
Large-scale analysis
in firmware images
security using
Embedded Binary
Analysis Tool

EBAT
Paris Panagiotou

Large-scale analysis in
firmware images security
using Embedded Binary

Analysis Tool
EBAT

by

Paris Panagiotou

to obtain the degree of Master of Science in Embedded Systems
at the Delft University of Technology,

to be defended publicly on July 3, 2024.

Graduation committee: Prof. Dr. Zekeriya Erkin Delft University of Technology
Prof. Dr. R. R. Venkatesha Prasad Delft University of Technology
Prof. Christian Doerr External Supervisor

Preface
To my wife and family.

Paris Panagiotou
Delft, July 2024

iii

Abstract
This thesis researches the security of firmware images in the Internet of Things (IoT) and embedded
devices. We present an open-source tool, Embedded Binary Analysis Tool (EBAT), designed to ana-
lyze cross-architectural firmware image security context. EBAT consists of various modules capable of
discovering outdated software for various libraries, particularly on cryptographic libraries, and detect-
ing Common Vulnerabilities and Exposures (CVEs), focusing on firmware’s cryptographic libraries. It
also detects exploit mitigation techniques on firmware’s image binaries and discovers credentials and
passwords with a focus on private keys embedded in the firmware image. Additionally, EBAT identifies
Application Programming Interfaces (APIs) cryptographic misuses through static taint analysis (back-
ward tracking) on cross-architectural binaries. We presented a total of 18 well-defined cryptographic
rules and a list of 733 function calls with more than 1, 600 function arguments, applicable in static taint
analysis to check the possibility of cryptographic misuses based on 10 well-used open-source cryp-
tographic libraries APIs. EBAT’s static taint analysis provides a powerful framework for detecting the
possibility of cryptographic misuses in cross-architectural binaries, making it a valuable tool for identi-
fying and addressing vulnerabilities in cryptographic implementation in firmware images.

Using EBAT, we conducted a large-scale analysis of over 36, 000 firmware images publicly crawled
from the Internet and successfully unpacked over 60% of them. The created dataset of firmware im-
ages includes more than 5, 000 different products across 33 vendors, spanning more than 20 years and
a plethora of various device types. Our findings show that ARM and MIPS are the most prevailed CPU
architecture in the IoT/embedded industry. We compared identical binaries across all vendors, reveal-
ing a significant percentage of similar binaries used across different vendors’ firmware images. Our
analysis of firmware binaries reveals a notable absence of exploit mitigation techniques in IoT/embed-
ded firmware images, and we present many firmware images containing private keys, posing potential
security threats. Additionally, versions of open-source cryptographic libraries used in firmware images
are identified, and the CVEs of the cryptographic libraries are evaluated. Two real-world case stud-
ies on hard-coded credentials demonstrate the significance of the large-scale attack presented in this
thesis. Hashed passwords, predominantly using outdated algorithms, have also been discovered, and
several have been cracked.

The main goal of EBAT is to identify cryptographic misuses in cross-architectural binaries. By apply-
ing static taint analysis (backward tracking) to well-defined APIs on specific functions and arguments
for 10 open-source cryptographic libraries, we can identify potential violations of cryptographic rules.
This analysis was executed on over 1.4million binaries, revealing that approximately 50% of examined
firmware images violated at least one cryptographic rule. Various case studies on real-world vulner-
abilities in firmware images are presented, including recent CVEs that are found in various vendors’
products. Executing EBAT on those vulnerable firmware images, we tested the effectiveness of our
tool to evaluate the automatic capturing of these known vulnerabilities. In addition, performing large-
scale analysis on an extensive corpus of firmware images allows us to discover that other firmware
images are affected by these known vulnerabilities, in some cases also across various product lines
not covered on the public CVEs reports.

In conclusion, EBAT is a valuable resource for researchers working on firmware security. Its au-
tomated analysis process, comprehensive modules, and ability to discover possible vulnerabilities,
cryptographic misuses at a binary level, and other security weaknesses make it a powerful tool for
identifying and mitigating security risks in IoT/embedded devices.

v

Contents

1 Introduction 1
1.1 Problem Statement . 1
1.2 Proposed solution and contributions. 2
1.3 Outline . 3

2 Background 5
2.1 Firmware images and binaries . 5
2.2 Security Analysis on IoT/embedded devices . 6

2.2.1 Binary Analysis Techniques . 7
2.2.2 Ghidra SRE . 9

2.3 Cryptographic Misuse Rules . 10
2.3.1 Symmetric Key Cryptography . 11
2.3.2 Cryptographic hash functions . 13
2.3.3 Public Key Cryptography. 13
2.3.4 Pseudo Random Number Generators (PRNGs) 13
2.3.5 Key Derivation Functions (KDFs) and Password Based Encryption (PBE) 14
2.3.6 Message Authentication Codes (MACs). 15
2.3.7 Authenticated encryption/decryption and AEAD 16

3 Related Work 17
3.1 Security Analysis of Firmware . 17
3.2 Misuse of Cryptographic Functions . 18

4 System Architecture and Implementation 21
4.1 Firmware Crawler module M1 . 23
4.2 Unpack Firmware module M2 . 24
4.3 Filtering module M3 . 24
4.4 Binary hardening module M4 - Exploit Mitigation Indications. 25
4.5 Fuzzy hashing module M5 . 26
4.6 Cryptographic libraries module M6 . 26
4.7 Common Vulnerabilities and Exposures (CVEs) and Libraries module M7 27
4.8 Credentials module M8. 28
4.9 Binary Order module M9 . 28
4.10 IR module M10.1 and Ghidra Analysis module M10.2 . 30
4.11 Rules module M11 . 30
4.12 Static Taint Analysis module M10.3 . 33
4.13 Post-Analysis Module M13 . 34

4.13.1 Abstract Syntax Tree (AST) . 34
4.14 Post Rules module M12 . 36
4.15 Results Database Module M14 and Meta-Results Analysis 36

5 Results & Findings 39
5.1 Evaluation Corpus . 40

5.1.1 Validity of results . 41
5.2 Firmware Update . 41

5.2.1 Conclusions and Validity of results . 44
5.3 Exploit mitigation techniques on firmware images . 45

5.3.1 Conclusions and Validity of results . 46

vii

viii Contents

5.4 Credentials and Password hashes . 46
5.4.1 Password hashes. 47
5.4.2 Case studies . 48
5.4.3 Conclusions and Validity of results . 49

5.5 Cryptographic Libraries . 49
5.5.1 OpenSSL and GnuPG cryptographic libraries in firmware images. 50
5.5.2 Conclusions and Validity of results . 52

5.6 Common Vulnerabilities and Exposures (CVEs) . 53
5.6.1 Conclusions and Validity of results . 54

5.7 Cryptographic Misuses . 55
5.7.1 Overall results for Cryptographic Misuses. 57

5.7.1.1 Cryptographic Misuses in Symmetric Key Cryptography rules 59
5.7.1.2 Cryptographic Misuses in Public Key Cryptography rules 62
5.7.1.3 Cryptographic Misuses in Pseudo Random Number Generators rules . 64
5.7.1.4 Cryptographic Misuses in Key Derivation Functions (KDFs) and Pass-

word Based Encryption (PBE) rules . 66
5.7.1.5 Cryptographic Misuses in Message Authentication Codes (MACs) rules 70
5.7.1.6 CryptographicMisuses in Authenticated encryption/decryption and AEAD

rules . 72
5.7.2 Case Studies . 73

5.7.2.1 Firmware Decrypt module in D-Link firmware images 73
5.7.2.2 Hard-coded Cryptographic Key in TP-Link firmware image 74
5.7.2.3 Predictable seed in Pseudo-Random Number Generator 75
5.7.2.4 CryptoREX comparison . 75

5.7.3 Conclusions and Validity of results . 76

6 Conclusion 79
6.1 EBAT Contributions . 79
6.2 Limitations and Future Work . 80

A Appendix - Results & Findings 83
A.1 Evaluation Corpus . 83
A.2 Binary Statistics. 86
A.3 Firmware Update . 89
A.4 Exploit mitigation techniques on firmware images . 91
A.5 Credentials and Password hashes . 97
A.6 Cryptographic Libraries .100
A.7 Common Vulnerabilities and Exposures (CVEs) .111
A.8 Cryptographic Misuses .120

B Appendix - Supported Cryptographic Primitives 147
B.1 Symmetric Key Cryptography .147
B.2 Public Key Cryptography. .147
B.3 Pseudo Random Number Generators (PRNGs) .148
B.4 Cryptographic One-way Hash functions .148
B.5 Key Derivation Functions (KDFs) and Password Hashes148
B.6 Message Authentication Codes (MACs). .148
B.7 Authenticated Encryption with associated data .149

Bibliography 151

1
Introduction

Devices connected to the Internet grow rapidly every year, especially devices that perform special pur-
pose tasks, called Internet of Things (IoT)/embedded devices. In almost every field, applications of IoT
technology offer multiple benefits. Home users, business corporations, and governments have started
the adoption of IoT/embedded devices. Devices are used, from reliable Internet connections, smart
sensors, and security systems to critical infrastructures such as power grids, hospitals, transportation
systems, etc. For instance, routers and switches must provide a stable secure connection to the whole
infrastructure, various sensors such as smoke gas detectors and current measurements must be reli-
able, as well as security camera systems such as CCTV. In recent years, router devices have supported
a connection to the Internet infrastructure in order to provide the flexibility of controlling and monitoring
them by distance. As more and more IoT/embedded devices gain access to the Internet (either directly
or through an infrastructure) and the network of physical devices gets larger, new attack vectors rise,
and devices may become susceptible to cyberattacks.

The rest of this introduction chapter starts with the given problem that outlines recent attacks on
IoT/embedded devices, especially on the software (firmware or firmware image) level. Furthermore,
research questions are given on how to effectively check, prevent and enhance the security of firmware
images. Following the problem, this thesis tries to address a possible solution with an automated way
of effectively checking the software security of IoT/embedded devices in order to minimize the overall
security attack vectors and misuses that a developer may encounter. Lastly, the outline of the rest of
this work is presented.

1.1. Problem Statement
The implications of the Internet of Things (IoT) and embedded devices are not limited to the cyber world
but also extend into the physical world. In this context, cyber-attacks have the potential to cause direct
physical harm1 ,2 ,3 ,4. Year by year, IoT/embedded devices attacks grow rapidly [24, 60]. Additionally, an
increase is also observed in IoT malware [24]. Firstly, the Persirai Trojan that it could run arbitrary code
execution on devices with super-user privileges in over 1, 000 different models of IP cameras4. Fol-
lowing with theMirai botnet [28] that performed among the largest distributed denial-of-service (DDoS)
attacks in 2016, using more than 600k infected IoT devices, where the implications of these attacks
were to temporarily shut down massive networks including Internet Service Providers (ISPs), Govern-
ment, Educational and Financial institutions. Researchers continue to successfully find vulnerable IoT
devices, also in specific models or even at large scale [68]. IoT devices are also deployed in critical in-
frastructure such as a power grid structure and, unfortunately, can be susceptible to various attacks as
1“Ukraine power grid hack”, Wikipedia, 2015, https://en.wikipedia.org/wiki/2015_Ukraine_power_grid_hack
2“Hackers Breach Thousands of Security Cameras, Exposing Tesla, Jails, Hospitals”, Bloomberg, 2021, https://www.bloo
mberg.com/news/articles/2021-03-09/hackers-expose-tesla-jails-in-breach-of-150-000-securit
y-cams

3“Smart camera and baby monitor warning given by UK’s cyber-defender”, BBC, 2020, https://www.bbc.com/news/tec
hnology-51706631

4“The Persirai Botnet”, University of Hawaii-West Oahu, 2017, https://westoahu.hawaii.edu/cyber/regional/gce
-us-news/the-persirai-botnet/

1

https://en.wikipedia.org/wiki/2015_Ukraine_power_grid_hack
https://en.wikipedia.org/wiki/2015_Ukraine_power_grid_hack
https://www.bloomberg.com/news/articles/2021-03-09/hackers-expose-tesla-jails-in-breach-of-150-000-security-cams
https://www.bloomberg.com/news/articles/2021-03-09/hackers-expose-tesla-jails-in-breach-of-150-000-security-cams
https://www.bloomberg.com/news/articles/2021-03-09/hackers-expose-tesla-jails-in-breach-of-150-000-security-cams
https://www.bloomberg.com/news/articles/2021-03-09/hackers-expose-tesla-jails-in-breach-of-150-000-security-cams
https://www.bbc.com/news/technology-51706631
https://www.bbc.com/news/technology-51706631
https://www.bbc.com/news/technology-51706631
https://westoahu.hawaii.edu/cyber/regional/gce-us-news/the-persirai-botnet/
https://westoahu.hawaii.edu/cyber/regional/gce-us-news/the-persirai-botnet/
https://westoahu.hawaii.edu/cyber/regional/gce-us-news/the-persirai-botnet/

2 1. Introduction

well [88]. News reports frequently highlight numerous attacks on IoT devices, ranging from critical in-
frastructure vulnerabilities to everyday personal use1 ,2 ,3. Overall, the security breaches of IoT devices
have risen over the years, and more security measures need to be added as the consequences of these
exploitable devices affect home users, business corporations, governments, and critical infrastructure.

An IoT/embedded device’s software, also called firmware or firmware image, plays a significant role
in the device’s overall security. Previous studies on IoT devices [36, 97, 102] identified many software
issues that an adversary can exploit and possibly gain access to the device. One of the main problems
on these devices lies at the firmware level and the need for constant and frequent updating (Regu-
lar Security Updates). There are smart devices in which the firmware update comes directly from the
vendors or manufacturers, or even, in the worst case, some devices do not have the mechanism to
install a firmware update. The level of security in a firmware image depends on the development prac-
tices followed by the device manufacturer. Following secure coding practices, conducting thorough
code reviews, and adhering to security guidelines can help mitigate vulnerabilities (Secure Develop-
ment Practices). Devices may also come with passwords and/or private credentials that can be found
embedded in the firmware image. Moreover, several factors can contribute to weakening a device’s
software security. A few of them are using outdated libraries with Common Vulnerabilities and Expo-
sures (CVEs), the absence of binary exploit mitigation techniques, and API (Application Programming
Interface) cryptographic misuses.

Generally, the main questions that this work will try to provide a solution concerning firmware image
security are:

1. How secure is a firmware image of an IoT/embedded device in the context of secure development
practices, vulnerability management, and regular security updates?

2. What changed/improved over the years in firmware image security?

3. How to effectively check the overall security of firmware images on a large-scale for different
product types from various vendors?

4. Is there an automatic way to capture and limit common security mistakes in a firmware image
even before a vendor releases it?

1.2. Proposed solution and contributions
In this work, an automatic security analysis tool for IoT/embedded firmware images is implemented and
developed aim to discover possible weaknesses in a device’s software. The automatic firmware se-
curity analysis tool is called Embedded Binary Analysis Tool (EBAT) and is provided open source5.
IoT/embedded security analysis must be performed early, in the developed stages of a product’s
firmware image before any production release, in order to capture and inform the developer about
the best practices for enhancing the overall device security. Most of the firmware images that are pub-
licly available are closed source (black box). To address the previous questions regarding the security
of a firmware image and even comparing multiple firmware images over multiple years, an automated
tool is implemented in order to conduct a large-scale security context analysis at the firmware image
level.

This automatic firmware analysis tool analyses the security of a firmware image in several stages
and aims to find and inform the developer about possible security weaknesses before releasing a
firmware image. EBAT also has the ability to analyze multiple firmware images at once, starting from
the initial firmware release to the latest provided one. In that way, we can compare and provide re-
sults of how secure the firmware images of IoT devices have been over the years. A comparison
can be made between several factors: comparing known libraries, percentage of updated binaries,
common vulnerabilities and exposures mainly on cryptographic libraries and others. Moreover, API
cryptographic misuses implemented on the binary level can also be discovered with a set of common
cryptographic rules, as will explained in later chapters. Overall, the implemented tool is provided as
open source, is versatile and is separated into modules in order for developers to add/modify a module
to meet their specific requirements.

Our main contributions to this thesis are the following:
5EBAT is provided open source at https://github.com/ppanagiotou/EBAT-public

https://github.com/ppanagiotou/EBAT-public

1.3. Outline 3

1. We developed Embedded Binary Analysis Tool (EBAT) an open source automatic tool that anal-
yses cross-architectural firmware images security context. EBAT consists of various modules
aimed to explore multiple security guidelines as follows:

(a) Discover outdated software for various libraries focusing on cryptographic libraries.
(b) Detect Common Vulnerabilities and Exposures (CVEs) focusing on firmware’s cryptographic

libraries binaries.
(c) Detect exploit mitigation techniques on firmware’s image binaries.
(d) Credentials and passwords scannermainly focuses on private keys embedded in the firmware

image and the firmware’s image binaries.
(e) Comparing firmware image updates over the device’s lifetime or at the latest available firmware

image, along with simple binary level diffing analysis using fuzzy hashing.
(f) Identify API cryptographic misuses using static taint analysis on cross-architectural binaries.

We present a total of 18 well-defined cryptographic rules that are categorized by their cryp-
tographic primitive and created a list of 733 function calls, along with their arguments, that
can be used for checking the possibility of a cryptographic misuse based on 10 well-used
open source cryptographic libraries APIs.

2. Using EBAT, we conducted a large-scale analysis on more than 36, 000 firmware images pub-
licly crawled from the Internet and successfully unpacked over 22, 000. The created dataset of
firmware images belongs to more than 5, 000 different products across 33 vendors for a plethora
of device types in a period of over 20 years. Our findings raise questions regarding the overall
firmware image security of IoT/embedded devices.

1.3. Outline
The rest of this work is organized as follows:

Chapter 2 covers the background material needed for understanding the rest of this thesis. Briefly
explain what a firmware image is, what kind of firmware images exist and the security guidelines on
IoT/embedded devices that are widely available. In Chapter’s Section 2.3, the 18 cryptographic rules
that are checked for cryptographic API misuses are presented and categorized by their cryptographic
primitives.

Chapter 3 presents prior research regarding the security of IoT/embedded devices focusing on a
firmware image level.

Chapter 4 contains a comprehensive explanation of the developed automated tool called EBAT.
For each section in this chapter, a module is described in terms of how it is developed, its usage and
what it can/cannot analyze.

Chapter 5 presents our evaluation on a large scale of more than 36, 000 firmware images belonging
to more than 5, 000 products harvested from 33 vendors (publicly available) in a period of over 20 years.
Our implemented tool, EBAT, is executed on every product’s firmware image, and all the results and
findings are presented in this chapter. Additionally, we evaluate EBAT through case studies where
researchers discovered vulnerabilities in firmware images and compared them with our automatic tool
to verify and test the effectiveness of our implemented tool.

Finally, Chapter 6 provides future improvements for EBAT and concludes the presented work.

2
Background

This chapter includes the background material necessary for a better understanding of the rest of this
thesis. Section 2.1 introduces firmware images and binaries in the Internet of Things(IoT)/embedded
devices. In Section 2.2, the security guidelines that exist on embedded/IoT devices, binary analysis
techniques and taint analysis are discussed. Additionally, an introduction to Ghidra SRE [70] is pre-
sented as the reverse engineering tool used in our code analysis implementation. Last but not least,
the chosen cryptographic misuse rules categorized by their cryptographic primitive are mentioned and
explained. These rules are applied at a software level to many standard cryptographic libraries on their
well-defined Application Programming Interfaces (APIs).

2.1. Firmware images and binaries
A firmware image or firmware is the software used on embedded and IoT devices. Firmware is defined
in [23] as “a combination of a hardware device and computer instructions or computer data that reside
as read-only software on the hardware device”. It is delivered in various file formats, either standardized
or not, and each vendor may use its own unique format variation. Each firmware image can contain
one large single binary or a combination of multiple binaries along with other data and metadata. Linux-
based firmware images are the most popular in embedded and IoT devices [36]. There are mainly two
categories that are widely used in an embedded/IoT operating system (OS):

1. Embedded Linux OS, e.g., OpenWRT, Ubuntu, BusyBox.

2. Real-Time Operating Systems (RTOS), e.g., FreeRTOS, Mbed OS, Nucleus RTOS, QNX.

In this work, the term binary refers tomachine code instructions (binary code) that are included within
an executable file format. Various executable file formats exist, like Executable and Linkable Format
(ELF), Portable Executable (PE) and binary raw format. The latter depends on each device’s hardware
(e.g., NVRAM capacity, processor architecture and peripherals) and contains specific headers that
mainly declare the memory regions. An ELF binary is categorized as an executable, shared library, or
an object file. Binaries use a variety of libraries that are dynamically and/or statically linked. Dynamic
(shared) libraries are libraries that are shared in memory and can be used among many binaries.
During the linking phase (a compilation phase of a binary), the addresses for the dynamic libraries
are not known. Thus, references are not resolved, and the linker leaves symbolic references to these
libraries until the binary is actually loaded into memory for execution. This is in contrast to static libraries
that are merged into the binary executable, thus making the binary larger, but all references to them
can be resolved directly.

Packing a firmware image is the method used to compress all the software elements (e.g., vari-
ous executable or library binaries and data such as web files, configurations, etc.) together. Packing
is mainly used for distribution, where unpacking is the inverse process in order to deploy (‘flash’ or
‘burn’) the firmware image into the device. No official standards are used for packing or unpacking;
hence, each vendor uses its own method, algorithm or procedure for creating, updating, extracting and
deploying the firmware image.

5

6 2. Background

Overall, in order to analyze a firmware image and all its data, including binaries, the first step is
to unpack the image. The main tools widely used for unpacking a firmware image are Binwalk [54],
BANG [2], FACT extractor [46] and firmwalker [4]. When evaluating the aforementioned tools, a range
of advantages and disadvantages become apparent. However, obfuscation firmware techniques exists
that eventually will prevent any unpacking method from being successful. For instance, encrypting a
firmware image prevents extraction without acquiring a decryption key.

2.2. Security Analysis on IoT/embedded devices
This section provides an overview of the security guidelines and binary analysis techniques employed
in the research. Additionally, we briefly discuss the use of Ghidra SRE [70], a powerful software reverse
engineering tool. Many guidelines on enhancing the security of embedded/IoT devices are reported in
Open Web Application Security Project (OWASP), IoT Top 10 [81] and Embedded Application Security
Best Practices [78], on both application and threat assessment level. Specific guidelines relevant to
later chapters are presented and examined below.

Starting with the OWASP IoT Top 10 [81], the first guideline is to avoid the usage of “Weak, Guess-
able, or Hardcoded Passwords”, meaning that a device should not keep its passwords in plaintext, nor
easily accessible. The same applies to credentials, e.g., unencrypted private keys and SSH private
keys. Passwords and credentials should preferably be stored in a hardware security element (SE) or in
a Trusted Execution Environment (TEE). Whenever allowed by the device environment, a user may be
able to change them. A hardware security element (SE) is a secure chip that offers multiple protections
for tampering, resistance from side-channel and fault attacks, software attacks, etc. Thus, it usually
offers confidentiality and integrity of the data that resides in the chip. A TEE is a secure area, mainly
located as a part of the main processor (e.g., ARM TrustZone1), where it offers an isolated execution
environment for executing code, detached from other parts including the remaining area of the main
processor. Additionally, easily brute-forced or commonly used passwords should be avoided. Further
guidelines refer to the “Insecure Network Services”, where unneeded or insecure services running on
the device itself should be disabled. For instance, the ‘telnetd’ service is better to be inactive or
even removed unless it is strictly needed. The “Lack of Secure Update Mechanism” guideline refers to
unsecured firmware deployment capabilities to a device. Countermeasures include but are not limited
to encrypted channels and signature verification mechanisms. The “Use of Insecure or Outdated Com-
ponents” guideline includes deprecated or unsecured components/libraries whose usage should be
avoided. The possibility of having an outdated library version on the developed tool-chain and the lack
of checking and updating them results in the usage of these libraries across multiple firmware versions
or even similar products. Last but not least, the “Insecure Default Settings” guideline refers to the inse-
cure configuration of files such as web server configurations (e.g., ‘lighttpd.conf’) and even ssh
daemon configurations (e.g., ‘sshd_config’), should be avoided by vendors. Additional measures,
reported by [78], include the “Usage of Debugging Code and Interfaces” that it should be removed
in a production release firmware while “Transport Layer Security (TLS)” may be utilized whenever is
possible.

Security hardening features on binaries make use of mitigation techniques that increase the difficulty
for an adversary to exploit the binary (also called exploit mitigation techniques). These features can
reduce or even prevent buffer/stack/heap overflow attacks, Global Offset Table (GOT) attacks and
many others. OWASP recommends C-based toolchain hardening in [79]. As an example, the GCC
compiler has plenty of compiler flags/options that result in good hardened settings, such as Stack
Smashing Protector (SSP) (also called a stack canary), Position Independent Code (PIC), Position
Independent Executable (PIE) with Address Space Layout Randomization (ASLR), partial and full read-
only allocations (RELRO). The developer should follow the recommended guidelines as presented
in [79], which may harden or even prevent an adversary from creating a successful binary exploit.
Furthermore, a developer may avoid (where possible) or limit the usage of known dangerous functions
(e.g., strcpy) but instead make use of the safer alternatives (e.g., strncpy). In addition, the developer
should ensure that all non-trusted data and user input is validated, sanitized, and/or output encoded
to prevent unintended system executions [78]. Recent examples of injection attacks on embedded/IoT
devices that are reported in CVE-2020-15631 (OS command injection), CVE-2020-8863 and CVE-
2020-8864 are possible due to incorrect handling of receiving data.

1“TrustZone for cortex-M”, ARM, https://www.arm.com/technologies/trustzone-for-cortex-m

https://www.arm.com/technologies/trustzone-for-cortex-m
https://www.arm.com/technologies/trustzone-for-cortex-m

2.2. Security Analysis on IoT/embedded devices 7

Recent binary exploitation attacks, particularly on embedded/IoT devices, were mainly possible
due to the lack of binary exploit mitigation techniques. As an example, a recent attack presented in
[101] with an exploitation illustrated on ZDI-20-7092 allows an adversary to bypass authentication and
execute code in the context of root. This attack was possible due to the lack of stack canaries and PIE
on the ‘httpd’ executable. The exploit could be hardened or even prevented if the aforementioned
mitigation techniques existed. Similar attacks presented in CVE-2020-10881 caused a stack-based
buffer overflow due to crafted DNS messages (possibly mitigated by SSP), and in CVE-2019-17147
caused an overwrite of GOT addresses by sending specific HTTP requests (possibly mitigated by
RELRO). A remote attacker can use both exploits to execute arbitrary code.

Generally, the security analysis on a firmware image can be done manually, automatically or by
a combination of both. Manual audit security analysis on a firmware image is extremely slow, time-
consuming, and requires much human effort. Thus, there is a problem in terms of scalability when
a large dataset of firmware images needs to be analyzed. However, it provides accurate results and
yields findings that an automatic analysis would be challenging or even infeasible to discover. On
the other hand, automatic security analysis is fast and scalable most of the time, but it often provides
inaccurate or incomplete results. A combination of both is also possible, starting with an automatic
analysis of a large dataset that may provide hints of possible weaknesses in a device, followed by a
manual audit of the particular firmware to verify the weaknesses and/or discover additional ones.

2.2.1. Binary Analysis Techniques
Various binary analysis techniques/methods that are widely used, individually or combined, exist. In this
section, disassembly and the benefits of using an intermediate representation (IR) form are presented.
Additionally, various binary analysis techniques are briefly described, and taint analysis is introduced,
together with the advantages and disadvantages of dynamic versus static taint analysis.

Disassembly is the process of translating machine language to assembly instructions. There are
two main categories of disassembly: static and dynamic. The former attempts to extract the instruc-
tions of a binary without executing them. The latter, also called execution tracing, logs each executed
instruction as the binary runs. When disassembling the machine instructions, the next logical step is to
perform binary analysis techniques on the disassembled binary. However, the analysis techniques will
only be available on a specific processor architecture. If we include binaries with different architectures,
all analysis methods need to be rewritten, thus making the process time-consuming and sometimes
imprecise. To overcome the previous problem, intermediate representation/language (IR/IL) forms are
necessary, which are used for abstracting/translating the machine instructions from numerous architec-
tures to a new unified language. This process is also called lifting. IR/IL form must be general enough
to model the behaviour of different processors. Therefore, using IR, all the analysis techniques (algo-
rithms and applications) can be developed on a common framework, reducing the complexity, time and
effort.

Analysis techniques may consist of building the Control Flow Graph (CFG) and Call Graph (CG) of
an executable. CFG represents the control flow in single-function basic blocks, where each basic block
consists of sequences of instructions with no branches. The first instruction is the entry point, and the
last one is the exit point. A call graph depicts the control flow of functions, in other words, the relationship
between call sites and functions. In addition, every analysis may have one or more properties, with
a number of them being: inter-procedural or intra-procedural, context-sensitive or context-insensitive.
Briefly, inter-procedural analysis considers an entire program as a whole, typically by linking all the
function’s CFGs together via the call graph. Compare to intra-procedural analysis that considers only
a single function at a time and thus analyzes the CFG of each function in turn. The intra-procedural
analysis has the disadvantage of not being complete, meaning that it does not have the capability of
combining different functions to obtain a result. The context-sensitive analysis considers the order of
function invocations into account and computes a separate result for each possible path through the
call graph. The accuracy of this analysis technique is bound by the call graph, which is limited by the
completeness and accuracy of the call graph produced for a given program. On the other hand, context-
insensitive analysis computes a single global result, which is typically faster. However, the results of a
context-insensitive analysis may not be as accurate as those of a context-sensitive analysis, as it does
not take into account how the program may behave differently in different contexts. Finally, data-flow
2“ZDI-20-709: Heap Overflow in the NETGEAR Nighthawk R6700 Router”, Zero Day Initiative, 2020, https://www.thezdi
.com/blog/2020/6/24/zdi-20-709-heap-overflow-in-the-netgear-nighthawk-r6700-router

https://www.thezdi.com/blog/2020/6/24/zdi-20-709-heap-overflow-in-the-netgear-nighthawk-r6700-router
https://www.thezdi.com/blog/2020/6/24/zdi-20-709-heap-overflow-in-the-netgear-nighthawk-r6700-router
https://www.thezdi.com/blog/2020/6/24/zdi-20-709-heap-overflow-in-the-netgear-nighthawk-r6700-router

8 2. Background

analysis shows information about the data-flow. An example is use-def chains, which describes where
a variable is used and defined at each point in the program analysis.

Taint Analysis is the process of tracking the data flow of selected data, called taint, to observe which
program locations are affected. This can be done dynamically as the binary executes (Dynamic Taint
Analysis (DTA)), or statically without executing it (Static Taint Analysis (STA)). In both cases, the taint
sources, taint sinks and taint propagation need to be defined:

• Taint sources are the selected data, memory locations, registers, etc., that a user is interested in
tracking. Thus, a user should define which data are marked as taint sources.

• Taint propagation is the process of propagating from taint sources to taint sinks. It operates on
input operands of an instruction, acting on how it resolves to the output operand.

• Taint sinks are the endpoints that are influenced by the selected taint sources. For example, a
user should define the endpoint when the taint propagation reaches an immediate value.

In the following paragraph, a comparison of dynamic taint analysis (DTA) versus static taint analysis
(STA) is discussed through the context of applying them in IoT/embedded devices. In order to suc-
cessfully perform a DTA, you need to have the platform/device on which the binaries can be executed.
Otherwise, you need to perform a successful full system emulation, which is hard, time-consuming
and sometimes imprecise due to the diversity of various devices’ peripheral modules in IoT/embedded
devices. For a general-purpose machine that has a x86 or x86-64 processor architecture, a DTA can
be performed successfully on binaries compiled with identical CPU architecture using many tools, e.g.,
Intel PIN [62].

In this work, binaries from successfully unpacking public source firmware images are analyzed. The
IoT/embedded firmware image binaries originate from various architectures, e.g., x86, MIPS, ARM,
PowerPC including different endianness (e.g., little (LE) or big-endian (BE)), with numerous address
sizes, e.g., 32 or 64 bit. Likewise, each firmware image corresponds to an embedded device that has
plenty of peripherals depending on its usage, such as Non-Volatile Random-Access Memory (NVRAM),
Electrically Erasable Programmable Read-Only Memory (EEPROM), General-Purpose Input/Output
(GPIO), Web/Internet interfaces, various sensors, wireless chipsets and many other peripherals. A
special case for many devices is the usage of their NVRAM or EEPROM in order to store bytes of data,
meaningful for each device’s functionality, that will persist without power. Those bytes of data may be
unique per device, per firmware image, per product, and many times unknown. Usually, a device’s
physical acquisition is needed to perform a successful DTA on firmware’s binaries. To reduce this gap,
full system emulators like QEMU [15] exist. QEMU is an open-source emulator and virtualizer that can
perform a full system emulation in many architectures. Thus, the problem is reduced to the successful
system configuration of the emulator, e.g.,NVRAM, EEPROM and peripherals configuration, whichmay
or may not be possible in multiple cases due to the diversity of firmware images. A full system emulation
performing DTA is by far more computationally expensive than STA, while the successful configuration
of the emulator is often limited, thus making a successful DTA analysis not easily scalable.

STA is performed on intermediate representation (IR) or intermediate language (IL) forms of the
binary’s code. Thus, it supports analysis on multiple architectures (cross-architectural binary analysis),
improving its versatility and enabling a more comprehensive understanding of the binary’s behaviour.
In these cases, it has the advantage of better scaling on larger datasets due to less computational
requirements and specific configurations than DTA. Furthermore, STA can provide findings and useful
insides for a device firmware image without the need for physical device acquisition and works on all
successfully unpacked firmware images without the need of uniquely configuring each device. Lastly,
a combination of DTA and STA techniques and probably the physical acquisition of a device is needed
for the successful verification and exploitation of a discovered weakness/vulnerability.

There are techniques to keep the code secret and prevent reverse engineering on binaries, mainly
deployed on malicious software (malware). These may also affect the binaries of unpacked firmware
images (depending on the vendor); therefore, a subset of anti-reverse engineering techniques [39]
are covered next. Anti-Static analysis techniques can target disassemblers in order to cause incor-
rect or partial disassembly called disassembly desynchronization. Additionally, these techniques may
obfuscate the control flow, imported functions, or even opcodes. Dynamically computed addresses
techniques, aimed to obfuscate the actual control flow path, cause the static analysis process to fail

2.2. Security Analysis on IoT/embedded devices 9

due to a complex or even infeasible way to compute the actual jump address. Obfuscated Control Flow
techniques try to hide the control flow using multiple threads, child processes, or exception handlers
for computing the actual control flow information. Opcode Obfuscation techniques intend to encode or
encrypt machine instructions when the executable file is being generated. Thus, opcode deobfusca-
tion must be performed before actual execution. Imported Function Obfuscation focus on hiding which
dynamically linked libraries and their corresponding functions are being used for the purpose of avoid-
ing any leaking information. Anti-Dynamic Analysis techniques also exist and aim to prevent dynamic
analyses on a binary. These techniques will not be discussed further, as the rest of this thesis focuses
mainly on static analysis techniques.

2.2.2. Ghidra SRE
Ghidra is an open-source software reverse engineering (SRE) tool suite developed by the National
Security Agency (NSA) [70]. Ghidra can support a plethora of instruction set architectures (ISA), for
instance, x86 16/32/64 bit, ARM and AARCH64, PowerPC 32/64 bit and MIPS 16/32/64 bit. As an
open-source tool, the best advantage of Ghidra is that it allows one to develop scripts/plugins and
share them with the community. It offers a Graphical User Interface (GUI) and headless scripts for non-
user interactions for automating repetitive tasks. In addition, many analysis features and techniques
are already developed in order to enhance the analysis of a binary.

Ghidra analysis consists of various analysis tools called analyzer tools/plugins, such as function,
stack, cross-reference, entry point and demangle analyzer, that can be activated either manually or
automatically. Additionally, it consists of analysis watches that monitor and act on specific changes.
For instance, a disassembly watch constantly monitors for new disassembled chunks of memory and
triggers relevant analyzer plugins automatically. Ghidra starts at entry points and disassembles the
memory by following flows. When a new memory area is disassembled, multiple analyzers can be
initiated, either prioritized by the disassembly watch or run in parallel to analyze specific changes.
The priorities play a significant role as, for example, a Stack analyzer can not start before a Function
analyzer as no new function has been discovered yet. The analyzers briefly discussed below are only a
limited subset of what Ghidra offers. A Function analyzer is responsible for creating any new functions
and/or function calls if the new disassembled memory corresponds to the start of a new function’s basic
block. ACross-reference analyzer will create the references between those function calls, while aStack
analyzer tries to build a stack based on any discovered stack references. A Data reference analyzer
looks at references for possible strings or pointers to code, and an Entry point analyzer disassembles
code at starting symbols/addresses and marks them as external entry points. Last but not least, a
Demangler analyzer is responsible for taking mangled symbol names generated by compiling object-
oriented language code, e.g., C++, and converting them back into their original, human-readable form.
Overall, Ghidra analysis improves and expands with every new public release of the tool.

A binary can be imported into Ghidra using the GUI or using the headless mode that requires no
user interaction. Headless scripts have the same capabilities as the GUI. However, they offer enormous
flexibility when performing repetitive tasks on numerous binaries. After importing, a user can select the
analysis options, a number of them mentioned above. Initially, Ghidra tries to disassemble the binary in
order to extract the assembly instructions from it. The supported architectures are specified by SLEIGH,
which is a language for describing the instruction sets of general-purpose microprocessors. Also, it
specifies the translation from a machine instruction to P-Code (IR form). If a processor is not supported
by Ghidra, a user can add it using the SLEIGH language. P-Code, from Ghidra’s documentation, is
a Register Transfer Language (RTL), distinct from SLEIGH and designed to specify the semantics of
machine instructions. RTL is a class of IR/IL forms. After disassembly, Ghidra will eventually lift the
binary to P-Code. Many of the analysis techniques that Ghidra can perform are using P-Code’s IR
form. This includes the static taint analysis headless scripts that we developed and used in this thesis,
which have the advantage of analyzing multiple binaries from various CPU architectures using the
same headless developed scripts.

In the rest of this section, a brief overview of P-Code internals is provided to help understand the
functioning of our developed headless scripts. For a more detailed understanding, please refer to the
Ghidra documentation [70]. As previously mentioned, P-Code is an RTL form generated by SLEIGH
language. The process of converting processor instructions into a series of P-code operations, called
lifting, involves using parts of the processor state as inputs and outputs, known as varnodes (which will
be explained later). This direct translation of instructions is referred to as rawP-Code. Each rawP-Code

10 2. Background

operation can directly emulate an instruction execution. The creation of raw P-code is a crucial step in
constructing a graph, but further steps are necessary, including the addition of pseudo operations, such
as MULTIEQUAL and INDIRECT, which are new opcodes that do not directly emulate an instruction.
Instead, these pseudo operations emulate a set of instructions, not a single instruction.

AP-Code operation is the analogue of an assembly instruction operation, e.g., addition, store, move,
etc., where the action is determined by its opcode. Overall, the basic format of a P-Code operation
consists of one or more input varnodes and optionally produces a single output varnode. Indirect effects
are only possible in pseudo operations. For all other P-Code operations, only the output varnode
can have its value modified. A varnode explained at Ghidra’s documentation as: “A varnode is a
generalization of either a register or a memory location. It is represented by the formal triple of an
address space, an offset into the space, and a size. Intuitively, a varnode is a contiguous sequence
of bytes in some address space that can be treated as a single value. All manipulation of data by
P-Code operations occurs on varnodes.” An address space is a generalization of RAM, which may
consist of a ram space, a register space, a constant space or a temporary space. Briefly, for a typical
processor, ram space is used to model memory accessible via its main data bus, register space is used
for modelling the processor’s general purpose registers, constant address space is used to encode any
constant values needed for P-Code operations, and lastly, temporary space is used to model temporary
registers that may use to hold intermediate values when modelling instruction behaviour.

2.3. Cryptographic Misuse Rules
Standard cryptographic libraries contain well-implemented and well-defined application programming
interfaces (APIs) that a developer can use to implement cryptographic features in a device’s software
(firmware). However, a developer might not use the API correctly, potentially compromising the in-
tended security function, either by using deprecated function calls or by applying improper function
arguments (security issues). In this section, rules for cryptographic misuse of commonly used cryptog-
raphy primitives are described. Those cryptographic misuses correspond to the developers’ improper
usage of the cryptographic APIs, which may lead to a potential security issue. The cryptographic mis-
use rules are explained in subsequent sections and are created based, but not limited to, the following
studies, guidelines and references: OWASP Testing for Weak Encryption guideline [80], OWASP IoT
top 10 [81], Zhang et al. CRYPTOREX [102], Egele et al. [40], Lazar et al. [55], RFC 2313 [18], RFC
2437 [19], RFC 8017 [21], NIST 800-131A [71] and NIST 800-132 [72] as well as other NIST publica-
tions. It should be noted that more cryptographic misuse rules can exist, and the following is a limited
subset used in our framework.

The presentedwork focuses on standard cryptographic libraries, e.g., OpenSSL, GnuPG,mbedTLS,
WolfSSL, etc., that are dynamically linked on a binary. Statically linked cryptographic libraries and
firmware images that use their own cryptographic implementations are left for future work. All covered
cryptographic libraries are presented in Chapter 4.6, and for each library, we assume that cryptographic
primitives in the listing are implemented correctly and securely, both on an algorithmic and application
level. Attacks such as side-channel (cache, timing, power, etc.) are out of the scope of this work, as
well as attacks like buffer, stack or heap overflows, e.g., heartbleed. Every presented cryptographic
library has a well-defined application programming interface (API). Our work focuses on the improper
usage of cryptographic function calls and their corresponding arguments by the firmware developer
using the defined API. Inappropriate use (security-wise) of such functions and/or functions arguments
may originate due to the product’s lack of security by design or even misconceptions/misunderstand-
ings by the developer implementing the security/cryptography of a device using the well-defined API.
Over time, this may compromise the overall device security, as many real-world examples have shown.

For every cryptographic misuse rule, a class of functions, function arguments and misuse conditions
are defined. For instance, the misuse rule 𝑅1 class consists of several functions with several specific
function arguments and multiple misuse conditions. Each misuse condition is an expression resulting
in true or false. The rule is violated if the misuse condition is triggered (true). For example, consider the
following function prototype ‘void encrypt(const char *key)’, in which the function ‘encrypt’
and function argument ‘key’ belong to the misuse rule 𝑅1 class. The misuse condition expression is
defined as ‘if(key == constant value) then true else false’, where if the key is found
to be constant/fixed, then the rule is violated; otherwise, it is not. Those classes are found based on
the device’s firmware code and a tremendous manual effort to find the API’s calls for chosen standard

2.3. Cryptographic Misuse Rules 11

cryptographic libraries. Additional information about this topic can be found in Chapter 4.11.
The cryptographic functions and their corresponding arguments, and the misuse conditions which

belong to each cryptographic misuse rule class, are presented in the implemented open-source tool
given in Chapter 4 and explained in more detail in Chapter 4.11. To discover the value of a function’s
argument, code analysis (static taint analysis) is implemented; more details are provided in Chapter
4.12. Be aware that not all arguments are needed for a misuse condition. However, some arguments
may provide useful insides and metadata, for instance, an argument that defines the length of a key.

In the following subsections, where each one covers one cryptographic primitive, the cryptographic
misuse rules are presented with a brief explanation for each rule. Additionally, for each subsection,
a table is presented, including examples of such cryptographic misuses in defining the function and
function argument of interest, along with the misuse condition where it will be violated if the expression
holds true. Each row of the example tables presented in subsequent sections consists of six columns,
where the last two are optional. The 1st column shows the rule that refers to, and the 2nd column
shows the function prototype of our function of interest and under which library it belongs. The 3rd
column presents the argument that is considered for a cryptographic rule violation, and the 4th column
depicts the misuse condition that if it is found to be true, then the rule is marked as violated. The 5th
column represents the metadata needed to resolve the misuse argument, and finally, the 6th column
gives the metadata argument. The 5th and 6th columns may not be present in some tables or omitted if
no metadata is needed to trigger the misuse condition. It should be pointed out that these examples are
only a limited subset of the overall cover functions, functions arguments, and cryptographic libraries,
and the complete list of them is provided as open source in our implemented tool code.

2.3.1. Symmetric Key Cryptography
The cryptographic misuse rules chosen and implemented for this work on Symmetric Key Cryptography
primitives are presented below. Table 2.1 depicts a few examples of such cryptographic misuses for
every rule.

• Rule S1: Usage of constant encryption/decryption keys for various block and stream ciphers. The
symmetric key should not be declared constant in a binary’s data segment/section3. Additionally, it
should be protected using a secure element when possible or generated dynamically, for instance,
with a CSPRNG. An adversary can easily recover all ciphertexts by finding the symmetric key,
thus breaking the encryption. It should be pointed out that a constant symmetric key hard-coded
in a program’s code (memory) is publicly available information and not a secret.

• Rule S2: Usage of electronic code book (ECB) mode of operation (> 1 block). The ECB mode
of operation on block ciphers has the weakness of discovering identical ciphertext blocks when
encrypting identical plaintext blocks since blocks are encrypted independently from one to each
other. Thus, ECBmode is deterministic and not Indistinguishably Under Chosen-Plaintext Attack
(IND-CPA) secure. For instance, Figure 2.1 represents an image encryption using different modes
of operation. Figure 2.1a depicts the original Tux image4. The image shown in Figure 2.1b is the
encryption of the original image with AES [75], a key size of 128 bits (0x000...00075BCD15)
and mode of operation ECB. The image is still visible despite the strong encryption that AES
offers. Lastly, Figure 2.1c represents the encryption of the original image using AES with a key
size of 128 bits, same as before, and IV equal to zeroes, using Cipher Block Chaining (CBC) mode
of operation. The encrypted image is not visible using CBC due to the chaining mechanism that
causes each new encrypted block to be dependent on all preceding blocks and the IV.

• Rule S3: Initialization Vector (IV)/nonce repetition (fixed) on various modes of operation. En-
crypting a plaintext with an identical IV/nonce (e.g., in CBC, CTR etc.) will result in an identical
ciphertext. The IV/nonce should be truly random to be IND-CPA secure. Encrypting with dif-
ferent IVs using the same key prevents the leakage of any information on ciphertext (i.e., non-
deterministic). An attack reported on [64] for SSL version 3.0 and TLS version 1.0 using CBC
mode of operation illustrates the necessity of truly random IVs.

3The data segment of an ELF binary contains sections such as ‘.rodata’ (read-only data) section, which is dedicated to storing
constant values that are not writable and ‘.data’ section which may also have initialization/constant values used by variables
but with writable permissions which means that it could be possibly changed across binary’s execution.

4Tux, as originally drawn as a raster image by Larry Ewing in 1996 (Tux (mascot)).

https://wikipedia.org/wiki/Tux_(mascot)

12 2. Background

(a) (b) (c)
Figure 2.1: (a) The original Tux image4 (b) Tux image encrypted with AES, 128 bits, ECB (c) Tux image encrypted with AES,

128 bits, CBC

• Rule S4: Usage of “weak” ciphers for encryption/decryption. The ciphers that NIST 800-131A
[71] declared as weak (Insufficient security strength) and disallowed are: DES, Two-key TDEA
(3-DES with two different keys), SKIPJACK, IDEA. It is advised to avoid the use of RC2, RC4
and Blowfish as they have been shown to have insufficient security strength due to their small
key size in various reported attacks [20, 47] (but not limited to). Decryption on those ciphers may
be used only for legacy devices.

Rule # [Library]:Function prototype Arg. Misuse
Condition Metadata Arg.

S1

[OpenSSL]:
int AES_set_decrypt_key(
const unsigned char *userKey,
const int bits, AES_KEY *key);

1 constant bytes size of key
in bits 2

S2

[OpenSSL]:
int EVP_EncryptInit(
EVP_CIPHER_CTX *ctx,
const EVP_CIPHER *type,
unsigned char *key,
unsigned char *iv);

2

context immediate value
EVP_aes_128_ecb() or
EVP_aes_192_ecb() or
EVP_aes_256_ecb() or
others

- -

S2

[GnuPG (libgcrypt)]:
gcry_error_t gcry_cipher_open(
gcry_cipher_hd_t *hd,
int algo, int mode,
unsigned int flags)

3 integer immediate value
GCRY_CIPHER_MODE_ECB = 1 - -

S3

[GnuPG (libgcrypt)]:
gcry_error_t gcry_cipher_setiv(
gcry_cipher_hd_t h,
const void *k, size_t l);

2 constant bytes size of key
in bytes 3

S4

[WolfSSL]:
int wc_Des_CbcEncryptWithKey(
byte *out, const byte *in,
word32 sz, const byte *key
const byte *iv);

- usage of DES cipher
for encryption - -

Table 2.1: Examples for Symmetric Key Cryptography of Cryptographic Misuse Rules

An example follows to further illustrate a violation of rule S1 that triggers when the symmetric key is
found constant in an executable. Consider the following code snippet 2.1 that displays a violation of rule
S1with a constant key of size 128 (0x80) bits long. The function we are checking for a violation is called
AES_set_decrypt_key() depicted in line 3. This function sets a decryption key with the underlying
algorithm to be AES. In order to search if the rule is violated, firstly, the size of the key needs to be
determined. Thus, the second argument of AES_set_decrypt_key() needs to be resolved first that
contains the key size in bits (metadata), which in this particular case is 16 bytes long. Afterwards, the
constant key is resolved as ‘{0x3, 0x4, 0x5, 0x6, 0x07, 0x8, 0x9, 0xA, 0xB, 0xC,
0xD, 0xE, 0xF, 0x10, 0x11, 0x12}’ (as it is saved in this case by the compiler in ‘.rodata’
section), thus, the rule is marked as violated.

1 void wrapper_AES(uint8_t *param_1, int param_2){
2 AES_KEY *key; // output key stack variable
3 AES_set_decrypt_key(param_1,param_2,&key);
4 /* code */

2.3. Cryptographic Misuse Rules 13

5 ...
6 }
7

8 uint8_t constant_key[] = {0x1, 0x2, 0x3, 0x4, 0x5, 0x6, 0x07, 0x8, 0x9, 0xA, 0xB, 0xC,
9 0xD, 0xE, 0xF, 0x10, 0x11, 0x12, 0x13, 0x14, 0x15};
10

11 int main(int argc, char **argv){
12 // call of AES sets the decrypt key param_1 of size of parma2 = 128 bits
13 // cryptographic misuse of rule S1
14 wrapper_AES((&constant_key[0]) + 2, 0x80);
15 /* code */
16 ...
17

18 return 0;
19 }

Listing 2.1: Code example of a cryptographic misuse of rule S1

2.3.2. Cryptographic hash functions
Cryptographic hash functions are often combined with other cryptographic primitives, i.e., digital signa-
tures, Message Authentication Codes (MACs), Key Derivation Functions (KDFs) and Password Based
Encryption (PBE); therefore, no cryptographic misuse rules can be directly defined. Generally, the MD
family is deprecated since MD-5 is not collision resistant, as many attacks have shown [91, 96], making
the hash function not secure for digital signatures and many other cryptographic applications. The first
collision for full SHA-1 was reported by M. Stevens et al. [92] in 2017, and recent attacks such as
[58, 59] render the usage for SHA-1 limited. SHA-1 is advisable to be avoided in digital signatures, and
whenever it is feasible, applications may limit the usage of SHA-1 with other cryptographic primitives
as well.

2.3.3. Public Key Cryptography
The cryptographic misuse rules chosen and implemented for this work on Public Key Cryptography
primitive are presented below. Table 2.2 illustrates examples of such cryptographic misuses for certain
open-source cryptographic libraries.

• Rule P1: Usage of insecure RSA encryption padding schemes. If no padding is used, also
called “textbook RSA”, then the encryption scheme is malleable and deterministic, hence not
IND-CPA secure. Public-Key Cryptography Standards (PKCS) #1 v1.5 padding introduced in
RFC 2313 [18] adds redundancy to make the encrypted message non-deterministic together
with additional checks against malicious message modifications. However, an adaptive chosen
ciphertext attack was first reported by D. Bleichenbacher [31] with a proof of concept in SSL
V3.0. Therefore, the PKCS #1 v1.5 padding must be avoided, and it is not recommended for
new applications as stated on the latest PKCS #1 v2.2, RFC 8017 [21]. Optimal Asymmetric
Encryption Padding (OAEP), first reported in PKCS #1 v2.0, RFC 2437 [19] is IND-CPA secure
and is the recommended encryption padding scheme for every new application (CWE-780).

• Rule P2: Digital Signatures signing/verifying with a “weak” cryptographic hash function. NIST
800-131A [71] defines the approved hash functions families for signature generation and verifi-
cation. The MD family (e.g., MD5) is deprecated, and SHA-1 is not recommended for generating
a digital signature. SHA-1 may be used only for verification on legacy devices.

• Rule P3: X.509 certificates signing/verifying with a “weak” cryptographic hash function. MD family
should not be used for any operation on certificates [57] [29], and SHA-1 may only be used for
verification on legacy devices.

2.3.4. Pseudo Random Number Generators (PRNGs)
The cryptographic misuse rules chosen and implemented for this work on Pseudo Random Number
Generators primitive are presented below. Table 2.3 represents examples of such cryptographic mis-
uses.

14 2. Background

Rule # [Library]:Function prototype Arg. Misuse
Condition

Rule P1
[OpenSSL]: int RSA_public_encrypt(int flen,
unsigned char *from, unsigned char *to,
RSA *rsa, int padding);

5 integer immediate value
RSA_PKCS1_PADDING = 1

Rule P1
[mbedTLS]: void mbedtls_rsa_set_padding(
mbedtls_rsa_context *ctx,
int padding, int hash_id);

2 integer immediate value
MBEDTLS_RSA_PKCS_V15 = 0

Rule P2
[OpenSSL]: int EVP_DigestSignInit(
EVP_MD_CTX *ctx, EVP_PKEY_CTX **pctx,
const EVP_MD *type, ENGINE *e, EVP_PKEY *pkey);

3

context immediate value
EVP_md5(); or
EVP_md4(); or
others

Rule P3
[OpenSSL]: int X509_digest(
const X509 *data, const EVP_MD *type,
unsigned char *md, unsigned int *len);

2

context immediate value
EVP_md5(); or
EVP_md4(); or
others

Table 2.2: Examples for Public Key Cryptography of Cryptographic Misuse Rules

• RuleR1: Usage of static seeds for pseudo randomnumber generators (PRNGs) or Cryptographically-
secure pseudorandom number generator (CSPRNGs) in a security context. When a static seed
is used, a PRNG will produce identical random number sequences each time. Thus, an adver-
sary can ‘guess’ the next random number, reproducing the sequence. Hence, for cryptographic
applications that request random numbers, e.g., the Diffie Hellman Key Exchange (DHKE), the
security is compromised even if the underlying algorithm is secure.

• Rule R2: Usage of low entropy sources for seeds on PRNGs or CSPRNGs in a security context.
Low entropy sources like predictable sources such as time (e.g., library libc, srand(time()))
or process id (e.g., library libc, srand(getpid())) or any combination of them (e.g., library
libc, srand(time() + getpid())), should be avoided for cryptographic applications, as
presented in CWE-337 and CWE-338. CSPRNGs must be seeded from ‘/dev/random’ or
‘/dev/urandom’ (on a Linux system) that provides securely unpredictable random bits.

Rule # [Library]:Function prototype Arg. Misuse
Condition

Rule R1 [glibc]: void srand(unsigned int seed); 1 integer immediate value

Rule R1 [OpenSSL]: void RAND_seed(
const void *buf, int num); 1 constant string

Rule R2 [glibc]: void srand(unsigned int seed); 1

return value of
time() or
getpid() or
any combination of them

Table 2.3: Examples for Pseudo Random Number Generators of Cryptographic Misuse Rules

2.3.5. Key Derivation Functions (KDFs) and Password Based Encryption (PBE)
The cryptographic misuse rules chosen and implemented for this work on Key Derivation Functions
(KDFs) and Password-Based Encryption (PBE) algorithms are presented below. Table 2.4 represents
a few examples of such cryptographic misuses.

• Rule K1: Usage of constant passwords/keys for PBE/KDFs. Passwords should not be constant
in a program’s memory3 and must be protected with a secure element, as it can be discovered
with static code analysis. Additionally, it should be protected whenever is feasible with a secure
element or dynamically generated, for instance, with a CSPRNG and stored in a hashed form
along with a unique salt (not in plaintext).

• Rule K2: Usage of constant salts, or no salts for PBE/KDFs. Salt must also be provided and be
unique/random for each password. Using a random/unique salt makes it difficult for an adver-
sary to perform a precomputed dictionary-based attack, such as rainbow tables. In addition, two
identical passwords are hashed differently using a unique salt and identical when using no salt or
even the same salt. Hence, for each password, salt must be unique in order to have no collisions
between identical passwords/keys.

2.3. Cryptographic Misuse Rules 15

• Rule K3: Usage of “low” number of iterations in a KDF. The total number of iterations that are
considered “low” depends on the KDF algorithm and application level tolerance. A higher number
of iterations makes it harder for an adversary to find the secret. According to NIST 800-132 [72],
“the number of iterations should be set as high as can be tolerated by the environment, while
maintaining acceptable performance.” RFC 8018 (PKCS #5: Password-Based Cryptography
Specification Version 2.1) [22] states that the minimum number of iterations should be set to
1, 000 while in OWASP [80] is recommended to be over 10, 000.

• Rule K4: Usage of “weak” cryptographic hash functions or “weak” block ciphers for KDFs and
Password Based Encryption (PBE) algorithms. “Weak” hash functions, e.g., The MD family, and
“weak” block ciphers, e.g., DES are recommended to be avoided by NIST 800-131A [71] and
NIST 800-132 [72] in any new applications.

Rule # [Library]:Function prototype Arg. Misuse
Condition Metadata Arg.

Rule K1 [libcrypto]:
char* crypt(char* key, char* salt); 1 constant string - -

Rule K2

[wolfSSL]: int wc_HKDF (int type,
const byte *inKey, word32 inKeySz,
const byte *salt, word32 saltSz,
const byte *info, word32 infoSz,
byte *out, word32 outSz);

4 constant bytes size of salt
in bytes 5

Rule K3

[OpenSSL]:
int PKCS5_PBKDF2_HMAC_SHA1(
const char *pass, int passlen,
const unsigned char *salt, int saltlen,
int iter, int keylen,
unsigned char *out);

5
integer value
weak iteration:
< 1000 (RFC 8018[22])

- -

Rule K4

[GnuPG]:
gpg_error_t gcry_kdf_derive(
const void *passphrase,
size_t passphraselen, int algo,
int subalgo, const void *salt,
size_t saltlen,
unsigned long iterations,
size_t keysize, void *keybuffer);

4
integer immediate value
GCRY_MD_MD5 = 1
or others

- -

Rule K4

[OpenSSL]:
int EVP_BytesToKey(
const EVP_CIPHER *type,
const EVP_MD *md,
const unsigned char *salt,
const unsigned char *data,
int datal, int count,
unsigned char *key,
unsigned char *iv);

2

context immediate value
EVP_md5(); or
EVP_md4(); or
others

- -

Table 2.4: Examples for Key Derivation Functions (KDFs) and Password Based Encryption (PBE) of Cryptographic Misuse
Rules

2.3.6. Message Authentication Codes (MACs)
The cryptographic misuse rules chosen and implemented for this work on Message Authentication
Codes (MACs) are presented below. Table 2.5 depicts examples of such cryptographic misuses, one
for every rule for various cryptographic libraries.

• Rule M1: Usage of constant/fixed authentication keys. The key should not be declared in a
binary’s data segment/section memory3 and should be protected with a secure element or dy-
namically generated, for instance, with a secure key exchange method. When finding the key, an
adversary can easily recover and tamper the messages, thus breaking the authentication mech-
anism.

• Rule M2: Usage of “weak” underlying cryptographic hash function for MACs. HMAC as recom-
mended by NIST 800-131A [71] may use any approved cryptographic hash functions. The MD
family e.g., MD5 hash function is recommended to be avoided.

16 2. Background

• Rule M3: Usage of insecure key lengths for MACs. HMAC as recommended by NIST 800-131A
[71] may use key with length greater than or equal to 112 bits (14 bytes).

Rule # [Library]:Function prototype Arg. Misuse
Condition Metadata Arg.

Rule M1

[GnuPG]:
gcry_error_t gcry_md_setkey(
gcry_md_hd_t h, const void *key,
size_t keylen);

2 constant bytes size of key
in bytes 3

Rule M2

[OpenSSL]: unsigned char *HMAC(
const EVP_MD *evp_md, const void *key,
int key_len, const unsigned char *d, int n,
unsigned char *md, unsigned int *md_len);

1

context
immediate value
EVP_md5();
EVP_md4();
or others

- -

Rule M3

[mbedTLS]:
int mbedtls_md_hmac_starts(
mbedtls_md_context_t *ctx,
const unsigned char *key, size_t keylen);

3 < 112 bits - -

Table 2.5: Examples for Message Authentication Codes of Cryptographic Misuse Rules

2.3.7. Authenticated encryption/decryption and AEAD
The cryptographic misuse rules chosen and implemented for this work on authenticated encryption/de-
cryption schemes and authenticated encryption with associated data (AEAD) are presented below. Ta-
ble 2.6 depicts examples of such cryptographic misuses, one for every rule, for various cryptographic
libraries.

Rule # [Library]:Function prototype Arg. Misuse
Condition Metadata Arg.

Rule A1

[mbedTLS]:
int mbedtls_ccm_setkey(
mbedtls_ccm_context *ctx,
mbedtls_cipher_id_t cipher,
const unsigned char *key,
unsigned int keybits);

3 constant bytes key size in bits 4

Rule A2

[WolfSSL]:
int wc_AesGcmEncrypt(Aes* aes,
byte* out, const byte* in, word32 sz,
const byte* iv, word32 ivSz, byte* authTag,
word32 authTagSz, const byte* authIn,
word32 authInSz);

5 constant bytes key size in bytes 6

Table 2.6: Examples for Authenticated encryption/decryption and AEAD of Cryptographic Misuse Rules

• Rule A1: Usage of constant/fixed encryption/decryption keys for various modes of operation of
authenticated encryption/decryption and AEAD. The authenticated key should not be declared
constant in a binary’s data segment/section memory3. Additionally, it should be protected when-
ever it is feasible with a secure element or dynamically generated, for instance, with a secure key
exchange method. By finding the authenticated encryption key, an adversary can easily recover
and/or tamper messages, thus breaking the authenticated encryption. It should be pointed out
that a constant authenticated key hard-coded in a program’s code (memory) is publicly available
information and not a secret.

• Rule A2: Initialization Vector (IV)/nonce repetition (fixed) on various modes of operation for au-
thenticated encryption/decryption and AEAD. For the GCM mode of operation, the IV can be
created using a synthetic initialization vector construction, such as deterministic and RGB con-
struction, where all must fulfil the requirement of “uniqueness”. Using a constant IV, or even if
one IV is ever repeated, then the implementation may become vulnerable to forgery attacks [52].

3
Related Work

In this chapter, prior research on the security of embedded/IoT devices is presented. There are nu-
merous security analysis reports, including individual or on a large scale on embedded/IoT devices, as
presented in section 3.1. These include static and dynamic analysis techniques on firmware images
that aim to discover vulnerabilities and weaknesses. Section 3.2 presents prior studies for crypto-
graphic function misuses for multiple platforms, including embedded/IoT firmware images. The authors
of these studies aim to discover cryptographic implementation mistakes using code analysis techniques
like static taint analysis.

3.1. Security Analysis of Firmware
Many researchers are interested in the security of embedded/IoT devices, as shown by the numer-
ous studies performed on all levels over the years. The first public, large-scale analysis on embedded
firmware images was presented in 2014 by Costin et al. [36], in which they performed a static analy-
sis (not static code analysis) using a correlation engine to compare and find similarities between the
captured objects on 32 thousand firmware images. The analysis discovered a total of 38 previously
unknown vulnerabilities in over 693 firmware images that correspond to over 123 different products and
affect at least 140K devices accessible over the Internet (2014). The aforementioned work managed
to extract RSA keys and their self-signed certificates and hard-coded password hashes, most of them
weak, and therefore recovered the original passwords. Additionally, the study discovered possible
backdoors such as the authorized keys files (SSH keys), hard-coded web login admin credentials and
hard-coded telnetd credentials.

A recent security report on home routers is presented by Weidenbach et al. [97] (2020). The
study analyzed statically 117 firmware images without performing any code analysis and finding useful
insides about exploit mitigation techniques, hard-coded credentials, private keys, and operating system
versions that lead to critical known vulnerabilities. The study concludes that the old Linux kernel is still
in use, and exploit mitigation techniques are nearly enabled on firmware’s binaries.

Over the years, dynamic and static analysis techniques have also increased. In Chapter 2, Sec-
tion 2.2, the advantages and disadvantages of those are explained. Avatar framework presented in
[100] supports dynamic analysis on an embedded firmware with high accuracy of findings. However,
it requires a physical acquisition of a device; thus, it cannot scale well. On the other hand, the dy-
namic analysis reported in [34, 37, 90] are scalable, although there are limitations in the analysis and
accuracy due to specific hardware that an embedded device has. Dynamic analysis needs to solve
the challenge of embedded systems specific hardware emulation, for instance, lack of NVRAM specific
parameters, init and rc initialization scripts do not exist, or they are not trivial. Specifically, a dynamic
analysis on embedded web interfaces (e.g., a firmware that embeds a web server) reported on [37]
used the QEMU [15] full system emulator. The analysis scales relatively well as they evaluated a total
of 1925 unpacked firmware images and were able to discover 225 previously unknown vulnerabilities
in 45 firmware images. Additionally, they discover vulnerabilities such as SQL injection, command exe-
cution, XSS and CSRF. D. D Chen et al. introduced FIRMADYNE [34], which also performs automatic
dynamic analysis using QEMU and tests known exploits on the firmware images. They found 14 previ-

17

18 3. Related Work

ously unknown vulnerabilities for 69 firmwares and concluded that code-sharing is prevalent between
manufacturers. FirmFuzz, presented on [90], is an automated framework using QEMU emulator that
performs fuzz testing of vendor-developed applications on Linux-based embedded firmwares in order
to find deep vulnerabilities. This framework ran on 6, 427 firmware images and discovered 7 previously
unknown vulnerabilities that affect 32 images, which corresponds to 6 devices in a total of 2 IP cameras
and 4 routers. FIoT (Fuzzer of IoT) reported on [103] detected memory corruption using a combination
of static and dynamic analysis (symbolic execution) for lightweight IoT firmware images and managed
to discover 35 zero-day memory vulnerabilities among 115 firmware images.

A major challenge for code analysis on multiple firmware images lies in the different computer ar-
chitectures, e.g., MIPS, ARM, PowerPC, etc. Cross-architectural bug search studies performed on
binaries and firmware images reported over the years [42, 44, 82, 98] limit the gap of performing a
large-scale code analysis between various architectures using existing tools. Particularly, Genius [44],
a bug search engine that relies on the CFGs of binaries (extracted using IDA Pro [49]), reported po-
tentially vulnerable firmware and confirmed some of them using a large dataset of IoT devices in a
reasonable amount of time. A newer study called Gemini [98] used binary code similarity detection
with deep neural network-based graph and identified more vulnerable firmware images than Genius,
with better accuracy. Karonte [84] presented by N.Redini et al. performs a multi-binary static analysis
on firmware images to identify insecure interaction between the binaries through a finite set of Inter-
Process Communication (IPC) that may lead to vulnerabilities, e.g., buffer overflow, input data saniti-
zation etc. The study discovered 46 zero-day bugs, examined 53 firmware samples and performed a
large-scale analysis on 899 firmware images that showed the feasibility of scaling.

Other attacks for IoT devices are also reported, which focus on memory corruption and authenti-
cation bypass [35, 38, 66, 89, 103]. For instance, Firmalice presented on [89] proposed a model to
discover authentication bypass (‘backdoors’) on embedded devices using advanced program analy-
sis techniques of analyzing binary code. IoTFuzzer, given on [35], performs taint analysis in Android
applications for IoT devices with fuzzing input attacks to discover memory corruptions that lead to vul-
nerabilities in the IoT device. Y. David et al. [38] developed a tool called FirmUp that performs a
static detection for finding common vulnerabilities and exposures (CVEs) in firmware images. Firstly,
FirmUp lifts the binary to an IR form and extracts the procedures and basic blocks. Then, it uses various
techniques to generate and compare the procedures from firmware images to vulnerable procedures
from CVEs with great accuracy. From publicly available firmwares, the study found 373 vulnerable
procedures, 147 of them to be in the latest available firmware version.

3.2. Misuse of Cryptographic Functions
Developers tend to misuse the correct usage of a cryptographic function to achieve the best security
possible, even though they are using well-established cryptographic libraries with well-defined APIs.
Over the years, studies on misuse of cryptographic functions are reported [27, 56, 83], mainly focused
on Android [33, 41, 67, 87, 95] and iOS applications [43, 61].

In 2013, M. Egele et al. developed CryptoLint [41] that performs large-scale static analysis tech-
niques (static program slicing) on Android applications to capture common cryptographic misuses (IND-
CPA and cracking resistance). The study found that 88% of the evaluated applications use cryptog-
raphy inappropriately and violate at least one rule from 6 common cryptographic misuse rules. Those
rules also covered in Chapter 2.3 are marked as usage of ECB mode (Rule S2), usage of constant
IV (Rule S3), usage of constant encryption keys (Rule S1 and K1), usage of constant salts (Rule K2),
usage of fewer than 1000 iterations for PBE (Rule K3) and usage of static seed for PRNG (Rule R1).
NativeSpeaker [95] also performs a large-scale static taint analysis on Android native code libraries for
cryptographic misuse detection and suggests that third-party libraries are responsible for the misuses.
A newer study from I. Muslukhov et al. [67] developed a tool called BinSight that performed a similar
study on Android applications between 2012 and 2016. The study showed that the usage of ECBmode
has been significantly reduced over the aforementioned years. However, the use of static IVs and keys
increased while having an improvement on PBE (unique salt and more iterations) as well as not pro-
viding a static seed on PRNG. J. Feichtner et al. [43] performed a similar case study on cryptographic
misuse in iOS applications in 2018 and found that 82% of their evaluation dataset (417 apps in total)
have at least one violated rule.

A different study from J. Li et al. designed K-Hunt that can discover insecure cryptographic keys by

3.2. Misuse of Cryptographic Functions 19

analyzing how they are generated, propagated and used on symmetric, asymmetric, stream ciphers
and digital signatures. They evaluate only a single platform, x86/64 stripped executable binaries, on
real-world examples using well-established cryptographic libraries such as Nettle, WolfSSL, etc. K-
Hunt implements a function-level variant of dynamic taint analysis using Intel PIN [62], a dynamic binary
instrumentation (DBI) framework and discovered 22 insecure keys out of 25 evaluated programs. In
addition, research on RSA padding identification methods in IoT firmware images was performed by
Chao Mu et al. [65] in a dataset of 159 successfully unpack firmware images from 6 different vendors.
They performed static code analysis (lifting in an IR form) on executable binaries that dynamically
linked the OpenSSL library, aiming to identify which RSA padding schemes are used. IDA Pro [49]
is used for function identification, and Angr Framework [1] for translating specific code blocks into IR
expression constant analysis to track RSA padding function arguments. Their conclusion is that flawed
RSA padding is still in use for IoT environments.

The most relevant work to our study is performed by L. Zhang et al. [102], who designed and
implemented a framework called CryptoRex. To the best of our knowledge, they performed the first au-
tomated and large-scale analysis to identify cryptographic misuses with a focus on IoT device firmware
images. Similar to our work, they first implemented a crawler that captured a total of 1327 firmware
images from 12 different IoT vendors and successfully unpacked 521 of them (39.3%). Then, static
code analysis is executed only on binaries that are using (dynamically linked) a cryptographic library of
their interest, covering 7 well-known including OpenSSL [14] (libcrypt), GnuPg [6] (libgcrypt) WolfSSL
[17] (wolfcrypt) and many others. Due to multiple architectures and the diversity of firmware images
in IoT devices, the binaries are first lifted to VEX IR and its Python bindings. To disassemble the bi-
naries, Angr Framework [1] is used, while to enhance the conversion, an IDA Pro [49] python recover
script is implemented. Afterwards, on each binary, they constructed the inter-procedural control flow
graph on each entry point and then constructed the cross-file call graph in order to capture self-defined
library wrappers on crypto APIs. CryptoRex is able to dynamically update the list of crypto APIs if a
self-defined crypto API wrapper is discovered. For the final step, they performed a static taint analysis
with backward tracking on relevant API cryptographic calls to track their inputs. In total, CryptoRex
can track a total of 190 crypto-related arguments from 165 crypto APIs. At the end of taint analysis,
CryptoRex checks the track inputs (tainted sinks) for any violation of the 6 common cryptographic mis-
uses as covered by M. Egele et al. [41]. Their evaluation shows 24.2% (126/521) of the total unpack
firmware images violated at least one misuse rule. In particular, ECB mode is violated 20.5%, constant
IV 4.6%, constant keys 11.3%, constant salts 10.8% and no violation on static seed for PRNG.

4
System Architecture and Implementation
This chapter contains a comprehensive explanation of our implemented tool that is used for analyzing
the security of firmware images. Figure 4.1 depicts a high overview of the system architecture con-
taining all individual modules (each module is numbered with abbreviation ‘M’), with each one being
responsible for a specific task. Each module is explained further in dedicated sections throughout the
rest of this chapter. Our work uses only open-source software, as it is possible to implement a complex
firmware security analysis tool without using any proprietary software (closed-source). Examples of
the open source programs that were used are Binwalk [54], Ghidra [70], CVE binary tool [51] and many
others. Additionally, we implement many modules using mainly Python scripts and various libraries.
The developed tool called Embedded Binary Analysis Tool (EBAT) and is provided open source1.

Figure 4.1: Pipeline process of EBAT’s whole system architecture

To thoroughly assess the security of numerous firmware images on a large scale, it is essential
to establish an automated mechanism. This procedure will enable us to obtain a valid, diverse and
extensive dataset of publicly available embedded/Internet of Things (IoT) firmware images. ModuleM1
is responsible for solving this problem using a crawler that searches for various types of embedded/IoT
firmware images from numerous vendors (Appendix table A.4 provides the complete list of crawled
1EBAT is provided open source at EBAT-public, https://github.com/ppanagiotou/EBAT-public

21

https://github.com/ppanagiotou/EBAT-public
https://github.com/ppanagiotou/EBAT-public

22 4. System Architecture and Implementation

vendors). Along with the crawler, a considerable amount of manual effort is spent to remove potential
outliers in the final firmware image dataset, for instance, software for configuring the device and other
non-firmware files. Overall, the dataset is organized into multiple products, each containing one or
more publicly available firmware images arranged in chronological order from the initial release date to
the latest one available at the time of crawling.

The input to EBAT is an IoT/embedded product that contains one or more firmware images ordered
by their release date. The output produced by EBAT is stored in an SQL database, along with individual
files that are stored in multiple directories based on the user’s arguments for further analysis. EBAT
starts execution from the firmware image with the earliest release date and automatically continues
executing subsequent firmware images one by one until it reaches the latest one. Firmware images
are often packaged as compressed archives (and in many other formats) that must be unpacked before
analysis. When unpacked, firmware images may produce multiple files that contain and are not limited
to executable code, libraries and other resources. In EBAT, these files are recognized and stored in
different directories to facilitate further analysis based on their file types and contents. Furthermore,
duplicated files are not analyzed twice in EBAT, which helps reduce the computational power required
for analysis. This is particularly relevant for IoT/embedded products that may have multiple firmware
images released over time, with each firmware image being an update of the previous one. In such
cases, the firmware images tend to have many identical files, which the tool takes advantage of by per-
forming a single analysis for these files. The tool also attempts to optimize memory and computational
resources through thread-level parallelism during the analysis of each module.

The analysis of each product’s firmware image begins with the unpacking module,M2. This module
performs a critical step in the whole pipeline, as it unpacks the firmware image to extract individual files
that will be analyzed in subsequent modules. The analysis process stops if the unpacking process fails
due to firmware obfuscation techniques or encrypted firmware images. Therefore, if the unpacking
process fails to extract any files from the firmware image, the user will be notified, and the analysis
for that particular image will be terminated. Subsequent to the unpacking module is the filter module
M3 that is responsible for filtering and organizing the extracted/unpacked files to groups of binaries2
and other cryptographic-related files such as credentials, password files, configuration files, etc. The
Filtering module also updates the list of files that have been analyzed from the database and ensures
that only new files will be analyzed further.

The modules M4, M5, M6, and M7 are executed concurrently for each binary file to speed up the
analysis process. ModuleM8 is also executed in parallel for both binary and other types of files. A brief
explanation for the aforementioned modules follows:

• The Binary hardening features module M4 detects the presence of various hardening features in
the firmware image, such as Address Space Layout Randomization (ASLR) and Stack Canary
protection. It also checks for other security features like read-only data and code sections. The
module saves the results on the database, which can help identify potential security weaknesses
in the firmware later on.

• The Fuzzy hashing moduleM5 performs fuzzy hashing on each binary file to identify any changes
or similarities between subsequent firmware images, which can help identify potential areas of
concern.

• The Cryptographic Libraries module M6 is responsible for discovering the actual version of a
cryptographic library embedded in a firmware image. The discovered version of a cryptographic
library embedded in a firmware image enables researchers to identify any known vulnerabilities
or exploits associated with that version.

• The CVEs (Common Vulnerabilities and Exposures) and Libraries module M7 is responsible for
finding CVEs from all discovered libraries, including the cryptographic libraries, such as libgcrypt,
libssl, libjpeg-turbo, etc., that may be embedded in a firmware image.

• The Credentials modulesM8 is responsible for finding several credentials that may be in plaintext
and/or embedded on any type of file, including binaries.

2EBAT focuses only on Executable and Linkable Format (ELF) binaries. Portable Executable (PE) and raw format binaries are
left for future work.

4.1. Firmware Crawler module M1 23

The Binary Order moduleM9 starts its execution after all the aforementioned modules have finished
their tasks. ModuleM9 is responsible for ordering and filtering the binaries worthy of static taint analysis
to discover any cryptographic misuse. The binaries of interest are the ones that have dynamically linked
open-source cryptographic libraries, as will be presented in later sections. Binaries with statically linked
libraries are not handled and are left for future work. Additionally, the binaries are grouped into libraries
and executables, where libraries are analyzed first in a specific order to discover any potential library
wrappers. More details are given throughout this chapter.

For each binary worthy of analysis, various modules are executed. Module M10.1 is responsible
for lifting the binary to Ghidra’s intermediate representation (IR) language, followed by Ghidra analysis
module M10.2 that performs various analysis techniques, such as disassembly, function identification,
stack analysis, etc., as explained briefly in Chapter 2.2.2. Afterwards, the Static Taint Analysis module
M10.3 is executed, where it performs backward tracking on the function’s arguments given from the
Rules module M11. Rules module M11 holds all the functions and function arguments of our interest
harvested from the open-source cryptographic libraries in order to identify cryptographic misuse rules
that are covered in Chapter 2.3. The output of the Static Taint Analysis module M10.3 is parsed by
the Post-Analysis module M13 that is responsible for translating Abstract Syntax Trees (ASTs) to valu-
able results that may or may not cause a cryptographic misuse. Post-Analysis Module M13 uses the
Post-Rules module M12 that holds additional meta-rules, such as mapped values from various cryp-
tographic functions, in order to enhance the translation process of the cryptographic misuse rules. In
addition, the module is responsible for appropriately updating the Rules module M11 in the case of
finding a cryptographic library wrapper. Subsequently, the Results module M14 evaluates the cryp-
tographic misuse condition, if it is violated or not, and saves all the relevant results to the database.
Furthermore, this module tries to identify cryptographic primitives, algorithms and parameters used for
each firmware’s binary. Lastly, all the aforementioned modules’ results, as depicted in Figure 4.1, are
saved to a database to analyze them later on and produce useful findings, as will be presented in a
later chapter.

4.1. Firmware Crawler module M1
The Firmware Crawler module aims to obtain a valid, diverse and extensive dataset of publicly available
embedded/Internet of Things (IoT) firmware images along with their corresponding release dates. A
crawler is implemented for every popular vendor site using the open source Scrapy framework [86] and
various plugin extensions such as scrapy-splash for JavaScript support. In addition, firmware images
are harvested from publicly available file transfer servers using the File Transfer Protocol (FTP). The
crawler is designed to search specific vendor sites of interest to retrieve firmware images and their
corresponding release dates. This approach ensures that the crawler only collects relevant information,
as globally searching the entire internet for firmware images would be inefficient and time-consuming.
By targeting specific vendor sites, the crawler can efficiently gather the necessary data for analysis.

Additionally, this approach allows for better control and monitoring of the data collection process,
as the crawler can be adapted to each vendor’s specific site structure and requirements. Appendix
Table A.4 presents the complete list of vendors. To further reduce the amount of crawled data, a filter
is implemented to discard non-firmware files such as documentation, user manuals, other software
files, etc. The implemented crawler strictly follows the rules set out in the ‘robots.txt’ file of each
vendor’s site and only downloads publicly available firmware images and their corresponding release
dates. In cases where a vendor has a few firmware images, we download the images manually.

Our crawlers may produce false positives, including files incorrectly marked as firmware images and
inaccurate firmware image release dates. To ensure the accuracy of our dataset, wemanually reviewed
the output and removed any non-firmware image files while also correcting any inaccurate firmware
release dates that we encountered during the crawling process. We grouped the downloaded firmware
images for each vendor into products, each containing firmware images and their corresponding release
dates. While we attempted to group the products into different device classes, it was challenging due
to each vendor’s varying naming approaches and schemes. Additionally, finding the release date for
each firmware image using a crawler was a tedious task and was not always possible. Hence, we
discovered the release date following the steps below:
1. Crawl the release date from the vendor’s website.

2. If it is not found, discover it manually from the vendor’s website.

24 4. System Architecture and Implementation

3. If it is not found, extract it from the firmware’s image metadata.

We perform additional steps to reduce the overall dataset size and limit the need for computational
and storage resources. We remove duplicates for each product and combine identical firmware images
of different products. We also configure our crawlers to discard any files that have already been down-
loaded and filter out any possible non-firmware images. Before removing duplicates, we keep all the
relevant information of identical files in the dataset database. The dataset comprises 5-tuple elements,
with each element queued for analysis.

(Vendor, Product Name, Product Type, {Firmware images}, {Release dates})

4.2. Unpack Firmware module M2
As described in Chapter 2.1, in order to analyze a firmware image, the first step is to unpack it suc-
cessfully. Due to a lack of standards, each vendor may use its own packed/unpacked procedures.
In addition, vendors may use firmware obfuscating techniques, monolithic firmware images, or even
encrypted images that prevent any unpacking process without decrypting them first. Many tools have
been developed to overcome some of the issues above, such as Binwalk [54], BANG [2] and FACT
extractor [46]. EBAT uses mainly Binwalk [54], a state-of-the-art unpacking tool for firmware images. In
our initial experiments, it has the highest successful unpacking rate from a small initial sample. Along
with Binwalk, a recursive approach is implemented with additional Python modules for extracting spe-
cific file types (e.g., squashfs, cramfs). The recursive approach has the benefit of unpacking as many
files as possible; however, it comes with the disadvantage of being time-consuming and sometimes
imprecise. To further reduce the number of incorrect extracted files, a filter is implemented in every
unpacking stage that marks the already extracted files and removes any potential duplicates. At the
same time, it also filters the already known file types using mime types (magic bytes).

Overall, the approach used by EBAT is as follows: Firstly, the unpacking process starts with search-
ing and decompressing many of the publicly known compressed file formats such as 7z, zip, tar, etc.
Secondly, Binwalk is used in recursive (“matryoshka”) mode for extracting each previously produced
file along with the implemented Python modules. All the steps are recursively run until no new files
can be produced. Additionally, the filter mentioned above is used in all stages. Note that Binwalk uses
signature file carving techniques (through magic headers) that occasionally may lead to very large un-
reliable and incorrect file outputs. In order to prevent that, a fail-safe is implemented that stops the
Binwalk process and continues the analysis with the files that are successfully unpacked. Lastly, to de-
cide if a firmware image is successfully unpacked, a heuristic is implemented that considers the validity
of the extracted binaries. Specifically, during the unpacking process, we determined the success of
the unpacking based on the presence or absence of binaries. If no binaries are found, the firmware is
marked as not successfully unpacked. Conversely, if at least one binary is found, a check is performed
on the dynamic libraries needed by the binary. The firmware is marked as successfully unpacked if all
of these libraries are found. However, if any of these libraries are not found, the firmware is marked as
partially unpacked.

4.3. Filtering module M3
The filtering module is responsible for walking through the unpacked files, identifying whether they are
worthy of analysis and passing them to the relevant modules. This module has the advantage of limiting
the unnecessary processing power while it passes files to modules that will likely provide us with useful
findings/results. EBAT focuses on two types of files: ELF binaries and cryptographic-related files. For
filtering and discovering those files, various open-source tools and Python modules are used, some for
discovery and others for verification. Examples of such tools are readelf 3, ssh-keygen 4, openssl [14],
yara [94].

Cryptographic-related files are any kind of file that may consist of or related to one or more crypto-
graphic operation(s), such as:

• Credentials, for example, certificates, public keys, private keys, ssh keys, etc.
3“readelf(1) - Linux man page”, Linux, https://linux.die.net/man/1/readelf
4“ssh-keygen(1) - Linux man page”, Linux, https://linux.die.net/man/1/ssh-keygen

https://linux.die.net/man/1/readelf
https://linux.die.net/man/1/readelf
https://linux.die.net/man/1/ssh-keygen
https://linux.die.net/man/1/ssh-keygen

4.4. Binary hardening module M4 - Exploit Mitigation Indications 25

• Hash passwords, for instance in passwd, shadow (Linux file user/password file) configuration
files, etc.

• Configuration files, such as, ssh, web configurations, etc.

• Script files that may consist of a cryptographic operation, such as openssl enc -aes-256-cbc
-salt.

For each ELF binary, EBAT discovers the followings:

• File Type: ELF, PE, RAW format.

• Type: Executable or Library.

• Architecture: ARM 32 bit, MIPS 64 bit, x86, etc.

• Endianness: Little endian (LE) or Big endian (BE)

• Set of Dynamically Linked Libraries.

Additionally, an ELF binary can have from zero to many dynamically linked libraries (shared li-
braries). The filtering module discovers and separates the binaries that use no cryptographic libraries
from those that use at least one cryptographic library. Those are marked as binaries worthy of static
code analysis and will be used later in other modules. The overall cryptographic libraries the tool han-
dles are depicted in Section 4.6, Table 4.1. The binaries that are deemed worthy of analysis, also called
‘crypto binaries’, are analyzed further with Ghidra SRE [70] using static taint analysis on multiple func-
tions and function arguments. Lastly, the set of crypto binaries may change as the analysis progresses
due to library function wrappers that may be discovered. More details on this are given in the Binary
Order module M9 (Chapter 4.9).

4.4. Binary hardening module M4 - Exploit Mitigation Indications
Many exploitation techniques, such as buffer overflow attacks, integer overflow attacks, and stack
smashing attacks, are made possible by the absence of binary hardening features in firmware images
as reported in Chapter 2, Section 2.2. Using binary hardening features is an effective way to improve
firmware security by making exploitation harder for adversaries. It is an essential step in enhancing the
overall security of embedded devices. This module aims to determine whether or not exploit mitigation
indications are present in the set of binaries within a firmware image. EBAT analyzes each binary
separately for hardening features using the hardening-check5 and readelf linux tool3. Furthermore,
the exploit mitigation indications are saved to the database. It should be noted that this module finds
an indication of the exploit mitigation techniques and may raise false alarms in some indications. Each
of the hardening techniques is described briefly below:

• Position Independent Executable (PIE): PIE is an indication that the ‘text’ section (program’s
code) of the binary can be relocated somewhere in memory. Address Space Layout Random-
ization (ASLR) security technique must be supported by the executing kernel in order to take full
advantage of PIE. In rare cases, PIE may be enabled, but the detection algorithm could fail to
recognize it due to specific characteristics in the binary structure or the firmware image.

• Non-Executable Bit (NX): The NX bit indication marks memory regions as non-executable. This
technique prevents an adversary from executing code in arbitrary memory regions.

• Stack protected (Stack Canaries): Stack protected mitigation provides resistance against stack
buffer overflow attacks. Stack Canaries are special bytes of sequences in memory that are
checked for changes during run-time. When a function is called, a canary value is placed on
the stack before the return address. The canary value is then checked before the function re-
turns to ensure it has not been modified. If the canary value has been modified, it means that
a stack buffer overflow attack has occurred, and the program will terminate. The identification

5“Ubuntu Manpage: hardening-check - check binaries for security hardening features”, Canonical Ltd. Ubuntu, https://manp
ages.ubuntu.com/manpages/focal/man1/hardening-check.1.html

https://manpages.ubuntu.com/manpages/focal/man1/hardening-check.1.html
https://manpages.ubuntu.com/manpages/focal/man1/hardening-check.1.html
https://manpages.ubuntu.com/manpages/focal/man1/hardening-check.1.html

26 4. System Architecture and Implementation

of the stack canaries from this module indicates that the binary is compiled with stack protector
enabled. It may provide false alarms if no array is being allocated on the stack and the ELF binary
is compiled with stack protected options.

• Fortify Source functions: When compiling a binary, the compiler will try to replace unsafe libc
functions with their safer counterparts using Fortify Source binary hardening, e.g., strncpy in-
stead of strcpy. This mitigation technique prevents buffer overflow attacks due to the usage
of the safer counterpart functions, most of which require additional arguments such as length.
There is a possibility of false alarms as the check will pass only if any fortified function is found
and will fail only if unfortified functions are found.

• Read-only relocations (RELRO): RELRO marks any regions in the Global Offset Table (GOT)
as read-only that are already resolved before the execution begins. Thus, it reduces the memory
region of a binary that an adversary can use to perform a successful memory corruption exploit.
This technique is also called partial RELRO. When combined with Immediate binding (see below),
it additionally reduces the ability of an adversary to execute a successful GOT overwrite attack
(also called full RELRO).

• Immediate binding: Immediate binding indicates that the run-time linker must perform all re-
locations before the program executes (the opposite is called Lazy binding). Thus, all memory
locations from shared libraries or global variables are marked as read-only compared to partial
RELRO, which marks only the already resolved relocations. Combined with partial RELRO, as
described above, this is also called full RELRO, which further reduces the memory region an
adversary can use to perform a memory corruption attack.

4.5. Fuzzy hashing module M5
This module’s objective is to calculate a SHA-256 digest [77] and a fuzzy hash signature called ssdeep
[53] on every discovered binary. By computing the SHA-256 digest of each binary file, we can determine
if a binary file from one firmware image is identical to a binary file from another firmware image. The
digests are useful for identifying if a binary has any modifications between firmware versions. On the
other hand, the fuzzy hash signature calculates a similarity score between two binaries based on their
content. By calculating the ssdeep hash signature for each binary in a firmware image, we can compare
it with the ssdeep hash signatures of other firmware images to identify potential similarities or changes
between them.

The one-way hash function (SHA-256) shows if a binary is entirely identical, byte by byte, to any
other binary. On the other hand, Ssdeep is a program for computing context-triggered piece-wise
hashes (CTPH) [53], also called fuzzy hashes, which can match binaries that have sequences of iden-
tical bytes in various orders that might differ in both content and length. It returns a hash signature for
each binary that can be compared with other ssdeep hash signatures and will provide us with a score
value from 0 to 100. The hash signature indicates a matching score between two hash signatures
where a zero indication means that the binaries did not match at all, and a 100 indication means that
the binaries are an identical match. For instance, consider 2 binaries A and B, where binary A differs
one line of code from binary B. The score value calculated from ssdeep compare function for these
binaries will be near to 100 but not equal since it is not an identical match (the digest from SHA-256
will be completely different). Finally, the two digests SHA-256 digest and ssdeep hash signature are
saved into the database.

4.6. Cryptographic libraries module M6
The cryptographic libraries module M6 is responsible for discovering cryptographic libraries and their
version from a firmware image. EBAT analysis focuses on 12 cryptographic open source C/C++ li-
braries that are widely used on firmware images, many of them presented in [102]. There are cases in
which the actual library binary may not exist on our unpacked set of binaries, probably due to partial
unpacking. However, it is linked dynamically to an executable binary. The cryptographic libraries are
discovered on binaries only if they are dynamically linkable, whereas static libraries are left for future
work. Furthermore, this module has the ability to discover the actual version of 8 out of 12 cryptographic
libraries as marked with symbol ‘3’ in Table 4.1. Along with the actual version, it may also discover the

4.7. Common Vulnerabilities and Exposures (CVEs) and Libraries module M7 27

library’s CVEs using the appropriate Common Platform Enumeration (CPE) structure, extracted from
the National Vulnerability Database (NVD) and provided by NIST [74].

In order to find the accurate version of a cryptographic library, aGhidra headless script [70] is imple-
mented. This script taints the appropriate export function(s) that is responsible for returning the library
version. The returned value is marked as a taint source, and the script performs backward tracking in
order to find the constant version (tainted sink). At last, it returns the discovered version to the main tool.
For instance, in the WolfSSL library, the script taints the returned value of ‘wolfSSL_lib_version’
function (taint source), where it tries to discover and return the version (taint sink). In this particular func-
tion is a string element, e.g., “4.4.0”. Another example is in the OpenSSL library where the tainted
functions are ‘OpenSSL_version’ and/or ‘SSLeay_version’ depending on the OpenSSL version.
Finally, a list of tainted functions is created for the 8 cryptographic libraries so that a version can be
successfully recovered.

Other tools, such as the CVE bin tool [51] and FACT [45], may provide a library version based on
heuristic methods on strings and yara signatures, respectively. In contrast, our technique (EBAT) uses
code analysis to discover a library version only for cryptographic libraries. While our method is more
computationally expensive, it may provide better accuracy in terms of detecting the actual version.
However, there are cases where our script may fail to find the actual version, particularly when there is
no appropriate version function compiled with the library (stripped).

Table 4.1 depicts the various cryptographic libraries that this module is able to discover. The symbol
‘3’ represents the cryptographic libraries in which the Ghidra headless script attempts to detect the
actual library version. With the symbol ‘7’, no version recovery is implemented, mainly due to the non-
existence of the return version function call (found in our experiments and left for future work). The
chosen libraries that this module discovered are the most commonly used in our experiments except
for Libc (uClibc-ng [16] or glibc [5]) [48] ‘libcrypt’, where, a version return function does not exist.

Name Library Discovered version
1 Crypto++ [3] libcrypto++, libcryptopp 7

2 GnuPG [6] libgcrypt 3

3 GnuTLS [7] libgnutls 3

4 KerberosV5 [93] libk5crypto 7

5 Libc (uClibc-ng [16] or glibc [5]) [48] libcrypt 7

6 Libsodium [9] libsodium 3

7 LibTomCrypt [10] libtomcrypt 7

8 mbedTLS/PolarSSL [11] libmbedcrypto, libmbedtls
libpolarssl, libmbedx509 3

9 Mcrypt [12] libmcrypt 3

10 Nettle [13] libnettle 3

11 OpenSSL [14] libcrypto, libssl 3

12 WolfSSL [17] libwolfssl, libcyassl 3

Table 4.1: Cryptographic Libraries discovered by module M6

4.7. Common Vulnerabilities and Exposures (CVEs) and Libraries
module M7

The CVEs and Libraries module M7 is capable of finding common vulnerabilities and exposures on bi-
naries (executables and libraries and cryptographic libraries that are discovered by the previous module
M6) inside a firmware image. EBAT mainly uses the CVE Binary Tool provided by Intel [51]; “This tool
scans for a number of common, vulnerable components such as openssl, libpng, libxml2, expat and
a few others, to let you know if your system includes common libraries with known vulnerabilities”. It
uses the strings discovered on binaries in order to extract library signatures and version numbers with
heuristic methods. However, it may provide false positives (incorrect versions) if the signature match
failed or if it was intentionally obfuscated and also false negatives where it is unable to discover the ac-
tual library version. Furthermore, it uses the National Vulnerability Database (NVD) provided by NIST
[74] to cross-reference the discovered version with any known CVE using the appropriate Common
Platform Enumeration (CPE) structure [73].

For every extracted binary in a firmware image, the CVE Binary Tool is executed. The execution
may provide the library or binary version, excluding the cryptographic libraries that are discovered by
the previous module M6 and possible CVEs. Furthermore, Yara signatures provided by FACT [45] are

28 4. System Architecture and Implementation

also used for finding additional library and executable versions such as the kernel version, busybox, etc.
The CPE (Common Platform Enumeration) is created through the following steps: querying the NIST
database for CVEs by utilizing the identified version and extracting the corresponding CVEs using the
csv2cve tool [51]. Subsequently, these extracted CVEs are stored in our database for further analysis
and reference.

4.8. Credentials module M8
Credentials play a significant role in embedded/IoT firmware image security. Having a private key
in plaintext is a major security issue and should be avoided. This module can discover two types of
credentials. Firstly, those that are in a file format such as PEM (Privacy Enhance Mail), CRT (certifi-
cates), CSR (certificate signing request), private and public keys, SSH keys, etc. Secondly, embedded
credentials in binaries and/or other files are discovered using Yara signatures provided by FACT [45].

Table 4.2 depicts the types of credentials that this module can identify. Before being saved to
the database, the validity of these credentials is verified using various cryptographic tools, including
openssl [14], ssh-keygen, pgpdump [99], and gpg [6]. Rather than relying on magic types, these tools
perform file structure analysis to ensure the validity of the discovered credentials. Additionally, some
credentials may be encrypted using a password or key. The module tries to decrypt them using known
passwords as well as passwords that were manually discovered by analyzing various firmware image
files. The complete list of passwords can be found in Chapter 5.4.

Various Types Common files extensions6
Certificates .cert, .crt
Private Keys .key, .pem
Public Keys .pub, .pem
Various cryptographic Parameters .pem,
Certificate Signing Requests .csr
SSH Public Keys ssh_rsa_host_key, dropbear_rsa_host_key
SSH Private Keys ssh_rsa_host_key, dropbear_rsa_host_key
PKCS12 file formats .p12
PGP, GPG .gpg

Table 4.2: Types of Credentials discovered by module M8

4.9. Binary Order module M9
The Binary order module M9 aims to filter and find the order of the set of binaries extracted from a
firmware image that will be used for static taint analysis, which aims to discover cryptographic misuses.
The module acts as a filter for all binaries and passes only those that use at least one dynamically linked
cryptographic library provided by Table 4.1 or a cryptographic library wrapper, as will be explained later.
Those binaries are called in this context ‘crypto binaries’ and are worthy of code analysis by EBAT.
Crypto binaries are divided into two categories, executable and library binary, that use one or more
dynamically linked cryptographic libraries.

The order of analysis of a binary is essential only for library binaries since the functions of the
analyzed library may later be used in an executable binary. Those functions are also referred to as
wrapper functions. Thus, the first step toward binary analysis is to analyze only the library binaries in
order to determine any API cryptographic misuse wrapper functions that may be called later on by an
executable binary. To determine the specific order of analysis, a directed graph 𝐺 = (𝑉, 𝐸) is created
with the following:

1. A vertex 𝑉𝑥 can represent either a library binary or a cryptographic library.

2. A directed edge 𝑒1 = (𝑉1, 𝑉2) indicates that node 𝑉1 has a dynamically linked library node 𝑉2.

3. The set of vertices 𝑉 includes the discovered library binaries that use a cryptographic library and
the actual cryptographic library itself.

4. The set of edges 𝐸 is created from the dynamically linked libraries of each binary as directed
edges. For example, 𝐸 = {(𝑉1, 𝑉𝑑1), (𝑉1, 𝑉𝑑2)}, where 𝑉1 has dynamically linked libraries 𝑉𝑑1 and
𝑉𝑑2 .

4.9. Binary Order module M9 29

Once the directed graph is created, we can use the topological sort algorithm to determine the order
in which the library binaries should be analyzed. However, a circular dependency can occur when two
or more libraries call each other. In this case, we remove the nodes that cause the circular dependency
and recalculate the topological sort order. These nodes (library binaries) will be analyzed first since
there is no other way to proceed. Algorithm 1 provides a brief overview of the steps in determining
the analysis order. The input to the algorithm is the set of all binaries, including libraries, executable
and cryptographic library binaries, that have not been analyzed yet, and the output is the binaries that
will be analyzed in a specific order. It is worth noting that a library may create function wrappers that
may be used in an executable binary, meaning new binaries may also be worthy of code analysis. In
such cases, we run Algorithm 1 recursively until no new binaries that are worthy of code analysis are
generated.

Algorithm 1: Producing the order of the analysis
Result: Order of the analysis
Input: 𝐿 ⟵ set of libraries

𝐶 ⟵ set of cryptographic libraries
𝐸 ⟵ set of executable binaries

𝐿 ⟵ 𝐿 ∩ 𝐶;
𝐸 ⟵ 𝐸 ∩ 𝐶;
𝑂𝐿 ⟵ 𝑃𝑟𝑜𝑑𝑢𝑐𝑒𝑂𝑟𝑑𝑒𝑟𝑜𝑓𝐿𝑖𝑏𝑟𝑎𝑟𝑖𝑒𝑠(𝐿);
return 𝑂𝐿, 𝐸;
Function ProduceOrderofLibraries(𝐿):

𝐺 ⟵ 𝐺𝑟𝑒𝑎𝑡𝑒𝐺𝑟𝑎𝑝ℎ(𝐿) ; // Create the libraries graph
return 𝑃𝑟𝑜𝑑𝑢𝑐𝑒𝑇𝑜𝑝𝑜𝑆𝑜𝑟𝑡(𝐺) ; // Compute the topological sort

End Function

(a)

(b)
Figure 4.2: Figure (a) shows an example graph produced by dynamically linked libraries and Figure (b) presents an example of

wrapper functions used by libraries reaching the cryptographic function of our interest.

An example of the library graph is illustrated in Figure 4.2a, where the set of nodes are libraries that
have dynamically linked a cryptographic library. Library L0 uses Crypto Lib, L1 uses L0 and so on.
Those dependencies form the set of edges. The topological sort of the graph and hence the order of
analysis is the following: Firstly, library L5 is analyzed, then L0, L3, L4 in any order (parallel execution
is possible), then L2 and lastly L1.

Figure 4.2b illustrates an example of the discovery and use of function wrappers. Executable binary
E1 uses library L1 where L1 is using L0 and finally L0 is using a cryptographic library. Hence, a
cryptographic function that is called CF1. EBAT is able to discover and create dynamic rules of every
function wrapper, as shown in the example. FE1 is using FL1 function (wrapper function), where FL1
is using FL0. Finally, FL0 uses the function of our interest that must be tainted.

In order to taint all prior function wrappers, EBAT needs to analyze the L0 library in order to discover
the appropriate wrapper function FL0 that uses the cryptographic function of our interest CF1. Then,

30 4. System Architecture and Implementation

create the function rule and proceed to the analysis of L1 to find the FL1 function wrapper and finally
to the E1 executable binary to find the FE1 function that provides the values of arguments in order to
taint it and perform our taint analysis successfully. With that order, the cross-file called graph is built,
and all the function wrappers that may contain a misuse rule and/or identifications of cryptographic
primitives are updated. Furthermore, the filter is recursive. Consequently, L0 is firstly analyzed as
it uses a cryptographic library. Then, all libraries that use L0 must be added to the set of binaries
worthy of analysis, so L1 is added. Additionally, all the executable binaries that are using L0 and L1
must be added as well. With this methodology, EBAT can analyze all possible binaries that may use a
cryptographic function wrapper or not.

4.10. IR module M10.1 and Ghidra Analysis module M10.2
The Ghidra Analysis module M10.2 utilizes Ghidra SRE [70], an open-source software reverse en-
gineering (SRE) suite of tools provided by the National Security Agency (NSA). EBAT leverages the
Ghidra headless mode, which allows for the execution of headless scripts without user interaction. The
first step in the analysis process is to import the binary into Ghidra and use its out-of-the-box analysis.
The first step of this analysis disassembles and converts the binary’s assembly language instructions
into Ghidra’s intermediate representation/language (IR/IL) form, known as P-Code (IR module M10.1).
The benefits of using an IR form are explained in Chapter 2.2.2.

Although Ghidra provides out-of-the-box analysis for binary files, not all processor architectures are
supported by it. However, users can expand the range of supported architectures by creating transla-
tions from machine instructions to P-Code using the SLEIGH language. Once the binary is lifted from
assembly language instructions to P-Code (IR module M10.1), the analysis proceeds through several
steps, including function identification, data-flow analysis, function and data reference analysis, stack
and address tables creation, demangler, control flow analysis, type analysis, cross-referencing analy-
sis and many others. A prescript can be written to choose from various analysis options to customise
the analysis for a particular binary. By default, the Decompiler Parameter ID option, which creates
parameters and local variables for a function, is disabled due to the significant amount of time it takes
to execute. However, this option, along with others that may enhance the analysis results, can be
enabled using EBAT’s arguments at the cost of more computational resources. Overall, the Ghidra
Analysis module M10.2 used by EBAT performs the following steps:

1. Import the binary into Ghidra and disassemble and lifts to IR (IR module M10.1).

2. Analyze binary using Ghidra’s out-of-the-box analysis techniques.

3. Identify the main function on executable binaries. This step can be challenging for stripped bi-
naries, which have removed their symbol. A headless script was developed to identify and mark
the main function using the ‘start’/‘_entry’ point address to address this issue. The script
is particularly useful for binaries that are compiled with a C/C++ compiler and use the C standard
libraries glibc [5] or uClibc-ng [16].

4.11. Rules module M11
The Rules module M11 contains the functions and their arguments that are relevant to our analysis7.
This module serves as an input for the Static Taint Analysis module M10.3, which will be described
later. All functions and function arguments are created according to the well-defined API of the 10
cryptographic libraries depicted in Table 4.3, and in accordance with the 18 cryptographic rules that
check for cryptographic misuse as defined in Chapter 2, Section 2.3. The importance of this module
is to provide a variety of cryptographic functions to detect cryptographic misuses and cryptographic
primitives. The functions and function arguments were initially created based on CryptoRex [102], and
later on were heavily expanded using useful information from previously analyzed firmware images, ei-
ther manually or through automated scripts. Additionally, new functions and arguments are discovered
from the cryptographic libraries’ API documentation. This module is independent of all other modules;
thus, users can add/modify any function and their corresponding arguments of interest and perform the
analysis.
7The complete list of tainted functions and functions arguments can be found at EBAT-public rules, https://github.com/p
panagiotou/EBAT-public/blob/master/configurations/rules.conf

https://github.com/ppanagiotou/EBAT-public/blob/master/configurations/rules.conf
https://github.com/ppanagiotou/EBAT-public/blob/master/configurations/rules.conf
https://github.com/ppanagiotou/EBAT-public/blob/master/configurations/rules.conf

4.11. Rules module M11 31

Function wrappers that consist of a cryptographic function call (see Binary OrdermoduleM9Chapter
4.9) are discovered and automatically added to the Rules moduleM11 as the analysis progresses. Post
module M12 described in Section 4.13 is responsible for the translation and creation of a new rule for
every newly discovered wrapper function. Table 4.3 presents the total number of functions and function
arguments that are tainted for each cryptographic library for the purpose of identifying a violation of one
or more cryptographic rules.

Library # tainted functions # tainted arguments
1 Crypto++ [3] 2 7
2 GnuPG [6] 24 67
3 GnuTLS [7] 2 2
4 KerberosV5 [93] 16 36
5 Libc (uClibc-ng [16] or glibc [5]) [48] 25 27
6 LibTomCrypt [10] 52 117
7 Libsodium [9] 14 25
8 mbedTLS [11] 116 397
9 OpenSSL [14] 369 629
10 WolfSSL [17] 113 339
- Overall 733 1646

Table 4.3: Number of cryptographic tainted functions and functions arguments from each cryptographic library.

The rule format that EBAT uses is described for the rest of this section. The function arguments can
be declared out of 8 types as listed below. Each value is treated differently depending on the declaration
type of argument. In addition, priorities may be defined to arrange which argument must be tainted first.
Priorities are in the form of a<b, meaning that argument a has a higher priority than b; thus, it needs
to be resolved first. For each rule, multiple priorities may be defined where they are important in terms
of context, argument length, and other types of arguments, as their results are needed to continue the
analysis further.

Types of tainted arguments:

• int: treated as signed or unsigned integer.

• bit: treated as integer value but with the metadata that this value defines a bit length. Later on,
the value will be converted to a byte length.

• byte: treated as integer value but with the metadata that this value defines a byte length.

• string: string ending with a null terminator (\0).

• bytes: byte array of arbitrary length.

• output: output value mainly a pointer.

• CTX: context object.

• CTYPE: cipher type treated as int or context object.

For instance, Advanced Encryption Standard (AES) [75] has three key lengths 128, 192 and 256
bits, respectively. The function of our interest does not specify from the function declaration what AES
variation is using. Instead, an argument is provided for choosing the key length; for instance, the
function declaration of the AES decryption function for setting a key from mbedTLS [11] library is as
follows:

int mbedtls_aes_setkey_dec(mbedtls_aes_context *ctx,
const unsigned char *key, unsigned int keybits)

, where the argument keybits must be 128, 192 or 256 to specify which AES variant will be used.
EBAT rules module needs to account for that. Therefore, the static taint analysis module needs to
identify the key length argument of AES first in order to determine which variation of AES key is being
used and, therefore, determine the key length. Second, suppose a key constant value is discovered,
for example, a pointer to a data segment (.rodata section). In that case, the static taint analysis module
will extract the correct number of bytes as the key length was discovered earlier. However, if the key

32 4. System Architecture and Implementation

length of a function’s signature is known, then the rule is created as a predefined constant. Some
functions from our cryptographic libraries documentation may define the length with a default value
and also provide an argument that may or may not be used. If that is the case, EBAT analysis still taints
the length argument, and if it is discovered8, then, the default value is overwritten, and the new key
length is used; otherwise, the default value is taken into account.

Below, two examples are given, introducing some corner cases and our approach to solving them.
These examples are real-world examples found in firmware images.

• In the first example, we have a function from GnuPG [6] (‘libgcrypt’ cryptographic library) that
is responsible for setting a symmetric key. The prototype of that function is given below:

gcry_error_t gcry_cipher_setkey (gcry_cipher_hd_t h,
const void *k, size_t l);

In the function above, all arguments must be tainted as all arguments provide useful information
on the code analysis. The first argument of type ‘gcry_cipher_hd_t provides information about
the context. In our analysis, this type of argument is marked as ‘CTX’. These types of arguments
provide useful insights into the underlying algorithm provided by the context, including other API
functions that will be used in this context and more. The second argument ‘k’ is the key, which
is marked in our analysis with type ‘bytes’. Lastly, the third argument, length ‘l’, is marked in
our analysis with type ‘byte’ to indicate that the key length is in bytes. The order of arguments
plays a significant role in this cryptographic function. The context ‘h’ is resolved at the beginning,
providing us with information about the cipher algorithm and possibly the mode of operation (for
symmetric key encryption). Afterwards, the key length ‘l’ must be found as it will provide the size
in bytes. Lastly, the key needs to be resolved, and if it is found as a constant value (pointer to a
data segment), then ‘l’ bytes of data will be extracted, and a rule is violated.

• A more complicated example is provided by OpenSSL [14] cryptographic library, a widely used
function that performs symmetric key encryption. The function prototype is the following:

int EVP_EncryptInit(EVP_CIPHER_CTX *ctx, const EVP_CIPHER *type,
const unsigned char *key, const unsigned char *iv);

Again, all arguments are tainted in our analysis: the cipher context is marked as ‘CTX’, the cipher
type is marked as ‘CTYPE’, the symmetric key ‘key’ and the initialization vector (IV) ‘iv’ is marked
as ‘bytes’ type. Firstly, the ‘CTX’ must be resolved and secondly, the cipher type ‘CTYPE’. In the
OpenSSL library, the ‘EVP_CIPHER’ and ‘EVP_CIPHER_CTX’ types are objects that are initialized
with a function call. Thus, they do not have a primitive value such as an integer but mainly return a
function address. The specificity of those arguments needs to be resolved differently than others,
whereas it will not lead to a constant value but instead to a function call. Hence, a special case
applies to these types of arguments. For instance, if the value of ‘CTYPE’ is equal to a function
call, e.g., ‘EVP_aes_256_cbc()’, with the help of Post Rules module M12 (see section 4.13) it
will provide us all the necessary information to resolve the type, the key length, the IV length and
themode of operation of the underlying cipher. In the example provided, ‘EVP_aes_256_cbc()’,
the cipher algorithm is AES [75], with block size length of 128 bits, which results in the IV size
length of 128 bits. Furthermore, the key size is 256 bits, and the mode of operation is Cipher Block
Chaining (CBC) [76]. Thus, the key and IV length can be resolved directly when the underlying
algorithm is discovered. If the key and IV arguments are found to be constants, bytes that are
equal to the resolved length can be extracted, and rules are violated. Many functions have default
values and different behaviours depending on the arguments input. For this specific function, the
OpenSSL documentation states that “it is possible to set all parameters to ‘NULL’ except type in
an initial call and supply the remaining parameters in subsequent calls, all of which have type
set to NULL. This is done when the default cipher parameters are not appropriate.”9. The tainted
context ‘CTX’ solves that, as it will taint all appropriate function calls and update our tainted context

8In most cases the argument value will be ‘null’ or 0 if it is not in use.
9“OpenSSL manual 1.0.2 - EVP_EncryptInit”, OpenSSL [14], https://www.openssl.org/docs/man1.0.2/man3/EVP_E
ncryptInit.html

https://www.openssl.org/docs/man1.0.2/man3/EVP_EncryptInit.html
https://www.openssl.org/docs/man1.0.2/man3/EVP_EncryptInit.html
https://www.openssl.org/docs/man1.0.2/man3/EVP_EncryptInit.html

4.12. Static Taint Analysis module M10.3 33

metadata only if the same context is used. Therefore, even if ‘NULL’ is used as the key and the
key data is resolved at a later stage in a different function call with the same context, the algorithm
specification data will still hold true for this context, and the key length is already resolved. Overall,
the Post Rules moduleM12 defines those meta-rules as precisely as possible for each and every
cryptographic function of our interest.

4.12. Static Taint Analysis module M10.3
The goal of this module is to perform static taint analysis (backward tracking) on each function call
argument that is provided by the Rules module M11 (section 4.11). Taint analysis creates the Abstract
Syntax Tree (AST) of P-codes until it determines a constant value (if it exists). All the inter-process
communications from Ghidra to EBAT main modules are exchanged by JavaScript Object Notation
(JSON). Subsequently, the Post-Analysis module M13 (section 4.13) is responsible for translating and
identifying if the discovered AST leads to a possible cryptographic rule violation. The analysis is not
sound (everything is marked as a potential vulnerability) and may provide false positives, as well as
potential cryptographic misuse, which may be missed (false negatives).

A Ghidra headless script, an idea inspired by INFILTRATE 2019 conference [32] and heavily ex-
panded upon, is developed to perform the static taint analysis. In addition to the analysis, the imple-
mented script finds all call sites of the functions provided by the Rules Module M11 and discovers their
references to create the call graph. The taint analysis is context sensitive, meaning the order of func-
tion calls is taken into account, and a separate result for each possible path is calculated. From the
Ghidra Analysis module M10.2, the program’s main is discovered (for executable binaries). Further-
more, function wrappers from previously analyzed libraries are also taken into account as they will be
updated in the Rules module M11. Thus, if the analyzed executable uses a function wrapper, a cross-
file call graph (CFCG) is created with the additionally discovered function wrappers. Subsequently,
Depth First Search (DFS) on the CFCG is performed to find whether a particular source function is
called from the main. The results of CFCG, DFS as well as the AST are saved and processed by later
modules. Overall, the script begins with a taint analysis of every discovered function call site and taints
each argument individually with respect to the priority order as described in Rules module M11.

EBAT defines the followings:

• Taint sources: Taint sources are marked as the function prototypes; hence, each argument
has various types and priorities. The order and type of each argument are treated accordingly.
Specifically, the taint source is tagged as the P-code i’th input argument (from the input varnode)
of the called function of our interest.

• Taint propagation: The script recursively performs backward taint analysis on each taint source.
For every P-code operation that is discovered, a node is saved and added to the Abstract Syntax
Tree (AST) while creating appropriate edges. This simple taint propagation algorithm builds an
AST on each taint source until it reaches a constant taint sink or a P-code operation that cannot
be further resolved.

• Taint sinks: Taint sinks are defined as pointers or immediate values or as objects that are created
from a function call. This is based on the type of tainted argument as declared in Rules module
M11 (section 4.11). Thus, if it is an immediate value (declared as int, bit, byte (types of
tainted arguments)), then it tries to resolve it instantly, a constant node is created, and the taint
propagation stops. Additionally, if it is a pointer (declared as string, bytes(types of tainted
arguments)) and it is directly resolved to ‘.rodata‘ segment, then a constant node is created,
including 𝑥 amount of bytes of extracted data and the taint propagation ends. For the remaining
types (declared as CTX, CTYPE, output (types of tainted arguments)), a taint sink is resolved
as a pointer reference to a function call that may create the object or all the aforementioned types
of tainted arguments. There are cases in the taint propagation algorithm that may lead to multiple
control flow paths (if statements, function calls over multiple paths, loops, etc.). In that case, our
sink nodes are marked with 𝜙. Sink nodes marked with 𝜙 are treated as possible results that may
arise from different paths.

34 4. System Architecture and Implementation

4.13. Post-Analysis Module M13
The post-analysis module M13 aims to determine the possibility of violating a cryptographic rule and
extract cryptographic primitives from the ASTs. Cryptographic misuse rules are defined in Section 2.3
and detected with the help of the Rules module M12 and Post Rules module M11. Additionally, from
the results of static taint analysis, one can determine the cryptographic primitives from the metadata,
such as underlying algorithms (ciphers, hash functions), key, IV lengths and many others. A variety
of cryptographic functions are addressed; however, not all can possibly be covered due to time limits.
A tremendous amount of manual work and implemented scripts are applied using various firmware
images as a reference, which are then analyzed manually and later by automatic methods to identify
as many cryptographic functions as possible. All the discovered functions are added to the Rules
module M12, creating the type and the order of arguments as described. In addition, the appropriate
post rules are constructed and appended to the Post-rules module M12.

4.13.1. Abstract Syntax Tree (AST)
The Abstract Syntax Tree (AST) is created for every tainted source using the taint propagation algo-
rithm until a taint sink is reached. The static analysis has limitations in discovering indirect pointers
and indirect function calls that are calculated at run-time. Additionally, any result that is calculated at
run-time or based on an input (either user or external input) cannot be discovered. All the limitations
of static analysis can be overcome by including a dynamic analysis framework, although, due to time
limits, it is left for future work. Furthermore, the analysis cannot be executed if a binary is not supported
by Ghidra’s CPU architectures. The AST is bounded by Ghidra’s underlying analysis, such as disas-
sembly, function identification, etc. Thus, false positives and false negatives may arise. However, as
Ghidra SRE tool evolves, our analysis evolves as well.

The AST is recursively parsed using Depth First Search (DFS) in order to identify the existence
of a constant sink (taint sink). All individual P-codes and their produced children are parsed in DFS
order to identify all intermediate result nodes. As the tree parsing progresses, basic operations are
handled whenever possible. For instance, basic arithmetic operations such as addition, multiplication,
and division are solved as the tree is parsed only if their children can be solved to a constant sink. Note
that 32 and 64 bit architectures are taken into account. Additionally, if a sink is discovered in different
execution paths, then all paths are marked as 𝜙 or 𝜙 const (if it leads to a constant sink over multiple
paths).

In this paragraph, cases that are not covered in the AST parsing are discussed and left for future
work. Firstly, the parsing cannot handle standard C functions like strcpy, memset, memcpy etc., where
the results can propagate through the functions’ arguments and eventually will result in a constant
sink. The same applies to cryptographic functions such as MD-5, SHA-256 where propagation is not
captured. The accuracy of the AST parsing is bounded by the accuracy of the module producing the
AST. If operations are not well-defined, false positives and false negatives may also occur. The AST
parsing is just a parser and not a solver of any kind, trying to determine if a path will lead to a constant
sink or not. Overall, a manual audit of the produced ASTs may overcome many of the issues mentioned
above, and those issues are left for future improvements.

A real example of the static taint analysis using a binary in one of the analyzed firmware images is
shown below. The C pseudo-code of a few functions is represented in code listing 4.1.

1 // function that sets the key and perform a decryption using AES
2 void FUN_0040108c(uchar *param_1,uint param_2,uchar *param_3,uchar *param_4,uchar *param_5){
3 AES_KEY key; // output key stack variable
4 // AES set the decrypt key param_3 of 128 bits and save it to key
5 AES_set_decrypt_key(param_3,0x80,&key);
6 /* code */
7 ...
8 }
9

10 // wrapper function
11 void FUN_00402554(uchar* param_1){
12

13 // function call with a violation of rule S1
14 FUN_0040108c(PTR_DAT_004130a0 + 0x20,0x10,PTR_DAT_004130a0 + 0x10,PTR_DAT_004130a0,param_1)

;
15

16 return 0;

4.13. Post-Analysis Module M13 35

17 }
18

19 // wrappers
20 void FUN_00401780(...){
21 /* code */
22 ...
23 FUN_0040108c(...)
24 /* code */
25 ...
26 }

Listing 4.1: Real-world example of binary’s firmware image vulnerable pseudo-code.

The marked taint source is the AES_set_decrypt_key function arguments where the prototype
is given below as:

int AES_set_decrypt_key (const unsigned char *userKey, const int bits,
AES_KEY *key);

The tainted source arguments and the given types are briefly explained below:

• 1st argument: userKey argument is marked as type bytes. In order to resolve it, the analysis
needs to know howmany bytes of data need to be extracted. Thus, the second argument provides
us with the key length in bits. A priority is defined where the key length needs to be resolved first.

• 2nd argument: bits argument is marked as type bit. Priority 2<1 states that 2nd argument
needs to be resolved before 1st argument. The integer constant is converted to bytes when the
taint sink is found.

• 3rd argument: key argument is marked as type output. This indicates which function will later
use the key.

The taint propagation and hence the Abstract Syntax Trees (ASTs) are depicted in Figure 4.3 for
the first two arguments. The taint sinks are found to be a constant value of 0𝑥80 in the 2nd argument
(128 bits, 16 bytes) of AES key length, and the decryption key to be constant in a memory section
(‘.rodata’ section) pointed at @0𝑥402𝑒58 + 0𝑥10 = 0𝑥402𝑒68. Thus, 16 bytes are extracted from the
resolved pointer, leading to a constant key converted in base64. Therefore, in the Post-Analysis module
M13 (Section 4.13), the discovered results are treated as a cryptographic misuse rule, specifically as
a discovered constant key for symmetric key cryptography that violates rule S1 from Section 2.3.

Figure 4.3: Real-world Abstract Syntax Trees (ASTs) for two arguments.

36 4. System Architecture and Implementation

4.14. Post Rules module M12
The Post Rules module M12 uses metadata in order to enhance the discovery of a taint sink (function
or function argument) to a possible cryptographic violation10. Furthermore, it consists of metadata for
the discovery of cryptographic primitives. Appendix B describes the variety of supported cryptographic
primitives that may be discovered with EBAT. Specifically, for the Symmetric Key Cryptography primi-
tives, block ciphers, stream ciphers, mode of operations, key sizes, IV sizes and direction of encryption
are discovered. For the Public Key Cryptography primitives, the analysis can identify RSA encryption
padding schemes, RSA key sizes, the underlying one-way hash functions for X.509 and digital sig-
natures. Additionally, the analysis can identify random functions from libc, OpenSSL and/or GnuPG
libraries. Furthermore, for the Cryptographic One-way Hash function primitives, numerous hash al-
gorithms are identified, e.g., MD-5, SHA-1, SHA-256, etc. For Key Derivation Functions (KDFs) and
Password Hashes primitives, a variety of algorithms such as PBKDF1, SCRYPT, crypt (Linux), etc.,
are covered together with the underlying hash functions, the number of iterations used and the salt. In
addition, the Message Authentication Codes (MACs) primitives can identify the HMAC algorithm key
size and the underlying hash function. Lastly, for the Authenticated Encryption with associated data
primitive, the analysis can cover the underlying algorithm AES and/or CHACHA20 (stream) with modes
of Operations like GCM, CCM, etc; in addition, it can determine the key and IV sizes.

As an example of a cryptographic misuse rule, using the implemented post rules, consider the
following function prototype from OpenSSL, which performs an RSA encryption using a public key.
The last argument denotes the RSA encryption padding scheme that is used.

int RSA_public_encrypt(int flen, const unsigned char *from,
unsigned char *to, RSA *rsa, int padding);

In order to identify the correct padding scheme and if it is violated or not, for this specific example,
post rules must hold all the available padding schemes in the form of padding = integer. For
instance, in OpenSSL [14], the RSA encryption padding schemes for the 5th argument of the RSA
function above are mapped as follows:

• RSA_PKCS1_PADDING = 1

• RSA_SSLV23_PADDING = 2

• RSA_NO_PADDING = 3

• RSA_PKCS1_OAEP_PADDING = 4

Weak RSA encryption padding schemes are additionally saved inside the post-rules definition ar-
guments. If the 5th argument (padding) is equal to a weak padding such as RSA_PKCS1_PADDING,
then the rule P1 is marked as violated (see section 2.3). Otherwise, the discovered padding is saved
to the database together with the purpose of having a complete list of used RSA padding schemes for
each firmware image. This is not limited only to RSA padding schemes but applies to all the afore-
mentioned cryptographic primitives and all the functions covered in the Rules module M11, where
the metadata or a result of a function is meaningful. For instance, all the metadata of this OpenSSL
EVP_aes_256_cbc() function call (AES, 256 bits with CBC mode of operation) are saved from the
Post Rules module to the database.

4.15. Results Database Module M14 and Meta-Results Analysis
A database is created for every product that consists of several firmware images. The results of all
modules, as described in previous sections, are saved. Briefly, the database for each product con-
taining one to multiple firmware images consists of a product name, type, vendor and all firmwares
names, versions, and release dates. In addition, all the results from fuzzy hashing, binary hardening,
CVEs, cryptographic library, credentials, post-analysis module and numerous others are stored inside
the database. Individual files depending on EBAT’s user arguments are also stored for future and
manual reference.

The first step of meta-results analysis is to merge all databases for each product into a larger one
for each vendor. Subsequently, the following is calculated:

10The complete list of post rules can be found at EBAT-public post rules, https://github.com/ppanagiotou/EBAT-pub
lic/blob/master/configurations/postrules.cfg

https://github.com/ppanagiotou/EBAT-public/blob/master/configurations/postrules.cfg
https://github.com/ppanagiotou/EBAT-public/blob/master/configurations/postrules.cfg
https://github.com/ppanagiotou/EBAT-public/blob/master/configurations/postrules.cfg

4.15. Results Database Module M14 and Meta-Results Analysis 37

1. Map every found cryptographic library version to their release date. The release dates for each
library are harvested from their respective public websites.

2. Calculate an estimation of similarity for each product using Algorithm 2. It calculates an estimation
(percentage) of similarity representing how much of the developed code is similar compared to
every other older firmware release. This metric will be used later in Chapter 5.2 when presenting
the results and findings.

Algorithm 2: Calculate the percentage of code updates for each product.
Result: Percentage for each product
foreach product do

currentFirmware = next Firmware order by release date
foreach older firmwares do

foreach binary do
if binary.digest == currentFirmware.binaries.digest then

percentage = 100
else

percentage = max{∀ binaries compare fuzzy hashing}
end

end
end

end

During EBAT’s analysis, various password hashes are discovered from Linux ‘passwd, shadow’
files. In the Meta-Results Analysis module, an effort is made to crack those passwords using Graphical
Processor Units (GPUs). The main tool used is hashcat [8], a powerful password recovery tool with
numerous built-in attacks for a variety of hashes. It usesOpenCL or CUDA to optimize the performance
of cracking thousands or even millions of hashes per second (H/s). The attacks depend on the diffi-
culty of the underlying hashing algorithm and whenever a unique salt is used. A few attacks that are
used are brute force, dictionary, mask and rule-based attacks for extending our dictionary (provided by
hashcat). The findings and the results are presented in Chapter 5, Section 5.4.1. Overall, using the
databases created and merged one for each vendor, in Chapter 5, the results and findings of our thesis
are presented.

5
Results & Findings

This chapter contains a comprehensive evaluation of the implemented tool called Embedded Binary
Analysis Tool (EBAT) which is provided open source1. Our evaluation is performed on a dataset con-
taining more than 36, 000 firmware images belonging to more than 5, 000 different products, harvested
from 33 vendors in a date span of over 20 years. The products are categorized as Internet of Things
(IoT) and Embedded devices that are used either in personal or corporate environments, such as
routers, security cameras, smart plugs, etc. The large-scale analysis is performed only on the firmware
images of each product across their releases. No devices are involved, and no intrusive online testing
of any kind was performed, thus making the analysis scalable. In this work, the term ‘product’ refers
to a vendor’s product, e.g., a smart sensor. Each product may have one or more firmware images
released by the vendor. Firmware images are gathered from publicly available sources and organized
in our evaluation corpus, spanning from their initial release to the latest crawled version.

The rest of this chapter starts with the evaluated corpus presented in Section 5.1 where our com-
plete dataset of firmware images will be presented along with the numbers of successfully unpacked
firmware images across all vendors (more than 60%). Furthermore, we show that ARM and MIPS are
the most prevailed CPU architecture in IoT/embedded industry. Section 5.2 presents our findings on
the frequency of device updates. Additionally, a comparison of identical binaries is presented between
all vendors, revealing a significant percentage of similar binaries across different vendors’ firmware im-
ages. In Section 5.3, our results and findings for the indications of exploit mitigation techniques found on
firmware’s binaries are presented. The lack of exploit mitigation techniques in IoT/embedded firmware
images is noteworthy. Section 5.4 and 5.4.1 presents the results and findings of all the discovered
credentials, mainly focused on private credentials such as private keys and also password hashes that
are found embedded in a firmware image. This section provides two real-world case studies showing
the significance of private keys discovered in firmware images. Furthermore, Section 5.5 illustrates the
discovered open-source cryptographic libraries, including an analysis of their version found embedded
in firmware images. Following Section 5.6 provides an analysis of the discovered CVEs affecting the
cryptographic libraries.

In Section 5.7, we present the results of our static taint analysis using EBAT to detect cryptographic
misuses in firmware image binaries utilizing API calls from well-known cryptographic libraries. The
analysis is based on 18 cryptographic misuse rules as given in Chapter 2.3. In total, the taint analy-
sis for detecting cryptographic violations is executed on over 1.4 million binaries belonging to 22, 548
successfully unpacked firmware images. Our total evaluation results indicate that over 10 thousand
firmware images are found to be violating at least one of the 18 rules (except rules R1 and R2), con-
cluding a violation in more than 50% of the examined images. However, no violations of the rules above
(except R1 and R2) are discovered for 10, 885 (48.27%) and 12, 040 (53.40%) for the case of ‘entry and
possible 𝜙 node’ and for the case of ‘entry and not discovered 𝜙 node‘, respectively. Additionally, vari-
ous case studies on real-world vulnerabilities in firmware images are presented, including recent CVEs
that are found in various vendors’ products and executing EBAT on those vulnerable firmware images;
we test the effectiveness of our tool to evaluate the automatic capturing of these known vulnerabilities

1EBAT is provided open source at EBAT-public, https://github.com/ppanagiotou/EBAT-public

39

https://github.com/ppanagiotou/EBAT-public
https://github.com/ppanagiotou/EBAT-public

40 5. Results & Findings

or not. In addition, performing large-scale analysis on an extensive corpus of firmware images allows
us to discover that other firmware images are affected by these known vulnerabilities, in some cases
also from various product lines, that are not covered on the public CVEs reports.

5.1. Evaluation Corpus
In order to evaluate our implemented tool, a large-scale analysis is conducted for 33 vendors, including
more than 5, 000 different products containing more than 36, 000 firmware images in a date span of
over 20 years. Our evaluation dataset contains firmware images of products from various categories,
including those for personal and corporate use. Some of these are VPN Routers, 4G-3G Routers,
DSL-Routers, Access Point Routers, Powerlines, Smart Plugs, WiFi Extenders, Security Cameras, IP
Cameras, NAS, Cloud Camera Recorders, Switches, PoE Switches, Smart Switches, Firewalls, WiFi
Motion Sensors, Satellite Networks Routers, Bridges and Mesh WiFi Systems.

Figure 5.1: Overall distribution of unpacked and
partially unpacked firmware images.

The evaluated dataset consists of firmware images that
are captured only from publicly available sources using
mostly a crawler, as explained with more details in Chap-
ter 4.1. Each vendor’s product may consist of one or multi-
ple firmware images representing subsequent updates from
the initial release. Along with the firmware images, the re-
lease dates are also captured and saved to the dataset
database. Vendors may choose to deploy exactly the same
firmware image across different product brands. Thus,
those firmware images are merged into one to avoid rean-
alyzing them. In total, EBAT successfully unpacked 22, 548
(including 424 partially unpacked firmware image) from
36, 073 firmware images, achieving a percentage of over
60%2 from 5, 853 unique products across 33 vendors in a
date span of almost 24 years.

Table 5.1 depicts the dataset statistics from the top 10
vendors that have the most unpacked firmware images us-
ing EBAT’s firmware unpack module analyzed in Chapter 4.2. The first column in Table 5.1 serves as
a cross-reference to the corresponding table in Appendix A, Table A.4. Appendix A, Table A.4 provides
the complete dataset statistics table for the 33 evaluated vendors, including the dates of the oldest
and newest firmware images captured per vendor. Each product may consist of one to many firmware
images ordered by their release dates and represented as a 5-tuple element (Vendor, Product
Name, Product Type, Firmware images, Release dates), which is stored in the dataset
database. A firmware image is marked as successfully unpacked if at least one binary is found during
the extraction process and all required dynamic libraries are present. Conversely, a firmware image is
marked as partially unpacked if at least one binary is found, but some required dynamic libraries are not
present. Unpacked products are categorized as the ones that may have at least one firmware image
successfully unpacked or partially unpacked.

Overall, Figure 5.1 illustrates the distribution of unpacked and partially unpacked firmware images
over all vendors. Table 5.2 illustrates the various discovered CPU architectures from the unpacked
firmware images, including the partial ones. The table also includes information about the bit architec-
ture and endianness. We can interpret the table as follows: 28.46% of the firmware images use the
ARM architecture, with 98.77% of this subset using a 32-bit architecture, and within this, 2.62% are
big-endian (BE). Additionally, Appendix A Table A.3 depicts, for each vendor separately, a complete
list of the chosen CPU architecture for their products.

In our dataset, the firmware images are mostly Linux-based embedded that consist (but are not
limited to) of a variant of the Linux kernel, a set of open-source software packages and a set of custom
vendor-developed applications [90]. The dataset consists of firmware images spanning over a period
of more than 20 years, starting from the oldest one released on 22/04/1997 to the latest capture at
the time of writing, released on 28/04/2021. EBAT successfully unpacked over 60% of the captured
firmware images. NETGEAR has the most unpacked firmware images followed by Ubiquiti, TP-Link

2The unpacked firmware images percentage is calculated over every capture firmware images including the duplicate one that
is found in different products.

5.2. Firmware Update 41

Vendor # Prod. # Firm. # unique
Firmwares

unpack
Products3

partially
unpack4 # unpack 5 Total

18 NETGEAR 829 9,458 3,790 (40.07%) 553 (66.71%) 194 7,867 8,061 (85.23%)
30 Ubiquiti 253 3,773 935 (24.78%) 249 (98.42%) 0 3,737 3,737 (99.05%)
24 TP-Link 950 3,258 3,210 (98.53%) 640 (67.37%) 11 2,058 2,069 (63.51%)
9 D-Link 789 3,861 3,333 (86.32%) 359 (45.50%) 62 2,054 2,116 (54.80%)
33 Zyxel 515 2,849 2,825 (99.16%) 231 (44.85%) 20 1,297 1,317 (46.23%)
1 ASUS 265 1,515 1,468 (96.90%) 220 (83.02%) 42 1,267 1,309 (86.40%)
17 MicroTik 20 826 826 (100.00%) 9 (45.00%) 0 814 814 (98.55%)
20 Planet 290 816 718 (87.99%) 162 (55.86%) 13 405 418 (51.23%)
25 Tenda 267 707 699 (98.87%) 135 (50.56%) 4 363 367 (51.91%)
23 Synology 61 319 318 (99.69%) 61 (100.00%) 0 319 319 (100.00%)
- Total 5,853 36,073 24,366 (67.55%) 3,413 (58.31%) 424 22,124 22,548 (62.51%)
Table 5.1: Top 10 vendors order by dominant unpacked firmware images (Complete results are located at Appendix A Table

A.4).

ARM MIPS Other architectures
28.46% 51.32% 20.22%

32 bit 64 bit 32 bit 64 bit 32 bit 64 bit
98.77% 1.23% 95.77% 4.23% 68.66% 31.34%

LE BE LE BE LE BE LE BE LE BE LE BE
97.38% 2.62% 100% 0.00% 33.44% 66.56% 0.00% 100% 60.01% 39.99% 0.00% 100%

Table 5.2: Various CPU architectures for all successfully unpacked and partially unpacked firmware images.

and D-Link. Additionally, many vendors deploy identical firmware images for multiple products as only
24, 366 firmware images are unique over 36, 073, meaning that a high percentage of identically firmware
images (33%) is also used in different products. ARM and MIPS CPU architectures are the ones that
prevailed the IoT/embedded industry mainly on 32-bit processors with a percentage of over 75%.

5.1.1. Validity of results
The evaluation dataset consists of a plethora of IoT/embedded firmware images, most of them Linux-
based with a range of over 20 years. EBAT manage to successfully unpack a percentage of over 60%
of those, that using the other modules from our tool, we will manage to perform deeper analysis on
the successfully unpacked firmware images (a unique set of 24, 366 firmware images). Most unpacked
firmware images use the ARM and MIPS CPU architecture. The unpacking module tries to be as thor-
ough as possible. However, some firmware images cannot unpacked due to obfuscation or encryption.
For the ones that we successfully unpacked, there is a slight possibility that the unpacking procedure
is not fully complete, where there is a possibility of missing or corrupted files. On the other hand, our
metric of capturing the binaries and finding the presence of all dynamically linked libraries verifies with
high confidence that the unpacking progress is as complete as possible.

The evaluation dataset tries to be as complete as possible regarding a product’s firmware images
and their release dates. There are cases in which specific vendors may not publicly make all the
previous releases of a product’s firmware images available. Although we tried to overcome this by
crawling specific vendors within a year to collect as many ‘final’ (at each time of crawled) releases
of firmware images as possible, the firmware images crawled for a product, spanning from the initial
release to the latest crawled version, may not be complete, and subsequent releases may be missing.
Additionally, the release date of each firmware image was also an intricate part of discovering, and a
procedure as described in Chapter 4.1 is followed, where, in a few cases, a false date might exist in
our evaluation dataset.

5.2. Firmware Update
In this section, we want to investigate how often the IoT/embedded products are updated, what parts
of their firmware are regularly updated and in what percentage. All the information that is provided in
this section is extracted only from publicly available sources. A firmware update may also exist that is
not publicly available. The outline of this section is the following: First, the results (Figures and Tables)
are presented and explained. Lastly, conclusions, along with the validity of the results, are presented.

We want to investigate how regularly each vendor updates their products. Figure 5.2 depicts a
letter-value plot (The Boxplot for Large Datasets [50]) that shows how often a firmware update occurs
for vendors that have the most firmware updates in our dataset (dominant vendors). Additionally, in
these types of figures, a horizontal line is plotted that depicts the mean value. Generally, a letter-value

42 5. Results & Findings

plot is an advancement of Box Plots that can summarize the distribution of a dataset using recursively
defined boxes to visualize the different partitions of a dataset. Appendix Figure A.3 presents the same
letter-value plot for all 33 vendors. The presented plots are created as follows: For each vendor’s
product with more than one firmware image, it is initially sorted by their release dates. A day gap is
then calculated, showing how many days have passed from a firmware release to the next one. For
instance, assume that product A has the initial firmware image released on 01/01/2020 and the next
firmware update is released on 01/01/2021; then, 365 days has passed once the initial release to the
next one. All the calculated gaps are then plotted in a letter-value plot as depicted in Figures 5.2 for
top 11 vendors and for all vendors and appendix figure A.3 for all vendors in our dataset.

Figure 5.2: Firmware update gap in days over top 11 vendors.

Additionally, Appendix Table
A.7 depicts the mean values of
the day gap value for each ven-
dor, where these values also in-
clude the outliers plotted in the
figure mentioned above. For
instance, the results show that
ASUS updates their products
on an average of 125 days,
and Zyxel has an average of
184 days. MicroTik and QNAP
have the lowest mean values
of 20 and 34 days, respec-
tively. On the other hand, ven-
dors such as Planet and D-Link
have mean update intervals of
366 and 241 days, respectively,
spanning more than six months. Overall, there are instances where vendors consistently provide up-
dates, ranging from a few weeks to months, while others may not release a firmware update for as long
as a year on certain products.

Figure 5.3: Firmware update over all binaries per dominant vendors.

For every successfully un-
packed firmware image, a set of
binaries is present. A discov-
ered set of binaries is found in
most Linux-embedded firmware
images that are primarily covered
in our dataset. A binary can be
categorized into a library or an
executable. Appendix Table A.5
presents the total discovered bi-
naries (executable and libraries)
found for each vendor’s firmware
image, where-also the percent-
age of those that are unique
across vendors. In total, EBAT
successfully extracted from more
than 22, 000 firmware images a
total of more than 13 million (13, 701, 913) binaries where approximately 60% are libraries and 40%
are executables. Of those binaries, only 989 thousand (989, 129) (less than 8%) are unique (using
SHA-256 digest) across vendors’ extracted binaries.

For every binary, the SHA-256 digest is calculated and saved in our database. Utilizing all the
SHA-256 digests from each binary from each vendor; comparisons are made across different vendors’
binaries to calculate the percentage of identical binaries found between each vendor. Thus, heatmaps
are plotted where each cell shows a percentage of identical binaries across vendors (normalized).
Figure 5.4a illustrates a heatmap across vendors’ binaries in each cell, showing the percentage of
identical binaries that one vendor has from any other vendor. Furthermore, Figure 5.4b depicts exactly
the same but across vendors’ binaries that are using only a cryptographic library as analyzed in Chapter

5.2. Firmware Update 43

4.6.
The heatmaps are not symmetrical, as the percentage is calculated based on the total binaries of

each vendor represented along the 𝑦 axes. For instance, ASUS has approximately 5.31% identical
binaries in common with Linksys, while Linksys has around 4.32% identical binaries with ASUS. In ad-
dition, the same calculations are performed individually for executable and library binaries as depicted
in Figures 5.4c and 5.4d respectively. Appendix Figures A.1 and A.2 present heatmaps of executable
binaries and library binaries that use only a cryptographic library, respectively. Note that some vendors
are not plotted in the heatmaps above as the extracted binaries that are successfully found from EBAT
are below 1000 and thus are discarded from the plots.

(a) All binaries (executables and libraries). (b) Binaries that are using a cryptographic library.

(c) Executable binaries. (d) Library binaries.
Figure 5.4: Heatmaps of duplicate binaries across vendors.

From the aforementioned figures, one can generally observe that executable binaries are less
shared across vendors than library binaries. The same also holds in binaries that use a cryptographic
library with even greater uniqueness between vendors’ binaries. Our results show that not all vendors
share binaries with each other; however, a portion of them do. For instance, vendors use identical

44 5. Results & Findings

binaries with NETGEAR such as TP-Link and Trendnet with approximately 3.36% and 9.41% respec-
tively. On the other hand, some vendors use an insignificant percentage of identical binaries between
every other vendor, such as AVM (only 0.39%).

Generally, each binary EBAT calculates 2 digests. The SHA-256 digest that shows the uniqueness
of a binary and a fuzzing digest or similarity digests is called ssdeep [53]. Ssdeep can be compared
with every other binary, producing a result from 0 − 100 (percentage) that indicates the degree of
similarity between the two binaries. We perform pairwise comparisons between each binary using the
algorithm provided in the previous Chapter 4.15, Algorithm 2. Subsequently, the results are aggregated,
where a percentage is calculated for each product that consists of more than one firmware image. This
percentage shows the similarity among the binaries across different firmware releases; 100% means
that all firmware’s updated binaries are identical with any of the previous releases, and 0% means that
no firmware’s binaries are found to be the same with any of the other previous releases. Generally, a
firmware image may include other files except binaries, such as credentials, web pages, configuration
files, etc. Thus, 100% similarity percentage on binaries is plausible where 0% or near 0% is considered
an outlier.

Figure 5.5: Firmware updates for binaries using a dynamically cryptographic
library (executables and libraries).

These percentages are cal-
culated for every vendor’s prod-
uct, and letter-value plots are pre-
sented. Figure 5.3 (for domi-
nant vendors) and A.4 (for all ven-
dors) depicts the percentage of
firmware update similarity calcu-
lated for all binaries, where Fig-
ure 5.5 (for dominant vendors) and
A.5 (for all vendors) shows the
percentage of similarity calculated
only on ‘crypto’ binaries (executa-
bles and libraries). ‘Crypto’ bina-
ries are the ones that use one or
more cryptographic libraries as de-
scribed in Chapter 4.6. The mean
values for the aforementioned fig-
ures for all vendors are given in ap-
pendices tables A.8 and A.9 for all binaries and ‘crypto’ binaries, respectively. Comparing Figure A.4
with A.5, we can generally observe that ‘crypto’ binaries are updated more frequently than ‘non-crypto’
binaries.

5.2.1. Conclusions and Validity of results
The letter-value plots depicted in Figure 5.2 and A.3 suggest that IoT/embedded products might not be
very consistent in providing regular firmware updates. Those may also include security patches, which
are essential for the overall product’s security. While the discovered binaries across all vendors are
more than 13million, the unique binaries are only 8% of those (see Appendix Table A.5). This observa-
tion leads us to speculate that there is a commonality in the utilization of identical tool-chains, original
equipment manufacturers (OEMs) products, software tools, API libraries, and other development re-
sources across various vendors for the development of firmware images. It suggests a trend where
similar sets of tools and resources are consistently employed in the firmware development process
across a majority of vendors. Heatmap figures provided in the above section reinforce the same spec-
ulations mentioned earlier, where one can observe identical binaries (executables and libraries) across
multiple vendors. Binaries that use a cryptographic library are less commonly found to be identical
across multiple vendors, as depicted in the heatmaps. Furthermore, in the firmware update letter-
value plots, we observe that updates in binaries surpass 10% between firmware releases. Specifically,
this percentage increases significantly in binaries using a cryptographic library to over 30%. It may
indicate that a firmware image’s changed/patched security-related features are a priority over other
features.

Our primary concern regarding the validity of the above results is the consistency of having all the
firmware images, starting from the initial release until the final release (at the time of crawl) across a

5.3. Exploit mitigation techniques on firmware images 45

product. Not all vendors may provide this information, and despite the efforts that are made to minimize
this, some products may consist of an incomplete set of firmware updates, as well as their release
dates. Additionally, firmware updates may be applied to a product without being released publicly.
As a consequence, missed firmware images and their release dates may provide false positives in
our results regarding the update date span. Finally, partially or even successfully unpacked firmware
images may miss a few binaries from successful extraction, thus limiting the true positives on our
binaries’ results.

5.3. Exploit mitigation techniques on firmware images

Figure 5.6: Exploit mitigation techniques IoT/embedded dominant Vendors
versus Ubuntu Server6.

The exploit mitigation techniques
(hardening security features) are
analyzed in Chapters 2.2 and
4.4 are used to prevent mainly
memory corruption bugs in bina-
ries. These techniques’ absence
or limited presence weakens over-
all system security, increasing the
feasibility of creating an exploit
when a memory corruption bug is
discovered. EBAT can discover
indications of these techniques (if
they may exist or not) on each
binary extracted from a firmware
image. In this section, we ex-
amine whether the IoT/embedded
product’s firmware images use ex-
ploit mitigation techniques on their
binaries and in what percentage.
For a fair comparison, EBAT was
also executed on the binaries of a
state-of-the-art system, the base image of the latest ARM-based server (64-bit) Ubuntu Server6 (at the
time of download) and will be compared below.

Figure 5.6 illustrates a radar chart, indicating the percentage-wise presence of exploit mitigation
techniques discovered for dominant vendors. All the charts are created only with the binaries that
indicate whether an exploit mitigation technique is discovered or not. If an indication is marked as
probably exists or not discovered, then the binaries are discarded and marked as ‘not found’. Overall,
in Appendix A.4, various charts are presented and grouped by each vendor and CPU architecture. In
addition, Appendix Tables A.10, A.11 and A.12 present with more details the results of exploit mitigation
techniques for each vendor separately. As a reference point, an analysis is performed on binaries of
ARM 64-bit base image of Ubuntu server6 where the results of these indications of exploit mitigation
techniques are also presented in Figure 5.6 for comparison. Figure 5.7 depicts a radar chart for exploit
mitigation techniques for the two dominant CPU architectures, ARM and MIPS, both 32 and 64-bit
in little and big endian, for dominant vendors compared with the state-of-the-art Ubuntu ARM base
image6.

Generally, a binary should have as many exploit mitigation techniques as possible. Thus, the bigger
the area in the aforementioned radar charts, the better. Comparing with the state-of-the-art latest
ARM 64-bit base image of Ubuntu server6 with the dominant vendors, one can observe the lack in
IoT/embedded products to deploy the exploit mitigation techniques that are present for over a decade.
Fortunately, the non-executable bit (NX) is almost present with a very high percentage in IoT/embedded
products’ binaries. PIE is present in approximately 60% of dominant vendors while stack canaries
(Stack Protected) varies from a low percentage to 40% in NETGEAR binaries. RELRO also varies
and has a range from almost 4% to nearly 75%. In comparison with the state-of-the-art ARM Ubuntu
6Ubuntu ARM 64 Base 20.04.2 LTS (Focal Fossa), with CPU architecture aarch64, located at
https://cdimage.ubuntu.com/ubuntu-base/releases/20.04.1/release/, released on 01/02/2021 (SHA256 -
filename)(𝑒5𝑑384385𝑏59𝑏0𝑐1𝑑7103𝑒096034𝑓𝑎962𝑒7𝑑98𝑐23𝑑𝑏2𝑏17481𝑓4𝑑𝑎55𝑎1613804 - ubuntu-base-20.04.2-
base-arm64.tar.gz)

https://cdimage.ubuntu.com/ubuntu-base/releases/20.04.1/release/

46 5. Results & Findings

Server6 where PIE, NX, Stack Protected and RELRO are nearly 100% present.

5.3.1. Conclusions and Validity of results

Figure 5.7: Exploit mitigation techniques ARM vs MIPS vs Ubuntu Server6
IoT/embedded.

The indications of exploit mitiga-
tion techniques on firmware im-
ages’ binaries are presented in this
section with interesting findings.
IoT/embedded product firmware
images tend to limit the usage
of hardening security features on
their binaries, causing the weak-
ening of overall system security
when a vulnerability is discovered.
The lack of exploit mitigation tech-
niques causes recent binary ex-
ploitation attacks to be executed
successfully, as shown in Chapter
2.2. Vendors need to further adapt
to recent exploit mitigation tech-
niques and implement them in their
products, with the ultimate goal of
enhancing overall system security.

Regarding the validity of the
aforementioned results, as ex-
plained in Chapter 2.2, there is a small probability of false positives in some indications, such as Fortify
Source functions. Finally, these are only indications of exploit mitigation techniques discovered in bina-
ries and not verified in any way by obtaining the devices and if the device implements these mitigation
techniques correctly. Overall, there are concerns regarding the low usage compared to a state-of-the-
art system.

5.4. Credentials and Password hashes
This section analyses the extracted information data from every successfully unpacked firmware image,
focusing on credentials such as private keys and passwords (mainly in hashed form). Private keys and
plaintext passwords pose a security risk when discovered embedded in a firmware image. Addition-
ally, hashed passwords and encrypted private keys may exist in a firmware image. However, password
hashes may be purely hashed with outdated algorithms or even non-unique salts, and the encrypted
private keys may be using outdated algorithms or the encrypted method, e.g., a password should also
be unique, follow the password strength requirements, and not found embedded in a firmware image.
In the rest of this section, the results will be presented from our evaluation corpus for various discov-
ered credentials that pose a security risk on the device, e.g., an SSH private key. In addition, password
hashes will be presented along with an analysis of discovered passwords (cracked) found using pub-
licly available resources such as dictionaries7 as well as not publicly available ones (disclosure is not
possible).

Table 5.3 depicts the total discovered credentials found in our entire dataset. The credentials are
discovered using the credentials module analyzed in the previous Chapter 4.8 that verifies the validity of
each credential but not its usage. For example, if an SSH private key is discovered, but the product has
not enabled the SSH service to accept an incoming connection, then the key is there but not exploitable
to an adversary since the SSH service is disabled. Publicly available credentials such as certificates,
public keys, and PGP public keys do not pose any security risk as they are publicly available to anyone.
On the other hand, private keys and SSH private keys must remain private and not be discovered in any
firmware image, as this will break the overall product’s security. In total, a high percentage of 27.98% of
the successfully unpacked firmware images hold an unencrypted private key, either found in a separate

7Open-Source SecLists Github dictionaries, https://github.com/danielmiessler/SecLists/tree/master/Passw
ords, Commit version 545e57b02d71d5a177c8c5896ed5dca8131580ae, https://github.com/danielmiessler/SecL
ists/commit/545e57b02d71d5a177c8c5896ed5dca8131580ae

https://github.com/danielmiessler/SecLists/tree/master/Passwords
https://github.com/danielmiessler/SecLists/tree/master/Passwords
https://github.com/danielmiessler/SecLists/tree/master/Passwords
https://github.com/danielmiessler/SecLists/commit/545e57b02d71d5a177c8c5896ed5dca8131580ae
https://github.com/danielmiessler/SecLists/commit/545e57b02d71d5a177c8c5896ed5dca8131580ae
https://github.com/danielmiessler/SecLists/commit/545e57b02d71d5a177c8c5896ed5dca8131580ae

5.4. Credentials and Password hashes 47

file or embedded in a binary.

Additionally, in 975 (4.30%) firmware images, an SSH private key is extracted that is unencrypted
as well. The abbreviation ‘encrypted’ refers to the password-protected credentials, and ‘decrypted’
refers to the encrypted credentials that are successfully decrypted using a ‘known’ password discov-
ered by manual audit embedded in firmware images. Due to a lack of time and simplicity, the known
discovered passwords list is created based on a few passwords that are either very popular or found
by manual analysis that is made on selected firmware images. During this manual analysis, we dis-
covered plaintext passwords on scripts that create and/or secure credentials. The password list that
is checked in order to decrypt a credential is the following: password, whatever, deadbeef,
root, root12345, admin, N*****3, T*****************3, where ‘*’ (star symbol) is used
to non-disclose any of the passwords that are not publicly available.

Types Total Embedded
Credentials # Firmwares % # Credentials # Firmwares

Certificates 1,278,943 7,981 35.39% 4,020 399
Public Keys 23,271 7,572 33.58% 655 385
Private Keys (not encrypted) 14,877 6,305 27.96% 367 209
Private Keys (encrypted) 1.182 970 4.30% 108 108
Private Keys (decrypted) 1,244 393 1.74% - -
Various cryptographic Parameters 3,549 2,203 9.77% - -
Certificate Signing Requests 972 474 2.10% - -
SSH Private Keys (not encrypted) 1,852 975 4.32% 2 2
SSH Private Keys (encrypted) 4,041 240 1.06% 2 2
SSH Public Keys 1,872 986 4.37% - -
PGP Signatures 39,986 523 2.32% - -
PKCS12 (encrypted) 90 90 0.40% - -
PKCS12 (decrypted) 692 320 1.42% - -

Table 5.3: Total discovered credentials over our entire dataset.

5.4.1. Password hashes
On every successfully unpacked firmware image, EBAT tries to discover hashed passwords found
mainly in Linux-based firmware images. Remarkably, at least one hashed password is discovered
in 5730 (25.99%) of our firmware images. These are hashes located in ‘passwd’ or ‘shadow’ files
mainly used for user password login. The aggregate results and information will be presented below,
along with an effort to crack those hashes using publicly available resources and non-public ones, as
explained in Chapter 4.15.

In Table 5.4, the total information of discovered password hashes and the attempt to find the actual
password (cracked) is presented. Furthermore, Appendix Table A.14 reveals the information men-
tioned above for each and every vendor separately, where symbol ‘3’ counts the number of hashes
that are successfully cracked; otherwise, symbol ‘7’ is used. Similarly, Table 5.5 depicts the type of Unix
hashes and how many of those are discovered (cracked) or not where symbol ‘3’ counts the number
of hashes that are successfully cracked; otherwise, symbol ‘7’ is used. The high usage of outdated
hashed algorithms like ‘DES-based’8 and ‘MD-5’ (more than 90%) is raising security concerns. In ad-
dition, the usage of publicly available passwords is also very high; a percentage of more than 85% of
the total found passwords is from publicly available resources presented in7, which is very concerning.
Overall, the top 10 common discovered passwords are: 1234 (26.87%), <empty> (13.71%),
ubnt (10.02%), admin (8.22%), F******p (7.21% - not publicly available),
root (5.28%), 5up (4.29%), password (4.23%), l*****g (3.43% - not publicly
available), realtek (2.07%), where ‘*’ (star symbol) is used to non-disclose any of the pass-
words that are not publicly available7.

8“Traditional DES-based scheme”, Wikipedia, https://en.wikipedia.org/wiki/Crypt_%28C%29%23Traditional_
DES-based_scheme

https://en.wikipedia.org/wiki/Crypt_%28C%29%23Traditional_DES-based_scheme
https://en.wikipedia.org/wiki/Crypt_%28C%29%23Traditional_DES-based_scheme
https://en.wikipedia.org/wiki/Crypt_%28C%29%23Traditional_DES-based_scheme

48 5. Results & Findings

Description #
Firmware images 5,730 (25.99%)
Overall hashes found 8,983
Cracked hashes 6,668 (74.23%)
Publicly cracked hashes7 5,733 (85.98%)
Unique hashes 793
Unique cracked hashes 290 (36.57%)
Unique publicly cracked hashes7 252 (86.90%)
Non unique salted hashes 38 (4.79%)

Table 5.4: Password hashes overall information.

Hash types Total 3 7

DES (Unix) 2,623 2,437 186
MD5 (Unix) 6,037 3,922 2,115
MD5 (ARP) 149 149 0
Blowfish (Unix) 5 4 1
SHA256 (Unix) 33 27 6
SHA512 (Unix) 136 129 7
Total 8,983 6,668 2,315

Table 5.5: Types of Unix hashes.

5.4.2. Case studies
A high severity CVE-2017-144229 with a base score of 7.5 is found on devices D-Link DIR-850L REV.
A (with firmware through FW114WWb07_h2ab_beta1) andREV. B (with firmware through FW208WWb02).
CVE-2017-14422 description states: “the same hard-coded ‘/etc/stunnel.key’ private key across
different customers’ installations is used, which allows remote attackers to defeat the HTTPS crypto-
graphic protectionmechanisms by leveraging the knowledge of this key from another installation.” From
the stunnel website10:“Stunnel is a proxy designed to add TLS encryption functionality to existing clients
and servers without any changes in the programs’ code.” To test the effectiveness of EBAT in finding
hard-coded credentials, we start a search for the identical ‘stunnel.key’ of CVE-2017-14422
which, in the end, we captured it in our results database. Scanning for the same key file in our D-Link
results database, to our surprise, we discover an additional 195 firmware images (from 32 different
products) ranging from the fourth quarter of 2012 to the third quarter of 2020 having the exact hard-
coded ‘stunnel.key’.

Vendor # Products # Firmwares
Actiontec 1 1
D-Link 35 214
EdiMax 4 6
NETGEAR 7 31
Planet 2 2
QNAP 2 23
Totolink 7 22
Trendnet 2 4
Western-Digital 1 1
Zyxel 1 5
Total 62 309

Table 5.6: Discovered stunnel private keys for all vendors.

Vendor # Products # Firmwares
ASUS 48 171
D-Link 27 118
LinkSys 4 6
NETGEAR 42 324
Planet 27 47
TP-Link 3 7
Trendnet 17 20
Ubiquiti 6 37
Zyxel 7 22
Total 181 752

Table 5.7: Discovered zebra configurations that use a
hard-coded password.

The next step is to scan for any stunnel private keys in all vendors. Table 5.6 depicts all the stunnel
found keys for all vendors either in a key or a pem file. Remarkably, D-Link uses the same tunnel
key for 195 discovered firmware images and only 19 different keys for other firmware images. Fur-
thermore, stunnel private keys were also discovered in NETGEAR’s firmware images, specifically, 31
firmware images across 7 products. Moreover, in a total of 309 firmware images, a stunnel private key
is discovered that affects 62 products, raising many security concerns. Although the stunnel private
key is known for multiple devices with specific firmware images, we do not attempt in any way to verify
it on a public device and due to lack of time, no local verification is attempted either and left for future
work. This thesis will not disclose the exact versions of the firmware images that a stunnel private key
is discovered.

A high severity CVE-2021-2181811 with a base score of 7.5 is found on D-LINK DIR-3040 1.13B03
which is an AC3000-based wireless internet router that can cause a denial of service with a specially
crafted network request. The vulnerability affects a Zebra service, which is a routing manager that uses
a hard-coded password configuration found in file ‘zebra.conf’ reported at [63]. EBAT also scans
and saves configuration files for each firmware image. We wrote a simple module that scanned all
of our results from the database to find zebra configuration files with hard-coded passwords. To our
surprise, the results are depicted in Table 5.7 where for 181 different products, including 752 firmware
images, a similar zebra configuration file is discovered that contains a hard-coded password! Not all
9NVD - CVE-2017-14422, National Vulnerability Database, 2017, https://nvd.nist.gov/vuln/detail/CVE-2017-144
22

10https://www.stunnel.org/
11NVD - CVE-2021-21818, National Vulnerability Database, 2021, https://nvd.nist.gov/vuln/detail/CVE-2021-2
1818

https://nvd.nist.gov/vuln/detail/CVE-2017-14422
https://nvd.nist.gov/vuln/detail/CVE-2017-14422
https://nvd.nist.gov/vuln/detail/CVE-2017-14422
https://www.stunnel.org/
https://nvd.nist.gov/vuln/detail/CVE-2021-21818
https://nvd.nist.gov/vuln/detail/CVE-2021-21818
https://nvd.nist.gov/vuln/detail/CVE-2021-21818

5.5. Cryptographic Libraries 49

products with the specific firmware image version may be vulnerable to the same high-severity CVE
due to boot configuration options. In addition, no verification on a physical device is performed. In
conclusion, EBAT offers the ability to integrate more modules that might lead to interesting results, as
the one previously presented.

5.4.3. Conclusions and Validity of results
A significant number of private credentials are discovered embedded in firmware images, amounting to
more than 25% of the total successfully unpacked firmware images. One of the four firmware images
has a private credential embedded in it. However, the usage of these credentials needs to be examined,
as private credentials may be regenerated upon boot or even not used at all. However, the case studies
presented in this section are examined and confirmed with the CVE reported. Using EBAT, we also
discovered the same credentials on the reported CVEs, which were also discovered in subsequent
and different firmware image releases than the reported ones. Overall, a private credential cannot
stored in any way in plaintext inside a firmware image and needs to be protected, preferably saved
in secure storage. No false positives regarding the validity of credentials exist, as the credentials are
verified as a file structure using tools to verify them in a valid/correct structure. The usage of those is
unknown.

Password hashes are located embedded in over 25% of firmware images, where more than one
password hash can be found in a firmware image. The hash of a password alone does not pose an
immediate security risk, although a weak algorithm of the hashed password and the non-existence or
non-uniqueness of salt does. DES-based8 and MD-5 hashed password algorithms were the prevailing
ones, with over 90% of the discovered ones using outdated algorithms. Along with the hashed pass-
words, the usage of unique salts was really low, and our efforts to crack those hashed passwords due
to the algorithms and the non-existence of unique salts were easier. Additionally, the same hashed
passwords were used repeatedly between different firmware images, with more than 85% of the over-
all discovered hashed being exact duplicates. Overall, out of 290 cracked passwords, 252 are publicly
available passwords7. Regarding the validity of the discovered hashed passwords, they are found
mainly in ‘passwd’ or ‘shadow’ files from Linux-based firmware images and are used, as far as we
know, for login access to the devices. There is still a possibility that the passwords may change over
the first device boot, in a new firmware update, or from the user’s input.

5.5. Cryptographic Libraries
Cryptographic libraries play an essential role in the overall firmware security of every device. Many
functionalities of a device utilize these libraries to implement security protocols, application features, etc.
EBAT has the ability to discover the cryptographic library version for popular libraries with high accuracy
as presented in Chapter 4.6. In this section, we investigate only publicly well-known cryptographic
libraries and not vendor-specific implementations of cryptographic algorithms. We discover the version
of a cryptographic library in each firmware image. Then, post-analysis is executed to map the version
number to the release date of each library version as well as the end-of-life (EoL) date (if it is available
at the time of producing the results). In rare cases, a cryptographic library version cannot be identified
successfully, maybe due to the stripped library version or different compilation parameters. Those
cases are left for future improvement. In the given section, comparisons are performed between the
release date of a firmware image and the release date of the discovered cryptographic library version.
In addition, aggregate results are presented with discovered end-of-life (EoL) of used cryptographic
libraries as well as outdated libraries that are used until the latest crawled firmware image release
date.

Table 5.8 depicts the total number of discovered cryptographic libraries for every successfully un-
packed firmware image, along with the success rate of finding the particular library version. Additionally,
for cryptographic libraries that EBAT has discovered the cryptographic library version, we map the re-
lease date to the EoL date of the given major version. Together with the firmware image release date,
we count the number of firmware images with a cryptographic library that has reached the EoL date
even earlier than the firmware image release date. The results are aggregated and presented in the
following table as the number of ‘End of Life (# EoL)’ that counts the number of firmware images that
have at least one EoL cryptographic library. In Appendix Tables A.26, A.27, and A.28, the discovered
cryptographic libraries results are presented for vendors individually, furthermore, in Appendix Tables

50 5. Results & Findings

A.29 and A.30, the discovered firmware images that are using an EoL cryptographic library earlier than
the firmware image is released are presented for vendors separately.

Libraries # firmwares % # versions % # EoL %
1 Crypto++ [3] (libcrypto++, libcryptopp) 4,189 18.59% - - - -
2 GnuPG [6] (libgcrypt) 7,056 31.32% 7,056 100.00% 3,943 55.88%
3 GnuTLS [7] (libgnutls) 3,795 16.84% 3,795 100.00% 403 10.62%
4 KerberosV5 [93] (libk5crypto) 5,829 25.87% - - - -

5 Libc (uClibc-ng [16] or glibc [5]) [48]
(libcrypt) 21,266 94.39% - - - -

6 Libsodium [9] (libsodium) 205 0.91% 205 100.00% 0 0
7 LibTomCrypt [10] (libtomcrypt) 48 0.21% - - -

8
mbedTLS/PolarSSL [11]
(libmbedcrypto, libmbedtls,
libpolarssl, libmbedx509)

859 3.81% 504 58.67% 256 50.79%

9 Mcrypt [12] (libmcrypt) 700 3.11% 646 92.29% 0 0
10 Nettle [13] (libnettle) 3,713 16.48% 157 4.23% 0 0
11 OpenSSL [14] (libcrypto, libssl) 17,540 77.85% 16,882 96.25% 7,134 42.26%
12 WolfSSL [17] (libwolfssl, libcyassl) 1,613 7.16% 287 17.79% 186 64.81%

Table 5.8: Discover Cryptographic Libraries over every successfully unpacked firmware image and count the firmware images
with at least one discovered EoL cryptographic library.

The libcrypt cryptographic library from Libc (uClibc-ng [16] or glibc [5])[48] is the most dominantly
used library in our dataset of firmware images as discovered more than 94% of the overall successfully
unpacked firmware images. The second dominant one is OpenSSL [14] (libcrypto, libssl), which is
found in nearly 78% of the total successfully unpacked firmware images, and EBAT successfully dis-
covered the cryptographic library version in 96.25% of the discovered firmware images that use the
OpenSSL cryptographic library. GnuPG [6] (libgcrypt) is used in approximately 31% with 100% version
discovery. The usage of other cryptographic libraries follows with lower percentages. It should be noted
that a firmware image can consist of one to many cryptographic libraries. Thus, in our results, we count
the existence of each one separately per firmware image. Furthermore, we can observe very high per-
centages of firmware images that use an EoL library even earlier than the release date of the firmware
image. More than 50% of the discovered cryptographic libraries ofGnuPG,mbedTLS, andWolfSSL are
using an EoL outdated cryptographic library, even earlier than the publicly released date of a firmware
image. OpenSSL cryptographic library comes with a lower percentage of approximately 42%, which
is still very high as the usage of this library is broader. The following section will present an in-depth
analysis of the two dominant cryptographic libraries for which a version is discovered: OpenSSL and
GnuPG.

5.5.1. OpenSSL and GnuPG cryptographic libraries in firmware images
OpenSSL and GnuPG cryptographic libraries are broadly used in firmware images, and versions of
them have been successfully discovered in 16, 882 and 7, 056 successfully unpacked firmware images,
respectively. The libraries mentioned above are the most dominant ones (except libcrypt from Libc). In
this section, an in-depth analysis of the results is presented. Appendix Tables A.31 and A.32 depict the
usage of OpenSSL and GnuPG cryptographic libraries on binaries, respectively. A total of 1, 452, 039
binaries discovered in firmware images are using an open-source cryptographic library analyzed by
EBAT, where 45.5% and 2.99% of those binaries are using the OpenSSL and GnuPG cryptographic
libraries, respectively, as shown in the appendix tables. Almost half of our discovered binaries use the
OpenSSL cryptographic library, and the others follow with much lower percentages. In the rest of this
section, we will investigate the discovered library version that comes with the firmware image, whether
it is outdated, and for how long.

Having the library version information, we map it to their release date and EoL date (if they are
available when producing the results). We then calculate the gap of outdated versions between the
expected cryptographic library version (the latest one released before the public firmware image re-
lease) with the discovered cryptographic library. The gap is calculated in releases, meaning that if the
release is 0, then no latest library version exists by the time of releasing the firmware image, and if
the release is 𝑥, then 𝑥 more recent library versions exist. Figures 5.8a and 5.8b depict examples of
how the gap of an outdated version of a cryptographic library is calculated for a firmware image. In the
first scenario, assume that a firmware image is released at a given time and EBAT has successfully

5.5. Cryptographic Libraries 51

(a) Scenario 1 of calculating the gap of outdated versions. (b) Scenario 2 of calculating the gap of outdated versions.

Figure 5.8: Scenarios of calculating the gap of outdated versions.

(a) Histogram of OpenSSL outdated versions. (b) Histogram of GnuPG outdated versions.
Figure 5.9: Histograms of outdated versions.

discovered the cryptographic library version of OpenSSL to be 0.9.8za. The expected cryptographic
library version of the given firmware image should be 0.9.8zg, the latest one before the release time
of the firmware image. The gap of outdated versions is calculated to be 6, which equals the libraries
from 0.9.8za to 0.9.8zf due to the expected library version of 0.9.8zg. Scenario 2 calculated the same
but with an outdated version already reaching the EoL. In both cases, the red lines present the gap
between outdated versions. The aggregate results of outdated versions for dominant vendors are pre-
sented as a histogram in Figures 5.9a and 5.9b for OpenSSL and GnuPG, respectively. Appendix
Tables A.18 and A.19 present the results for every vendor separately, where each cell counts the num-
ber of firmware images, and each column indicates the number of outdated cryptographic libraries.
For instance, in OpenSSL table A.18, we have a total of 2, 629 firmware images to be the expected
OpenSSL cryptographic version and 1, 808 firmwares to be one version behind the latest expected one.
Overall in Appendix tables A.18 (OpenSSL), A.19 (GnuPG), A.20 (GnuTLS), A.21 (Libsodium), A.25
(mbedTLS), A.24 (Mcrypt), A.23 (Nettle) and A.22 (WolfSSL), the results for every cryptographic library
that a version is discovered, are given.

TheOpenSSL cryptographic library was found to be the latest version (0 outdated versions), relative
to the public release date of the analyzed firmware image, in 2, 629 from 16, 882 firmware images
according to Appendix table A.18. For 1 outdated version, EBAT discovered 1, 808 firmware images,
which are still close to the particular library’s expected version (0 outdated versions). In total, from 0−5
outdated versions, 8, 447 firmware images have been discovered, and the rest remain at 8, 435, a high
percentage of nearly 50%. ForGnuPG, EBAT discovers only 121 firmware images to have the expected
libgcrypt version. In total, 3, 373 firmware images are found to be using from 0 − 5 outdated versions,
and the rest of the firmwares (3.683 a percentage of over 50%) is using a version greater than 5. Figures
5.9a and 5.9b present the aggregate results of the appendices mentioned above tables, which reveals
that many firmware images are using outdated versions greater than 5, where it may have implications
of the overall device security.

Figure 5.10: Scenario time-gap of outdated versions.

With the calculated outdated gap of a cryptographic
library version, identical calculations are performed as
previously, but with the gap in days (as a time-gap),
with an example depicted in Figure 5.10. The time-
gap is calculated in days between the expected latest
release version 0.9.8zg, released on 11/06/2015 and
the actually discovered version of 0.9.8za, released on

52 5. Results & Findings

05/06/2014, which is more than 365 days old. The results are presented aggregated in letter-value plots
for dominant vendors that use the OpenSSL and GnuPG in Figures 5.11a and 5.11b, respectively. We
can observe from those figures that a significant number of firmware images have more than a year-
old cryptographic library in their released firmware images. Furthermore, in Appendix Figures A.9
and A.10, the results are presented for every vendor in our dataset, excluding the ones that have no
cryptographic libraries discovered. The mean values of the aforementioned plots are given in Appendix
tables A.16 and A.17 for OpenSSL and GnuPG, respectively. In addition, for the outdated versions of
the time-gap scenario, Figures 5.11a and 5.11b, a mean value of 𝑥 in days is calculated, implying that on
average a firmware image is released with an outdated version of 𝑥 days old. These mean values are
extracted for the figures above and presented in the aforementioned appendices tables. ForOpenSSL,
the discovered mean value is 1, 303 days old, whereas for GnuPG, the mean value is calculated to be
more than 4 years old (1, 653 days).

(a) OpenSSL of outdated time-gap versions. (b) GnuPG of outdated time-gap versions.
Figure 5.11: Letter-value plots of outdated time-gap versions.

5.5.2. Conclusions and Validity of results
This section presents the results and findings of discovered cryptographic libraries on firmware images
using EBAT. Firmware images use broadly open-source cryptographic libraries in a percentage of over
75%, at least one cryptographic library is discovered embedded in the firmware image (except Libc
(uClibc-ng [16] or glibc [5]) [48]). Additionally, the binaries that use the cryptographic libraries are more
than 1 million, over 13 million of the total discovered ones. Despite the broad usage, outdated libraries
are discovered in many firmware images, and even cryptographic libraries that have reached the EoL
support even before the firmware image’s publicly released date are found, with a percentage of nearly
50% of the discovered cryptographic libraries being outdated and reaching their EoL.

The results and findings presented in this section are discovered only from publicly available firmware
images with their release date as given publicly by the vendor’s website in most cases. Thus, there is
a low possibility of a few firmware images not having the correct public release date and our results
being incorrect. Additionally, the extracted cryptographic library is the one that is found embedded in
the firmware image as crawled and extracted from the vendor. The possibilities of updating these li-
braries as the device comes online or any other update mechanisms are not searched/covered. Thus,
additional device update mechanisms may update the cryptographic libraries; however, the shipped
firmware image remains outdated. The cryptographic version discovery mechanism has a low false
positive rate as the version discovery is based on code analysis and not heuristics search string meth-
ods. Thus, the versions that are discovered are as precise as possible. Cryptographic library versions
that are not discovered may produce a change in our results if they were discovered; however, less
than 4% of them still need to be discovered, and the change may be insignificant.

We mainly focused on two widely used cryptographic libraries discovered in our dataset of firmware
images: the OpenSSL [14] and GnuPG [6]. OpenSSL and GnuPG are discovered at 77.85% and
31.32%, respectively, over our successfully unpacked firmware images. Although GnuPG has a rela-
tively high percentage of our firmware images, the usage of it that has been discovered in binaries is
low, only 2.99% of all the binaries that use a cryptographic library. On the other hand, OpenSSL, due to

5.6. Common Vulnerabilities and Exposures (CVEs) 53

its wide usage, is used in over 45% of binaries. Comparing the total discovered cryptographic libraries
for executables and libraries binaries, the percentages are split almost 60 − 40, with a higher usage
found in executable binaries. Furthermore, we investigate further the aforementioned cryptographic
libraries with 2 scenarios that plot the histograms depicted in Figures 5.9a, 5.11a and 5.9b, 5.11b, for
OpenSSL and GnuPG respectively. Unfortunately, we can observe that a large percentage of firmware
images are deployed outdated, and also, a few of them have versions that have been outdated for con-
secutive years, which may lead to n-day attacks. Speculations about the lack of constant updating
of the developer’s tools and libraries and the usage of identical toolchains and OEM products raise
concerns that this will eventually lead to outdated cryptographic libraries being spread across multiple
firmware images and different products.

5.6. Common Vulnerabilities and Exposures (CVEs)

Figure 5.12: Scenario of discovered CVE.

In this section, an analysis of EBAT’s ability
to find Common Vulnerabilities and Exposures
(CVEs) that are listed in the CVE database for
cryptographic libraries is presented. Although
EBAT has the ability to find CVEs not only for
cryptographic libraries but also for various types
of libraries and executables such as busybox,
zlib, libpng, libjpeg-turbo, libvorbis, et al., those
results will not be presented as the discovery of
their version depends only on CVE Binary Tool
[51] as analyzed in Chapter 4.7 which may provide false positives and left for future work. On the other
hand, cryptographic library CVEs also rely on an implemented module of EBAT that performs code
analysis to discover the version and the results are considered more reliable. It should be noted that
not all discovered CVEs will affect the firmware image immediately, as the discovery of a CVE is only
an indication and not an immediate vulnerability on the firmware image but on the discovered library.
Firmware images may patch the CVE or possibly not use this exact vulnerable code section; thus, fur-
ther manual review needs to be done. These CVE indications are the first step to help the developer
further secure their developed firmware image.

The CVEs that are discovered are separated into two categories: the ones that are known even
before the publicly available firmware image release date and those that are released later than the
publicly available firmware image release date. Figure 5.12 depicts the aforementioned two scenarios
where CVE 𝑎 and CVE 𝑏 are presented even before the firmware image has been released, and CVE
𝑐 is discovered after the firmware’s public release date. In our results, the time-gap will be measured
in days. For each CVE along with the released date, the severity level is also saved as Critical, High,
Medium, Low, harvested from the National Vulnerability Database (NVD) [74]. Table 5.9 presents the
unique CVEs discovered for all firmware images earlier/later than a firmware’s image release date
for each cryptographic library. Those known CVEs may be found in more than one firmware image.
Appendix Table A.37 presents the Critical, High, Medium and Low severity CVE for the cryptographic
libraries examined in our work, by CVE number (for example, CVE-2020-12345) and severity, where-
also presents the number of firmware images a particular CVE is discovered.

Earlier Later
Critical High Medium Low Critical High Medium Low

Library # CVEs # CVEs # CVEs # CVEs # CVEs # CVEs # CVEs # CVEs
GnuPG [6] (libgcrypt) 0 2 7 3 0 2 6 3
GnuTLS [7] (libgnutls) 3 14 23 0 3 11 16 0
KerberosV5 [93] (libk5crypto) 0 1 0 0 0 0 0 0
LibTomCrypt [10] (libtomcrypt) 0 0 1 0 0 0 1 0
mbedTLS/PolarSSL [11]
(libmbedcrypto, libmbedtls,
libpolarssl, libmbedx509)

3 8 15 0 3 8 8 0

Nettle [13] (libnettle) 3 1 1 0 0 0 1 0
OpenSSL [14] (libcrypto, libssl) 8 45 128 13 8 40 105 11
WolfSSL [17] (libwolfssl, libcyassl) 4 7 14 0 4 6 11 0
Total 21 78 189 16 18 67 148 14

Table 5.9: Overall distinct CVEs founds earlier/later than firmware images release dates per cryptographic library.

54 5. Results & Findings

As we can observe from Table 5.9, 21 Critical and 78 High severity CVEs are found earlier than the
release date of a firmware image, where 18 Critical and 67 High severity CVEs, are discovered later
than the release date of a firmware image. Furthermore, according to Appendix Table A.37, more than
6, 000 firmware images are possibly susceptible to at least one of those Critical CVEs, and more than
12, 000 firmware images are possibly susceptible to at least one High severity CVEs, even before the
firmware image goes publicly available. That is approximately 30% (Critical) and 56% (High) of the total
unpacked firmware images. Appendix Table A.35 depicts the most popular Critical severity discovered
CVEs, which are found to be in the OpenSSL cryptographic library, which are 𝐶𝑉𝐸 − 2016 − 2177,
𝐶𝑉𝐸−2016−6303, 𝐶𝑉𝐸−2016−2182, 𝐶𝑉𝐸−2016−2108, 𝐶𝑉𝐸−2016−0705 and 𝐶𝑉𝐸−2016−0799,
that may affect more than 4, 000 firmware images. ThatCritical CVEs affect the OpenSSL cryptographic
library over multiple versions, such as 1.0.1𝑎, 1.0.1𝑏, 1.0.2𝑎, which can cause a denial of service (DoS)
and/or even arbitrary code execution in some cases if the firmware image is susceptible to those known
CVEs, making an n-day attack possible.

Figure 5.13a and 5.13b depict letter-value plots as calculated by Figure 5.12 that depicts the way
how the time-gap in days of CVEs are calculated, for Critical and High severity CVEs, respectively.
For every firmware image, the time-gap for CVEs earlier than the firmware’s release date is calculated
in days and plotted for each vendor separately. Appendix Tables A.11, A.12, A.13, A.14 depict the
aforementioned calculated letter-value plots for all vendors in our dataset for Critical, High, Medium
and Low severity, respectively.

(a) Critical severity CVEs time-gap in days earlier than the
firmware release date.

(b) High severity CVEs time-gap in days earlier than the
firmware release date.

The mean values for Figures 5.13a and 5.13b, along with the mean values for all vendors, are
presented in Appendix Tables A.33 and A.34, respectively. The median value in days extracted from
vendors for Critical severity CVEs is calculated to be 590 days, which means that even more than one
and a half years before even releasing the firmware image, at least one critical CVE exists, affecting
one of the outdated cryptographic libraries. For High severity CVEs, the median value is longer and
calculated to be more than 2 years (approximately 874 days). The critical severity CVEs discovered
affect fewer firmware images than high to low-severity CVEs. It is crucial to recognize that, despite the
severity of these CVEs, a firmware image may not be vulnerable if the specific vulnerable code part is
not used.

Figures 5.14a and 5.14b plots histograms for Critical and High severity CVE. The plots represent
the number of firmware images found to have 0 CVE, 1 CVE, 2 CVEs, etc., for vendors more dominant
in our dataset. In total, from the histogram figures, 15, 757 firmware images have 0 Critical CVE found
(a percentage of 70%) earlier than the firmware image public release date, while the rest, meaning that
6, 773 of the successfully unpacked firmware images in our dataset have at least one Critical severity
CVE, in one of the installed cryptographic libraries. The same holds true for High, Medium and Low
severity CVEs, although with even higher percentages than the Critical ones.

5.6.1. Conclusions and Validity of results
The results presented in this section are aggregated for every vendor’s firmware images. A develop-
er/researcher may run individually our implemented tool EBAT for a specific firmware image to identify
if CVEs exist (not only on cryptographic libraries) in their examine firmware image where there is a pos-

5.7. Cryptographic Misuses 55

(a) Histogram of critical severity CVEs earlier than the firmware
release date.

(b) Histogram of high severity CVEs earlier than the firmware
release date.

Figure 5.14: Letter-value plots and histograms for CVEs.

sibility of an existence of a CVE to lead to a vulnerability on the specific firmware image. We focused
on CVEs only from open-source cryptographic libraries, affecting particular versions. The CVEs are
categorized as Low, Medium, High, Critical and separated into two categories, the one that is discov-
ered even before the firmware image has a publicly released date and the one after their release date.
We mainly focused on High and Critical severity CVEs; however, all the severity results are presented
thoroughly in Appendix Section A.7.

The previous section on version discovery of cryptographic libraries also correlates with the anal-
ysis presented in this section in CVEs for the discovered cryptographic libraries. As the versions are
outdated, more CVEs are discovered even earlier than the publicly released date of a firmware image.
Additionally, CVEs found later than the publicly released date of a firmware image are also presented,
and an additional analysis needs to be done on those to check if they were used between firmware
versions. However, this is left for future work. Unfortunately, a high percentage of Critical and High
severity CVEs are discovered prior to the firmware image release date with approximately 30% of our
successfully unpacked firmware images having at least one Critical CVE that may lead to an n-day
attack if the particularly vulnerable code is in use.

All the discovered CVEs in this section rely on the discovered versions of cryptographic libraries
that are embedded in the initial firmware image. Our results correlate with the previous Section 5.5,
as the versions of the cryptographic libraries are analyzed. Code or physical device analysis was not
performed for any specific CVE to validate the effectiveness of the discovered CVE to an actual n-
day attack. A device may have the mechanism to update these libraries along the way. Additionally,
some vendors may apply patches to known CVEs of the cryptographic libraries instead of updating
them and/or the particular CVE vulnerable code may not be triggered (used) throughout the affected
firmware image; however, the vulnerable code may exist. Thus, additional manual code audits and
specific firmware analyses with device acquisition must be performed to verify the presented CVEs’
validity.

5.7. Cryptographic Misuses
This section presents the results and findings of each cryptographic misuse rule discovered in the
firmware image binaries. EBAT’s static taint analysis module is used in order to detect cryptographic
violations of the 18 cryptographic misuse rules as defined in Chapter 2.3, in which the static taint
analysis implementation is presented in depth over multiple sections of Chapter 4 (4.9, 4.10, 4.11, 4.12
and 4.13). Ghidra SRE release version 9.1.2 (02/2020) [70] along with EBAT’s implemented modules
and Ghidra’s implemented headless scripts are used for producing the results that will follow. At the
time of writing, newer Ghidra versions are being released, possibly providing better and more concrete
results than our current results and findings. Newer versions of Ghidra SRE will be tested in future
work as the implemented static taint analysis module is forward compatible.

Generally, for every binary of each successfully unpacked firmware image, static taint analysis is
executed only if it is using one or more dynamically linkable cryptographic library/libraries, as presented
in Chapter 4.6 Table 4.1. We created rules for our taint analysis, explained with more details in Chapter

56 5. Results & Findings

4.11, where every rule presents the tainted function and tainted function arguments (if any) for each
chosen examined function. These rules give us the necessary information for performing the start of
static taint analysis and possibly discovering a violation. Additionally, vendors’ cryptographic imple-
mented wrappers are captured and followed to enhance our analysis further. The rules created for our
taint analysis are tainting 733 cryptographic functions with more than 1, 500 arguments that belong to
10 cryptographic libraries well-defined Application Programming Interfaces (APIs). Those tainted argu-
ments are then followed (taint propagation) until a taint sink is discovered or not. We are interested in
discovering a violation (a misuse condition) of a cryptographic misuse rule as analyzed in Chapter 2.3.
Overall, we examined 18 common cryptographic misuse rules, which can be categorized by their cryp-
tographic primitives as presented in Chapter 2.3. It is essential to mention that the analysis performed
is static and not dynamic, and the following results will be based only on the executable binary’s entry
point, the call graph, the 𝜙 nodes, and any shared libraries. No dynamic or any other kind of intrusive
analysis is executed on any publicly available devices to verify our claims, and further manual work
must be addressed to verify any of the presented results. Bear in mind that our module is modular,
where anyone can write their own rules, and the list of tainted rules is not by all means exhaustive. The
results and findings will be aggregated over our entire dataset and presented for the rest of this sec-
tion; case studies on real-world vulnerabilities will be examined and compared with EBAT’s feasibility
to discover them.

In order to limit the false positives of cryptographic misuses analysis, the following scenario is taken
into account: If a function call is discovered implementing a cryptographic rule incorrectly, although it is
never called from the entry point of any examined executable binary (i.e., main), the findings of those
cryptographic violations will not be presented and discarded in this work. Listing pseudo-code 5.1
depicts the scenario mentioned earlier as an example. Listing pseudo-code 5.2 presents a simplified
example of a cryptographic violation that is called from main (binary’s entry point), and the findings of
this scenario will be presented.

1 // entry point
2 int main(int argc, char **argv){
3 /* code */
4 ...
5

6 return 0;
7 }
8

9 // code either in the same binary or
in a shared library

10 // violated rule S2 (encrypts more
than 1 block of data)

11 void AES_ECB_128_encrypt(...){
12 /* code */
13 ...
14 }
15

Listing 5.1: Function that is not called from a binary’s
entry point.

1 // entry point
2 int main(int argc, char **argv){
3 /* code */
4 ...
5

6 AES_ECB_128_encrypt(...);
7

8 return 0;
9 }
10

11 // code either in the same binary or
in a shared library

12 // violated rule S2 (encrypts more
than 1 block of data)

13 void AES_ECB_128_encrypt(...){
14 /* code */
15 ...
16 }
17

Listing 5.2: Function that is called from a binary’s
entry point.

In some cases, functions may be called from a binary’s entry point, which can cause a cryptographic
misuse. Those function calls are taken into account, although there is a possibility of false positives
where the misuse function call may never be called as is. It may depend on other parameters as well
as input parameters. On the other hand, a cryptographic violation is presented in the binary code, and
the cryptographic misuse may occur at some point, depending on the execution path. For instance,
Listing pseudo-code 5.3 depicts a scenario in which a cryptographic misuse may be called from the
binary’s entry point only if a particular path (in the listing example when 𝑥 = 0) is triggered. In this
scenario, taint analysis does not marked the sink node as 𝜙 (phi), defined in Chapter 4.13, because
the tainted argument does not get multiple results from various paths but is depended on an input
argument that we cannot resolve using static code analysis. On the other hand, as an example, Listing
pseudo-code 5.4 presents a cryptographic violation only when𝑚 = 𝐸𝑉𝑃_𝐸𝐶𝐵() (path is triggered when

5.7. Cryptographic Misuses 57

𝑥 = 0), where otherwise the other sink nodes are not violating any of the cryptographic misuse rules
(𝑚 = 𝐸𝑉𝑃_𝐶𝐵𝐶() or 𝑚 = 𝐸𝑉𝑃_𝐶𝑇𝑅()). All the sink nodes and the violated one presented in the listing
5.4 are saved and marked as 𝜙 (phi).

1 int main(int argc, char **argv){
2 /* code */
3

4 // read arbitary input
5 x = readInput();
6

7 if (x == 0){
8 // violate rule S2 if called
9 AES_ECB_128_encrypt(...);
10 }
11 else if (x == 1){
12 /* code */
13

14 }
15 else{
16 /* code */
17

18 }
19

20 return 0;
21 }
22

23 // code either in the same binary or
in a shared library

24 // violated rule S2 (encrypts more
than 1 block of data)

25 void AES_ECB_128_encrypt(...){
26 /* code */
27

28 }
29

Listing 5.3: Function that may called from a binary’s
entry point.

1 int main(int argc, char **argv){
2 /* code */
3 // read arbitary input
4 x = readInput()
5

6 if (x == 0){
7 // violated rule S2
8 // ECB mode of operation
9 m = EVP_ECB();
10 }
11 else if (x == 1){
12 // no violation
13 // CBC mode of operation
14 m = EVP_CBC();
15 }
16 else if (x == 2){
17 // no violation
18 // CTR mode of operation
19 m = EVP_CTR();
20 } // may be others too
21

22 AES_encrypt(m, ...);
23 /* code */
24 return 0;
25 }
26

27 // code either in the same binary or
in a shared library

28 // violated rule S2 if called with ”
ECB” (encrypts more than 1 block of
data)

29 void AES_encrypt(m, ...){
30 /* code */
31 }
32

Listing 5.4: 𝜙 nodes as constant values, passing as an
argument.

The aforementioned scenarios are not by all means exhaustive, as there are many combinations of
them. Our tool tries to resolve all possible combinations and marks the 𝜙 nodes whenever we discover
one. The results will be presented later in the rest of this section and separated into two categories:
First, the ones that take into account that the discovered cryptographic misuse has an execution path
from an entry point and there is a possibility of a 𝜙 node. Second, the ones that also have an execution
path from an entry point and it is ‘most likely’ that it is not a 𝜙 node. Keep in mind that the analysis is
not sound; thus, it is not certainly true that a 𝜙 node may exist, and our analysis missed it, as there
may be an execution path that is not covered in our analysis.

5.7.1. Overall results for Cryptographic Misuses
Overall, the taint analysis for detecting cryptographic misuses is executed in over 1, 4 million bina-
ries that belong to 22, 548 successfully unpacked firmware images (including 424 partially unpacked
firmware image). Appendix Table A.6 presents the overall statistics of analyzed binaries for each ven-
dor. In total, only 4.37%, approximately 1.4 million binaries are analyzed for cryptographic misuses
as they are the ones that are using one or more cryptographic dynamically link libraries. The covered
cryptographic libraries are presented in the previous chapter Table 4.1. Executables are 60% of the
total analyzed binaries; the rest are libraries.

Table 5.10 depicts the percentages of discovered cryptographic primitives found from binaries entry
point over all successfully unpacked firmware images in our dataset represented in the 2nd column.
The percentage in parenthesis is presented over the 22, 548 successfully unpacked firmware images.

58 5. Results & Findings

In the 3rd column, we present the number of binaries found the specific cryptographic primitive from
entry over all examined executable binaries, where the percentage in parenthesis is calculated over
861, 946 (see A.6) executable binaries. ‘AES-n/a’ is the usage of AES in which the key length is not
discovered. We can generally observe for Symmetric Key Encryption, that the usage of AES [75] is
prevalent; however, non-secure ciphers such asDES and stream ciphers such asRC2 are also present
in firmware images. Additionally, Key Derivation Functions uses DES (KDF - DES) in a percentage of
over 25% for all the examined firmware images. Moreover, a high usage ofMD-5 is observed, a bit over
the SHA-1 hash algorithm. Lastly, HMAC, RSA, Elliptic Curves (EC) and X.509 cryptographic functions
are discovered to be in use from one out of four firmware images.

Cryptographic
Primitives

Firmwares
discovered

Binaries
discovered

Symmetric Key Cryptography
AES-n/a 8,753 (38.82%) 14,791 (1.72%)
AES-128 9,988 (44.30%) 20,331 (2.36%)
AES-192 904 (4.01%) 1,129 (0.13%)
AES-256 3,236 (14.35%) 3,989 (0.46%)
BLOWFISH 1,321 (5.86%) 1,408 (0.16%)
CAMELLIA 450 (2.00%) 849 (0.10%)
CAST 9 (0.04%) 10 (0.00%)
CAST5 20 (0.09%) 21 (0.00%)
DES 6,370 (28.25%) 11,279 (1.31%)
TDES2 8 (0.04%) 8 (0.00%)
TDES3 2,245 (9.96%) 2,266 (0.26%)
GOST 6 (0.03%) 6 (0.00%)
IDEA 13 (0.06%) 14 (0.00%)
RC2 9,71 (4.31%) 1,301 (0.15%)
RC4 6,189 (27.45%) 22,629 (2.63%)

Authenticated encryption/decryption and AEAD
AES-CMAC 222 (0.98%) 488 (0.06%)
AES-GCM 172 (0.76%) 190 (0.02%)
CHACHA20-POLY1305 26 (0.12%) 26 (0.00%)

Message Authentication Codes (MACs)
HMAC 16,562 (73.45%) 25,782 (2.99%)

Key Derivation Functions (KDFs)
BCRYPT 25 (0.11%) 25 (0.00%)
KDF DES 6,192 (27.46%) 11,829 (1.37%)
KDF 445 (1.97%) 508 (0.06%)
PBKDF2 19 (0.08%) 19 (0.00%)

Public Key Cryptography
EC 5,671 (25.15%) 10,129 (1.18%)
RSA 16,517 (73.25%) 51,441 (5.97%)
X.509 5,912 (26.22%) 7,183 (0.83%)

Cryptographic one-way hash functions
MD4 3,787 (16.80%) 6,276 (0.73%)
MD5 13,337 (59.15%) 77,529 (8.99%)
SHA 11 (0.05%) 11 (0.00%)
SHA1 10,928 (48.47%) 48,126 (5.58%)
SHA224 301 (1.33%) 341 (0.04%)
SHA256 4,025 (17.85%) 7,366 (0.85%)
SHA384 719 (3.19%) 884 (0.10%)
SHA512 869 (3.85%) 1,790 (0.21%)
BLAKE2B 2 (0.01%) 2 (0.00%)
RIPEMD160 137 (0.61%) 137 (0.02%)

Table 5.10: Discovered cryptographic primitives over all firmware’s
binaries (found a call from entry).

Table 5.11 depicts the aggregated discov-
ered cryptographic rules violations for every
firmware image successfully unpacked in our
dataset. For each cryptographic primitive,
the percentage of ‘no violation’ is calcu-
lated, which counts the number of firmware
images in which not a single violation is dis-
covered. Furthermore, a ‘total no violation’
is calculated, which shows the number of
successfully unpacked firmware images that
not a single violation is discovered for any
of the rules, excepting rules R1 and R2 (an-
alyzed later) and a total no violation count
for any of the rules. Additionally, the results
are presented for two categories, ‘entry and
possible 𝜙’ nodes and ‘entry and not dis-
covered 𝜙’ nodes. ‘Entry and possible 𝜙’
nodes are the cryptographic misuses discov-
ered from a binary’s entry point, and one or
more 𝜙 nodes exist. ‘Entry and not discov-
ered 𝜙’ nodes are the cryptographic misuses
discovered from a binary’s entry point, and
EBAT does not discover any 𝜙 node asso-
ciated with this cryptographic misuse. The
following subsections will examine individual
results for each rule separately.

Appendix Tables A.38, A.39, A.40, A.41,
A.42 and A.43 present the cryptographic
misuses that are discovered from an en-
try node, and there is a possibility of being
a 𝜙 node for every vendor in our dataset
separately, for Symmetric Key Cryptography,
Public Key Cryptography, Pseudo Random
Number Generators (PRNGs), Key Deriva-
tion Functions (KDFs) and Password Based
Encryption (PBE), Message Authentication
Codes (MACs) and Authenticated encryp-
tion/decryption and AEAD respectively. Fi-
nally, Appendix Tables A.44, A.45, A.46,
A.47, A.48 and A.49, presents the cryptographic misuses that are discovered from an entry node and
not a single 𝜙 node is discovered, for every vendor in our dataset separately, for Symmetric Key Cryp-
tography, Public Key Cryptography, Pseudo Random Number Generators (PRNGs), Key Derivation
Functions (KDFs) and Password Based Encryption (PBE), Message Authentication Codes (MACs)
and Authenticated encryption/decryption and AEAD respectively. A separate section will follow for
each one, analyzing the results and providing more context.

5.7. Cryptographic Misuses 59

Rule # Short Description entry and possible 𝜙 entry and not discovered 𝜙
Firm. violate % # Firm. violate %

Symmetric Key Cryptography
S1 Constant Encryption/Decryption Keys 569 2.52% 569 2.52%
S2 Usage of ECB mode of operation 3,794 16.39% 3,794 16.39%
S3 Constant IV for various modes of operation 21 0.09% 21 0.09%
S4 Usage of ‘weak’ ciphers for encryption 2,830 12.55% 2,830 12.55%
No violation of S1, S2, S3, S4 17,889 79.34% 17,889 79.34%

Public Key Cryptography
P1 Usage of insecure RSA encryption padding schemes 3,850 17.07% 3,850 17.07%
P2 DSA usage of ‘weak’ digest function 0 0.00% 0 0.00%
P3 X.509 certificate usage of ‘weak’ digest function 1,624 7.20% 1,604 7.11%
No violation of P1, P2, P3 17,951 79.61% 17,971 79.70%

Pseudo Random Number Generators (PRNGs)
R1 PRNG static seed 3,333 14.78% 2,491 11.05%
R2 Low entropy sources for seeds 11,630 51.58% 11,601 51.45%
No violation of R1, R2 8,737 38.75% 9,021 40.01%

Key Derivation Functions (KDFs) and Password Based Encryption (PBE)
K1 Constant Passwords on a KDF/PBE 898 3.98% 316 1.40%
K2 Constant salt or no salts on a KDF/PBE 3,173 14.07% 1,901 8.43%
K3 ‘Weak’ number of iteration on a KDF/PBE 445 1.97% 441 1.96%
K4 ‘Weak’ underlying hash function on a KDF/PBE 8,068 35.78% 6,662 29.55%
No violation of K1, K2, K3, K4 13,632 60.46% 15,513 68.80%

Message Authentication Codes (MACs)
M1 Constant Encryption/Decryption Keys on a MAC 332 1.47% 275 1.22%
M2 ‘Weak’ underlying hash function on a MAC 1,800 7.98% 1,646 7.30%
M3 Non-secure key length on a MAC function 80 0.35% 79 0.35%
No violation of M1, M2, M3 20,421 90.57% 20,615 91.43%

Authenticated encryption/decryption and AEAD
A1 Constant Encryption/Decryption Keys on AE/AEAD 0 0.00% 0 0.00%
A2 Constant IV on AE/AEAD 0 0.00% 0 0.00%
No violation of A1, A2 22,548 100% 22,548 100%

Total
No violation of any of the rules above (except R1 and R2) 10,885 48.27% 12,040 53.40%

Total
No violation of any of the rules above 6,639 29.44% 7,469 33.12%

Table 5.11: Overall discovered Cryptographic Rules Violations (Cryptographic Misuses) in our entire firmware images dataset.

5.7.1.1 Cryptographic Misuses in Symmetric Key Cryptography rules
Type # functions # arguments

S1 88 -
S2 72 -
S3 65 -
S4 74 -
Other 27 -
S1, S2, S3, S4
and other 326 880

Table 5.12: Number of tainted functions and
arguments for Symmetric Key Cryptography rules.

Overall, for Symmetric Key Cryptography, we discovered
a total of 79.34% of all the successfully unpacked firmware
images not to violate a single Symmetric Key Cryptogra-
phy rule, where the rest (20% approximately) are violating
at least one of the following four rules: S1, S2, S3, S4
as presented in Table 5.11. Table 5.12 depicts the total
tainted functions for symmetric key cryptography for rules
S1, S2, S3, S4 and the total ones. Total tainted arguments
are also reported. Other functions present the tainted rules
that helped us detect a rule or provide additional context to the rule we examined, such as a key/iv
length to perform a symmetric key encryption/decryption. Only the total function arguments for all the
examined rules and other functions are presented since there is no need to report the arguments sep-
arately for specific rules as they are dependent on other arguments for detecting a violation but also
for detecting any additional context.

In more depth for constant encryption/decryption keys (rule S1), the most popular tainted functions
for all of our examined binaries are found to belong in OpenSSL cryptographic library, which is the one
most commonly used. The function that is tainted the most with our given rules throughout our results is
EVP_CipherInit, which, most of the time, the discovered key is found to be NULL as the symmetric
key is applied in other functions throughout its context. The most violated functions, either directly or
through a wrapper, are discovered to be AES_set_encrypt_key and AES_set_decrypt_key. A
few discovered constant keys are found to be weak, such as ‘root123’ and ‘1234567890abcdef’,
where we have managed to discover more symmetric keys that we cannot disclose in this work as there
are not publicly known and this may compromise the security of a device. All the keys reported by our
tool are in base64, as some symmetric keys are not ASCII printable. Both for ‘entry and possible 𝜙’ and

60 5. Results & Findings

‘entry and not discovered 𝜙’ the results are identical, 569 firmware images discovered to be violating
rule S1, only a small percentage of examined firmware images, 2.52%. The results of both cases are
identical, meaning we do not discover a 𝜙 node that the particular discovered key can change for the
particular function call. Bear in mind that other functions may exist in the binary setting a symmetric
key securely, and the cryptographic misuse function may never be called. However, the discovered
execution path can be called from the binary’s entry point.

Figure 5.15: Discovered Cryptographic misuses over the years for rule S1.

Figure 5.15 depicts a percentage
over the years, which is the number
of firmware images divided by the to-
tal successfully unpacked firmware im-
ages that a cryptographic misuse for
ruleS1 is discovered (violated) by each
year in our dataset. Appendix table A.2
depicts the number of successfully un-
packed firmware images aggregated
by year. The 𝑦 axes represent the
percentage of firmware images with at
least one violation of rule S1 over the
total successfully unpacked firmware
images, and the 𝑥 axes represent each
year. Year 2021 is incomplete and can
be considered an outlier as our dataset
ends in the early second quarter of
2021. We can observe from the figure that discovering the symmetric keys embedded in firmware
images rose over the years (in percentage terms), especially in the year 2020 with a total of 6.09%,
169/2776. One reason for the increase may lie in our dataset, as we cannot obtain as many firmware
images as they have not been publicly disclosed throughout the years by the vendor or may have been
removed to replace new ones. Nevertheless, the results are presented as is and are specific to the
successfully unpacked firmware images that our tool analyzed.

Appendix Table A.50 presents the name of the violated binaries that a violation is discovered along
with the number of firmware images that the specific binary name is discovered, ordered by each ven-
dor. The most used executable binaries names that a violation is discovered for rule S1 are: ‘Net-
gear_ddns’, ‘imgdecrypt’, ‘smm’, ‘firebase’, ‘tdpServer’, ‘mainfunction.cgi’, ‘goahead’, ‘oneTimeCall’
and ‘securitypage’, which are discovered in 144, 134, 96, 96, 62, 44, 30, 18 firmware images, re-
spectively. The exact context of those binaries needs further analysis as one can speculate from the
name of these binaries to be mainly in the network communication context. In the case study 5.7.2.1
that will presented in a later section of this chapter, the cryptographic misuse of rule S1will be explained
on the specific violation discovered on the binary ‘imgdecrypt’ for D-Link products, which is a binary
responsible for decrypting the firmware image.

The usage of ECB mode of operation, violating rule S2, may produce false positives, despite our
efforts due to the complexity of calculating the actual usage of discovered ECB functions, meaning that
the ECB discover function calls may be discovered from a binary’s entry point; however, the execution
path may never trigger if it depends on any other parameter, as shown in Listing 5.3. Additionally,
limiting the usage of the functions that encrypt only a single block of data is a challenging task which is
left for future work. Although there is a possibility of encrypting one block of data without violating rule
S2, the results are presented as is. Both for ‘entry and possible 𝜙’ and ‘entry and not discovered 𝜙’, the
results are discovered to be identical for rule S2. A possible reason is that the discovered function is
standalone, meaning if it is found to be used, no 𝜙 path of this function can be discovered. Additionally,
for functions that declare the mode of operation in an argument, our results show that the specific path
of this argument does not lead to another variant of the mode of operation. It is important to note that
this does not mean that the only mode of operation is ECB as there is a possibility of another mode of
operation with different function calls that will lead to other paths, and eventually the discovered ECB
mode will never use. The scenarios are endless; thus, multiple stages of analysis must be done in
every specific firmware image to verify any possible violations.

The binaries discovered for violating S2 strengthen the previous argument; the complete list can be
found in appendix table A.50. Themost discovered ones are: ‘readyNASVault’, ‘afppasswd’, ‘wpa_supplicant’,

5.7. Cryptographic Misuses 61

‘hostapd’, ‘cfg_client’ and ‘cfg_server’ discovered a violation at least one time in 1038, 881, 754, 611,
367 and 357 firmware images respectively. The ‘afppasswd‘ binary is responsible for allowing the
maintenance of afppasswd files created by netatalk for use by the ‘uams_randnum.so’ library; thus,
probably in the code arguments are configuration for ECB mode of operation, which is unclear if the
firmware images are using it or not. Binary ‘readyNASVault’ is a proprietary binary from NETGEAR,
which is unclear about the usage of ECBmode of operation where multiple stages of analysis needs to
be done to confirm the usage or not. Other interesting binaries are also found to violate rule S2; some
of them are ‘img_backup’, ‘img_restore’, ‘synoappexport’ and ‘mariabackup’, are proprietary firmware
image binaries, which the first three are belonging to Synology, and the last one to TP-Link vendor.

Figure 5.16: Discovered Cryptographic misuses over the years for rule S2.

Figure 5.16 depicts the percent-
age of firmware images that a cryp-
tographic misuse for rule S2 is dis-
covered (violated) over the total suc-
cessfully unpacked firmware images
presented for multiple years in our
dataset. We can observe that ECB
mode of operation remains in many bi-
naries in our dataset in the last cover
years. The peak of 43.42% is ob-
served in year 2013, and we can
also observe a decline over the fol-
lowing years, although the usage of
ECB mode of operation is discovered
to be high with the last cover year in
2020 to be 24.14%. Year 2021 is not
complete and is considered an outlier.
Some of the most discovered functions that violate rule S2 are found to be EVP_des_ede3_ecb,
EVP_aes_256_ecb, EVP_EncryptInit_ex (with an ECB algorithm provided by the OpenSSL con-
text), and DES_ecb_encrypt. Overall, 16.39% of the examined firmware images used at least one
function in one of their binaries where there is a possibility of performing symmetric key encryption/de-
cryption using the mode of operation as ECB.

Figure 5.17: Discovered Cryptographic misuses over the years for rule S3.

Regarding constant IV (rule S3),
the functions that are discovered for
the 21 violations in firmware im-
ages are EVP_DecryptInit and
EVP_EncryptInit_ex again from
OpenSSL cryptographic library, with
only 2 unique discovered fixed IVs.
The first is found to be
‘abcdefghijklmnop’while the other
is ‘9kJmSY2bWumviYIM’. These two
fixed IVs are used in 21 firmware im-
ages, and no other 𝜙 path is discov-
ered in our analysis. Thus, the results
for both cases are identical. Further-
more, many discovered fixed/constant
IVs are removed through manual anal-
ysis as we marked that as a false pos-
itive despite the tool reporting it as a violation. Two constant IVs, ‘CJalbert’ and ‘LWallace’,
were discovered multiple times in libraries called ‘uams_dhx.so’ and ‘uams_dhx_pam.so’. However,
our analysis did not find a single call from a binary’s entry point; thus, our result will not reflect this.

Figure 5.17 depicts the percentage of firmware images that a cryptographic misuse for rule S3 is
discovered (violated) over multiple years in our dataset, calculated over the violated firmware images
divided by the total successfully unpacked firmware images. The violation of using a constant IV was
discovered for specific firmware images in a NETGEAR product and remained there throughout the
years of consecutive firmware updates. The same holds for a D-Link product, which is also discovered

62 5. Results & Findings

individually in a few other D-Link firmware images. Lastly, the 21 violations of rule S3 were discovered
in 2 binaries ‘NetReadyAgent’ and ‘protest’, in 12 and 9 firmware images, respectively, where the first
binary belongs to NETGEAR and the second to D-Link vendor.

At last, 2, 830 (12.55%) firmware images are discovered to be violating rule S4 for discovering the
use of weak ciphers. In these results, only weak ciphers using symmetric key encryption are reported,
and any decryption is discarded (assuming the possibility of usage on legacy devices). Thus, the
reported results are filtered only for encryption. Repetitively, there is a chance that the execution path
may never be executed, although references to those functions from the binary’s entry point are present.
Our results are identical for ‘entry and possible 𝜙’ and ‘entry and not discovered 𝜙’ are discovered to
be identical for rule S4. A possible reason is that the discovered function is standalone, meaning no 𝜙
path of this function can be discovered. Additionally, for functions that declare the symmetric cipher in
an argument, our results show that the specific path of this argument does not lead to another variant
of a symmetric cipher. It is important to note that this does not mean that the only cipher in use is a
weak cipher; this is not true, and our tool also reports ciphers that are not weak and maybe are the
ones that are in use. Thus, there is a possibility that another symmetric cipher with different function
calls that are not weak will lead to other paths. Eventually, the discovered weak one will never be used.
The scenarios are endless; thus, multiple stages of analysis must be done in every specific firmware
image to verify any possible violations.

The binaries discovered for violating rule S4 strengthen the previous argument, where the complete
list is provided in appendix table A.50. The most discovered ones are: ‘wpa_supplicant’, ‘afppasswd’,
‘hostapd’, ‘wpad’, ‘snmpd’ and ‘fbwifi’ discovered a violation at least one time in 1073, 825, 641, 297,
286 and 208 firmware images respectively. The ‘wpa_supplicant’ is an executable binary responsible
for the wireless connection of clients. It is unclear whether the firmware images use weak ciphers, as
the wireless connection can be configured with strong ciphers. Thus, multiple stages of analysis of the
specific firmware images needs to be performed. Furthermore, proprietary binaries are also discovered
to violate rule S4. Some are ‘funjsq_cli’ and ‘upAgent’, belonging to NETGEAR.

Figure 5.18: Discovered Cryptographic misuses over the years for rule S4.

Figure 5.18 depicts the percent-
age of firmware images that a crypto-
graphic misuse for rule S4 is discov-
ered (violated) over multiple years in
our dataset, calculated over the vio-
lated firmware images divided by the
total successfully unpacked firmware
images. We can observe that the
usage of weak ciphers for symmetric
key encryption is still found in many
binaries in the last cover years of
our dataset, with a peak in the year
2020. The most discovered func-
tions for using a weak cipher and
violating rule S4 are found to be
EVP_EncryptInit_ex and
EVP_CipherInit_ex with context
found to be a weak cipher encryption call of either DES, RC2, RC4 or Blowfish. Additionally, multiple
function calls from DES_ncbc_encrypt and DES_ecb_encrypt that are using the DES encryption
algorithm are also discovered. DES symmetric encryption is the prevailing weak cipher discovered in
our results, following in the specific order is RC4, Blowfish, RC2 and TDES2.

5.7.1.2 Cryptographic Misuses in Public Key Cryptography rules
Table 5.13 depicts the total tainted functions for Public Key Cryptography rules P1, P2, P3 and the total
ones. Total tainted arguments are also reported. Other functions present the tainted rules that helped
us detect a rule or provide additional context to the rule we examined, such as a digest function used
for rule P2 and P3. Only the total function arguments for all the examined rules and other functions
are presented since there is no need to report the arguments separately for specific rules as they are
dependent on other arguments for detecting a violation but also for detecting any additional context.
Overall, 17, 951 firmware images, a total of 79.61% of the successfully unpacked firmware images, no

5.7. Cryptographic Misuses 63

violation for ‘entry and possible 𝜙 node’ case is discovered for the any of the Public Key Cryptography
rules P1, P2 and P3. For the ‘entry and not discovered 𝜙 node’ case, a total of 17, 971 (79.70%)
firmware images are discovered not to violate any of the rules P1, P2 and P3.

Type # functions # arguments
P1 18 -
P2 11 -
P3 16 -
Other 33 -
P1, P2, P3
and other 78 103

Table 5.13: Number of tainted functions and
arguments for Public Key Cryptography rules.

Specifically, for Public Key Cryptography rule P1, the
usage of insecure RSA encryption padding schemes, we
discovered 3, 850 firmware images (17.07%) of the suc-
cessfully unpacked firmware images to use at least one
insecure padding in their firmware images. The results
are identical for both for ‘entry and possible 𝜙’ and ‘entry
and not discovered 𝜙’ nodes. Table 5.14 represents the
overall discovered RSA padding schemes that violate rule
P1 and the OAEP padding that is not violating the rule P1, in every binary for all successfully unpacked
firmware images for all vendors. The 2nd column represents the number of references in all binaries
regarding whether a violation is discovered. The 3rd column represents the number of firmware im-
ages found using the specific padding that resulted in a violation, and the 4th column is the number of
firmware images that use the specific padding with no OAEP padding discovered on any binary in the
specific firmware image. It should be noted that a firmware image can use multiple padding schemes,
and the references that are not found from the entry may lead to a possible dead code.

Padding type # references # firmwares # firmwares
(not OAEP)

OAEP padding 8,897 4,446 -
PKCS #1 v1.5 padding 46,402 3,828 548
No padding 955 22 7
SSLv23 padding 14 0 0

Table 5.14: Discovered RSA padding schemes for all firmware images.

The padding scheme PKCS #1 v1.5 is
the most dominant one with over 46 thou-
sand references, where 3, 828 firmware
images result in a violation and from
those, only 548 firmware images are dis-
covered to not use any OAEP padding
anywhere else in their binaries. Further-
more, for Optimal Asymmetric Encryption Padding (OAEP) scheme is discovered in 4, 446 firmware
images. No padding scheme is also discovered in RSA encryption (also called “textbook RSA”) in
firmware images that result in a total of 22 firmware images, and 7 of those do not use any OAEP
padding in all of their binaries. Unfortunately, 4 firmware images belonging to NETGEAR and Totolink
vendor are discovered not to use either PKCS #1 v1.5 padding, and the only padding that is discovered
by our tool is “textbook RSA”.

Figure 5.19: Discovered Cryptographic misuses over the years for rule P1.

Figure 5.19 depicts the percent-
age of firmware images that a crypto-
graphic misuse for rule P1 is discov-
ered (violated) for multiple years in our
dataset. The percentage is calculated
over the violated firmware images di-
vided by each year’s total successfully
unpacked firmware images separately.
We can observe that the firmware im-
ages that use insecure padding have
significantly reduced over the years,
with the peak year being in 2013 of
approximately 47% and significantly
dropping in the following years to reach
8% in the year 2020. The year 2021
is not complete and can be considered
an outlier. The top 7 discovered bi-
naries for violating rule P1 are: ‘fvdropbox’, ‘avdu’, ‘fvamazon’, ‘readynasd’, ‘cfg_client’, ‘etm’ and
‘synolicense_uninstall’ discovered a violation at least one time in 2244, 2014, 1232, 928, 335, 95
and 52 firmware images respectively. The first 4 binaries belong to the NETGEAR vendor, while
the other 3 belong to ASUS, Xiaomi and Synology, respectively. It is unclear which one is pro-
prietary binary, and we cannot examine their usage just by their name; multiple stages of anal-
ysis needs to be done. The complete list of violated executable binaries names discovered are
presented in Appendix Table A.51 for the case of ‘entry and possible 𝜙’ and in Appendix Table
A.55 for the case of ‘entry and not discovered 𝜙’. The most tainted functions discovered that vi-

64 5. Results & Findings

olate rule P1, in our findings are from the OpenSSL cryptographic library where the functions are
the following: RSA_public_decrypt, RSA_private_decrypt and RSA_public_encrypt that
found to use the PKCS #1 v1.5 padding. The RSA_public_encrypt, RSA_public_decrypt,
RSA_private_decrypt and wc_RsaPrivateDecrypt functions are the ones that found to use
the no padding scheme.

Rule P2 is for Digital Signatures signing/verifying with a “weak” underlying digest function. EBAT
analysis found no violation in the examined firmware images. From Table 5.13, we can observe that
only 11 tainted functions are used for rule P2, which may be one reason that no violation of this rule
is discovered. The specific functions are only from the OpenSSL cryptographic library. This rule can
be expanded to include more functions and function arguments for more cryptographic libraries as a
future work.

Figure 5.20: Discovered Cryptographic misuses over the years for rule P3.

Rule P3 examined the X.509 certifi-
cate signing/verifying methods with a
“weak” digest function. In total, 1, 624
firmware images were discovered to vi-
olate this rule, a percentage of 7.20%
over all the examined successfully un-
packed firmware images. A slight dif-
ference is observed in the two exam-
ined cases. Thus, the following analy-
sis is on the second case when an en-
try and possible 𝜙 node violations are
discovered. Figure 5.20 depicts the
percentage of firmware images that a
cryptographic misuse for rule P3 is dis-
covered (violated) over multiple years
in our dataset. The percentage is cal-
culated over the violated firmware im-
ages divided by each year’s total successfully unpacked firmware images separately. We can observe
that the majority of firmware images that use an insecure cryptographic hash function were discovered
in years 2013 and 2014, where the percentage dropped and remained nearly steady in the following
years. Appendix tables A.51 and A.55 present the executable binaries names in the case of ‘entry and
possible 𝜙’ and in the case of ‘entry and not discovered 𝜙’ respectively. The top 7 binaries discovered
for violating P3 are: ’ntfsdecrypt‘, ‘certgen’, ‘monit’, ‘x509SelfSign’, ‘lftp’, ‘mpop’ and ‘httpd’ discovered
a violation at least one time in 860, 222, 136, 102, 88, 85 and 47 firmware images respectively. The
‘ntfsdecrypt‘ binary decrypts a file from an unmounted device and prints the decrypted data on the
standard output. It is found to have the option to read an X.509 certificate using an insecure digest.
However, this is not a violation as it is an option, and the analysis cannot verify any input options. Thus,
multiple stages of analysis needs to be done on the specific firmware image to determine the usage
of this binary. This binary was discovered in NETGEAR and Western-Digital vendors. The ‘certgen‘
binary generates a self-signed certificate tool with the option for an insecure digest. Similarly, with
the ‘ntfsdecrypt‘ binary, the usage is unknown, and we cannot directly declare it as a violation; thus,
multiple stages of analysis is needed. This binary is found only in the NETGEAR vendor.

In more depth, SHA-1 and MD-5 are the underlying cryptographic hash functions discovered for
signing/verifying X.509 certificates for violating rule P3. The most violated tainted functions for this rule
were discovered from theGnuTLS cryptographic library to be gnutls_x509_crt_get_fingerprint
that will calculate and copy the certificate’s fingerprint using a digest algorithm. For MD-5, the number
of references was less than SHA-1 for all violated binaries. Specifically, 372 firmware images were
discovered to violate rule P3 using the MD-5 digest algorithm without any SHA-1 digest. In contrast,
1145 firmware images were discovered to violate rule P3 with SHA1 without any use of MD-5 digest
algorithm. The remaining ones are found to violate this rule using both algorithms.

5.7.1.3 Cryptographic Misuses in Pseudo Random Number Generators rules
The complexity of identifying the context usage of Pseudo Random Number Generators (PRNGs) for
rules R1 and R2 makes the detection of potential violations more challenging. Cryptographic PRNGs
are critical in cryptographic algorithms, key generation, and other security-sensitive tasks. However,

5.7. Cryptographic Misuses 65

distinguishing their use in such contexts from non-security applications demands multiple stages of
analysis of specific functions when a possible violation is discovered in the firmware image. Additionally,
there is a possibility of re-initialization of the seeds of PRNGs to a secure one, which makes the whole
process harder. Thus, it may produce false positives in our results, as we do not know the specific
context of using these functions and re-initialization of those functions in a different code path is also
possible. That is why we decided to give results on the total no violations count from Table 5.11 that
with rule R1 and R2 to be excluded. Additionally, we examined case studies for PRNGs in section
5.7.2.3 of this chapter, which resulted in a violation of rule R2. Overall, more than 8 thousand firmware
images are found not to violate any of the rules R1 and R2 resulting in a percentage of over 38% for
‘entry and possible 𝜙’ and a slightly higher percentage of over 40% for ‘entry and not discovered 𝜙’
case. Table 5.15 gives the number of tainted functions and arguments for Pseudo Random Number
Generators rules.

Type # functions # arguments
R1 7 -
R2 7 -
Other 8 -
R1, R2
and other 22 30

Table 5.15: Number of tainted functions and
arguments for Pseudo Random Number Generators

rules.

For rule R1, for discovering any static seed in a PRNG,
our analysis discover 3, 333(14.79%) firmware images to
be violated in the case of ‘entry and possible 𝜙’ and
2, 491(11.06%) firmware images for ‘entry and not discov-
ered 𝜙 case. The violations are found in two PRNG ini-
tialization functions, srand() and srandom(), where no
initial seed is presented. Function srandom() stated that
“If no seed value is provided, the random() function is au-
tomatically seeded with a value of 1.” Thus, any results that we identify with no seeded value of the
srandom() function argument are marked as a violation of rule R1. The same holds for the srand()
function argument. In total, for the ‘entry and possible 𝜙’ case, we discovered more than 15 thousand
function references that are not seeded the initialization PRNG function arguments (i.e., seeded as 1)
where 6, 038 are from srandom() and 9, 709 are from srand() function. For the case of ‘entry and
not discovered 𝜙’, the functions references are dropped significantly to 2, 626 for srand() and 193 for
srandom(). Bear in mind that there is a possibility of re-initializing the seed of the specific functions
to a secure seed in a different execution path, thus, multiple stages of analysis must be performed for
every possible violation to verify any cryptographic misuse.

Figure 5.21: Discovered Cryptographic misuses over the years for rule R1
for ‘entry and not discovered 𝜙’ case.

Figure 5.21 depicts the percent-
age of firmware images that a crypto-
graphic misuse for rule R1 is discov-
ered (violated) over multiple years in
our dataset, calculated over the vio-
lated firmware images divided by the
total successfully unpacked firmware
images for each year. We can observe
that the firmware images that use static
seed have significantly reduced over
the years, with a peak of 48.08% in the
year in 2013 and reaching 2.02% in the
latest complete year in 2020. The year
2021 is not complete and can be con-
sidered an outlier. The top 5 discov-
ered binaries that violate rule R1 in the
case of ‘entry and not discovered 𝜙’ for
are: ‘htpasswd’, ‘etm’, ‘login.cgi’, ‘cet’,
‘dispatcher.cgi’ discovered a violation at least one time in 2376, 95, 84, 45 and 36 firmware images
respectively. The binaries are found in multiple vendors, including NETGEAR, Xiaomi, Zyxel, TP-Link
and D-Link. Similar and additional executable binaries from the Ubiquiti vendor are discovered for the
case of ‘entry and possible 𝜙’. Some are called ‘switchover’, ‘mini’, ‘ripened’, and ‘nsm’, which are
probably proprietary binaries as we speculate by their name. The overall depicted executable binaries
names, along with the number of firmware images, are presented in Appendix Tables A.52 and A.56 in
the case of ‘entry and possible 𝜙’ and in the case of ‘entry and not discovered 𝜙’ respectively.

Regarding rule R2 that is looking for any low entropy seeded random functions, we marked a vio-
lation of this rule when it is seeded with any combination of a result with two particular function calls as

66 5. Results & Findings

follows:

1. getpid() function call that returns the process ID of the calling process.

2. time() function call that returns the time as the number of seconds since the epoch (the number
of seconds that have elapsed since 01/01/1970).

The function call time() was the most popular among the two, with more than 117 thousand times
called in an srand() or srandom() or srand48() function call. The getpid() function call is
discovered more rarely compared to the other one, approximately 14 thousand times over all examined
binaries. Overall, both cases are nearly similar and EBAT discovered more than 11 thousand firmware
images, a percentage of over 50% for violating this rule, as half of our examined firmware images are
using at least one time a seeded PRNG with any combination of time() and getpid() function calls.
It should be noted that the context of the random functions is unknown, and there is a possibility not to
be used in a security-related context. Additionally, there is the possibility of re-initialization with a secure
seed. Thus, multiple stages of analysis for each case must be performed to verify any violations.

Figure 5.22: Discovered Cryptographic misuses over the years for rule R2
for ‘entry and not discovered 𝜙’ case.

Figure 5.22 depicts the percent-
age of firmware images that a crypto-
graphic misuse for rule R2 is discov-
ered (violated) over multiple years in
our dataset, calculated over the vio-
lated firmware images divided by the
total successfully unpacked firmware
images for each year. We can observe
that the firmware images that use a low
entropy source have increased over
the years; the year 2021 is incom-
plete and can be considered an out-
lier. The top 7 discovered binaries
for violating rule in the case of ‘en-
try and not discovered 𝜙’ for rule R2
are: ‘readyNASVault’, ‘zebra’, ‘htdbm’,
‘lighttpd’, ‘mysqlmanager’ and ‘cloud-
brd’ discovered a violation at least one
time in 1790, 1010, 911, 899, 738, 714 and 628 firmware images respectively—the binaries found in
multiple vendors including NETGEAR, Zyxel, ASUS and D-Link. Multiple proprietary executable bina-
ries are also discovered from all vendors, such as ‘LiveviewControlServer’, ‘EmbedThunderManager’,
and ‘zytr069main’. The binaries that will be examined in the case study that results in a violation of rule
R2 and presented in section 5.7.2.3 of this chapter are the following: ‘cgibin’ from D-Link and ‘HTTPd’
from ASUS vendor. The overall depicted executable binaries names, along with the number of firmware
images, are presented in Appendix Tables A.52 and A.56 in the case of ‘entry and possible 𝜙’ and in
the case of ‘entry and not discovered 𝜙’ respectively.

5.7.1.4 Cryptographic Misuses in Key Derivation Functions (KDFs) and Password Based En-
cryption (PBE) rules

Type # functions # arguments
K1 48 -
K2 40 -
K3 20 -
K4 48 -
Other 77 -
K1, K2, K3, K4
and other 233 579

Table 5.16: Number of tainted functions and
arguments for Key Derivation Functions (KDFs) and

Password Based Encryption (PBE) rules.

Key Derivation Functions (KDFs) and Password Based
Encryption (PBE) rules are discovered not to violate any
of the four rules K1, K2, K3 and K4 in more than 13, 000
(60%) of the examined firmware images in the case of ‘en-
try and possible 𝜙 node’. In the case of ‘entry and not
discovered 𝜙 node‘, more than 15 thousand successfully
unpacked firmware images are discovered not to violate
any of the four rules. Table 5.16 depicts the total tainted
functions for Key Derivation Functions (KDFs) and Pass-
word Based Encryption (PBE) rules K1, K2, K3, K4 and
the total ones. Total tainted arguments are also reported. Other functions present the tainted rules that
helped us detect a rule or provide additional context to the rule we examined, such as the underlying

5.7. Cryptographic Misuses 67

cryptographic hash function for detecting if rule K4 is using a weak one or not. Only the total function
arguments for all the examined rules and other functions are presented since there is no need to report
the arguments separately for specific rules as they are dependent on other arguments for detecting a
violation but also for detecting any additional context. In the following paragraphs, we examined each
rule one by one.

Function name (library) # references # binaries # firmwares
crypt (libc, glibc) 2,502 334 809
EVP_BytesToKey (OpenSSL) 140 20 66
Check_NAS_User_Password (wrapper) 70 6 23
Check_NAS_Administrator_Password (wrapper) 12 1 6

Table 5.17: Discovered violated functions for rule K1 for ‘entry and possible 𝜙 node’.

Specifically, Rule K1 discovers the constant/fixed passwords used in KDF/PBE functions. In over
900 firmware images, a constant fixed password is discovered for the ‘entry and possible 𝜙 node’ case.
In addition, only 316 firmware images are discovered without a 𝜙 node alternative. Table 5.17 presents
the discovered function calls that violate rule K1 in all firmware’s binaries. Wrapper functions are also
discovered and presented in the aforementioned table. The total unique binaries for the specific function
are also presented in the 3rd column. The number of firmware images that violate this function is in
the 4th column. The uniqueness of binaries is generated by a SHA-256 digest. Function call crypt()
is the most widely used among the violated firmware images found in 334 unique binaries and 809
firmware images. Note that in each firmware image, more than one function call may be presented in
the above table and possibly more than one binary can violate this rule. The most dominant discovered
passwords are ‘admin’, ‘test’, ‘this_is_a_passphrase’ and ‘password’, where are some
passwords that we cannot disclose them as they are unique and may compromise the device’s overall
security.

Figure 5.23: Discovered Cryptographic misuses over the years for rule K1
for ‘entry and not discovered 𝜙’ case.

Figure 5.23 depicts the percent-
age of firmware images that a crypto-
graphic misuse for rule K1 is discov-
ered (violated) over multiple years in
our dataset, calculated over the vio-
lated firmware images divided by the
total successfully unpacked firmware
images for each year. The year 2021
is incomplete and can be considered
an outlier as our dataset ends in the
early second quarter of 2021. We
can observe from the figure that dis-
covering a constant password embed-
ded in firmware images remains rela-
tively steady over the years, at approx-
imately 1.5%. Some of the executable
binaries names that a violation is dis-
covered in the case of ‘entry and not
discovered 𝜙 node’ for rule K1 are the following: ‘smm’, ‘eurl’, ‘qcmap_auth’, ‘change_password.cgi’,
‘daemon_fsp_app’, ‘pure-pw’, ‘commander’ and ‘authLogin.cgi’, which are discovered in 148, 45, 36,
23, 16, 15, 9 and 6 firmware images, respectively. The exact context of those binaries needs further
analysis. Some of them are probably proprietary executable binaries. The aforementioned executable
binaries belong to the following vendors: D-Link, Ubiquiti, Linksys, TP-Link, NETGEAR and QNAP. The
overall depicted executable binaries names, along with the number of firmware images, are presented
in appendix tables A.53 and A.57 in the case of ‘entry and possible 𝜙’ and in the case of ‘entry and not
discovered 𝜙’ respectively.

Function name (library) # references # binaries # firmwares
crypt (libc, glibc) 10,158 1,659 3,112
EVP_BytesToKey (OpenSSL) 122 18 61
Table 5.18: Discovered violated functions for rule K2 for ‘entry and possible 𝜙

node’.

Rule K2 examined the constant
salts, or the absence of salt when
using a PBE function. In total,
3, 173 (14.07%) and 1, 901 (8.43%)
firmware images are discovered to

68 5. Results & Findings

violate rule K2, from ‘entry and possible 𝜙 node’ and from ‘entry and not a discovered 𝜙 node’, respec-
tively. Table 5.18 presents all the function calls that are discovered using a constant salt that violate rule
K2 in all firmware’s binaries for the ‘entry and possible 𝜙 node’ case. The discovered unique binaries
are also reported in the 3rd column, and the number of firmware images found to violate this rule in the
4th column. A firmware image may find a violation of rules more than once a time in its binaries. Repet-
itively, crypt function call is the most dominant one, and salt ‘aa’, ‘1’ and ‘1mldcsfp$’ are
the most discovered ones in all examined firmware images.

Figure 5.24: Discovered Cryptographic misuses over the years for rule K2
for ‘entry and not discovered 𝜙’ case.

Figure 5.24 depicts the percent-
age of firmware images that a crypto-
graphic misuse for rule K2 is discov-
ered (violated) over multiple years in
our dataset, calculated over the vio-
lated firmware images divided by the
total successfully unpacked firmware
images for each year, in the case of
‘entry and not discovered 𝜙’. The year
2021 can be considered an outlier as
our dataset ends in the early second
quarter of 2021. We can observe from
the figure that discovering a constant
salt embedded in firmware images has
fluctuated over the years. Some of the
executable binaries names that a viola-
tion is discovered in the case of ‘entry
and not discovered 𝜙 node’ for rule K2
are the following: ‘uhttpd’, ‘smm’, ‘busybox’, ‘sslvpnConfig’, ‘rc’, ‘makepwd’, ‘eurl’ and ‘synorcvol’, which
are discovered in 1319, 148, 138, 122, 69, 66, 45 and 37 firmware images, respectively. The exact
context of those binaries needs further analysis. Some of them are probably proprietary executable
binaries. The aforementioned executable binaries belong to the following vendors: D-Link, Zyxel, TP-
Link, NETGEAR and Xiaomi. The overall depicted executable binaries names, along with the number
of firmware images, are presented in appendix tables A.53 and A.57 in the case of ‘entry and possible
𝜙’ and in the case of ‘entry and not discovered 𝜙’ respectively.

Figure 5.25: Discovered Cryptographic misuses over the years for rule K3
for ‘entry and not discovered 𝜙’ case.

Figure 5.25 depicts the percent-
age of firmware images that a crypto-
graphic misuse for rule K3 is discov-
ered (violated) over multiple years in
our dataset, calculated over the vio-
lated firmware images divided by the
total successfully unpacked firmware
images for each year, in the case of
‘entry and not discovered 𝜙’. Year
2021 can be considered an outlier as
our dataset ends in the early second
quarter of 2021. We can observe from
the figure that the number of violations
has slightly increased over the years,
with a peak in the year 2017 to be
3.56%. Some of the executable bina-
ries names that a violation is discov-
ered in the case of ‘entry and not dis-
covered 𝜙 node’ for ruleK3 are the following: ‘zycfgfilter’, ‘ubntbox’, ‘zcmd’, ‘ss-local’, ‘fw_printenv’, ‘ss-
redir’, ‘eurl’ and ‘daemon_fsp_app’, which are discovered in 90, 76, 74, 68, 62, 54, 45 and 16 firmware
images, respectively. The exact context of those binaries needs further analysis, although we can spec-
ulate from the binary name that most of them are proprietary binaries. The aforementioned executable
binaries belong to the following vendors: Zyxel, Ubiquiti, DrayTek, NETGEAR, Linksys, Trendnet and
Xiaomi. The overall depicted executable binaries names, along with the number of firmware images,

5.7. Cryptographic Misuses 69

are presented in appendix tables A.53 and A.57 in the case of ‘entry and possible 𝜙’ and in the case
of ‘entry and not discovered 𝜙’ respectively.

Table 5.19 depicts the overall discovered iterations found in all firmware’s binaries when examined
for a violation of rule K3. Approximately 400 firmware images violate this rule, as our threshold is set to
below 1, 000 iterations in every cryptographic KDF/PBE function, similarly in both examined cases. We
discovered more than 2 thousand function calls belong to 2, 122 firmware images that used an iteration
value equal to 1, 000, equal to the minimum threshold we defined in Chapter 2.3.5. Thus, no violation
is marked. Note that the more times a KDF function is iterated, the longer it takes to compute the
password hash. Therefore, the iteration count should be as large as the environment allows. Different
devices may have a tolerance for a higher threshold than others. 4, 096 number of iterations are the
most dominant ones, which provide fairly much better security than 1, 000, where 32, 768 number of
iterations are also surprisingly used in more than 2 thousand firmware images.

Iterations # Function
calls Details # binaries # firmwares

32,768 2,066 ’gcry_kdf_derive’ (GnuPG): 2,065, ’PKCS5_PBKDF2_HMAC’: 1 9 2,066
8,192 21 ’PKCS5_PBKDF2_HMAC_SHA1’ (OpenSSL): 21 6 17
4,096 5,430 ’PKCS5_PBKDF2_HMAC_SHA1’ (OpenSSL): 5,427, ’wc_PBKDF2’: 3 556 1,301
2,002 2 ’PKCS5_PBKDF2_HMAC’ (OpenSSL): 2 2 2
2,000 17 ’PKCS5_PBKDF2_HMAC_SHA1’ (OpenSSL): 17 8 17
1,024 3 ’PKCS5_PBKDF2_HMAC_SHA1’ (OpenSSL): 3 1 3

1000 2,394
’PKCS5_PBKDF2_HMAC_SHA1’ (OpenSSL): 320,
’gcry_kdf_derive’ (GnuPG): 2,065,
’PKCS5_PBKDF2_HMAC’ (OpenSSL): 1, ’EVP_BytesToKey’ (GnuPG): 8

15 2,122

Marked as violated(entry and possible 𝜙)
5 608 ’EVP_BytesToKey’: 608 102 306
2 64 ’EVP_BytesToKey’: 64 2 16
1 378 ’EVP_BytesToKey’: 378 31 306

Table 5.19: Discovered iterations in KDF/PBE function calls for all firmware binaries.

Figure 5.26: Discovered Cryptographic misuses over the years for rule K4
for ‘entry and not discovered 𝜙’ case.

The underlying hash functions for
KDF/PBE cryptographic rule K4 are
examined next. The rule is hard to ex-
amine as the underlying cryptographic
function for crypt() and crypt_r()
function calls depend on the salt that
they are using. For instance, us-
ing a ‘5’ in front of the salt when
it is passed as an argument on the
crypt() function call means that a
SHA-256 encoded password algorithm
will be used, which does not violate
rule K4. On the other hand, the default
KDF/PBE is based on Data Encryption
Standard (DES), and if ‘1’ is used,
then it is based on MD-5 which it does
violate our rule K4. Thus, the above
results are presented as crypt() is
consistently violated if we do not discover the salt and we mark it as if it is using the default PBE based
on Data Encryption Standard (DES), which does not always hold. If we discover the salt, we map the
start of the salt, e.g. ‘5’ - SHA-256, ‘1’ - MD5, to the discovered algorithm when reporting
our results. The reader needs to keep that in mind if the salt cannot be discovered for crypt() and
crypt_r() functions, then the default one is used (default on KDF/PBE is based on Data Encryption
Standard (DES)) which violates rule K4.

Figure 5.26 depicts the percentage of firmware images that a cryptographic misuse for rule K4 is
discovered (violated) over multiple years in our dataset, calculated over the violated firmware images
divided by the total successfully unpacked firmware images for each year, in the case of ‘entry and not
discovered 𝜙’. Year 2021 can be considered an outlier as our dataset ends in the early second quarter
of 2021. We can observe from the figure that the number of weak digests used in firmware images has

70 5. Results & Findings

reduced from year 2013 to our latest complete year 2020 with a peak to be 50.66% in 2013, which is
dropped to 20.46% in year 2020. Some of the executable binaries names that a violation is discovered
in the case of ‘entry and possible 𝜙 node’ for rule K4 are the following: ‘unix_chkpwd’, ‘unix_update’,
‘busybox’, ‘uhttpd’, ‘smm’, ‘getty’, ‘sslvpnConfig’ and ‘admin.cgi’, which are discovered in 4835, 4648,
1523, 1319, 148, 128, 122 and 88 firmware images, respectively. The exact context of those binaries
needs further analysis, and some proprietary binaries such as the ‘admin.cgi’ and ‘basic_nis_auth’
are discovered. The aforementioned executable binaries belong to multiple vendors, including Zyxel,
Ubiquiti, NETGEAR, TP-Link, and ASUS. The overall depicted executable binaries names, along with
the number of firmware images, are presented in Appendix Tables A.53 and A.57 in the case of ‘entry
and possible 𝜙’ and in the case of ‘entry and not discovered 𝜙’, respectively.

The two functions that were discovered to violate rule K4 are MD5 and PBE based on Data En-
cryption Standard (DES). Table 5.20 depicts the total results for those functions. The most dominant
discovered functions are crypt and crypt_r, which combined are the ones that result in nearly 90%
of all detected violations on the firmware images. Bear in mind that EBAT marks them as violated if
no constant salt is discovered; thus, multiple stages of analysis must be done individually to verify any
possible violations.

Function name (library) Digest # references # binaries # firmwares
Marked as violated (entry and not discovered 𝜙)

crypt_r (libc, glibc) PBE base on DES 45,847 68 4,616
crypt (libc, glibc) MD5 2,906 454 1,622
crypt (libc, glibc) PBE base on DES 1,308 227 568
EVP_BytesToKey (OpenSSL) MD5 90 27 67

Marked as violated (entry and possible 𝜙)
crypt_r (libc, glibc) PBE base on DES 45,847 68 4,616
crypt (libc, glibc) MD5 3,434 788 2,139
crypt (libc, glibc) PBE base on DES 2,952 1,120 1,837
EVP_BytesToKey (OpenSSL) MD5 90 27 67

Table 5.20: Discovered violated functions for rule K4.

5.7.1.5 Cryptographic Misuses in Message Authentication Codes (MACs) rules
Type # functions # arguments

M1 16 -
M2 9 -
M3 16 -
Other 77 -
M1, M2, M3
and other 118 417

Table 5.21: Number of tainted functions and
arguments for Message Authentication Codes

(MACs) rules.

Message Authentication Codes (MACs) violations are discov-
ered for the HMAC algorithm, where the number of firmware
images that are not violating any of the three rules M1, M2
and M3 are found to be in 20, 421 (90.57%) in the case of ‘en-
try and possible 𝜙 node’ and in 20, 615 (91.43%) successfully
unpacked firmware images in the case of ‘entry and not discov-
ered 𝜙 node’. Table 5.21 depicts the total tainted functions and
function arguments for Message Authentication Codes (MACs)
rulesM1, M2, M3 and the total ones. Other functions presented
the tainted rules that helped us detect a rule or provide additional context to the rule we examined, such
as the underlying cryptographic hash function for detecting if rule M2 is using a weak one or not.

Function name (library) # references # binaries # firmwares
HMAC (OpenSSL) 367 138 188
HMAC_Init_ex (OpenSSL) 288 9 144

Table 5.22: Discovered violated functions for rule M1 for ‘entry and possible
𝜙 node’.

Only the total function arguments
for all the examined rules and other
functions are presented since there is
no need to report the arguments sepa-
rately for specific rules as they are de-
pendent on other arguments for detecting a violation but also for detecting any additional context. In
the following paragraphs, we examined each rule one by one.

The violation of rule M1 for discovery constant encryption/decryption keys on MACs is discovered
only in a small subset of firmware images, in 332 (1.47%) and 275 (1.22%) for ‘entry and possible 𝜙
node‘ case and for ‘entry and not a discovered 𝜙 node’ case, respectively. We discovered only two
unique keys used in multiple binaries, which cannot be disclosed as they are not publicly available, and
we can compromise the device’s overall security. Table 5.22 presents the two functions that belong
to the OpenSSL library that the violations of this rule are discovered, along with the unique number of
binaries and total number of firmware images.

5.7. Cryptographic Misuses 71

Figure 5.27: Discovered Cryptographic misuses over the years for rule M1
for ‘entry and not discovered 𝜙’ case.

Figure 5.27 depicts the percent-
age of firmware images that a crypto-
graphic misuse for rule M1 is discov-
ered (violated) over multiple years in
our dataset, calculated over the vio-
lated firmware images divided by the
total successfully unpacked firmware
images for each year, in the case of
‘entry and not discovered 𝜙’. We can
observe from the figure that the unique
constant keys increased slightly over
the years in percentage terms. The ex-
ecutable binaries names that this vio-
lation is discovered in the case of ‘en-
try and not discovered 𝜙 node’ for rule
M1 are the following: ‘tr069_client’,
‘Netgear_ddns’, ‘httpd’, ‘ntgrddns’ and
‘pure-pw’ which are discovered in 150,
144, 24 and 14 firmware images, respectively. The exact context of those binaries needs further anal-
ysis. Some of them are probably proprietary executable binaries. The first executable binary belongs
to Draytek, and the others to the NETGEAR vendor. The overall depicted executable binaries names,
along with the number of firmware images, are presented in Appendix Tables A.54 and A.58 in the case
of ‘entry and possible 𝜙’ and in the case of ‘entry and not discovered 𝜙’, respectively.

Function name (library) Digest # references # binaries # firmwares
Marked as violated(entry and not discovered 𝜙)

HMAC MD-5 588 72 293
HMAC_Final MD-4 94 25 31
HMAC_Final MD-5 2,779 381 1,037
HMAC_Init MD-5 911 242 485
HMAC_Init_ex MD-4 94 25 31
HMAC_Init_ex MD-5 3,268 417 1,147
HMAC_Update MD-4 122 25 31
HMAC_Update MD-5 2,909 385 1,039
Table 5.23: Discovered violated functions and underlying cryptographic hash

function for rule M2.

The most dominant discovered
‘weak’ underlying hash function on
MACs that violates ruleM2 isMD-5
cryptographic hash function, which
is still in use for more than 1.5 (over
7%) thousand examined success-
fully unpacked firmware images.
Overall, 1, 800 (7.98%) firmware
images are found to violate ruleM2
in the case of ‘entry and possible 𝜙
node‘ and for the case of ‘entry and
not a discovered 𝜙 node‘ 1, 646 (7.30%) firmware images are discovered. OpenSSL HMAC functions
are the ones discovered to violate our results. However, other functions from other libraries are also
tainted, but no violation is discovered from entry. Table 5.23 presents all the discovered violated func-
tions, unique binaries and firmware images for rule M2. All the presented functions belong to the
OpenSSL cryptographic library. MD-5 cryptographic hash function is the most used, whereas MD-4
use is surprisingly discovered.

Figure 5.28 depicts the percentage of firmware images that a cryptographic misuse for rule M2 is
discovered (violated) over multiple years in our dataset, calculated over the violated firmware images
divided by the total successfully unpacked firmware images for each year, in the case of ‘entry and not
discovered𝜙’. Year 2021 is incomplete and can be considered an outlier as our dataset ends in the early
second quarter of 2021. We can observe from the figure that the discovery of weak digests increased
over the years. Some of the executable binaries names that a violation is discovered in the case of ‘entry
and not discovered 𝜙 node’ for ruleM2 are the following: ‘wpa_supplicant’, ‘hostapd’, ‘ipsec’, ‘prog-cgi’,
‘daemon_fsp_app’, ‘snmpd’, ‘dhclient’ and ‘mdb’, which are discovered in 625, 389, 350, 297, 126, 79,
71 and 60 firmware images, respectively. The exact context of those binaries needs further analysis.
However, some of the binaries are recognized by their name. The aforementioned executable binaries
belong to the following vendors: MicroTik, Ubiquiti, Synology, ASUS, NETGEAR and D-Link. The
overall depicted executable binaries names, along with the number of firmware images, are presented
in Appendix Tables A.54 and A.58 in the case of ‘entry and possible 𝜙’ and in the case of ‘entry and
not discovered 𝜙’, respectively.

72 5. Results & Findings

Figure 5.28: Discovered Cryptographic misuses over the years for rule M2
for ‘entry and not discovered 𝜙’ case.

Lastly, rule M3 discovers the non-
secure key length used in MAC func-
tions. A non-secure key length is dis-
covered only for 80 firmware images
for the ‘entry and possible 𝜙 node’
case. In addition, only 79 firmware im-
ages are discovered without a 𝜙 node
alternative. Figure 5.29 depicts the
percentage of firmware images that a
cryptographic misuse for ruleM3 is dis-
covered (violated) over multiple years
in our dataset, calculated over the vi-
olated firmware images divided by the
total successfully unpacked firmware
images for each year, in the case of
‘entry and not discovered 𝜙’. We can
observe from the figure that the most
violations for rule M3 occur in the year
2020, to be 1.44%, where in previous years remains in low percentage and most of them at zero. The
executable binaries names that a violation is discovered in the case of ‘entry and not discovered 𝜙
node’ for rule M3 are the following: ‘hostapd’, ‘dimclient’, ‘wpad’ and ‘tincd’, which are discovered in
40, 31, 8 and 1 firmware images, respectively.

Figure 5.29: Discovered Cryptographic misuses over the years for rule M3
for ‘entry and not discovered 𝜙’ case.

The exact context of those bina-
ries needs further analysis. The afore-
mentioned executable binaries belong
to the following vendors: ASUS, Alfa,
Linksys, TP-Link, NETGEAR, Synol-
ogy and Tenda. The overall depicted
executable binaries names, along with
the number of firmware images, sepa-
rately for each vendor, are presented in
Appendix Tables A.54 and A.58 in the
case of ‘entry and possible 𝜙’ and in
the case of ‘entry and not discovered
𝜙’, respectively.

Table 5.24 represents the overall
discovered key length in MACs func-
tion calls for all firmware’s binaries.
The 1st column represents the key
length in bytes, and the 2nd column
shows how many function calls are discovered in all of our binaries. The 3rd column presents more
details of the discovered functions and the number of function calls. Functions HMAC_Init_ex() and
HMAC_Init() are the ones that violate rule M3 with 1, 3 and 8 bytes of key length respectively. Only
a tiny percentage (less than 0.5%) of firmware images are discovered to violate this rule. All the func-
tions mentioned in Table 5.24 are from OpenSSL cryptographic library except ‘gcry_md_setkey’
from GnuPG, ‘wc_HmacSetKey’ from WolfSSL. EBAT also discovers three wrapper functions named
‘csrComputeHMACSHA256’, ‘fr_hmac_md5’ and ‘hmac_hex’.

5.7.1.6 Cryptographic Misuses in Authenticated encryption/decryption and AEAD rules
Type # functions # arguments

A1 16 -
A2 9 -
Other 18 -
A1, A2
and other 47 193

Table 5.25: Number of tainted functions and arguments
for Authenticated encryption/decryption and AEAD rules.

Lastly, regarding Authenticated encryption/decryption
and AEAD rules A1 and A2, we do not discover
any violation in all examined successfully unpacked
firmware images. Table 5.25 depicts the total tainted
functions for Authenticated encryption/decryption and
AEAD rulesA1 andA2 and the total ones. Total tainted
arguments are also reported. Other functions present

5.7. Cryptographic Misuses 73

bytes # Function
calls Details # binaries # firmwares

8 110 not discovered from entry; thus, not marked as a violation
‘HMAC_Init_ex’: 96, ‘csrComputeHMACSHA256’: 14 20 39

16 8,593
‘HMAC’: 4613, ‘HMAC_Init_ex’: 2767, ‘HMAC_Init’: 850,
‘fr_hmac_md5’: 216, ‘csrComputeHMACSHA256’: 77,
‘gcry_md_setkey’: 70

855 3,180

20 2,823 ‘HMAC’: 1785, ‘HMAC_Init_ex’: 984, ‘gcry_md_setkey’: 54 299 674
22 4 ‘HMAC_Init_ex’: 4 4 2
23 9 ‘HMAC’: 9 1 3
24 24 ‘HMAC_Init_ex’: 24 1 8
30 3,004 ‘HMAC_Init_ex’: 74, ‘gcry_md_setkey’: 2930 27 1,377

32 21,747
‘HMAC’: 6798, ‘HMAC_Init_ex’: 8021, ‘HMAC_Init’: 948,
‘hmac’: 60, ‘hmac_hex’: 15, ‘csrComputeHMACSHA256’: 7,
‘gcry_md_setkey’: 5895, ‘wc_HmacSetKey’: 3

1,289 7,359

33 12 ‘HMAC’: 12 6 6
36 1,557 ‘HMAC’: 44, ‘HMAC_Init_ex’: 48, ‘gcry_md_setkey’: 1465 32 1,383
48 56 ‘HMAC_Init_ex’: 56 9 23
52 376 ‘HMAC’: 376 9 188
62 1,503 ‘HMAC_Init_ex’: 38, ‘gcry_md_setkey’: 1465 13 1,361

64 1,212 ‘HMAC’: 19, ‘HMAC_Init_ex’: 186, ‘HMAC_Init’: 41,
‘gcry_md_setkey’: 966 48 1,158

68 1,503 ‘HMAC_Init_ex’: 38, ‘gcry_md_setkey’: 1465 13 1,361
108 42 ‘HMAC_Init’: 42 8 14
128 3,674 ‘HMAC_Init_ex’: 744, ‘gcry_md_setkey’: 2930 108 1,705
160 27 ‘HMAC’: 27 1 9

Marked as violated(entry and possible 𝜙) - -
1 1 ‘HMAC_Init’: 1 1 1
3 62 ‘HMAC_Init’: 62 8 31
8 96 ‘HMAC_Init_ex’: 96 26 48

Table 5.24: Discovered key length in Message Authentication Codes (MACs) function calls for all firmware’s binaries.

the tainted rules that helped us detect a rule or provide additional context to the rule we examined,
such as a key/iv length to perform an authenticated key encryption/decryption. One reason we do not
discover any violations may lie in the narrow rules we examined for rules A1 and A2 as depicted in
the aforementioned table. Adding more rules will further expand these rules and possibly discover any
violations, if any, are present.

5.7.2. Case Studies
Multiple case studies evaluate EBAT’s ability to detect cryptographic misuses are presented in this sub-
section. Those case studies are real-world cases used to test the effectiveness of our implemented
tool, the limitations, and the possibilities for improvements. Each case study takes considerable time
to evaluate; thus, a limited subset of those are presented. Firstly, the unpacked module is examined,
and the ability to add a decrypted unpacking module for specific firmware image types is presented,
providing valuable findings. Furthermore, a case study of a recent high severity CVE in a TP-Link
firmware image that uses a hard-coded cryptographic key discovered in a cryptographic function call,
noted as a cryptographic misuse rule, is evaluated, comparing with EBAT’s ability to discover it. In
addition, a CVE reported for predictable seed in Pseudo-Random Number Generator (PRNG) is also
examined and evaluated with EBAT ability to discover it. Lastly, CryptoREX related paper is compared
with our EBAT taint analysis module, where the findings are compared.

5.7.2.1 Firmware Decrypt module in D-Link firmware images
The first step in a successful firmware image security analysis is unpacking. EBAT encountered many
firmware images that were unable to unpack successfully and optimized from time to time to include
more unpacking modules and methods to unpack more and more firmware images successfully. Due to
the large-scale analysis, we encountered a few products that EBAT failed to unpack successfully (mainly
due to encryption); however, in the initial firmware release, EBAT managed to unpack them. Further
investigation in DIR’s product line from D-Link we came across a report at [25], where researcher(s)
manage to break the encryption of the encrypted firmware image with the physical acquisition of the
device and manage to extract the so-called ‘imgdecrypt’ executable binary that is responsible for
the decryption of every firmware image in the particular product without the physical acquisition of the
device. Fortunately, performing a large-scale analysis covering all firmware image releases across
a product’s life span, we discover some initial releases from D-Link DIR’s product lines that are not

74 5. Results & Findings

encrypted, either part of it or as a whole; thus, EBAT successfully unpacks them, and we are able to
locate the aforementioned executable binary called ‘imgdecrypt’.

EBAT’s analysis discovers cryptographic misuses on the ‘imgdecrypt’ executable binary in less
than a few minutes. Briefly, EBAT reports that the binary uses the OpenSSL cryptographic library and
performing the static taint analysis module it manages to discover the AES decryption constant key
from ‘AES_set_decrypt_key()‘ function that violates Rule S1. Additionally, it discovered the key
length, which is 128 bits, the mode of encryption, CBC, the IV length, which is 16 bytes and also
discovered the RSA and SHA-512 digest functions that are being used. EBAT analysis also reports
the usage of constant input (plaintext) in decryption/encryption functions and discovered the usage of
constant plaintext input in the AES_cbc_encrypt function. For a full analysis report on why all of
these are indications of cryptographic misuses, more details are given at [25], where the authors also
similarly implemented a decrypting module.

Overall, the protection of the encrypted firmware image module that DIR’s D-Link products line is
using has a severe security flaw that comes with the violation of using a constant encrypted key found
embedded in the binary. All of that could be prevented by using EBAT as an analyzing security tool
to scan their firmware image before releasing the product and patching any issues. The firmware
decrypt module first reported in [25] is also implemented in our unpacking module code and deployed
with our tool when running on a large scale. Using the D-Link - DIR decrypt implemented module, we
additionally discover multiple products and product lines that are affected, not only on DIR’s product
lines but DAP’s and COVR’s powerlines as well. Our large-scale report discovered the following:

• More than 10 products from DIR, COVR, DAP product lines are discovered to use the vulnerable
‘imgdecrypt’ executable binary.

• In total 66 firmware images from 2017 until their latest capture release version (04/2021 is the
latest capture firmware image executed by our implemented crawler) were found to have the
vulnerable ‘imgdecrypt’ executable binary embedded in the firmware image.

5.7.2.2 Hard-coded Cryptographic Key in TP-Link firmware image
A recent high severity CVE-2020-1088412, with score of 8.8 is published for TP-Link Archer A7
Firmware AC1750 router, firmware Version: 19072613. The vulnerability was reported to the vendor on
19/11/2019 and taken public on 25/03/2020 from Zero Day Initiative14. The vulnerability results from
using a hard-coded encryption key, which an attacker can leverage in conjunction with other vulnera-
bilities to execute code in the context of root. In addition, authentication is not required to exploit this
vulnerability.

The specific firmware image is also analyzed by EBAT as it is found to be in our publicly crawled
dataset. The firmware image analysis finished in approximately 15 minutes running on a personal
computer with Ubuntu OS (CPU i7-8400, 16 Gbytes of RAM) using multiple threads. The hard-coded
credential is also discovered using static taint analysis from EBAT’s module that results in a viola-
tion of Rule S1: “Usage of constant encryption/decryption keys for various block and stream ciphers
(Cryptographic Misuse Rule)”. Specifically, the static key and IV using AES [75] encryption algorithm
are reported at [85]. EBAT analysis successfully discovered the fixed key15 given also the underlying
cryptographic algorithm (AES 128 bit key with CBC mode of operation). Additionally, as mentioned in
the report, the key that they have constantly embedded in the binary is 256 bits long, but only 128 bits
are in use. EBAT successfully recovered only the 128 bits that are in use as it discovered the under-
lying cryptographic algorithm key length. Unfortunately, the fixed IV is not discovered and missed by
EBAT, although it is manually verified to be there and left for future work as an improvement of our tool.
Overall, in approximately 15minutes of automated analysis, one can address the issue way earlier just
by using EBAT analysis and informing the developers before releasing any of the firmware images.

A large-scale analysis offers the ability to search the database for similar occurrences of the same
vulnerability. Firstly, we search for any occurrences of the vulnerable binary16 and unfortunately we
12NVD - CVE-2020-10884, National Vulnerability Database, 2020, https://nvd.nist.gov/vuln/detail/CVE-2020-1
0884

13Download for Archer A7 | TP-Link, TP-Link, 2020, https://www.tp-link.com/us/support/download/archer-a7/
14(Pwn2Own) TP-Link Archer A7 ‘tdpServer’ Use of Hard-coded Cryptographic Key Remote Code Execution Vulnerability, ZDI-
20-336 | Zero Day Initiative, 2020, https://www.zerodayinitiative.com/advisories/ZDI-20-336/

15Symmetric constant key in base64 ‘VFBPTkVNRVNIX0tmIXhuPw==‘ and ASCII: ‘TPONEMESH_Kf!xn¿
16‘tpdServer’ binary SHA-256 digest 7409588ca41d469e1485fa3e6a48cee772fffaa2adadb03e29dc878a1c032a32

https://nvd.nist.gov/vuln/detail/CVE-2020-10884
https://nvd.nist.gov/vuln/detail/CVE-2020-10884
https://nvd.nist.gov/vuln/detail/CVE-2020-10884
https://www.tp-link.com/us/support/download/archer-a7/
https://www.tp-link.com/us/support/download/archer-a7/
https://www.zerodayinitiative.com/advisories/ZDI-20-336/
https://www.zerodayinitiative.com/advisories/ZDI-20-336/

5.7. Cryptographic Misuses 75

found that one firmware image from a different product had the same exact binary, hence an identical
vulnerability on ‘tdpServer’ executable binary that is patched in a later release version as well.
Furthermore, we scan the TP-Link database for occurrences of the same unique AES symmetric key
and the query results in 68 different firmware images from 24 different products, including the TP-Link
Archer A7, other TP-Link’s routers and TP-Link’s Wi-Fi Range Extenders (mesh and not). Interestingly,
some of the newly discovered possibly vulnerable firmware images come with release dates of early
2021, a year after the CVE-2020-10884 is disclosed. We decided not to disclose any of the firmware
images and products, as some of them may be vulnerable to n-day attacks.

5.7.2.3 Predictable seed in Pseudo-Random Number Generator
EBAT cryptographic misuse analysis checks for the usage of weak seeds, used in Pseudo-Random
Number generators (PRNGs), Rule R2, from Chapter 2.3. In order to verify the use of it, we are trying
to identify if we successfully discovered the high severity CVE-2020-1378417 with a base score of
7.5 on D-Link DIR-865L Ax 1.20B01 Beta devices, that states to have a predictable seed in a Pseudo-
Random Number Generator (PRNG).

Analyzing the aforementioned firmware image in approximately 20 minutes, EBAT discovers the
executable binary called ‘cgibin’ that violatesRule R2 in a function called ‘get_random_string’
that uses ‘srand(time)’ and ‘rand()’ functions to produce a pseudo-random sequence. Time is
a predictable seed and should not be used. Verify our results with the report at [30], which shows that
the generator is used to generate a random session cookie. However, an attacker who knows the time
of the request can predict it and determine the session cookie to conduct multiple attacks. Overall, with
EBAT analysis, the developers can easily spot the ‘random string generator’ not to be so random and
patch it appropriately. Unfortunately, scanning our database for similar instances of executable binary
‘cgibin’ that violates Rule R2 from a function called ‘get_random_string’, results in a hit of
23 firmware images, including the one reported, and 8 different products varies between routers and
WiFi range extenders. The last possibly vulnerable firmware image is released in the third quarter of
2020. The complete analysis report will not be disclosed as there is also a possibility of n-day attacks
on those devices (products).

Another high severity CVE-2017-1565418 with a base score of 8.3 on highly predictable session to-
kens in the ‘HTTPd’ server in all current versions (<= 3.0.0.4.380.7743) of ASUS software ASUSWRT
allows an attacker to gain administrative router access. EBAT analysis is on a binary level and not
in open-source code, where the specific source code is compiled on a binary that we analyze with
static taint analysis to detect cryptographic misuses. The predictable pseudo-random generator is
fully disclosed at [26], where the function named ‘generate_token’ is used to generate the ses-
sion token for an authenticated user using stdlib rand function with a weak entropy as seed to be
srand(time(NULL)). Scanning EBAT results database for violation of Rule R2 in ‘HTTPd’ binary
‘generate_token’ results in 71 firmware images before the published date of CVE-2017-15654
ranging from 2015 to 2017. In our dataset, a total of 29 devices (products) with this vulnerable firmware
image are affected. No new firmware images after the CVE has been patched are found. Overall, if
EBAT analysis is used in a firmware image by 2015, the aforementioned CVE will be patched way
earlier and not be actively exploitable in a period of 2 years.

5.7.2.4 CryptoREX comparison
CryptoREX presented in [102] is a framework to identify cryptographic misuse of IoT/embedded de-
vices. CryptoREX is executed on 521 successfully unpacked firmware images over 1, 327 crawled
firmware images with 165 pre-defined crypto APIs. Compared with EBATwhere it is executed on 22, 548
successfully unpacked firmware images (including 424 partially unpacked firmware image) over 36, 073
crawled firmware images, with 733 pre-defined crypto APIs. The large-scale analysis of this study is not
directly comparable with CryptoREX study as the examined firmware images are 43 times greater. Ad-
ditionally, the dataset of firmware images used by CryptoREX is not by all means included in EBAT’s
dataset, as we do not have the overall information on the examined dataset directly from the related
paper [102]. The pre-defined crypto APIs from CryptoREX are included in our list and expanded by
17NVD - CVE-2020-13784, National Vulnerability Database, 2020, https://nvd.nist.gov/vuln/detail/CVE-2020-1
3784

18NVD - CVE-2017-15654, National Vulnerability Database, 2017, https://nvd.nist.gov/vuln/detail/CVE-2017-1
5654

https://nvd.nist.gov/vuln/detail/CVE-2020-13784
https://nvd.nist.gov/vuln/detail/CVE-2020-13784
https://nvd.nist.gov/vuln/detail/CVE-2020-13784
https://nvd.nist.gov/vuln/detail/CVE-2017-15654
https://nvd.nist.gov/vuln/detail/CVE-2017-15654
https://nvd.nist.gov/vuln/detail/CVE-2017-15654

76 5. Results & Findings

us. We also covered and expanded the cryptographic rules in this study. EBAT taint analysis module is
inspired by CryptoREX. However, the implemented code/tools are completely different. CryptoREX
uses Valgrind’s VEX IR [69] as the representation format; its Python bindings PyVEX [89] using Angr
[1]. On the other hand, we use Ghidra SRE [70], Ghidra’s intermediate representation/language (IR/IL)
form, and Ghidra’s P-Code. After the IR form, CryptoREX implements their taint analysis based on
Angr [1] and IDA Pro [49] (not open source available) in order to enhance their analysis with multiple
techniques. In our implementation, we rely on Ghidra’s analysis and enhancement tools, and where
applicable, we developed headless scripts for further enhancement. We also developed the taint anal-
ysis headless script for detecting cryptographic violations. Despite the tools and enchantments, there
are similarities in both implementations, such as the Cross-file Call Graph construction for the detec-
tion of library wrappers. CryptoREX has also implemented a module to simulate the functionality of
array operation APIs (e.g., memset() and memcpy()), where we did not implement an extensive mod-
ule to simulate all the operations and left it for future work. EBAT implements a way to monitor the
cryptographic context of the function call that allows us to provide more details about the cryptographic
primitives used in firmware images. In addition, there are other modules that we implemented and
presented in previous sections that are not related to taint analysis of cryptographic misuse detection.
Overall, a direct comparison cannot be performed between CryptoREX and EBAT. However, EBAT
covers the cryptographic rules of CryptoREX, we strongly suggest running CryptoREX as well
as EBAT on any examined firmware image. Due to different analysis techniques, CryptoREX
may discover violations that EBAT misses and vice versa.

Violated Rule Identical Rules CryptoREX
EBAT
(entry and not discovered 𝜙)

EBAT
(entry and possible 𝜙)

of Firm. % of Firm. # of Firm. % of Firm. # of Firm. % of Firm.
Rule 1 S2 107 20.5% 3,794 16.83% 3,794 16.83%
Rule 2 S3 24 4.6% 21 0.09% 21 0.09%
Rule 3 S1 and K1 59 11.3% 674 2.99% 674 3.01%
Rule 4 K2 56 10.8% 1,901 8.43% 3,173 14.07%
Rule 5 K3 23 4.4% 441 1.96% 445 1.97%
Rule 6 R1 0 0% 2,491 11.05% 3,333 14.78%
No violation - 395 75.8% 15,524 68.85% 13,697 60.75%

Table 5.26: Results of crypto misuse detection (by rules) as reported on [41] and CryptoREX [102] compared with EBAT.

Table 5.26 depicts the overall CryptoREX results of discovered cryptographic misuses as reported
in [102] compared with EBAT results. As explained earlier, we cannot make a direct comparison in our
results as the tools, implementations, techniques and, most importantly, the dataset differ. Thus, the
results we presented in this section are the ones covered by CryptoREX and compared the identical
results that are also covered by EBAT. Table 5.26 presents the results for EBAT in two ways. The
findings from a rule violation from a binary’s entry point and not discovered as a 𝜙 node, and the ones
that are discovered from a binary’s entry point and may possibly be a 𝜙 node. CryptoREX violation
of rule 1 is discovered percentage-wise close with EBAT despite the difference in firmware images.
EBAT discovered the violation of rule 2 only in 21 firmware images, 4 less than CryptoREX, however,
there is a large data-set difference. Rule 3 and 4 are much higher in EBAT’s discovery (percentage-
wise), whereas rule 5 has a low percentage but was discovered in more than 400 firmware images.
Additionally, the violation of rule 6 is discovered in 2, 491 firmware images from EBAT in the case of ‘entry
and not discovered 𝜙’. However, remember that false positives may exist in our results as explained in
the previous section 5.7.1.3 mainly due to context re-initialization of random function and the context
of usage. The total number of ‘no violations’ is close to ours. However, if we exclude rule 6 from EBAT
results we have the following for no violation (excluding rule 6): 16, 815 firmware images (74.57%)
from ‘entry and not a discovered 𝜙 node’ case, and 15, 698 firmware images (69.62%) from ‘entry and
possible 𝜙 node’ case, discovered to not violating any of the above rules. CryptoREX discovered that
75.8% of their total evaluated firmware images does not have a single discovered violation close to our
results when excluding Rule 6. Without excluding Rule 6, the percentage is approximately 70% for the
‘entry and not discovered 𝜙’ case and 60% in the ‘entry and possible 𝜙 node’ case.

5.7.3. Conclusions and Validity of results
In the paragraphs below, the validity of the aforementioned results will be examined, along with our
conclusions. Overall, EBAT executed in 22, 548 successfully unpacked firmware images and analyzed

5.7. Cryptographic Misuses 77

for cryptographic misuses 1, 452, 039 binaries where 861, 946 are executables and the rest are libraries.
In total, our evaluation of the results produced the following. In the case of ‘entry and possible 𝜙‘ more
than 10 thousand firmware images (approximately 48%) discovered to non-violate at least one of the
rules excepting rules R1 and R2, where in the cases of including all the rules the percentage drops
to 29.44% resulting in more than 6 thousand successfully unpacked firmware images. In the case of
‘entry and not discovered a 𝜙 node’ 12, 040 (53.40%) firmware images are discovered to not violating
any of the rules (except ruleR1 and R2), where if we do not exclude those rules the percentage drops to
approximately 33%. Specifically, in the case of ‘entry and not discovered 𝜙’ we have the following: for
the Symmetric Key Cryptography rules S1, S2, S3 and S4 we observe a non-violation of any of these
rules to be at 79.34% of the total successfully unpacked firmware images. In addition, for the Public Key
Cryptography rules P1, P2 and P3 is 79.70% for not violating any of the public key cryptography rules.
Furthermore, approximately 40% are observed for Pseudo RandomNumber Generators (PRNGs) rules
R1 and R2 to non-violate any of these rules, where the security-context is unknown. Regarding Key
Derivation Functions (KDFs) and Password Based Encryption (PBE) rules K1, K2, K3 and K4 a total
of 68.80% are discovered to be non violating any of the rules. Lastly, Message Authentication Codes
(MACs) rulesM1,M2 andM3 are found to non violating approximately 90% of the total firmware images.
Not a single violation is discovered for Authenticated encryption/decryption and AEAD rulesA1 andA2.

The evaluation of the above results may come with false positives or incomplete results, and it is
strictly noted that one should further verify any of EBAT results through multiple stages of analysis,
as we show with the case studies in Section 5.7.2. The multiple stages of analysis on each specific
firmware image include but are not limited to manual audit, dynamic analysis techniques, and the phys-
ical acquisition of a device for verifying any potential vulnerability that EBAT discovers. For instance,
scenario listing 5.3 explains why manual audit, dynamic analysis and physical device acquisition are
necessary to verify cryptographic misuses. However, our results still provide a first good indication of
the security of the examined firmware images and the cryptographic weaknesses they may face.

The rules that are excluded for the total no violation results are R1 and R2, which may result in a
variety of false positives due to many factors, as we explain in this paragraph. Specifically, the main
problem is that we cannot automatically, using EBAT, determine the context of the random functions,
which means that if they are used in a cryptographic application, for instance, a request of random
numbers for the Diffie Hellman Key Exchange (DHKE), or used in non-cryptographic applications where
Cryptographically-Secure Pseudorandom Number Generators (CSPRNGs) are not strictly necessary.
Additionally, we cannot check individually all the function calls as there is a chance of re-initialization
of the random seed, where a non-violated version (or a 𝜙 path) of the seeding of a PRNG may occur
after the vulnerable one, and/or even the vulnerable function call may never occur in the case of a 𝜙
node. We cannot cover these cases in our tool; thus, we decided to present those results that were
excluded from the total ones.

EBAT modules for static taint analysis depend on the taint functions and taint function’s arguments;
thus, the list provided is not by all means an exhaustive list. The modularity of EBAT provides the ex-
pansion, editing, or rewriting of the list of taint functions and arguments in anyone’s needs. In addition,
Ghidra’s newer versions were also released when writing this thesis, with many improvements and
bug fixes. The Ghidra headless scripts are backwards compatible, and newer versions may provide
additional results and better precision. Our implementation code is open-source so that anyone can
contribute to the project.

Several case studies are examined in the section mentioned above 5.7.2, where we examined
previously known vulnerabilities for cryptographic misuses in multiple firmware images and using our
implemented tool, EBAT, we verify the potential of automatic discovery of those vulnerabilities, that
lead to a cryptographic misuse for different rules covered in this section. In addition, we discover
more products that are not reported in the affected products using our large-scale analysis that is
performed using EBAT. In conclusion, the results provide a good first indication of the security of the
examined firmware images and the cryptographic weaknesses they may face; however, multiple stages
of analysis is needed to verify any of the claims.

6
Conclusion

In today’s interconnected world, the widespread adoption of the Internet of Things (IoT) and embedded
devices has revolutionized various aspects of our lives. These devices, ranging from smart home appli-
ances to industrial control systems, rely heavily on firmware images to provide essential functionalities
and operations. The software security of the Internet of Things(IoT)/embedded devices primarily relies
on their firmware images. However, with these devices’ increasing complexity and diversity and the
rapid pace of technological advancements, firmware image security has become more challenging to
analyze. It is crucial to address the potential risks and vulnerabilities associated with firmware images
where a vendor may prevent them by implementing secure development practices, effectively man-
aging vulnerabilities, and providing regular security updates. In this research, we delve into the realm
of firmware image security of IoT/embedded devices and aim to gain a deeper understanding of the
security issues and potential risks faced by IoT/embedded devices related explicitly to their firmware
images.

This thesis explores the security of firmware images in IoT/embedded devices. It implements an
open-source tool called Embedded Binary Analysis Tool1. EBAT provides an automated and com-
prehensive security analysis of firmware images, identifying possible vulnerabilities and weaknesses.
A large-scale analysis of diverse IoT/embedded devices demonstrates the effectiveness of EBAT in
analyzing firmware security in various aspects. The large-scale analysis is conducted in more than
30, 000 firmware images used by home users to corporate environments belonging to more than 5, 000
IoT/embedded devices across 33 vendors in a date span of over 20 years. The results and findings
obtained from this analysis have been presented in the preceding chapters, providing valuable insights
into the state of firmware image security. In the rest of this section, EBAT’s main contributions and
a summary of the results will be presented, concluding with our final thoughts, limitations and future
work.

6.1. EBAT Contributions
This thesis has presented the implementation and capabilities of the Embedded Binary Analysis Tool
(EBAT) for analyzing the security of firmware images in IoT/embedded devices. Throughout this the-
sis, we have demonstrated the functionality and effectiveness of EBAT in addressing critical aspects
of firmware security. Firstly, an automated process is implemented, utilizing a crawler to download an
extensive amount of firmware images from numerous vendors for various types of IoT/embedded de-
vices. The dataset obtained through this process is organized into multiple products, with each product
containing publicly available firmware images arranged chronologically. The tool’s automated process
allows for analyzing multiple firmware images on a large scale. It offers an automated and comprehen-
sive approach to assessing the security of these devices by providing valuable insights into possible
vulnerabilities and weaknesses. The tool exclusively utilizes open-source software, enabling the im-
plementation of a complex firmware security analysis tool without relying on any proprietary software.
Moreover, several modules are implemented using Python scripts, Ghidra headless scripts, and vari-
ous open-source libraries libraries. Overall, EBAT provides a comprehensive tool-set for analyzing the
1EBAT is provided open source at EBAT-public, https://github.com/ppanagiotou/EBAT-public

79

https://github.com/ppanagiotou/EBAT-public
https://github.com/ppanagiotou/EBAT-public

80 6. Conclusion

security of firmware images in IoT/embedded devices by leveraging its automated analysis capabilities
and utilizing various modules; it offers insights into the presence of security vulnerabilities, discovered
any lack of binary hardening features, versions of cryptographic libraries that may lead to know CVEs,
multiple CVEs for many libraries, any plaintext credentials such as private keys, weak passwords, and
last but not least potential cryptographic misuses in binary level using static code analysis. The tool’s
open-source nature and ability to perform large-scale analysis make it a valuable resource for assess-
ing the security of IoT/embedded devices where individuals can implement and add their own modules
to enhance the tool’s capabilities and address specific security analysis requirements.

The main goal of EBAT is to identify cryptographic misuses in binary code. One of the key contri-
butions of EBAT is defining a set of cryptographic misuse rules. We have defined a total of 18 cryp-
tographic misuse rules for various cryptographic primitives, including Symmetric Key Cryptography,
Public Key Cryptography, Pseudo Random Number Generators (PRNGs), Key Derivation Functions
(KDFs) and Password Based Encryption (PBE), Message Authentication Codes (MACs), Authenti-
cated encryption/decryption and AEAD. EBAT implements static taint analysis (backward tracking) on
the binary level using Ghidra’s [70] headless scripts and various interconnected modules. For the 18
cryptographic misuse rules applied in 10 open-source cryptographic libraries with well-defined APIs, we
have created rules applied in over 700 functions and 1600 functions arguments. By applying static taint
analysis to these functions and arguments, we can identify violations of the cryptographic rules. Using
various modules described in previous Chapters, EBAT is also capable of discovering cryptographic
primitives and violations in wrapper functions, where it automatically updates the rules of functions to
improve the detection of misuses. Overall, EBAT’s static taint analysis provides a powerful frame-
work for detecting the possibility of cryptographic misuse in binary code, making it a valuable tool for
identifying and addressing security vulnerabilities in cryptographic implementations.

In conclusion, EBAT serves as a valuable resource for researchers working on firmware security. Its
automated analysis process, comprehensive modules, and ability to discover possible vulnerabilities,
cryptographic misuses at a binary level, and other security weaknesses make it a powerful tool for
identifying and mitigating security risks in IoT/embedded devices.

6.2. Limitations and Future Work
This section examines the limitations and future work for EBAT. Although a tremendous effort is made
to provide the automatic analysis as solid as possible, improvements, expansions and bug fixes are
mostly welcomed. Firstly, the unpacking process is the key step in analysing firmware images. Thus,
better unpacking tools, methods and algorithms are also in the scope of our future work. The firmware
images that are not unpacked can be examined individually to discover the reason behind the unsuc-
cessful unpacking process and implement or improve the ability of our tool to unpack by providing an
additional module. However, encryption of the firmware image exists where the unpacking process is
inevitable without acquiring the private key. EBAT analyses automatically the ELF binaries. Although
other formats exist and are found by our tool, such as PE, we decided to improve the handling of other
executable formats in the future. When it comes to CVE identification, we expanded our tool to handle
additional CVEs that not only come from cryptographic libraries but other libraries as well. Although
the CVE scanner uses only CVE Binary Tool[51], we can also implement a version scanner with Ghidra
capabilities headless scripts (more precise but time-consuming) beyond cryptographic libraries that will
allow us to spot the libraries version with better accuracy and additionally providing the reported CVEs
if exists.

EBAT performs static taint analysis to identify violations of cryptographic rules reported in previous
chapters. As mentioned, Ghidra SRE [70] is only used with implemented headless scripts. As Ghidra,
newer versions have been released at the time of writing, with many new futures, bug fixes and others.
Our dataset of firmware images could also execute in the latest release, which may give us more
findings that older versions have missed. Furthermore, unsupported architectures may be added, or
one can create one with the language specification, SLEIGH, and binaries that we cannot execute the
analysis now will be possible. The newest version of Ghidra will be tested in future work. As with our
analysis, many improvements can be implemented. Firstly, the taint propagation should fully support
the use of functions such as memcpy(). Secondly, more tainted functions and function arguments and
new cryptographic libraries API calls must be covered.

Additionally, binaries that use a cryptographic library statically linked with a binary are not sup-

6.2. Limitations and Future Work 81

ported. Future work can identify and support this feature and discover firmware’s own cryptographic
implementations and cryptographic function detection on obfuscated binaries. In addition, automatic
binary patching on the discovered cryptographic misuses may be possible. Lastly, a framework com-
bining static and dynamic taint analysis usingGhidra’s emulator and QEMU is also a possible extension
in our tool and left for future work.

A
Appendix - Results & Findings

A.1. Evaluation Corpus
Architecture Bit Endianness # Firmwares Percentage
ARC Cores Tangent-A5a 32 LE 4 0.02%
ARM 32 BE 89 0.39%
ARM 32 LE 6,262 27.77%
ARM 64 LE 79 0.35%
Analog Devices Blackfina 32 LE 6 0.03%
Intel 80386a 32 LE 827 3.67%
MIPS 32 BE 7,370 32.69%
MIPS 32 LE 3,703 16.42%
MIPS 64 BE 489 2.17%
Motorola m68k 32 BE 2 0.01%
PowerPC 32 BE 555 2.46%
Tilera TILE-Gxa 32 LE 15 0.07%
Tilera TILE-Gxa 64 LE 102 0.45%
Ubicoma 32 BE 14 0.06%
No architectureb 32 LE 5 0.02%
x86-64 64 LE 3,026 13.42%
Table A.1: Various CPU Architectures over our entire dataset.

aGhidra SRE[70] release version 9.1.2 (02/2020) does not
support these architectures for code analysis.

bCannot find any binary architecture from the ELF header (cor-
rupted). Possibly, the firmware image was not unpacked suc-
cessfully.

Year # unpacked
2002 1
2004 13
2005 36
2006 61
2007 93
2008 92
2009 145
2010 244
2011 322
2012 1,101
2013 1,741
2014 1,740
2015 1,755
2016 1,932
2017 3,991
2018 3,022
2019 3,227
2020 2,776
2021 256
Total 22,548

Table A.2: Successfully unpacked firmware images per year.

83

84 A. Appendix - Results & Findings

Table A.3: Different CPU Architectures per vendor, including unpacked and partially unpacked firmware images.

Vendors
ARM MIPS PowerPC Others CPU Arch1

32 bit 64 bit 32 bit 64 bit 32 bit 64 bit 32 bit 64 bit
LE BE LE BE LE BE LE BE LE BE LE BE LE BE LE BE

1 ASUS 507 0 0 0 478 323 0 0 0 0 0 0 1 0 0 0
2 AVM 10 0 0 0 15 59 0 0 0 0 0 0 0 0 0 0
3 Actiontec 0 0 0 0 1 4 0 0 0 0 0 0 0 0 0 0
4 Addvaluetech 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
5 Alfa 0 0 0 0 3 68 0 0 0 0 0 0 0 0 0 0
6 Arris 4 0 0 0 0 3 0 0 0 0 0 0 0 0 0 0
7 Belkin 3 1 0 0 20 21 0 0 0 0 0 0 0 0 0 0
8 Buffalo 0 0 0 0 4 0 0 0 0 0 0 0 0 0 0 0
9 D-Link 789 16 0 0 478 616 0 64 0 146 0 0 1 16 8 0
10 Dell 45 0 0 0 0 4 0 38 0 0 0 0 0 0 35 0
11 DrayTek 4 0 0 0 84 90 0 0 0 0 0 0 0 0 0 0
12 EdiMax 61 1 0 0 98 126 0 0 0 0 0 0 11 0 0 0
13 FOSCAM 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
14 HP 17 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
15 Inmarsat 9 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0
16 LinkSys 80 0 1 0 81 31 0 2 0 0 0 0 0 0 0 0
17 MicroTik 122 0 0 0 106 235 0 0 0 117 0 0 132 0 102 0
18 NETGEAR 2,320 58 1 0 802 1,160 0 33 0 172 0 0 662 0 2,853 0
19 Netis 2 0 0 0 19 93 0 0 0 0 0 0 0 0 0 0
20 Planet 119 9 0 0 100 154 0 0 0 3 0 0 31 0 2 0
21 QNAP 35 0 17 0 50 0 0 0 0 0 0 0 5 0 2 0
22 Rotek 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
23 Synology 65 2 12 0 0 0 0 0 0 112 0 0 2 0 126 0
24 TP-Link 608 0 5 0 502 871 0 80 0 3 0 0 0 0 0 0
25 Tenda 106 0 0 0 183 74 0 0 0 0 0 0 4 0 0 0
26 Tenvis 3 0 0 0 4 0 0 0 0 0 0 0 0 0 0 0
27 Thuraya 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0
28 Totolink 0 0 2 0 84 58 0 0 0 0 0 0 0 0 0 0
29 Trendnet 72 1 0 0 70 120 0 0 0 0 0 0 4 0 0 0
30 Ubiquiti 948 0 36 0 163 2441 0 149 0 0 0 0 0 0 0 0
31 Western-Digital 0 0 4 0 0 1 0 0 0 0 0 0 0 0 0 0
32 Xiaomi 83 0 0 0 228 2 0 0 0 0 0 0 0 0 0 0
33 Zyxel 245 1 1 0 129 814 0 123 0 0 0 0 4 0 0 0
- Total 6,262 89 79 0 3,703 7,370 0 489 0 555 0 0 857 16 3,128 0

A.1. Evaluation Corpus 85

Ta
bl
e
A.
4:

O
ve
ra
ll
ev
al
ua
tio
n
da
ta
se
t.

#
Ve

nd
or

#
Pr
od
.

#
Fi
rm
.

#
un
iq
ue

Fi
rm
w
ar
es

#
un
pa
ck

Pr
od
uc
ts
2

#
pa
rti
al
ly

un
pa
ck

3
#
un
pa
ck

4
To
ta
l

Ea
rli
es
t

Fi
rm
w
ar
e
da
te

La
te
st

Fi
rm
w
ar
e
da
te

1
AS

U
S

26
5

1,
51
5

1,
46
8
(9
6.
90
%
)

22
0
(8
3.
02
%
)

42
1,
26
7

1,
30
9
(8
6.
40
%
)

26
/0
1/
20
05

26
/0
1/
20
21

2
AV

M
68

10
2

10
2
(1
00
.0
0%

)
68

(1
00
.0
0%

)
0

10
2

10
2
(1
00
.0
0%

)
02
/0
2/
20
06

17
/0
9/
20
20

3
Ac
tio
nt
ec

5
5

5
(1
00
.0
0%

)
5
(1
00
.0
0%

)
0

5
5
(1
00
.0
0%

)
19
/0
8/
20
11

08
/0
4/
20
18

4
Ad

dv
al
ue
te
ch

4
4

4
(1
00
.0
0%

)
0
(0
.0
0%

)
0

0
0
(0
.0
0%

)
01
/0
6/
20
18

01
/0
3/
20
21

5
Al
fa

39
79

67
(8
4.
81
%
)

35
(8
9.
74
%
)

0
71

71
(8
9.
87
%
)

03
/0
1/
20
19

15
/1
2/
20
20

6
Ar
ris

6
8

8
(1
00
.0
0%

)
5
(8
3.
33
%
)

0
7

7
(8
7.
50
%
)

21
/1
2/
20
15

29
/0
7/
20
19

7
Be

lk
in

28
64

64
(1
00
.0
0%

)
19

(6
7.
86
%
)

2
43

45
(7
0.
31
%
)

10
/0
1/
20
05

30
/0
7/
20
18

8
Bu

ffa
lo

12
15

12
(8
0.
00
%
)

4
(3
3.
33
%
)

0
4

4
(2
6.
67
%
)

25
/0
4/
20
16

27
/0
1/
20
21

9
D
-L
in
k

78
9

3,
86
1

3,
33
3
(8
6.
32
%
)

35
9
(4
5.
50
%
)

62
2,
05
4

2,
11
6
(5
4.
80
%
)

29
/0
2/
20
00

26
/0
4/
20
21

10
D
el
l

61
33
8

30
0
(8
8.
76
%
)

25
(4
0.
98
%
)

5
11
7

12
2
(3
6.
09
%
)

13
/1
0/
20
11

16
/1
0/
20
20

11
D
ra
yT
ek

12
9

1,
30
0

1,
29
6
(9
9.
69
%
)

33
(2
5.
58
%
)

0
17
8

17
8
(1
3.
69
%
)

11
/0
3/
20
04

23
/0
9/
20
20

12
Ed

iM
ax

23
2

41
4

38
4
(9
2.
75
%
)

16
8
(7
2.
41
%
)

0
29
7

29
7
(7
1.
74
%
)

01
/1
2/
20
05

29
/1
2/
20
20

13
FO

SC
AM

10
0

27
1

10
3
(3
8.
01
%
)

4
(4
.0
0%

)
1

4
5
(1
.8
5%

)
04
/0
6/
20
13

08
/1
2/
20
20

14
H
P

12
43

43
(1
00
.0
0%

)
4
(3
3.
33
%
)

0
17

17
(3
9.
53
%
)

04
/0
2/
20
16

23
/0
6/
20
20

15
In
m
ar
sa
t

35
44

44
(1
00
.0
0%

)
9
(2
5.
71
%
)

0
11

11
(2
5.
00
%
)

17
/1
2/
20
08

01
/1
0/
20
20

16
Li
nk
Sy
s

14
0

25
0

20
7
(8
2.
80
%
)

10
9
(7
7.
86
%
)

0
19
5

19
5
(7
8.
00
%
)

14
/1
2/
20
11

05
/0
2/
20
21

17
M
ic
ro
Ti
k

20
82
6

82
6
(1
00
.0
0%

)
9
(4
5.
00
%
)

0
81
4

81
4
(9
8.
55
%
)

07
/0
7/
20
11

09
/0
2/
20
21

18
N
ET

G
EA

R
82
9

9,
45
8

3,
79
0
(4
0.
07
%
)

55
3
(6
6.
71
%
)

19
4

7,
86
7

8,
06
1
(8
5.
23
%
)

31
/0
8/
20
01

07
/0
4/
20
21

19
N
et
is

42
12
9

12
4
(9
6.
12
%
)

35
(8
3.
33
%
)

0
11
4

11
4
(8
8.
37
%
)

25
/0
1/
20
12

11
/1
1/
20
20

20
Pl
an
et

29
0

81
6

71
8
(8
7.
99
%
)

16
2
(5
5.
86
%
)

13
40
5

41
8
(5
1.
23
%
)

23
/0
6/
20
03

20
/0
2/
20
21

21
Q
N
AP

23
8

4,
56
6

2,
52
6
(5
5.
32
%
)

10
(4
.2
0%

)
65

44
10
9
(2
.3
9%

)
28
/1
0/
20
14

28
/0
4/
20
21

22
R
ot
ek

1
1

1
(1
00
.0
0%

)
1
(1
00
.0
0%

)
0

1
1
(1
00
.0
0%

)
02
/0
6/
20
20

02
/0
6/
20
20

23
Sy
no
lo
gy

61
31
9

31
8
(9
9.
69
%
)

61
(1
00
.0
0%

)
0

31
9

31
9
(1
00
.0
0%

)
21
/1
0/
20
14

03
/0
9/
20
20

24
TP

-L
in
k

95
0

3,
25
8

3,
21
0
(9
8.
53
%
)

64
0
(6
7.
37
%
)

11
2,
05
8

2,
06
9
(6
3.
51
%
)

14
/0
3/
20
06

02
/0
4/
20
21

25
Te
nd
a

26
7

70
7

69
9
(9
8.
87
%
)

13
5
(5
0.
56
%
)

4
36
3

36
7
(5
1.
91
%
)

04
/1
1/
20
09

31
/0
3/
20
21

26
Te
nv
is

3
13

13
(1
00
.0
0%

)
3
(1
00
.0
0%

)
1

6
7
(5
3.
85
%
)

07
/1
1/
20
12

04
/0
7/
20
14

27
Th
ur
ay
a

7
22

22
(1
00
.0
0%

)
1
(1
4.
29
%
)

0
2

2
(9
.0
9%

)
05
/0
7/
20
11

01
/0
5/
20
20

28
To
to
lin
k

65
15
7

15
1
(9
6.
18
%
)

57
(8
7.
69
%
)

0
14
4

14
4
(9
1.
72
%
)

02
/0
6/
20
15

23
/0
3/
20
21

29
Tr
en
dn
et

37
0

54
8

45
0
(8
2.
12
%
)

18
2
(4
9.
19
%
)

3
26
4

26
7
(4
8.
72
%
)

13
/0
1/
20
03

01
/0
3/
20
21

30
U
bi
qu
iti

25
3

3,
77
3

93
5
(2
4.
78
%
)

24
9
(9
8.
42
%
)

0
3,
73
7

3,
73
7
(9
9.
05
%
)

07
/1
1/
20
12

10
/0
2/
20
21

31
W
es
te
rn
-D
ig
ita
l

2
5

5
(1
00
.0
0%

)
2
(1
00
.0
0%

)
0

5
5
(1
00
.0
0%

)
14
/1
2/
20
12

28
/0
5/
20
20

32
Xi
ao
m
i

15
31
3

31
3
(1
00
.0
0%

)
15

(1
00
.0
0%

)
1

31
2

31
3
(1
00
.0
0%

)
29
/0
7/
20
14

22
/0
7/
20
20

33
Zy
xe
l

51
5

2,
84
9

2,
82
5
(9
9.
16
%
)

23
1
(4
4.
85
%
)

20
1,
29
7

13
17

(4
6.
23
%
)

22
/0
4/
19
97

24
/0
3/
20
21

-
To

ta
l

5,
85
3

36
,0
73

24
,3
66

(6
7.
55
%
)

3,
41
3
(5
8.
31
%
)

42
4

22
,1
24

22
,5
48

(6
2.
51
%
)

-
-

2
U
np
ac
k
Pr
od
uc
ts
ha
ve

on
e
or
m
or
e
un
pa
ck

fir
m
w
ar
e
im
ag
es
,i
nc
lu
di
ng

th
e
pa
rti
al
on
es
.

3
A
fir
m
w
ar
e
im
ag
e
is
m
ar
ke
d
as

pa
rti
al
ly
un
pa
ck
ed

if
at
le
as
to
ne

bi
na
ry
is
fo
un
d,
bu
ts
om

e
re
qu
ire
d
dy
na
m
ic
lib
ra
rie
s
ar
e
no
tp
re
se
nt
.

4
A
fir
m
w
ar
e
im
ag
e
is
m
ar
ke
d
as

su
cc
es
sf
ul
ly
un
pa
ck
ed

if
at
le
as
to
ne

bi
na
ry
is
fo
un
d
du
rin
g
th
e
ex
tra
ct
io
n
pr
oc
es
s
an
d
al
lr
eq
ui
re
d
dy
na
m
ic
lib
ra
rie
s
ar
e
pr
es
en
t.

86 A. Appendix - Results & Findings

A.2. Binary Statistics

Figure A.1: Heatmap of executable binaries that use a cryptographic library.

Figure A.2: Heatmap of library binaries that use a cryptographic library.

A.2. Binary Statistics 87

Ta
bl
e
A.
5:

O
ve
ra
ll
bi
na
rie
s
st
at
is
tic
s
pe
rv
en
do
rs
’f
irm

w
ar
e
im
ag
es
.

#
Ve

nd
or

#
bi
na
rie
s

#
lib
ra
rie
s

%
#
ex
ec
ut
ab
le
s

%
#
un
iq
ue

bi
na
rie
s

%
#
un
iq
ue

lib
s

%
#
un
iq
ue

ex
ec

%
1

AS
U
S

45
6,
40
5

32
1,
01
5

70
.3
4

13
5,
39
0

29
.6
6

40
,6
51

8.
91

23
,7
22

7.
39

16
,9
31

12
.5
1

2
AV

M
6,
70
2

3,
94
2

58
.8
2

2,
76
0

41
.1
8

3,
60
1

53
.7
3

2,
21
7

56
.2
4

1,
38
4

50
.1
4

3
Ac
tio
nt
ec

85
9

43
0

50
.0
6

42
9

49
.9
4

85
3

99
.3
0

42
6

99
.0
7

42
7

99
.5
3

4
Ad

dv
al
ue
te
ch

0
0

0.
00

0
0.
00

0
0.
00

0
0.
00

0
0.
00

5
Al
fa

13
,9
75

9,
37
3

67
.0
7

4,
60
2

32
.9
3

2,
45
8

17
.5
9

1,
64
3

17
.5
3

81
5

17
.7
1

6
Ar
ris

2,
86
7

2,
05
4

71
.6
4

81
3

28
.3
6

1,
50
1

52
.3
5

1,
08
5

52
.8
2

41
6

51
.1
7

7
Be

lk
in

5,
35
1

2,
83
6

53
.0
0

2,
51
5

47
.0
0

3,
07
7

57
.5
0

1,
36
3

48
.0
6

1,
71
4

68
.1
5

8
Bu

ffa
lo

75
4

47
1

62
.4
7

28
3

37
.5
3

52
0

68
.9
7

30
5

64
.7
6

21
5

75
.9
7

9
D
-L
in
k

41
1,
76
7

20
3,
24
7

49
.3
6

20
8,
52
0

50
.6
4

71
,0
15

17
.2
5

32
,3
67

15
.9
2

38
,6
48

18
.5
3

10
D
el
l

20
,3
84

15
,4
71

75
.9
0

4,
91
3

24
.1
0

1,
92
8

9.
46

1,
38
7

8.
97

54
1

11
.0
1

11
D
ra
yT
ek

20
,5
65

11
,3
30

55
.0
9

9,
23
5

44
.9
1

5,
24
5

25
.5
0

2,
50
9

22
.1
4

2,
73
9

29
.6
6

12
Ed

iM
ax

22
,9
19

11
,4
07

49
.7
7

11
,5
12

50
.2
3

8,
16
4

35
.6
2

3,
51
6

30
.8
2

4,
64
9

40
.3
8

13
FO

SC
AM

36
2

25
0

69
.0
6

11
2

30
.9
4

27
1

74
.8
6

18
2

72
.8
0

89
79
.4
6

14
H
P

49
8

18
7

37
.5
5

31
1

62
.4
5

81
16
.2
7

33
17
.6
5

48
15
.4
3

15
In
m
ar
sa
t

3,
72
3

2,
17
4

58
.3
9

1,
54
9

41
.6
1

2,
67
4

71
.8
2

1,
55
5

71
.5
3

1,
11
9

72
.2
4

16
Li
nk
Sy
s

64
,4
42

38
,0
49

59
.0
4

26
,3
93

40
.9
6

19
,8
73

30
.8
4

11
,5
88

30
.4
6

8,
28
5

31
.3
9

17
M
ic
ro
Ti
k

42
5,
46
8

32
5,
85
1

76
.5
9

99
,6
17

23
.4
1

23
8,
79
1

56
.1
2

21
7,
92
6

66
.8
8

20
,8
65

20
.9
5

18
N
ET

G
EA

R
8,
99
1,
40
3

5,
11
0,
75
4

56
.8
4

3,
88
0,
64
9

43
.1
6

16
8,
27
4

1.
87

95
,5
49

1.
87

72
,7
29

1.
87

19
N
et
is

8,
57
2

2,
40
9

28
.1
0

6,
16
3

71
.9
0

2,
18
2

25
.4
5

69
2

28
.7
3

1,
49
0

24
.1
8

20
Pl
an
et

70
,2
38

44
,6
31

63
.5
4

25
,6
07

36
.4
6

19
,7
13

28
.0
7

11
,3
75

25
.4
9

8,
34
0

32
.5
7

21
Q
N
AP

47
,2
39

30
,1
15

63
.7
5

17
,1
24

36
.2
5

8,
46
1

17
.9
1

4,
64
3

15
.4
2

3,
81
8

22
.3
0

22
R
ot
ek

17
7

11
6

65
.5
4

61
34
.4
6

17
7

10
0.
00

11
6

10
0.
00

61
10
0.
00

23
Sy
no
lo
gy

68
0,
70
4

43
7,
76
4

64
.3
1

24
2,
94
0

35
.6
9

94
,8
06

13
.9
3

59
,1
07

13
.5
0

35
,6
99

14
.6
9

24
TP

-L
in
k

45
0,
34
6

31
2,
59
8

69
.4
1

13
7,
74
8

30
.5
9

97
,0
42

21
.5
5

59
,3
68

18
.9
9

37
,6
74

27
.3
5

25
Te
nd
a

46
,6
62

28
,4
91

61
.0
6

18
,1
71

38
.9
4

11
,1
94

23
.9
9

6,
17
9

21
.6
9

5,
01
5

27
.6
0

26
Te
nv
is

36
3

13
7

37
.7
4

22
6

62
.2
6

24
3

66
.9
4

93
67
.8
8

15
0

66
.3
7

27
Th
ur
ay
a

34
6

29
2

84
.3
9

54
15
.6
1

17
3

50
.0
0

14
6

50
.0
0

27
50
.0
0

28
To
to
lin
k

16
,4
20

8,
10
9

49
.3
8

8,
31
1

50
.6
2

7,
79
5

47
.4
7

4,
01
2

49
.4
8

3,
78
3

45
.5
2

29
Tr
en
dn
et

31
,9
14

19
,2
28

60
.2
5

12
,6
86

39
.7
5

13
,9
38

43
.6
7

7,
58
3

39
.4
4

6,
35
6

50
.1
0

30
U
bi
qu
iti

1,
34
5,
81
4

99
9,
93
8

74
.3
0

34
5,
87
6

25
.7
0

59
,4
74

4.
42

42
,0
37

4.
20

17
,4
37

5.
04

31
W
es
te
rn
-D
ig
ita
l

12
,8
05

7,
71
6

60
.2
6

5,
08
9

39
.7
4

5,
85
8

45
.7
5

3,
54
4

45
.9
3

2,
31
4

45
.4
7

32
Xi
ao
m
i

12
6,
33
1

78
,0
55

61
.7
9

48
,2
76

38
.2
1

13
,8
77

10
.9
8

6,
71
2

8.
60

7,
16
5

14
.8
4

33
Zy
xe
l

41
5,
53
8

23
8,
64
0

57
.4
3

17
6,
89
8

42
.5
7

85
,2
19

20
.5
1

48
,6
87

20
.4
0

36
,5
33

20
.6
5

-
To

ta
l

13
,7
01
,9
13

8,
26
7,
08
0

60
.3
4

5,
43
4,
83
3

39
.6
6

98
9,
12
9

7.
22

65
1,
66
7

7.
88

33
7,
47
6

6.
21

88 A. Appendix - Results & Findings

Table
A.6:O

verallanalyzed
binaries

statistics
across

vendors.

#
Vendor

binaries
#
analysed

binaries
%

libraries
#
analysed

libraries
%

executables
#
analysed

executables
%

1
ASU

S
456,405

59,484
6.22

321,015
28,076

8.75
135,390

31,408
23.20

2
AVM

6,702
612

3.71
3,942

245
6.22

2,760
367

13.30
3

Actiontec
859

198
0.81

430
5

1.16
429

193
44.99

4
Addvaluetech

0
0

0.00
0

0
0.00

0
0

0.00
5

Alfa
13,975

518
1.52

9,373
209

2.23
4,602

309
6.71

6
Arris

2,867
309

1.80
2,054

49
2.39

813
260

31.98
7

Belkin
5,351

117
0.47

2,836
24

0.85
2,515

93
3.70

8
Buffalo

754
26

0.82
471

6
1.27

283
20

7.07
9

D
-Link

411,767
59,426

5.60
203,247

22,688
11.16

208,520
36,738

17.62
10

D
ell

20,384
3,851

12.42
15,471

2,519
16.28

4,913
1,332

27.11
11

D
rayTek

20,565
3,816

2.86
11,330

556
4.91

9,235
3,260

35.30
12

EdiM
ax

22,919
1,271

0.43
11,407

87
0.76

11,512
1,184

10.28
13

FO
SC

AM
362

17
0.87

250
3

1.20
112

14
12.50

14
H
P

498
22

0.04
187

0
0.00

311
22

7.07
15

Inm
arsat

3,723
298

1.91
2,174

69
3.17

1,549
229

14.78
16

LinkSys
64,442

3,649
1.30

38,049
807

2.12
26,393

2,842
10.77

17
M
icroTik

425,468
9,374

0.15
325,851

539
0.17

99,617
8,835

8.87
18

N
ETG

EAR
8,991,403

859,333
4.02

5,110,754
356,226

6.97
3,880,649

503,107
12.96

19
N
etis

8,572
268

0.09
2,409

5
0.21

6,163
263

4.27
20

Planet
70,238

6,575
2.16

44,631
1,464

3.28
25,607

5,111
19.96

21
Q
N
AP

47,239
9,821

7.69
30,115

3,570
11.85

17,124
6,251

36.50
22

R
otek

177
5

0.03
116

0
0.00

61
5

8.20
23

Synology
680,704

228,040
16.76

437,764
112,921

25.79
242,940

115,119
47.39

24
TP-Link

450,346
27,163

1.66
312,598

7,297
2.33

137,748
19,866

14.42
25

Tenda
46,662

2,379
0.39

28,491
160

0.56
18,171

2,219
12.21

26
Tenvis

363
129

2.54
137

8
5.84

226
121

53.54
27

Thuraya
346

10
0.60

292
2

0.68
54

8
14.81

28
Totolink

16,420
1,029

1.52
8,109

241
2.97

8,311
788

9.48
29

Trendnet
31,914

2,386
1.67

19,228
513

2.67
12,686

1,873
14.76

30
U
biquiti

1,345,814
94,850

2.32
999,938

30,526
3.05

345,876
64,324

18.60
31

W
estern-D

igital
12,805

1,349
2.88

7,716
359

4.65
5,089

990
19.45

32
Xiaom

i
126,331

16,059
3.21

78,055
3,932

5.04
48,276

12,127
25.12

33
Zyxel

415,538
59,655

4.19
238,640

16,987
7.12

176,898
42,668

24.12
-

Total
13,701,913

1,452,039
4.37

8,267,080
590,093

7.14
5,434,833

861,946
15.86

A.3. Firmware Update 89

A.3. Firmware Update

Figure A.3: Firmware update gap in days over all vendors.

Figure A.4: Firmware update over all binaries.

90 A. Appendix - Results & Findings

Figure A.5: Firmware updates only binaries that use a cryptographic library (executables and libraries).

Mean values
Vendors days # Vendors days
1 ASUS 125.75 2 AVM 402.93
5 Alfa 79.00 6 Arris 658.00
7 Belkin 261.68 9 D-Link 241.10
10 Dell 147.51 11 DrayTek 94.86
12 EdiMax 325.80 13 FOSCAM 223.66
14 HP 176.21 15 Inmarsat 415.33
16 LinkSys 395.56 17 MicroTik 20.76
18 NETGEAR 118.26 19 Netis 209.13
20 Planet 366.32 21 QNAP 34.95
23 Synology 140.72 24 TP-Link 240.02
25 Tenda 215.46 26 Tenvis 176.67
27 Thuraya 882.00 28 Totolink 210.45
29 Trendnet 667.98 30 Ubiquiti 69.54
31 WD 96.00 32 Xiaomi 32.47
33 Zyxel 184.12 - - -

Table A.7: Firmware update gap mean values in days over all vendors.
Mean values

Vendors %
1 ASUS 92.27
3 Alfa 93.91
4 Arris 97.56
5 Belkin 71.35
6 D-Link 85.91
7 Dell 95.08
8 DrayTek 78.40
9 EdiMax 87.38
10 HP 99.79
12 LinkSys 87.73
13 MicroTik 92.26
14 NETGEAR 92.38
15 Netis 73.15
16 Planet 77.08
17 QNAP 95.94
18 Synology 89.08
19 TP-Link 83.24
20 Tenda 84.75
21 Tenvis 95.99
22 Totolink 75.60
23 Trendnet 75.40
24 Ubiquiti 91.01
25 WD 74.58
26 Xiaomi 96.08
27 Zyxel 82.91

Table A.8: Mean values of the percentage of
firmware update similarity calculated for all

binaries.

Mean values
Vendors %
1 ASUS 76.18
2 Alfa 96.61
3 Arris 94.53
4 Belkin 58.52
5 D-Link 82.93
6 Dell 97.12
7 DrayTek 52.35
8 EdiMax 79.03
9 HP 99.93
10 LinkSys 77.12
11 MicroTik 70.61
12 NETGEAR 84.85
13 Netis 58.75
14 Planet 72.30
15 QNAP 95.52
16 Synology 79.21
17 TP-Link 71.07
18 Tenda 81.22
19 Tenvis 95.11
20 Totolink 78.86
21 Trendnet 78.66
22 Ubiquiti 76.59
23 WD 69.42
24 Xiaomi 88.77
25 Zyxel 71.88

Table A.9: Mean values of the percentage of
firmware update similarity calculated for

‘crypto’ binaries.

A.4. Exploit mitigation techniques on firmware images 91

A.4. Exploit mitigation techniques on firmware images

(a) All vendors (b) ARM 32 LE (c) MIPS 32 LE

(d) MIPS 32 BE (e) ARM 32 BE (f) ARM 64 LE

(g) MIPS 64 BE (h) Tilera 32 LE (i) PowerPC 32 BE

(j) Intel x86-64 LE (k) Intel-80386 32 LE
Figure A.6: Exploit mitigation techniques on firmware images by CPU architecture.

92 A. Appendix - Results & Findings

(a) Alfa (b) Arris (c) ASUS

(d) AVM (e) Belkin (f) Dell

(g) D-Link (h) DrayTek (i) EdiMax

(j) Inmarsat (k) LinkSys (l) MicroTik

(m) NETGEAR (n) Netis (o) Planet

(p) QNAP (q) Synology (r) Tenda
Figure A.7: Exploit mitigation techniques on firmware images by Vendor.

A.4. Exploit mitigation techniques on firmware images 93

(a) Totolink (b) TP-Link (c) Trendnet

(d) Ubiquiti (e) Western Digital (f) Xiaomi

(g) Zyxel (h) Ubuntu Server
Figure A.8: Exploit mitigation techniques on firmware images by Vendor (continued).

94 A. Appendix - Results & Findings

Table
A.10:O

verallexploitm
itigation

techniques
across

vendors
(PIE

and
N
X
bit).

#
Vendor

#
binaries

PIE
N
X
bit

3
7

nf
3

7
nf

1
ASU

S
456,405

204,165
(44.73%

)
136,021

(29.80%
)

116,219
(25.46%

)
224,180

(49.12%
)

116,006
(25.42%

)
116,219

(25.46%
)

2
AVM

6,702
3,875

(57.82%
)

1,411
(21.05%

)
1,416

(21.13%
)

3,530
(52.67%

)
1,756

(26.20%
)

1,416
(21.13%

)
3

Actiontec
859

207
(24.10%

)
441

(51.34%
)

211
(24.56%

)
648

(75.44%
)

0
(0.00%

)
211

(24.56%
)

4
Addvaluetech

0
0
(0.00%

)
0
(0.00%

)
0
(0.00%

)
0
(0.00%

)
0
(0.00%

)
0
(0.00%

)
5

Alfa
13,975

4,517
(32.32%

)
4,708

(33.69%
)

4,750
(33.99%

)
6,755

(48.34%
)

2,470
(17.67%

)
4,750

(33.99%
)

6
Arris

2,867
1,536

(53.58%
)

657
(22.92%

)
674

(23.51%
)

1,588
(55.39%

)
605

(21.10%
)

674
(23.51%

)
7

Belkin
5,351

811
(15.16%

)
3,915

(73.16%
)

625
(11.68%

)
3,376

(63.09%
)

1,350
(25.23%

)
625

(11.68%
)

8
Buffalo

754
157

(20.82%
)

299
(39.66%

)
298

(39.52%
)

339
(44.96%

)
117

(15.52%
)

298
(39.52%

)
9

D
-Link

411,767
161,267

(39.16%
)

213,317
(51.81%

)
37,183

(9.03%
)

296,255
(71.95%

)
78,334

(19.02%
)

37,178
(9.03%

)
10

D
ell

20,384
14,141

(69.37%
)

4,440
(21.78%

)
1,803

(8.85%
)

18,581
(91.15%

)
0
(0.00%

)
1,803

(8.85%
)

11
D
rayTek

20,565
3,604

(17.52%
)

12,747
(61.98%

)
4,214

(20.49%
)

11,231
(54.61%

)
5,119

(24.89%
)

4,215
(20.50%

)
12

EdiM
ax

22,919
3891

(16.98%
)

13,733
(59.92%

)
5,295

(23.10%
)

11,008
(48.03%

)
6,616

(28.87%
)

5,295
(23.10%

)
13

FO
SC

AM
362

139
(38.40%

)
107

(29.56%
)

116
(32.04%

)
120

(33.15%
)

126
(34.81%

)
116

(32.04%
)

14
H
P

498
153

(30.72%
)

311
(62.45%

)
34

(6.83%
)

464
(93.17%

)
0
(0.00%

)
34

(6.83%
)

15
Inm

arsat
3,723

2,205
(59.23%

)
1,498

(40.24%
)

20
(0.54%

)
3,153

(84.69%
)

550
(14.77%

)
20

(0.54%
)

16
LinkSys

64,442
26,452

(41.05%
)

30,276
(46.98%

)
7,714

(11.97%
)

47,734
(74.07%

)
8,996

(13.96%
)

7,712
(11.97%

)
17

M
icroTik

425,468
31,240

(7.34%
)

92,017
(21.63%

)
302,211

(71.03%
)

74,385
(17.48%

)
48,872

(11.49%
)

302,211
(71.03%

)
18

N
ETG

EAR
8,991,403

5,610,305
(62.40%

)
3,171,164

(35.27%
)

209,934
(2.33%

)
8,664,145

(96.36%
)

117,329
(1.30%

)
209,929

(2.33%
)

19
N
etis

8,572
1,455

(16.97%
)

6,953
(81.11%

)
164

(1.91%
)

1,613
(18.82%

)
6,798

(79.30%
)

161
(1.88%

)
20

Planet
70,238

26,007
(37.03%

)
26,230

(37.34%
)

18,001
(25.63%

)
38,426

(54.71%
)

13,811
(19.66%

)
18,001

(25.63%
)

21
Q
N
AP

47,239
31,149

(65.94%
)

13,553
(28.69%

)
2,537

(5.37%
)

44,620
(94.46%

)
82

(0.17%
)

2,537
(5.37%

)
22

R
otek

177
116

(65.54%
)

61
(34.46%

)
0
(0.00%

)
1
(0.56%

)
176

(99.44%
)

0
(0.00%

)
23

Synology
680,704

367,275
(53.96%

)
223,669

(32.86%
)

89,760
(13.19%

)
558,203

(82.00%
)

32,741
(4.81%

)
89,760

(13.19%
)

24
TP-Link

450,346
159,347

(35.38%
)

140,959
(31.30%

)
150,040

(33.32%
)

166,907
(37.06%

)
133,398

(29.62%
)

150,041
(33.32%

)
25

Tenda
46,662

16,042
(34.38%

)
22,132

(47.43%
)

8,488
(18.19%

)
34,430

(73.79%
)

3,744
(8.02%

)
8,488

(18.19%
)

26
Tenvis

363
44

(12.12%
)

260
(71.63%

)
59

(16.25%
)

292
(80.44%

)
12

(3.31%
)

59
(16.25%

)
27

Thuraya
346

96
(27.75%

)
54

(15.61%
)

196
(56.65%

)
12

(3.47%
)

138
(39.88%

)
196

(56.65%
)

28
Totolink

16,420
5,361

(32.65%
)

8,324
(50.69%

)
2,735

(16.66%
)

1,960
(11.94%

)
11,725

(71.41%
)

2,735
(16.66%

)
29

Trendnet
31,914

9,842
(30.84%

)
14,312

(44.85%
)

7,760
(24.32%

)
13,848

(43.39%
)

10,324
(32.35%

)
7,742

(24.26%
)

30
U
biquiti

1,345,814
526,014

(39.09%
)

380,625
(28.28%

)
439,175

(32.63%
)

658,610
(48.94%

)
248,059

(18.43%
)

439,145
(32.63%

)
31

W
estern-D

igital
12,805

12,315
(96.17%

)
416

(3.25%
)

74
(0.58%

)
12,586

(98.29%
)

145
(1.13%

)
74

(0.58%
)

32
Xiaom

i
126,331

49,483
(39.17%

)
48,274

(38.21%
)

28,574
(22.62%

)
45,900

(36.33%
)

51,857
(41.05%

)
28,574

(22.62%
)

33
Zyxel

415,538
157,978

(38.02%
)

185,028
(44.53%

)
72,532

(17.45%
)

179,655
(43.23%

)
163,351

(39.31%
)

72,532
(17.45%

)
-

Total
13,701,913

7,431,189
(54.23%

)
4,757,912

(34.72%
)

1,512,812
(11.04%

)
11,124,555

(81.19%
)

1,064,607
(7.77%

)
1,512,751

(11.04%
)

A.4. Exploit mitigation techniques on firmware images 95

Ta
bl
e
A.
11
:O

ve
ra
ll
ex
pl
oi
tm

iti
ga
tio
n
te
ch
ni
qu
es

ac
ro
ss

ve
nd
or
s
(S
ta
ck

Pr
ot
ec
te
d
an
d
Fo
rti
fy
So

ur
ce
).

#
Ve

nd
or

#
bi
na
rie
s

St
ac
k
Pr
ot
ec
te
d

Fo
rti
fy
So

ur
ce

3
7

nf
3

7
nf

1
AS

U
S

45
6,
40
5

10
,8
09

(2
.3
7%

)
44
5,
59
6
(9
7.
63
%
)

0
(0
.0
0%

)
11
5
(0
.0
3%

)
37
3,
84
7
(8
1.
91
%
)

82
,4
43

(1
8.
06
%
)

2
AV

M
6,
70
2

2,
78
7
(4
1.
58
%
)

3,
91
5
(5
8.
42
%
)

0
(0
.0
0%

)
0
(0
.0
0%

)
5,
44
6
(8
1.
26
%
)

1,
25
6
(1
8.
74
%
)

3
Ac
tio
nt
ec

85
9

0
(0
.0
0%

)
85
9
(1
00
.0
0%

)
0
(0
.0
0%

)
0
(0
.0
0%

)
19
3
(2
2.
47
%
)

66
6
(7
7.
53
%
)

4
Ad

dv
al
ue
te
ch

0
0
(0
.0
0%

)
0
(0
.0
0%

)
0
(0
.0
0%

)
0
(0
.0
0%

)
0
(0
.0
0%

)
0
(0
.0
0%

)
5

Al
fa

13
,9
75

1,
73
8
(1
2.
44
%
)

12
,2
37

(8
7.
56
%
)

0
(0
.0
0%

)
13

(0
.0
9%

)
4,
36
4
(3
1.
23
%
)

9,
59
8
(6
8.
68
%
)

6
Ar
ris

2,
86
7

16
8
(5
.8
6%

)
2,
69
9
(9
4.
14
%
)

0
(0
.0
0%

)
0
(0
.0
0%

)
2,
46
9
(8
6.
12
%
)

39
8
(1
3.
88
%
)

7
Be

lk
in

5,
35
1

0
(0
.0
0%

)
5,
35
1
(1
00
.0
0%

)
0
(0
.0
0%

)
0
(0
.0
0%

)
4,
57
4
(8
5.
48
%
)

77
7
(1
4.
52
%
)

8
Bu

ffa
lo

75
4

98
(1
3.
00
%
)

65
6
(8
7.
00
%
)

0
(0
.0
0%

)
0
(0
.0
0%

)
23
4
(3
1.
03
%
)

52
0
(6
8.
97
%
)

9
D
-L
in
k

41
1,
76
7

62
9
(0
.1
5%

)
41
1,
13
3
(9
9.
85
%
)

5
(0
.0
0%

)
15
8
(0
.0
4%

)
35
3,
31
9
(8
5.
81
%
)

58
,2
90

(1
4.
16
%
)

10
D
el
l

20
,3
84

6,
42
8
(3
1.
53
%
)

13
,9
56

(6
8.
47
%
)

0
(0
.0
0%

)
6,
20
9
(3
0.
46
%
)

11
,5
47

(5
6.
65
%
)

2,
62
8
(1
2.
89
%
)

11
D
ra
yT
ek

20
,5
65

81
3
(3
.9
5%

)
19
,7
51

(9
6.
04
%
)

1
(0
.0
0%

)
0
(0
.0
0%

)
15
,9
84

(7
7.
72
%
)

4,
58
1
(2
2.
28
%
)

12
Ed

iM
ax

22
,9
19

9
(0
.0
4%

)
22
,9
10

(9
9.
96
%
)

0
(0
.0
0%

)
10

(0
.0
4%

)
16
,7
20

(7
2.
95
%
)

6,
18
9
(2
7.
00
%
)

13
FO

SC
AM

36
2

15
(4
.1
4%

)
34
7
(9
5.
86
%
)

0
(0
.0
0%

)
0
(0
.0
0%

)
27
4
(7
5.
69
%
)

88
(2
4.
31
%
)

14
H
P

49
8

0
(0
.0
0%

)
49
8
(1
00
.0
0%

)
0
(0
.0
0%

)
0
(0
.0
0%

)
43
4
(8
7.
15
%
)

64
(1
2.
85
%
)

15
In
m
ar
sa
t

3,
72
3

95
(2
.5
5%

)
3,
62
8
(9
7.
45
%
)

0
(0
.0
0%

)
65
9
(1
7.
70
%
)

2,
72
6
(7
3.
22
%
)

33
8
(9
.0
8%

)
16

Li
nk
Sy
s

64
,4
42

1.
25
4
(1
.9
5%

)
63
,1
86

(9
8.
05
%
)

2
(0
.0
0%

)
14
7
(0
.2
3%

)
53
,0
35

(8
2.
30
%
)

11
,2
60

(1
7.
47
%
)

17
M
ic
ro
Ti
k

42
5,
46
8

0
(0
.0
0%

)
42
5,
46
8
(1
00
.0
0%

)
0
(0
.0
0%

)
0
(0
.0
0%

)
25
3,
38
1
(5
9.
55
%
)

17
2,
08
7
(4
0.
45
%
)

18
N
ET

G
EA

R
8,
99
1,
40
3

3,
96
3,
22
8
(4
4.
08
%
)

5,
02
8,
16
9
(5
5.
92
%
)

6
(0
.0
0%

)
3,
85
4,
10
9
(4
2.
86
%
)

2,
83
9,
89
5
(3
1.
58
%
)

2,
29
7,
39
9
(2
5.
55
%
)

19
N
et
is

8,
57
2

20
0
(2
.3
3%

)
8,
36
9
(9
7.
63
%
)

3
(0
.0
3%

)
0
(0
.0
0%

)
4,
96
3
(5
7.
90
%
)

3,
60
9
(4
2.
10
%
)

20
Pl
an
et

70
,2
38

5,
14
5
(7
.3
3%

)
65
,0
93

(9
2.
67
%
)

0
(0
.0
0%

)
2,
26
4
(3
.2
2%

)
45
,3
54

(6
4.
57
%
)

22
,6
20

(3
2.
20
%
)

21
Q
N
AP

47
,2
39

7,
82
7
(1
6.
57
%
)

39
,4
12

(8
3.
43
%
)

0
(0
.0
0%

)
2,
75
5
(5
.8
3%

)
35
,2
20

(7
4.
56
%
)

9,
26
4
(1
9.
61
%
)

22
R
ot
ek

17
7

0
(0
.0
0%

)
17
7
(1
00
.0
0%

)
0
(0
.0
0%

)
0
(0
.0
0%

)
1
(0
.5
6%

)
17
6
(9
9.
44
%
)

23
Sy
no
lo
gy

68
0,
70
4

15
6,
26
0
(2
2.
96
%
)

52
4,
44
4
(7
7.
04
%
)

0
(0
.0
0%

)
15
3,
12
7
(2
2.
50
%
)

24
5,
49
5
(3
6.
06
%
)

28
2,
08
2
(4
1.
44
%
)

24
TP

-L
in
k

45
0,
34
6

8,
51
0
(1
.8
9%

)
44
1,
81
3
(9
8.
11
%
)

23
(0
.0
1%

)
1,
44
6
(0
.3
2%

)
26
3,
66
6
(5
8.
55
%
)

18
5,
23
4
(4
1.
13
%
)

25
Te
nd
a

46
,6
62

45
6
(0
.9
8%

)
46
,2
06

(9
9.
02
%
)

0
(0
.0
0%

)
0
(0
.0
0%

)
37
,5
47

(8
0.
47
%
)

9,
11
5
(1
9.
53
%
)

26
Te
nv
is

36
3

0
(0
.0
0%

)
36
3
(1
00
.0
0%

)
0
(0
.0
0%

)
0
(0
.0
0%

)
31
7
(8
7.
33
%
)

46
(1
2.
67
%
)

27
Th
ur
ay
a

34
6

0
(0
.0
0%

)
34
6
(1
00
.0
0%

)
0
(0
.0
0%

)
0
(0
.0
0%

)
94

(2
7.
17
%
)

25
2
(7
2.
83
%
)

28
To
to
lin
k

16
,4
20

18
9
(1
.1
5%

)
16
,2
31

(9
8.
85
%
)

0
(0
.0
0%

)
33
7
(2
.0
5%

)
4,
98
4
(3
0.
35
%
)

11
,0
99

(6
7.
59
%
)

29
Tr
en
dn
et

31
,9
14

22
6
(0
.7
1%

)
31
,6
70

(9
9.
24
%
)

18
(0
.0
6%

)
11

(0
.0
3%

)
19
,8
80

(6
2.
29
%
)

12
,0
23

(3
7.
67
%
)

30
U
bi
qu
iti

1,
34
5,
81
4

14
2,
58
1
(1
0.
59
%
)

1,
20
3,
20
3
(8
9.
40
%
)

30
(0
.0
0%

)
19
0,
13
7
(1
4.
13
%
)

41
4,
10
4
(3
0.
77
%
)

74
1,
57
3
(5
5.
10
%
)

31
U
bu
nt
u

72
2

69
6
(9
6.
40
%
)

26
(3
.6
0%

)
0
(0
.0
0%

)
38
8
(5
3.
74
%
)

59
(8
.1
7%

)
27
5
(3
8.
09
%
)

32
W
es
te
rn
-D
ig
ita
l

12
,8
05

8,
58
1
(6
7.
01
%
)

4,
22
4
(3
2.
99
%
)

0
(0
.0
0%

)
6,
52
6
(5
0.
96
%
)

2,
72
7
(2
1.
30
%
)

3,
55
2
(2
7.
74
%
)

33
Xi
ao
m
i

12
6,
33
1

0
(0
.0
0%

)
12
6,
33
1
(1
00
.0
0%

)
0
(0
.0
0%

)
0
(0
.0
0%

)
57
,7
88

(4
5.
74
%
)

68
,5
43

(5
4.
26
%
)

34
Zy
xe
l

41
5,
53
8

5,
67
2
(1
.3
6%

)
40
9,
86
6
(9
8.
64
%
)

0
(0
.0
0%

)
60
9
(0
.1
5%

)
28
5,
48
5
(6
8.
70
%
)

12
9,
44
4
(3
1.
15
%
)

-
To

ta
l

13
,7
01
,9
13

4,
32
3,
71
8
(3
1.
56
%
)

9,
37
8,
10
7
(6
8.
44
%
)

88
(0
.0
0%

)
4,
21
8,
63
2
(3
0.
79
%
)

5,
35
6,
06
7
(3
9.
09
%
)

4,
12
7,
21
4
(3
0.
12
%
)

96 A. Appendix - Results & Findings

Table
A.12:O

verallexploitm
itigation

techniques
across

vendors
(R
ELR

O
and

Im
m
ediate

binding).

#
Vendor

#
binaries

R
ELR

O
Im
m
ediate

binding
3

7
nf

3
7

nf
1

ASU
S

456,405
25,536

(5.60%
)

314,650
(68.94%

)
116,219

(25.46%
)

8,868
(1.94%

)
331,318

(72.59%
)

116,219
(25.46%

)
2

AVM
6,702

2,867
(42.78%

)
2,419

(36.09%
)

1416
(21.13%

)
2,767

(41.29%
)

2,519
(37.59%

)
1,416

(21.13%
)

3
Actiontec

859
12

(1.40%
)

636
(74.04%

)
211

(24.56%
)

20
(2.33%

)
628

(73.11%
)

211
(24.56%

)
4

Addvaluetech
0

0
(0.00%

)
0
(0.00%

)
0
(0.00%

)
0
(0.00%

)
0
(0.00%

)
0
(0.00%

)
5

Alfa
13,975

5,928
(42.42%

)
3,297

(23.59%
)

4,750
(33.99%

)
6,017

(43.06%
)

3,208
(22.96%

)
4,750

(33.99%
)

6
Arris

2,867
51

(1.78%
)

2,142
(74.71%

)
674

(23.51%
)

35
(1.22%

)
2,158

(75.27%
)

674
(23.51%

)
7

Belkin
5,351

116
(2.17%

)
4,610

(86.15%
)

625
(11.68%

)
116

(2.17%
)

4,610
(86.15%

)
625

(11.68%
)

8
Buffalo

754
240

(31.83%
)

216
(28.65%

)
298

(39.52%
)

242
(32.10%

)
214

(28.38%
)

298
(39.52%

)
9

D
-Link

411,767
45,538

(11.06%
)

329,046
(79.91%

)
37,183

(9.03%
)

13,093
(3.18%

)
361,491

(87.79%
)

37,183
(9.03%

)
10

D
ell

20,384
8,953

(43.92%
)

9,628
(47.23%

)
1,803

(8.85%
)

746
(3.66%

)
17,835

(87.50%
)

1,803
(8.85%

)
11

D
rayTek

20,565
1,010

(4.91%
)

15,341
(74.60%

)
4,214

(20.49%
)

1,331
(6.47%

)
15,020

(73.04%
)

4,214
(20.49%

)
12

EdiM
ax

22,919
831

(3.63%
)

16,793
(73.27%

)
5,295

(23.10%
)

1,040
(4.54%

)
16,584

(72.36%
)

5,295
(23.10%

)
13

FO
SC

AM
362

5
(1.38%

)
241

(66.57%
)

116
(32.04%

)
0
(0.00%

)
246

(67.96%
)

116
(32.04%

)
14

H
P

498
136

(27.31%
)

328
(65.86%

)
34

(6.83%
)

136
(27.31%

)
328

(65.86%
)

34
(6.83%

)
15

Inm
arsat

3,723
189

(5.08%
)

3,514
(94.39%

)
20

(0.54%
)

39
(1.05%

)
3,664

(98.42%
)

20
(0.54%

)
16

LinkSys
64,442

3,953
(6.13%

)
52,775

(81.90%
)

7,714
(11.97%

)
2,319

(3.60%
)

54,409
(84.43%

)
7,714

(11.97%
)

17
M
icroTik

425,468
6,323

(1.49%
)

116,934
(27.48%

)
302,211

(71.03%
)

697
(0.16%

)
122,560

(28.81%
)

302,211
(71.03%

)
18

N
ETG

EAR
8,991,403

6,555,149
(72.90%

)
2,226,320

(24.76%
)

209,934
(2.33%

)
1,443,002

(16.05%
)

7,338,467
(81.62%

)
209,934

(2.33%
)

19
N
etis

8,572
544

(6.35%
)

7,864
(91.74%

)
164

(1.91%
)

464
(5.41%

)
7,944

(92.67%
)

164
(1.91%

)
20

Planet
70,238

11,216
(15.97%

)
41,021

(58.40%
)

18,001
(25.63%

)
7,300

(10.39%
)

44,937
(63.98%

)
18,001

(25.63%
)

21
Q
N
AP

47,239
16,626

(35.20%
)

28,076
(59.43%

)
2,537

(5.37%
)

14,960
(31.67%

)
29,742

(62.96%
)

2,537
(5.37%

)
22

R
otek

177
1
(0.56%

)
176

(99.44%
)

0
(0.00%

)
0
(0.00%

)
177

(100.00%
)

0
(0.00%

)
23

Synology
680,704

400,914
(58.90%

)
190,030

(27.92%
)

89,760
(13.19%

)
57,932

(8.51%
)

533,012
(78.30%

)
89,760

(13.19%
)

24
TP-Link

450,346
41,262

(9.16%
)

259,044
(57.52%

)
150,040

(33.32%
)

19,812
(4.40%

)
280,494

(62.28%
)

150,040
(33.32%

)
25

Tenda
46,662

2,311
(4.95%

)
35,863

(76.86%
)

8,488
(18.19%

)
2,801

(6.00%
)

35,373
(75.81%

)
8,488

(18.19%
)

26
Tenvis

363
12

(3.31%
)

292
(80.44%

)
59

(16.25%
)

38
(10.47%

)
266

(73.28%
)

59
(16.25%

)
27

Thuraya
346

6
(1.73%

)
144

(41.62%
)

196
(56.65%

)
2
(0.58%

)
148

(42.77%
)

196
(56.65%

)
28

Totolink
16,420

1,962
(11.95%

)
11,723

(71.39%
)

2,735
(16.66%

)
1,623

(9.88%
)

12,062
(73.46%

)
2,735

(16.66%
)

29
Trendnet

31,914
4,269

(13.38%
)

19,885
(62.31%

)
7,760

(24.32%
)

3,523
(11.04%

)
20,631

(64.65%
)

7,760
(24.32%

)
30

U
biquiti

1,345,814
407,754

(30.30%
)

498,885
(37.07%

)
439,175

(32.63%
)

104,403
(7.76%

)
802,236

(59.61%
)

439,175
(32.63%

)
31

U
buntu

722
722

(100.00%
)

0
(0.00%

)
0
(0.00%

)
371

(51.39%
)

351
(48.61%

)
0
(0.00%

)
32

W
estern-D

igital
12,805

12,461
(97.31%

)
270

(2.11%
)

74
(0.58%

)
5,319

(41.54%
)

7,412
(57.88%

)
74

(0.58%
)

33
Xiaom

i
126,331

2,120
(1.68%

)
95,637

(75.70%
)

28,574
(22.62%

)
313

(0.25%
)

97,444
(77.13%

)
28,574

(22.62%
)

34
Zyxel

415,538
20,669

(4.97%
)

322,337
(77.57%

)
72,532

(17.45%
)

12,249
(2.95%

)
330,757

(79.60%
)

72,532
(17.45%

)
-

Total
13,701,913

7,578,964
(55.31%

)
4,610,137

(33.65%
)

1,512,812
(11.04%

)
1,711,207

(12.49%
)

10,477,894
(76.47%

)
1,512,812

(11.04%
)

A.5. Credentials and Password hashes 97

A.5. Credentials and Password hashes
Table A.13: Overall Credentials statistics by vendor.
#

Ve
nd
or

SS
H

Pr
iv
at
e
Ke

y
SS

H
Pr
iv
at
e
Ke

y
(e
nc
ry
pt
ed
)

SS
H
Pu

bl
ic
Ke

y
PG

P
Si
gn
at
ur
es

PK
C
S1

2
(e
nc
ry
pt
ed
)

PK
C
S1

2
(d
ec
ry
pt
ed
)

#
#
Fi
rm
.

#
#
Fi
rm
.

#
#
Fi
rm
.

#
#
Fi
rm
.

#
#
Fi
rm
.

#
#
Fi
rm
.

1
AS

U
S

66
41

0
0

66
41

0
0

0
0

0
0

2
AV

M
0

0
0

0
0

0
0

0
0

0
0

0
3

Ac
tio
nt
ec

11
4

1
1

11
4

0
0

0
0

0
0

4
Ad

dv
al
ue
te
ch

0
0

0
0

0
0

0
0

0
0

0
0

5
Al
fa

0
0

0
0

0
0

0
0

0
0

0
0

6
Ar
ris

0
0

0
0

0
0

0
0

0
0

0
0

7
Be

lk
in

0
0

0
0

0
0

1
1

0
0

0
0

8
Bu

ffa
lo

0
0

0
0

0
0

0
0

0
0

0
0

9
D
-L
in
k

59
7

30
6

10
5

10
5

59
7

30
6

0
0

0
0

0
0

10
D
el
l

0
0

0
0

0
0

0
0

0
0

0
0

11
D
ra
yT
ek

2
1

0
0

2
1

0
0

40
40

13
5

45
12

Ed
iM
ax

16
8

1
1

16
8

0
0

6
6

18
6

13
FO

SC
AM

0
0

0
0

0
0

0
0

0
0

0
0

14
H
P

0
0

0
0

0
0

0
0

0
0

0
0

15
In
m
ar
sa
t

6
3

2
2

6
3

0
0

0
0

0
0

16
Li
nk
Sy
s

20
4

92
6

3
20
4

92
20

4
0

0
0

0
17

M
ic
ro
Ti
k

0
0

0
0

0
0

0
0

0
0

0
0

18
N
ET

G
EA

R
29
1

12
2

3,
90
4

10
6

29
1

12
2

36
,3
67

14
1

0
0

0
0

19
N
et
is

3
3

0
0

3
3

0
0

0
0

0
0

20
Pl
an
et

87
35

2
2

87
35

0
0

0
0

0
0

21
Q
N
AP

48
24

4
4

48
24

0
0

10
10

23
23

22
R
ot
ek

0
0

0
0

0
0

0
0

0
0

0
0

23
Sy
no
lo
gy

0
0

0
0

0
0

48
4

16
3

0
0

0
0

24
TP

-L
in
k

10
10

0
0

10
10

1
1

1
1

0
0

25
Te
nd
a

46
40

0
0

46
40

0
0

0
0

0
0

26
Te
nv
is

0
0

0
0

0
0

0
0

0
0

0
0

27
Th
ur
ay
a

0
0

2
2

0
0

0
0

0
0

0
0

28
To
to
lin
k

0
0

0
0

11
11

0
0

0
0

0
0

29
Tr
en
dn
et

65
21

0
0

65
21

0
0

0
0

0
0

30
U
bi
qu
iti

13
1

1
1

22
1

30
43

20
9

0
0

22
4

13
0

31
W
es
te
rn
-D
ig
ita
l

24
4

3
3

24
4

70
4

0
0

0
0

32
Xi
ao
m
i

0
0

0
0

0
0

0
0

0
0

0
0

33
Zy
xe
l

36
3

26
0

10
10

36
3

26
0

0
0

33
33

29
2

11
6

-
To

ta
l

1,
85
2

97
5

4,
04
1

24
0

1,
87
2

98
6

39
,9
86

52
3

90
90

69
2

32
0

98 A. Appendix - Results & Findings

Table
A.14:O

verallPassw
ord

H
ashes.

#
Vendors

#
firm

w
ares

#
hashes

#
cracked

#
public

cracked
#
unique

#
unique

cracked
#
public

unique
cracked

H
ash

Types

D
ES

(U
nix)

M
D
5
(U
nix)

M
D
5
(AR

P)
Blow

fish
(U
nix)

SH
A256

(U
nix)

SH
A512

(U
nix)

3
7

3
7

3
7

3
7

3
7

3
7

1
ASU

S
179

179
179

177
5

5
4

4
0

175
0

0
0

0
0

0
0

0
0

2
AVM

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
3

Actiontec
1

1
1

1
1

1
1

0
0

1
0

0
0

0
0

0
0

0
0

4
Addvaluetech

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
5

Alfa
58

70
67

22
9

7
3

0
0

67
3

0
0

0
0

0
0

0
0

6
Arris

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
7

Belkin
4

7
7

7
3

3
3

0
0

7
0

0
0

0
0

0
0

0
0

8
Buffalo

2
2

2
2

1
1

1
0

0
2

0
0

0
0

0
0

0
0

0
9

D
-Link

429
959

750
743

53
40

38
327

45
291

164
132

0
0

0
0

0
0

0
10

D
ell

64
64

64
22

2
2

1
42

0
22

0
0

0
0

0
0

0
0

0
11

D
rayTek

31
33

30
30

6
4

4
5

0
25

3
0

0
0

0
0

0
0

0
12

EdiM
ax

88
114

107
107

23
18

18
6

0
101

7
0

0
0

0
0

0
0

0
13

FO
SC

AM
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

14
H
P

17
17

17
0

1
1

0
17

0
0

0
0

0
0

0
0

0
0

0
15

Inm
arsat

9
28

9
9

13
5

5
0

0
9

16
0

0
0

0
0

3
0

0
16

LinkSys
16

17
12

11
9

5
4

0
1

12
2

0
0

0
0

0
0

0
2

17
M
icroTik

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
18

N
ETG

EAR
498

999
821

613
44

37
31

263
121

430
57

16
0

0
0

0
0

112
0

19
N
etis

103
105

103
103

4
3

3
94

2
9

0
0

0
0

0
0

0
0

0
20

Planet
170

256
154

127
71

52
42

53
12

101
89

0
0

0
1

0
0

0
0

21
Q
N
AP

26
49

46
46

4
2

2
0

0
46

3
0

0
0

0
0

0
0

0
22

R
otek

1
1

1
1

1
1

1
0

0
1

0
0

0
0

0
0

0
0

0
23

Synology
318

435
429

429
3

2
2

0
0

429
6

0
0

0
0

0
0

0
0

24
TP-Link

1,777
1,992

703
611

434
17

10
89

0
614

1,289
0

0
0

0
0

0
0

0
25

Tenda
282

1,397
1,396

914
24

23
15

892
1

500
0

0
0

4
0

0
0

0
0

26
Tenvis

2
6

4
2

3
2

1
0

2
4

0
0

0
0

0
0

0
0

0
27

Thuraya
2

2
2

2
1

1
1

0
0

2
0

0
0

0
0

0
0

0
0

28
Totolink

120
174

173
173

12
11

11
36

0
137

1
0

0
0

0
0

0
0

0
29

Trendnet
75

98
87

79
27

24
22

45
0

41
8

1
0

0
0

0
3

0
0

30
U
biquiti

731
738

668
668

43
42

42
539

0
102

70
0

0
0

0
27

0
0

0
31

W
estern-D

igital
4

31
21

19
25

18
17

0
0

4
5

0
0

0
0

0
0

17
5

32
Xiaom

i
312

521
222

222
2

1
1

0
0

222
299

0
0

0
0

0
0

0
0

33
Zyxel

411
688

593
593

42
30

30
25

2
568

93
0

0
0

0
0

0
0

0
-

Total
5,730

8,983
6,668

5,733
793

290
252

2,437
186

3,922
2,115

149
0

4
1

27
6

129
7

A.5. Credentials and Password hashes 99

Ta
bl
e
A.
15
:O

ve
ra
ll
C
re
de
nt
ia
ls
st
at
is
tic
s
by

ve
nd
or
(c
on
tin
ue
d)
.

#
Ve

nd
or

C
er
tif
ic
at
es

Pu
bl
ic
Ke

y
Pr
iv
at
e
Ke

y
Pr
iv
at
e
Ke

y
(e
nc
ry
pt
ed
)

Pr
iv
at
e
Ke

y
(d
ec
ry
pt
ed
)

C
ry
pt
og
ra
ph
ic

Pa
ra
m
et
er
s

C
er
tif
ic
at
e
Si
gn
in
g

R
eq
ue
st
(C
SR

)
#

#
Fi
rm
.

#
#
Fi
rm
.

#
#
Fi
rm
.

#
#
Fi
rm
.

#
#
Fi
rm
.

#
#
Fi
rm
.

#
#
Fi
rm
.

1
AS

U
S

10
2,
64
8

86
7

1,
33
8

1,
01
1

19
9

15
5

19
1

16
7

12
12

71
6

71
1

34
17

2
AV

M
40
9

15
0

0
0

0
11

11
0

0
0

0
0

0
3

Ac
tio
nt
ec

22
5

7
5

7
5

0
0

0
0

0
0

0
0

4
Ad

dv
al
ue
te
ch

0
0

0
0

0
0

0
0

0
0

0
0

0
0

5
Al
fa

2,
76
0

30
31

19
29

18
0

0
0

0
0

0
0

0
6

Ar
ris

15
7

8
4

8
4

0
0

0
0

0
0

0
0

7
Be

lk
in

28
10

25
16

25
10

4
4

0
0

6
3

0
0

8
Bu

ffa
lo

5
2

5
2

4
2

1
1

1
1

0
0

0
0

9
D
-L
in
k

63
,0
41

1,
18
7

3,
07
4

1,
33
6

3,
07
4

1,
35
8

87
79

0
0

13
3

10
1

26
0

12
9

10
D
el
l

81
9

81
9

81
9

27
9

0
0

27
9

27
9

11
D
ra
yT
ek

52
1

17
5

56
5

17
4

31
0

17
5

42
42

25
5

85
75

75
1

1
12

Ed
iM
ax

4,
95
2

11
4

16
0

25
13
6

10
6

36
36

24
12

1
1

11
7

13
FO

SC
AM

16
0

4
3

3
3

3
1

1
0

0
0

0
1

1
14

H
P

0
0

17
17

0
0

0
0

0
0

0
0

0
0

15
In
m
ar
sa
t

14
2

6
3

3
3

0
0

0
0

1
1

0
0

16
Li
nk
Sy
s

2,
72
6

13
7

24
0

12
6

18
5

13
4

13
13

0
0

15
12

0
0

17
M
ic
ro
Ti
k

0
0

70
70

0
0

0
0

0
0

0
0

0
0

18
N
ET

G
EA

R
67
6,
19
0

1,
57
3

6,
93
3

1,
36
9

3,
05
7

1,
29
5

22
0

16
1

0
0

67
0

53
3

26
8

13
2

19
N
et
is

24
8

6
5

6
6

7
6

0
0

0
0

0
0

20
Pl
an
et

1,
31
5

18
4

31
3

15
5

31
3

16
8

41
41

0
0

4
4

2
1

21
Q
N
AP

5,
78
8

32
21
0

25
15
8

26
9

9
46

23
0

0
23

23
22

R
ot
ek

3
1

1
1

1
1

1
1

0
0

0
0

0
0

23
Sy
no
lo
gy

46
,9
29

26
1

79
2

30
7

14
7

88
22

22
0

0
46
5

15
5

0
0

24
TP

-L
in
k

3,
02
2

1,
24
5

1,
27
8

84
6

1,
26
7

89
4

53
53

0
0

29
29

0
0

25
Te
nd
a

1,
24
2

17
0

85
0

15
3

85
0

18
6

1
1

0
0

21
0

42
1

1
26

Te
nv
is

0
0

0
0

0
0

0
0

0
0

0
0

0
0

27
Th
ur
ay
a

0
0

0
0

0
0

0
0

0
0

0
0

0
0

28
To
to
lin
k

18
0

81
14
7

77
14
7

81
13

13
0

0
3

3
0

0
29

Tr
en
dn
et

38
5

75
13
4

91
13
1

99
13

13
3

3
11

11
4

2
30

U
bi
qu
iti

30
0,
74
3

78
2

3,
91
5

59
2

34
60

57
1

24
1

13
9

45
5

13
1

80
4

21
0

2
1

31
W
es
te
rn
-D
ig
ita
l

71
9

5
80

5
31

5
1

1
0

0
64

4
0

0
32

Xi
ao
m
i

31
,5
68

29
9

1,
37
9

31
3

90
84

1
1

0
0

0
0

0
0

33
Zy
xe
l

33
,4
53

70
1

1,
60
3

81
3

11
55

81
9

14
6

14
6

44
8

12
6

31
5

29
9

33
8

15
0

-
To

ta
l

1,
27
8,
94
3

7,
98
1

23
,2
71

7,
57
2

14
,8
77

6,
30
5

1,
18
2

97
0

1,
24
4

39
3

3,
54
9

2,
20
3

97
2

47
4

100 A. Appendix - Results & Findings

A.6. Cryptographic Libraries

Figure A.9: OpenSSL outdated versions timegap.

Figure A.10: GnuPG outdated versions timegap.

A.6. Cryptographic Libraries 101

Vendor #days
1 ASUS 361.75
2 AVM 515.19
3 Actiontec 3,104.20
5 Alfa 1,729.37
6 Arris 590.57
7 Belkin 685.33
8 Buffalo 1,349.25
9 D-Link 1,721.23
10 Dell 938.15
11 DrayTek 564.35
12 EdiMax 1,322.37
15 Inmarsat 2,003.56
16 LinkSys 1,343.24
17 MicroTik 459.45
18 NETGEAR 780.76
19 Netis 3,424.00
20 Planet 1,327.17
21 QNAP 711.76
22 Rotek 1,748.00
23 Synology 549.72
24 TP-Link 1,719.40
25 Tenda 2,263.28
26 Tenvis 2,417.00
28 Totolink 2,101.17
29 Trendnet 1,808.38
30 Ubiquiti 327.53
31 Western-Digital 56.25
32 Xiaomi 830.33
33 Zyxel 1,046.77
- Mean 1,303.43

Table A.16: OpenSSL time-gap outdated versions
for each vendor’s firmware image mean values.

Vendor #days
1 ASUS 2,211.38
5 Alfa 830.75
9 D-Link 1,649.56
10 Dell 1,425.59
12 EdiMax 1,258.20
18 NETGEAR 1,168.45
20 Planet 466.67
21 QNAP 3,965.09
23 Synology 1,227.20
24 TP-Link 2,765.98
28 Totolink 1,661.67
29 Trendnet 1,823.69
30 Ubiquiti 1,727.94
31 Western-Digital 714.75
32 Xiaomi 1,941.25
33 Zyxel 1,610.59
- Mean 1,653.05

Table A.17: GnuPG time-gap outdated versions
for each vendor’s firmware image mean values.

Vendor 0 1 2 3 4 5 6 7 8 9-
12

13-
16

17-
20

21-
25

26-
max

1 ASUS 231 121 117 186 63 107 60 12 17 68 57 20 2 0
2 AVM 5 0 1 3 1 0 0 0 1 4 1 0 0 0
3 Actiontec 0 0 0 0 0 0 0 0 0 0 0 2 1 2
5 Alfa 0 8 1 3 0 0 1 4 0 4 16 0 0 25
6 Arris 0 0 0 4 0 0 0 0 0 2 0 0 1 0
7 Belkin 0 1 0 0 0 0 0 0 0 1 1 0 0 0
8 Buffalo 0 0 0 0 2 0 1 0 0 0 0 0 0 1
9 D-Link 10 17 47 42 62 49 44 30 36 218 188 222 190 264
10 Dell 0 0 0 0 0 3 6 9 3 13 7 0 0 0
11 DrayTek 7 35 12 15 32 10 10 1 6 8 5 32 1 0
12 EdiMax 0 1 1 2 1 1 4 0 2 11 10 2 2 4
15 Inmarsat 0 0 0 0 1 0 0 2 0 1 0 0 0 5
16 LinkSys 2 2 4 6 16 9 4 14 2 23 23 19 11 31
17 MicroTik 72 60 67 116 64 77 68 80 63 147 0 0 0 0
18 NETGEAR 1661 393 197 250 718 160 290 73 163 1251 294 246 237 334
19 Netis 0 0 0 0 0 0 0 0 0 0 0 0 0 5
20 Planet 0 4 9 7 3 22 13 10 5 21 58 14 37 38
21 QNAP 0 2 1 0 2 3 3 5 4 9 3 1 0 0
22 Rotek 0 0 0 0 0 0 0 0 0 0 0 1 0 0
23 Synology 62 66 9 43 3 11 8 31 5 65 0 0 7 2
24 TP-Link 0 3 10 5 20 19 15 46 19 86 180 217 314 257
25 Tenda 0 0 5 0 5 5 2 2 1 11 3 11 21 64
26 Tenvis 0 0 0 0 0 0 0 0 0 0 0 2 2 0
28 Totolink 0 0 0 0 0 0 1 2 2 4 5 5 16 13
29 Trendnet 1 0 4 2 3 2 7 0 5 8 6 10 13 33
30 Ubiquiti 540 1,075 346 293 333 164 198 98 97 78 61 70 97 0
31 Western-

Digital
2 0 1 1 0 0 0 0 0 0 0 0 0 0

32 Xiaomi 13 3 6 6 0 3 23 12 1 62 106 66 7 1
33 Zyxel 23 17 60 51 41 62 35 82 69 230 120 104 31 46

102 A. Appendix - Results & Findings

- Total 2,629 1,808 898 1,035 1,370 707 793 513 501 2,325 1,144 1,044 990 1125

Table A.18: OpenSSL outdated versions for each vendor’s firmware image.

Vendor 0 1 2 3 4 5 6 7 8 9-
12

13-
16

17-
20

21-
25

26-
max

1 ASUS 0 0 0 6 1 1 3 0 0 19 377 21 0 0
5 Alfa 0 0 0 0 0 0 0 5 0 3 0 0 0 0
9 D-Link 18 4 8 20 25 8 6 6 0 19 94 8 0 0
10 Dell 0 0 0 0 0 0 0 0 0 37 4 0 0 0
12 EdiMax 0 0 1 0 0 3 0 0 0 1 0 0 0 0
18 NETGEAR 83 154 379 1238 973 245 350 62 175 1343 283 70 0 0
20 Planet 1 0 1 0 1 0 0 0 0 0 0 0 0 0
21 QNAP 0 0 0 0 0 0 0 0 0 0 0 17 6 0
23 Synology 19 4 4 1 0 6 35 154 5 53 0 0 0 0
24 TP-Link 0 0 0 0 0 0 0 0 0 7 73 42 0 0
28 Totolink 0 0 0 0 0 0 0 0 0 2 1 0 0 0
29 Trendnet 0 0 0 1 0 2 2 0 0 2 6 0 0 0
30 Ubiquiti 0 0 2 0 50 46 63 8 7 24 146 1 0 0
31 Western-

Digital
0 1 0 0 0 1 2 0 0 0 0 0 0 0

32 Xiaomi 0 0 0 0 16 7 13 14 0 2 28 1 0 0
33 Zyxel 0 4 9 10 5 15 20 7 3 21 32 0 0 0
- Total 121 167 404 1,276 1,071 334 494 256 190 1,533 1,044 160 6 0

Table A.19: GnuPG outdated versions for each vendor’s firmware image.

Vendor 0 1 2 3 4 5 6 7 8 9-
12

13-
16

17-
20

21-
25

26-
max

1 ASUS 0 0 0 0 2 1 1 2 1 0 1 0 0 0
9 D-Link 0 0 0 0 0 2 1 0 0 0 1 0 0 0
12 EdiMax 0 0 0 0 0 0 0 0 0 0 0 0 0 4
18 NETGEAR 1048 0 100 1120 1 0 0 0 0 0 1 0 0 732
21 QNAP 0 0 0 0 0 0 0 0 0 0 0 0 0 23
23 Synology 0 2 17 29 15 19 2 3 16 16 38 1 3 1
24 TP-Link 0 0 0 0 0 0 0 0 0 35 44 13 27 45
29 Trendnet 0 0 0 0 0 0 3 0 0 0 7 0 0 3
30 Ubiquiti 0 0 0 28 0 7 0 23 56 66 70 58 19 11
31 Western-

Digital
0 0 0 0 0 0 1 0 0 0 0 2 1 0

33 Zyxel 0 0 0 1 0 2 0 0 3 5 10 12 5 35
- Total 1,048 2 117 1,178 18 31 8 28 76 122 172 86 55 854

Table A.20: GnuTLS outdated versions for each vendor’s firmware image.

Vendor 0 1 2 3 4 5 6 7 8 9-
12

13-
16

17-
20

21-
25

26-
max

23 Synology 38 21 4 0 7 50 19 15 0 0 0 0 0 0
24 TP-Link 3 0 0 0 0 0 0 0 0 0 0 0 0 0
28 Totolink 6 0 0 0 0 0 1 2 0 0 0 0 0 0
30 Ubiquiti 0 28 9 0 1 0 0 0 0 0 0 0 0 0
31 Western-

Digital
0 1 0 0 0 0 0 0 0 0 0 0 0 0

- Total 47 50 13 0 8 50 20 17 0 0 0 0 0 0

Table A.21: Libsodium outdated versions for each vendor’s firmware image.

Vendor 0 1 2 3 4 5 6 7 8 9-
12

13-
16

17-
20

21-
25

26-
max

5 Alfa 0 1 0 0 0 0 0 0 0 0 0 0 0 0
7 Belkin 0 0 0 0 2 3 0 0 0 1 0 1 0 0
9 D-Link 0 0 2 0 1 0 0 0 2 2 2 1 3 1

A.6. Cryptographic Libraries 103

18 NETGEAR 0 0 0 0 0 0 0 0 0 5 0 6 7 9
24 TP-Link 0 0 0 1 0 0 1 2 1 7 0 1 0 0
30 Ubiquiti 0 0 0 0 0 11 0 0 11 0 37 51 115 0
- Total 0 1 2 1 3 14 1 2 14 15 39 60 125 10

Table A.22: WolfSSL outdated versions for each vendor’s firmware image.

Vendor 0 1 2 3 4 5 6 7 8 9-
12

13-
16

17-
20

21-
25

26-
max

1 ASUS 4 3 1 0 0 0 0 0 0 0 0 0 0 0
5 Alfa 0 5 3 0 0 0 0 0 0 0 0 0 0 0
18 NETGEAR 0 1 1 8 6 2 0 0 0 0 0 0 0 0
28 Totolink 0 0 1 1 0 0 0 0 0 0 0 0 0 0
30 Ubiquiti 2 38 60 11 3 0 0 0 0 0 0 0 0 0
31 Western-

Digital
0 0 4 0 0 0 0 0 0 0 0 0 0 0

33 Zyxel 0 1 2 0 0 0 0 0 0 0 0 0 0 0
- Total 6 48 72 20 9 2 0 0 0 0 0 0 0 0

Table A.23: Nettle outdated versions for each vendor’s firmware image.

Vendor 0 1 2 3 4 5 6 7 8 9-
12

13-
16

17-
20

21-
25

26-
max

9 D-Link 86 53 0 0 0 0 0 0 0 0 0 0 0 0
21 QNAP 0 23 0 0 0 0 0 0 0 0 0 0 0 0
23 Synology 302 0 0 0 0 0 0 0 0 0 0 0 0 0
29 Trendnet 2 0 0 0 0 0 0 0 0 0 0 0 0 0
30 Ubiquiti 152 0 0 0 0 0 0 0 0 0 0 0 0 0
32 Xiaomi 14 0 0 0 0 0 0 0 0 0 0 0 0 0
33 Zyxel 0 14 0 0 0 0 0 0 0 0 0 0 0 0
- Total 556 90 0 0 0 0 0 0 0 0 0 0 0 0

Table A.24: Mcrypt outdated versions for each vendor’s firmware image.

Vendor 0 1 2 3 4 5 6 7 8 9-
12

13-
16

17-
20

21-
25

26-
max

1 ASUS 0 0 0 0 0 3 1 2 1 1 0 0 0 0
12 EdiMax 1 0 0 3 0 5 1 5 1 11 15 15 13 9
16 LinkSys 0 2 0 2 0 0 0 0 0 0 0 0 0 0
18 NETGEAR 0 0 0 0 0 0 0 0 0 0 0 0 1 3
20 Planet 0 0 2 1 1 0 1 1 0 2 42 0 0 0
23 Synology 0 0 2 7 12 16 0 10 9 20 26 45 0 0
24 TP-Link 1 0 0 0 0 0 3 3 2 18 27 27 54 48
28 Totolink 0 0 0 0 6 0 0 0 0 0 0 0 0 0
29 Trendnet 0 0 0 0 0 0 2 0 0 0 0 0 2 4
30 Ubiquiti 0 0 0 0 0 0 0 0 0 0 0 0 5 0
32 Xiaomi 0 0 0 1 0 0 2 0 0 1 0 0 0 0
33 Zyxel 0 0 0 0 0 0 0 0 0 0 0 2 4 0
- Total 2 2 4 14 19 24 10 21 13 53 110 89 79 64

Table A.25: MbedTLS outdated versions for each vendor’s firmware image.

104 A. Appendix - Results & Findings

Table
A.26:O

veralldiscovered
cryptographic

libraries
across

vendors’firm
w
are

im
ages.

#
Vendors

#
unpacked

firm
w
ares

G
nuTLS

#
G
nuPG

(libgcrypt)
O
penSSL

(libcrypt)
W
olfSSL

#
firm

w
ares

%
3

#
firm

w
ares

%
3

#
firm

w
ares

%
3

#
firm

w
ares

%
3

1
ASU

S
1,309

8
0.61

8
428

32.70
428

1,111
84.87

1,061
0

0
0

2
AVM

102
0

0
0

0
0

0
17

16.67
16

0
0

0
3

Actiontec
5

0
0

0
0

0
0

5
100.00

5
0

0
0

4
Addvaluetech

0
0

0
0

0
0

0
0

0
0

0
0

0
5

Alfa
71

0
0

0
8

11.27
8

62
87.32

62
1

1.41
1

6
Arris

7
0

0
0

0
0

0
7

100.00
7

0
0

0
7

Belkin
45

0
0

0
0

0
0

5
11.11

3
10

22.22
7

8
Buffalo

4
0

0
0

0
0

0
4

100.00
4

0
0

0
9

D
-Link

2,116
4

0.19
4

216
10.21

216
1,694

80.06
1419

19
0.90

14
10

D
ell

122
0

0
0

41
33.61

41
41

33.61
41

0
0

0
11

D
rayTek

178
0

0
0

0
0

0
175

98.31
174

0
0

0
12

EdiM
ax

297
4

1.35
4

5
1.68

5
92

30.98
41

0
0

0
13

FO
SC

AM
5

0
0

0
0

0
0

2
40.00

0
0

0
0

14
H
P

17
0

0
0

0
0

0
0

0
0

0
0

0
15

Inm
arsat

11
0

0
0

0
0

0
9

81.82
9

0
0

0
16

LinkSys
195

0
0

0
0

0
0

170
87.18

166
0

0
0

17
M
icroTik

814
0

0
0

0
0

0
814

100.00
814

0
0

0
18

N
ETG

EAR
8,061

3,002
37.24

3,002
5,355

66.43
5,355

6,452
80.04

6267
445

5.52
27

19
N
etis

114
0

0
0

0
0

0
7

6.14
5

0
0

0
20

Planet
418

0
0

0
3

0.72
3

263
62.92

241
14

3.35
0

21
Q
N
AP

109
23

21.10
23

23
21.10

23
33

30.28
33

0
0

0
22

R
otek

1
0

0
0

0
0

0
1

100.00
1

0
0

0
23

Synology
319

162
50.78

162
281

88.09
281

312
97.81

312
0

0
0

24
TP-Link

2,069
164

7.93
164

122
5.90

122
1,196

57.81
1,191

861
41.61

13
25

Tenda
367

0
0

0
0

0
0

132
35.97

130
0

0
0

26
Tenvis

7
0

0
0

0
0

0
4

57.14
4

0
0

0
27

Thuraya
2

0
0

0
0

0
0

0
0

0
0

0
0

28
Totolink

144
0

0
0

3
2.08

3
50

34.72
48

0
0

0
29

Trendnet
267

13
4.87

13
13

4.87
13

128
47.94

94
5

1.87
0

30
U
biquiti

3,737
338

9.04
338

347
9.29

347
3,450

92.32
3,450

225
6.02

225
31

W
estern-D

igital
5

4
80.00

4
4

80.00
4

5
100.00

4
0

0
0

32
Xiaom

i
313

0
0

0
81

25.88
81

310
99.04

309
0

0
0

33
Zyxel

1,317
73

5.54
73

126
9.57

126
989

75.09
971

33
2.51

0
-

Total
22,548

3,795
16.83

3,795
7,056

31.29
7,056

17,540
77.79

16,882
1,613

7.15
287

A.6. Cryptographic Libraries 105

Ta
bl
e
A.
27
:O

ve
ra
ll
di
sc
ov
er
ed

cr
yp
to
gr
ap
hi
c
lib
ra
rie
s
ac
ro
ss

ve
nd
or
s’
fir
m
w
ar
e
im
ag
es
.

#
Ve

nd
or

#
un
pa
ck
ed

fir
m
w
ar
es

Li
bs
od
iu
m

m
be
d
TL
S

M
C
R
YP

T
N
et
tle

#
fir
m
w
ar
es

%
3

#
fir
m
w
ar
es

%
3

#
fir
m
w
ar
es

%
3

#
fir
m
w
ar
es

%
3

1
AS

U
S

1,
30
9

0
0

0
8

0.
61

8
0

0
0

8
0.
61

8
2

AV
M

10
2

0
0

0
0

0
0

0
0

0
0

0
0

3
Ac
tio
nt
ec

5
0

0
0

0
0

0
0

0
0

0
0

0
4

Ad
dv
al
ue
te
ch

0
0

0
0

0
0

0
0

0
0

0
0

0
5

Al
fa

71
0

0
0

27
38
.0
3

0
0

0
0

8
11
.2
7

8
6

Ar
ris

7
0

0
0

0
0

0
0

0
0

0
0

0
7

Be
lk
in

45
0

0
0

0
0

0
0

0
0

0
0

0
8

Bu
ffa
lo

4
0

0
0

2
50
.0
0

0
0

0
0

0
0

0
9

D
-L
in
k

2,
11
6

0
0

0
0

0
0

13
9

6.
57

13
9

0
0

0
10

D
el
l

12
2

0
0

0
0

0
0

0
0

0
41

33
.6
1

0
11

D
ra
yT
ek

17
8

0
0

0
0

0
0

0
0

0
0

0
0

12
Ed

iM
ax

29
7

0
0

0
79

26
.6
0

79
0

0
0

0
0

0
13

FO
SC

AM
5

0
0

0
0

0
0

0
0

0
0

0
0

14
H
P

17
0

0
0

0
0

0
0

0
0

0
0

0
15

In
m
ar
sa
t

11
0

0
0

0
0

0
0

0
0

0
0

0
16

Li
nk
Sy
s

19
5

0
0

0
17

8.
72

4
0

0
0

0
0

0
17

M
ic
ro
Ti
k

81
4

0
0

0
0

0
0

0
0

0
0

0
0

18
N
ET

G
EA

R
8,
06
1

0
0

0
57

0.
71

4
0

0
0

29
09

36
.0
9

18
19

N
et
is

11
4

0
0

0
0

0
0

0
0

0
0

0
0

20
Pl
an
et

41
8

0
0

0
50

11
.9
6

50
0

0
0

0
0

0
21

Q
N
AP

10
9

0
0

0
8

7.
34

0
23

21
.1
0

23
0

0
0

22
R
ot
ek

1
0

0
0

0
0

0
0

0
0

0
0

0
23

Sy
no
lo
gy

31
9

15
4

48
.2
8

15
4

14
7

46
.0
8

14
7

30
2

94
.6
7

30
2

16
2

50
.7
8

0
24

TP
-L
in
k

2,
06
9

3
0.
14

3
18
5

8.
94

18
3

0
0

0
19
0

9.
18

0
25

Te
nd
a

36
7

0
0

0
1

0.
27

0
0

0
0

0
0

0
26

Te
nv
is

7
0

0
0

0
0

0
0

0
0

0
0

0
27

Th
ur
ay
a

2
0

0
0

0
0

0
0

0
0

0
0

0
28

To
to
lin
k

14
4

9
6.
25

9
10

6.
94

6
0

0
0

3
2.
08

2
29

Tr
en
dn
et

26
7

0
0

0
9

3.
37

8
2

0.
75

2
10

3.
75

0
30

U
bi
qu
iti

3,
73
7

38
1.
02

38
22

0.
59

5
15
2

4.
07

15
2

32
9

8.
80

11
4

31
W
es
te
rn
-D
ig
ita
l

5
1

20
.0
0

1
0

0
0

0
0

0
4

80
.0
0

4
32

Xi
ao
m
i

31
3

0
0

0
23
1

73
.8
0

4
68

21
.7
3

14
0

0
0

33
Zy
xe
l

1,
31
7

0
0

0
6

0.
46

6
14

1.
06

14
49

3.
72

3
-

To
ta
l

22
,5
48

20
5

0.
91

20
5

85
9

3.
81

50
4

70
0

3.
10

64
6

3,
71
3

16
.4
7

15
7

106 A. Appendix - Results & Findings

Table
A.28:O

veralldiscovered
cryptographic

libraries
across

vendors’firm
w
are

im
ages.

#
Vendor

#
unpacked

firm
w
ares

C
rypto++

KerberosV5
LIBC

LibTom
C
rypt

#
firm

w
ares

%
#
firm

w
ares

%
#
firm

w
ares

%
#
firm

w
ares

%
1

ASU
S

1,309
0

0
0

0
1297

99.08
0

0
2

AVM
102

0
0

0
0

17
16.67

0
0

3
Actiontec

5
0

0
0

0
5

100.00
0

0
4

Addvaluetech
0

0
0

0
0

0
0

0
0

5
Alfa

71
0

0
0

0
35

49.30
0

0
6

Arris
7

0
0

0
0

7
100.00

0
0

7
Belkin

45
0

0
0

0
44

97.78
0

0
8

Buffalo
4

0
0

0
0

4
100.00

0
0

9
D
-Link

2,116
0

0
212

10.02
2088

98.68
44

2.08
10

D
ell

122
0

0
41

33.61
96

78.69
0

0
11

D
rayTek

178
0

0
0

0
177

99.44
0

0
12

EdiM
ax

297
0

0
0

0
283

95.29
0

0
13

FO
SC

AM
5

0
0

0
0

4
80.00

0
0

14
H
P

17
0

0
0

0
17

100.00
0

0
15

Inm
arsat

11
0

0
0

0
9

81.82
0

0
16

LinkSys
195

0
0

0
0

193
98.97

0
0

17
M
icroTik

814
0

0
0

0
462

56.76
0

0
18

N
ETG

EAR
8,061

4106
50.94

4857
60.25

7841
97.27

4
0.05

19
N
etis

114
0

0
0

0
114

100.00
0

0
20

Planet
418

1
0.24

9
2.15

354
84.69

0
0

21
Q
N
AP

109
0

0
23

21.10
68

62.39
0

0
22

R
otek

1
0

0
0

0
1

100.00
0

0
23

Synology
319

0
0

312
97.81

319
100.00

0
0

24
TP-Link

2,069
0

0
0

0
2059

99.52
0

0
25

Tenda
367

0
0

0
0

361
98.37

0
0

26
Tenvis

7
0

0
0

0
7

100.00
0

0
27

Thuraya
2

0
0

0
0

2
100.00

0
0

28
Totolink

144
0

0
0

0
144

100.00
0

0
29

Trendnet
267

0
0

0
0

257
96.25

0
0

30
U
biquiti

3737
0

0
347

9.29
3518

94.14
0

0
31

W
estern-D

igital
5

0
0

4
80.00

5
100.00

0
0

32
Xiaom

i
313

82
26.20

0
0

312
99.68

0
0

33
Zyxel

1317
0

0
24

1.82
1166

88.53
0

0
-

Total
22,548

4,189
18.58

5,829
25.85

21,266
94.31

48
0.21

A.6. Cryptographic Libraries 107

Ta
bl
e
A.
29
:O

ve
ra
ll
di
sc
ov
er
ed

cr
yp
to
gr
ap
hi
c
lib
ra
rie
s
th
at
re
ac
he
d
th
ei
rE

nd
of
Li
fe
(E
oL
)s
pa
n
ac
ro
ss

ve
nd
or
s’
fir
m
w
ar
e
im
ag
es

ev
en

be
fo
re
th
e
im
ag
e
w
as

re
le
as
ed
.

#
Ve

nd
or

G
nu
TL
S

G
nu
PG

Li
bs
od
iu
m

M
be
dT
LS

#f
irm

w
ar
es

#
Eo

L
%

#f
irm

w
ar
es

#
Eo

L
%

#f
irm

w
ar
es

#
Eo

L
%

#f
irm

w
ar
es

#
Eo

L
%

1
Ac
tio
nt
ec

0
0

0.
00
%

0
0

0.
00
%

0
0

0.
00
%

0
0

0.
00
%

2
Ad

dv
al
ue
te
ch

0
0

0.
00
%

0
0

0.
00
%

0
0

0.
00
%

0
0

0.
00
%

3
Al
fa

0
0

0.
00
%

8
8

10
0.
00
%

0
0

0.
00
%

0
0

0.
00
%

4
Ar
ris

0
0

0.
00
%

0
0

0.
00
%

0
0

0.
00
%

0
0

0.
00
%

5
AS

U
S

8
0

0.
00
%

42
8

42
0

98
.1
3%

0
0

0.
00
%

8
0

0.
00
%

6
AV

M
0

0
0.
00
%

0
0

0.
00
%

0
0

0.
00
%

0
0

0.
00
%

7
Be

lk
in

0
0

0.
00
%

0
0

0.
00
%

0
0

0.
00
%

0
0

0.
00
%

8
Bu

ffa
lo

0
0

0.
00
%

0
0

0.
00
%

0
0

0.
00
%

0
0

0.
00
%

9
D
-L
in
k

4
4

10
0.
00
%

21
6

13
7

63
.4
3%

0
0

0.
00
%

0
0

0.
00
%

10
D
el
l

0
0

0.
00
%

41
41

10
0.
00
%

0
0

0.
00
%

0
0

0.
00
%

11
D
ra
yT
ek

0
0

0.
00
%

0
0

0.
00
%

0
0

0.
00
%

0
0

0.
00
%

12
Ed

iM
ax

4
0

0.
00
%

5
5

10
0.
00
%

0
0

0.
00
%

79
63

79
.7
5%

13
FO

SC
AM

0
0

0.
00
%

0
0

0.
00
%

0
0

0.
00
%

0
0

0.
00
%

14
H
P

0
0

0.
00
%

0
0

0.
00
%

0
0

0.
00
%

0
0

0.
00
%

15
In
m
ar
sa
t

0
0

0.
00
%

0
0

0.
00
%

0
0

0.
00
%

0
0

0.
00
%

16
Li
nk
Sy
s

0
0

0.
00
%

0
0

0.
00
%

0
0

0.
00
%

4
0

0.
00
%

17
M
ic
ro
Ti
k

0
0

0.
00
%

0
0

0.
00
%

0
0

0.
00
%

0
0

0.
00
%

18
N
ET

G
EA

R
3,
00
2

17
1

5.
70
%

5,
35
5

2,
51
1

46
.8
9%

0
0

0.
00
%

4
4

10
0.
00
%

19
N
et
is

0
0

0.
00
%

0
0

0.
00
%

0
0

0.
00
%

0
0

0.
00
%

20
Pl
an
et

0
0

0.
00
%

3
0

0.
00
%

0
0

0.
00
%

50
0

0.
00
%

21
Q
N
AP

23
23

10
0.
00
%

23
23

10
0.
00
%

0
0

0.
00
%

0
0

0.
00
%

22
R
ot
ek

0
0

0.
00
%

0
0

0.
00
%

0
0

0.
00
%

0
0

0.
00
%

23
Sy
no
lo
gy

16
2

0
0.
00
%

28
1

25
3

90
.0
4%

15
4

0
0.
00
%

14
7

0
0.
00
%

24
Te
nd
a

0
0

0.
00
%

0
0

0.
00
%

0
0

0.
00
%

0
0

0.
00
%

25
Te
nv
is

0
0

0.
00
%

0
0

0.
00
%

0
0

0.
00
%

0
0

0.
00
%

26
Th
ur
ay
a

0
0

0.
00
%

0
0

0.
00
%

0
0

0.
00
%

0
0

0.
00
%

27
To
to
lin
k

0
0

0.
00
%

3
3

10
0.
00
%

9
0

0.
00
%

6
0

0.
00
%

28
TP

-L
in
k

16
4

2
1.
22
%

12
2

12
2

10
0.
00
%

3
0

0.
00
%

18
3

17
2

93
.9
9%

29
Tr
en
dn
et

13
10

76
.9
2%

13
11

84
.6
2%

0
0

0.
00
%

8
6

75
.0
0%

30
U
bi
qu
iti

33
8

18
5

54
.7
3%

34
7

27
0

77
.8
1%

38
0

0.
00
%

5
5

10
0.
00
%

31
W
es
te
rn
-D
ig
ita
l

4
0

0.
00
%

4
3

75
.0
0%

1
0

0.
00
%

0
0

0.
00
%

32
Xi
ao
m
i

0
0

0.
00
%

81
45

55
.5
6%

0
0

0.
00
%

4
0

0.
00
%

33
Zy
xe
l

73
8

10
.9
6%

12
6

91
72
.2
2%

0
0

0.
00
%

6
6

10
0.
00
%

-
To
ta
l

3,
79
5

40
3

10
.6
2%

70
56

3,
94
3

55
.8
8%

20
5

0
0.
00
%

50
4

25
6

50
.7
9%

108 A. Appendix - Results & Findings

Table
A.30:O

veralldiscovered
cryptographic

libraries
thatreached

theirEnd
ofLife

(EoL)span
across

vendors’firm
w
are

im
ages

even
before

the
im
age

w
as

released.

#
Vendor

M
C
R
YPT

N
ettle

O
penSSL

W
olfSSL

#firm
w
ares

#
EoL

%
#firm

w
ares

#
EoL

%
#firm

w
ares

#
EoL

%
#firm

w
ares

#
EoL

%
1

Actiontec
0

0
0.00%

0
0

0.00%
5

5
100.00%

0
0

0.00%
2

Addvaluetech
0

0
0.00%

0
0

0.00%
0

0
0.00%

0
0

0.00%
3

Alfa
0

0
0.00%

8
0

0.00%
62

41
66.13%

1
0

0.00%
4

Arris
0

0
0.00%

0
0

0.00%
7

1
14.29%

0
0

0.00%
5

ASU
S

0
0

0.00%
8

0
0.00%

1061
324

30.54%
0

0
0.00%

6
AVM

0
0

0.00%
0

0
0.00%

16
9

56.25%
0

0
0.00%

7
Belkin

0
0

0.00%
0

0
0.00%

3
1

33.33%
7

0
0.00%

8
Buffalo

0
0

0.00%
0

0
0.00%

4
1

25.00%
0

0
0.00%

9
D
-Link

139
0

0.00%
0

0
0.00%

1419
645

45.45%
14

4
28.57%

10
D
ell

0
0

0.00%
0

0
0.00%

41
7

17.07%
0

0
0.00%

11
D
rayTek

0
0

0.00%
0

0
0.00%

174
56

32.18%
0

0
0.00%

12
EdiM

ax
0

0
0.00%

0
0

0.00%
41

32
78.05%

0
0

0.00%
13

FO
SC

AM
0

0
0.00%

0
0

0.00%
0

0
0.00%

0
0

0.00%
14

H
P

0
0

0.00%
0

0
0.00%

0
0

0.00%
0

0
0.00%

15
Inm

arsat
0

0
0.00%

0
0

0.00%
9

6
66.67%

0
0

0.00%
16

LinkSys
0

0
0.00%

0
0

0.00%
166

86
51.81%

0
0

0.00%
17

M
icroTik

0
0

0.00%
0

0
0.00%

814
583

71.62%
0

0
0.00%

18
N
ETG

EAR
0

0
0.00%

18
0

0.00%
6,267

2615
41.73%

27
16

59.26%
19

N
etis

0
0

0.00%
0

0
0.00%

5
5

100.00%
0

0
0.00%

20
Planet

0
0

0.00%
0

0
0.00%

241
134

55.60%
0

0
0.00%

21
Q
N
AP

23
0

0.00%
0

0
0.00%

33
22

66.67%
0

0
0.00%

22
R
otek

0
0

0.00%
0

0
0.00%

1
1

100.00%
0

0
0.00%

23
Synology

302
0

0.00%
0

0
0.00%

312
45

14.42%
0

0
0.00%

24
Tenda

0
0

0.00%
0

0
0.00%

130
91

70.00%
0

0
0.00%

25
Tenvis

0
0

0.00%
0

0
0.00%

4
0

0.00%
0

0
0.00%

26
Thuraya

0
0

0.00%
0

0
0.00%

0
0

0.00%
0

0
0.00%

27
Totolink

0
0

0.00%
2

0
0.00%

48
41

85.42%
0

0
0.00%

28
TP-Link

0
0

0.00%
0

0
0.00%

1,191
1,033

86.73%
13

0
0.00%

29
Trendnet

2
0

0.00%
0

0
0.00%

94
55

58.51%
0

0
0.00%

30
U
biquiti

152
0

0.00%
114

0
0.00%

3,450
696

20.17%
225

166
73.78%

31
W
estern-D

igital
0

0
0.00%

4
0

0.00%
4

3
75.00%

0
0

0.00%
32

Xiaom
i

14
0

0.00%
0

0
0.00%

309
186

60.19%
0

0
0.00%

33
Zyxel

14
0

0.00%
3

0
0.00%

971
410

42.22%
0

0
0.00%

-
Total

646
0

0.00%
157

0
0.00%

16,882
7,134

42.26%
287

186
64.81%

A.6. Cryptographic Libraries 109

Ta
bl
e
A.
31
:O

ve
ra
ll
an
al
yz
ed

bi
na
rie
s
th
at
us
e
O
pe
nS

SL
cr
yp
to
gr
ap
hi
c
lib
ra
ry
by

ve
nd
or
.

#
Ve

nd
or

#
an
al
ys
ed

bi
na
rie
s

#
an
al
ys
ed

ex
ec
ut
ab
le
s

#
an
al
ys
ed

lib
ra
rie
s

#
O
pe
nS

SL
bi
na
rie
s

%
#
O
pe
nS

SL
lib
ra
rie
s

%
#
O
pe
nS

SL
ex
ec
ut
ab
le
s

%

1
AS

U
S

59
,4
84

28
,0
76

31
,4
08

44
,0
90

74
.1
2

23
,6
78

53
.7
0

20
,4
12

46
.3
0

2
AV

M
61
2

24
5

36
7

48
8

79
.7
4

19
4

39
.7
5

29
4

60
.2
5

3
Ac
tio
nt
ec

19
8

5
19
3

21
10
.6
1

2
9.
52

19
90
.4
8

4
Ad

dv
al
ue
te
ch

0
0

0
0

0.
00

0
0.
00

0
0.
00

5
Al
fa

51
8

20
9

30
9

27
5

53
.0
9

15
3

55
.6
4

12
2

44
.3
6

6
Ar
ris

30
9

49
26
0

25
0

80
.9
1

39
15
.6
0

21
1

84
.4
0

7
Be

lk
in

11
7

24
93

14
11
.9
7

12
85
.7
1

2
14
.2
9

8
Bu

ffa
lo

26
6

20
11

42
.3
1

0
0.
00

11
10
0.
00

9
D
-L
in
k

59
,4
26

22
,6
88

36
,7
38

40
,1
21

67
.5
1

16
,7
90

41
.8
5

23
,3
31

58
.1
5

10
D
el
l

3,
85
1

2,
51
9

1,
33
2

1,
55
2

40
.3
0

1,
01
5

65
.4
0

53
7

34
.6
0

11
D
ra
yT
ek

3,
81
6

55
6

3,
26
0

3,
60
4

94
.4
4

51
3

14
.2
3

3,
09
1

85
.7
7

12
Ed

iM
ax

1,
27
1

87
1,
18
4

27
8

21
.8
7

24
8.
63

25
4

91
.3
7

13
FO

SC
AM

17
3

14
9

52
.9
4

0
0.
00

9
10
0.
00

14
H
P

22
0

22
5

22
.7
3

0
0.
00

5
10
0.
00

15
In
m
ar
sa
t

29
8

69
22
9

23
3

78
.1
9

46
19
.7
4

18
7

80
.2
6

16
Li
nk
Sy
s

3,
64
9

80
7

2,
84
2

1,
84
9

50
.6
7

44
4

24
.0
1

1,
40
5

75
.9
9

17
M
ic
ro
Ti
k

9,
37
4

53
9

8,
83
5

9,
37
4

10
0.
00

53
9

5.
75

8,
83
5

94
.2
5

18
N
ET

G
EA

R
85
9,
33
3

35
6,
22
6

50
3,
10
7

28
8,
40
4

33
.5
6

11
3,
93
3

39
.5
0

17
4,
47
1

60
.5
0

19
N
et
is

26
8

5
26
3

10
3.
73

0
0.
00

10
10
0.
00

20
Pl
an
et

6,
57
5

1,
46
4

5,
11
1

3,
53
9

53
.8
3

1,
02
2

28
.8
8

2,
51
7

71
.1
2

21
Q
N
AP

9,
82
1

3,
57
0

6,
25
1

7,
98
4

81
.3
0

2,
63
2

32
.9
7

5,
35
2

67
.0
3

22
R
ot
ek

5
0

5
1

20
.0
0

0
0.
00

1
10
0.
00

23
Sy
no
lo
gy

22
8,
04
0

11
2,
92
1

11
5,
11
9

16
0,
50
1

70
.3
8

90
,7
74

56
.5
6

69
,7
27

43
.4
4

24
TP

-L
in
k

27
,1
63

7,
29
7

19
,8
66

8,
91
3

32
.8
1

2,
58
8

29
.0
4

6,
32
5

70
.9
6

25
Te
nd
a

2,
37
9

16
0

2,
21
9

35
7

15
.0
1

40
11
.2
0

31
7

88
.8
0

26
Te
nv
is

12
9

8
12
1

7
5.
43

0
0.
00

7
10
0.
00

27
Th
ur
ay
a

10
2

8
0

0.
00

0
0.
00

0
0.
00

28
To
to
lin
k

1,
02
9

24
1

78
8

30
0

29
.1
5

14
6

48
.6
7

15
4

51
.3
3

29
Tr
en
dn
et

2,
38
6

51
3

1,
87
3

1,
18
7

49
.7
5

26
3

22
.1
6

92
4

77
.8
4

30
U
bi
qu
iti

94
,8
50

30
,5
26

64
,3
24

56
,4
96

59
.5
6

23
,8
05

42
.1
4

32
,6
91

57
.8
6

31
W
es
te
rn
-D
ig
ita
l

13
49

35
9

99
0

58
1

43
.0
7

18
2

31
.3
3

39
9

68
.6
7

32
Xi
ao
m
i

16
,0
59

3,
93
2

12
,1
27

9,
00
3

56
.0
6

1,
57
9

17
.5
4

7,
42
4

82
.4
6

33
Zy
xe
l

59
,6
55

16
,9
87

42
,6
68

37
,7
20

63
.2
3

8,
31
0

22
.0
3

29
,4
10

77
.9
7

-
To

ta
l

1,
45
2,
03
9

59
0,
09
3

86
1,
94
6

67
7,
17
7

45
.4
0

28
8,
72
3

42
.6
4

38
8,
45
4

57
.3
6

110 A. Appendix - Results & Findings

Table
A.32:O

verallanalyzed
binaries

thatuse
G
nuPG

(libgcrypt)cryptographic
library

by
vendor.

#
Vendor

#
analysed

binaries
#
analysed

executables
#
analysed

libraries
#
G
nuPG

binaries
%

#
G
nuPG

libraries
%

#
G
nuPG

executables
%

1
ASU

S
59,484

28,076
31,408

5,234
8.80

2,418
46.20

2,816
53.80

2
AVM

612
245

367
0

0.00
0

0.00
0

0.00
3

Actiontec
198

5
193

0
0.00

0
0.00

0
0.00

4
Addvaluetech

0
0

0
0

0.00
0

0.00
0

0.00
5

Alfa
518

209
309

0
0.00

0
0.00

0
0.00

6
Arris

309
49

260
0

0.00
0

0.00
0

0.00
7

Belkin
117

24
93

0
0.00

0
0.00

0
0.00

8
Buffalo

26
6

20
0

0.00
0

0.00
0

0.00
9

D
-Link

59,426
22,688

36,738
644

1.08
307

47.67
337

52.33
10

D
ell

3,851
2,519

1,332
38

0.99
38

100.00
0

0.00
11

D
rayTek

3,816
556

3,260
0

0.00
0

0.00
0

0.00
12

EdiM
ax

1,271
87

1,184
17

1.34
5

29.41
12

70.59
13

FO
SC

AM
17

3
14

0
0.00

0
0.00

0
0.00

14
H
P

22
0

22
0

0.00
0

0.00
0

0.00
15

Inm
arsat

298
69

229
0

0.00
0

0.00
0

0.00
16

LinkSys
3,649

807
2,842

0
0.00

0
0.00

0
0.00

17
M
icroTik

9,374
539

8,835
0

0.00
0

0.00
0

0.00
18

N
ETG

EAR
859,333

356,226
503,107

209,272
24.35

67,700
32.35

141,572
67.65

19
N
etis

268
5

263
0

0.00
0

0.00
0

0.00
20

Planet
6,575

1,464
5,111

5
0.08

3
60.00

2
40.00

21
Q
N
AP

9,821
3,570

6,251
391

3.98
253

64.71
138

35.29
22

R
otek

5
0

5
0

0.00
0

0.00
0

0.00
23

Synology
228,040

112,921
115,119

23,729
10.41

17,311
72.95

6,418
27.05

24
TP-Link

27,163
7,297

19,866
109

0.40
70

64.22
39

35.78
25

Tenda
2,379

160
2,219

0
0.00

0
0.00

0
0.00

26
Tenvis

129
8

121
0

0.00
0

0.00
0

0.00
27

Thuraya
10

2
8

0
0.00

0
0.00

0
0.00

28
Totolink

1,029
241

788
0

0.00
0

0.00
0

0.00
29

Trendnet
2,386

513
1,873

27
1.13

12
44.44

15
55.56

30
U
biquiti

9,4850
30,526

64,324
10,711

11.29
1,654

15.44
9,057

84.56
31

W
estern-D

igital
1,349

359
990

466
34.54

35
7.51

431
92.49

32
Xiaom

i
16,059

3,932
12,127

0
0.00

0
0.00

0
0.00

33
Zyxel

59,655
16,987

42,668
233

0.39
169

72.53
64

27.47
-

Total
1,452,039

590,093
861,946

250,876
2.99

89,975
35.86

160,901
64.14

A.7. Common Vulnerabilities and Exposures (CVEs) 111

A.7. Common Vulnerabilities and Exposures (CVEs)

Figure A.11: Critical severity CVEs time-gap in days earlier than firmware release date.

Vendor #days # Vendor #days
1 ASUS 766.66 18 NETGEAR 626.87
2 AVM 780.48 19 Netis 1,271.96
3 Actiontec 329.11 20 Planet 899.25
4 Addvaluetech 0 21 QNAP 1,044.39
5 Alfa 1070 22 Rotek 1,466.66
6 Arris 493 23 Synology 470.81
7 Belkin 254.5 24 TP-Link 870.21
8 Buffalo 598.75 25 Tenda 565.05
9 D-Link 614.90 26 Tenvis 0
10 Dell 0 27 Thuraya 0
11 DrayTek 657.26 28 Totolink 1,284.23
12 EdiMax 570.19 29 Trendnet 918.39
13 FOSCAM 0 30 Ubiquiti 581.64
14 HP 0 31 Western-Digital 0
15 Inmarsat 784.23 32 Xiaomi 512.48
16 LinkSys 832.94 33 Zyxel 638.60
17 MicroTik 583.05 - - -
- Median 590.47 - Mean 590.47
Table A.33: CVE critical severity mean values for each

vendor’s firmware image.

Vendor #days # Vendor #days
1 ASUS 681.68 18 NETGEAR 765.19
2 AVM 763.27 19 Netis 1,936.70
3 Actiontec 1334 20 Planet 1,033.15
4 Addvaluetech 0 21 QNAP 1,643.70
5 Alfa 1,603.41 22 Rotek 1,352.25
6 Arris 529.60 23 Synology 453.17
7 Belkin 310.72 24 TP-Link 1,057.86
8 Buffalo 1183.90 25 Tenda 1,323.22
9 D-Link 1057.41 26 Tenvis 1,187
10 Dell 570.17 27 Thuraya 0
11 DrayTek 768.67 28 Totolink 1,517.16
12 EdiMax 829.61 29 Trendnet 1,223.79
13 FOSCAM 0 30 Ubiquiti 694.93
14 HP 0 31 Western-Digital 711.15
15 Inmarsat 1424 32 Xiaomi 520.64
16 LinkSys 1,038.98 33 Zyxel 778.12
17 MicroTik 567.68 - - -
- Mean 874.58 - Median 874.58
Table A.34: CVE high severity mean values for each vendor’s

firmware image.

Critical High Medium Low
CVE # Firm. CVE # Firm. CVE # Firm. CVE # Firm.

GnuPG [6] (libgcrypt)
- - CVE-2017-0379 2,753 CVE-2016-6313 3,364 CVE-2015-7511 3,870
- - CVE-2018-6829 2,165 CVE-2017-9526 3,055 CVE-2013-4242 3,831
- - - - CVE-2018-0495 1,935 CVE-2014-5270 2860
- - - - CVE-2017-7526 1,880 - -
- - - - CVE-2015-0837 382 - -
- - - - CVE-2014-3591 382 - -
- - - - CVE-2019-12904 2 - -

GnuTLS [7] (libgnutls)

112 A. Appendix - Results & Findings

CVE-2017-5336 420 CVE-2014-3468 1,778 CVE-2013-1619 1,957 - -
CVE-2017-5334 420 CVE-2015-3308 1,250 CVE-2014-1959 1,931 - -
CVE-2017-5337 420 CVE-2012-1663 777 CVE-2014-0092 1,931 - -
- - CVE-2017-7869 686 CVE-2014-3467 1,778 - -
- - CVE-2016-7444 668 CVE-2014-3469 1,778 - -
- - CVE-2017-7507 594 CVE-2014-3466 1,778 - -
- - CVE-2017-5335 420 CVE-2015-0282 1,397 - -
- - CVE-2019-3829 110 CVE-2013-2116 1,162 - -
- - CVE-2015-0294 43 CVE-2012-0390 779 - -
- - CVE-2009-2730 26 CVE-2012-1573 777 - -
- - CVE-2009-1416 24 CVE-2012-1569 777 - -
- - CVE-2020-24659 12 CVE-2018-10846 403 - -
- - CVE-2020-13777 6 CVE-2018-10844 403 - -
- - CVE-2020-11501 6 CVE-2018-10845 403 - -
- - - - CVE-2018-16868 351 - -
- - - - CVE-2014-8155 239 - -
- - - - CVE-2015-6251 165 - -
- - - - CVE-2015-8313 30 - -
- - - - CVE-2009-1415 26 - -
- - - - CVE-2009-1417 26 - -
- - - - CVE-2009-5138 21 - -
- - - - CVE-2008-4989 2 - -
- - - - CVE-2014-8564 1 - -

KerberosV5 [93] (libk5crypto)
- - CVE-2003-0028 2 - - - -

LibTomCrypt [10] (libtomcrypt)
- - - - CVE-2018-12437 383 - -

mbedTLS/PolarSSL [11] (libmbedcrypto, libmbedtls, libpolarssl, libmbedx509)
CVE-2017-18187 342 CVE-2018-

1000520
289 CVE-2018-0498 276 - -

CVE-2018-0487 263 CVE-2015-1182 262 CVE-2018-0497 276 - -
CVE-2018-0488 263 CVE-2014-9744 244 CVE-2015-5291 251 - -
- - CVE-2017-2784 214 CVE-2015-8036 251 - -
- - CVE-2017-14032 177 CVE-2019-16910 152 - -
- - CVE-2018-9988 175 CVE-2019-18222 135 - -
- - CVE-2018-9989 175 CVE-2020-10941 129 - -
- - CVE-2014-8628 126 CVE-2014-8627 88 - -
- - - - CVE-2020-16150 57 - -
- - - - CVE-2014-4911 41 - -
- - - - CVE-2013-1621 40 - -
- - - - CVE-2013-4623 40 - -
- - - - CVE-2013-5915 40 - -
- - - - CVE-2013-5914 40 - -
- - - - CVE-2020-10932 11 - -

Nettle [13] (libnettle)
CVE-2015-8805 16 CVE-2016-6489 79 CVE-2018-16869 77 - -
CVE-2015-8804 16 - - - - - -
CVE-2015-8803 16 - - - - - -

OpenSSL [14] (libcrypto, libssl)
CVE-2016-2177 5,121 CVE-2016-2180 5,066 CVE-2016-2178 5,121 CVE-2015-4000 2,956
CVE-2016-6303 4,906 CVE-2016-2183 4,978 CVE-2016-6306 4,875 CVE-2011-1945 2,435
CVE-2016-2182 4,906 CVE-2016-2181 4,906 CVE-2017-3735 3,423 CVE-2014-3566 2,353
CVE-2016-2108 2,264 CVE-2016-6302 4,906 CVE-2013-6449 2,826 CVE-2019-1552 2,146
CVE-2016-0705 1,805 CVE-2016-2179 4,906 CVE-2016-2107 2,747 CVE-2013-0169 2,022
CVE-2016-0799 1,805 CVE-2016-6304 4,875 CVE-2010-5298 2,643 CVE-2019-1563 1,904
CVE-2016-2842 1,805 CVE-2016-2106 2,747 CVE-2012-0884 2,610 CVE-2014-0076 1,702
CVE-2020-7043 36 CVE-2016-2109 2747 CVE-2012-1165 2609 CVE-2007-3108 1124
- - CVE-2016-2176 2,747 CVE-2012-2333 2,589 CVE-2020-1968 439
- - CVE-2012-2110 2,562 CVE-2014-0195 2,573 CVE-2016-0701 423
- - CVE-2010-4252 2,399 CVE-2014-0221 2,573 CVE-2004-0975 154
- - CVE-2015-0292 2,205 CVE-2014-3470 2,573 CVE-2009-0591 151
- - CVE-2018-0732 2,196 CVE-2017-3738 2,561 CVE-2015-1787 9
- - CVE-2015-1789 2,183 CVE-2017-3737 2,523 - -
- - CVE-2014-8176 2,065 CVE-2018-0737 2,408 - -
- - CVE-2015-3194 1,841 CVE-2010-4180 2,390 - -
- - CVE-2016-0798 1,805 CVE-2011-4619 2,379 - -
- - CVE-2016-0797 1,805 CVE-2011-4108 2,379 - -

A.7. Common Vulnerabilities and Exposures (CVEs) 113

- - CVE-2016-2105 1,762 CVE-2011-4576 2,379 - -
- - CVE-2011-4109 1,592 CVE-2012-0027 2,379 - -
- - CVE-2017-3731 1,541 CVE-2011-4577 2,379 - -
- - CVE-2010-0742 1,540 CVE-2015-3195 2,378 - -
- - CVE-2009-3245 1,443 CVE-2013-0166 2,358 - -
- - CVE-2014-3567 1,417 CVE-2018-0739 2,328 - -
- - CVE-2014-3512 1,412 CVE-2014-3508 2,305 - -
- - CVE-2014-0224 1,380 CVE-2014-3507 2,305 - -
- - CVE-2010-3864 1,334 CVE-2014-3506 2,305 - -
- - CVE-2014-0160 954 CVE-2014-3510 2,305 - -
- - CVE-2016-8610 923 CVE-2014-3505 2,305 - -
- - CVE-2014-3513 850 CVE-2015-1792 2,183 - -
- - CVE-2006-2940 807 CVE-2015-1791 2,183 - -
- - CVE-2006-3738 789 CVE-2015-1790 2,183 - -
- - CVE-2006-2937 789 CVE-2015-1788 2,183 - -
- - CVE-2007-4995 443 CVE-2015-0288 2,059 - -
- - CVE-2000-1254 240 CVE-2015-0209 2,059 - -
- - CVE-2019-1543 75 CVE-2015-0289 2,059 - -
- - CVE-2003-0131 32 CVE-2015-0286 2,059 - -
- - CVE-2020-1967 28 CVE-2015-0293 2,059 - -
- - CVE-2002-0656 18 CVE-2015-0287 2,059 - -
- - CVE-2002-0655 18 CVE-2006-7250 2,053 - -
- - CVE-2017-3730 13 CVE-2019-1547 1,904 - -
- - CVE-2016-7053 13 CVE-2014-3570 1,883 - -
- - CVE-2017-3733 13 CVE-2015-0204 1,883 - -
- - CVE-2016-7054 13 CVE-2014-3572 1,883 - -
- - CVE-2019-0190 2 CVE-2014-8275 1,883 - -
- - - - CVE-2014-3571 1883 - -
- - - - CVE-2011-3210 1,870 - -
- - - - CVE-2011-1473 1,861 - -
- - - - CVE-2016-0800 1,806 - -
- - - - CVE-2016-0702 1,805 - -
- - - - CVE-2019-1559 1,776 - -
- - - - CVE-2015-3197 1,768 - -
- - - - CVE-2018-0734 1,767 - -
- - - - CVE-2018-5407 1,746 - -
- - - - CVE-2016-0703 1,715 - -
- - - - CVE-2016-0704 1,715 - -
- - - - CVE-2017-3736 1,705 - -
- - - - CVE-2015-3196 1,648 - -
- - - - CVE-2015-0206 1,611 - -
- - - - CVE-2015-0205 1,611 - -
- - - - CVE-2019-1551 1,605 - -
- - - - CVE-2016-7055 1,563 - -
- - - - CVE-2013-6450 1,524 - -
- - - - CVE-2009-1390 1,475 - -
- - - - CVE-2009-4355 1,469 - -
- - - - CVE-2010-0433 1,461 - -
- - - - CVE-2009-1387 1,457 - -
- - - - CVE-2009-1377 1,455 - -
- - - - CVE-2009-1378 1,455 - -
- - - - CVE-2009-3555 1,451 - -
- - - - CVE-2009-3766 1,446 - -
- - - - CVE-2009-3765 1,446 - -
- - - - CVE-2009-3767 1,446 - -
- - - - CVE-2009-0590 1,432 - -
- - - - CVE-2009-0789 1,432 - -
- - - - CVE-2014-3568 1,417 - -
- - - - CVE-2014-3511 1,412 - -
- - - - CVE-2014-3509 1,412 - -
- - - - CVE-2016-7056 1,390 - -
- - - - CVE-2014-0198 1,390 - -
- - - - CVE-2008-5077 1,296 - -
- - - - CVE-2009-1386 1,273 - -
- - - - CVE-2011-0014 1,259 - -
- - - - CVE-2008-7270 1,207 - -
- - - - CVE-2007-5135 1,099 - -

114 A. Appendix - Results & Findings

- - - - CVE-2017-3732 1,069 - -
- - - - CVE-2011-4354 1,034 - -
- - - - CVE-2013-4353 1,009 - -
- - - - CVE-2014-5139 925 - -
- - - - CVE-2009-2409 821 - -
- - - - CVE-2006-4339 804 - -
- - - - CVE-2006-4343 789 - -
- - - - CVE-2005-2946 682 - -
- - - - CVE-2005-2969 663 - -
- - - - CVE-2014-3569 540 - -
- - - - CVE-2010-0740 422 - -
- - - - CVE-2015-1794 415 - -
- - - - CVE-2015-3193 415 - -
- - - - CVE-2011-3207 262 - -
- - - - CVE-2008-1678 199 - -
- - - - CVE-2008-0891 195 - -
- - - - CVE-2020-1971 183 - -
- - - - CVE-2005-1797 166 - -
- - - - CVE-2019-1549 134 - -
- - - - CVE-2010-1633 102 - -
- - - - CVE-2012-2686 76 - -
- - - - CVE-2010-2939 69 - -
- - - - CVE-2004-0081 46 - -
- - - - CVE-2004-0112 46 - -
- - - - CVE-2004-0079 46 - -
- - - - CVE-2020-7041 40 - -
- - - - CVE-2020-7042 40 - -
- - - - CVE-2010-0928 34 - -
- - - - CVE-2003-0851 32 - -
- - - - CVE-2003-0147 32 - -
- - - - CVE-2015-1793 28 - -
- - - - CVE-2012-0050 26 - -
- - - - CVE-2003-0078 20 - -
- - - - CVE-2002-0659 18 - -
- - - - CVE-2018-0733 12 - -
- - - - CVE-2018-0735 10 - -
- - - - CVE-2015-0285 9 - -
- - - - CVE-2015-0207 9 - -
- - - - CVE-2015-0208 9 - -
- - - - CVE-2015-0291 9 - -
- - - - CVE-2015-0290 9 - -
- - - - CVE-2009-1379 5 - -
- - - - CVE-2002-1568 2 - -

WolfSSL [17] (libwolfssl, libcyassl)
CVE-2017-2800 272 CVE-2017-8854 273 CVE-2016-7438 277 - -
CVE-2019-6439 183 CVE-2017-8855 273 CVE-2016-7440 277 - -
CVE-2019-16748 150 CVE-2019-19962 101 CVE-2016-7439 277 - -
CVE-2020-36177 5 CVE-2020-12457 8 CVE-2017-6076 276 - -
- - CVE-2020-15309 8 CVE-2017-13099 247 - -
- - CVE-2020-11713 3 CVE-2018-12436 217 - -
- - CVE-2021-3336 3 CVE-2018-16870 184 - -
- - - - CVE-2019-13628 150 - -
- - - - CVE-2019-14317 101 - -
- - - - CVE-2019-19960 101 - -
- - - - CVE-2019-19963 101 - -
- - - - CVE-2020-11735 32 - -
- - - - CVE-2020-24613 8 - -
- - - - CVE-2020-24585 8 - -

Table A.35: Discovered Critical and High CVE and amount of firmware images earlier than a firmware’s release date

Critical High Medium Low
CVE # Firm. CVE # Firm. CVE # Firm. CVE # Firm.

GnuPG [6] (libgcrypt)
- - CVE-2018-6829 4819 CVE-2017-7526 5096 CVE-2015-7511 2809
- - CVE-2017-0379 4223 CVE-2018-0495 5049 CVE-2014-5270 1782

A.7. Common Vulnerabilities and Exposures (CVEs) 115

- - - - CVE-2015-0837 4269 CVE-2013-4242 806
- - - - CVE-2014-3591 4269 - -
- - - - CVE-2017-9526 3921 - -
- - - - CVE-2016-6313 3335 - -

GnuTLS [7] (libgnutls)
CVE-2017-5336 3031 CVE-2020-24659 3723 CVE-2018-16868 3378 - -
CVE-2017-5334 3031 CVE-2015-0294 3287 CVE-2018-10845 3326 - -
CVE-2017-5337 3031 CVE-2017-7507 3126 CVE-2018-10846 3326 - -
- - CVE-2017-7869 3034 CVE-2018-10844 3326 - -
- - CVE-2017-5335 3031 CVE-2015-8313 3243 - -
- - CVE-2016-7444 2799 CVE-2015-0282 1876 - -
- - CVE-2015-3308 2080 CVE-2014-3467 1496 - -
- - CVE-2014-3468 1496 CVE-2014-3469 1496 - -
- - CVE-2019-3829 8 CVE-2014-3466 1496 - -
- - CVE-2020-13777 8 CVE-2014-1959 1342 - -
- - CVE-2012-1663 2 CVE-2014-0092 1342 - -
- - - - CVE-2014-8155 525 - -
- - - - CVE-2013-1619 154 - -
- - - - CVE-2009-5138 5 - -
- - - - CVE-2012-1573 2 - -
- - - - CVE-2012-1569 2 - -

LibTomCrypt [10] (libtomcrypt)
- - - - CVE-2018-12437 31 - -

mbedTLS/PolarSSL [11] (libmbedcrypto, libmbedtls, libpolarssl, libmbedx509)
CVE-2017-18187 119 CVE-2018-

1000520
172 CVE-2020-16150 423 - -

CVE-2018-0488 39 CVE-2018-9988 89 CVE-2020-10941 351 - -
CVE-2018-0487 38 CVE-2018-9989 89 CVE-2019-18222 345 - -
- - CVE-2017-2784 52 CVE-2019-16910 326 - -
- - CVE-2017-14032 17 CVE-2018-0498 193 - -
- - CVE-2014-9744 4 CVE-2018-0497 193 - -
- - CVE-2014-8628 3 CVE-2015-5291 12 - -
- - CVE-2015-1182 1 CVE-2015-8036 12 - -

Nettle [13] (libnettle)
- - - - CVE-2018-16869 2 - -

OpenSSL [14] (libcrypto, libssl)
CVE-2020-7043 9,758 CVE-2021-23840 5,654 CVE-2020-7041 9,793 CVE-2020-1968 5,054
CVE-2016-2108 4,430 CVE-2016-2106 4,734 CVE-2020-7042 9,793 CVE-2015-4000 3,685
CVE-2016-6303 2,646 CVE-2016-2109 4,734 CVE-2016-7056 8,404 CVE-2019-1563 3,517
CVE-2016-2182 2,646 CVE-2016-2176 4,734 CVE-2021-23841 5,654 CVE-2019-1552 3,275
CVE-2016-2177 2,431 CVE-2014-8176 3,224 CVE-2020-1971 5,489 CVE-2014-3566 2,274
CVE-2016-0705 2,129 CVE-2015-0292 3,077 CVE-2017-3735 4,757 CVE-2014-0076 1,317
CVE-2016-0799 2,129 CVE-2016-6304 2,647 CVE-2016-2107 4,734 CVE-2021-23839 649
CVE-2016-2842 2,129 CVE-2016-2181 2,646 CVE-2019-1551 3,824 CVE-2013-0169 391
- - CVE-2016-6302 2,646 CVE-2019-1547 3,517 CVE-2011-1945 218
- - CVE-2016-2179 2,646 CVE-2019-1559 2,669 CVE-2007-3108 15
- - CVE-2016-2183 2,523 CVE-2016-6306 2,647 CVE-2016-0701 3
- - CVE-2016-2180 2,486 CVE-2014-0195 2,457 - -
- - CVE-2016-2105 2,203 CVE-2014-0221 2,457 - -
- - CVE-2016-0798 2,129 CVE-2014-3470 2,457 - -
- - CVE-2016-0797 2,129 CVE-2016-2178 2,431 - -
- - CVE-2015-1789 2,043 CVE-2015-3195 2,412 - -
- - CVE-2015-3194 1,894 CVE-2010-5298 2,314 - -
- - CVE-2018-0732 1,731 CVE-2018-5407 2,230 - -
- - CVE-2014-3567 1,288 CVE-2015-3196 2,228 - -
- - CVE-2014-3512 1,188 CVE-2018-0734 2,211 - -
- - CVE-2014-0224 1,162 CVE-2016-0702 2,129 - -
- - CVE-2014-3513 1,157 CVE-2016-0800 2,128 - -
- - CVE-2014-0160 903 CVE-2016-0703 2,115 - -
- - CVE-2012-2110 390 CVE-2016-0704 2,115 - -
- - CVE-2016-8610 368 CVE-2015-3197 2,103 - -
- - CVE-2017-3731 197 CVE-2014-3508 2,085 - -
- - CVE-2010-4252 165 CVE-2014-3507 2,085 - -
- - CVE-2000-1254 158 CVE-2014-3506 2,085 - -
- - CVE-2010-0742 128 CVE-2014-3510 2,085 - -
- - CVE-2009-3245 105 CVE-2014-3505 2,085 - -
- - CVE-2011-4109 102 CVE-2015-1792 2,043 - -

116 A. Appendix - Results & Findings

- - CVE-2019-1543 15 CVE-2015-1791 2,043 - -
- - CVE-2010-3864 9 CVE-2015-1790 2,043 - -
- - CVE-2006-2940 5 CVE-2015-1788 2,043 - -
- - CVE-2006-2937 3 CVE-2013-6449 2,007 - -
- - CVE-2006-3738 3 CVE-2015-0288 1,771 - -
- - CVE-2016-7053 1 CVE-2015-0209 1,771 - -
- - CVE-2017-3733 1 CVE-2015-0289 1,771 - -
- - CVE-2017-3730 1 CVE-2015-0286 1,771 - -
- - CVE-2016-7054 1 CVE-2015-0293 1,771 - -
- - - - CVE-2015-0287 1,771 - -
- - - - CVE-2014-3570 1,681 - -
- - - - CVE-2015-0204 1,681 - -
- - - - CVE-2014-3572 1,681 - -
- - - - CVE-2014-8275 1,681 - -
- - - - CVE-2014-3571 1,681 - -
- - - - CVE-2015-0206 1,672 - -
- - - - CVE-2015-0205 1,672 - -
- - - - CVE-2018-0737 1,480 - -
- - - - CVE-2018-0739 1,426 - -
- - - - CVE-2014-3568 1,288 - -
- - - - CVE-2014-3511 1,188 - -
- - - - CVE-2014-3509 1,188 - -
- - - - CVE-2014-0198 1,152 - -
- - - - CVE-2014-5139 1,070 - -
- - - - CVE-2017-3738 981 - -
- - - - CVE-2017-3737 961 - -
- - - - CVE-2013-6450 894 - -
- - - - CVE-2013-4353 825 - -
- - - - CVE-2017-3736 823 - -
- - - - CVE-2013-0166 708 - -
- - - - CVE-2011-1473 513 - -
- - - - CVE-2012-2333 415 - -
- - - - CVE-2012-1165 354 - -
- - - - CVE-2012-0884 353 - -
- - - - CVE-2006-7250 341 - -
- - - - CVE-2011-4619 315 - -
- - - - CVE-2011-4108 315 - -
- - - - CVE-2011-4576 315 - -
- - - - CVE-2012-0027 315 - -
- - - - CVE-2011-4577 315 - -
- - - - CVE-2011-4354 300 - -
- - - - CVE-2014-3569 228 - -
- - - - CVE-2016-7055 205 - -
- - - - CVE-2017-3732 195 - -
- - - - CVE-2008-7270 165 - -
- - - - CVE-2010-4180 165 - -
- - - - CVE-2010-0433 105 - -
- - - - CVE-2009-4355 101 - -
- - - - CVE-2009-3555 93 - -
- - - - CVE-2009-3766 93 - -
- - - - CVE-2009-3765 93 - -
- - - - CVE-2009-3767 93 - -
- - - - CVE-2011-3210 87 - -
- - - - CVE-2009-1390 69 - -
- - - - CVE-2009-1387 65 - -
- - - - CVE-2009-1386 65 - -
- - - - CVE-2009-1377 62 - -
- - - - CVE-2009-1378 62 - -
- - - - CVE-2009-0590 53 - -
- - - - CVE-2009-0789 53 - -
- - - - CVE-2008-5077 42 - -
- - - - CVE-2009-2409 23 - -
- - - - CVE-2018-0735 11 - -
- - - - CVE-2007-5135 7 - -
- - - - CVE-2018-0733 7 - -
- - - - CVE-2010-0740 5 - -
- - - - CVE-2006-4339 4 - -

A.7. Common Vulnerabilities and Exposures (CVEs) 117

- - - - CVE-2006-4343 3 - -
- - - - CVE-2019-1549 2 - -
- - - - CVE-2005-2946 1 - -
- - - - CVE-2011-3207 1 - -
- - - - CVE-2011-0014 1 - -
- - - - CVE-2015-1794 1 - -
- - - - CVE-2015-3193 1 - -

WolfSSL [17] (libwolfssl, libcyassl)
CVE-2020-36177 275 CVE-2021-3336 277 CVE-2020-24585 272 - -
CVE-2019-16748 127 CVE-2020-12457 272 CVE-2020-24613 272 - -
CVE-2019-6439 94 CVE-2020-15309 272 CVE-2020-11735 248 - -
CVE-2017-2800 5 CVE-2019-19962 176 CVE-2019-14317 176 - -
- - CVE-2017-8854 4 CVE-2019-19960 176 - -
- - CVE-2017-8855 4 CVE-2019-19963 176 - -
- - - - CVE-2019-13628 127 - -
- - - - CVE-2018-16870 93 - -
- - - - CVE-2018-12436 60 - -
- - - - CVE-2017-13099 30 - -
- - - - CVE-2017-6076 1 - -

Table A.36: Discovered Critical and High CVE and amount of firmware images earlier than a firmware’s release date

Figure A.12: High severity CVEs time-gap in days earlier than firmware release date.

118 A. Appendix - Results & Findings

Figure A.13: Medium severity CVEs time-gap in days earlier than firmware release date.

Figure A.14: Low severity CVEs time-gap in days earlier than firmware release date.

A.7. Common Vulnerabilities and Exposures (CVEs) 119

Ta
bl
e
A.
37
:O

ve
ra
ll
di
st
in
ct
C
VE

s
fo
un
d
on

fir
m
w
ar
e
im
ag
es

fo
rc
ry
pt
og
ra
ph
ic
lib
ra
rie
s
by

se
ve
rit
y.

Ve
nd
or
s

Ea
rli
er

La
te
r

C
rit
ic
al

H
ig
h

M
ed
iu
m

Lo
w

C
rit
ic
al

H
ig
h

M
ed
iu
m

Lo
w

#
C
VE

s
#
Fi
rm
.

#
C
VE

s
#
Fi
rm
.

#
C
VE

s
#
Fi
rm
.

#
C
VE

s
#
Fi
rm
.

#
C
VE

s
#
Fi
rm
.

#
C
VE

s
#
Fi
rm
.

#
C
VE

s
#
Fi
rm
.

#
C
VE

s
#
Fi
rm
.

1
AS

U
S

7
19
5

38
79
0

11
4

86
3

13
74
2

8
13
7

33
86
6

10
1

89
7

10
82
8

2
AV

M
7

6
16

6
20

10
4

5
1

5
2

5
11

10
3

5
3

Ac
tio
nt
ec

7
3

28
5

81
5

6
5

2
5

6
2

22
5

2
2

4
Ad

dv
al
ue
t.

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

5
Al
fa

1
25

25
53

90
54

10
45

2
26

4
29

10
54

3
24

6
Ar
ris

7
6

18
7

40
7

2
3

8
3

15
6

24
7

3
4

7
Be

lk
in

1
2

16
5

44
5

3
2

11
5

26
5

69
5

6
2

8
Bu

ffa
lo

4
2

19
4

50
4

6
1

1
1

2
3

12
4

3
3

9
D
-L
in
k

14
46
4

59
1,
35
2

14
9

13
77

15
1,
18
8

12
1,
10
2

50
1,
08
9

12
1

1,
37
6

12
91
5

10
D
el
l

0
0

4
41

16
41

4
41

0
0

1
41

8
41

3
40

11
D
ra
yT
ek

7
38

29
12
0

87
17
1

7
11
9

8
45

19
13
5

51
17
3

6
87

12
Ed

iM
ax

8
35

40
91

11
2

87
11

63
12

80
45

84
10
9

96
10

20
13

FO
SC

AM
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
14

H
P

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

15
In
m
ar
sa
t

4
5

20
6

66
7

8
5

1
3

1
4

10
7

3
3

16
Li
nk
Sy
s

8
12
1

40
15
1

11
3

15
8

11
11
1

8
77

24
12
3

68
15
8

8
92

17
M
ic
ro
Ti
k

6
48
8

16
55
1

36
75
4

5
28
7

8
56
9

15
34
7

28
78
1

4
21
9

18
N
ET

G
EA

R
20

2,
99
1

63
5,
18
8

16
9

6,
18
9

16
5,
65
2

14
5,
52
0

46
5,
16
1

13
0

6,
19
7

14
3,
33
2

19
N
et
is

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

20
Pl
an
et

10
10
4

39
18
9

11
3

21
6

12
18
8

10
14
7

35
16
6

87
21
6

12
12
8

21
Q
N
AP

3
21

14
21

41
27

6
25

1
2

3
25

9
27

4
22

22
R
ot
ek

6
1

16
1

22
1

3
1

0
0

1
1

2
1

1
1

23
Sy
no
lo
gy

13
12
5

42
30
2

95
29
1

11
16
8

14
18
8

31
30
5

61
30
5

6
29
8

24
TP

-L
in
k

15
81
8

55
97
0

14
4

1,
02
3

14
95
0

18
80
4

44
51
7

97
1,
00
9

9
22
0

25
Te
nd
a

7
65

34
12
4

99
12
8

10
11
8

8
11
0

20
68

53
12
8

7
46

26
Te
nv
is

0
0

6
4

36
4

4
4

2
4

5
4

15
4

3
4

27
Th
ur
ay
a

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

28
To
to
lin
k

7
33

33
35

11
0

42
12

42
1

13
2

29
11

42
3

11
29

Tr
en
dn
et

14
35

55
74

13
8

76
14

69
11

58
39

56
99

76
12

34
30

U
bi
qu
iti

17
47
4

50
1,
37
7

11
8

2,
90
2

12
10
03

14
49
7

39
2,
94
9

95
2,
91
2

11
2,
40
2

31
W
D

0
0

8
4

10
4

1
1

0
0

3
4

3
2

1
1

32
Xi
ao
m
i

10
24
1

18
28
2

44
29
7

4
28
1

8
29
7

19
12
1

44
29
7

3
36

33
Zy
xe
l

13
47
5

55
92
5

14
2

96
0

15
69
5

11
48
9

43
82
9

11
9

97
8

11
66
9

-
To

ta
l

21
6,
77
3

78
12
,6
78

18
9

15
,7
03

16
11
,8
14

18
10
,1
87

67
12
,9
74

14
8

15
,8
08

14
9,
44
8

120 A. Appendix - Results & Findings

A.8. Cryptographic Misuses

Vendor # unpacked
firmwares S1 % S2 % S3 % S4 % No violation %

1 ASUS 1,309 0 0.00 546 41.71 0 0.00 539 41.18 763 58.29
2 AVM 102 0 0.00 5 4.90 0 0.00 5 4.90 97 95.10
3 Actiontec 5 0 0.00 1 20.00 0 0.00 1 20.00 4 80.00
4 Addvaluetech 0 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00
5 Alfa 71 0 0.00 10 14.08 0 0.00 54 76.06 17 23.94
6 Arris 7 0 0.00 0 0.00 0 0.00 0 0.00 7 100.00
7 Belkin 45 0 0.00 0 0.00 0 0.00 0 0.00 45 100.00
8 Buffalo 4 0 0.00 0 0.00 0 0.00 0 0.00 4 100.00
9 D-Link 2,116 203 9.59 356 16.82 9 0.43 219 10.35 1,587 75.00
10 Dell 122 0 0.00 41 33.61 0 0.00 41 33.61 81 66.39
11 DrayTek 178 83 46.63 5 2.81 0 0.00 9 5.06 91 51.12
12 EdiMax 297 0 0.00 4 1.35 0 0.00 4 1.35 293 98.65
13 FOSCAM 5 0 0.00 0 0.00 0 0.00 0 0.00 5 100.00
14 HP 17 0 0.00 0 0.00 0 0.00 0 0.00 17 100.00
15 Inmarsat 11 0 0.00 3 27.27 0 0.00 3 27.27 8 72.73
16 LinkSys 195 2 1.03 86 44.10 0 0.00 99 50.77 94 48.21
17 MicroTik 814 0 0.00 190 23.34 0 0.00 0 0.00 624 76.66
18 NETGEAR 8,061 183 2.27 1,714 21.26 12 0.15 610 7.57 6,321 78.41
19 Netis 114 0 0.00 0 0.00 0 0.00 0 0.00 114 100.00
20 Planet 418 0 0.00 60 14.35 0 0.00 86 20.57 332 79.43
21 QNAP 109 10 9.17 23 21.10 0 0.00 23 21.10 86 78.90
22 Rotek 1 0 0.00 0 0.00 0 0.00 0 0.00 1 100.00
23 Synology 319 0 0.00 165 51.72 0 0.00 196 61.44 123 38.56
24 TP-Link 2,069 70 3.38 162 7.83 0 0.00 137 6.62 1,854 89.61
25 Tenda 367 0 0.00 3 0.82 0 0.00 22 5.99 344 93.73
26 Tenvis 7 0 0.00 0 0.00 0 0.00 0 0.00 7 100.00
27 Thuraya 2 0 0.00 0 0.00 0 0.00 0 0.00 2 100.00
28 Totolink 144 0 0.00 4 2.78 0 0.00 4 2.78 140 97.22
29 Trendnet 267 0 0.00 34 12.73 0 0.00 29 10.86 228 85.39
30 Ubiquiti 3,737 0 0.00 259 6.93 0 0.00 387 10.36 3,350 89.64
31 Western-

Digital
5 0 0.00 4 80.00 0 0.00 4 80.00 1 20.00

32 Xiaomi 313 18 5.75 14 4.47 0 0.00 14 4.47 281 89.78
33 Zyxel 1,317 0 0.00 105 7.97 0 0.00 344 26.12 968 73.50
- Total 22,548 569 2.52 3,794 16.83 21 0.09 2,830 12.55 17,889 79.34

Table A.38: Symmetric Key Cryptography overall cryptographic misuses (found from entry and possible 𝜙).

Vendor # unpacked
firmwares P1 % P2 % P3 % No violation %

1 ASUS 1,309 347 26.51 0 0.00 1 0.08 961 73.41
2 AVM 102 0 0.00 0 0.00 0 0.00 102 100.00
3 Actiontec 5 0 0.00 0 0.00 0 0.00 5 100.00
4 Addvaluetech 0 0 0.00 0 0.00 0 0.00 0 0.00
5 Alfa 71 3 4.23 0 0.00 0 0.00 68 95.77
6 Arris 7 0 0.00 0 0.00 0 0.00 7 100.00
7 Belkin 45 0 0.00 0 0.00 0 0.00 45 100.00
8 Buffalo 4 0 0.00 0 0.00 0 0.00 4 100.00
9 D-Link 2,116 25 1.18 0 0.00 167 7.89 1,924 90.93
10 Dell 122 0 0.00 0 0.00 0 0.00 122 100.00
11 DrayTek 178 0 0.00 0 0.00 0 0.00 178 100.00
12 EdiMax 297 0 0.00 0 0.00 0 0.00 297 100.00
13 FOSCAM 5 0 0.00 0 0.00 0 0.00 5 100.00
14 HP 17 0 0.00 0 0.00 0 0.00 17 100.00
15 Inmarsat 11 0 0.00 0 0.00 0 0.00 11 100.00
16 LinkSys 195 1 0.51 0 0.00 2 1.03 192 98.46
17 MicroTik 814 0 0.00 0 0.00 0 0.00 814 100.00
18 NETGEAR 8,061 3,197 39.66 0 0.00 1,109 13.76 4,618 57.29
19 Netis 114 0 0.00 0 0.00 0 0.00 114 100.00
20 Planet 418 0 0.00 0 0.00 24 5.74 394 94.26
21 QNAP 109 0 0.00 0 0.00 0 0.00 109 100.00
22 Rotek 1 0 0.00 0 0.00 0 0.00 1 100.00

A.8. Cryptographic Misuses 121

23 Synology 319 69 21.63 0 0.00 108 33.86 144 45.14
24 TP-Link 2,069 60 2.90 0 0.00 63 3.04 1,958 94.64
25 Tenda 367 3 0.82 0 0.00 0 0.00 364 99.18
26 Tenvis 7 0 0.00 0 0.00 0 0.00 7 100.00
27 Thuraya 2 0 0.00 0 0.00 0 0.00 2 100.00
28 Totolink 144 1 0.69 0 0.00 0 0.00 143 99.31
29 Trendnet 267 0 0.00 0 0.00 1 0.37 266 99.63
30 Ubiquiti 3,737 0 0.00 0 0.00 131 3.51 3,606 96.49
31 Western-

Digital
5 0 0.00 0 0.00 4 80.00 1 20.00

32 Xiaomi 313 96 30.67 0 0.00 14 4.47 203 64.86
33 Zyxel 1,317 48 3.64 0 0.00 0 0.00 1,269 96.36
- Total 22,548 3,850 17.07 0 0.00 1,624 7.20 17,951 79.61

Table A.39: Public Key Cryptography overall cryptographic misuses (found from entry and possibly 𝜙).

Vendor # unpacked
firmwares R1 % R2 % No violation %

1 ASUS 1,309 137 10.47 908 69.37 353 26.97
2 AVM 102 0 0.00 12 11.76 90 88.24
3 Actiontec 5 1 20.00 5 100.00 0 0.00
4 Addvaluetech 0 0 0.00 0 0.00 0 0.00
5 Alfa 71 0 0.00 0 0.00 71 100.00
6 Arris 7 0 0.00 4 57.14 3 42.86
7 Belkin 45 0 0.00 0 0.00 45 100.00
8 Buffalo 4 2 50.00 0 0.00 2 50.00
9 D-Link 2,116 62 2.93 950 44.90 1,140 53.88
10 Dell 122 0 0.00 20 16.39 102 83.61
11 DrayTek 178 0 0.00 99 55.62 79 44.38
12 EdiMax 297 0 0.00 22 7.41 275 92.59
13 FOSCAM 5 0 0.00 1 20.00 4 80.00
14 HP 17 0 0.00 5 29.41 12 70.59
15 Inmarsat 11 0 0.00 5 45.45 6 54.55
16 LinkSys 195 30 15.38 117 60.00 71 36.41
17 MicroTik 814 0 0.00 632 77.64 182 22.36
18 NETGEAR 8,061 2232 27.69 4374 54.26 1,880 23.32
19 Netis 114 0 0.00 7 6.14 107 93.86
20 Planet 418 4 0.96 162 38.76 256 61.24
21 QNAP 109 0 0.00 27 24.77 82 75.23
22 Rotek 1 0 0.00 1 100.00 0 0.00
23 Synology 319 48 15.05 200 62.70 119 37.30
24 TP-Link 2,069 86 4.16 1,202 58.10 845 40.84
25 Tenda 367 0 0.00 92 25.07 275 74.93
26 Tenvis 7 0 0.00 2 28.57 5 71.43
27 Thuraya 2 0 0.00 0 0.00 2 100.00
28 Totolink 144 0 0.00 9 6.25 135 93.75
29 Trendnet 267 2 0.75 68 25.47 197 73.78
30 Ubiquiti 3,737 509 13.62 1739 46.53 1,815 48.57
31 Western-

Digital
5 0 0.00 4 80.00 1 20.00

32 Xiaomi 313 95 30.35 300 95.85 13 4.15
33 Zyxel 1,317 125 9.49 663 50.34 570 43.28
- Total 22,548 3,333 14.78 11,630 51.58 8,737 38.75

Table A.40: Pseudo Random Number Generators (PRNGs) cryptographic misuses (found from entry and possibly 𝜙).

Vendor # unpacked
firmwares K1 % K2 % K3 % K4 % No violation %

1 ASUS 1,309 585 44.69 272 20.78 0 0.00 289 22.08 467 35.68
2 AVM 102 0 0.00 0 0.00 0 0.00 0 0.00 102 100.00
3 Actiontec 5 0 0.00 1 20.00 0 0.00 1 20.00 4 80.00
4 Addvaluetech 0 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00
5 Alfa 71 0 0.00 6 8.45 0 0.00 6 8.45 65 91.55
6 Arris 7 4 57.14 3 42.86 4 57.14 3 42.86 0 0.00
7 Belkin 45 0 0.00 6 13.33 0 0.00 6 13.33 39 86.67

122 A. Appendix - Results & Findings

8 Buffalo 4 0 0.00 1 25.00 0 0.00 1 25.00 3 75.00
9 D-Link 2,116 136 6.43 363 17.16 0 0.00 438 20.70 1,669 78.88
10 Dell 122 0 0.00 0 0.00 0 0.00 0 0.00 122 100.00
11 DrayTek 178 0 0.00 133 74.72 62 34.83 133 74.72 29 16.29
12 EdiMax 297 0 0.00 71 23.91 0 0.00 73 24.58 224 75.42
13 FOSCAM 5 0 0.00 0 0.00 0 0.00 0 0.00 5 100.00
14 HP 17 0 0.00 0 0.00 0 0.00 0 0.00 17 100.00
15 Inmarsat 11 0 0.00 0 0.00 0 0.00 3 27.27 8 72.73
16 LinkSys 195 47 24.10 91 46.67 45 23.08 96 49.23 99 50.77
17 MicroTik 814 0 0.00 0 0.00 0 0.00 0 0.00 814 100.00
18 NETGEAR 8,061 28 0.35 475 5.89 2 0.02 4,611 57.20 3,450 42.80
19 Netis 114 0 0.00 98 85.96 0 0.00 98 85.96 16 14.04
20 Planet 418 0 0.00 78 18.66 0 0.00 82 19.62 336 80.38
21 QNAP 109 29 26.61 6 5.50 0 0.00 6 5.50 80 73.39
22 Rotek 1 0 0.00 0 0.00 0 0.00 0 0.00 1 100.00
23 Synology 319 0 0.00 37 11.60 3 0.94 200 62.70 119 37.30
24 TP-Link 2,069 49 2.37 781 37.75 1 0.05 784 37.89 1,254 60.61
25 Tenda 367 0 0.00 52 14.17 4 1.09 52 14.17 311 84.74
26 Tenvis 7 0 0.00 2 28.57 0 0.00 2 28.57 5 71.43
27 Thuraya 2 0 0.00 2 100.00 0 0.00 2 100.00 0 0.00
28 Totolink 144 0 0.00 3 2.08 0 0.00 5 3.47 139 96.53
29 Trendnet 267 19 7.12 93 34.83 16 5.99 95 35.58 172 64.42
30 Ubiquiti 3,737 0 0.00 78 2.09 76 2.03 426 11.40 3,235 86.57
31 Western-

Digital
5 0 0.00 0 0.00 0 0.00 5 100.00 0 0.00

32 Xiaomi 313 0 0.00 299 95.53 68 21.73 299 95.53 14 4.47
33 Zyxel 1,317 1 0.08 222 16.86 164 12.45 352 26.73 833 63.25
- Total 22,548 898 3.98 3,173 14.07 445 1.97 8,068 35.78 13,632 60.46

Table A.41: Key Derivation Functions (KDFs) and Password Based Encryption (PBE) overall cryptographic misuses (found
from entry and possibly 𝜙).

Vendor # unpacked
firmwares M1 % M2 % M3 % No violation %

1 ASUS 1,309 0 0.00 183 13.98 29 2.22 1,126 86.02
2 AVM 102 0 0.00 5 4.90 0 0.00 97 95.10
3 Actiontec 5 0 0.00 2 40.00 0 0.00 3 60.00
4 Addvaluetech 0 0 0.00 0 0.00 0 0.00 0 0.00
5 Alfa 71 0 0.00 33 46.48 8 11.27 38 53.52
6 Arris 7 0 0.00 0 0.00 0 0.00 7 100.00
7 Belkin 45 0 0.00 0 0.00 0 0.00 45 100.00
8 Buffalo 4 0 0.00 0 0.00 0 0.00 4 100.00
9 D-Link 2,116 0 0.00 165 7.80 0 0.00 1,951 92.20
10 Dell 122 0 0.00 41 33.61 0 0.00 81 66.39
11 DrayTek 178 150 84.27 23 12.92 0 0.00 28 15.73
12 EdiMax 297 0 0.00 12 4.04 0 0.00 285 95.96
13 FOSCAM 5 0 0.00 0 0.00 0 0.00 5 100.00
14 HP 17 0 0.00 0 0.00 0 0.00 17 100.00
15 Inmarsat 11 0 0.00 3 27.27 0 0.00 8 72.73
16 LinkSys 195 0 0.00 85 43.59 1 0.51 110 56.41
17 MicroTik 814 0 0.00 350 43.00 0 0.00 464 57.00
18 NETGEAR 8,061 182 2.26 69 0.86 32 0.40 7,793 96.68
19 Netis 114 0 0.00 0 0.00 0 0.00 114 100.00
20 Planet 418 0 0.00 58 13.88 0 0.00 360 86.12
21 QNAP 109 0 0.00 13 11.93 0 0.00 96 88.07
22 Rotek 1 0 0.00 0 0.00 0 0.00 1 100.00
23 Synology 319 0 0.00 160 50.16 1 0.31 159 49.84
24 TP-Link 2,069 0 0.00 200 9.67 7 0.34 1,869 90.33
25 Tenda 367 0 0.00 23 6.27 1 0.27 344 93.73
26 Tenvis 7 0 0.00 1 14.29 0 0.00 6 85.71
27 Thuraya 2 0 0.00 0 0.00 0 0.00 2 100.00
28 Totolink 144 0 0.00 4 2.78 1 0.69 139 96.53
29 Trendnet 267 0 0.00 13 4.87 0 0.00 254 95.13
30 Ubiquiti 3,737 0 0.00 308 8.24 0 0.00 3,429 91.76
31 Western-

Digital
5 0 0.00 4 80.00 0 0.00 1 20.00

A.8. Cryptographic Misuses 123

32 Xiaomi 313 0 0.00 14 4.47 0 0.00 299 95.53
33 Zyxel 1317 0 0.00 31 2.35 0 0.00 1286 97.65
- Total 22,548 332 1.47 1,800 7.98 80 0.35 20,421 90.57

Table A.42: Message Authentication Codes (MACs) overall cryptographic misuses (found from entry and possibly 𝜙).

Vendor # unpacked
firmwares A1 % A2 % No violation %

1 ASUS 1,309 0 0.00 0 0.00 1,309 100.00
2 AVM 102 0 0.00 0 0.00 102 100.00
3 Actiontec 5 0 0.00 0 0.00 5 100.00
4 Addvaluetech 0 0 0.00 0 0.00 0 0.00
5 Alfa 71 0 0.00 0 0.00 71 100.00
6 Arris 7 0 0.00 0 0.00 7 100.00
7 Belkin 45 0 0.00 0 0.00 45 100.00
8 Buffalo 4 0 0.00 0 0.00 4 100.00
9 D-Link 2,116 0 0.00 0 0.00 2,116 100.00
10 Dell 122 0 0.00 0 0.00 122 100.00
11 DrayTek 178 0 0.00 0 0.00 178 100.00
12 EdiMax 297 0 0.00 0 0.00 297 100.00
13 FOSCAM 5 0 0.00 0 0.00 5 100.00
14 HP 17 0 0.00 0 0.00 17 100.00
15 Inmarsat 11 0 0.00 0 0.00 11 100.00
16 LinkSys 195 0 0.00 0 0.00 195 100.00
17 MicroTik 814 0 0.00 0 0.00 814 100.00
18 NETGEAR 8,061 0 0.00 0 0.00 8,061 100.00
19 Netis 114 0 0.00 0 0.00 114 100.00
20 Planet 418 0 0.00 0 0.00 418 100.00
21 QNAP 109 0 0.00 0 0.00 109 100.00
22 Rotek 1 0 0.00 0 0.00 1 100.00
23 Synology 319 0 0.00 0 0.00 319 100.00
24 TP-Link 2,069 0 0.00 0 0.00 2,069 100.00
25 Tenda 367 0 0.00 0 0.00 367 100.00
26 Tenvis 7 0 0.00 0 0.00 7 100.00
27 Thuraya 2 0 0.00 0 0.00 2 100.00
28 Totolink 144 0 0.00 0 0.00 144 100.00
29 Trendnet 267 0 0.00 0 0.00 267 100.00
30 Ubiquiti 3,737 0 0.00 0 0.00 3,737 100.00
31 Western-

Digital
5 0 0.00 0 0.00 5 100.00

32 Xiaomi 313 0 0.00 0 0.00 313 100.00
33 Zyxel 1,317 0 0.00 0 0.00 1,317 100.00
- Total 22,548 0 0.00 0 0.00 22,548 100.00

Table A.43: Authenticated encryption/decryption and AEAD overall cryptographic misuses (found from entry and possible 𝜙).

Vendor # unpacked
firmwares S1 % S2 % S3 % S4 % No violation %

1 ASUS 1,309 0 0.00 546 41.71 0 0.00 539 41.18 763 58.29
2 AVM 102 0 0.00 5 4.90 0 0.00 5 4.90 97 95.10
3 Actiontec 5 0 0.00 1 20.00 0 0.00 1 20.00 4 80.00
4 Addvaluetech 0 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00
5 Alfa 71 0 0.00 10 14.08 0 0.00 54 76.06 17 23.94
6 Arris 7 0 0.00 0 0.00 0 0.00 0 0.00 7 100.00
7 Belkin 45 0 0.00 0 0.00 0 0.00 0 0.00 45 100.00
8 Buffalo 4 0 0.00 0 0.00 0 0.00 0 0.00 4 100.00
9 D-Link 2,116 203 9.59 356 16.82 9 0.43 219 10.35 1,587 75.00
10 Dell 122 0 0.00 41 33.61 0 0.00 41 33.61 81 66.39
11 DrayTek 178 83 46.63 5 2.81 0 0.00 9 5.06 91 51.12
12 EdiMax 297 0 0.00 4 1.35 0 0.00 4 1.35 293 98.65
13 FOSCAM 5 0 0.00 0 0.00 0 0.00 0 0.00 5 100.00
14 HP 17 0 0.00 0 0.00 0 0.00 0 0.00 17 100.00
15 Inmarsat 11 0 0.00 3 27.27 0 0.00 3 27.27 8 72.73
16 LinkSys 195 2 1.03 86 44.10 0 0.00 99 50.77 94 48.21
17 MicroTik 814 0 0.00 190 23.34 0 0.00 0 0.00 624 76.66

124 A. Appendix - Results & Findings

18 NETGEAR 8,061 183 2.27 1,714 21.26 12 0.15 610 7.57 6,321 78.41
19 Netis 114 0 0.00 0 0.00 0 0.00 0 0.00 114 100.00
20 Planet 418 0 0.00 60 14.35 0 0.00 86 20.57 332 79.43
21 QNAP 109 10 9.17 23 21.10 0 0.00 23 21.10 86 78.90
22 Rotek 1 0 0.00 0 0.00 0 0.00 0 0.00 1 100.00
23 Synology 319 0 0.00 165 51.72 0 0.00 196 61.44 123 38.56
24 TP-Link 2,069 70 3.38 162 7.83 0 0.00 137 6.62 1,854 89.61
25 Tenda 367 0 0.00 3 0.82 0 0.00 22 5.99 344 93.73
26 Tenvis 7 0 0.00 0 0.00 0 0.00 0 0.00 7 100.00
27 Thuraya 2 0 0.00 0 0.00 0 0.00 0 0.00 2 100.00
28 Totolink 144 0 0.00 4 2.78 0 0.00 4 2.78 140 97.22
29 Trendnet 267 0 0.00 34 12.73 0 0.00 29 10.86 228 85.39
30 Ubiquiti 3,737 0 0.00 259 6.93 0 0.00 387 10.36 ,3350 89.64
31 Western-

Digital
5 0 0.00 4 80.00 0 0.00 4 80.00 1 20.00

32 Xiaomi 313 18 5.75 14 4.47 0 0.00 14 4.47 281 89.78
33 Zyxel 1,317 0 0.00 105 7.97 0 0.00 344 26.12 968 73.50
- Total 22,548 569 2.52 3,794 16.83 21 0.09 2,830 12.55 17,889 79.34

Table A.44: Symmetric Key Cryptography overall cryptographic misuses (found from entry and not discovered 𝜙).

Vendor # unpacked
firmwares P1 % P2 % P3 % No violation %

1 ASUS 1,309 347 26.51 0 0.00 1 0.08 961 73.41
2 AVM 102 0 0.00 0 0.00 0 0.00 102 100.00
3 Actiontec 5 0 0.00 0 0.00 0 0.00 5 100.00
4 Addvaluetech 0 0 0.00 0 0.00 0 0.00 0 0.00
5 Alfa 71 3 4.23 0 0.00 0 0.00 68 95.77
6 Arris 7 0 0.00 0 0.00 0 0.00 7 100.00
7 Belkin 45 0 0.00 0 0.00 0 0.00 45 100.00
8 Buffalo 4 0 0.00 0 0.00 0 0.00 4 100.00
9 D-Link 2,116 25 1.18 0 0.00 167 7.89 1,924 90.93
10 Dell 122 0 0.00 0 0.00 0 0.00 122 100.00
11 DrayTek 178 0 0.00 0 0.00 0 0.00 178 100.00
12 EdiMax 297 0 0.00 0 0.00 0 0.00 297 100.00
13 FOSCAM 5 0 0.00 0 0.00 0 0.00 5 100.00
14 HP 17 0 0.00 0 0.00 0 0.00 17 100.00
15 Inmarsat 11 0 0.00 0 0.00 0 0.00 11 100.00
16 LinkSys 195 1 0.51 0 0.00 2 1.03 192 98.46
17 MicroTik 814 0 0.00 0 0.00 0 0.00 814 100.00
18 NETGEAR 8,061 3197 39.66 0 0.00 1,109 13.76 4,618 57.29
19 Netis 114 0 0.00 0 0.00 0 0.00 114 100.00
20 Planet 418 0 0.00 0 0.00 24 5.74 394 94.26
21 QNAP 109 0 0.00 0 0.00 0 0.00 109 100.00
22 Rotek 1 0 0.00 0 0.00 0 0.00 1 100.00
23 Synology 319 69 21.63 0 0.00 108 33.86 144 45.14
24 TP-Link 2,069 60 2.90 0 0.00 63 3.04 1,958 94.64
25 Tenda 367 3 0.82 0 0.00 0 0.00 364 99.18
26 Tenvis 7 0 0.00 0 0.00 0 0.00 7 100.00
27 Thuraya 2 0 0.00 0 0.00 0 0.00 2 100.00
28 Totolink 144 1 0.69 0 0.00 0 0.00 143 99.31
29 Trendnet 267 0 0.00 0 0.00 1 0.37 266 99.63
30 Ubiquiti 3,737 0 0.00 0 0.00 111 2.97 3,626 97.03
31 Western-

Digital
5 0 0.00 0 0.00 4 80.00 1 20.00

32 Xiaomi 313 96 30.67 0 0.00 14 4.47 203 64.86
33 Zyxel 1,317 48 3.64 0 0.00 0 0.00 1,269 96.36
- Total 22,548 3,850 17.07 0 0.00 1,604 7.11 17,971 79.70

Table A.45: Public Key Cryptography overall cryptographic misuses (found from entry and not discovered 𝜙).

Vendor # unpacked
firmwares R1 % R2 % No violation %

1 ASUS 1,309 0 0.00 908 69.37 401 30.63
2 AVM 102 0 0.00 12 11.76 90 88.24

A.8. Cryptographic Misuses 125

3 Actiontec 5 0 0.00 5 100.00 0 0.00
4 Addvaluetech 0 0 0.00 0 0.00 0 0.00
5 Alfa 71 0 0.00 0 0.00 71 100.00
6 Arris 7 0 0.00 4 57.14 3 42.86
7 Belkin 45 0 0.00 0 0.00 45 100.00
8 Buffalo 4 0 0.00 0 0.00 4 100.00
9 D-Link 2,116 37 1.75 950 44.90 1,142 53.97
10 Dell 122 0 0.00 20 16.39 102 83.61
11 DrayTek 178 0 0.00 99 55.62 79 44.38
12 EdiMax 297 0 0.00 22 7.41 275 92.59
13 FOSCAM 5 0 0.00 1 20.00 4 80.00
14 HP 17 0 0.00 5 29.41 12 70.59
15 Inmarsat 11 0 0.00 5 45.45 6 54.55
16 LinkSys 195 6 3.08 117 60.00 76 38.97
17 MicroTik 814 0 0.00 632 77.64 182 22.36
18 NETGEAR 8,061 2140 26.55 4,372 54.24 1,882 23.35
19 Netis 114 0 0.00 7 6.14 107 93.86
20 Planet 418 4 0.96 149 35.65 269 64.35
21 QNAP 109 0 0.00 27 24.77 82 75.23
22 Rotek 1 0 0.00 1 100.00 0 0.00
23 Synology 319 46 14.42 186 58.31 133 41.69
24 TP-Link 2,069 54 2.61 1,202 58.10 858 41.47
25 Tenda 367 0 0.00 92 25.07 275 74.93
26 Tenvis 7 0 0.00 2 28.57 5 71.43
27 Thuraya 2 0 0.00 0 0.00 2 100.00
28 Totolink 144 0 0.00 9 6.25 135 93.75
29 Trendnet 267 0 0.00 68 25.47 199 74.53
30 Ubiquiti 3,737 0 0.00 1,739 46.53 1,998 53.47
31 Western-

Digital
5 0 0.00 4 80.00 1 20.00

32 Xiaomi 313 95 30.35 300 95.85 13 4.15
33 Zyxel 1,317 109 8.28 663 50.34 570 43.28
- Total 22,548 2,491 11.05 11,601 51.45 9,021 40.01

Table A.46: Pseudo Random Number Generators (PRNGs) cryptographic misuses (found from entry and not discovered 𝜙).

Vendor # unpacked
firmwares K1 % K2 % K3 % K4 % No violation %

1 ASUS 1,309 6 0.46 8 0.61 0 0.00 8 0.61 1,300 99.31
2 AVM 102 0 0.00 0 0.00 0 0.00 0 0.00 102 100.00
3 Actiontec 5 0 0.00 1 20.00 0 0.00 1 20.00 4 80.00
4 Addvaluetech 0 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00
5 Alfa 71 0 0.00 0 0.00 0 0.00 0 0.00 71 100.00
6 Arris 7 4 57.14 3 42.86 4 57.14 3 42.86 0 0.00
7 Belkin 45 0 0.00 1 2.22 0 0.00 1 2.22 44 97.78
8 Buffalo 4 0 0.00 0 0.00 0 0.00 0 0.00 4 100.00
9 D-Link 2,116 133 6.29 167 7.89 0 0.00 226 10.68 1,878 88.75
10 Dell 122 0 0.00 0 0.00 0 0.00 0 0.00 122 100.00
11 DrayTek 178 0 0.00 0 0.00 62 34.83 0 0.00 116 65.17
12 EdiMax 297 0 0.00 14 4.71 0 0.00 14 4.71 283 95.29
13 FOSCAM 5 0 0.00 0 0.00 0 0.00 0 0.00 5 100.00
14 HP 17 0 0.00 0 0.00 0 0.00 0 0.00 17 100.00
15 Inmarsat 11 0 0.00 0 0.00 0 0.00 3 27.27 8 72.73
16 LinkSys 195 47 24.10 49 25.13 45 23.08 49 25.13 146 74.87
17 MicroTik 814 0 0.00 0 0.00 0 0.00 0 0.00 814 100.00
18 NETGEAR 8,061 28 0.35 280 3.47 2 0.02 4,384 54.39 3,677 45.61
19 Netis 114 0 0.00 2 1.75 0 0.00 2 1.75 112 98.25
20 Planet 418 0 0.00 67 16.03 0 0.00 71 16.99 347 83.01
21 QNAP 109 29 26.61 6 5.50 0 0.00 6 5.50 80 73.39
22 Rotek 1 0 0.00 0 0.00 0 0.00 0 0.00 1 100.00
23 Synology 319 0 0.00 37 11.60 3 0.94 200 62.70 119 37.30
24 TP-Link 2,069 49 2.37 719 34.75 1 0.05 719 34.75 1,319 63.75
25 Tenda 367 0 0.00 4 1.09 0 0.00 4 1.09 363 98.91
26 Tenvis 7 0 0.00 0 0.00 0 0.00 0 0.00 7 100.00
27 Thuraya 2 0 0.00 2 100.00 0 0.00 2 100.00 0 0.00
28 Totolink 144 0 0.00 1 0.69 0 0.00 1 0.69 143 99.31

126 A. Appendix - Results & Findings

29 Trendnet 267 19 7.12 43 16.10 16 5.99 43 16.10 224 83.90
30 Ubiquiti 3,737 0 0.00 78 2.09 76 2.03 426 11.40 3,235 86.57
31 Western-

Digital
5 0 0.00 0 0.00 0 0.00 4 80.00 1 20.00

32 Xiaomi 313 0 0.00 299 95.53 68 21.73 299 95.53 14 4.47
33 Zyxel 1,317 1 0.08 120 9.11 164 12.45 196 14.88 957 72.67
- Total 22,548 316 1.40 1,901 8.43 441 1.96 6,662 29.55 15,513 68.80

Table A.47: Key Derivation Functions (KDFs) and Password Based Encryption (PBE) cryptographic misuses (found from entry
and not discovered 𝜙).

Vendor # unpacked
firmwares M1 % M2 % M3 % No violation %

1 ASUS 1,309 0 0.00 182 13.90 29 2.22 1,127 86.10
2 AVM 102 0 0.00 5 4.90 0 0.00 97 95.10
3 Actiontec 5 0 0.00 2 40.00 0 0.00 3 60.00
4 Addvaluetech 0 0 0.00 0 0.00 0 0.00 0 0.00
5 Alfa 71 0 0.00 33 46.48 8 11.27 38 53.52
6 Arris 7 0 0.00 0 0.00 0 0.00 7 100.00
7 Belkin 45 0 0.00 0 0.00 0 0.00 45 100.00
8 Buffalo 4 0 0.00 0 0.00 0 0.00 4 100.00
9 D-Link 2,116 0 0.00 163 7.70 0 0.00 1,953 92.30
10 Dell 122 0 0.00 0 0.00 0 0.00 122 100.00
11 DrayTek 178 93 52.25 5 2.81 0 0.00 85 47.75
12 EdiMax 297 0 0.00 10 3.37 0 0.00 287 96.63
13 FOSCAM 5 0 0.00 0 0.00 0 0.00 5 100.00
14 HP 17 0 0.00 0 0.00 0 0.00 17 100.00
15 Inmarsat 11 0 0.00 3 27.27 0 0.00 8 72.73
16 LinkSys 195 0 0.00 85 43.59 1 0.51 110 56.41
17 MicroTik 814 0 0.00 350 43.00 0 0.00 464 57.00
18 NETGEAR 8,061 182 2.26 69 0.86 32 0.40 7,793 96.68
19 Netis 114 0 0.00 0 0.00 0 0.00 114 100.00
20 Planet 418 0 0.00 57 13.64 0 0.00 361 86.36
21 QNAP 109 0 0.00 13 11.93 0 0.00 96 88.07
22 Rotek 1 0 0.00 0 0.00 0 0.00 1 100.00
23 Synology 319 0 0.00 160 50.16 1 0.31 159 49.84
24 TP-Link 2,069 0 0.00 112 5.41 7 0.34 1,957 94.59
25 Tenda 367 0 0.00 23 6.27 1 0.27 344 93.73
26 Tenvis 7 0 0.00 1 14.29 0 0.00 6 85.71
27 Thuraya 2 0 0.00 0 0.00 0 0.00 2 100.00
28 Totolink 144 0 0.00 4 2.78 0 0.00 140 97.22
29 Trendnet 267 0 0.00 12 4.49 0 0.00 255 95.51
30 Ubiquiti 3,737 0 0.00 308 8.24 0 0.00 3,429 91.76
31 Western-

Digital
5 0 0.00 4 80.00 0 0.00 1 20.00

32 Xiaomi 313 0 0.00 14 4.47 0 0.00 299 95.53
33 Zyxel 1,317 0 0.00 31 2.35 0 0.00 1,286 97.65
- Total 22,548 275 1.22 1,646 7.30 79 0.35 20,615 91.43

Table A.48: Message Authentication Codes (MACs) overall cryptographic misuses (found from entry and not discovered 𝜙).

Vendor # unpacked
firmwares A1 % A2 % No violation %

1 ASUS 1,309 0 0.00 0 0.00 1,309 100.00
2 AVM 102 0 0.00 0 0.00 102 100.00
3 Actiontec 5 0 0.00 0 0.00 5 100.00
4 Addvaluetech 0 0 0.00 0 0.00 0 0.00
5 Alfa 71 0 0.00 0 0.00 71 100.00
6 Arris 7 0 0.00 0 0.00 7 100.00
7 Belkin 45 0 0.00 0 0.00 45 100.00
8 Buffalo 4 0 0.00 0 0.00 4 100.00
9 D-Link 2,116 0 0.00 0 0.00 2,116 100.00
10 Dell 122 0 0.00 0 0.00 122 100.00
11 DrayTek 178 0 0.00 0 0.00 178 100.00
12 EdiMax 297 0 0.00 0 0.00 297 100.00

A.8. Cryptographic Misuses 127

13 FOSCAM 5 0 0.00 0 0.00 5 100.00
14 HP 17 0 0.00 0 0.00 17 100.00
15 Inmarsat 11 0 0.00 0 0.00 11 100.00
16 LinkSys 195 0 0.00 0 0.00 195 100.00
17 MicroTik 814 0 0.00 0 0.00 814 100.00
18 NETGEAR 8,061 0 0.00 0 0.00 8,061 100.00
19 Netis 114 0 0.00 0 0.00 114 100.00
20 Planet 418 0 0.00 0 0.00 418 100.00
21 QNAP 109 0 0.00 0 0.00 109 100.00
22 Rotek 1 0 0.00 0 0.00 1 100.00
23 Synology 319 0 0.00 0 0.00 319 100.00
24 TP-Link 2,069 0 0.00 0 0.00 2,069 100.00
25 Tenda 367 0 0.00 0 0.00 367 100.00
26 Tenvis 7 0 0.00 0 0.00 7 100.00
27 Thuraya 2 0 0.00 0 0.00 2 100.00
28 Totolink 144 0 0.00 0 0.00 144 100.00
29 Trendnet 267 0 0.00 0 0.00 267 100.00
30 Ubiquiti 3,737 0 0.00 0 0.00 3,737 100.00
31 Western-

Digital
5 0 0.00 0 0.00 5 100.00

32 Xiaomi 313 0 0.00 0 0.00 313 100.00
33 Zyxel 1,317 0 0.00 0 0.00 1,317 100.00
- Total 22,548 0 0.00 0 0.00 22,548 100.00

Table A.49: Authenticated encryption/decryption and AEAD overall cryptographic misuses (found from entry and not
discovered 𝜙).

Vendor Binary Name #
firmwares

Vendor Binary Name #
firmwares

S1 - Constant Encryption/Decryption Keys S2 - Usage of ECB mode of operation
D-Link ’imgdecrypt’ 134 ASUS ’afppasswd’ 403
D-Link ’smm’ 69 ASUS ’cfg_server’ 367
D-Link ’firebase’ 69 ASUS ’cfg_client’ 357
D-Link ’protest’ 9 ASUS ’wpa_supplicant’ 152
DrayTek ’mainfunction.cgi’ 44 ASUS ’hostapd’ 96
DrayTek ’goahead’ 34 ASUS ’wpa_supplicant-2.7’ 29
DrayTek ’oneTimeCall’ 30 ASUS ’chilli’ 12
DrayTek ’dray_apm’ 16 ASUS ’chilli_response’ 5
DrayTek ’dray_fwup’ 13 ASUS ’bluetoothd’ 5
DrayTek ’tr069_client’ 13 ASUS ’rc’ 1
LinkSys ’main_bin’ 2 AVM ’hostapd’ 5
NETGEAR ’Netgear_ddns’ 144 AVM ’wpa_supplicant’ 5
NETGEAR ’firebase’ 27 Actiontec ’stunnel’ 1
NETGEAR ’smm’ 27 Alfa ’wpad’ 8
NETGEAR ’NetReadyAgent’ 12 Alfa ’wpa_supplicant’ 2
QNAP ’nasutil’ 10 D-Link ’signalc’ 117
TP-Link ’tdpServer’ 62 D-Link ’hostapd’ 74
TP-Link ’tdpd’ 6 D-Link ’smm’ 69
TP-Link ’dropbearmulti’ 3 D-Link ’firebase’ 69
TP-Link ’test_libgdpr’ 2 D-Link ’wpa_supplicant’ 60
Xiaomi ’securitypage’ 18 D-Link ’stunnel’ 32

S3 - Constant IV for various modes of operation D-Link ’linkd.out’ 14
D-Link ’protest’ 9 D-Link ’l7-feature’ 8
NETGEAR ’NetReadyAgent’ 12 D-Link ’ptcore’ 7

S4 - Usage of ‘weak’ ciphers for encryption D-Link ’xsupplicant’ 4
ASUS ’afppasswd’ 403 D-Link ’elephantdrive’ 2
ASUS ’hostapd’ 96 Dell ’stunnel4’ 41
ASUS ’wpa_supplicant-2.7’ 29 DrayTek ’hostapd’ 5
ASUS ’chilli’ 12 DrayTek ’wpa_supplicant’ 5
ASUS ’chilli_response’ 5 EdiMax ’hostapd’ 3
AVM ’hostapd’ 5 EdiMax ’wpa_supplicant’ 2
AVM ’wpa_supplicant’ 5 EdiMax ’stunnel’ 1
Actiontec ’stunnel’ 1 Inmarsat ’hostapd’ 3
Alfa ’wpad’ 33 LinkSys ’stunnel’ 77
Alfa ’wpa_supplicant’ 21 LinkSys ’hostapd’ 20
D-Link ’snmpd’ 121 LinkSys ’wpa_supplicant’ 18

128 A. Appendix - Results & Findings

D-Link ’snmptrap’ 120 LinkSys ’main_bin’ 2
D-Link ’hostapd’ 74 MicroTik ’ipsec’ 125
D-Link ’wpa_supplicant’ 60 MicroTik ’racoon’ 65
D-Link ’stunnel’ 32 NETGEAR ’readyNASVault’ 1038
D-Link ’ptcore’ 7 NETGEAR ’afppasswd’ 441
D-Link ’xsupplicant’ 4 NETGEAR ’fbwifi’ 208
D-Link ’snmpwalk’ 2 NETGEAR ’hostapd_app’ 101
D-Link ’snmpset’ 2 NETGEAR ’wpa_supplicant’ 83
D-Link ’snmpget’ 2 NETGEAR ’hostapd’ 67
Dell ’stunnel4’ 41 NETGEAR ’upAgent’ 54
DrayTek ’wpa_supplicant’ 9 NETGEAR ’firebase’ 27
DrayTek ’hostapd’ 4 NETGEAR ’smm’ 27
EdiMax ’hostapd’ 3 NETGEAR ’shttpd’ 11
EdiMax ’wpa_supplicant’ 2 NETGEAR ’funjsq_cli’ 10
EdiMax ’stunnel’ 1 NETGEAR ’stunnel’ 3
Inmarsat ’hostapd’ 3 NETGEAR ’lc_up’ 1
LinkSys ’stunnel’ 77 NETGEAR ’mongoose’ 1
LinkSys ’hostapd’ 36 NETGEAR ’wpa_supplicant-macsec’ 1
LinkSys ’wpa_supplicant’ 18 Planet ’wpa_supplicant’ 61
NETGEAR ’afppasswd’ 415 Planet ’stunnel’ 3
NETGEAR ’fbwifi’ 208 QNAP ’stunnel’ 23
NETGEAR ’hostapd_app’ 101 Synology ’wpa_supplicant’ 165
NETGEAR ’wpa_supplicant’ 83 Synology ’hostapd’ 144
NETGEAR ’hostapd’ 60 Synology ’img_backup’ 10
NETGEAR ’upAgent’ 54 Synology ’img_restore’ 6
NETGEAR ’funjsq_cli’ 10 Synology ’detect_monitor’ 6
NETGEAR ’stunnel’ 3 Synology ’synoimgbkptool’ 6
NETGEAR ’dbcfg_export’ 1 Synology ’synoappexport’ 4
NETGEAR ’wpa_supplicant-macsec’ 1 Synology ’img_worker’ 2
NETGEAR ’eapol_test’ 1 Synology ’synohbkpvfs’ 2
NETGEAR ’snmptrap’ 1 TP-Link ’wpa_supplicant’ 86
NETGEAR ’snmpd’ 1 TP-Link ’hostapd’ 85
Planet ’wpa_supplicant’ 61 TP-Link ’afppasswd’ 37
Planet ’snmpd’ 50 TP-Link ’mbedtls_aes-128-ecb’ 1
Planet ’stunnel’ 3 TP-Link ’mysqld’ 1
Planet ’snmptrap’ 1 TP-Link ’mariabackup’ 1
QNAP ’stunnel’ 23 Tenda ’hostapd’ 2
QNAP ’wpa_supplicant’ 13 Tenda ’wpa_supplicant’ 1
Synology ’rsync’ 196 Tenda ’udhcpd’ 1
Synology ’wpa_supplicant’ 183 Totolink ’wpa_supplicant’ 4
Synology ’hostapd’ 166 Trendnet ’wpa_supplicant’ 20
TP-Link ’wpa_supplicant’ 86 Trendnet ’daemon_fsp_app’ 16
TP-Link ’hostapd’ 77 Trendnet ’0’ 6
TP-Link ’afppasswd’ 7 Trendnet ’stunnel’ 4
Tenda ’racoon’ 21 Trendnet ’hostapd’ 2
Tenda ’hostapd’ 2 Ubiquiti ’wpad’ 187
Tenda ’wpa_supplicant’ 1 Ubiquiti ’hostapd’ 61
Totolink ’wpa_supplicant’ 4 Ubiquiti ’wpa_supplicant’ 39
Trendnet ’wpa_supplicant’ 20 Western-Digital ’wpa_supplicant’ 4
Trendnet ’snmpd’ 7 Western-Digital ’hostapd’ 3
Trendnet ’0’ 6 Western-Digital ’ntfsdecrypt’ 1
Trendnet ’hostapd’ 4 Xiaomi ’wpa_supplicant’ 13
Trendnet ’stunnel’ 4 Xiaomi ’245506E’ 1
Trendnet ’mgntd’ 3 Zyxel ’stunnel’ 54
Trendnet ’ZNMPClient’ 2 Zyxel ’hostapd’ 41
Ubiquiti ’wpad’ 264 Zyxel ’wpa_supplicant’ 34
Ubiquiti ’snmpd’ 102 Zyxel ’httpd’ 5
Ubiquiti ’hostapd’ 67 Zyxel ’hostapd_0_8_x’ 1
Ubiquiti ’wpa_supplicant’ 53 Zyxel ’wpa_supplicant-macsec’ 1
Western-Digital ’wpa_supplicant’ 4 - - -
Western-Digital ’hostapd’ 3 - - -
Xiaomi ’wpa_supplicant’ 13 - - -
Xiaomi ’245506E’ 1 - - -
Zyxel ’wpa_supplicant’ 285 - - -
Zyxel ’stunnel’ 54 - - -
Zyxel ’hostapd’ 41 - - -
Zyxel ’snmpd’ 5 - - -

A.8. Cryptographic Misuses 129

Zyxel ’hostapd_0_8_x’ 1 - - -
Zyxel ’wpa_supplicant-macsec’ 1 - - -

Table A.50: Violated Binaries discovered for Symmetric Key Cryptography rules S1, S2, S3 and S4

Vendor Binary Name #
firmwares

Vendor Binary Name #
firmwares

P1 - Usage of insecure RSA encryption padding schemes P3 - X.509 certificate usage of ‘weak’ digest function
ASUS ’cfg_client’ 335 ASUS ’qmi_ip’ 1
ASUS ’cfg_server’ 14 D-Link ’mpop’ 85
Alfa ’tor’ 2 D-Link ’x509SelfSign’ 75
Alfa ’rsa_test’ 1 D-Link ’mapd’ 28
D-Link ’captival_portal’ 19 D-Link ’gencert’ 5
D-Link ’httpd’ 5 D-Link ’imspector’ 2
D-Link ’shareport’ 4 LinkSys ’mapd’ 2
D-Link ’spt’ 4 NETGEAR ’ntfsdecrypt’ 860
D-Link ’EmbedThunderManager’ 1 NETGEAR ’certgen’ 222
LinkSys ’iperf3’ 1 NETGEAR ’x509SelfSign’ 27
NETGEAR ’fvdropbox’ 2244 Planet ’monit’ 24
NETGEAR ’avdu’ 2014 Synology ’lftp’ 88
NETGEAR ’fvamazon’ 1232 Synology ’nzbget’ 18
NETGEAR ’readynasd’ 928 Synology ’ncat’ 2
NETGEAR ’NetReadyAgent’ 12 TP-Link ’httpd’ 47
NETGEAR ’tincd’ 10 TP-Link ’sslselfsign’ 15
NETGEAR ’TPMFactoryUpd’ 8 TP-Link ’mysqlimport’ 1
NETGEAR ’dimclient’ 4 TP-Link ’mysqlcheck’ 1
NETGEAR ’iperf3’ 1 TP-Link ’mysqlshow’ 1
Synology ’synolicense_uninstall’ 52 TP-Link ’mysqldump’ 1
Synology ’sftpd’ 17 TP-Link ’mysqlslap’ 1
Synology ’synoddsm-hostd’ 3 TP-Link ’mysqladmin’ 1
TP-Link ’httpd’ 36 TP-Link ’mysql’ 1
TP-Link ’eap-mesh’ 12 TP-Link ’mysqlbinlog’ 1
TP-Link ’eapcs’ 8 TP-Link ’mysqltest’ 1
TP-Link ’o_p_test’ 4 Trendnet ’ipheth-pair’ 1
TP-Link ’rsa_decrypt’ 4 Ubiquiti ’monit’ 108
TP-Link ’tdpServer’ 3 Ubiquiti ’snmpd’ 20
Tenda ’eventdispatcher’ 2 Ubiquiti ’httping’ 3
Tenda ’racoon’ 1 Western-Digital ’monit’ 4
Totolink ’tincd’ 1 Western-Digital ’ncat’ 3
Xiaomi ’etm’ 95 Western-Digital ’ntfsdecrypt’ 1
Xiaomi ’rsa_test’ 1 Xiaomi ’syslog-ng’ 14
Zyxel ’zhttpd’ 30 - - -
Zyxel ’zyxel_xmpp_client’ 12 - - -
Zyxel ’zyxel_encrypt_hash’ 9 - - -
Zyxel ’httpd’ 5 - - -

Table A.51: Violated Binaries discovered for Public Key Cryptography rules P1 and P3, entry and possible 𝜙 case.

Vendor Binary Name #
firmwares

Vendor Binary Name #
firmwares

R1 - PRNG static seed
ASUS ’zebra’ 137 TP-Link ’sessmngr’ 6
Actiontec ’uhttpd’ 1 TP-Link ’capwap’ 3
Buffalo ’embeddd’ 2 Trendnet ’zebra’ 2
D-Link ’htpasswd’ 36 Ubiquiti ’switchdrvr’ 252
D-Link ’zebra’ 23 Ubiquiti ’imi’ 220
D-Link ’sys_commander.x’ 2 Ubiquiti ’ripngd’ 220
D-Link ’EmbedThunderManager’ 1 Ubiquiti ’nsm’ 220
LinkSys ’zebra’ 23 Ubiquiti ’rsvpd’ 220
LinkSys ’udhcpd’ 4 Ubiquiti ’oamd’ 220
LinkSys ’Mercury.snos’ 2 Ubiquiti ’ldpd’ 220
LinkSys ’init_nvram’ 1 Ubiquiti ’ribd’ 220
NETGEAR ’htpasswd’ 2261 Ubiquiti ’ospfd’ 220
NETGEAR ’zebra’ 91 Ubiquiti ’ospf6d’ 220
NETGEAR ’tincd’ 10 Ubiquiti ’bgpd’ 185

130 A. Appendix - Results & Findings

NETGEAR ’iss.exe’ 1 Ubiquiti ’zebra’ 37
NETGEAR ’portal’ 1 Xiaomi ’etm’ 95
Planet ’htpasswd’ 4 Zyxel ’login.cgi’ 84
Synology ’htpasswd’ 50 Zyxel ’dispatcher.cgi’ 36
Synology ’postgres’ 2 Zyxel ’htpasswd’ 25
TP-Link ’cet’ 45 Zyxel ’433DEB’ 18
TP-Link ’msg_push’ 19 Zyxel ’zebra’ 16
TP-Link ’dhcpc’ 13 Zyxel ’443F0F’ 9
TP-Link ’dhcpd’ 11 Zyxel ’4729B2’ 9
TP-Link ’iked’ 10 Zyxel ’432C64’ 9
TP-Link ’aaa’ 6 Zyxel ’472073’ 3

R2 - Low entropy sources for seeds
ASUS ’aaews’ 616 Synology ’usbcopy-hook’ 112
ASUS ’mastiff’ 510 Synology ’usb-copy-notifier’ 112
ASUS ’watchquagga’ 436 Synology ’usb-copy-starter’ 110
ASUS ’cfg_server’ 367 Synology ’zip’ 45
ASUS ’httpd’ 195 Synology ’postgres’ 38
ASUS ’zebra’ 190 Synology ’network.cgi’ 36
ASUS ’miniupnpd’ 154 Synology ’upgrade.cgi’ 35
ASUS ’rc’ 51 Synology ’thumbnail.cgi’ 35
ASUS ’boa’ 16 Synology ’postgres32’ 34
ASUS ’cfg_client’ 15 Synology ’fileindexd’ 31
ASUS ’btgatt-server’ 8 Synology ’imap-login’ 28
ASUS ’bluealsa’ 7 Synology ’dovecot-auth’ 28
ASUS ’sip_proxy’ 3 Synology ’ssl-build-param’ 28
ASUS ’tr69c’ 2 Synology ’dovecot’ 28
ASUS ’newusers’ 2 Synology ’pop3-login’ 28
AVM ’mount.davfs’ 11 Synology ’postlock’ 27
AVM ’cloudmsgd’ 10 Synology ’pop3’ 27
AVM ’wlmngr2’ 2 Synology ’imap’ 27
AVM ’tr69c’ 1 Synology ’synodisk’ 24
Actiontec ’zebra’ 3 Synology ’scemd’ 15
Actiontec ’tr69c’ 2 Synology ’synobox’ 14
Actiontec ’uhttpd’ 1 Synology ’image_thumb.cgi’ 8
Actiontec ’sntp’ 1 Synology ’heartbeatd’ 6
Actiontec ’detectWANService’ 1 Synology ’synoswitchvlantool’ 5
Actiontec ’cm_logic’ 1 Synology ’synowolagentd’ 5
Arris ’ripngd’ 4 Synology ’git-fast-import’ 4
D-Link ’pppdo’ 183 Synology ’git-http-push’ 4
D-Link ’upnpc-ddns’ 173 Synology ’git-credential-store’ 4
D-Link ’vipsecureConfig’ 143 Synology ’git-remote-https’ 4
D-Link ’prog-cgi’ 126 Synology ’git-http-fetch’ 4
D-Link ’mpop’ 85 Synology ’synodbudd’ 4
D-Link ’admin.cgi’ 67 Synology ’dhclient’ 4
D-Link ’mailsend’ 63 Synology ’aa_cmd’ 3
D-Link ’da_adaptor’ 61 Synology ’iscsiadm’ 3
D-Link ’newp2p’ 59 Synology ’PkgSynoMan.cgi’ 3
D-Link ’snmpd’ 49 Synology ’synodatacollectd’ 2
D-Link ’httpd’ 46 Synology ’winbindd’ 2
D-Link ’cgibin’ 45 Synology ’nmblookup’ 2
D-Link ’mapd’ 45 Synology ’cloud-cleand’ 2
D-Link ’p2p_server’ 43 Synology ’cloud-control’ 2
D-Link ’shgw_watchdogd’ 41 Synology ’img_backup’ 2
D-Link ’x509SelfSign’ 34 Synology ’syno-cloud-syncd’ 2
D-Link ’zebra’ 32 Synology ’debug’ 2
D-Link ’afpd’ 26 Synology ’synologyfilemanager-

authd’
2

D-Link ’lighttpd’ 20 Synology ’pgbouncer’ 2
D-Link ’perl’ 20 Synology ’dig’ 2
D-Link ’jjhttpd’ 18 Synology ’CSTNVolChange’ 2
D-Link ’crtmpserver’ 18 Synology ’RestoreNode’ 2
D-Link ’linkd.out’ 14 Synology ’cloud-sync-encrypt-tool’ 2
D-Link ’test_ap’ 14 Synology ’cloud-cached’ 2
D-Link ’dv8_agent’ 13 Synology ’syno-cloud-clientd’ 2
D-Link ’op_server’ 13 Synology ’feasibility-check’ 2
D-Link ’mt-daapd’ 11 Synology ’cloud-sync-starter’ 2
D-Link ’hd_verify’ 11 Synology ’db-check’ 2

A.8. Cryptographic Misuses 131

D-Link ’ipca’ 10 Synology ’cloud-authd’ 2
D-Link ’tr69c’ 9 Synology ’syno-letsencrypt’ 2
D-Link ’miniupnpd’ 8 Synology ’synoupgrade’ 1
D-Link ’commander’ 8 Synology ’dms’ 1
D-Link ’winbindd’ 6 Synology ’main.cgi’ 1
D-Link ’net’ 6 Synology ’synotifyd’ 1
D-Link ’onvifServer’ 6 Synology ’ha.cgi’ 1
D-Link ’GBhandler’ 5 Synology ’virtual’ 1
D-Link ’prog.cgi’ 4 Synology ’local’ 1
D-Link ’ripngd’ 4 Synology ’bounce’ 1
D-Link ’tr69’ 4 TP-Link ’cloud-brd’ 628
D-Link ’sudo’ 4 TP-Link ’cloud-client’ 361
D-Link ’webs’ 4 TP-Link ’cet’ 229
D-Link ’record_server’ 3 TP-Link ’uac’ 200
D-Link ’MAIL.VideoServer.strip’ 3 TP-Link ’relayd’ 174
D-Link ’watchquagga’ 2 TP-Link ’miniupnpd’ 144
D-Link ’ppp’ 2 TP-Link ’cwmp’ 109
D-Link ’dnsproxy’ 2 TP-Link ’newusers’ 80
D-Link ’vvctl’ 2 TP-Link ’pure-pw’ 67
D-Link ’newgrp’ 2 TP-Link ’streamd’ 58
D-Link ’resident’ 2 TP-Link ’ipcamera’ 58
D-Link ’hapClient’ 2 TP-Link ’uhttpd’ 40
D-Link ’agent’ 1 TP-Link ’dsd’ 34
D-Link ’accessctl’ 1 TP-Link ’nvid’ 32
D-Link ’lprm’ 1 TP-Link ’nvrcore’ 20
D-Link ’lpr’ 1 TP-Link ’onboarding’ 19
D-Link ’lpq’ 1 TP-Link ’speaker’ 19
D-Link ’lpd’ 1 TP-Link ’storage’ 14
D-Link ’lpc’ 1 TP-Link ’cloud-sdk’ 12
D-Link ’EmbedThunderManager’ 1 TP-Link ’cloud_brd’ 10
D-Link ’tr069’ 1 TP-Link ’dcd’ 8
D-Link ’tssa’ 1 TP-Link ’eapcs’ 8
Dell ’compmanager’ 20 TP-Link ’httpd’ 7
DrayTek ’mainfunction.cgi’ 63 TP-Link ’predictd’ 7
DrayTek ’onvif_func’ 55 TP-Link ’v6plus’ 6
DrayTek ’lighttpd’ 46 TP-Link ’eap-cs’ 5
DrayTek ’oneTimeCall’ 30 TP-Link ’vod’ 5
DrayTek ’dray_apm’ 16 TP-Link ’voip_client’ 4
DrayTek ’dhcrelay’ 14 TP-Link ’zavim’ 4
DrayTek ’acs’ 9 TP-Link ’cloud_client’ 3
DrayTek ’goahead’ 2 TP-Link ’tr69c’ 3
EdiMax ’zebra’ 14 TP-Link ’zebra’ 3
EdiMax ’boa’ 4 TP-Link ’dig’ 3
EdiMax ’btget’ 3 TP-Link ’host’ 3
EdiMax ’tr69c’ 3 TP-Link ’avirasentinelfull’ 3
EdiMax ’lighttpd’ 2 TP-Link ’avirasentinellite’ 3
EdiMax ’mailsend’ 2 TP-Link ’aviraserviceselector’ 3
FOSCAM ’jco_server’ 1 TP-Link ’avirawatchdog’ 3
HP ’lighttpd’ 5 TP-Link ’aria2c’ 3
Inmarsat ’ogg123’ 3 TP-Link ’wlan-manager’ 3
Inmarsat ’asterisk’ 1 TP-Link ’mobile’ 2
Inmarsat ’lighttpd’ 1 TP-Link ’appcmd’ 2
LinkSys ’dhclient’ 86 TP-Link ’samba_multicall’ 1
LinkSys ’httpd’ 15 TP-Link ’mysqlslap’ 1
LinkSys ’ripngd’ 14 TP-Link ’mediaServer’ 1
LinkSys ’zebra’ 8 Tenda ’pppdForPptp’ 33
LinkSys ’tr69c’ 6 Tenda ’xl2tpdpppd’ 33
LinkSys ’fwupd’ 6 Tenda ’tr69c’ 29
LinkSys ’dnsproxy’ 4 Tenda ’httpd’ 16
LinkSys ’cwmpCPE’ 3 Tenda ’portal’ 10
LinkSys ’bgpd’ 3 Tenda ’zebra’ 6
LinkSys ’lrhkprvsn’ 3 Tenda ’pppdForPppServer’ 5
LinkSys ’admin.cgi’ 2 Tenda ’pppoa’ 3
LinkSys ’ospfd’ 2 Tenda ’ripngd’ 2
LinkSys ’ospf6d’ 2 Tenda ’bi’ 2
LinkSys ’mailsend’ 2 Tenda ’pppd244’ 2
LinkSys ’boa’ 1 Tenda ’pppd_3g’ 1

132 A. Appendix - Results & Findings

LinkSys ’setup.cgi’ 1 Tenda ’pppd_245’ 1
LinkSys ’watchquagga’ 1 Tenda ’wlmngr2’ 1
LinkSys ’lighttpd’ 1 Tenda ’pppds’ 1
LinkSys ’LiveviewControlServer’ 1 Tenvis ’tutk’ 2
MicroTik ’ddns’ 580 Totolink ’ss-orig-redir’ 6
MicroTik ’ipsec’ 513 Totolink ’ss-orig-tunnel’ 6
NETGEAR ’readyNASVault’ 1790 Totolink ’ss-orig-local’ 6
NETGEAR ’mysqlmanager’ 714 Totolink ’ssr-redir’ 6
NETGEAR ’htdbm’ 714 Totolink ’ssr-local’ 6
NETGEAR ’httpd’ 581 Totolink ’tinc’ 5
NETGEAR ’zebra’ 382 Totolink ’ppp2d’ 2
NETGEAR ’auditd’ 289 Totolink ’rc’ 1
NETGEAR ’rcagentd’ 284 Totolink ’miniupnpd’ 1
NETGEAR ’rc_apps’ 185 Trendnet ’zebra’ 24
NETGEAR ’Netgear_ddns’ 144 Trendnet ’mailsend’ 10
NETGEAR ’ripngd’ 135 Trendnet ’snmpd’ 10
NETGEAR ’uhttpd’ 131 Trendnet ’lighttpd’ 10
NETGEAR ’mini_httpd’ 123 Trendnet ’vcm_serv’ 10
NETGEAR ’miniupnpd’ 119 Trendnet ’hicore’ 6
NETGEAR ’lighttpd’ 116 Trendnet ’webproc’ 4
NETGEAR ’nlogin.cgi’ 96 Trendnet ’pppds’ 4
NETGEAR ’apcomm’ 96 Trendnet ’jjhttpd’ 4
NETGEAR ’apcfg_mgr’ 96 Trendnet ’init’ 3
NETGEAR ’upnpd’ 95 Trendnet ’boa’ 3
NETGEAR ’rc’ 94 Trendnet ’hiawatha’ 2
NETGEAR ’mysqlslap’ 54 Trendnet ’p2p_server’ 2
NETGEAR ’exim4’ 54 Trendnet ’ZNMPClient’ 2
NETGEAR ’upload.cgi’ 48 Trendnet ’pppd_for_pptp’ 2
NETGEAR ’mailsend’ 43 Trendnet ’watchquagga’ 2
NETGEAR ’pppd_brcm’ 34 Trendnet ’tacacs_plus’ 1
NETGEAR ’afpd’ 32 Trendnet ’autoprovision’ 1
NETGEAR ’dimclient’ 31 Trendnet ’router’ 1
NETGEAR ’wnc_comm’ 29 Trendnet ’ctorrent’ 1
NETGEAR ’vipsecureConfig’ 27 Trendnet ’agent’ 1
NETGEAR ’net-cgi’ 23 Trendnet ’packetforge-ng’ 1
NETGEAR ’gen_password’ 23 Trendnet ’pppd-rtk’ 1
NETGEAR ’ipmitool’ 16 Trendnet ’tb_tr069’ 1
NETGEAR ’watchquagga’ 14 Trendnet ’ripngd’ 1
NETGEAR ’puipv6autodetect’ 14 Trendnet ’main.cgi’ 1
NETGEAR ’rcagentd.svn-base’ 13 Trendnet ’bgpd’ 1
NETGEAR ’spmd’ 12 Trendnet ’accountd’ 1
NETGEAR ’shgw_watchdogd’ 12 Trendnet ’httpd’ 1
NETGEAR ’fcron’ 11 Ubiquiti ’udapi-bridge’ 1010
NETGEAR ’appliance_mgr’ 10 Ubiquiti ’cgi’ 470
NETGEAR ’tinc’ 10 Ubiquiti ’basic_radius_auth’ 268
NETGEAR ’tinctop’ 10 Ubiquiti ’udapi-server’ 255
NETGEAR ’fw-checking’ 8 Ubiquiti ’lighttpd’ 243
NETGEAR ’SkipjamMenus.exe’ 7 Ubiquiti ’bgpd’ 231
NETGEAR ’663201’ 4 Ubiquiti ’squid3’ 217
NETGEAR ’66E03E’ 4 Ubiquiti ’monit’ 108
NETGEAR ’684FE5’ 4 Ubiquiti ’switchdrvr’ 72
NETGEAR ’672D95’ 4 Ubiquiti ’ripngd’ 37
NETGEAR ’bst_daemon’ 3 Ubiquiti ’lcmd’ 27
NETGEAR ’funjsq_dl’ 3 Ubiquiti ’mcad’ 19
NETGEAR ’parserd’ 2 Ubiquiti ’dirmngr’ 18
NETGEAR ’fing_dil’ 2 Ubiquiti ’postgres’ 16
NETGEAR ’rclient’ 2 Ubiquiti ’rpsd’ 9
NETGEAR ’5B1D1A’ 1 Ubiquiti ’miniupnpd’ 7
NETGEAR ’53F662’ 1 Ubiquiti ’httpd’ 3
NETGEAR ’7D6E3E’ 1 Ubiquiti ’ubnt_displayd’ 3
NETGEAR ’69A460’ 1 Ubiquiti ’fwupdate’ 3
NETGEAR ’6561F8’ 1 Ubiquiti ’cfgupdate’ 2
NETGEAR ’17AFEC’ 1 Western-Digital ’smtp-sink’ 5
NETGEAR ’7812BB’ 1 Western-Digital ’monit’ 5
NETGEAR ’66EC8D’ 1 Western-Digital ’qmqp-source’ 5
NETGEAR ’mongoose’ 1 Western-Digital ’smtp-source’ 5
NETGEAR ’swiapp’ 1 Western-Digital ’dirmngr’ 5

A.8. Cryptographic Misuses 133

NETGEAR ’1B59E4’ 1 Western-Digital ’dhclient’ 1
NETGEAR ’1884A9’ 1 Xiaomi ’pluginControllor’ 222
NETGEAR ’2292D7’ 1 Xiaomi ’datacenter’ 177
NETGEAR ’aws_json’ 1 Xiaomi ’securitypage’ 137
NETGEAR ’CcspCrSsp’ 1 Xiaomi ’apk_query’ 128
NETGEAR ’check_fw’ 1 Xiaomi ’kr_query’ 109
NETGEAR ’dhclient’ 1 Xiaomi ’ustackd’ 104
NETGEAR ’acos_usbd’ 1 Xiaomi ’etm’ 95
NETGEAR ’cli’ 1 Xiaomi ’tquery’ 81
Netis ’switch’ 4 Xiaomi ’cachecenter’ 79
Netis ’boa’ 2 Xiaomi ’StatPoints’ 78
Netis ’miniupnpd’ 1 Xiaomi ’ss-local’ 68
Planet ’hiawatha’ 47 Xiaomi ’elink’ 58
Planet ’monit’ 24 Xiaomi ’wrsst’ 52
Planet ’thttpd’ 17 Xiaomi ’miniupnpd’ 52
Planet ’ProDaemon’ 15 Xiaomi ’samba_multicall’ 51
Planet ’zebra’ 10 Xiaomi ’indexservice’ 45
Planet ’MAIL.VideoServer.strip’ 6 Xiaomi ’mtd_crash_log’ 18
Planet ’mg_ipinst’ 5 Xiaomi ’cdn_conf’ 4
Planet ’asterisk’ 4 Xiaomi ’dnsfixd’ 2
Planet ’exec_route’ 4 Xiaomi ’plugincenter’ 2
Planet ’gener.cgi’ 4 Xiaomi ’23770AA’ 1
Planet ’pptp.cgi’ 4 Xiaomi ’1F7E27A’ 1
Planet ’trunk_cmd’ 4 Xiaomi ’2182FAA’ 1
Planet ’pptpfw’ 4 Zyxel ’capwap_client’ 335
Planet ’winmsg’ 4 Zyxel ’lighttpd’ 294
Planet ’GBhandler’ 4 Zyxel ’zebra’ 239
Planet ’wan_daemon’ 4 Zyxel ’mailsend’ 179
Planet ’htdbm’ 4 Zyxel ’tr69c’ 111
Planet ’tr69c’ 3 Zyxel ’nccconnd’ 94
Planet ’autop.exe’ 3 Zyxel ’ztr69’ 74
Planet ’ConfigManApp.com’ 3 Zyxel ’login.cgi’ 72
Planet ’logic’ 3 Zyxel ’Clicktocontinue.cgi’ 72
Planet ’ipinstal’ 3 Zyxel ’dservice’ 66
Planet ’eventproc’ 3 Zyxel ’social_login.cgi’ 54
Planet ’test_ap’ 3 Zyxel ’auto_add_user’ 54
Planet ’httpd’ 3 Zyxel ’cloudauthd’ 54
Planet ’onvifServer’ 3 Zyxel ’capwap_srv’ 47
Planet ’httpsrvpwd’ 3 Zyxel ’htdbm’ 47
Planet ’pppd245’ 2 Zyxel ’bk_perl’ 46
Planet ’cwmpd’ 2 Zyxel ’racoon’ 45
Planet ’prog.cgi’ 2 Zyxel ’fadd’ 40
Planet ’pppdo’ 2 Zyxel ’tr69’ 39
Planet ’sendReport’ 2 Zyxel ’vpppd’ 39
Planet ’dccupdate’ 2 Zyxel ’radiusc’ 34
Planet ’HA’ 2 Zyxel ’trace’ 32
Planet ’htmldoc’ 2 Zyxel ’httpd’ 32
Planet ’pppoecd’ 2 Zyxel ’zhttpd’ 29
Planet ’SystemServer’ 2 Zyxel ’zyecho_client’ 26
Planet ’boa’ 2 Zyxel ’zyxel_xmpp_client’ 13
Planet ’hi3518’ 2 Zyxel ’zapiBLEService’ 13
Planet ’panod’ 2 Zyxel ’pdbtool’ 9
Planet ’aistreamer’ 2 Zyxel ’sipclient’ 8
Planet ’badblocks’ 1 Zyxel ’APPNotification’ 7
Planet ’dma’ 1 Zyxel ’zytr069main’ 6
Planet ’freshsnort’ 1 Zyxel ’bgpd’ 6
Planet ’p3scan’ 1 Zyxel ’dma’ 6
Planet ’perl’ 1 Zyxel ’sippxy.elf’ 5
QNAP ’slapd-bind’ 23 Zyxel ’wmgeniesrv’ 5
QNAP ’mount.davfs’ 23 Zyxel ’hlasd’ 5
QNAP ’utilRequest.cgi’ 22 Zyxel ’squid’ 5
QNAP ’badblocks’ 11 Zyxel ’tools_mpt.cgi’ 5
QNAP ’638C43’ 1 Zyxel ’snmpd’ 4
QNAP ’6C6CF5’ 1 Zyxel ’cli’ 3
QNAP ’69F2D0’ 1 Zyxel ’pppd_3g’ 3
QNAP ’6B221E’ 1 Zyxel ’wsccmd’ 3
Rotek ’radvd’ 1 Zyxel ’zySAS’ 2

134 A. Appendix - Results & Findings

Synology ’locktest’ 157 Zyxel ’cfm’ 2
Synology ’gentest’ 157 Zyxel ’lte_srv_diag’ 2
Synology ’masktest’ 157 Zyxel ’smart-polling-service’ 2
Synology ’hostapd’ 141 Zyxel ’RMS_monitor’ 2
Synology ’nsupdate’ 135 Zyxel ’boa’ 2
Synology ’synorelayd’ 131 Zyxel ’ag’ 2
Synology ’synosearchagent’ 130 Zyxel ’sysd’ 2
Synology ’share-hook’ 114 Zyxel ’auto-ip’ 1
Synology ’findhostd’ 113 Zyxel ’ripngd’ 1
Synology ’volume-hook’ 112 Zyxel ’uplink_qos’ 1
Synology ’usb-copyd’ 112 Zyxel ’wireless.cgi’ 1

Table A.52: Violated Binaries discovered for Pseudo Random Number Generators (PRNGs) R1 and R2, entry and possible 𝜙
case.

Vendor Binary Name #
firmwares

Vendor Binary Name #
firmwares

K4 - ‘Weak’ underlying hash function on a KDF/PBE K1 - Constant Passwords on a KDF/PBE
ASUS ’busybox’ 270 ASUS ’rc’ 584
ASUS ’zebra’ 17 ASUS ’mtd-write’ 244
ASUS ’ripd’ 17 ASUS ’qcmap_auth’ 2
ASUS ’rc’ 6 Arris ’sc_zipen’ 4
ASUS ’login.shadow’ 2 D-Link ’smm’ 121
Actiontec ’cm_logic’ 1 D-Link ’commander’ 9
Alfa ’busybox’ 6 D-Link ’admin.cgi’ 6
Arris ’uhttpd’ 3 LinkSys ’eurl’ 45
Belkin ’busybox’ 4 LinkSys ’main_bin’ 2
Belkin ’tinylogin’ 2 NETGEAR ’smm’ 27
Belkin ’cfm’ 1 NETGEAR ’cli’ 1
Buffalo ’busybox’ 1 QNAP ’change_password.cgi’ 23
D-Link ’busybox’ 200 QNAP ’authLogin.cgi’ 6
D-Link ’sslvpnConfig’ 122 QNAP ’6EC27A’ 1
D-Link ’smm’ 121 QNAP ’6D1AB2’ 1
D-Link ’admin.cgi’ 86 QNAP ’638C43’ 1
D-Link ’tinylogin’ 38 QNAP ’6C6CF5’ 1
D-Link ’cm_logic’ 18 QNAP ’69F2D0’ 1
D-Link ’login’ 6 QNAP ’6B221E’ 1
D-Link ’logic’ 4 TP-Link ’qcmap_auth’ 34
D-Link ’uhttpd’ 4 TP-Link ’pure-pw’ 15
D-Link ’pure-ftpd’ 4 Trendnet ’daemon_fsp_app’ 16
D-Link ’ftpd’ 4 Trendnet ’goahead’ 2
D-Link ’cmd’ 2 Trendnet ’cwsysd’ 1
D-Link ’rc’ 2 Trendnet ’main.cgi’ 1
D-Link ’httpd’ 1 Trendnet ’accountd’ 1
D-Link ’tssa’ 1 Zyxel ’zcmd’ 1
DrayTek ’busybox’ 131 K2 - Constant salt or no salts on a KDF/PBE
DrayTek ’mainfunction.cgi’ 35 ASUS ’busybox’ 270
EdiMax ’busybox’ 67 ASUS ’rc’ 6
EdiMax ’cfg_manager’ 5 ASUS ’login.shadow’ 2
EdiMax ’ftpd’ 5 Actiontec ’cm_logic’ 1
EdiMax ’boa’ 4 Alfa ’busybox’ 6
EdiMax ’startup’ 4 Arris ’uhttpd’ 3
EdiMax ’rpcd’ 2 Belkin ’busybox’ 4
EdiMax ’telnetd’ 1 Belkin ’tinylogin’ 2
Inmarsat ’unix_chkpwd’ 3 Belkin ’cfm’ 1
Inmarsat ’unix_update’ 3 Buffalo ’busybox’ 1
LinkSys ’eurl’ 45 D-Link ’busybox’ 200
LinkSys ’busybox’ 41 D-Link ’sslvpnConfig’ 122
LinkSys ’rpcd’ 3 D-Link ’smm’ 121
LinkSys ’admin.cgi’ 2 D-Link ’tinylogin’ 38
LinkSys ’main_bin’ 2 D-Link ’cm_logic’ 18
LinkSys ’uhttpd’ 1 D-Link ’login’ 6
LinkSys ’boa’ 1 D-Link ’logic’ 4
LinkSys ’rc’ 1 D-Link ’uhttpd’ 4
LinkSys ’tinylogin’ 1 D-Link ’ftpd’ 4
NETGEAR ’unix_chkpwd’ 4213 D-Link ’cmd’ 2

A.8. Cryptographic Misuses 135

NETGEAR ’unix_update’ 4213 D-Link ’rc’ 2
NETGEAR ’busybox’ 378 D-Link ’httpd’ 1
NETGEAR ’uhttpd’ 141 D-Link ’tssa’ 1
NETGEAR ’rc’ 61 DrayTek ’busybox’ 131
NETGEAR ’bftpd’ 55 DrayTek ’mainfunction.cgi’ 35
NETGEAR ’appliance_mgr_cli’ 27 EdiMax ’busybox’ 67
NETGEAR ’smm’ 27 EdiMax ’cfg_manager’ 5
NETGEAR ’rpcd’ 26 EdiMax ’ftpd’ 5
NETGEAR ’ngadmin.cgi’ 21 EdiMax ’boa’ 4
NETGEAR ’httpd’ 17 EdiMax ’startup’ 4
NETGEAR ’pam_extrausers_update’ 16 EdiMax ’telnetd’ 1
NETGEAR ’pam_extrausers_chkpwd’ 16 LinkSys ’eurl’ 45
NETGEAR ’screen’ 16 LinkSys ’busybox’ 41
NETGEAR ’login’ 6 LinkSys ’main_bin’ 2
NETGEAR ’cm_logic’ 5 LinkSys ’uhttpd’ 1
NETGEAR ’lc_up’ 2 LinkSys ’boa’ 1
NETGEAR ’mongoose’ 1 LinkSys ’rc’ 1
NETGEAR ’E79B6’ 1 LinkSys ’tinylogin’ 1
NETGEAR ’password_crypt’ 1 NETGEAR ’busybox’ 378
Netis ’busybox’ 96 NETGEAR ’uhttpd’ 141
Netis ’login’ 2 NETGEAR ’rc’ 61
Netis ’startup’ 2 NETGEAR ’appliance_mgr_cli’ 27
Netis ’boa’ 2 NETGEAR ’smm’ 27
Planet ’uhttpd’ 49 NETGEAR ’httpd’ 17
Planet ’busybox’ 10 NETGEAR ’login’ 6
Planet ’cgiMain’ 8 NETGEAR ’cm_logic’ 5
Planet ’login’ 6 NETGEAR ’E79B6’ 1
Planet ’unix_update’ 4 NETGEAR ’password_crypt’ 1
Planet ’unix_chkpwd’ 4 Netis ’busybox’ 96
Planet ’st4YNLn2’ 3 Netis ’startup’ 2
Planet ’swctrl’ 3 Netis ’boa’ 2
Planet ’httpd’ 2 Planet ’uhttpd’ 49
Planet ’startup’ 1 Planet ’busybox’ 10
QNAP ’6EC27A’ 1 Planet ’cgiMain’ 8
QNAP ’6D1AB2’ 1 Planet ’login’ 5
QNAP ’638C43’ 1 Planet ’st4YNLn2’ 3
QNAP ’6C6CF5’ 1 Planet ’swctrl’ 3
QNAP ’69F2D0’ 1 Planet ’httpd’ 2
QNAP ’6B221E’ 1 Planet ’startup’ 1
Synology ’unix_chkpwd’ 176 QNAP ’6EC27A’ 1
Synology ’getty’ 128 QNAP ’6D1AB2’ 1
Synology ’synouser’ 43 QNAP ’638C43’ 1
Synology ’afpd’ 38 QNAP ’6C6CF5’ 1
Synology ’findhostd’ 37 QNAP ’69F2D0’ 1
Synology ’synorcvol’ 37 QNAP ’6B221E’ 1
Synology ’rsrcmonitor.cgi’ 36 Synology ’synorcvol’ 37
Synology ’sftpd’ 17 Synology ’sftpd’ 17
Synology ’manutild’ 7 TP-Link ’uhttpd’ 675
Synology ’synocheckshare’ 7 TP-Link ’busybox’ 88
Synology ’scemd’ 5 TP-Link ’login.shadow’ 33
Synology ’syno-cloud-syncd’ 2 TP-Link ’chsh.shadow’ 15
Synology ’cloud-sync-encrypt-tool’ 2 TP-Link ’passwd.shadow’ 15
Synology ’cloud-sync-starter’ 2 TP-Link ’gpasswd’ 15
Synology ’mysqld’ 1 TP-Link ’su’ 15
TP-Link ’uhttpd’ 675 TP-Link ’newusers’ 15
TP-Link ’busybox’ 88 TP-Link ’chgpasswd’ 15
TP-Link ’pure-pw’ 68 TP-Link ’chpasswd.shadow’ 15
TP-Link ’login.shadow’ 33 TP-Link ’chfn.shadow’ 15
TP-Link ’rpcd’ 3 TP-Link ’pure-pw’ 15
TP-Link ’mysqld’ 1 Tenda ’busybox’ 48
TP-Link ’mariabackup’ 1 Tenda ’uhttpd’ 4
Tenda ’busybox’ 48 Tenvis ’busybox’ 2
Tenda ’uhttpd’ 4 Thuraya ’uhttpd’ 2
Tenvis ’busybox’ 2 Totolink ’busybox’ 2
Thuraya ’uhttpd’ 2 Totolink ’uhttpd’ 1
Totolink ’rpcd’ 4 Trendnet ’busybox’ 48
Totolink ’busybox’ 2 Trendnet ’uhttpd’ 26

136 A. Appendix - Results & Findings

Totolink ’uhttpd’ 1 Trendnet ’daemon_fsp_app’ 16
Trendnet ’busybox’ 48 Trendnet ’startup’ 3
Trendnet ’uhttpd’ 26 Trendnet ’boa’ 3
Trendnet ’daemon_fsp_app’ 16 Trendnet ’tinylogin’ 2
Trendnet ’rpcd’ 7 Trendnet ’ftpd’ 2
Trendnet ’startup’ 3 Trendnet ’goahead’ 2
Trendnet ’boa’ 3 Trendnet ’init’ 1
Trendnet ’tinylogin’ 2 Trendnet ’logic’ 1
Trendnet ’ftpd’ 2 Trendnet ’cwsysd’ 1
Trendnet ’goahead’ 2 Ubiquiti ’uhttpd’ 78
Trendnet ’init’ 1 Xiaomi ’uhttpd’ 299
Trendnet ’logic’ 1 Zyxel ’busybox’ 106
Trendnet ’cwsysd’ 1 Zyxel ’makepwd’ 66
Ubiquiti ’unix_chkpwd’ 354 Zyxel ’uhttpd’ 36
Ubiquiti ’unix_update’ 343 Zyxel ’mini_httpd’ 13
Ubiquiti ’uhttpd’ 78 Zyxel ’cfg_manager’ 3
Ubiquiti ’basic_nis_auth’ 69 Zyxel ’boa’ 2
Ubiquiti ’sulogin’ 24 Zyxel ’startup’ 2
Ubiquiti ’rpcd’ 3 Zyxel ’wireless.cgi’ 1
Western-Digital ’unix_chkpwd’ 5 K3 - ‘Weak’ number of iteration on a KDF/PBE
Western-Digital ’unix_update’ 5 Arris ’sc_zipen’ 4
Western-Digital ’sulogin’ 4 DrayTek ’fw_printenv’ 62
Western-Digital ’screen’ 3 LinkSys ’eurl’ 45
Western-Digital ’pure-ftpd’ 1 NETGEAR ’lc_up’ 2
Xiaomi ’uhttpd’ 299 NETGEAR ’mongoose’ 1
Xiaomi ’su’ 54 Synology ’syno-cloud-syncd’ 2
Zyxel ’busybox’ 131 Synology ’cloud-sync-encrypt-tool’ 2
Zyxel ’unix_update’ 80 Synology ’cloud-sync-starter’ 2
Zyxel ’unix_chkpwd’ 80 Synology ’mysqld’ 1
Zyxel ’makepwd’ 66 TP-Link ’mysqld’ 1
Zyxel ’uhttpd’ 36 TP-Link ’mariabackup’ 1
Zyxel ’pure-ftpd’ 32 Tenda ’ucloud’ 4
Zyxel ’mini_httpd’ 13 Trendnet ’daemon_fsp_app’ 16
Zyxel ’ripd’ 7 Ubiquiti ’ubntbox’ 76
Zyxel ’zebra’ 7 Xiaomi ’ss-local’ 68
Zyxel ’cfg_manager’ 3 Xiaomi ’ss-redir’ 54
Zyxel ’boa’ 2 Xiaomi ’ss-tunnel’ 3
Zyxel ’startup’ 2 Zyxel ’zycfgfilter’ 90
Zyxel ’wireless.cgi’ 1 Zyxel ’zcmd’ 74

Table A.53: Violated Binaries discovered for Key Derivation Functions (KDFs) and Password Based Encryption (PBE) rules K1,
K2, K3 and K4, entry and possible 𝜙 case.

Vendor Binary Name #
firmwares

Vendor Binary Name #
firmwares

M2 - ‘Weak’ underlying hash function on a MAC M1 - Constant Encryption/Decryption Keys on a MAC
ASUS ’wpa_supplicant’ 152 DrayTek ’tr069_client’ 150
ASUS ’hostapd’ 95 NETGEAR ’Netgear_ddns’ 144
ASUS ’wpa_supplicant-2.7’ 29 NETGEAR ’httpd’ 24
ASUS ’racoon’ 2 NETGEAR ’ntgrddns’ 14
AVM ’hostapd’ 5 M3 - Non-secure key length on a MAC function
AVM ’wpa_supplicant’ 5 ASUS ’hostapd’ 29
Actiontec ’racoon’ 2 Alfa ’wpad’ 8
Alfa ’wpad’ 33 LinkSys ’hostapd’ 1
D-Link ’prog-cgi’ 126 NETGEAR ’dimclient’ 31
D-Link ’mdb’ 60 NETGEAR ’hostapd’ 1
D-Link ’wpa_supplicant’ 23 Synology ’hostapd’ 1
D-Link ’snmpd’ 9 TP-Link ’hostapd’ 7
D-Link ’snmptrap’ 7 Tenda ’hostapd’ 1
D-Link ’hostapd’ 7 Totolink ’tincd’ 1
D-Link ’dam’ 4 - - -
D-Link ’racoon’ 4 - - -
D-Link ’xsupplicant’ 4 - - -
D-Link ’prog.cgi’ 3 - - -
Dell ’ciphertool’ 41 - - -
DrayTek ’onvif_func’ 18 - - -

A.8. Cryptographic Misuses 137

DrayTek ’hostapd’ 5 - - -
DrayTek ’wpa_supplicant’ 5 - - -
EdiMax ’device_service’ 7 - - -
EdiMax ’racoon’ 3 - - -
EdiMax ’wpa_supplicant’ 2 - - -
EdiMax ’hostapd’ 2 - - -
Inmarsat ’hostapd’ 3 - - -
LinkSys ’dhclient’ 71 - - -
LinkSys ’wpa_supplicant’ 11 - - -
LinkSys ’hostapd’ 9 - - -
LinkSys ’onvif1.0’ 4 - - -
LinkSys ’onvif2’ 4 - - -
MicroTik ’ipsec’ 350 - - -
NETGEAR ’wpa_supplicant’ 69 - - -
NETGEAR ’hostapd’ 43 - - -
NETGEAR ’wpa_supplicant-macsec’ 1 - - -
Planet ’snmpd’ 50 - - -
Planet ’wpa_supplicant’ 27 - - -
Planet ’prog.cgi’ 2 - - -
Planet ’boa’ 2 - - -
Planet ’xsupplicant’ 1 - - -
Planet ’snmptrap’ 1 - - -
QNAP ’wpa_supplicant’ 13 - - -
Synology ’wpa_supplicant’ 160 - - -
Synology ’hostapd’ 145 - - -
Synology ’git-imap-send’ 4 - - -
TP-Link ’wpa_supplicant’ 80 - - -
TP-Link ’racoon’ 56 - - -
TP-Link ’chm’ 49 - - -
TP-Link ’hostapd’ 28 - - -
Tenda ’racoon’ 22 - - -
Tenda ’hostapd’ 2 - - -
Tenda ’wpa_supplicant’ 1 - - -
Tenvis ’onvif’ 1 - - -
Totolink ’wpa_supplicant’ 4 - - -
Trendnet ’wpa_supplicant’ 18 - - -
Trendnet ’hostapd’ 2 - - -
Trendnet ’airdecap-ng’ 1 - - -
Trendnet ’aircrack-ng’ 1 - - -
Ubiquiti ’wpad’ 264 - - -
Ubiquiti ’hostapd’ 39 - - -
Ubiquiti ’wpa_supplicant’ 37 - - -
Ubiquiti ’snmpd’ 20 - - -
Western-Digital ’wpa_supplicant’ 4 - - -
Western-Digital ’hostapd’ 3 - - -
Xiaomi ’wpa_supplicant’ 13 - - -
Xiaomi ’245506E’ 1 - - -
Zyxel ’racoon’ 21 - - -
Zyxel ’radclient’ 15 - - -
Zyxel ’radeapclient’ 15 - - -
Zyxel ’radiusd’ 6 - - -
Zyxel ’hostapd’ 1 - - -
Zyxel ’wpa_supplicant-macsec’ 1 - - -
Zyxel ’wpa_supplicant’ 1 - - -

Table A.54: Violated Binaries discovered for Message Authentication Codes (MACs) rules M1, M2 and M3, entry and possible
𝜙 case.

Vendor Binary Name #
firmwares

Vendor Binary Name #
firmwares

P1 - Usage of insecure RSA encryption padding schemes P3 - X.509 certificate usage of ‘weak’ digest function
ASUS ’cfg_client’ 335 ASUS ’qmi_ip’ 1
ASUS ’cfg_server’ 14 D-Link ’mpop’ 85
Alfa ’tor’ 2 D-Link ’x509SelfSign’ 75
Alfa ’rsa_test’ 1 D-Link ’mapd’ 28
D-Link ’captival_portal’ 19 D-Link ’gencert’ 5

138 A. Appendix - Results & Findings

D-Link ’httpd’ 5 D-Link ’imspector’ 2
D-Link ’shareport’ 4 LinkSys ’mapd’ 2
D-Link ’spt’ 4 NETGEAR ’ntfsdecrypt’ 860
D-Link ’EmbedThunderManager’ 1 NETGEAR ’certgen’ 222
LinkSys ’iperf3’ 1 NETGEAR ’x509SelfSign’ 27
NETGEAR ’fvdropbox’ 2244 Planet ’monit’ 24
NETGEAR ’avdu’ 2014 Synology ’lftp’ 88
NETGEAR ’fvamazon’ 1232 Synology ’nzbget’ 18
NETGEAR ’readynasd’ 928 Synology ’ncat’ 2
NETGEAR ’NetReadyAgent’ 12 TP-Link ’httpd’ 47
NETGEAR ’tincd’ 10 TP-Link ’sslselfsign’ 15
NETGEAR ’TPMFactoryUpd’ 8 TP-Link ’mysqlimport’ 1
NETGEAR ’dimclient’ 4 TP-Link ’mysqlcheck’ 1
NETGEAR ’iperf3’ 1 TP-Link ’mysqlshow’ 1
Synology ’synolicense_uninstall’ 52 TP-Link ’mysqldump’ 1
Synology ’sftpd’ 17 TP-Link ’mysqlslap’ 1
Synology ’synoddsm-hostd’ 3 TP-Link ’mysqladmin’ 1
TP-Link ’httpd’ 36 TP-Link ’mysql’ 1
TP-Link ’eap-mesh’ 12 TP-Link ’mysqlbinlog’ 1
TP-Link ’eapcs’ 8 TP-Link ’mysqltest’ 1
TP-Link ’o_p_test’ 4 Trendnet ’ipheth-pair’ 1
TP-Link ’rsa_decrypt’ 4 Ubiquiti ’monit’ 108
TP-Link ’tdpServer’ 3 Ubiquiti ’httping’ 3
Tenda ’eventdispatcher’ 2 Western-Digital ’ncat’ 3
Tenda ’racoon’ 1 Western-Digital ’ntfsdecrypt’ 1
Totolink ’tincd’ 1 Xiaomi ’syslog-ng’ 14
Xiaomi ’etm’ 95 - - -
Xiaomi ’rsa_test’ 1 - - -
Zyxel ’zhttpd’ 30 - - -
Zyxel ’zyxel_xmpp_client’ 12 - - -
Zyxel ’zyxel_encrypt_hash’ 9 - - -
Zyxel ’httpd’ 5 - - -

Table A.55: Violated Binaries discovered for Public Key Cryptography rules P1 and P3, entry and not discovered 𝜙 case.

Vendor Binary Name #
firmwares

Vendor Binary Name #
firmwares

R1 - PRNG static seed
D-Link ’htpasswd’ 36 TP-Link ’sessmngr’ 6
D-Link ’EmbedThunderManager’ 1 TP-Link ’capwap’ 3
LinkSys ’udhcpd’ 4 Xiaomi ’etm’ 95
LinkSys ’Mercury.snos’ 2 Zyxel ’login.cgi’ 84
NETGEAR ’htpasswd’ 2261 Zyxel ’dispatcher.cgi’ 36
NETGEAR ’tincd’ 10 Zyxel ’htpasswd’ 25
NETGEAR ’iss.exe’ 1 Zyxel ’433DEB’ 18
Planet ’htpasswd’ 4 Zyxel ’443F0F’ 9
Synology ’htpasswd’ 50 Zyxel ’4729B2’ 9
TP-Link ’cet’ 45 Zyxel ’432C64’ 9
TP-Link ’iked’ 10 Zyxel ’472073’ 3
TP-Link ’aaa’ 6 - - -

R2 - Low entropy sources for seeds
ASUS ’aaews’ 616 Synology ’usb-copyd’ 112
ASUS ’mastiff’ 510 Synology ’usbcopy-hook’ 112
ASUS ’watchquagga’ 436 Synology ’usb-copy-notifier’ 112
ASUS ’cfg_server’ 367 Synology ’usb-copy-starter’ 110
ASUS ’httpd’ 195 Synology ’zip’ 45
ASUS ’zebra’ 190 Synology ’postgres’ 36
ASUS ’miniupnpd’ 154 Synology ’network.cgi’ 36
ASUS ’rc’ 51 Synology ’upgrade.cgi’ 35
ASUS ’boa’ 16 Synology ’thumbnail.cgi’ 35
ASUS ’cfg_client’ 15 Synology ’postgres32’ 34
ASUS ’btgatt-server’ 8 Synology ’fileindexd’ 31
ASUS ’bluealsa’ 7 Synology ’imap-login’ 28
ASUS ’sip_proxy’ 3 Synology ’dovecot-auth’ 28
ASUS ’tr69c’ 2 Synology ’ssl-build-param’ 28
ASUS ’newusers’ 2 Synology ’dovecot’ 28

A.8. Cryptographic Misuses 139

AVM ’mount.davfs’ 11 Synology ’pop3-login’ 28
AVM ’cloudmsgd’ 10 Synology ’postlock’ 27
AVM ’wlmngr2’ 2 Synology ’pop3’ 27
AVM ’tr69c’ 1 Synology ’imap’ 27
Actiontec ’zebra’ 3 Synology ’synodisk’ 24
Actiontec ’tr69c’ 2 Synology ’scemd’ 15
Actiontec ’uhttpd’ 1 Synology ’synobox’ 14
Actiontec ’sntp’ 1 Synology ’image_thumb.cgi’ 8
Actiontec ’detectWANService’ 1 Synology ’heartbeatd’ 6
Actiontec ’cm_logic’ 1 Synology ’synowolagentd’ 5
Arris ’ripngd’ 4 Synology ’git-fast-import’ 4
D-Link ’pppdo’ 183 Synology ’git-http-push’ 4
D-Link ’upnpc-ddns’ 173 Synology ’git-credential-store’ 4
D-Link ’vipsecureConfig’ 143 Synology ’git-remote-https’ 4
D-Link ’prog-cgi’ 126 Synology ’git-http-fetch’ 4
D-Link ’admin.cgi’ 67 Synology ’synodbudd’ 4
D-Link ’mailsend’ 63 Synology ’dhclient’ 4
D-Link ’da_adaptor’ 61 Synology ’aa_cmd’ 3
D-Link ’newp2p’ 59 Synology ’iscsiadm’ 3
D-Link ’snmpd’ 49 Synology ’PkgSynoMan.cgi’ 3
D-Link ’httpd’ 46 Synology ’synodatacollectd’ 2
D-Link ’cgibin’ 45 Synology ’cloud-cleand’ 2
D-Link ’mapd’ 45 Synology ’cloud-control’ 2
D-Link ’p2p_server’ 43 Synology ’img_backup’ 2
D-Link ’shgw_watchdogd’ 41 Synology ’syno-cloud-syncd’ 2
D-Link ’zebra’ 32 Synology ’debug’ 2
D-Link ’afpd’ 26 Synology ’synologyfilemanager-

authd’
2

D-Link ’lighttpd’ 20 Synology ’pgbouncer’ 2
D-Link ’perl’ 20 Synology ’dig’ 2
D-Link ’jjhttpd’ 18 Synology ’CSTNVolChange’ 2
D-Link ’crtmpserver’ 18 Synology ’RestoreNode’ 2
D-Link ’linkd.out’ 14 Synology ’cloud-sync-encrypt-tool’ 2
D-Link ’test_ap’ 14 Synology ’cloud-cached’ 2
D-Link ’dv8_agent’ 13 Synology ’syno-cloud-clientd’ 2
D-Link ’op_server’ 13 Synology ’feasibility-check’ 2
D-Link ’mt-daapd’ 11 Synology ’cloud-sync-starter’ 2
D-Link ’hd_verify’ 11 Synology ’db-check’ 2
D-Link ’ipca’ 10 Synology ’cloud-authd’ 2
D-Link ’x509SelfSign’ 9 Synology ’syno-letsencrypt’ 2
D-Link ’tr69c’ 9 Synology ’synoupgrade’ 1
D-Link ’miniupnpd’ 8 Synology ’dms’ 1
D-Link ’commander’ 8 Synology ’main.cgi’ 1
D-Link ’onvifServer’ 6 Synology ’synotifyd’ 1
D-Link ’GBhandler’ 5 Synology ’ha.cgi’ 1
D-Link ’prog.cgi’ 4 Synology ’virtual’ 1
D-Link ’ripngd’ 4 Synology ’local’ 1
D-Link ’tr69’ 4 Synology ’bounce’ 1
D-Link ’sudo’ 4 TP-Link ’cloud-brd’ 628
D-Link ’webs’ 4 TP-Link ’cloud-client’ 361
D-Link ’record_server’ 3 TP-Link ’cet’ 229
D-Link ’MAIL.VideoServer.strip’ 3 TP-Link ’uac’ 200
D-Link ’watchquagga’ 2 TP-Link ’relayd’ 174
D-Link ’ppp’ 2 TP-Link ’miniupnpd’ 144
D-Link ’dnsproxy’ 2 TP-Link ’cwmp’ 109
D-Link ’vvctl’ 2 TP-Link ’newusers’ 80
D-Link ’newgrp’ 2 TP-Link ’pure-pw’ 67
D-Link ’resident’ 2 TP-Link ’streamd’ 58
D-Link ’hapClient’ 2 TP-Link ’ipcamera’ 58
D-Link ’agent’ 1 TP-Link ’uhttpd’ 40
D-Link ’accessctl’ 1 TP-Link ’dsd’ 34
D-Link ’lprm’ 1 TP-Link ’nvid’ 32
D-Link ’lpr’ 1 TP-Link ’nvrcore’ 20
D-Link ’lpq’ 1 TP-Link ’onboarding’ 19
D-Link ’lpd’ 1 TP-Link ’speaker’ 19
D-Link ’lpc’ 1 TP-Link ’storage’ 14
D-Link ’EmbedThunderManager’ 1 TP-Link ’cloud-sdk’ 12

140 A. Appendix - Results & Findings

D-Link ’tr069’ 1 TP-Link ’cloud_brd’ 10
D-Link ’tssa’ 1 TP-Link ’dcd’ 8
Dell ’compmanager’ 20 TP-Link ’eapcs’ 8
DrayTek ’mainfunction.cgi’ 63 TP-Link ’httpd’ 7
DrayTek ’onvif_func’ 55 TP-Link ’predictd’ 7
DrayTek ’lighttpd’ 46 TP-Link ’v6plus’ 6
DrayTek ’oneTimeCall’ 30 TP-Link ’eap-cs’ 5
DrayTek ’dray_apm’ 16 TP-Link ’vod’ 5
DrayTek ’dhcrelay’ 14 TP-Link ’voip_client’ 4
DrayTek ’acs’ 9 TP-Link ’zavim’ 4
DrayTek ’goahead’ 2 TP-Link ’cloud_client’ 3
EdiMax ’zebra’ 14 TP-Link ’tr69c’ 3
EdiMax ’boa’ 4 TP-Link ’zebra’ 3
EdiMax ’btget’ 3 TP-Link ’dig’ 3
EdiMax ’tr69c’ 3 TP-Link ’host’ 3
EdiMax ’lighttpd’ 2 TP-Link ’aria2c’ 3
EdiMax ’mailsend’ 2 TP-Link ’wlan-manager’ 3
FOSCAM ’jco_server’ 1 TP-Link ’mobile’ 2
HP ’lighttpd’ 5 TP-Link ’appcmd’ 2
Inmarsat ’ogg123’ 3 TP-Link ’samba_multicall’ 1
Inmarsat ’asterisk’ 1 TP-Link ’mysqlslap’ 1
Inmarsat ’lighttpd’ 1 TP-Link ’mediaServer’ 1
LinkSys ’dhclient’ 86 Tenda ’pppdForPptp’ 33
LinkSys ’httpd’ 15 Tenda ’xl2tpdpppd’ 33
LinkSys ’ripngd’ 14 Tenda ’tr69c’ 29
LinkSys ’zebra’ 8 Tenda ’httpd’ 16
LinkSys ’tr69c’ 6 Tenda ’portal’ 10
LinkSys ’fwupd’ 6 Tenda ’zebra’ 6
LinkSys ’dnsproxy’ 4 Tenda ’pppdForPppServer’ 5
LinkSys ’cwmpCPE’ 3 Tenda ’pppoa’ 3
LinkSys ’bgpd’ 3 Tenda ’ripngd’ 2
LinkSys ’lrhkprvsn’ 3 Tenda ’bi’ 2
LinkSys ’admin.cgi’ 2 Tenda ’pppd244’ 2
LinkSys ’ospfd’ 2 Tenda ’pppd_3g’ 1
LinkSys ’ospf6d’ 2 Tenda ’pppd_245’ 1
LinkSys ’mailsend’ 2 Tenda ’wlmngr2’ 1
LinkSys ’boa’ 1 Tenda ’pppds’ 1
LinkSys ’setup.cgi’ 1 Tenvis ’tutk’ 2
LinkSys ’watchquagga’ 1 Totolink ’ss-orig-redir’ 6
LinkSys ’lighttpd’ 1 Totolink ’ss-orig-tunnel’ 6
LinkSys ’LiveviewControlServer’ 1 Totolink ’ss-orig-local’ 6
MicroTik ’ddns’ 580 Totolink ’ssr-redir’ 6
MicroTik ’ipsec’ 513 Totolink ’ssr-local’ 6
NETGEAR ’readyNASVault’ 1790 Totolink ’tinc’ 5
NETGEAR ’mysqlmanager’ 714 Totolink ’ppp2d’ 2
NETGEAR ’htdbm’ 714 Totolink ’rc’ 1
NETGEAR ’httpd’ 581 Totolink ’miniupnpd’ 1
NETGEAR ’zebra’ 382 Trendnet ’zebra’ 24
NETGEAR ’auditd’ 289 Trendnet ’mailsend’ 10
NETGEAR ’rcagentd’ 284 Trendnet ’snmpd’ 10
NETGEAR ’rc_apps’ 185 Trendnet ’lighttpd’ 10
NETGEAR ’Netgear_ddns’ 144 Trendnet ’vcm_serv’ 10
NETGEAR ’ripngd’ 135 Trendnet ’hicore’ 6
NETGEAR ’uhttpd’ 131 Trendnet ’webproc’ 4
NETGEAR ’mini_httpd’ 123 Trendnet ’pppds’ 4
NETGEAR ’miniupnpd’ 119 Trendnet ’jjhttpd’ 4
NETGEAR ’lighttpd’ 116 Trendnet ’init’ 3
NETGEAR ’nlogin.cgi’ 96 Trendnet ’boa’ 3
NETGEAR ’apcomm’ 96 Trendnet ’hiawatha’ 2
NETGEAR ’apcfg_mgr’ 96 Trendnet ’p2p_server’ 2
NETGEAR ’upnpd’ 95 Trendnet ’ZNMPClient’ 2
NETGEAR ’rc’ 94 Trendnet ’pppd_for_pptp’ 2
NETGEAR ’mysqlslap’ 54 Trendnet ’watchquagga’ 2
NETGEAR ’exim4’ 54 Trendnet ’tacacs_plus’ 1
NETGEAR ’upload.cgi’ 48 Trendnet ’autoprovision’ 1
NETGEAR ’mailsend’ 43 Trendnet ’router’ 1
NETGEAR ’pppd_brcm’ 34 Trendnet ’ctorrent’ 1

A.8. Cryptographic Misuses 141

NETGEAR ’afpd’ 32 Trendnet ’agent’ 1
NETGEAR ’dimclient’ 31 Trendnet ’packetforge-ng’ 1
NETGEAR ’wnc_comm’ 29 Trendnet ’pppd-rtk’ 1
NETGEAR ’vipsecureConfig’ 27 Trendnet ’tb_tr069’ 1
NETGEAR ’net-cgi’ 23 Trendnet ’ripngd’ 1
NETGEAR ’ipmitool’ 16 Trendnet ’main.cgi’ 1
NETGEAR ’watchquagga’ 14 Trendnet ’bgpd’ 1
NETGEAR ’puipv6autodetect’ 14 Trendnet ’accountd’ 1
NETGEAR ’rcagentd.svn-base’ 13 Trendnet ’httpd’ 1
NETGEAR ’spmd’ 12 Ubiquiti ’udapi-bridge’ 1010
NETGEAR ’shgw_watchdogd’ 12 Ubiquiti ’cgi’ 470
NETGEAR ’fcron’ 11 Ubiquiti ’basic_radius_auth’ 268
NETGEAR ’appliance_mgr’ 10 Ubiquiti ’udapi-server’ 255
NETGEAR ’tinc’ 10 Ubiquiti ’lighttpd’ 243
NETGEAR ’tinctop’ 10 Ubiquiti ’bgpd’ 231
NETGEAR ’fw-checking’ 8 Ubiquiti ’squid3’ 217
NETGEAR ’SkipjamMenus.exe’ 7 Ubiquiti ’monit’ 108
NETGEAR ’663201’ 4 Ubiquiti ’switchdrvr’ 72
NETGEAR ’66E03E’ 4 Ubiquiti ’ripngd’ 37
NETGEAR ’684FE5’ 4 Ubiquiti ’lcmd’ 27
NETGEAR ’672D95’ 4 Ubiquiti ’mcad’ 19
NETGEAR ’bst_daemon’ 3 Ubiquiti ’dirmngr’ 18
NETGEAR ’funjsq_dl’ 3 Ubiquiti ’postgres’ 16
NETGEAR ’parserd’ 2 Ubiquiti ’rpsd’ 9
NETGEAR ’fing_dil’ 2 Ubiquiti ’miniupnpd’ 7
NETGEAR ’rclient’ 2 Ubiquiti ’httpd’ 3
NETGEAR ’5B1D1A’ 1 Ubiquiti ’ubnt_displayd’ 3
NETGEAR ’53F662’ 1 Ubiquiti ’fwupdate’ 3
NETGEAR ’7D6E3E’ 1 Ubiquiti ’cfgupdate’ 2
NETGEAR ’69A460’ 1 Western-Digital ’smtp-sink’ 5
NETGEAR ’6561F8’ 1 Western-Digital ’monit’ 5
NETGEAR ’17AFEC’ 1 Western-Digital ’qmqp-source’ 5
NETGEAR ’7812BB’ 1 Western-Digital ’smtp-source’ 5
NETGEAR ’66EC8D’ 1 Western-Digital ’dirmngr’ 5
NETGEAR ’mongoose’ 1 Western-Digital ’dhclient’ 1
NETGEAR ’swiapp’ 1 Xiaomi ’pluginControllor’ 222
NETGEAR ’1B59E4’ 1 Xiaomi ’datacenter’ 177
NETGEAR ’1884A9’ 1 Xiaomi ’securitypage’ 137
NETGEAR ’2292D7’ 1 Xiaomi ’apk_query’ 128
NETGEAR ’aws_json’ 1 Xiaomi ’kr_query’ 109
NETGEAR ’CcspCrSsp’ 1 Xiaomi ’ustackd’ 104
NETGEAR ’check_fw’ 1 Xiaomi ’etm’ 95
NETGEAR ’dhclient’ 1 Xiaomi ’tquery’ 81
NETGEAR ’acos_usbd’ 1 Xiaomi ’cachecenter’ 79
NETGEAR ’cli’ 1 Xiaomi ’StatPoints’ 78
Netis ’switch’ 4 Xiaomi ’ss-local’ 68
Netis ’boa’ 2 Xiaomi ’elink’ 58
Netis ’miniupnpd’ 1 Xiaomi ’wrsst’ 52
Planet ’hiawatha’ 47 Xiaomi ’miniupnpd’ 52
Planet ’monit’ 24 Xiaomi ’samba_multicall’ 51
Planet ’ProDaemon’ 15 Xiaomi ’indexservice’ 45
Planet ’zebra’ 10 Xiaomi ’mtd_crash_log’ 18
Planet ’MAIL.VideoServer.strip’ 6 Xiaomi ’cdn_conf’ 4
Planet ’mg_ipinst’ 5 Xiaomi ’dnsfixd’ 2
Planet ’asterisk’ 4 Xiaomi ’plugincenter’ 2
Planet ’exec_route’ 4 Xiaomi ’23770AA’ 1
Planet ’gener.cgi’ 4 Xiaomi ’1F7E27A’ 1
Planet ’pptp.cgi’ 4 Xiaomi ’2182FAA’ 1
Planet ’trunk_cmd’ 4 Zyxel ’capwap_client’ 335
Planet ’pptpfw’ 4 Zyxel ’lighttpd’ 294
Planet ’winmsg’ 4 Zyxel ’zebra’ 239
Planet ’GBhandler’ 4 Zyxel ’mailsend’ 179
Planet ’thttpd’ 4 Zyxel ’tr69c’ 111
Planet ’wan_daemon’ 4 Zyxel ’nccconnd’ 94
Planet ’htdbm’ 4 Zyxel ’ztr69’ 74
Planet ’tr69c’ 3 Zyxel ’login.cgi’ 72
Planet ’autop.exe’ 3 Zyxel ’Clicktocontinue.cgi’ 72

142 A. Appendix - Results & Findings

Planet ’ConfigManApp.com’ 3 Zyxel ’dservice’ 66
Planet ’logic’ 3 Zyxel ’social_login.cgi’ 54
Planet ’ipinstal’ 3 Zyxel ’auto_add_user’ 54
Planet ’eventproc’ 3 Zyxel ’cloudauthd’ 54
Planet ’test_ap’ 3 Zyxel ’capwap_srv’ 47
Planet ’httpd’ 3 Zyxel ’htdbm’ 47
Planet ’onvifServer’ 3 Zyxel ’bk_perl’ 46
Planet ’httpsrvpwd’ 3 Zyxel ’racoon’ 45
Planet ’pppd245’ 2 Zyxel ’fadd’ 40
Planet ’cwmpd’ 2 Zyxel ’tr69’ 39
Planet ’prog.cgi’ 2 Zyxel ’vpppd’ 39
Planet ’pppdo’ 2 Zyxel ’radiusc’ 34
Planet ’sendReport’ 2 Zyxel ’trace’ 32
Planet ’dccupdate’ 2 Zyxel ’httpd’ 32
Planet ’HA’ 2 Zyxel ’zhttpd’ 29
Planet ’htmldoc’ 2 Zyxel ’zyecho_client’ 26
Planet ’pppoecd’ 2 Zyxel ’zyxel_xmpp_client’ 13
Planet ’SystemServer’ 2 Zyxel ’zapiBLEService’ 13
Planet ’boa’ 2 Zyxel ’pdbtool’ 9
Planet ’hi3518’ 2 Zyxel ’sipclient’ 8
Planet ’panod’ 2 Zyxel ’zytr069main’ 6
Planet ’aistreamer’ 2 Zyxel ’bgpd’ 6
Planet ’badblocks’ 1 Zyxel ’dma’ 6
Planet ’dma’ 1 Zyxel ’sippxy.elf’ 5
Planet ’freshsnort’ 1 Zyxel ’wmgeniesrv’ 5
Planet ’p3scan’ 1 Zyxel ’hlasd’ 5
Planet ’perl’ 1 Zyxel ’squid’ 5
QNAP ’slapd-bind’ 23 Zyxel ’tools_mpt.cgi’ 5
QNAP ’mount.davfs’ 23 Zyxel ’snmpd’ 4
QNAP ’utilRequest.cgi’ 22 Zyxel ’cli’ 3
QNAP ’badblocks’ 11 Zyxel ’pppd_3g’ 3
QNAP ’638C43’ 1 Zyxel ’wsccmd’ 3
QNAP ’6C6CF5’ 1 Zyxel ’zySAS’ 2
QNAP ’69F2D0’ 1 Zyxel ’cfm’ 2
QNAP ’6B221E’ 1 Zyxel ’lte_srv_diag’ 2
Rotek ’radvd’ 1 Zyxel ’smart-polling-service’ 2
Synology ’hostapd’ 141 Zyxel ’boa’ 2
Synology ’nsupdate’ 135 Zyxel ’ag’ 2
Synology ’synorelayd’ 131 Zyxel ’sysd’ 2
Synology ’synosearchagent’ 130 Zyxel ’auto-ip’ 1
Synology ’share-hook’ 114 Zyxel ’ripngd’ 1
Synology ’findhostd’ 113 Zyxel ’uplink_qos’ 1
Synology ’volume-hook’ 112 Zyxel ’wireless.cgi’ 1

Table A.56: Violated Binaries discovered for Pseudo Random Number Generators (PRNGs) R1 and R2, entry and not
discovered 𝜙 case.

Vendor Binary Name #
firmwares

Vendor Binary Name #
firmwares

K1 - Constant Passwords on a KDF/PBE K4 - ‘Weak’ underlying hash function on a KDF/PBE
ASUS ’rc’ 4 ASUS ’rc’ 6
ASUS ’qcmap_auth’ 2 ASUS ’login.shadow’ 2
Arris ’sc_zipen’ 4 Actiontec ’cm_logic’ 1
D-Link ’smm’ 121 Arris ’uhttpd’ 3
D-Link ’commander’ 9 Belkin ’cfm’ 1
D-Link ’admin.cgi’ 3 D-Link ’sslvpnConfig’ 122
LinkSys ’eurl’ 45 D-Link ’smm’ 121
LinkSys ’main_bin’ 2 D-Link ’admin.cgi’ 59
NETGEAR ’smm’ 27 D-Link ’tinylogin’ 36
NETGEAR ’cli’ 1 D-Link ’cm_logic’ 18
QNAP ’change_password.cgi’ 23 D-Link ’logic’ 4
QNAP ’authLogin.cgi’ 6 D-Link ’uhttpd’ 4
QNAP ’6EC27A’ 1 D-Link ’busybox’ 2
QNAP ’6D1AB2’ 1 D-Link ’cmd’ 2
QNAP ’638C43’ 1 D-Link ’rc’ 2
QNAP ’6C6CF5’ 1 D-Link ’tssa’ 1

A.8. Cryptographic Misuses 143

QNAP ’69F2D0’ 1 EdiMax ’cfg_manager’ 5
QNAP ’6B221E’ 1 EdiMax ’ftpd’ 5
TP-Link ’qcmap_auth’ 34 EdiMax ’boa’ 4
TP-Link ’pure-pw’ 15 EdiMax ’startup’ 4
Trendnet ’daemon_fsp_app’ 16 Inmarsat ’unix_chkpwd’ 3
Trendnet ’goahead’ 2 Inmarsat ’unix_update’ 3
Trendnet ’cwsysd’ 1 LinkSys ’eurl’ 45
Trendnet ’main.cgi’ 1 LinkSys ’main_bin’ 2
Trendnet ’accountd’ 1 LinkSys ’uhttpd’ 1
Zyxel ’zcmd’ 1 LinkSys ’boa’ 1

K2 - Constant salt or no salts on a KDF/PBE NETGEAR ’unix_chkpwd’ 4213
ASUS ’rc’ 6 NETGEAR ’unix_update’ 4213
ASUS ’login.shadow’ 2 NETGEAR ’uhttpd’ 141
Actiontec ’cm_logic’ 1 NETGEAR ’busybox’ 134
Arris ’uhttpd’ 3 NETGEAR ’rc’ 61
Belkin ’cfm’ 1 NETGEAR ’appliance_mgr_cli’ 27
D-Link ’sslvpnConfig’ 122 NETGEAR ’smm’ 27
D-Link ’smm’ 121 NETGEAR ’ngadmin.cgi’ 21
D-Link ’tinylogin’ 36 NETGEAR ’httpd’ 17
D-Link ’cm_logic’ 18 NETGEAR ’pam_extrausers_update’ 16
D-Link ’logic’ 4 NETGEAR ’pam_extrausers_chkpwd’ 16
D-Link ’uhttpd’ 4 NETGEAR ’cm_logic’ 5
D-Link ’busybox’ 2 NETGEAR ’lc_up’ 2
D-Link ’cmd’ 2 NETGEAR ’mongoose’ 1
D-Link ’rc’ 2 NETGEAR ’password_crypt’ 1
D-Link ’tssa’ 1 Netis ’startup’ 2
EdiMax ’cfg_manager’ 5 Netis ’boa’ 2
EdiMax ’ftpd’ 5 Planet ’uhttpd’ 49
EdiMax ’boa’ 4 Planet ’cgiMain’ 8
EdiMax ’startup’ 4 Planet ’login’ 4
LinkSys ’eurl’ 45 Planet ’unix_update’ 4
LinkSys ’main_bin’ 2 Planet ’unix_chkpwd’ 4
LinkSys ’uhttpd’ 1 Planet ’swctrl’ 3
LinkSys ’boa’ 1 Planet ’httpd’ 2
NETGEAR ’uhttpd’ 141 Planet ’startup’ 1
NETGEAR ’busybox’ 134 QNAP ’6EC27A’ 1
NETGEAR ’rc’ 61 QNAP ’6D1AB2’ 1
NETGEAR ’appliance_mgr_cli’ 27 QNAP ’638C43’ 1
NETGEAR ’smm’ 27 QNAP ’6C6CF5’ 1
NETGEAR ’httpd’ 17 QNAP ’69F2D0’ 1
NETGEAR ’cm_logic’ 5 QNAP ’6B221E’ 1
NETGEAR ’password_crypt’ 1 Synology ’unix_chkpwd’ 176
Netis ’startup’ 2 Synology ’getty’ 128
Netis ’boa’ 2 Synology ’synouser’ 43
Planet ’uhttpd’ 49 Synology ’afpd’ 38
Planet ’cgiMain’ 8 Synology ’synorcvol’ 37
Planet ’login’ 4 Synology ’rsrcmonitor.cgi’ 36
Planet ’swctrl’ 3 Synology ’manutild’ 7
Planet ’httpd’ 2 Synology ’synocheckshare’ 7
Planet ’startup’ 1 Synology ’scemd’ 5
QNAP ’6EC27A’ 1 Synology ’findhostd’ 2
QNAP ’6D1AB2’ 1 Synology ’syno-cloud-syncd’ 2
QNAP ’638C43’ 1 Synology ’cloud-sync-encrypt-tool’ 2
QNAP ’6C6CF5’ 1 Synology ’cloud-sync-starter’ 2
QNAP ’69F2D0’ 1 Synology ’mysqld’ 1
QNAP ’6B221E’ 1 TP-Link ’uhttpd’ 675
Synology ’synorcvol’ 37 TP-Link ’pure-pw’ 68
TP-Link ’uhttpd’ 675 TP-Link ’login.shadow’ 33
TP-Link ’login.shadow’ 33 TP-Link ’mysqld’ 1
TP-Link ’chsh.shadow’ 15 TP-Link ’mariabackup’ 1
TP-Link ’passwd.shadow’ 15 Tenda ’uhttpd’ 4
TP-Link ’gpasswd’ 15 Thuraya ’uhttpd’ 2
TP-Link ’su’ 15 Totolink ’uhttpd’ 1
TP-Link ’newusers’ 15 Trendnet ’uhttpd’ 26
TP-Link ’chgpasswd’ 15 Trendnet ’daemon_fsp_app’ 16
TP-Link ’chpasswd.shadow’ 15 Trendnet ’startup’ 3
TP-Link ’chfn.shadow’ 15 Trendnet ’boa’ 3

144 A. Appendix - Results & Findings

TP-Link ’pure-pw’ 15 Trendnet ’busybox’ 2
Tenda ’uhttpd’ 4 Trendnet ’goahead’ 2
Thuraya ’uhttpd’ 2 Trendnet ’init’ 1
Totolink ’uhttpd’ 1 Trendnet ’logic’ 1
Trendnet ’uhttpd’ 26 Trendnet ’cwsysd’ 1
Trendnet ’daemon_fsp_app’ 16 Ubiquiti ’unix_chkpwd’ 354
Trendnet ’startup’ 3 Ubiquiti ’unix_update’ 343
Trendnet ’boa’ 3 Ubiquiti ’uhttpd’ 78
Trendnet ’busybox’ 2 Western-Digital ’unix_chkpwd’ 5
Trendnet ’goahead’ 2 Western-Digital ’unix_update’ 5
Trendnet ’init’ 1 Xiaomi ’uhttpd’ 299
Trendnet ’logic’ 1 Zyxel ’unix_update’ 80
Trendnet ’cwsysd’ 1 Zyxel ’unix_chkpwd’ 80
Ubiquiti ’uhttpd’ 78 Zyxel ’makepwd’ 66
Xiaomi ’uhttpd’ 299 Zyxel ’uhttpd’ 36
Zyxel ’makepwd’ 66 Zyxel ’mini_httpd’ 13
Zyxel ’uhttpd’ 36 Zyxel ’cfg_manager’ 3
Zyxel ’mini_httpd’ 13 Zyxel ’boa’ 2
Zyxel ’cfg_manager’ 3 Zyxel ’startup’ 2
Zyxel ’boa’ 2 Zyxel ’wireless.cgi’ 1
Zyxel ’startup’ 2 - - -
Zyxel ’wireless.cgi’ 1 - - -

K3 - ‘Weak’ number of iteration on a KDF/PBE - - -
Arris ’sc_zipen’ 4 - - -
DrayTek ’fw_printenv’ 62 - - -
LinkSys ’eurl’ 45 - - -
NETGEAR ’lc_up’ 2 - - -
NETGEAR ’mongoose’ 1 - - -
Synology ’cloud-sync-starter’ 2 - - -
Synology ’mysqld’ 1 - - -
TP-Link ’mysqld’ 1 - - -
TP-Link ’mariabackup’ 1 - - -
Trendnet ’daemon_fsp_app’ 16 - - -
Ubiquiti ’ubntbox’ 76 - - -
Xiaomi ’ss-local’ 68 - - -
Xiaomi ’ss-redir’ 54 - - -
Xiaomi ’ss-tunnel’ 3 - - -
Zyxel ’zycfgfilter’ 90 - - -
Zyxel ’zcmd’ 74 - - -

Table A.57: Violated Binaries discovered for Key Derivation Functions (KDFs) and Password Based Encryption (PBE) rules K1,
K2, K3 and K4, entry and not discovered 𝜙 case.

Vendor Binary Name #
firmwares

Vendor Binary Name #
firmwares

M3 - Non-secure key length on a MAC function M1 - Constant Encryption/Decryption Keys on a MAC
ASUS ’hostapd’ 29 DrayTek ’tr069_client’ 93
Alfa ’wpad’ 8 NETGEAR ’Netgear_ddns’ 144
LinkSys ’hostapd’ 1 NETGEAR ’httpd’ 24
NETGEAR ’dimclient’ 31 NETGEAR ’ntgrddns’ 14
NETGEAR ’hostapd’ 1 - - -
Synology ’hostapd’ 1 - - -
TP-Link ’hostapd’ 7 - - -
Tenda ’hostapd’ 1 - - -

M2 - ‘Weak’ underlying hash function on a MAC
ASUS ’wpa_supplicant’ 151 Planet ’snmpd’ 50
ASUS ’hostapd’ 95 Planet ’wpa_supplicant’ 27
ASUS ’wpa_supplicant-2.7’ 29 Planet ’prog.cgi’ 2
ASUS ’racoon’ 2 Planet ’boa’ 2
AVM ’hostapd’ 5 Planet ’xsupplicant’ 1
AVM ’wpa_supplicant’ 5 QNAP ’wpa_supplicant’ 13
Actiontec ’racoon’ 2 Synology ’wpa_supplicant’ 160
Alfa ’wpad’ 33 Synology ’hostapd’ 145
D-Link ’prog-cgi’ 126 Synology ’git-imap-send’ 4
D-Link ’mdb’ 60 TP-Link ’wpa_supplicant’ 50
D-Link ’wpa_supplicant’ 23 TP-Link ’racoon’ 47

A.8. Cryptographic Misuses 145

D-Link ’snmptrap’ 7 TP-Link ’hostapd’ 28
D-Link ’snmpd’ 7 Tenda ’racoon’ 22
D-Link ’hostapd’ 7 Tenda ’hostapd’ 2
D-Link ’dam’ 4 Tenda ’wpa_supplicant’ 1
D-Link ’racoon’ 4 Tenvis ’onvif’ 1
D-Link ’xsupplicant’ 4 Totolink ’wpa_supplicant’ 4
D-Link ’prog.cgi’ 3 Trendnet ’wpa_supplicant’ 18
DrayTek ’hostapd’ 5 Trendnet ’hostapd’ 2
DrayTek ’wpa_supplicant’ 5 Ubiquiti ’wpad’ 264
EdiMax ’device_service’ 5 Ubiquiti ’hostapd’ 39
EdiMax ’racoon’ 3 Ubiquiti ’wpa_supplicant’ 37
EdiMax ’wpa_supplicant’ 2 Western-Digital ’wpa_supplicant’ 4
EdiMax ’hostapd’ 2 Western-Digital ’hostapd’ 3
Inmarsat ’hostapd’ 3 Xiaomi ’wpa_supplicant’ 13
LinkSys ’dhclient’ 71 Xiaomi ’245506E’ 1
LinkSys ’wpa_supplicant’ 11 Zyxel ’racoon’ 21
LinkSys ’hostapd’ 9 Zyxel ’radclient’ 15
LinkSys ’onvif1.0’ 4 Zyxel ’radeapclient’ 15
LinkSys ’onvif2’ 4 Zyxel ’radiusd’ 6
MicroTik ’ipsec’ 350 Zyxel ’hostapd’ 1
NETGEAR ’wpa_supplicant’ 69 Zyxel ’wpa_supplicant-macsec’ 1
NETGEAR ’hostapd’ 43 Zyxel ’wpa_supplicant’ 1
NETGEAR ’wpa_supplicant-macsec’ 1 - - -

Table A.58: Violated Binaries discovered for Message Authentication Codes (MACs) rules M1, M2 and M3, entry and not
discovered 𝜙 case.

B
Appendix - Supported Cryptographic

Primitives

B.1. Symmetric Key Cryptography
For Symmetric Key Cryptography, the analysis can discover the following block ciphers, stream ciphers,
and mode of operations.

Block ciphers list:

1. AES

2. DES

3. Two-key TDEA (triple
DES)

4. Three-key TDEA (triple
DES)

5. Blowfish

6. RC2

7. Camellia

8. CAST

9. CAST5

10. IDEA

11. TWOFISH

12. SERPENT

13. SAFER SK

Stream ciphers list:

1. RC4 2. RC5 3. CHACHA20

Modes of Operation:

1. ECB

2. CBC

3. OFB

4. CFB

5. CTR

6. XTS

7. CFB1

8. CFB8

9. CFB64

10. CFB128

11. OFB8

12. OFB64

13. OFB128

In addition, the analysis can identify:

• Key sizes. For instance, AES uses three key sizes 128, 192 or 256 bits.

• IV size when applicable.

• Direction: Encryption or decryption.

B.2. Public Key Cryptography
For Public Key Cryptography, the analysis can cover the following list of algorithms:

147

148 B. Appendix - Supported Cryptographic Primitives

1. RSA

2. X.509 standard

3. Digital Signatures with var-
ious combinations, e.g.

DSA, ECDSA

Additionally, the analysis can discover:

• RSA padding schemes

• RSA key sizes

• Underlying hash functions for X.509 and digital signatures.

• Direction: Encryption or decryption (for public key encryption)

B.3. Pseudo Random Number Generators (PRNGs)
For Pseudo Random Number Generators (PRNGs), the analysis can discover the following list of al-
gorithms:

1. dev/urandom, dev/ran-
dom, getpid(), time(), pro-
vided as seed to rand func-

tions.

2. OpenSSL rand functions.

3. Libc rand functions.

4. GnuPG, libgcrypt rand
functions.

B.4. Cryptographic One-way Hash functions
For Cryptographic One-way Hash functions, the analysis can identify the following list of algorithms:

1. MD2

2. MD4

3. MD5

4. MDC2

5. SHA

6. SHA1

7. SHA224

8. SHA256

9. SHA384

10. SHA512

11. RIPEMD160

12. SHA3-224

13. SHA3-256

14. SHA3-384

15. SHA3-512

16. BLAKE2B

17. BLAKE2S

18. SHAKE128

19. SHAKE256

20. BLAKE2B-512

21. BLAKE2B-384

22. BLAKE2B-256

23. BLAKE2B-160

24. BLAKE2S-256

25. BLAKE2S-224

26. BLAKE2S-160

27. BLAKE2S-128

B.5. Key Derivation Functions (KDFs) and Password Hashes
For Key Derivation Functions (KDFs) and Password Hashes, the following algorithms are covered:

1. HMAC KDF

2. BCRYPT

3. PBKDF1

4. PBKDF2

5. SCRYPT

6. crypt (Linux)

Furthermore, the analysis can discover:

• Underlying hash functions where applicable

• Iterations

B.6. Message Authentication Codes (MACs)
For Message Authentication Codes (MACs), the following list of MACs is discovered:

B.7. Authenticated Encryption with associated data 149

1. HMAC 2. BLAKE2 keyed hash

In addition, the analysis can identify:

• Underlying hash functions where applicable

• Key size

B.7. Authenticated Encryption with associated data
For Authenticated Encryption with associated data, the following algorithms are covered:

1. AES 2. CHACHA20 (stream)

The following Modes of Operations for authenticated encryption are discovered:

1. CCM (CBC-MAC)

2. GCM

3. POLY1305

4. OCB

Additionally, the analysis can discover:

• Key size

• IV size

• Additional Authenticated Data and Tag

Bibliography
[1] Angr. URL https://github.com/angr/angr.

[2] Binary analysis next generation (bang). URL https://github.com/armijnhemel/binar
yanalysis-ng.

[3] Crypto++. URL https://cryptopp.com/.

[4] firmwalker. URL https://github.com/craigz28/firmwalker.

[5] The GNU C library. URL https://www.gnu.org/software/libc/.

[6] GNU Privacy Guard, . URL https://gnupg.org/.

[7] GnuTLS, . URL https://gnutls.org/.

[8] hashcat, advanced password recovery. URL https://hashcat.net/hashcat/.

[9] Sodium, . URL https://libsodium.org.

[10] LibTomCrypt, . URL https://www.libtom.net/LibTomCrypt/.

[11] mbed TLS . URL https://tls.mbed.org/.

[12] libmcrypt - encryption/decryption library. URL https://linux.die.net/man/3/mcrypt.

[13] Nettle - a low-level cryptographic library. URL https://www.lysator.liu.se/~nisse/n
ettle/.

[14] OpenSSL, Cryptography and SSL/TLS Toolkit. URL https://www.openssl.org/.

[15] QEMU. URL https://www.qemu.org/.

[16] uClibc-ng - embedded c library. URL https://uclibc-ng.org/.

[17] wolfSSL embedded tls library. URL https://www.wolfssl.com/.

[18] PKCS #1: RSA Encryption Version 1.5. RFC 2313, March 1998.

[19] PKCS #1: RSA Cryptography Specifications Version 2.0. RFC 2437, October 1998.

[20] Prohibiting RC4 Cipher Suites. RFC 7465, February 2015.

[21] PKCS #1: RSA Cryptography Specifications Version 2.2. RFC 8017, November 2016.

[22] PKCS #5: Password-Based Cryptography Specification Version 2.1. RFC 8018, January 2017.

[23] Iso/iec/ieee international standard - systems and software engineering–vocabulary.
ISO/IEC/IEEE 24765:2017(E), pages 1–541, 2017.

[24] Iot: a malware story, 2019. URL https://securelist.com/iot-a-malware-story/944
51/.

[25] Breaking the d-link dir3060 firmware encryption, 2020. URL https://0x00sec.org/t/brea
king-the-d-link-dir3060-firmware-encryption-recon-part-1.

[26] Blazej Adamczyk. Multiple vulnerabilities in all versions of asus routers, 2017. URL https:
//seclists.org/fulldisclosure/2018/Jan/63.

151

https://github.com/angr/angr
https://github.com/armijnhemel/binaryanalysis-ng
https://github.com/armijnhemel/binaryanalysis-ng
https://cryptopp.com/
https://github.com/craigz28/firmwalker
https://www.gnu.org/software/libc/
https://gnupg.org/
https://gnutls.org/
https://hashcat.net/hashcat/
https://libsodium.org
https://www.libtom.net/LibTomCrypt/
https://tls.mbed.org/
https://linux.die.net/man/3/mcrypt
https://www.lysator.liu.se/~nisse/nettle/
https://www.lysator.liu.se/~nisse/nettle/
https://www.openssl.org/
https://www.qemu.org/
https://uclibc-ng.org/
https://www.wolfssl.com/
https://securelist.com/iot-a-malware-story/94451/
https://securelist.com/iot-a-malware-story/94451/
https://0x00sec.org/t/breaking-the-d-link-dir3060-firmware-encryption-recon-part-1
https://0x00sec.org/t/breaking-the-d-link-dir3060-firmware-encryption-recon-part-1
https://seclists.org/fulldisclosure/2018/Jan/63
https://seclists.org/fulldisclosure/2018/Jan/63

152 Bibliography

[27] Sharmin Afrose, Sazzadur Rahaman, and Danfeng Yao. Cryptoapi-bench: A comprehensive
benchmark on java cryptographic API misuses. In 2019 IEEE Cybersecurity Development,
SecDev 2019, Tysons Corner, VA, USA, September 23-25, 2019, pages 49–61. IEEE, 2019. doi:
10.1109/SecDev.2019.00017. URL https://doi.org/10.1109/SecDev.2019.00017.

[28] Manos Antonakakis, Tim April, Michael Bailey, Matt Bernhard, Elie Bursztein, Jaime Cochran,
Zakir Durumeric, J. Alex Halderman, Luca Invernizzi, Michalis Kallitsis, Deepak Kumar, Chaz
Lever, Zane Ma, Joshua Mason, Damian Menscher, Chad Seaman, Nick Sullivan, Kurt Thomas,
and Yi Zhou. Understanding themirai botnet. In Engin Kirda and Thomas Ristenpart, editors, 26th
USENIX Security Symposium, USENIX Security 2017, Vancouver, BC, Canada, August 16-18,
2017, pages 1093–1110. USENIX Association, 2017. URL https://www.usenix.org/con
ference/usenixsecurity17/technical-sessions/presentation/antonakakis.

[29] Xiaoyun Wangm Benne de Weger Arjen Lenstra. Colliding x.509 certificates based on md5-
collisions. URL https://www.win.tue.nl/~bdeweger/CollidingCertificates/.

[30] Gregory Basior. 6 new vulnerabilities found on d-link home routers, 2020. URL https://unit
42.paloaltonetworks.com/6-new-d-link-vulnerabilities-found-on-home-r
outers/.

[31] Daniel Bleichenbacher. Chosen ciphertext attacks against protocols based on the RSA encryp-
tion standard PKCS #1. In Hugo Krawczyk, editor, Advances in Cryptology - CRYPTO ’98,
18th Annual International Cryptology Conference, Santa Barbara, California, USA, August 23-27,
1998, Proceedings, volume 1462 of Lecture Notes in Computer Science, pages 1–12. Springer,
1998. doi: 10.1007/BFb0055716. URL https://doi.org/10.1007/BFb0055716.

[32] Alexei Bulazel. Working With Ghidra’s P-Code To Identify Vulnerable Function Calls, 2019. URL
https://www.riverloopsecurity.com/blog/2019/05/pcode/.

[33] Alexia Chatzikonstantinou, Christoforos Ntantogian, Georgios Karopoulos, and Christos Xe-
nakis. Evaluation of cryptography usage in android applications. EAI Endorsed Trans. Se-
curity Safety, 3(9):e4, 2016. doi: 10.4108/eai.3-12-2015.2262471. URL https:
//doi.org/10.4108/eai.3-12-2015.2262471.

[34] Daming D. Chen, Maverick Woo, David Brumley, and Manuel Egele. Towards automated dy-
namic analysis for linux-based embedded firmware. In 23rd Annual Network and Distributed
System Security Symposium, NDSS 2016, San Diego, California, USA, February 21-24, 2016.
The Internet Society, 2016. URL http://wp.internetsociety.org/ndss/wp-content
/uploads/sites/25/2017/09/towards-automated-dynamic-analysis-linux-b
ased-embedded-firmware.pdf.

[35] Jiongyi Chen, Wenrui Diao, Qingchuan Zhao, Chaoshun Zuo, Zhiqiang Lin, XiaoFeng Wang,
Wing Cheong Lau, Menghan Sun, Ronghai Yang, and Kehuan Zhang. Iotfuzzer: Discovering
memory corruptions in iot through app-based fuzzing. In 25th Annual Network and Distributed
System Security Symposium, NDSS 2018, San Diego, California, USA, February 18-21, 2018.
The Internet Society, 2018. URL http://wp.internetsociety.org/ndss/wp-content
/uploads/sites/25/2018/02/ndss2018_01A-1_Chen_paper.pdf.

[36] Andrei Costin, Jonas Zaddach, Aurélien Francillon, and Davide Balzarotti. A large-scale analysis
of the security of embedded firmwares. In Kevin Fu and Jaeyeon Jung, editors, Proceedings of
the 23rd USENIX Security Symposium, San Diego, CA, USA, August 20-22, 2014, pages 95–
110. USENIX Association, 2014. URL https://www.usenix.org/conference/usenixse
curity14/technical-sessions/presentation/costin.

[37] Andrei Costin, Apostolis Zarras, and Aurélien Francillon. Automated dynamic firmware analy-
sis at scale: A case study on embedded web interfaces. In Xiaofeng Chen, XiaoFeng Wang,
and Xinyi Huang, editors, Proceedings of the 11th ACM on Asia Conference on Computer and
Communications Security, AsiaCCS 2016, Xi’an, China, May 30 - June 3, 2016, pages 437–448.
ACM, 2016. doi: 10.1145/2897845.2897900. URL https://doi.org/10.1145/2897
845.2897900.

https://doi.org/10.1109/SecDev.2019.00017
https://www.usenix.org/conference/usenixsecurity17/technical-sessions/presentation/antonakakis
https://www.usenix.org/conference/usenixsecurity17/technical-sessions/presentation/antonakakis
https://www.win.tue.nl/~bdeweger/CollidingCertificates/
https://unit42.paloaltonetworks.com/6-new-d-link-vulnerabilities-found-on-home-routers/
https://unit42.paloaltonetworks.com/6-new-d-link-vulnerabilities-found-on-home-routers/
https://unit42.paloaltonetworks.com/6-new-d-link-vulnerabilities-found-on-home-routers/
https://doi.org/10.1007/BFb0055716
https://www.riverloopsecurity.com/blog/2019/05/pcode/
https://doi.org/10.4108/eai.3-12-2015.2262471
https://doi.org/10.4108/eai.3-12-2015.2262471
http://wp.internetsociety.org/ndss/wp-content/uploads/sites/25/2017/09/towards-automated-dynamic-analysis-linux-based-embedded-firmware.pdf
http://wp.internetsociety.org/ndss/wp-content/uploads/sites/25/2017/09/towards-automated-dynamic-analysis-linux-based-embedded-firmware.pdf
http://wp.internetsociety.org/ndss/wp-content/uploads/sites/25/2017/09/towards-automated-dynamic-analysis-linux-based-embedded-firmware.pdf
http://wp.internetsociety.org/ndss/wp-content/uploads/sites/25/2018/02/ndss2018_01A-1_Chen_paper.pdf
http://wp.internetsociety.org/ndss/wp-content/uploads/sites/25/2018/02/ndss2018_01A-1_Chen_paper.pdf
https://www.usenix.org/conference/usenixsecurity14/technical-sessions/presentation/costin
https://www.usenix.org/conference/usenixsecurity14/technical-sessions/presentation/costin
https://doi.org/10.1145/2897845.2897900
https://doi.org/10.1145/2897845.2897900

Bibliography 153

[38] Yaniv David, Nimrod Partush, and Eran Yahav. Firmup: Precise static detection of common vul-
nerabilities in firmware. In Xipeng Shen, James Tuck, Ricardo Bianchini, and Vivek Sarkar,
editors, Proceedings of the Twenty-Third International Conference on Architectural Support
for Programming Languages and Operating Systems, ASPLOS 2018, Williamsburg, VA, USA,
March 24-28, 2018, pages 392–404. ACM, 2018. doi: 10.1145/3173162.3177157. URL
https://doi.org/10.1145/3173162.3177157.

[39] Chris Eagle and Kara Nance. The Ghidra Book: The Definitive Guide. No Starch Press, 2020.

[40] Manuel Egele, David Brumley, Yanick Fratantonio, and Christopher Kruegel. An empirical study
of cryptographic misuse in android applications. In Ahmad-Reza Sadeghi, Virgil D. Gligor, and
Moti Yung, editors, 2013 ACM SIGSAC Conference on Computer and Communications Security,
CCS’13, Berlin, Germany, November 4-8, 2013, pages 73–84. ACM, 2013. doi: 10.1145/25
08859.2516693. URL https://doi.org/10.1145/2508859.2516693.

[41] Manuel Egele, David Brumley, Yanick Fratantonio, and Christopher Kruegel. An empirical study
of cryptographic misuse in android applications. In Ahmad-Reza Sadeghi, Virgil D. Gligor, and
Moti Yung, editors, 2013 ACM SIGSAC Conference on Computer and Communications Security,
CCS’13, Berlin, Germany, November 4-8, 2013, pages 73–84. ACM, 2013. doi: 10.1145/25
08859.2516693. URL https://doi.org/10.1145/2508859.2516693.

[42] Sebastian Eschweiler, Khaled Yakdan, and Elmar Gerhards-Padilla. discovre: Efficient cross-
architecture identification of bugs in binary code. In 23rd Annual Network and Distributed System
Security Symposium, NDSS 2016, San Diego, California, USA, February 21-24, 2016. The In-
ternet Society, 2016. URL http://wp.internetsociety.org/ndss/wp-content/upl
oads/sites/25/2017/09/discovre-efficient-cross-architecture-identific
ation-bugs-binary-code.pdf.

[43] Johannes Feichtner, David Missmann, and Raphael Spreitzer. Automated binary analysis on ios:
A case study on cryptographic misuse in ios applications. In Panos Papadimitratos, Kevin R. B.
Butler, and Christina Pöpper, editors, Proceedings of the 11th ACM Conference on Security &
Privacy in Wireless and Mobile Networks, WiSec 2018, Stockholm, Sweden, June 18-20, 2018,
pages 236–247. ACM, 2018. doi: 10.1145/3212480.3212487. URL https://doi.org/
10.1145/3212480.3212487.

[44] Qian Feng, Rundong Zhou, Chengcheng Xu, Yao Cheng, Brian Testa, and Heng Yin. Scal-
able graph-based bug search for firmware images. In Edgar R. Weippl, Stefan Katzenbeisser,
Christopher Kruegel, Andrew C. Myers, and Shai Halevi, editors, Proceedings of the 2016
ACM SIGSAC Conference on Computer and Communications Security, Vienna, Austria, Oc-
tober 24-28, 2016, pages 480–491. ACM, 2016. doi: 10.1145/2976749.2978370. URL
https://doi.org/10.1145/2976749.2978370.

[45] Fraunhofer FKIE. Firmware analysis and comparison tool (fact), . URL https://github.com
/fkie-cad/FACT_core.

[46] Fraunhofer FKIE. Firmware analysis and comparison tool (fact) extractor, . URL https://gi
thub.com/fkie-cad/fact_extractor.

[47] Scott R. Fluhrer, Itsik Mantin, and Adi Shamir. Weaknesses in the key scheduling algorithm
of RC4. In Serge Vaudenay and Amr M. Youssef, editors, Selected Areas in Cryptography,
8th Annual International Workshop, SAC 2001 Toronto, Ontario, Canada, August 16-17, 2001,
Revised Papers, volume 2259 of Lecture Notes in Computer Science, pages 1–24. Springer,
2001. doi: 10.1007/3-540-45537-X_1. URL https://doi.org/10.1007/3-540-455
37-X_1.

[48] Free Standards Group. Interfaces for libcrypt. URL https://refspecs.linuxbase.org/L
SB_3.0.0/LSB-PDA/LSB-PDA/libcrypt.html.

[49] Hex-Rays. The IDA Pro Disassembler and Debugger. URL https://www.hex-rays.com/
products/ida/.

https://doi.org/10.1145/3173162.3177157
https://doi.org/10.1145/2508859.2516693
https://doi.org/10.1145/2508859.2516693
http://wp.internetsociety.org/ndss/wp-content/uploads/sites/25/2017/09/discovre-efficient-cross-architecture-identification-bugs-binary-code.pdf
http://wp.internetsociety.org/ndss/wp-content/uploads/sites/25/2017/09/discovre-efficient-cross-architecture-identification-bugs-binary-code.pdf
http://wp.internetsociety.org/ndss/wp-content/uploads/sites/25/2017/09/discovre-efficient-cross-architecture-identification-bugs-binary-code.pdf
https://doi.org/10.1145/3212480.3212487
https://doi.org/10.1145/3212480.3212487
https://doi.org/10.1145/2976749.2978370
https://github.com/fkie-cad/FACT_core
https://github.com/fkie-cad/FACT_core
https://github.com/fkie-cad/fact_extractor
https://github.com/fkie-cad/fact_extractor
https://doi.org/10.1007/3-540-45537-X_1
https://doi.org/10.1007/3-540-45537-X_1
https://refspecs.linuxbase.org/LSB_3.0.0/LSB-PDA/LSB-PDA/libcrypt.html
https://refspecs.linuxbase.org/LSB_3.0.0/LSB-PDA/LSB-PDA/libcrypt.html
https://www.hex-rays.com/products/ida/
https://www.hex-rays.com/products/ida/

154 Bibliography

[50] Heike Hofmann, Karen Kafadar, and Hadley Wickham. Letter-value plots: Boxplots for large
data. Technical report, had.co.nz, 2011.

[51] Intel. Cve binary tool. URL https://github.com/intel/cve-bin-tool.

[52] Antoine Joux. Authentication Failures in NIST version of GCM. National Institute of Standards
and Technology (NIST). URL https://csrc.nist.gov/csrc/media/projects/bloc
k-cipher-techniques/documents/bcm/comments/800-38-series-drafts/gcm/
joux_comments.pdf.

[53] Jesse D. Kornblum. Identifying almost identical files using context triggered piecewise hashing.
Digit. Investig., 3(Supplement-1):91–97, 2006. doi: 10.1016/j.diin.2006.06.015. URL
https://doi.org/10.1016/j.diin.2006.06.015.

[54] ReFirm Labs. Binwalk. URL https://github.com/ReFirmLabs/binwalk.

[55] David Lazar, Haogang Chen, Xi Wang, and Nickolai Zeldovich. Why does cryptographic software
fail?: a case study and open problems. In Asia-Pacific Workshop on Systems, APSys’14, Beijing,
China, June 25-26, 2014, pages 7:1–7:7. ACM, 2014. doi: 10.1145/2637166.2637237. URL
https://doi.org/10.1145/2637166.2637237.

[56] David Lazar, Haogang Chen, Xi Wang, and Nickolai Zeldovich. Why does cryptographic software
fail?: a case study and open problems. In Asia-Pacific Workshop on Systems, APSys’14, Beijing,
China, June 25-26, 2014, pages 7:1–7:7. ACM, 2014. doi: 10.1145/2637166.2637237. URL
https://doi.org/10.1145/2637166.2637237.

[57] Arjen K. Lenstra and Benne de Weger. On the possibility of constructing meaningful hash colli-
sions for public keys. In Colin Boyd and Juan Manuel González Nieto, editors, Information Secu-
rity and Privacy, 10th Australasian Conference, ACISP 2005, Brisbane, Australia, July 4-6, 2005,
Proceedings, volume 3574 of Lecture Notes in Computer Science, pages 267–279. Springer,
2005. doi: 10.1007/11506157_23. URL https://doi.org/10.1007/11506157_23.

[58] Gaëtan Leurent and Thomas Peyrin. From collisions to chosen-prefix collisions application to
full SHA-1. In Yuval Ishai and Vincent Rijmen, editors, Advances in Cryptology - EUROCRYPT
2019 - 38th Annual International Conference on the Theory and Applications of Cryptographic
Techniques, Darmstadt, Germany, May 19-23, 2019, Proceedings, Part III, volume 11478 of
Lecture Notes in Computer Science, pages 527–555. Springer, 2019. doi: 10.1007/978-3-0
30-17659-4_18. URL https://doi.org/10.1007/978-3-030-17659-4_18.

[59] Gaëtan Leurent and Thomas Peyrin. SHA-1 is a shambles: First chosen-prefix collision on SHA-
1 and application to the PGP web of trust. In Srdjan Capkun and Franziska Roesner, editors, 29th
USENIX Security Symposium, USENIX Security 2020, August 12-14, 2020, pages 1839–1856.
USENIX Association, 2020. URL https://www.usenix.org/conference/usenixsecu
rity20/presentation/leurent.

[60] Hikohiro Y Li and Yuki Osawa. Understanding the iot threat landscape and a home appliance
manufacturer’s approach to counter threats to iot, 2019. URL https://securelist.com/n
ew-trends-in-the-world-of-iot-threats/87991/.

[61] Yong Li, Yuanyuan Zhang, Juanru Li, and Dawu Gu. icryptotracer: Dynamic analysis on misuse
of cryptography functions in ios applications. In Man Ho Au, Barbara Carminati, and C.-C. Jay
Kuo, editors, Network and System Security - 8th International Conference, NSS 2014, Xi’an,
China, October 15-17, 2014, Proceedings, volume 8792 of Lecture Notes in Computer Science,
pages 349–362. Springer, 2014. doi: 10.1007/978-3-319-11698-3_27. URL https:
//doi.org/10.1007/978-3-319-11698-3_27.

[62] Chi-Keung Luk, Robert S. Cohn, Robert Muth, Harish Patil, Artur Klauser, P. Geoffrey Lowney,
Steven Wallace, Vijay Janapa Reddi, and Kim M. Hazelwood. Pin: building customized pro-
gram analysis tools with dynamic instrumentation. In Vivek Sarkar and Mary W. Hall, edi-
tors, Proceedings of the ACM SIGPLAN 2005 Conference on Programming Language Design
and Implementation, Chicago, IL, USA, June 12-15, 2005, pages 190–200. ACM, 2005. doi:
10.1145/1065010.1065034. URL https://doi.org/10.1145/1065010.1065034.

https://github.com/intel/cve-bin-tool
https://csrc.nist.gov/csrc/media/projects/block-cipher-techniques/documents/bcm/comments/800-38-series-drafts/gcm/joux_comments.pdf
https://csrc.nist.gov/csrc/media/projects/block-cipher-techniques/documents/bcm/comments/800-38-series-drafts/gcm/joux_comments.pdf
https://csrc.nist.gov/csrc/media/projects/block-cipher-techniques/documents/bcm/comments/800-38-series-drafts/gcm/joux_comments.pdf
https://doi.org/10.1016/j.diin.2006.06.015
https://github.com/ReFirmLabs/binwalk
https://doi.org/10.1145/2637166.2637237
https://doi.org/10.1145/2637166.2637237
https://doi.org/10.1007/11506157_23
https://doi.org/10.1007/978-3-030-17659-4_18
https://www.usenix.org/conference/usenixsecurity20/presentation/leurent
https://www.usenix.org/conference/usenixsecurity20/presentation/leurent
https://securelist.com/new-trends-in-the-world-of-iot-threats/87991/
https://securelist.com/new-trends-in-the-world-of-iot-threats/87991/
https://doi.org/10.1007/978-3-319-11698-3_27
https://doi.org/10.1007/978-3-319-11698-3_27
https://doi.org/10.1145/1065010.1065034

Bibliography 155

[63] Dave McDaniel. Talos-2021-1283 || cisco talos intelligence group - comprehensive threat intelli-
gence, 2021. URL https://talosintelligence.com/vulnerability_reports/TALO
S-2021-1283.

[64] Bodo Moeller. Security of cbc ciphersuites in ssl/tls: Problems and countermeasures. URL
https://www.openssl.org/~bodo/tls-cbc.txt.

[65] Chao Mu, Ming Yang, Zhenya Chen, and Biao Wang. Research on RSA padding identification
method in IoT firmwares. Journal of Physics: Conference Series, 1570:012061, jun 2020. doi:
10.1088/1742-6596/1570/1/012061. URL https://doi.org/10.1088%2F1742-659
6%2F1570%2F1%2F012061.

[66] Marius Muench, Jan Stijohann, Frank Kargl, Aurélien Francillon, and Davide Balzarotti. What you
corrupt is not what you crash: Challenges in fuzzing embedded devices. In 25th Annual Network
and Distributed System Security Symposium, NDSS 2018, San Diego, California, USA, February
18-21, 2018. The Internet Society, 2018. URL http://wp.internetsociety.org/ndss/
wp-content/uploads/sites/25/2018/02/ndss2018_01A-4_Muench_paper.pdf.

[67] Ildar Muslukhov, Yazan Boshmaf, and Konstantin Beznosov. Source attribution of crypto-
graphic API misuse in android applications. In Jong Kim, Gail-Joon Ahn, Seungjoo Kim, Yong-
dae Kim, Javier López, and Taesoo Kim, editors, Proceedings of the 2018 on Asia Confer-
ence on Computer and Communications Security, AsiaCCS 2018, Incheon, Republic of Korea,
June 04-08, 2018, pages 133–146. ACM, 2018. doi: 10.1145/3196494.3196538. URL
https://doi.org/10.1145/3196494.3196538.

[68] Asuka Nakajima. Hunting vulnerable oem iot devices at scale, 2019. URL https://i.blackh
at.com/eu-19/Thursday/eu-19-Nakajima-OEM-Finder-Hunting-Vulnerable-O
EM-IoT-Devices-At-Scale-2.pdf.

[69] Nicholas Nethercote and Julian Seward. Valgrind: a framework for heavyweight dynamic binary
instrumentation. In Jeanne Ferrante and Kathryn S. McKinley, editors, Proceedings of the ACM
SIGPLAN 2007 Conference on Programming Language Design and Implementation, San Diego,
California, USA, June 10-13, 2007, pages 89–100. ACM, 2007. doi: 10.1145/1250734.1250
746. URL https://doi.org/10.1145/1250734.1250746.

[70] National Security Agency (NSA). Ghidra software reverse engineering framework. URL https:
//ghidra-sre.org/.

[71] National Institute of Standards and Technology (NIST). Transitions: Recommendation fro tran-
sitioning the use of cryptographic algortithms and key lengths, . URL https://nvlpubs.ni
st.gov/nistpubs/SpecialPublications/NIST.SP.800-131Ar2.pdf.

[72] National Institute of Standards and Technology (NIST). Recommendation for password-based
key derivation, . URL https://nvlpubs.nist.gov/nistpubs/Legacy/SP/nistspecia
lpublication800-132.pdf.

[73] National Institute of Standards and Technology (NIST). Common platform enumeration (cpe)
dictionary, . URL https://nvd.nist.gov/products/cpe.

[74] National Institute of Standards and Technology (NIST). National vulnerability database (nvd), .
URL https://nvd.nist.gov/vuln/data-feeds.

[75] National Institute of Standards and Technology (NIST). Federal information processing standards
(FIPS) 197, Advanced Encryption Standard (AES). 2001.

[76] National Institute of Standards and Technology (NIST). 800-38a, recommendation for block ci-
pher modes of operation: Methods and techniques, 2001. URL https://doi.org/10.602
8/NIST.SP.800-38A.

[77] National Institute of Standards and Technology (NIST). Federal information processing standards
(FIPS) 180-4, Secure Hash Standard. 2015.

https://talosintelligence.com/vulnerability_reports/TALOS-2021-1283
https://talosintelligence.com/vulnerability_reports/TALOS-2021-1283
https://www.openssl.org/~bodo/tls-cbc.txt
https://doi.org/10.1088%2F1742-6596%2F1570%2F1%2F012061
https://doi.org/10.1088%2F1742-6596%2F1570%2F1%2F012061
http://wp.internetsociety.org/ndss/wp-content/uploads/sites/25/2018/02/ndss2018_01A-4_Muench_paper.pdf
http://wp.internetsociety.org/ndss/wp-content/uploads/sites/25/2018/02/ndss2018_01A-4_Muench_paper.pdf
https://doi.org/10.1145/3196494.3196538
https://i.blackhat.com/eu-19/Thursday/eu-19-Nakajima-OEM-Finder-Hunting-Vulnerable-OEM-IoT-Devices-At-Scale-2.pdf
https://i.blackhat.com/eu-19/Thursday/eu-19-Nakajima-OEM-Finder-Hunting-Vulnerable-OEM-IoT-Devices-At-Scale-2.pdf
https://i.blackhat.com/eu-19/Thursday/eu-19-Nakajima-OEM-Finder-Hunting-Vulnerable-OEM-IoT-Devices-At-Scale-2.pdf
https://doi.org/10.1145/1250734.1250746
https://ghidra-sre.org/
https://ghidra-sre.org/
https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-131Ar2.pdf
https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-131Ar2.pdf
https://nvlpubs.nist.gov/nistpubs/Legacy/SP/nistspecialpublication800-132.pdf
https://nvlpubs.nist.gov/nistpubs/Legacy/SP/nistspecialpublication800-132.pdf
https://nvd.nist.gov/products/cpe
https://nvd.nist.gov/vuln/data-feeds
https://doi.org/10.6028/NIST.SP.800-38A
https://doi.org/10.6028/NIST.SP.800-38A

156 Bibliography

[78] OpenWeb Application Security Project (OWASP). Embedded application security best practices,
. URL https://scriptingxss.gitbook.io/embedded-appsec-best-practices/.

[79] Open Web Application Security Project (OWASP). C-based toolchain hardening, . URL https:
//wiki.owasp.org/index.php/C-Based_Toolchain_Hardening.

[80] Open Web Application Security Project (OWASP). Testing for weak encryption, . URL https:
//owasp.org/www-project-web-security-testing-guide/latest/4-Web_Appli
cation_Security_Testing/09-Testing_for_Weak_Cryptography/04-Testing_f
or_Weak_Encryption.

[81] Open Web Application Security Project (OWASP). Internet of things top 10, 2018. URL https:
//owasp.org/www-pdf-archive/OWASP-IoT-Top-10-2018-final.pdf.

[82] Jannik Pewny, Behrad Garmany, Robert Gawlik, Christian Rossow, and Thorsten Holz. Cross-
architecture bug search in binary executables. In 2015 IEEE Symposium on Security and Privacy,
SP 2015, San Jose, CA, USA, May 17-21, 2015, pages 709–724. IEEE Computer Society, 2015.
doi: 10.1109/SP.2015.49. URL https://doi.org/10.1109/SP.2015.49.

[83] Sazzadur Rahaman, Ya Xiao, Sharmin Afrose, Fahad Shaon, Ke Tian, Miles Frantz, Murat
Kantarcioglu, and Danfeng (Daphne) Yao. Cryptoguard: High precision detection of crypto-
graphic vulnerabilities in massive-sized java projects. In Lorenzo Cavallaro, Johannes Kinder,
XiaoFeng Wang, and Jonathan Katz, editors, Proceedings of the 2019 ACM SIGSAC Con-
ference on Computer and Communications Security, CCS 2019, London, UK, November 11-
15, 2019, pages 2455–2472. ACM, 2019. doi: 10.1145/3319535.3345659. URL
https://doi.org/10.1145/3319535.3345659.

[84] Nilo Redini, Aravind Machiry, Ruoyu Wang, Chad Spensky, Andrea Continella, Yan Shoshi-
taishvili, Christopher Kruegel, and Giovanni Vigna. Karonte: Detecting insecure multi-binary
interactions in embedded firmware. In 2020 IEEE Symposium on Security and Privacy, SP 2020,
San Francisco, CA, USA, May 18-21, 2020, pages 1544–1561. IEEE, 2020. doi: 10.1109/SP
40000.2020.00036. URL https://doi.org/10.1109/SP40000.2020.00036.

[85] Pedro Ribeiro and Radek Domanski. Exploiting the tp-link archer a7 at pwn2own tokyo, 2020.
URL https://www.zerodayinitiative.com/blog/2020/4/6/exploiting-the-t
p-link-archer-c7-at-pwn2own-tokyo.

[86] Scrapinghub. Scrapy. URL https://scrapy.org/.

[87] Shuai Shao, Guowei Dong, Tao Guo, Tianchang Yang, and Chenjie Shi. Modelling analysis
and auto-detection of cryptographic misuse in android applications. In IEEE 12th International
Conference on Dependable, Autonomic and Secure Computing, DASC 2014, Dalian, China,
August 24-27, 2014, pages 75–80. IEEE Computer Society, 2014. doi: 10.1109/DASC.2014.
22. URL https://doi.org/10.1109/DASC.2014.22.

[88] Tohid Shekari and Raheem Beyah. Iot skimmer: Energy market manipulation through high-
wattage iot botnets, 2020. URL https://i.blackhat.com/USA-20/Wednesday/us-2
0-Shekari-IoT-Skimmer-Energy-Market-Manipulation-Through-High-Wattage
-IoT-Botnets.pdf.

[89] Yan Shoshitaishvili, Ruoyu Wang, Christophe Hauser, Christopher Kruegel, and Giovanni Vigna.
Firmalice - automatic detection of authentication bypass vulnerabilities in binary firmware. In
22nd Annual Network and Distributed System Security Symposium, NDSS 2015, San Diego,
California, USA, February 8-11, 2015. The Internet Society, 2015. URL https://www.ndss-s
ymposium.org/ndss2015/firmalice-automatic-detection-authentication-b
ypass-vulnerabilities-binary-firmware.

[90] Prashast Srivastava, Hui Peng, Jiahao Li, Hamed Okhravi, Howard E. Shrobe, and Mathias
Payer. Firmfuzz: Automated iot firmware introspection and analysis. In Peng Liu and Yuqing
Zhang, editors, Proceedings of the 2nd International ACMWorkshop on Security and Privacy for

https://scriptingxss.gitbook.io/embedded-appsec-best-practices/
https://wiki.owasp.org/index.php/C-Based_Toolchain_Hardening
https://wiki.owasp.org/index.php/C-Based_Toolchain_Hardening
https://owasp.org/www-project-web-security-testing-guide/latest/4-Web_Application_Security_Testing/09-Testing_for_Weak_Cryptography/04-Testing_for_Weak_Encryption
https://owasp.org/www-project-web-security-testing-guide/latest/4-Web_Application_Security_Testing/09-Testing_for_Weak_Cryptography/04-Testing_for_Weak_Encryption
https://owasp.org/www-project-web-security-testing-guide/latest/4-Web_Application_Security_Testing/09-Testing_for_Weak_Cryptography/04-Testing_for_Weak_Encryption
https://owasp.org/www-project-web-security-testing-guide/latest/4-Web_Application_Security_Testing/09-Testing_for_Weak_Cryptography/04-Testing_for_Weak_Encryption
https://owasp.org/www-pdf-archive/OWASP-IoT-Top-10-2018-final.pdf
https://owasp.org/www-pdf-archive/OWASP-IoT-Top-10-2018-final.pdf
https://doi.org/10.1109/SP.2015.49
https://doi.org/10.1145/3319535.3345659
https://doi.org/10.1109/SP40000.2020.00036
https://www.zerodayinitiative.com/blog/2020/4/6/exploiting-the-tp-link-archer-c7-at-pwn2own-tokyo
https://www.zerodayinitiative.com/blog/2020/4/6/exploiting-the-tp-link-archer-c7-at-pwn2own-tokyo
https://scrapy.org/
https://doi.org/10.1109/DASC.2014.22
https://i.blackhat.com/USA-20/Wednesday/us-20-Shekari-IoT-Skimmer-Energy-Market-Manipulation-Through-High-Wattage-IoT-Botnets.pdf
https://i.blackhat.com/USA-20/Wednesday/us-20-Shekari-IoT-Skimmer-Energy-Market-Manipulation-Through-High-Wattage-IoT-Botnets.pdf
https://i.blackhat.com/USA-20/Wednesday/us-20-Shekari-IoT-Skimmer-Energy-Market-Manipulation-Through-High-Wattage-IoT-Botnets.pdf
https://www.ndss-symposium.org/ndss2015/firmalice-automatic-detection-authentication-bypass-vulnerabilities-binary-firmware
https://www.ndss-symposium.org/ndss2015/firmalice-automatic-detection-authentication-bypass-vulnerabilities-binary-firmware
https://www.ndss-symposium.org/ndss2015/firmalice-automatic-detection-authentication-bypass-vulnerabilities-binary-firmware

Bibliography 157

the Internet-of-Things, IoT S&P@CCS 2019, London, UK, November 15, 2019, pages 15–21.
ACM, 2019. doi: 10.1145/3338507.3358616. URL https://doi.org/10.1145/3338
507.3358616.

[91] Marc Stevens, Arjen Lenstra, and Benne de Weger. Chosen-prefix collisions for md5 and col-
liding x.509 certificates for different identities. In Moni Naor, editor, Advances in Cryptology -
EUROCRYPT 2007, pages 1–22, Berlin, Heidelberg, 2007. Springer Berlin Heidelberg. ISBN
978-3-540-72540-4.

[92] Marc Stevens, Elie Bursztein, Pierre Karpman, Ange Albertini, and Yarik Markov. The first col-
lision for full SHA-1. In Jonathan Katz and Hovav Shacham, editors, Advances in Cryptology -
CRYPTO 2017 - 37th Annual International Cryptology Conference, Santa Barbara, CA, USA,
August 20-24, 2017, Proceedings, Part I, volume 10401 of Lecture Notes in Computer Sci-
ence, pages 570–596. Springer, 2017. doi: 10.1007/978-3-319-63688-7_19. URL
https://doi.org/10.1007/978-3-319-63688-7_19.

[93] MIT Kerberos Team. Kerberos 5. URL https://web.mit.edu/kerberos/krb5-latest/.

[94] VirusTotal. YARA. URL https://github.com/virustotal/yara.

[95] QingWang, Juanru Li, Yuanyuan Zhang, HuiWang, Yikun Hu, Bodong Li, and DawuGu. Natives-
peaker: Identifying crypto misuses in android native code libraries. In Xiaofeng Chen, Dongdai
Lin, and Moti Yung, editors, Information Security and Cryptology - 13th International Conference,
Inscrypt 2017, Xi’an, China, November 3-5, 2017, Revised Selected Papers, volume 10726 of
Lecture Notes in Computer Science, pages 301–320. Springer, 2017. doi: 10.1007/978-3-3
19-75160-3_19. URL https://doi.org/10.1007/978-3-319-75160-3_19.

[96] Xiaoyun Wang and Hongbo Yu. How to break md5 and other hash functions. In Ronald Cramer,
editor, Advances in Cryptology – EUROCRYPT 2005, pages 19–35, Berlin, Heidelberg, 2005.
Springer Berlin Heidelberg. ISBN 978-3-540-32055-5.

[97] Peter Weidenbach and Johannes vom Dorp. Home Router Security Report 2020. Technical
report, Fraunhofer FKIE, June 2020. URL https://www.fkie.fraunhofer.de/content
/dam/fkie/de/documents/HomeRouter/HomeRouterSecurity_2020_Bericht.pdf.

[98] Xiaojun Xu, Chang Liu, Qian Feng, Heng Yin, Le Song, and Dawn Song. Neural network-based
graph embedding for cross-platform binary code similarity detection. In Bhavani M. Thuraising-
ham, David Evans, Tal Malkin, and Dongyan Xu, editors, Proceedings of the 2017 ACM SIGSAC
Conference on Computer and Communications Security, CCS 2017, Dallas, TX, USA, October
30 - November 03, 2017, pages 363–376. ACM, 2017. doi: 10.1145/3133956.3134018.
URL https://doi.org/10.1145/3133956.3134018.

[99] Kazu Yamamoto. pgpdump: a PGP packet visualizer. URL https://github.com/kazu-y
amamoto/pgpdump.

[100] Jonas Zaddach, Luca Bruno, Aurélien Francillon, and Davide Balzarotti. AVATAR: A framework
to support dynamic security analysis of embedded systems’ firmwares. In 21st Annual Network
and Distributed System Security Symposium, NDSS 2014, San Diego, California, USA, February
23-26, 2014. The Internet Society, 2014. URL https://www.ndss-symposium.org/ndss2
014/avatar-framework-support-dynamic-security-analysis-embedded-syste
ms-firmwares.

[101] Zero Day Initiative (ZDI). Zdi-20-709, zdi-can-9768, (0day) netgear r6700 httpd strtblupgrade
integer overflow remote code execution vulnerability, 2020. URL https://www.zerodayini
tiative.com/advisories/ZDI-20-709/.

[102] Li Zhang, Jiongyi Chen, Wenrui Diao, Shanqing Guo, Jian Weng, and Kehuan Zhang. Cryptorex:
Large-scale analysis of cryptographic misuse in iot devices. In 22nd International Symposium
on Research in Attacks, Intrusions and Defenses, RAID 2019, Chaoyang District, Beijing, China,
September 23-25, 2019, pages 151–164. USENIX Association, 2019. URL https://www.us
enix.org/conference/raid2019/presentation/zhang-li.

https://doi.org/10.1145/3338507.3358616
https://doi.org/10.1145/3338507.3358616
https://doi.org/10.1007/978-3-319-63688-7_19
https://web.mit.edu/kerberos/krb5-latest/
https://github.com/virustotal/yara
https://doi.org/10.1007/978-3-319-75160-3_19
https://www.fkie.fraunhofer.de/content/dam/fkie/de/documents/HomeRouter/HomeRouterSecurity_2020_Bericht.pdf
https://www.fkie.fraunhofer.de/content/dam/fkie/de/documents/HomeRouter/HomeRouterSecurity_2020_Bericht.pdf
https://doi.org/10.1145/3133956.3134018
https://github.com/kazu-yamamoto/pgpdump
https://github.com/kazu-yamamoto/pgpdump
https://www.ndss-symposium.org/ndss2014/avatar-framework-support-dynamic-security-analysis-embedded-systems-firmwares
https://www.ndss-symposium.org/ndss2014/avatar-framework-support-dynamic-security-analysis-embedded-systems-firmwares
https://www.ndss-symposium.org/ndss2014/avatar-framework-support-dynamic-security-analysis-embedded-systems-firmwares
https://www.zerodayinitiative.com/advisories/ZDI-20-709/
https://www.zerodayinitiative.com/advisories/ZDI-20-709/
https://www.usenix.org/conference/raid2019/presentation/zhang-li
https://www.usenix.org/conference/raid2019/presentation/zhang-li

158 Bibliography

[103] Lipeng Zhu, Xiaotong Fu, Yao Yao, Yuqing Zhang, and He Wang. Fiot: Detecting the memory
corruption in lightweight iot device firmware. In 18th IEEE International Conference On Trust, Se-
curity And Privacy In Computing And Communications / 13th IEEE International Conference On
Big Data Science And Engineering, TrustCom/BigDataSE 2019, Rotorua, New Zealand, August
5-8, 2019, pages 248–255. IEEE, 2019. doi: 10.1109/TrustCom/BigDataSE.2019.00041.
URL https://doi.org/10.1109/TrustCom/BigDataSE.2019.00041.

https://doi.org/10.1109/TrustCom/BigDataSE.2019.00041

	Introduction
	Problem Statement
	Proposed solution and contributions
	Outline

	Background
	Firmware images and binaries
	Security Analysis on IoT/embedded devices
	Binary Analysis Techniques
	Ghidra SRE

	Cryptographic Misuse Rules
	Symmetric Key Cryptography
	Cryptographic hash functions
	Public Key Cryptography
	Pseudo Random Number Generators (PRNGs)
	Key Derivation Functions (KDFs) and Password Based Encryption (PBE)
	Message Authentication Codes (MACs)
	Authenticated encryption/decryption and AEAD

	Related Work
	Security Analysis of Firmware
	Misuse of Cryptographic Functions

	System Architecture and Implementation
	Firmware Crawler module M1
	Unpack Firmware module M2
	Filtering module M3
	Binary hardening module M4 - Exploit Mitigation Indications
	Fuzzy hashing module M5
	Cryptographic libraries module M6
	Common Vulnerabilities and Exposures (CVEs) and Libraries module M7
	Credentials module M8
	Binary Order module M9
	IR module M10.1 and Ghidra Analysis module M10.2
	Rules module M11
	Static Taint Analysis module M10.3
	Post-Analysis Module M13
	Abstract Syntax Tree (AST)

	Post Rules module M12
	Results Database Module M14 and Meta-Results Analysis

	Results & Findings
	Evaluation Corpus
	Validity of results

	Firmware Update
	Conclusions and Validity of results

	Exploit mitigation techniques on firmware images
	Conclusions and Validity of results

	Credentials and Password hashes
	Password hashes
	Case studies
	Conclusions and Validity of results

	Cryptographic Libraries
	OpenSSL and GnuPG cryptographic libraries in firmware images
	Conclusions and Validity of results

	Common Vulnerabilities and Exposures (CVEs)
	Conclusions and Validity of results

	Cryptographic Misuses
	Overall results for Cryptographic Misuses
	Cryptographic Misuses in Symmetric Key Cryptography rules
	Cryptographic Misuses in Public Key Cryptography rules
	Cryptographic Misuses in Pseudo Random Number Generators rules
	Cryptographic Misuses in Key Derivation Functions (KDFs) and Password Based Encryption (PBE) rules
	Cryptographic Misuses in Message Authentication Codes (MACs) rules
	Cryptographic Misuses in Authenticated encryption/decryption and AEAD rules

	Case Studies
	Firmware Decrypt module in D-Link firmware images
	Hard-coded Cryptographic Key in TP-Link firmware image
	Predictable seed in Pseudo-Random Number Generator
	CryptoREX comparison

	Conclusions and Validity of results

	Conclusion
	EBAT Contributions
	Limitations and Future Work

	Appendix - Results & Findings
	Evaluation Corpus
	Binary Statistics
	Firmware Update
	Exploit mitigation techniques on firmware images
	Credentials and Password hashes
	Cryptographic Libraries
	Common Vulnerabilities and Exposures (CVEs)
	Cryptographic Misuses

	Appendix - Supported Cryptographic Primitives
	Symmetric Key Cryptography
	Public Key Cryptography
	Pseudo Random Number Generators (PRNGs)
	Cryptographic One-way Hash functions
	Key Derivation Functions (KDFs) and Password Hashes
	Message Authentication Codes (MACs)
	Authenticated Encryption with associated data

	Bibliography

