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Preface
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and Euler numbers. It is meant for mathematicians without the prior knowledge that is needed to understand
this article.
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at Delft University of Technology under the supervision of Robbert Fokkink. I would like to thank Robbert
Fokkink for his supervision and support.

G. K. van der Wal
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Abstract

In this report, we will look at the connection between the Fibonacci and Euler numbers. By using a combina-
torial argument including the Fibonacci and Euler numbers, we will prove our main theorem:

Fn ·En ≥ n!

From the main theorem and the asymptotics of these numbers, we will conclude that π≤ 2ϕ. We follow the
proof in the article of Alejandro H. Morales, Igor Pak & Greta Panova [1], but we will give a more detailed
proof and some extra facts about the Golden Ratio, ϕ, and the Fibonacci and Euler numbers. Finally, the
article discusses the number of linear extensions of certain partially ordered sets, or posets. We see that there
exist a two-dimensional poset Un and complement poset U n , both with n elements, such that the number of
linear extensions are respectively En and Fn . We conclude that the Fibonacci and Euler numbers are related
to each other.
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1
The Golden ratio

1.1. Definition
Euclid of Alexandria, sometimes called “the founder of geometry" [2], was the first to give a clear definition of
the Golden Ratio, around 300 B.C. Euclid defined the ratio as follows:

“a straight line is said to have been cut in extreme and mean ratio when, as the whole line is to the greater
segment, so is the greater to the lesser." [3]

Meaning: in Figure 1.1, the ratio of the length of the whole line, a +b, to that of the greater segment, a, is
the same as the ratio of the length of the greater segment, a, to the lesser segment, b, i.e.,

a +b

a
= a

b

Figure 1.1: Line segments in the Golden Ratio, where a +b is to a as a is to b. [4]

Using this definition, we can calculate what this ratio is.

a

b
= a +b

a
a

b
= 1+ b

a

Let x = a

b

x = 1+ 1

x
x2 = x +1 (1.1)

x2 −x −1 = 0

x = 1±p
5

2

The ratio of the line segments should be a positive number, therefore, we define the Golden Ratio as follows:

Definition 1.1.1. The Golden Ratio is the positive solution to x2 − x −1 = 0 (equation 1.1), which we denote

ϕ= 1+p5
2 ≈ 1,618034.

1



1.1. Definition 2

We denote the negative solution to equation 1.1 by ψ= 1−p5
2 ≈ 0,618034. ψ is sometimes called the little

golden number and it can be expressed in terms of ϕ:

ϕ+ψ = 1+p
5

2
+ 1−p

5

2
= 1

ψ = 1−ϕ=− 1

ϕ

There also exists a silver ratio, δS . If we look at Figure 1.1, a and b are in the silver ratio if the ratio of the
length of the greater segment, a, to the lesser segment, b, is the same as the ratio of the sum of the smaller
segment plus twice the greater segment, 2a +b, to that of the greater segment, a, i.e.,

2a +b

a
= a

b

If we calculate this in the same way as in equation 1.1, we find that the silver ratio is the positive solution to
the equation x2 −2x −1 = 0, which we denote δS = 1+p

2.

Euclid defined the Golden Ratio, but he named it “extreme and mean ratio" [3]. It was not called the
Golden Ratio until 1835, when it was first used by Martin Ohm in the book Die reine Elementar-Mathematik.
He named the division of a line AB at a point C such that AB ·C B = AC 2 the ‘golden section’ (or goldener
Schnitt in German) [6]. In Figure 1.2 we have such a line.

Figure 1.2: Line AB divided at point C such that AB ·C B = AC 2.

If we rewrite its property, we get:

AB ·C B = AC 2

AB

AC
= AC

C B

If we let the length of AC be a and the length of C B be b, we have:

a +b

a
= a

b

Which is the same as Euclid’s definition.

1.1.1.ϕ as Continued Fraction and Square Root
We define the recursive sequence (xn)n≥1 by xn = 1+ 1

xn−1
for all n ≥ 1 and x0 = 1. We get:

x0 = 1

x1 = 1+ 1

1

x2 = 1+ 1

1+ 1
1

x3 = 1+ 1

1+ 1
1+ 1

1

...

If we let n go to infinity, we get a continued fraction. We call this expression x.

lim
n→∞xn = 1+ 1

1+ 1
1+...

= x



1.2. The Golden Ratio in Architecture, Art, the Human Body and Nature 3

We can then see the same expression in the denominator of the fraction:

x = 1+ 1

1+ 1
1+...

x = 1+ 1

x

This is equation 1.1 and x is a positive number, so the solution is:

lim
n→∞xn = x = ϕ

ϕ = 1+ 1

1+ 1
1+...

(1.2)

This only holds under the assumption that the sequence converges to x. In section 2.1, we simplify the frac-
tions x1, x2, x3, etc. and we will see that they equal the ratio between two consecutive Fibonacci numbers.
Then, we prove in Proposition 2.1.2 that these fractions do converge, so equation 1.2 is indeed well-defined.

We can do something similar with square roots. We define the recursive sequence (yn)n≥1 by yn =√
1+ yn−1

for all n ≥ 1 and y0 = 1. We get:

y0 = 1

y1 = p
1+1

y2 =
√

1+p
1+1

y3 =
√

1+
√

1+p
1+1

...

If we let n go to infinity, we get an infintely long square root. We call this expression y .

lim
n→∞ yn =

√
1+

√
1+p

1+ . . . = y

Now, we square both sides:

y =
√

1+
√

1+p
1+ . . .

y2 = 1+
√

1+
√

1+p
1+ . . .

But then we have y again on the right side:
y2 = y +1

This is again equation 1.1 and y is a positive number, so the solution is:

lim
n→∞ yn = y = ϕ

ϕ =
√

1+
√

1+p
1+ . . . (1.3)

1.2. The Golden Ratio in Architecture, Art, the Human Body and Nature
Many people have tried finding this “perfect proportion" in objects such as art, architecture and nature. There
has been suggested that the Great Pyramid of Giza and the Parthenon in Athens contain the Golden ratio in
their dimensions [5]. But this seems to be untrue, as the measurements of these buildings vary from source
to source, so one could easily choose the measurements that would get a result close to ϕ.
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There also have been claims that the human body contains the Golden Ratio, such as the ratio of the
height of a person to the height of their navel [6]. For example, in De Divinia Proportione by Luca Pacioli. In
this book, Pacioli describes the application of the Golden Ratio in mathematics, art and architecture [7]. The
book is illustrated by Leonardo da Vinci and contains one of da Vinci’s most famous drawings: “The Vitruvian
Man", see Figure 1.3. The ratio of the height of The Vitruvian Man to the height of his navel is indeed the
Golden Ratio. But that is not the only occurence of the Golden Ratio in this drawing, see Figure 1.4.

Figure 1.3: “The Vitruvian Man", drawn by Leonardo da Vinci. [7] Figure 1.4: “The Vitruvian Man" with Golden Ratios drawn in. [7]

If you want to know, my ‘height to navel ratio’ is 170
105 ≈ 1,619, so about 0,06% off. This seems very close,

but obviously these measurements vary widely from person to person and my own measurements were not
very precise either.

1.2.1. The Golden Spiral
Since ϕ is the solution to equation 1.1, we have that:

ϕ = 1+ 1

ϕ

If we divide by ϕ we get:

1 = 1

ϕ
+ 1

ϕ2

1

ϕ
= 1

ϕ2 + 1

ϕ3

...

From these equations, we will construct a Golden Spiral, see Figure 1.5.
First we make a rectangle of 1 by ϕ. Since ϕ > 1, we can place a 1 by 1 one square inside this rectangle, and
we will be left with a 1 by ϕ−1 = 1

ϕ rectangle.Since 1
ϕ < 1, we can place a 1

ϕ by 1
ϕ square inside this rectangle,

and we will be left with a 1− 1
ϕ = 1

ϕ2 by 1
ϕ rectangle. Once again we can place a 1

ϕ2 by 1
ϕ2 square inside and

are left with a 1
ϕ2 by 1

ϕ3 rectangle. If we do this infinitely many times and we draw a quarter circle inside every

square, we are left with a Golden Spiral.
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Figure 1.5: Golden Spiral [8]

Figure 1.6: Nautilus shell [8] Figure 1.7: X-ray image of a Nautilus shell [8]

The pearly, or chambered, nautilus (Nautilus) is a genus of cephalopod mollusks. This animal has a
“smooth, coiled external shell about 25 cm in diameter, consisting of about 36 separate chambers, the out-
ermost of which it lives in" [9]. This shell has a spiral pattern and there have been claims that this spiral
resembles a Golden Spiral. To see if this true, we compare the expansion coefficients of both spirals.
The Golden Spiral is a logarithmic spiral. We write down the polar equation for a logarithmic spiral:

r = aekθ

where r is the new radius or distance to the origin of the spiral, a the initial radius, k the expansion coefficient,
and θ the angle from the positive x-axis [10] [11]. If we look at the Golden Spiral, every quarter turn (so an
angle of π

2 ) the spiral grows with a factor ϕ. We get:

ϕr = r ek π
2

ek π
2 = ϕ

k
π

2
= ln(ϕ)

k = 2

π
ln(ϕ) ≈ 0,30635

[12]
But the expansion coefficient of a Nautilus shell lies around k = 0,177, which is not even close [8].

So it seems that there are some doubtful claims about the Golden Ratio in architecture, the human body
and nature. However, spirals that have a close relation to the Golden Ratio can be found in the leaf arrange-
ment of plants, as we will see in paragraph 2.1.2.
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1.2.2. The Golden Angle
Not all claims about the Golden Ratio are incorrect. Let us have a look at the Golden Angle. We take a circle
with circumference a +b and divide it into a greater segment, a, and a lesser segment, b, such that:

a +b

a
= a

b

The Golden Angle is the angle subtended by the arc of length b, see Figure 1.8.

Figure 1.8: Circle divided into two arcs of length a and b, such that a +b is to a as a is to b. [13]

We know that
a

b
=ϕ, so

a +b

b
= a

b
+1 =ϕ+1

Let f be the smaller fraction of the circumference.

f = b

a +b
= 1

ϕ+1

From equation 1.1 we know that ϕ2 =ϕ+1, thus

f = 1

ϕ2

The whole circle equals 2π radians, so the Golden Angle equals:

2π f = 2π

ϕ2 = 2π(
1+p5

2

)2

= 2π(
6+2

p
5

4

) = 8π

6+2
p

5

= 4π

3+p
5
· 3−p

5

3−p
5
= 4π(3−p

5)

4
=π(3−p

5)

Or 180(3−p
5) ≈ 137,5◦. This Golden Angle can be found in nature. Mathematicians have found that the

angle between each sunflower floret and its neighbor, equals approximately 137◦, the Golden Angle [14]. We
will see more about the sunflower in paragraph 2.1.2.
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1.3. The Golden Ratio in Geometry
The Golden Ratio can also be found in geometry. For example in a pentagram.

First we take a look at the isosceles triangle 4ABC in Figure 1.9, where∠ABC = 36◦ and∠B AC =∠BC A =
72◦. We make the triangle such that |AB | = |BC | = 1 and |AC | = x. If we divide ∠B AC in two, and we call the
point where this dividing line and BC intersects D , then we have two other isosceles triangles: 4C AD and
4BD A. 4ABC and 4C AD are similar triangles.

Figure 1.9: Isosceles triangle 4ABC with∠ABC = 36◦,∠B AC =∠BC A = 72◦, |AB | = |BC | = 1 and |AC | = x. [6]

We now have:

1. ∠B AC =∠BC A =∠AC D =∠ADC = 72◦

2. ∠ABC =∠B AD =∠C AD = 36◦

3. |AC | = |AD| = |BD| = x

4. |AB | = |BC | = 1

5. 4ABC ∼4C AD (because of 1 and 2)

We get:

|AB |
|AC | = |C A|

|C D|
1

x
= x

|C D|
|C D| = x2

But also:

|BC | = |BD|+ |C D|
1 = x +|C D|

|C D| = 1−x
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Thus

x2 = 1−x

x2 +x −1 = 0

x = −1±p
5

2
x > 0, so:

x = −1+p
5

2
=ϕ−1 = 1

ϕ

We now have the following lengths:

|AB | = |BC | = 1, |AC | = |AD| = |BD| = 1

ϕ
and |C D| = 1

ϕ2

This gives us the following ratios in Figure 1.9:

|AB |
|AD| =

|AC |
|C D| =ϕ

Figure 1.10: A pentagram colored to distinguish its line segments of different lengths. The four lengths are in Golden Ratio to one another.
[15]

If we look at Figure 1.10, we see that the point of a pentagram, 4D AE , also is an isosceles triangle. Because
all five points of a pentagram are similar isosceles triangles, we get that∠D AE = 180

5 = 36◦. Therefore∠ADE =
∠AED = 72◦. This gives us the following ratios in Figure 1.10:

|AB |
|BC | =

|AD|
|C D| =ϕ

We see that

|BC | = |AC | = |AD|+ |C D|
= |AD|+ |AD|

ϕ
=

(
1+ 1

ϕ

)
· |AD| =ϕ · |AD|

|BC |
|AD| = ϕ

So all four colored line segment in Figure 1.10 are in Golden Ratio to one another.

|AB |
|BC | =

|BC |
|AD| =

|AD|
|C D| =ϕ



2
The Fibonacci Numbers

The Fibonacci sequence is a sequence of integers, where the sum of every two consecutive numbers in the
sequence equals the next number. We call these numbers the Fibonacci numbers, named after Leonardo of
Pisa, who was also known as Fibonacci. Even though the sequence is named after him, it was not Leonardo
of Pisa who came up with this sequence. The sequence was already known in India hundreds of years before
Fibonacci, but he introduced the sequence to Western mathematics in 1202 [16].

Definition 2.0.1. We define the Fibonacci numbers recursively by Fn+1 = Fn+Fn−1 for all n ≥ 1 starting from
F0 = F1 = 1.

This gives us the following sequence:

1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, 610, 987, . . .

[17]
In section 1.1.1, we already noted that the Fibonacci numbers are actually strongly related to the Golden
Ratio. We will verify this in this chapter.

2.1. Properties of the Fibonacci Numbers
Let us start with the continued fraction in equation 1.2 and approximate its value:

1 = 1,000

1+ 1

1
= 2

1
= 2,000

1+ 1

1+1
= 3

2
= 1,500

1+ 1

1+ 1
1+1

= 5

3
= 1,666

1+ 1

1+ 1
1+ 1

1+1

= 8

5
= 1,600

1+ 1

1+ 1
1+ 1

1+ 1
1+1

= 13

8
= 1,625

We see that the fractions equal the ratio between the n +1 and nth Fibonacci number. This is true for all n,
because if we look at a fraction, we see that it equals 1 plus (1 divided by the fraction that came before), which
was the ratio between the n −1 and nth Fibonacci number:

1+ 1(
Fn

Fn−1

) = 1+ Fn−1

Fn
= Fn

Fn
+ Fn−1

Fn
= Fn +Fn−1

Fn
= Fn+1

Fn

We also see that the fractions get closer to ϕ≈ 1,618. In fact, Johannes Kepler first discovered that the golden
ratio, ϕ, is the limit of the ratios of consecutive Fibonacci numbers [18]. We will prove this in Proposition
2.1.2. But in order to prove this, we first need Binet’s Formula.

9



2.1. Properties of the Fibonacci Numbers 10

2.1.1. Binet’s Formula
We can write the nth Fibonacci number as a closed-form expression, using the positive and negative solution
to equation 1.1, ϕ and ψ. This is known as Binet’s Formula:

Lemma 2.1.1. Binet’s Formula

Fn = ϕn+1 −ψn+1

ϕ−ψ = ϕn+1 −ψn+1

p
5

For n = 0,1,2, . . .

Proof. ϕ and ψ were the solutions to the equation x2 −x −1 = 0, so

x2 = x +1

x3 = x2 +x = 2x +1

x4 = 2x2 +x = 3x +2

x5 = 3x2 +2x = 5x +3

x6 = 5x2 +3x = 8x +5
...

We will prove by induction that
xn = Fn−1x +Fn−2 (2.1)

For all n ≥ 2.

Proof correctness equation 2.1 by induction
First we prove this to be true for n = 2.
x2 −x −1 = 0, so:

x2 = x +1 = F1x +F0

since F0 = F1 = 1. Thus the equation is true for n = 2.
Now assume equation 2.1 is true for n, we will prove that it is also true for n +1.

xn = Fn−1x +Fn−2

xn+1 = x · xn = Fn−1x2 +Fn−2x

= Fn−1(x +1)+Fn−2x

= x(Fn−1 +Fn−2)+Fn−1

= Fn x +Fn−1

This is in accordance with equation 2.1, so the equation also holds for n +1.
By induction, equation 2.1 holds for all n ≥ 2. ä

Since we have used x2 = x +1 to obtain equation 2.1, and the solutions to this equation are ϕ and ψ, we
fill in x =ϕ and x =ψ:

ϕn+1 = Fnϕ+Fn−1

ψn+1 = Fnψ+Fn−1

ϕn+1 −ψn+1 = Fn(ϕ−ψ)+Fn−1 −Fn−1

ϕn+1 −ψn+1

ϕ−ψ = Fn

Now that we have a closed-form expression for the nth Fibonacci number, we can easily prove that the
Golden Ratio, ϕ, is the limit of the ratios of two consecutive Fibonacci numbers.
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Proposition 2.1.2.

lim
n→∞

Fn+1

Fn
=ϕ

Proof. We use Lemma 2.1.1, Binet’s formula:

Fn+1

Fn
=

(
ϕn+2−ψn+2

p
5

)
(
ϕn+1−ψn+1

p
5

) = ϕn+2 −ψn+2

ϕn+1 −ψn+1

= ϕn+2

ϕn+1 −ψn+1 − ψn+2

ϕn+1 −ψn+1

= ϕ

1−
(
ψ
ϕ

)n+1 − ψ(
ϕ
ψ

)n+1 −1

ψ

ϕ
=

(
1−p5

2

)
(

1+p5
2

) = 1−p
5

1+p
5
≈−0,382

∣∣∣∣ψϕ
∣∣∣∣ < 1, thus lim

n→∞

(
ψ

ϕ

)n+1

= 0

Thus lim
n→∞

 ϕ

1−
(
ψ
ϕ

)n+1

= ϕ

1−0
=ϕ

ϕ

ψ
=

(
1+p5

2

)
(

1−p5
2

) = 1+p
5

1−p
5
≈−2,618

∣∣∣∣ϕψ
∣∣∣∣ > 1, thus lim

n→∞

∣∣∣∣ϕψ
∣∣∣∣n+1

=∞

Thus lim
n→∞

 ψ(
ϕ
ψ

)n+1 −1

= 0

lim
n→∞

Fn+1

Fn
= lim

n→∞

 ϕ

1−
(
ψ
ϕ

)n+1 − ψ(
ϕ
ψ

)n+1 −1

=ϕ−0

= ϕ

We can also define the Pell numbers recursively by Pn+1 = 2Pn +Pn−1 for all n ≥ 1 starting from P0 = 0
and P1 = 1. We see that this is similar to the Fibonacci recurrence, except adding the previous numbers twice.
This gives the following sequence:

0, 1, 2, 5, 12, 29, 70, 169, 408, 985, 2378, 5741, . . .

[19]
We can write the nth Pell number as a closed-form expression, using the positive and negative solution to the
equation x2 −2x −1 = 0, δS = 1+p

2 and δT = 1−p
2. If we do the exact same prove of Binet’s formula for the

Pell numbers, we get:

Pn = δS
n −δT

n

2
p

2

In the same way as Proposition 2.1.2, we can prove that the silver ratio, δS , is the limit of the ratios of two
consecutive Pell numbers:

lim
n→∞

Pn+1

Pn
= δS = 1+p

2
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We now make a rectangle of the nth Fibonacci number by the (n +1)th number. We can then place a Fn

by Fn square inside and are left with a Fn by Fn+1 −Fn = Fn−1 rectangle. If we continue doing this the same
way we made a Golden Spiral we are left with a Fibonacci Spiral, see Figure 2.1.

Figure 2.1: Fibonacci Spiral [20]

Since we proved in Proposition 2.1.2 that the ratio of two consecutive Fibonacci numbers goes to ϕ, this
Fibonacci spiral approximates the Golden Spiral.

2.1.2. Fibonacci numbers in Nature
We have been looking for the Golden Ratio in nature, but now that we know that the Golden Ratio and the
Fibonacci numbers are closely related, we can also look for these numbers instead.

Leaves that grow on a branch or a twig do often not grow directly above each other, as they will block each
other from sunlight, air and rain. Instead, they grow around a branch or twig in a spiral. The arrangement of
leaves around a branch is an example of phyllotaxis, which means “leaf arrangement" in Greek. It was named
by Charles Bonnet in 1754. The amount of turns ik takes to get from one leaf to the next is called the phyl-
lotactic ratio. Basswood leaves grow on opposite sides of a stem, so it takes half a turn to get from one leaf to
the next. This is a 1/2 phyllotactic ratio. A beech, blackberry and hazel have a phyllotactic ratio of 1/3. An apple,
apricot and coast live oak have a phylotactic ratio of 2/5, and a pear and weaping willow have a phylactic ratio
of 3/8 [3]. Note that all these ratios are made of Fibonacci numbers.

Let us look at the florets in a sunflower again. The florets are arranged in clockwise and counter-clockwise
spirals. The amount of clockwise and counter-clockwise spirals depends on the size of the sunflower. In
Figure 2.2 we see a sunflower with 34 counter-clockwise (from the middle) spirals and 21 clockwise spirals.
Most commonly there are 55 spirals going one way and 34 the other, but there have been seen sunflowers
with ratios of numbers of spirals of 89/55 and 144/89 as well. [21]. If we look at Figure 2.3, we see a yellow
chamomile with 21 clockwise (from the middle) and 13 counter-clockwise spirals . All these ratios are ratios
of two consecutive Fibonacci numbers, which approximate the Golden Ratio. This relation to the Fibonacci
numbers was noted as early as 1917 by D’Arcy Wentworth Thompson in On Growth and Form.

Figure 2.2: Head of a sunflower (Helianthus annuus) displaying
spiral patterns [22].

Figure 2.3: “ Disk florets of a yellow chamomile (Anthemis tincto-
ria) with spirals indicating the arrangement drawn in." [23]
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These spirals are a very efficient way of packing a lot of florets in the head of a flower, without them block-
ing the sun for one another too much [14]. These spirals also appear in pineapples and pinecones [24]. For
instance, out of 505 cones of the Norway spruce, 467 cones had five spirals in one direction and eight the
other. This is about 92,4%. Out of these 467 cones, 224 cones had the eight spirals clockwise and 243 cones
had the eight spirals counter-clockwise. A 48:52 ratio [21].

We cannot only find Fibonacci numbers in plants, but also in the family tree of honeybees. Honeybees
can be either male or female. Females can either be workers, which are females that do not lay eggs, or
queens. Queen honeybees can store the sperm of a male, which allows the queen to control the fertilization
of her eggs. Thus queens can lay eggs that are either unfertilized or fertilized. Unfertilized eggs develop into
males, whereas fertilized eggs develop into females [25]. Now, we look at the ancestors of a male honeybee.
We represent males by ‘0’ and females by ‘1’. Since a male hatches from an unfertilized egg, it only has a fe-
male as parent. Since a female hatches from a fertilized egg, it has a male and female as parents. We now have:

0 → 1

1 → 10

This specific substitution is called the Fibonacci substitution.
If we start with one male honeybee, a zero, we get:

# ancestors # 1’s or female # 0’s, or male
n at n ancestors at n ancestors at n
0 0 0 0 0
1 0 → 1 1 1 0
2 1 → 10 2 1 1
3 10 → 101 3 2 1
4 101 → 10110 5 3 2
5 10110 → 10110101 8 5 3
6 10110101 → 1011010110110 13 8 5

Figure 2.4: Ancestry of a male honeybee, where ones represent females and zeros represent males.

We can see that a male honeybee has 1 parent, 2 grandparents, 3 great-grandparents, 5 great-great-
grandparents, and so on. The Fibonacci sequence again! We can also see that if a honeybee has Fn great-
great-. . . -grandparents, that they consist of Fn−1 females and Fn−2 males. This is, however, under the as-
sumption that no ancestors are the same, which is highly unrealistic.
If we look at the sequence in the second column of Figure 2.4, we see that it always starts with the sequence
that came before and ends with the sequence that came before that. Just like the Fibonacci numbers, this
sequence is the addition of the two sequences that came before. If we do this infinitely many times, we get
the following sequence:

1 0 1 1 0 1 0 1 1 0 1 1 0 1 0 1 1 0 1 0 1 1 0 1 1 0 1 0 1 1 0 1 1 0. . .

[26]

We saw that for the sequence of length Fn , the ratio of ones to zeros was Fn−1
Fn−2

. So for the infinite sequence,

the ratio of ones to zeros equals the limit of Fn−1
Fn−2

in n. So the ratio of ones to zeros is the Golden Ratio, ϕ, see
Proposition 2.1.2. Therefore, this sequence is sometimes called the Golden Sequence [3], but it is also known
as the Fibonacci word. Sometimes males are represented by ‘1’ and females by ‘0’, so the zeros and ones are
switched.
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2.1.3. The Generating Function of the Fibonacci Numbers
The generating function of the Fibonacci numbers can be used to find the asymptotics of said numbers.

Proposition 2.1.3.

F (t ) =
∞∑

n=0
Fn t n = 1

1− t − t 2

For 0 ≤ t < 1.

Proof.

(1− t − t 2)F (t ) = (1− t − t 2)
∞∑

n=0
Fn t n

=
∞∑

n=0
Fn t n − t

∞∑
n=0

Fn t n − t 2
∞∑

n=0
Fn t n

=
∞∑

n=0
Fn t n −

∞∑
n=0

Fn t n+1 −
∞∑

n=0
Fn t n+2

=
∞∑

n=0
Fn t n −

∞∑
n=1

Fn−1t n −
∞∑

n=2
Fn−2t n

= F0 +F1t +
∞∑

n=2
Fn t n −F0t −

∞∑
n=2

Fn−1t n −
∞∑

n=2
Fn−2t n

= F0 + t (F1 −F0)+
∞∑

n=2
(Fn −Fn−1 −Fn−2)t n

Since F0 = F1 = 1 and Fn = Fn−1 +Fn−2 for all n ≥ 2, we get

= 1+ (1−1)t +
∞∑

n=2
(Fn −Fn)t n

= 1

(1− t − t 2)F (t ) = 1, thus F (t ) = 1

1− t − t 2

2.1.4. Asymptotics of the Fibonacci Numbers
We get the following asymptotics of the Fibonacci numbers:

Lemma 2.1.4.

Fn ∼ 1p
5
ϕn+1

Where an ∼ bn means an/bn → 1 for n →∞.

Proof. We use Proposition 2.1.3:

F (t ) =
∞∑

n=0
Fn t n = 1

1− t − t 2

Associate with a power series
∑∞

n=0 cn(z − z0)n the number

1

R
= limsup n

√
|cn | (2.2)

Where R is the radius of convergence of the series [27].
In this case cn = Fn and z0 = 0. Now we need to find R.
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F (t ) has singularities where there occurs a division by 0, so at 1− t − t 2 = 0.

1− t − t 2 = 0

t1,2 = 1±p
5

−2
= −1±p

5

2

t1 = −1+p
5

2
=−ψ

t2 = −1−p
5

2
=−ϕ

1

1− t − t 2 = 1

−(t +ψ)(t +ϕ)

We see that F (t ) has singularities at t =−ψ and t =−ϕ. Both poles of order 1.

−ψ=ϕ−1 ≈ 0,618

−ϕ ≈ −1,618

So in absolute value, −ψ is our smallest pole, which means our radius of convergence R of the series F (t ) is
|−ψ|.

R = |−ψ| =ϕ−1

ϕ = 1+ 1

ϕ
(equation 1.1)

R = ϕ−1 = 1

ϕ

From equation 2.2 we get:

limsup n
√

Fn = 1

R
=ϕ

This means that for all ε> 0 there is an n0 such that for all n ≥ n0

n
√

Fn < ϕ+ε

Let ε> 0 be arbitrary, for n large enough we get:

n
√

Fn < ϕ+ε
Fn < (ϕ+ε)n

Since we have a closed form expression for the Fibonacci number, we can actually calculate the asymptotics
exactly. Use Binet’s Formula, Lemma 2.1.1:

Fn(
ϕn+1−ψn+1

p
5

) = 1

lim
n→∞

Fn
p

5

ϕn+1 −ψn+1 = 1

Since |ψ| =
∣∣∣∣∣1−p

5

2

∣∣∣∣∣≈ |−0,618| < 1

We get lim
n→∞ψ

n+1 = 0

lim
n→∞

Fn
p

5

ϕn+1 −ψn+1 = lim
n→∞

Fn
p

5

ϕn+1 = 1

Thus

Fn ∼ 1p
5
ϕn+1
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2.2. Bn
Now we will consider sequences consisting of the symbols {⊂, ⊃, ♦}, where each open bracket “⊂" must be
followed by a closed bracket “⊃", and a closed bracket is always preceded by an open bracket. The brackets
only come in pairs. Let Bn bet the set of such sequences of length n. For example:

B4 = {♦♦♦♦, ⊂⊃♦♦, ♦⊂⊃♦, ♦♦⊂⊃, ⊂⊃⊂⊃}

We see that |B4| = 5 = F4. This is actually true for all n.

Proposition 2.2.1.
|Bn | = Fn for all n ≥ 1

Proof. We can clearly see that Proposition 2.2.1 holds for small n.

B1 = {♦} |B1| = 1
B2 = {♦♦, ⊂⊃} |B2| = 2
B3 = {♦♦♦, ⊂⊃♦, ♦⊂⊃} |B3| = 3
B4 = {♦♦♦♦, ⊂⊃♦♦, ♦⊂⊃♦, |B4| = 5

♦♦⊂⊃, ⊂⊃⊂⊃}
B5 = {♦♦♦♦♦, ⊂⊃♦♦♦, ♦⊂⊃♦♦, ♦♦⊂⊃♦, |B5| = 8

♦♦♦⊂⊃, ⊂⊃⊂⊃♦, ⊂⊃♦⊂⊃, ♦⊂⊃⊂⊃}

Figure 2.5: Bn for n = 1, . . . ,5.

Now we will prove that Proposition 2.2.1 holds for all n, by using induction.
Assume the equation holds for all m = 1, . . . ,n −1, we prove that it also holds for n.
We want to know |Bn |, so we split Bn up in two sets.
Let Un be the set of all sequences of length n that end with “⊂⊃".
Let Vn be the set of all sequences of length n that end with “♦".
Clearly, we have

|Bn | = |Un |+ |Vn | (2.3)

All elements in Un are of length n and end with “⊂⊃", so the sequence preceding the pair of brackets must
be of length n −2. Thus, all elements in Un can be created by taking an element of Bn−2 and putting “⊂⊃"
behind it. This gives us:

|Un | = |Bn−2| (2.4)

All elements in Vn are of length n and end with “♦", so the sequence preceding the pair of brackets must be
of length n−1. Thus, all elements in Vn can be created by taking an element of Bn−1 and putting “♦" behind
it. This gives us:

|Vn | = |Bn−1| (2.5)

Equations 2.3, 2.4 and 2.5 together with the assumption that |Bm | = Fm for all m = 1, . . . ,n −1, give:

|Bn | = |Un |+ |Vn | = |Bn−2|+ |Bn−1| = Fn−2 +Fn−1 = Fn
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2.3. Extra Facts About the Fibonacci Numbers
Kepler also observed that the square of any Fibonacci number minus the product of the two adjacent num-
bers alternates between + and -1 [28].

Fn
2 −Fn−1 ·Fn+1 = (−1)n for all n ≥ 1 (2.6)

We will not prove this statement, as it is not important for our main theorem, but you can prove it yourself by
using induction.
Some other fun facts about the Fibonacci numbers you can try proving by yourselves:

• The sum of ten consecutive Fibonacci numbers equals 11 times the seventh number in the row, i.e.,

Fn +Fn+1 +·· ·+Fn+9 = 11 ·Fn+6

Hint: Use Fn+1 = Fn +Fn−1 and repeatedly substitute this into the sum.

• The nth Fibonacci number squared equals the sum from k = 0 to n −1 of Fk ·Fk+1, if n is odd. If n is
even, it equals that same sum +1.

Fn
2 =

n−1∑
k=0

Fk Fk+1 if n is odd

Fn
2 = 1+

n−1∑
k=0

Fk Fk+1 if n is even

Hint: Use equation 2.6 and Fn+1 = Fn +Fn−1 and repeatedly substitute this into the sum.

• The sum of the first n Fibonacci numbers equals the (n +2)th number minus 1.

Fn+2 −1 =
n∑

k=0
Fn

Hint: Start with Fn+2 and repeatedly use Fn = Fn−1 +Fn−2.



3
The Euler Numbers

3.1. Alternating Permutations
A permutation σ of a set is a possible way its elements can be ordered or arranged. For example, if we have
the set {1,2,3}, we can arrange its elements in six ways:

{1,2,3}, {1,3,2}, {2,1,3}, {2,3,1}, {3,1,2}, {3,2,1}

Thus, we have six permutations of the set {1,2,3}.
A permutation σ of a set S with |S| = n is a bijection from {1,2, . . . ,n} to S. σ : {1,2, . . . ,n} → S. For example,
the permutation {2,1,3} is given by the function σ, defined as follows: σ(1) = 2, σ(2) = 1, σ(3) = 3.

Let Sn be the set of all permutations of {1,2, . . . ,n}. Clearly, we can choose n numbers for the first position,
after we picked that we have n −1 numbers left for the second position, n −2 for the third position, etc. So

|Sn | = n! (3.1)

We also see that it does not matter what elements we choose. We can arrange {a,b,c} in equallly many ways
as {1,2,3}. As long as no elements are the same, it only matters how many elements we have.

Definition 3.1.1. A permutation σ ∈ Sn is called an alternating permutation if:

σ(1) <σ(2) >σ(3) <σ(4) > ·· ·

Let An be the set of alternating permutations in Sn .

An alternating permutation in An is made with integers 1 up to n. But if we fix any n integers x1, x2, . . . , xn ,
then we can make exactly as many alternating permutations with them as with 1 up to n, as long as no integers
are the same.

Definition 3.1.2. We define the sequence of Euler numbers, also called the zigzag numbers or up-down num-
bers [29], as a sequence of numbers En , where En is the number of alternating permutations from the set Sn .

E0 = 1 and

En = |An | for all n ≥ 1

This gives us the following sequence:

1, 1, 1, 2, 5, 16, 61, 272, 1385, 7936, 50521, 353792, . . .

[29]

18
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3.2. Properties of the Euler Numbers
3.2.1. The Seidel-Entringer Triangle
We can also get the Euler numbers via the Seidel-Entringer triangle. This triangle is constructed as follows:

• The first row will contain 1 number, the next row 2 numbers, etc.

• Begin at the top, where we place E0 = 1.

• We alternate the direction we go in. In the second row we go from left to right, in the third from right to
left, in the fourth from left to right, etc.

• Each row starts with 0, each new number is equal to the previous number plus the number above.

• The last number in the row is En .

1
0 → 1

1 ← 1 ← 0
0 → 1 → 2 → 2

5 ← 5 ← 4 ← 2 ← 0
0 → 5 → 10 → 14 → 16 → 16

61 ← 61 ← 56 ← 46 ← 32 ← 16 ← 0

Figure 3.1: The Seidel-Entringer triangle, where the red numbers equal the Euler numbers.

If we take the numbers from the triangle in Figure 3.1 and leave out the zeros and the first 1, we get the
following sequence:

1, 1, 1, 1, 2, 2, 2, 4, 5, 5, 5, 10, 14, 16, 16, 16, 32, 46, 56, 61, 61, . . .

[30]
These are called the Entringer numbers.

Definition 3.2.1. We define the Entringer numbers, En,k by En,k = |An,k | for n = 1,2, . . . and k = 1, . . . ,n,
where An,k = {σ ∈An , σ(1) = k}, i.e., the set of alternating permutations σ ∈ Sn starting with k.

Alternating Alternating
permutations permutations

E1,1 = 1 (1) E5,1 = 5 (1 3 2 5 4), (1 4 2 5 3), (1 4 3 5 2),
E2,1 = 1 (1 2) (1 5 3 4 2), (1 5 2 4 3)
E2,2 = 0 - E5,2 = 5 (2 3 1 5 4), (2 4 1 5 3), (2 4 3 5 1),
E3,1 = 1 (1 3 2) (2 5 1 4 3), (2 5 3 4 1)
E3,2 = 1 (2 3 1) E5,3 = 4 (3 4 1 5 2), (3 4 2 5 1)
E3,3 = 0 - (3 5 1 4 2), (3 5 2 4 1)
E4,1 = 2 (1 3 2 4), (1 4 2 3) E5,4 = 2 (4 5 1 3 2), (4 5 2 3 1)
E4,2 = 2 (2 3 1 4), (2 4 1 3) E5,5 = 0 -
E4,3 = 1 (3 4 1 2)
E4,4 = 0 -

Figure 3.2: Entringer numbers En,k for n = 1, . . . ,5 with corresponding alternating permutations starting with k.

We can see that these numbers En,k from Figure 3.2 fit the Seidel-Entringer triangle.
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E1,1

E2,2 → E2,1

E3,1 ← E3,2 ← E3,3

E4,4 → E4,3 → E4,2 → E4,1

E5,1 ← E5,2 ← E5,3 ← E5,4 ← E5,5

Figure 3.3: The Seidel-Entringer triangle with the Entringer numbers filled in.

If we replace En,k in Figure 3.3 with the corresponding numbers from Figure 3.2, we do indeed get the
triangle from Figure 3.1. So these numbers seem to fit for n = 1, . . . ,5. Since each number is equal to the
previous number plus the number above, we get the following formula:

Proposition 3.2.2.
En,k = En,k+1 +En−1,n−k

With

E1,1 = 1

En,n = 0 for all n ≥ 2

We can see that Proposition 3.2.2 holds for n = 1, . . . ,5. Now we will prove that this holds for all n ≥ 2.

Proof. First we prove that En,n = 0 for all n ≥ 2.

En,n = |An,n | = #(alternating permutations σ ∈ Sn with σ(1) = n)

But since n is the biggest number in σ ∈ Sn , we cannot find a bigger integer such that n =σ(1) <σ(2).
Thus there are no alternating permutations σ ∈ Sn starting with n.

Now assume Proposition 3.2.2 holds for n = 1, . . . ,m −1, we prove that it then also holds for m. Thus by
induction it will hold for all m ≥ 2.

Em,k = |Am,k | = #(alternating permutations σ ∈ Sm with σ(1) = k)

We can see that
|Am,k+1| = #(alternating permutations σ ∈ Sm with σ(1) = k +1)

comes somewhat close to this. Since there are no integers in between k and k+1 , they have the same relations
to the rest of the the integers in the permutation. If a < k < b, then also a < k +1 < b, with
a,b ∈ {1, . . .k −1,k +2, . . . ,m}. So we take the alternating permutations σ ∈ Sm with σ(1) = k and we switch
the numbers k and k +1. This will still be an alternating permutation when k and k +1 are not next to each
other. If they are next to each other and they switch place, we get σ(1) = k +1 >σ(2) = k and we will not have
an alternating permutation anymore. We conclude that:

|Am,k | = |Am,k+1|+#(permutations σ ∈ Sm with σ(1) = k, σ(2) = k +1) (3.2)

A permutation σ ∈ Sn with σ(1) = k and σ(2) = k +1 looks like:

k < k +1 >σ(3) <σ(4) > . . .

So if we take k and k+1 away, we get another alternating permutationσ(3) <σ(4) > . . . of m−2 numbers, with
σ(3) < k. Since no integers are the same, the number of alternating permutations made with m −2 integers
is |Am−2|, so the number of alternating permutations made from {1, . . . ,k −1,k +2, . . . ,m} starting with i < k,
equals |Am−2,i |. We sum over all i :

#(permutations σ ∈ Sm with σ(1) = k, σ(2) = k +1) =
k−1∑
i=1

|Am−2,i |

=
k−1∑
i=1

Em−2,i (3.3)
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If
k−1∑
i=1

Em−2,i = |Am−1,m−k | (3.4)

Then equation 3.2 and 3.3 together give:

|Am,k | = |Am,k+1|+ |Am−1,m−k |
In that case, Proposition 3.2.2 holds.
We know that En,k = En,k+1 + En−1,n−k for n = 1, . . . ,m − 1. We write this formula for Em−1,m−k , then for
Em−1,m−k+1, etc.:

Em−1,m−k = Em−1,m−k+1 +Em−2,k−1

Em−1,m−k+1 = Em−1,m−k+2 +Em−2,k−2

Em−1,m−k+2 = Em−1,m−k+3 +Em−2,k−3

...

Em−1,m−2 = Em−1,m−1 +Em−2,1

Em−1,m−1 = 0

Now we substitute all these fomulas into Em−1,m−k :

Em−1,m−k = Em−2,k−1 +Em−2,k−2 +Em−2,k−3 +·· ·+Em−2,1 +Em−1,m−1

=
k−1∑
i=1

Em−2,i = |Am−1,m−k |

Thus equation 3.4 holds, thus Proposition 3.2.2 holds.

3.2.2. Generating Function of the Euler Numbers
Lemma 3.2.3.

E (t ) =
∞∑

n=0

En

n!
t n = 1+ sin(t )

cos(t )

Proof. We will follow the proof from [31], Theorem 1. But three other proofs can be found in [32], Theorem
1.1. We will prove that

cos(t ) ·
∞∑

n=0

En

n!
t n = 1+ sin(t ) (3.5)

holds. Use the Maclaurin series of cos(t ):

cos(t ) ·
∞∑

n=0

En

n!
t n =

( ∞∑
n=0

t 2n

2n!
(−1)n

)
·
( ∞∑

n=0

En

n!
t n

)
=

(
1− x2

2!
+ x4

4!
− x6

6!
+·· ·

)
·
(
E0 +E1

x

1!
+E2

x2

2!
+E3

x3

3!
+·· ·

)
= E0 +x

E1

1!
+x2

(
E2

2!
− E0

2!

)
+x3

(
E3

3!
− E1

1! ·2!

)
+ x4

(
E4

4!
− E2

2! ·2!
+ E0

4!

)
+·· ·
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We see that we get t n if we do

1 ·En
t n

n!

or − t 2

2!
·En−2

t n−2

(n −2)!
=−En−2

t n

2!(n −2)!

or
t 4

4!
·En−4

t n−4

(n −4)!
= En−4

t n

4!(n −4)!
...

or (−1)n t n

n!
·E0 if n is even

(−1)n−1 t n−1

(n −1)!
·E1

t

1!
= (−1)n−1E1

t n

1!(n −1)!
if n is odd

Thus the coefficient of t n is the sum of all coefficients above:

b n
2 c∑

k=0
(−1)k En−2k

1

(n −2k)!(2k)!

So the coefficient of t n/n! is:

b n
2 c∑

k=0
(−1)k En−2k

n!

(n −2k)!(2k)!
=
b n

2 c∑
k=0

(−1)k En−2k

(
n

2k

)

We get

cos(t ) ·
∞∑

n=0

En

n!
t n =

∞∑
n=0

t n

n!

b n
2 c∑

k=0
(−1)k En−2k

(
n

2k

)
If n = 0 we get

t 0

0!

0∑
k=0

(−1)k En−2k

(
n

2k

)
= 1

Thus

cos(t ) ·
∞∑

n=0

En

n!
t n = 1+

∞∑
n=1

t n

n!

b n
2 c∑

k=0
(−1)k En−2k

(
n

2k

)
We have proved that equation 3.5 holds, if

∞∑
n=1

t n

n!

b n
2 c∑

k=0
(−1)k En−2k

(
n

2k

)
= sin(t ) (3.6)

We know the Maclaurin series expansions of the sine:

sin(t ) =
∞∑

n=0
(−1)n t 2n+1

(2n +1)!

The coefficient of t n

n! is 0 if n is even, and (−1)(n−1)/2 if n is odd. So we will have to show that:

b n
2 c∑

k=0
(−1)k En−2k

(
n

2k

)
=

{
0 if n is even

(−1)(n−1)/2 if n is odd
(3.7)

Let Dn = {1,2, . . . ,n} and let Bn be a subset of Dn of even size. Place the elements of Bn in increasing order
to the left of a bar. Now let Cn be the set of remaning integers , i.e., Dn \ Bn . Place all the elements of Cn like
an alternating permutation to right of the bar. Let An be the set of objects formed in this way. For example,
an element of A9 is: 2 4 5 7 8 9 | 3 6 1. Define for a ∈ An :

si g n(a) = (−1)#(integers to the left of the bar in a)/2
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Now let k ∈ {0,1, . . .
⌊ n

2

⌋
} and let 2k be the number of integers to the left of the bar, then |Bn | = 2k. We can

choose these numbers from Dn in
( n

2k

)
ways, since the order we pick them in does not matter. We then place

them in increasing order, which can only be done in one way. Thus if we have 2k integers to the left of the
bar, we can choose them in

( n
2k

)
ways. Now we have n −2k integers remaining to put on the right of the bar.

Since no integers are the same, the number of alternating permutations made from n−2k integers is |An−2k |.
By definition 3.1.2, this equals En−2k . Let a2k be an element in An such that there are 2k integers to the left
of the bar. Then, taking the amount of possibilities from the left and the right of the bar together, we get that( n

2k

)
En−2k is the number of possible a2k . And

si g n(a2k ) = (−1)#(integers to the left of the bar in a2k )/2 = (−1)
2k
2 = (−1)k

if k is even
∑

a2k∈An

si g n(a2k ) =
(

n

2k

)
En−2k = (−1)k

(
n

2k

)
En−2k

if k is odd
∑

a2k∈An

si g n(a2k ) = −
(

n

2k

)
En−2k = (−1)k

(
n

2k

)
En−2k

Sum over all k

b n
2 c∑

k=0

∑
a2k∈An

si g n(a2k ) =
b n

2 c∑
k=0

(−1)k

(
n

2k

)
En−2k

∑
a∈An

si g n(a) =
b n

2 c∑
k=0

(−1)k

(
n

2k

)
En−2k (3.8)

Suppose that we have an element a = σ1 σ2 . . . σn ∈ An , but the bar is missing. Can we find where the bar
was supposed to be?

• If n is odd and σ1,σ2, . . . ,σn is increasing, then the bar could only have been between σn−1 and σn .
Then we have an increasing sequence of n −1 integers before the bar, which is even, and one integer
after the bar, which is correct. If the bar is placed anywhere before σn−2, then after the bar we get
. . .σn−2 σn−1σn which cannot be part of alternating permutation, since it is increasing. If we place the
bar right beforeσn−1, then there are n−2 numbers before the bar, which cannot be, since n was an odd
number. If we place the bar after σn , then there are n numbers before the bar, which also cannot be,
since n was an odd number.

• If n is even and σ1,σ2, . . . ,σn is increasing, then the bar could only have been between σn−2 and σn−1

or after σn . If we place the bar between σn−2 and σn−1, we get an increasing sequence of n −2 integers
before the bar and σn−1 σn after the bar, which is alternating because σn−1 < σn . If we place the bar
after σn , we get an increasing sequence of n integers before the bar and nothing after, which also is
correct. If the bar is placed anywhere before σn−2 , then after the bar we get . . .σn−2 σn−1σn which
cannot be part of alternating permutation, since it is increasing. If we place the bar between σn−1 and
σn , we get n −1 integers before the bar, whoch connot be, since n was an even number.

• If σ1,σ2. . . . ,σn is not increasing, suppose i is the first integer such that σi > σi+1. The sequence will
then look like: σ1 <σ2 < ·· · <σi−2 <σi−1 <σi >σi+1 <σi+2 > . . .σn . Then, the bar could have been in
two places: directly before σi−1 or directly after σi . The part after σi is definitely part of the alternat-
ing permutation, because σi > σi+1, so it cannot be part of the increasing sequence. Clearly, placing
the bar directly after σi gives us an increasing sequence before the bar and an alternating permutation
after. Placing the bar directly before σi−1 als gives a correct permutation, since σ1,σ2, . . . ,σi−2 is in-
creasing and σi−1 < σi > σi+1 < . . . is an alternating permutation. σ1,σ2, . . . ,σi−1,σi is increasing, so
if we place the bar anywhere before σi−2, then we get . . .σi−2 σi−1 σi . . . after the bar which cannot be
part of alternating permutation, since it is increasing. If we place the bar between σi−1 and σi then the
alternating permutation starts with σi σi+1 . . . , which cannot be because σi >σi+1 and an alternating
permutation should start with an integer smaller than the second integer. Therefore, the bar must be
placed between σi−2 and σi−1 or between σi and σi+1, creating a sequence before the bar of recpec-
tively i −2 or i integers. This means that i must be even. If i is odd, we cannot create a correct element
of An .
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Let a ∈ An . If n is even or a is not increasing, define I (a) as the element in An found by moving the bar to its
other possible location. For example, if

a = 2 4 5 7 8 9 | 3 6 1 , then I (a) = 2 4 5 7 | 8 9 3 6 1

If n is odd and a is an increasing sequence, define I (a) = a, because the bar can only be in one place.
This mapping is an involution, i.e., it’s own inverse: I (I (a)) = a. Since, in the case where n is even or a not
increasing, the bar can only be directly before σi−1 or directly after σi , applying I to a moves the bar with
+ or −2. So:

si g n(I (a)) = (−1)#(integers to the left of the bar in I (a))/2

= (−1)(#(integers to the left of the bar in a)±2)/2

= (−1)(#(integers to the left of the bar in a))/2 · (−1)±2/2 =−si g n(a)

In equation 3.8 we sum over all a ∈ An . So if n is even, all si g n(a) cancel each other out, because
si g n(I (a)) =−si g n(a). If n is odd, the only term that does not get cancelled out is when I (a) = a. This only
happens when a is increasing. As we have seen before, the number of integers to the left of the bar equals
n −1 in that case, so:

si g n(a) = (−1)#(integers to the left of the bar in a)/2

= (−1)n−1/2

Thus ∑
a∈An

si g n(a) = ∑
a∈An

I (a)=a

si g n(a) =
{

0 if n is even

(−1)(n−1)/2 if n is odd
(3.9)

These were the coefficients we looked for in equation 3.7.
Substituting equation 3.9 in equation 3.6, by using the equality in equation 3.8, gives us:

∞∑
n=1

t n

n!

b n
2 c∑

k=0
(−1)k En−2k

(
n

2k

)
=

∞∑
n=1

t n

n!

∑
a∈An

I (a)=a

si g n(a)

=
∞∑

n=0

t 2n+1

(2n +1)!
(−1)(2n+1−1)/2

=
∞∑

n=0

t 2n+1

(2n +1)!
(−1)n = sin(t )

Since tan(x) = sin(x)
cos(x) and sec(x) = 1

cos(x) , Lemma 3.2.3 can also be written as

∞∑
n=0

En

n!
t n = 1+ sin(t )

cos(t )
= tan(t )+ sec(t ) (3.10)

Note that sec(x) is an even function and tan(x) is an odd function:

sec(−x) = 1

cos(−x)
= 1

cos(x)
= sec(x)

tan(−x) = sin(−x)

cos(−x)
= −sin(x)

cos(x)
=− tan(x)

It follows from equation 3.10 that

∞∑
n=0

E2n

(2n)!
t 2n = sec(t )

∞∑
n=0

E2n+1

(2n +1)!
t 2n+1 = tan(t )

This is why E2n is called a secant number, and E2n+1 is called a tangent number [32].
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3.2.3. Asymptotics of the Euler Numbers
From the classical generating function, Lemma 3.2.3, we get the following asymptotics of the Euler numbers:

Lemma 3.2.4. For all ε> 0 there exists an n0 ∈N, such that for all n ≥ n0:

En

n!
<

(
2+ε
π

)n

Proof. To prove that Lemma 3.2.4 holds, we use equation 2.2 again. In this case cn = En
n! and z0 = 0. Now we

need to find R. Therefore, we have to find the poles of 1+sin(z)
cos(z) . E (t ) has singularities where there occurs a

division by 0, so at cos(z) = 0. cos(z) = 0 for z = π
2 +kπ, with k ∈Z. These are all zeros of order 1.

1. at z = −π
2 + 2kπ, with k ∈ Z, we have 1+ sin(z) = 1+ sin

(−π
2 +2kπ

) = 1− 1 = 0. Thus here we have a
removable singularity.

2. at z = π
2 +2kπ, with k ∈Z, we have 1+sin(z) = 1+sin

(
π
2 +2kπ

)= 1+1 = 2 6= 0. Thus here we have poles
of order 1.

Thus we have poles at π
2 +2kπ with k ∈Z. So at π

2 , then − 3π
2 , then 5π

2 , then − 7π
2 , etc.. The smallest pole in

absolute value is π
2 , this is our radius of convergence R.

From equation 2.2 we get:

limsup
n

√
En

n!
= 1

R
= 2

π

This means that for all ε> 0 there is an n0 ∈N, such that for all n ≥ n0

n

√
En

n!
< 2+ε

π

Let ε> 0 be arbitrary, for n large enough, we get:

n

√
En

n!
< 2+ε

π

En

n!
<

(
2+ε
π

)n



4
Combining the Fibonacci and Euler

numbers

In this chapter, we will combine the Fibonacci and Euler numbers to prove that π ≤ 2ϕ. To do that, we first
have to prove our main theorem, Theorem 4.0.1.

Theorem 4.0.1. Main Theorem
En ·Fn ≥ n!

For example, F3 ·E3 = 3 ·2 = 3!, F4 ·E4 = 5 ·5 = 25 > 24 = 4! and F5 ·E5 = 8 ·16 = 128 > 120 = 5!.

4.1. Combinatorial Proof of the Main Theorem
From Proposition 2.2.1, equation 3.1 and Definition 3.1.2, we have that |Bn | = Fn , |Sn | = n! and |An | = En .
Therefore we can rewrite Theorem 4.0.1 as:

|An | · |Bn | ≥ |Sn | for n ≥ 1 (4.1)

Consider the map φ : An ×Bn → Sn defined as follows: φ(σ, w) =ω, where ω ∈ Sn is a permutation obtained
by swapping the numbers from the alternating permutation σ ∈An when they are in the same positions of a
pair of consecutive brackets “⊂⊃" in w ∈ Bn . The numbers that are in the same position as a diamond “♦",
stay in the same position. For example:

φ ((3 6 2 5 4 7 1 8), (♦♦⊂⊃♦⊂⊃♦)) = (3 6 5 2 4 1 7 8)

We saw that F3 ·E3 = 3 ·2 = 3!. So in this case, every permutation can be made by exactly one combination of
elements from A3 and B3 (see Figure 4.1).

σ ∈A3 w ∈B3 φ(σ, w) =ω ∈ S3

(1 3 2) (♦⊂⊃) (1 2 3)
(1 3 2) (♦♦♦) (1 3 2)
(2 3 1) (♦⊂⊃) (2 1 3)
(2 3 1) (♦♦♦) (2 3 1)
(2 3 1) (⊂⊃♦) (3 2 1)
(1 3 2) (⊂⊃♦) (3 1 2)

Figure 4.1: All possible combinations of elements from A3 and B3 create all possible permutations from S3.

F4 ·E4 = 5 ·5 = 25 > 24 = 4!, so here we have exactly one element that can be made by two combinations of
elements from A4 and B4:

φ((3 4 1 2), (♦⊂⊃♦)) = (3 1 4 2)

φ((1 3 2 4), (⊂⊃⊂⊃)) = (3 1 4 2)

26
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(See Figure 2.5 and Figure 3.2 for more elements from respectively Bn and An .)

Lemma 4.1.1. The map φ : An ×Bn → Sn is a surjection.

Proof. We need to show that for every permutation ω ∈ Sn , there exist σ ∈An and w ∈Bn such that
φ(σ, w) = ω. Let J = {ω(2),ω(4), . . . } be the set of entries from ω in even positions and let b = ω(i ) be the
smallest element in J . Locally, the permutation ω looks like this:

ω= (. . . , x, a,b,c, y, . . . )

Remember that an alternating permutation looked like this:

σ(1) <σ(2) >σ(3) <σ(4) . . .

So the elements in even positions are bigger than their adjacent elements.

• Therefore if b > a,c, we do nothing. Since b was the smallest element in J and x, y ∈ J we have x, y > b >
a,c. We get the desired inequalities: x > a < b > c < y . Let w have a diamond ♦ at the corresponding
position, indicating that b does not move.
Repeat the procedure by induction for subpermutations σ1 = (. . . , x, a) and σ2 = (c, y, . . . ).

• If b < max{a,c}, swap b with max{a,c}.
If max{a,c} = a, we swap a with b. We get the desired inequalities again: x > b < a > c. Let w have a
pair of brackets ⊂⊃ at the corresponding positions, indicating that a and b have been swapped.
Repeat the procedure by induction for subpermutations σ1 = (. . . , x) and σ2 = (c, y, . . . ).

• If max{a,c} = c, we swap b with c. We get the desired inequalities again: a < c > b < y . Let w have a pair
of brackets ⊂⊃ at the corresponding positions, indicating that b and c have been swapped.
Repeat the procedure by induction for subpermutations σ1 = (. . . , x, a) and σ2 = (b, y, . . . ).

Let σ denote the resulting permutation at the end of the process.

Note that elements in even positions will only swap with an adjacent element if that number is bigger, so
elements at even positions can only increase and elements at odd positions can only decrease. This is also
true for the subpermutations σ1 and σ2, which have been chosen in a way such that the even positions in σ

stay in even positions in the subpermutations.

If we swap a with b, we repeat the procedure for σ1 = (. . . , x) and σ2 = (c, y, . . . ). These subpermutations
do not include a and b, thus a and b will not move again. If we swap b with c, we repeat the procedure for
σ1 = (. . . , x, a) and σ2 = (b, y, . . . ). Thus c will not move again. Because b is in an odd position, it can only
decrease, y can only increase and b < y , so b will also not move again. We see that every element moves at
most once, so the sequence w is well-defined.

By induction,σ1 andσ2 both have alternating inequalities. Since we always got the “desired inequalities",
the last element of σ1, the elements in the middle of σ1 and σ2 and the first element of σ2 all put together
give the correct alternating inequalities. Thus σ is alternating, as desired. Finally, note that φ(σ, w) = ω, by
construction.

Example: (3 6 5 2 4 1 7 8)
J = {6,2,1,8}, so b = 1. ω = (. . . ,2,4,1,7,8). b = 1 < max{a,c} = c = 7. Swap 1 and 7. (3 6 5 2 4 7 1 8) and
w = (. . . . . ⊂⊃ .). Repeat for σ1 = (. . . , x, a) = (3 6 5 2 4) and σ2 = (b, y, . . . ) = (1 8).
σ2 = (1 8): J = {8}, so b = 8. b = 8 > 1. Do nothing. w = (. . . . . ⊂⊃♦).
σ1 = (3 6 5 2 4): J = {6,2}, so b = 2. σ2 = (. . . ,6,5,2,4) b = 2 < max{a,c} = a = 5. Swap 2 and 5. (3 6 2 5 4 7 1 8)
and w = (. . ⊂⊃ . ⊂⊃♦). Repeat for σ11 = (. . . , x) = (3 6) and σ12 = (c, y, . . . ) = (4).
σ12 = (4): J =;. Do nothing. w = (. . ⊂⊃♦ ⊂⊃♦).
σ11 = (3 6): J = {6}, so b = 6. b = 6 > a = 3. Do nothing. w = (♦♦⊂⊃♦ ⊂⊃♦).
Finally, we are left with σ= (3 6 2 5 4 7 1 8) and w = (♦♦⊂⊃♦ ⊂⊃♦). Indeed, φ(σ, w) = (3 6 5 2 4 1 7 8).

The fact that the map φ : An ×Bn → Sn is a surjection, Lemma 4.1.1, proves equation 4.1. The main
theorem, Theorem 4.0.1 is hereby proven.
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4.2. Combining the Asymptotics of the Fibonacci and Euler Numbers to
prove that π≤ 2ϕ

We will now prove that π ≤ 2ϕ by combining the asymptotics of the Fibonacci and Euler numbers, Lemma
2.1.4 and Lemma 3.2.4, and the main theorem, Theorem 4.0.1.

Theorem 4.2.1.
π≤ 2ϕ

Proof.

n! ≤ Fn ·En

1 ≤ Fn ·En

n!
for all n ≥ 1 (4.2)

From the asymptotics of the Fibonacci and Euler numbers, Lemma 2.1.4 and Lemma 3.2.4, we get:
Let ε> 0 be arbitrary, then for n large enough:

1 ≤ Fn ·En

n!
<

(
2+ε
π

)n ϕn+1

p
5

1 < φp
5

(
(2+ε)ϕ

π

)n

This also holds for n →∞.

1 < lim
n→∞

φp
5

(
(2+ε)ϕ

π

)n

p
5

ϕ
< lim

n→∞

(
(2+ε)ϕ

π

)n

p
5

ϕ
> 0 and 6= 1

If
(2+ε)ϕ

π
< 1 :

lim
n→∞

(
(2+ε)ϕ

π

)n

= 0

Contradiction. Note that ε> 0 is arbitrary, so (2+ε)ϕ
π 6= 1. Therefore,

1 < (2+ε)ϕ

π
π < (2+ε)ϕ

Let ε ↓ 0:

π ≤ 2ϕ

4.3. Linear Extensions of Partially Ordered Sets
However, there is a deeper connection between the Fibonacci and Euler numbers than just π≤ 2ϕ. Our main
theorem, Theorem 4.0.1, turns out to be a special case of a more abstract theorem, as we will see in this
section.

Definition 4.3.1. We denote a partially ordered set, or poset for short, by P . A poset consists of a set X of
n = |X | elements, and an order relation ¹. The order relation indicates that, for certain pairs of elements in
the set, one of the elements precedes the other in the ordering, i.e., the elements are comparable. Let x, y
be elements of a poset P , then x and y are comparable if x ¹ y or y ¹ x. A poset is called partially ordered,
because not every pair of elements is necessarily comparable. If every pair of elements is comparable, we are
speaking of a totally ordered set.
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Definition 4.3.2. We define a linear extension of P as a bijection f : X → {1, . . . ,n} such that f (u) < f (v) for
all u, v ∈ X with u ≺ v . Let e(P ) be the number of linear extensions of P .

For example, if we look at a poset P consisting of a set X = {x1, . . . , xn} with xi ∈ R for i = 1, . . . ,n and
xi 6= x j if i 6= j , together with the order relation <, then every two elements are comparable. P is a totally
ordered set. Therefore, we only have one bijection f such that f (xi ) < f (x j ) for all xi , x j ∈ X with xi ≺ x j . We
have e(P ) = 1. This is an example of an n-chain: all n elements are comparable. However, if no two elements
are comparable, we have e(P ) = n!. This is called an n-antichain.

Definition 4.3.3. For a poset P on a set S, denote the comparability graph of P by C (P ), i.e., the graph with
vertices P and edges

{
x, y

}
if x and y are comparable in the poset. The complement of this comparability

graph, C (P ), is a graph on the same vertices, such that two vertices in C (P ) are adjacent if and only if they are
not adjacent in C (P ). A poset P on S is called a complement if its comparability graph C (P ) is a complement
of C (P ), i.e., if C (P ) =C (P ). So if two elements are comparable in P , they are not in P , and if two elements
are not comparable in P , they are comparable in P .

Note that if x and y are not comparable in P , they are comparable in P , but we don’t know whether x ¹ y
or y ¹ x. Therefore, a poset can have more than one complement.

Let S ⊂R2 be a finite set of points. Define an ordering (x1, y1) ¹ (x2, y2) when x1 ≤ x2 and y1 ≤ y2.
The resulting poset PS is called a two-dimensional poset. For example, let us have a look at the poset Hp,q .
Hp,q has p+q +1 elements forming a hook. One chain of p elements, one chain of q elements and one extra
minimal element, Every pair of elements consisting of an element of the first chain and an element of the
second chain, is incomparable. This means that in Figure 4.2, we have the following ordering:
e ≺ d ≺ c ≺ b ≺ a and e ≺ f ≺ g ≺ h ≺ i ≺ j .

Figure 4.2: Hp,q with p = 4 and q = 5 [1]. Figure 4.3: H p,q with p = 4 and q = 5.

If we want to make a linear extension of Hp,q , the minimal element on the bottom left must be mapped
to 1. If we now look at the chain with p elements, we can choose p numbers from

{
2, . . . , p +q +1

}
. Thus, we

can choose from p + q numbers, so the number of possibilities is
(p+q

p

)
. Since all elements in the chain are

comparable, we can order this in only one way. Now there are q numbers left for the chain with q elements,
so this can also be ordered in exactly one way. We get a total of

(p+q
p

)
linear extensions.

e(Hp,q ) =
(

p +q

p

)
(4.3)

In Figure 4.3, we see the complement of H4,5. Every pair of elements from one chain is now incomparable.
Every pair of elements x, y from different chains is now compairable, with either x ≺ y or y ≺ x. We have two
possibilities for the relations: either a,b,c,d ≺ f , g ,h, i , j or f , g ,h, i , j ≺ a,b,c,d . e is incomparable. There
are no other posibilities, since if we take a and b from one chain and f from the other and let a ≺ f and f ≺ b,
we get a ≺ f ≺ b. By transitivity, a ≺ b, but a and b were incomparable. This is a contradiction, so those are
the only two posibilities.
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A possible complement poset H p,q is described as follows:

1. If i and j were part of the same chain, i and j are now incomparable. i 6¹ j and j 6¹ i

2. If i was part of the p-chain and j was part of the q-chain, i and j are now comparable. j ¹ i

3. If i was part of neither chains, i.e., i is the bottom left element, then i cannot be compared to any other
element anymore.

If we want to make a linear extension of H p,q , we see that the bottom left element can be mapped to any
number from 1, . . . , p + q + 1. For any element i from the p-chain and any element j from the q-chain, we
have j ¹ i , so for the linear extension f we should have f ( j ) ≤ f (i ). Therefore we can only map the elements
from the p-chain to the p highest numbers left in

{
1, . . . , p +q +1

}
, minus the number already chosen for the

bottom left element. So we cannot choose these numbers, there is only one possible way. Since no elements
from the p-chain are comparable, it does not matter which elements maps to which number. Therefore, this
can be done in p ! ways. For the elements in the q-chain, we then have q numbers left to map to. Since
no elements from the q-chain are comparable, it does not matter which elements maps to which number.
Therefore, this can be done in q ! ways. Take everything together and we get:

e(H p,q ) = (p +q +1)p !q ! (4.4)

Now we look at the poset Un , forming a zigzag pattern with n points, see Figure 4.4. We have the following
relations: a Â b ≺ c Â d ≺ e Â f ≺ g . Which means that our linear extension υ should be defined such that
υ(a) > υ(b) < υ(c) > υ(d) < υ(e) > υ( f ) < υ(g ). This is a reverse alternating permutation.
So the number of linear extensions of Un is equal to the number of reverse alternating permutations.

Figure 4.4: Un with n = 7 [1].

Figure 4.5: U n with n = 7 [1].

Lemma 4.3.4. The number of reverse alternating permutations of length n equals the number of alternating
permutations of length n.

Proof. Let ρ be a reverse alternating permutation of length n made from the numbers {1, . . . ,n}.

ρ(1) > ρ(2) < ρ(3) > . . .

Let Rn be the set of reverse alternating permutation of length n. We define a map f : Rn → An such that
1 7→ n, 2 7→ n −1, . . . , n 7→ 1. Then we get an alternating permutation σ ∈An and f (ρ) =σ.
A map f : X → Y is called invertible if ∃g : Y → X such that g ( f (x)) = x for all x ∈ X and f (g (y)) = y for all
y ∈ Y . In our case, such a g exist, namely f −1. The inverse of the map is defined as f −1 : An →Rn such that
n 7→ 1, n−1 7→ 2, . . . , 1 7→ n. We then get the reverse alternating permutation ρ ∈Rn again: f −1(σ) = ρ. Thus,
f in invertible. A map is invertibile if and only if it is bijective. Thus, f is a bijection. So |An | = |Rn |.

We saw that the number of linear extensions of Un is equal to the number of reverse alternating permu-
tations. By Lemma 4.3.4:

e(Un) = |An | = En (4.5)
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A possible complement poset U n is described as follows: we have n elements from X = X1 ∪X2, where

X1 =
{
1, . . . ,

⌊ n
2

⌋}
and X2 =

{
1′, . . . ,

⌈ n
2

⌉′}, and we have the following relations:

1. i ≺ j and i ′ ≺ j ′ if i < j

2. i ≺ j ′ if j − i > 1

3. i ′ ≺ j if j − i > 0

See Figure 4.5 for an example.

Next, we willl prove that the number of linear extensions of U n equals the nth Fibonacci number.

Lemma 4.3.5.
e(U n) = Fn

Proof. Note that U 0 = 1, since X =;. We have no elements, and there is only one way to order this. e(U 1) = 1,
since X1 =; and X2 =

{
1′

}
. We only have one element, and there is only one way to order this. Thus e(U 0) =

F0 = 1 and e(U 1) = F1 = 1. Now we will prove by induction that e(U n+1 = Fn+1 for n ≥ 1.
For n ≥ 1 we have n +1 ≥ 2, so X1 is at least {1} and X2 is at least

{
1′

}
. The minimal elements of U n+1 are 1

and 1′. We can’t compare 1 and 2′, either i = 1 and j = 2 gives 2−1 = 1 6> 1 (relation 2), or i = 2 and j = 1 gives
1−2 =−1 6> 0 (relation 3). Therefore, the minimal elements of U n+1 −

{
1′

}
are 1 and 2′. The minimal element

of U n+1−{1} is 1′, because we can compare 1′ and 2: i = 1 and j = 2 gives j −i = 2−1 = 1 > 0, so 1′ ≺ 2 (relation
3). Thus, the linear extensions of U n+1 either start with 1′ or with both 11′. Thus

e(U n+1) = e
(
U n+1 −

{
1′

})+e
(
U n+1 −

{
1,1′

})
(4.6)

First we show that U n+1 −
{
1′

}
is isomorphic to U n .

Let f : U n+1 −
{
1′

}→U n be such that{
f (i ) = i ′ ∀i ∈ {

1, . . . ,
⌊ n+1

2

⌋}
f (i ′) = i −1 ∀i ∈

{
2′, . . . ,

⌈ n+1
2

⌉′}
f is clearly injective. We also get

f (i ) ∈
{

1′, . . . ,

⌊
n +1

2

⌋′}
=

{
1′, . . . ,

⌈n

2

⌉′}
f (i ′) ∈

{
1, . . . ,

⌈
n +1

2

⌉
−1

}
=

{
1, . . . ,

⌊n

2

⌋}
Thus f is surjective. Therefore, f is bijective.

• If i < j , then i ≺ j and i ′ ≺ j ′. Also f (i ′) ≺ f ( j ′) and f (i ) ≺ f ( j )

• If j − i > 1, then i ≺ j ′. Also ( j −1)− i > 0, by relation (3) i ′ ≺ j −1, which equals f (i ) ≺ f ( j ′)

• If j − i > 0, then i ′ ≺ j . Also j − (i −1) > 1, by relation (2) i −1 ≺ j ′, which equals f (i ′) ≺ f ( j )

Thus u ≺ v if and only if f (u) ≺ f (v) for all u, v ∈ X . This together with the fact that f is bijective, means that
f is an order isomorphism. Thus, U n+1 −

{
1′

}
and U n are ismorphic. Therefore, they have the same number

of linear extensions.
e
(
U n+1 −

{
1′

})= e
(
U n

)
(4.7)

Now we show that U n+1 −
{
1,1′

}
is isomorphic to U n−1.

Let f : U n+1 −
{
1,1′

}→U n−1 be such that{
f (i ) = i −1 ∀i ∈ {

2, . . . ,
⌊ n+1

2

⌋}
f (i ′) = (i −1)′ ∀i ∈

{
2′, . . . ,

⌈ n+1
2

⌉′}
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f is clearly injective. We also get

f (i ) ∈
{

1, . . . ,

⌊
n +1

2

⌋
−1

}
=

{
1, . . . ,

⌊
n −1

2

⌋}
f (i ′) ∈

{
1′, . . . ,

(⌈
n +1

2

⌉
−1

)′}
=

{
1, . . . ,

⌈
n −1

2

⌉′}
Thus f is surjective. Therefore, f is bijective.

• If i < j , then i ≺ j and i ′ ≺ j ′. Also i −1 < j −1, by relation (1) f (i ) ≺ f ( j ) and f (i ′) ≺ f ( j ′)

• If j − i > 1, then i ≺ j ′. Also ( j −1)− (i −1) > 1, by relation (2) i −1 ≺ ( j −1)′, which equals f (i ) ≺ f ( j ′)

• If j − i > 0, then i ′ ≺ j . Also ( j −1)− (i −1) > 0, by relation (3) (i −1)′ ≺ j −1, which equals f (i ′) ≺ f ( j )

Thus u ≺ v if and only if f (u) ≺ f (v) for all u, v ∈ X . This together with the fact that f is bijective, means that f
is an order isomorphism. Thus, U n+1 −

{
1,1′

}
and U n1 are ismorphic. Therefore, they have the same number

of linear extensions.
e
(
U n+1 −

{
1,1′

})= e
(
U n1

)
(4.8)

We get from equations 4.6, 4.7 and 4.8 and the assumptions that e(U n) = Fn and e(U n−1) = Fn−1:

e(U n+1) = e(U n)+e(U n−1) = Fn +Fn−1 = Fn+1

For examples on the isomorphisms, see Figure 4.6, 4.7, 4.8 and 4.9.

Figure 4.6: U 7 −
{
1′

}
. Figure 4.7: U 6. Figure 4.8: U 7 −

{
1,1′

}
. Figure 4.9: U 5.

Theorem 4.3.6. Sidorenko
Let P be a two-dimensional poset with n elements, and let P be a complement of P . We have

e(P ) ·e(P ) ≥ n!

[33]

The proof of this theorem uses “Stanley’s interpretation of e(P ) as volumes of certain polytopes" [1],
which is beyond the scope of this report.

If P is an n-chain, every element is comparable. Therefore, in P , no element is comparable. P is an
n-antichain. We saw that the number of linear extensions equals 1 and n!, respectively.

e(P ) ·e(P ) = 1 ·n! = n!

So in this case the inequality in Theorem 4.3.6 is tight.
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Let us have a look at Hp,q again. In this case n = |Hp,q | = p +q +1. From equation 4.3 and 4.4, we get:

e(Hp,q ) ·e(H p,q ) =
(

p +q

p

)
· (p +q +1)p !q !

= (p +q)!

p !q !
· (p +q +1)p !q !

= (p +q)! · (p +q +1) = (p +q +1)!

So the inequality in Theorem 4.3.6 is tight again.

If we look at Un we see that the main theorem, Theorem 4.0.1, follows immediately from Sidorenko’s
Theorem 4.3.6.

e(Un) ·e(U n) ≥ n!

En ·Fn ≥ n!

Thus, the Fibonacci and Euler numbers are connected.
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