interactive environments. Our simulation study in
CARLA demonstrates the superior performance of our pro-
posed method compared to the state-of-the-art approaches.
By comparing different equilibria via numerical simulations,
we observe that selecting a Nash equilibrium allows for
automatically switching between interactive and conservative
driving behavior. Although forward simulations are time-
consuming, they can be easily performed in parallel to reduce
the computation time. In future work, we plan to implement
our method in C++ and validate it on a hardware platform.
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Appendix B

ICRA Paper

This appendix presents the submitted version of a scientific paper focusing on RL for robotics
planning. As mentioned in Section 6-2, RL methods with safety and reachability guaran-
tees hold promise for autonomous driving and will be listed as future work for this thesis.
The paper, titled “Reinforcement Learning for Safe Robot Control using Control Lyapunov
Barrier Functions”, has been published at the IEEE International Conference on Robotics
and Automation (ICRA) 20231. This research was conducted as the author’s research as-
signment during the master’s study. The inclusion of this paper in the thesis aims to offer a
comprehensive overview of the author’s master’s work.

In this research, we adapted the soft actor-critic algorithm [76] to create a learning method
for a control Lyapunov barrier critic and an optimal control policy. This combination ensures
both safety and reachability of a system. In the context of automated lane merging, the
objective is to smoothly change lanes without colliding with other vehicles or road edges. We
might apply the proposed RL framework in the lane merging scenario in the future.
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for creating new collective works for resale or redistribution, please go to http://www.ieee.
org/publications_standards/publications/rights/rights_link.html to learn how to
obtain a License from RightsLink. If applicable, University Microfilms and/or ProQuest
Library, or the Archives of Canada may supply single copies of the dissertation.
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Reinforcement Learning for Safe Robot Control
using Control Lyapunov Barrier Functions

Desong Du∗1,2, Shaohang Han∗2, Naiming Qi1, Haitham Bou Ammar3,4, Jun Wang4 and Wei Pan5,2

Abstract— Reinforcement learning (RL) exhibits impressive
performance when managing complicated control tasks for
robots. However, its wide application to physical robots is
limited by the absence of strong safety guarantees. To overcome
this challenge, this paper explores the control Lyapunov barrier
function (CLBF) to analyze the safety and reachability solely
based on data without explicitly employing a dynamic model.
We also proposed the Lyapunov barrier actor-critic (LBAC), a
model-free RL algorithm, to search for a controller that satisfies
the data-based approximation of the safety and reachability
conditions. The proposed approach is demonstrated through
simulation and real-world robot control experiments, i.e., a 2D
quadrotor navigation task. The experimental findings reveal this
approach’s effectiveness in reachability and safety, surpassing
other model-free RL methods.

I. INTRODUCTION

Reinforcement learning (RL) has achieved impressive and
promising results in robotics, such as manipulation [1],
unmanned vehicle navigation [2], drone flight [3], [4], etc.,
thanks to its ability of handling intricate models and adapting
to diverse problem scenarios with ease. Meanwhile, a safe
control policy is imperative for a robot in the real world,
as dangerous behaviors can cause irreparable damage or
costly losses. Therefore, the RL methods that can provide a
safety guarantee for robot control have received considerable
interest and progress [5], [6], [7], [8], [9], [10].

A recent line of work focuses on designing novel RL al-
gorithms, e.g., actor-critic, for constrained Markov Decision
Process (CMDP). In these methods, the system encourages
the satisfaction of the constraints by adding a constant
penalty to the objective function [6] or constructing safety
critics while doing policy optimization in a multi-objective
manner [5], [7], [11], [12]. Although these approaches are
attractive for their generality and simplicity, they either need
model [6], or only encourage the safety constraints to be
satisfied probabilistically.

An alternative type of methods focuses on reachability
and safety guarantee (sufficient conditions) by construct-
ing/learning control Lyapunov functions (CLF) and control
barrier functions (CBF) that can respectively certify the
reachability and safety [8], [10], [13], [14], [15], [16], [17],
[18]. The relevant safe controllers are normally designed by
adding a safety filter to a reference controller, such as a RL

*indicates equal contribution
The work is supported by Huawei and China Scholarship Council

No.202006120130.
1School of Astronautics, Harbin Institute of Technology, China.

2Department of Cognitive Robotics, Delft University of Technology, Nether-
lands. 3Huawei Technologies, United Kingdom. 4Department of Computer
Science, University College London, United Kingdom. 5Department of
Computer Science, University of Manchester, United Kingdom.

Fig. 1. The 2D quadrotor navigation task. Lines stand for trajectories. The
circles are the initial position. The blue regions represent obstacles. Video
is available at https://youtu.be/_8Yr_QRRYik.

controller [8], [10], [13], a model predictive control (MPC)
controller [14], etc. Unfortunately, these approaches have two
disadvantages: (1) there might be conflicts between CLFs
and CBFs as separate certificates [19], [20] (see Figure 2
in Section V-A); (2) the CLFs and CBFs are generally non-
trivial to find [19], especially for nonlinear systems. Even
though there are learning methods to find CLFs and CBFs,
knowledge of dynamic models has to be explicitly used [21].

In this paper, we propose a data-based reachability and
safety theorem without explicitly using the knowledge of
a dynamic system model. The contribution of this paper
can be summarized as follows: (1) we used samples to
approximate the critic as a control Lyapunov barrier function
(CLBF), a single unified certificate, which is parameterized
by deep neural networks, so as to guarantee both reachability
and safety. The corresponding actor is a controller that
satisfies both the reachability and safety guarantees. (2) we
deploy the learned controller to a real-world robot, i.e., a
Crazyflie 2.0 quadrotor, for a 2D quadrotor navigation task.
The 2D quadrotor navigation task is shown as in Figure 1.
The experiments show our approach has better performance
than other model-free RL methods. Our approach, by using
CLBFs, can avoid conflicts between the CLFs and CBFs
certificates. Compared to the model-based approaches that
learn CLBFs using supervised learning [19] or handcraft
CLBFs [22], our method does not need the knowledge of
models explicitly.

II. RELATED WORKS

Prior work has studied safety in RL in several ways,
including imposing constraints on expected return [5], [7],
risk measures such as Conditional Value at Risk and per-
centile estimates [12], [23], [24], and avoiding regions where

© 2023 IEEE. Reprinted, with permission, from D. Du, S. Han, N. Qi, H. B. Ammar, J. Wang and W. Pan, "
Reinforcement Learning for Safe Robot Control using Control Lyapunov Barrier Functions," 2023 IEEE 
International Conference on Robotics and Automation (ICRA), London, United Kingdom, 2023, pp. 9442-9448, 
doi: 10.1109/ICRA48891.2023.10160991.



constraints are violated [25], [26], [27]. This paper focuses
on the reach-avoid problem that belongs to the last situation.

To solve the reach-avoid problem, a popular strategy
involves modifying the policy optimization procedure of
standard RL algorithms to reason about task rewards and
constraints simultaneously. One method is constrained policy
optimization (CPO), which adds a constraint-related cost
to the policy objective [5]. Another type of method tries
to optimize a Lagrangian relaxation [7], [11], [23], [27],
[28]. They normally use a safety critic to ensure safety, but
this separate critic can only evaluate risk in a probabilistic
way. Other methods involve constructing Lyapunov functions
for the unsafe region [29], [30]. However, these approaches
require a baseline policy that already satisfies the constraints.

III. PRELIMINARIES AND BACKGROUND

In RL for safe control, the dynamical system is typically
characterized by CMDP M̂ = (S,A, P, c, γ, I) [31]. st ∈
S ⊆ Rn is the state vector at time t, S denotes the state
space. The agent then takes an action at ∈ A ⊆ Rm accord-
ing to a stochastic policy/controller π (at | st). The transition
of the state is dominated by the transition probability density
function P (st+1 | st, at), which denotes the probability den-
sity of the next state st+1. A cost function c(st, at) is used
to measure the immediate performance of a state-action pair
(st, at), and I(st) indicates whether the state violates the
safety constraints or not. The goal is to find π∗ that can
minimize the objective function return the expected return
J(π) ≜

∑∞
t=1 Est,at

γtc (st, at) with the discount factor γ ∈
[0, 1), and ∀t ∈ Z+, I(st) = 0. Moreover, some notations are
to be defined. The closed-loop state distribution at a certain
instant t as p(s | ρ, π, t), which can be defined iteratively:
p (s′ | ρ, π, t+ 1) =

∫
S P (s′|s, π(s))p(s | ρ, π, t)ds,∀t ∈

Z+ and p(s | ρ, π, 0) = ρ(s).
In this paper, we focus on the reach-avoid problems, in

which the agent reaches the goal condition and avoids certain
unsafe conditions. It is defined as follows:

Definition 1. (Reach-Avoid Problem). In a CMDP setting
with a goal configuration sgoal and a set of unsafe states
Sunsafe ⊆ S , find a controller π∗ (a|s) such that all trajec-
tories st under P (st+1 | st, at), and s0 ∈ Sinitial ⊆ S have
the following properties: Reachability: given a tolerance δ,
∃T ≥ 0, such that Est ∥st − sgoal∥ ≤ δ, ∀t ≥ t0+T ; Safety:
P(st /∈ Sunsafe | s0, π, t) =

∫
S\Sunsafe

p(s | s0, π, t)ds = 0,
∀t ≥ t0.

The state sirrecoverable ∈ Sirrecoverable ̸⊂ Sunsafe are not
themselves unsafe, but inevitably lead to unsafe states under
the controller π. Thus, we also consider sirrecoverable to be
unsafe for the given controller π.

Definition 2. A state is said to be irrecoverable if s /∈ Sunsafe
under the controller a ∼ π(a|s), the trajectory defined by
s0 = s and st+1 ∼ P (st+1|st, π(st)) satisfies P(st ∈
Sunsafe | s0, π, t) =

∫
Sunsafe

p(s | s0, π, t)ds ̸= 0, ∃t̂ > t0.

Therefore, the safety and unsafety of a certain state can
be described as: the state s ∈ Sunsafe = Sirrecoverable ∪ Sunsafe
is unsafe, while the state s ∈ Ssafe = S\Sunsafe is safe.

In reach-avoid problems, CLFs and CBFs are widely used
to ensure reachability and safety of the system [21], respec-
tively. To avoid the conflicts between separate certificates,
we rely on the CLBF, a single unifying certificate for both
reachability and safety [22]. In this paper, the definition of
the CLBF is related to [19]. We extend it from a continuous-
time system to CMDP (similar to the definition of CBF in
discrete-time system [32]). In CMDP, the definition of CLBF
is given as follows.

Definition 3. (CLBF). A function V: S → R is a CLBF, for
some constant ĉ, λ > 0, 1⃝ V (sgoal) = 0, 2⃝ V (s) > 0,∀s ∈
S\Sgoal, 3⃝ V (s) ≥ ĉ,∀s ∈ Sunsafe, 4⃝ V (s) < ĉ,∀s ∈ Ssafe.
5⃝ there exists a controller π, such that Es′ [V (s′)−V (s)+
λV (s)] ≤ 0,∀s ∈ S\sgoal, where s′ ∼ P (s′|s, π(s)).

Thus, any controller π ∈ {π | Es′ [V (s′) − V (s) +
λV (s)] ≤ 0, s′ ∼ P (s′|s, π(s))} can satisfy reachability and
safety [19]. In this definition, the transition P (s′|s, π(s))
requires the knowledge of a dynamic system model, but
modeling error can hardly be avoided in reality. Next, we
will show how we can use model-free RL to learn CLBFs
and controllers with reachability and safety guarantee.

IV. REINFORCEMENT LEARNING ALGORITHM WITH
SAFETY GUARANTEE

In an actor-critc framework, the high-level plan is as
follows. We first choose the value function V (s) to be the
CLBF, similar to those done in approximate/adaptive dy-
namic programming [33] on choosing the Lyapunov function.
Then we expect to impose some properties of CLBF as
constraints in the Bellman recursion to find the value function
(i.e., CLBF) and hope to search the corresponding policy,
similar to what is done in [25], [29], [34]. Conceptually, we
are interested in the following conceptual problem formula-
tion:

Repeat
• Find: V. Subject to: CLBF constraints
• Find: π using V
Untill V, π convergence.

A. CLBF as Critic

To enable the actor-critic learning, the control Lyapunov
barrier critic QLB is designed to be dependent on s and a,
while V (s) = QLB(s, πθ(s)). Then we present a method to
construct a QLB through the Bellman recursion. The target
function Qtarget is a valid control Lyapunov barrier critic
which is approximated by:

Qtarget (st, at) = c(st, at) + γQ′
LB (st+1, π(st+1)) (1)

where Q′
LB is the network that has the same structure as

QLB, but parameterized by a different set ϕ′, as typically
used in the actor-critic methods [35], [36]. The parameter ϕ′

is updated through exponential moving average of weights
controlled by a hyperparameter τ ∈ R(0,1), ϕ

′
k+1 ← τϕk +

(1− τ)ϕ′
k.

Such that the value function meets the requirements of
our main theorem (Theorem 1 in Section IV-B), the tuples



{st, at, c(st, at), st+1} are set as follows:
{st, at, 0, st} st ∈ Sgoal

{st, at, c(st, at), st+1} st ∈ Ssafe \ Sgoal

{st, at, C, st} st ∈ Sunsafe

(2)

where the terminal cost C is a constant.

B. Data-based CLBF Theorem

In this part, inspired by Definition 3 of CLBF, we propose
a novel data-based theorem, on which the constraints should
be in the conceptual problem formulation at the beginning
of Section IV. Instead of explicitly using a dynamic model,
the following theorem provides a sufficient condition for
reachability and safety based on samples.

Before presenting the main theorem, we need the follow-
ing Lemma 1, in addition to (2), on the terminal cost C to
hold, so that V (sunsafe) ≥ ĉ and V (ssafe) < ĉ, as required in
(3).

Lemma 1. Suppose that N is the maximum number of steps

in each episode, let C >
cmax(s,a)(1−γN)

γN , when γ < 1.
Under the controller π, if s ∈ Sunsafe , V (s) ≥ ĉ, and s ∈
Ssafe , V (s) < ĉ.

Proof. The proof can be found in Appendix I.

Theorem 1. If there exists a function V (s) : S → R+ and
positive constants α1, α2, α3, α4, such that

α1cπ(s) ≤V (s) < min (α2cπ(s), ĉ) < ĉ, ∀s ∈ Ssafe

ĉ ≤V (s) ≤ ĉ+ α3cπ(s) < (1 + α3)ĉ, ∀s ∈ Sunsafe
(3)

and

Es∼µN
(Es′∼PπV (s′)1∆(s

′)− V (s)1∆(s))

< −α4Es∼µN
cπ(s)1∆(s)

(4)

where cπ (st) ≜ Ea∼πc (st, at), and cπ (s) ≤ ĉ,∀s ∈ S. The
cost function c(st, at) = EP (·|st,at) ∥st+1 − sgoal∥ describes
the distance to the goal set. µN (s) denotes the average
distribution of s over the finite N time steps,

µN (s)
.
=

1

N

N∑
t=1

p(s|ρ, π, t)

N is the maximum number of steps in each episode. 1∆(s)
denotes the function;

1∆(s) =

{
1 s ∈ ∆
0 s /∈ ∆

where ∆ = S\ (Sgoal ∪ Sunsafe), Sgoal = {s | cπ(s) ≤ δ} =
{s | ∥s− sgoal∥ ≤ δ}. Note that cπ(s) > δ, ∀s ∈ ∆.

Then the followings hold: i) if s0 ∈ Ssafe, V (s0) ≤ ĉ,
the system is reachable with tolerance δ and safe within N
steps; ii) if s0 ∈ Sunsafe, V (s0) > ĉ, the agent would reach
the unsafe areas within N steps.

Proof. The proof can be found in Appendix II.

C. Lyapunov Barrier Actor-Critic Algorithm

Recent advance in [34] has guaranteed reachability by the
Lagrangian relaxation method. Taking inspiration from their
work, we extend to safety guarantee by designing an actor-
critic RL algorithm. The proposed Algorithm 1 is named
Lyapunov barrier actor-critic (LBAC), which gains a value
function that satisfies the requirements of Theorem 1, and a
corresponding safe controller.

The control Lyapunov barrier critic function QLB and the
actor function (controller) πθ(at|st) are parametrized by ϕ
and θ, respectively. Note that the stochastic controller πθ is
parameterized by a deep neural network fθ that depends on
s and Gaussian noise ϵ. The goal is to construct the CLBF
as the critic function with constraints (4) under the controller
πθ(at|st). By using the Lagrange relaxation technique [37],
QLB is updated using gradient descent to minimize the
following objective function

J(ϕ) = ED

[
1

2
(QLB(s, a)−Qtarget(s, a))

2

+λ(QLB(s
′, fθ(ϵ, s

′))1∆(s
′)−QLB(s, a)1∆(s) + α4ĉ)]

(5)
where Qtarget is the approximation target related to the chosen
control Lyapunov barrier candidate, λ is a Lagrange multi-
plier that controls the relative importance of the inequality
condition (4). D is the set of collected transition pairs that
are determined in (2) and Lemma 1. The control Lyapunov
barrier candidate acts as a supervision signal to the control
Lyapunov barrier critic function.

LBAC is based on the maximum entropy framework [36],
which can improve controller exploration during learning. A
minimum entropy constraint is added to the above optimiza-
tion problem to derive the following objective function

J(θ) =E(s,a,s′,c)∼D[QLB(s, fθ(ϵ, s))

+ β(log(πθ(fθ(ϵ, s)|s)) +Ht))]
(6)

where β is a Lagrange multiplier that controls the relative
importance of the minimum entropy constraint, Ht is the
desired entropy bound.

In the actor-critic framework, the parameters of the con-
troller are updated through stochastic gradient descent, which
is approximated by

∇θJ(θ) = β∇θ log(πθ(a|s)) + β∇a log(πθ(a|s))∇θfθ(ϵ, s)

+∇a′QLB(s
′, a′)∇θfθ(ϵ, s

′)
(7)

Finally, the values of Lagrange multipliers λ and β are
adjusted by gradient ascent to maximize the following ob-
jectives, respectively,

J(λ) = λED∆
[QLB (s′, fθ (s

′, ϵ))1∆ (s′)

− (QLB(s, a)− α4ĉ)1∆(s)] ,

J(β) = βED [log πθ(a | s) +Ht]

(8)

During training, the Lagrange multipliers are updated by

λ← max(0, λ+ δ̄∇λJ(λ)), β ← max(0, β + δ̄∇βJ(β))

where δ̄ is the learning rate. The pseudocode of the proposed
algorithm is shown in Algorithm 1.



Algorithm 1 Lyapunov Barrier Actor-Critic (LBAC)
Require: Maximum episode length N ; maximum iteration

steps M
repeat

Sample s0 according to ρ
for t = 0 to N do

Sample at from πθ(at|st) and step forward
Observe st+1, ct and store (st, at, ct, st+1, I) in D

end for
for i = 1 to M do

Sample mini-batches of transitions from D and up-
date QLB, π, Lagrange multipliers with (5), (6), (8)

end for
until (4) is satisfied

V. RESULTS AND VALIDATION

In this section, we consider a 2D quadrotor navigation
task, i.e., aiming to reach a target while avoiding obstacles,
as illustrated in Figure 1. The experiment setup is detailed in
Appendix III. First, we show separate CLFs and CBFs can
lead to local optimums by implementing a CLF-CBF based
Quadratic Program (CLF-CBF-QP). Then, we show the
effectiveness of the proposed LBAC algorithm and evaluate
it in the following aspects:

• Training convergence: does the proposed training algo-
rithm converge with random parameter initialization;

• Validation of CLBF: how do the learned CLBFs fit
the goal and obstacles in the 2D quadrotor navigation
task, and does the reachability and safety condition, i.e.,
Theorem 1, hold for the learned controllers;

• Sim-to-Real transfer: can we transfer the simulation
training result directly to real-world robots, e.g., using
a CrazyFlie 2.0 quadrotor.

In this part, the performance of LBAC on the CMDP
tasks is evaluated compared with Risk Sensitive Policy Op-
timization (RSPO) [23], Safety Q-Functions for RL (SQRL)
[11], and Reward Constrained Policy Optimization (RCPO)
[7]. We use the public codebase of [27] to implement the
comparison experiments. The hyperparameters are described
in Appendix IV.

A. Conflicts between CLFs and CBFs

To show there exist conflicts between CLFs and CBFs as
separate certificates, we implemented a model-based CLF-
CBF-QP controller [38] which incorporates a CLF and
CBFs as constraints through quadratic programs. As shown
in Figure 2(b), the quadrotor easily gets stuck before the
wall which is in front of the target. This is because the
attraction of the CLF is balanced by the repulsion of CBFs, as
illustrated by Figure 2(a). The quadrotor can still successfully
reach the target if it luckily avoids conflicting areas. We also
tried CLFs and CBFs as separate critics in a multi-objective
RL setting, but failed to converge. The failure of the above
CLF-CBF controllers motivates our CLBF approach which
satisfies both safety and reachability in this 2D quadrotor
navigation task, as illustrated in Figure 7(a).

The gradient direction of CBF

The gradient direction of CLF

(a) Illustration of CLF-CBF
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Fig. 2. Performance of a CLF-CBF-QP controller. (a) is an intuitive
illustration of CLF-CBF. In (b), lines are trajectories. The blue circles stand
for the starting points. The red stars represent the final position.

B. Training Convergence

The main criterion we are interested in is the convergence
of the controller during the training process. Each approach
is trained with five different random seeds. The total cost
and number of violations during training are plotted in
Figure 3. Among the RL algorithms to be compared, LBAC,
RSPO, and SQRL can converge within 2300 episodes, while
RCPO fails to converge even in 3000 episodes. As shown
in Figure 3, LBAC leads to a fewer number of violations
during training than other model-free safe RL methods.

(a) Total Cost (b) Training-time violations

Fig. 3. Total cost and the number of violations during training. The Y-axis
indicates the total cost in one episode in (a) and total violation times during
training in (b). The X-axis indicates the total episodes. The shaded region
shows the 1-SD confidence interval of five random seeds.

C. Validation of CLBF

In this part, we examine the learned control Lyapunov
barrier critic function. We pick the controllers and corre-
sponding CLBFs trained in 1000, 1500, and 2000 episodes.
The contour plots of the CLBFs are shown in Figure 4 as
a function of x and y, where {vx, vy} is set to {0, 0}. The
white lines are the safety boundaries of the CLBFs, i.e. when
V (s) = ĉ and ĉ is set 2000. As shown in Figure 4, we find
that the safety boundary of CLBF where V (s) = ĉ gradually
approaches the obstacle boundary with increasing training
episodes. However, we also noticed some unsafe corner cases
are considered as safe (such as the bottom right corner
of the left obstacle). This could be due to the exploration
and exploitation dilemma LBAC suffers as a model-free RL
algorithm.

We also validate the learned CLBF by showing the out-
comes of the trajectory rollouts starting from uniformly
sampled initial positions. This is because of the well-known
fact that it is challenging to initialize uniformly throughout
the state space in a model-free setting. For example, we can
hardly make a robot have a specific velocity at a particular
position. Figure 5 shows that the quadrotors starting from the



0 250 500 750 1000 1250 1500 1750 2000

1000 Episodes 1500 Episodes 2000 Episodes

0.5 1 1.5 20.0-0.5-1

0.5

0

1

0.75

1.25

0.25

1.75

1.5

X

Y

0.5 1 1.5 20.0-0.5-1

0.5

0

1

0.75

1.25

0.25

1.75

1.5

X

Y

0.5 1 1.50.0-0.5-1

0.5

0

1

0.75

1.25

0.25

1.75

1.5

X

Y

2

Fig. 4. The contour plots of the CLBF. The white lines show the contour
of the learned CLBF. The color bar denotes the function value. From left
to right, the contour plots are the CLBFs trained in 1000 episodes, 1500
episodes and 2000 episodes.

unsafe region would be violating, while those that start in the
safe region would successfully reach the goal. We present the
changes in CLBF values along the trajectories in Figure 6(a),
and the averaged changes in CLBF value of these trajectories
in Figure 6(b). We can observe that the averaged value has a
decreasing trend, which aligns with the theory before. These
results indicate that the learned CLBF is valid.
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Fig. 5. Trajectories of the learned LBAC controllers in the simulator. The
shaded area corresponds to the unsafe region. The green ellipse area stands
for the goal. The blue circles are the initial positions, while the red stars
are the end positions.

(a) The changes in CLBF value (b) The averaged changes

Fig. 6. The changes in CLBF value under different initial conditions. In
(a), we show the changes in CLBF value along the trajectories starting from
ten different initial positions. In (b), the averaged change in CLBF value
of these trails is plotted. The solid line indicates the average value and
shadowed region for the 1-SD confidence interval of these trails.

D. Sim-to-Real Transfer

In this part, we evaluate LBAC by deploying controllers
learned in the simulators to the physical robot. As shown in
Figure 1, a nano Crazyflie 2.0 quadrotor is used to achieve
the autonomous navigation task and a motion capture system
is used for state estimation in the real world. The trajectories
of the Crazyflie starting from different initial positions are
shown in Figures 7(b) and 7(c). The controllers trained by
LBAC outperform other model-free safe RL algorithms in
terms of both reachability and safety.

VI. CONCLUSION

In this paper, the control Lyapunov barrier function is
extended to the constrained Markov decision process, and
a data-based theorem is proposed to analyze closed-loop
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(a) Illustration of CLBF
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Fig. 7. Controllers are evaluated in real-world using a Crazyflie 2.0
quadrotor. (a) is an intuitive illustration of CLBF. In (b) and (c), the
quadrotor’s initial heights are 0.35m and 1.2m. The blue circle represents
the starting points, and the red stars stand for the reached positions.

reachability and safety. Based on the theoretical results, a
Lyapunov Barrier-based Actor-Critic method is proposed to
search for a controller. The proposed algorithm is evaluated
on a 2D quadrotor navigation task with safety constraints.
Compared to existing model-free RL algorithms, the pro-
posed method can reliably ensure reachability and safety
in both simulation and real-world tests. In the future, more
experiments will be conducted to validate the effectiveness
and scalability of our approach. We also plan to improve the
robustness of the learned controller using methods such as
domain randomization and adversarial training [39].

APPENDIX I
PROOF OF LEMMA 1

Proof. When ŝ ∈ Ssafe, it leads to the goal state within
N steps. Thus, V (ŝ) = E

a∼π
[
∑∞

t=0 γ
tc(st, at) | s0 = ŝ] <∑N−1

t=0 γtcmax(s, a) =
cmax(s,a)(1−γN)

1−γ . In order to have

V (ŝ) < ĉ, we set
cmax(s,a)(1−γN)

1−γ < ĉ. When
ŝ ∈ Sunsafe, it leads to unsafe state within N steps.
Thus, V (ŝ) ≥

∑N−1
t=0 γtcmin(s, a) +

∑∞
t=N γtC =

cmin(s,a)(1−γN)+CγN

1−γ . In order to have V (ŝ) ≥ ĉ, we set
cmin(s,a)(1−γN)+CγN

1−γ ≥ ĉ. Rearranging, we have C ≥
(1−γ)ĉ−cmin(s,a)(1−γN)

γN . With cmin(s, a) = 0, it is simplified

to C ≥ 1−γ
γN ĉ >

cmax(s,a)(1−γN)
γN . To this end, the condition

(3) is achieved.

APPENDIX II
PROOF OF THEOREM 1

Proof. To prove that N is finite based on the conditions and
assumptions where N = max{t : P(s ∈ ∆|ρ, π, t) > 0}, we
will assume that N is infinity and prove by contradiction.
N = ∞ if for any ϵ there exists an instant t > ϵ
such that P(s ∈ ∆|ρ, π, t) > 0. In that case, the finite-
horizon sampling distribution µN (s) turns into the infinite-
horizon sampling distribution µ(s) = limN→∞ µN (s) =
limN→∞

1
N

∑N
t=1 p(s|ρ, π, t). The existence of µ(s) is guar-

anteed by the existence of qπ(s) = limt→∞ p(s | ρ, π, t),
which has been commonly exploited by many RL literature
[34], [40]. Since the sequence {p(s|ρ, π, t), t ∈ Z+} con-
verges to qπ(s) as t approaches ∞, then by the Abelian
theorem, the sequence { 1

T

∑T
t=1 p(s|ρ, π, t), T ∈ Z+} also

converges and µ(s) = qπ(s). Then one naturally has that



the sequence {µN (s)V (s), T ∈ Z+} converges pointwise to
qπ(s)V (s).

According to Lebesgue’s dominated convergence theorem
[41], if a sequence fn(s) converges point-wise to a func-
tion f and is dominated by some integrable function g in
the sense that,|fn(s)| ≤ g(s),∀s ∈ S,∀n, then one has
limn→∞

∫
S fn(s)ds =

∫
S limn→∞ fn(s)ds.

Applying this theorem to the left-hand side of (4)

Es∼µ (Es′∼pπV (s′)1∆(s
′)− V (s)1∆(s))

=

∫
S

lim
N→∞

1

N

N∑
t=1

p(s|ρ, π, t)(
∫
S
pπ(s

′|s)V (s′)1∆(s
′)ds′

− V (s)1∆(s))ds

= lim
N→∞

1

N

N∑
t=1

∫
S
V (s′)1∆(s

′)

∫
S
pπ(s

′|s)p(s|ρ, π, t)dsds′

− lim
N→∞

1

N

N∑
t=1

∫
S
p(s|ρ, π, t)V (s)1∆(s)ds

= lim
N→∞

1

N
(
N+1∑
t=2

Ep(s|ρ,π,t)V (s)1∆(s)

−
N∑
t=1

Ep(s|ρ,π,t)V (s)1∆(s))

= lim
N→∞

1

N
(Ep(s|ρ,π,N+1)V (s)1∆(s)− Eρ(s)V (s)1∆(s))

(9)
Since Eρ(s)V (s) is finite, thus the limitation value
limN→∞

1
N (Eρ(s)V (s)1∆(s)) = 0. The above equa-

tion equals to limN→∞
1
NEp(s|ρ,π,N+1)V (s)1∆(s). Note

that V (s) ≥ α1cπ(s), ∀s ∈ S, and cπ(s) > δ,
∀s ∈ ∆. Thus, limN→∞

1
NEp(s|ρ,π,N+1)V (s)1∆(s) ≥

limN→∞
α1δ
N Ep(s|ρ,π,N+1)1∆(s) = 0

Since µ(s) = qπ(s), the right-hand side of (4)
equals to −α4Es∼qπcπ(s)1∆(s) ≤ −α4Es∼qπδ1∆(s) =
−α4δ limt→∞ P(s ∈ ∆|ρ, π, t). Combining the above in-
equalities with (4), one has limt→∞ P(s ∈ ∆|ρ, π, t) < 0,
which is contradictory to the fact that P(s ∈ ∆|ρ, π, t) is
nonnegative. Thus there exist a finite N such that P(s ∈
∆|ρ, π, t) = 0 for all t > N . In other word, the agent will
reach the goal region or the unsafe region within N steps.
According to (3), s0 ∈ Ssafe, V (s0) < ĉ where the agent
will reach the goal region and avoid the unsafe region, while
s0 ∈ Sunsafe, V (s0) ≥ ĉ where the agent will reach the unsafe
region within N steps. The process of building such function
V is described in Section IV-A.

APPENDIX III
2D QUADROTOR NAVIGATION

The state of the 2D quadrotor model is defined as
s = [px, py, vx, vy], with control input a = [vxdes , vydes ].
In this experiment, the controller is expected to navigate
a 2D quadrotor to the goal set Sgoal without colliding
with the obstacles. We define the state space as
S = {s : slb ≤ s ≤ sub} with slb = [−1, 0,−0.25,−0.25]
and sub = [2, 1.8, 0.25, 0.25], representing the lower

bound and upper bound of the set of the valid states.
The action space is set as A = {a : −ab ≤ a ≤ ab}
with ab = [0.25, 0.25], by considering the real
world hardware limitation. The cost function is
designed as c =

√
4p2x + (py − 0.5)2. We set the

obstacle set So1 = {s : 0.5 ≤ px ≤ 1, 0.2 ≤ py ≤ 1},
So2 = {s : −1 ≤ px ≤ 0, 1.3 ≤ py ≤ 1.8} and
So3 = {s : pz ≤ 0.2}, the unsafe state set
Sunsafe = {s : So1 ∪ So2 ∪ So3}, the goal state set
Sgoal =

{
s :

√
p2x + (py − 0.5)2 ≤ 0.3

}
. Once the

quadrotor reaches the Sunsafe, the episode ends in advance
and the cost function is set as C = 2000. The episodes are
of maximum length 200 and time step dt = 0.1 s. In the
experiments, we use Bitcraze’s Crazyflie 2.0 quadrotors. We
train the controllers in the simulator gym-pybullet-drones
[42] based on PyBullet. In the real world, we use a motion
capture system for state estimation.

APPENDIX IV
HYPERPARAMETER SETTING

For LBAC, there are two networks: the controller network
(actor) and the control Lyapunov barrier network (critic).
The controller network is represented by a fully-connected
neural network with two hidden layers of size 256 each,
with the ReLU activation function, outputting the mean
and standard deviations of a Gaussian distribution. A fully-
connected neural network represents the control Lyapunov
barrier critic network with two hidden layers of size 256,
each with a ReLU activation function. We use the vanilla Soft
Actor-Critic algorithm [36] for 500 episodes to explore the
environment effectively as a warm start. The hyperparameters
can be found in Table I

TABLE I
HYPERPARAMETER SETTING IN LBAC

Hyperparameters 2D Quadrotor Navigation
Minibatch size 512
Total episode 2500
Actor learning rate 3× 10−4

Critic learning rate 3× 10−4

Terminal cost C 2000
Discount factor γ 0.999

In RSPO and SQRL, another safety critic network Qrisk
is needed to estimate the discounted future probability of
constraint violation with discounted γrisk. The safety thresh-
old εrisk ∈ [0, 1] is an upper-bound on the expected risk of
the action. In this paper, the safety critic network shares the
same architecture as the task critic network, except that a
sigmoid activation is added to the output layer to ensure that
the outputs are on [0, 1]. We use the same hyperparameter
settings as LBAC in RSPO, RCPO, and SQRL. The other
hyperparameters can be found in Table II.

TABLE II
HYPERPARAMETER SETTING IN SAFE RL

Hyperparameters 2D Quadrotor Navigation
RCPO (γrisk , λ) (0.99, 3000)
RSPO (γrisk , εrisk , λ) (0.99, 0.2, 10000)
SQRL (γrisk , εrisk , λ) (0.99, 0.2, 5000)
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