
Delft University of Technology
Faculty of Electrical Engineering, Mathematics and Computer Science

Delft Institute of Applied Mathematics

Constrained Single-Error-Detecting codes for DNA-based
Storage Systems

(Dutch title: Beperkte Enkel-Fout-Detecterende codes voor
DNA-gebaseerde opslagsystemen)

Thesis submitted to the
Delft Institute of Applied Mathematics
in partial fulfilment of the requirements

for the degree

BACHELOR OF SCIENCE
in

APPLIED MATHEMATICS

by

H. Vermeer

Delft, Nederland
February 2021

Copyright © 2021 by H. Vermeer. All rights reserved.

BSc thesis APPLIED MATHEMATICS

“Constrained Single-Error-Detecting Codes for DNA-Based Storage
Systems”

(Dutch title: “Beperkte Enkel-Fout-Detecterende Codes voor
DNA-Gebaseerde Opslagsystemen”

H.Vermeer

Delft University of Technology

Thesis committee

Dr.ir. J.H. Weber (supervisor)

Dr. J.A.M. de Groot (supervisor)

Drs E.M. van Elderen

February, 2021 Delft

Abstract

The amount of data being produced is growing exponentially [1]. An im-
portant challenge is to find methods to store this data efficiently and in an
environmentally friendly way. One idea that is a growing research topic in-
volves using synthetic DNA. DNA has the potential to be more efficient and
environmentally friendly than current methods. DNA is made of a sequence of
four nucleotides, Adenine (A), Cytosince (C), Guanine (G), and Thymine (T).
To store data, DNA strands can be created with specific nucleotide sequences.
In the process of reading and storing data substitution errors can occur. Two
constraints are introduced to minimise the number of errors. The GC-weight
constraint which states that every DNA sequence must have a fixed number
of G and C nucleotides, and the runlength constraint, which states the maxi-
mum number of repeating nucleotides possible in every DNA sequence.

In this thesis the maximum number of DNA sequences Br(n,w, d) of length
n that satisfy the runlength constraint r, GC-weight constraint w and mini-
mum (Hamming) distance d is investigated for r > 1 and d = 2. The research
continues the work of Van Leeuwen [2] and Weber et al. [3] where the case
was settled for r = 1 and d = 2. Six algorithms are used to obtain lower
bounds for this maximum number of DNA sequences. Further lower bounds
and an upper bound for Br(n,w, 2) are obtained or proven after considering
a construction of DNA sequences containing words with specific properties.
Two of the bounds result in a narrow range of possible values for Br(n,w, 2).

i

Contents

1 Introduction 1
1.1 Motivation . 1
1.2 Research question . 1
1.3 Organisation of the thesis . 2

2 Prerequisites 3
2.1 What is DNA? . 3
2.2 Basic coding concepts . 3
2.3 Constraints on DNA-based codes . 4
2.4 The DNA set . 5

3 Six algorithms to construct a DNA code 8
3.1 Algorithms 1,2 and 3 . 8
3.2 Algorithms 4,5 and 6 . 9
3.3 Evaluation of the Algorithms . 10

4 Parity Symbol Construction 12
4.1 Applying the constraints . 12
4.2 The Parity symbol . 13
4.3 A formula for Rr(n,w) . 15
4.4 Evaluation of the Parity Symbol Construction 20
4.5 The case r=1 . 21

5 Upper and Lower bounds for Br(n,w, 2) 25
5.1 Even/odd weight lower bound . 25
5.2 Parity symbol construction bounds 26
5.3 Comparing the bounds . 26

6 Conclusions and Future Research 28
6.1 Conclusions . 28
6.2 Future Research . 29

Bibliography 30

A Python Code 31
A.1 Generating Br(n,w) . 32
A.2 Algorithms 1,2 and 3 . 32
A.3 Algorithms 4,5 and 6 . 34
A.4 Recursive formula for Br(n,w) . 36
A.5 Recursive formulas . 36
A.6 Algorithm to obtain the number of words in Rr(n,w) 39

B Parity Symbol construction 40
B.1 Lower bounds for Br(n,w, d) for other values of w 40
B.2 Parity symbol table for r = 3 and r = 4 40
B.3 Recursive formula proof . 41

ii

1 Introduction

1.1 Motivation

In the last hundred years society has adapted to the ability to store large amounts
of information as data. Currently data is stored on magnetic and optical storage
devices that use on and off switches to represent bits. Storing data in this way
has a density of about 100 GB/mm3 and a durability of 30 years [4]. While this
is sufficient at the moment, the amount of data is growing fast [1] and research is
being done into more efficient and environmentally friendly methods. One of those
methods uses synthetic DNA which is a potential solution to both issues. With
the development of DNA technologies, the use of DNA as information storage has
become a popular research topic.

Among other potential solutions DNA is unique in its high storage capacity and
structural integrity. A human cell can hold 6.4 GB of information and DNA has
been recovered from species extinct for more than 10,000 years [5]. Using DNA for
data storage has the potential to solve many of the issues currently surrounding
electronic data storage. This thesis focuses on the sequences of nucleotides that can
be used to store information.

1.2 Research question

In [6] and [7] two constraints are explained that are important to consider when
storing data using DNA. A code consisting of DNA codewords is introduced which
applies these constraints. The constraints involve the maximum number of repeated
nucleotides, and the fixed number of G and C nucleotides. If the code also has
minimum Hamming distance of 2 it can detect single substitution errors. Every
code has a size and therefore there exists a DNA code of maximum size which has
minimum distance 2. This maximum size has been settled for the case where no
repeated nucleotides are allowed [3]. However the maximum size is still unknown if
repetitions are permitted. This thesis addresses the question ”What upper bounds
and lower bounds exist for DNA codes of maximum size with minimum distance 2”.
Several algorithms are given which compute a DNA code with minimum distance
2 providing lower bounds for the maximum size. A more structured method to
construct such a DNA code is also given which results into other lower bounds as
well as an upper bound for the maximum size of a DNA code with minimum distance
2.

1

1.3 Organisation of the thesis

This section gives a description of the remaining Chapters in this thesis.

Chapter 2: Prerequisites. The first half of this chapter provides some basic
knowledge about DNA and coding theory that will be used throughout this thesis.
The second half explains two constraints that are important in DNA-based storage
and defines DNA sets and DNA codes.

Chapter 3: Six Algorithms to construct a DNA code with minimum
distance 2. In Section 3.1 three adjusted algorithms from [2] are given. In Section
3.2 three additional algorithms are conceived that compute a DNA code. The last
section evaluates the algorithms.

Chapter 4: Parity Symbol Construction. In this Chapter the main research of
this thesis is presented. A construction from binary codes is applied to the DNA case.
This construction results in a conjecture about the maximum number of words in a
DNA code with minimum distance 2. In Section 4.1 the construction is introduced
with two examples. In Sections 4.2 and 4.3 the construction is formally defined. In
Sections 4.4 and 4.5 the results from the construction are evaluated.

Chapter 5: Upper and Lower bounds for Br(n,w, 2) This chapter summarises
the upper bounds and lower bounds obtained for Br(n,w, 2). In Section 5.1 an
additional lower bound is proven. In Section 5.2 lower bounds and an upper bound
obtained as a result of Chapter 4 are discussed. In Section 5.3 the bounds are
compared resulting in a narrow range of possible values for Br(n,w, 2).

Chapter 6: Conclusions and Future Research. This chapter concludes the
results of the preceding Chapters.

2

2 Prerequisites

To understand how DNA is used in data storage we first give a summary of how the
structure of DNA can be useful. We then explain some basic concepts about coding
which are used to define DNA sets and DNA codes.

2.1 What is DNA?

Deoxyribonucleic acid, commonly known as DNA, is a molecule which contains the
biological information of an organism and is thus found in all aspects of life. The
molecule is composed of two strands which carry the genetic information in the form
of a linear sequence of four basic blocks called nucleotides [4]. There are four possible
nucleotides, Adenine (A), Thymine (T), Guanine (G) and Cytosine (C). The two
strands are connected in a helical structure with every nucleotide in one strand
connected to a nucleotide in the other strand, Adenine with Thymine and Guanine
with Cytosine. The order in which the nucleotides form the sequence determines
what information is stored, much like the order of zeros and ones determines the
information stored on a computer. This is the basis for using DNA as data storage.

To store information a specific sequence of nucleotides is created using DNA syn-
thesising. This sequence can then be read and copied using a method called DNA
sequencing. Using these two methods DNA can be used to store, read and copy
information. However, the techniques used can lead to errors in the sequence of
nucleotides, which means the stored sequence is not the same as the sequence after
reading the DNA strand.

2.2 Basic coding concepts

In this section some of the fundamental concepts of coding theory are stated. In
the context of DNA the theory can be applied to the quarternary alphabet as every
nucleotide can be paired with a number. In this thesis the nucleotides are represented
by numerical symbols. The notation used follows the notation Weber et al. [3]

A↔ 0 T ↔ 1 G↔ 2 C ↔ 3 .

Definition 1. A word of length n is defined as x = (x1, x2, . . . , xn) with xi ∈
{0, 1, 2, 3} for 1 ≤ i ≤ n. x1 is called the first symbol, x2 the second, etc.

Definition 2. A code is a set C of words. The words in a code are called code-
words. A block code is a code where all words have the same length. The size of
the code is the number of words in the code denoted by |C|.

In this thesis only block codes are considered.

Example 1. Let C = {(0, 0), (0, 1), (1, 2), (2, 3), (3, 3)}. Then the size of this code
is |C| = 5 and the length is n = 2.

3

Definition 3. The weight of word x denoted wt(x) is defined as the sum of the
symbols of x:

wt(x) =
n∑

i=1

xi .

Definition 4. A word is called a word with even weight if wt(x) is an even integer
and a word with odd weight if wt(x) is an odd integer.

Example 2. x = (0, 1, 2, 3) has wt(x) = 6 making it a word with even weight.

As explained in the previous section errors can occur in DNA sequences. To detect
and correct potential errors an important concept called the minimum distance is
used.

Definition 5. Let x and y be words of the same length n. The (Hamming)
distance between x and y is the number of positions at which the corresponding
symbols are different, denoted by d(x,y)

Definition 6. The minimum (Hamming) distance of a code C, denoted by d,
is the smallest distance between any two different words x and y in C:

d = min{d(x,y) : x,y ∈ C,x 6= y}.

The minimum distance is an important property of a code because it limits the
number of words possible such that errors can be detected and corrected. If one
error occurs in a word from a code with minimum distance d = 2, then the word
is not in the code and the error is detected. Similarly using a code with minimum
distance d means up to d− 1 errors are always detected. Additionally, a code with
minimum distance d can always correct up to bd−1

2
c errors [8].

Example 3. Let C = {(0, 0, 0, 0), (1, 1, 1, 1), (2, 2, 2, 2), (3, 3, 3, 3). Then the mini-
mum distance of C is d = 4. So this code can detect up to 3 errors and correct 1
error.

For more information on the properties of codes we refer to [8].

2.3 Constraints on DNA-based codes

In the context of DNA, previous studies [5][6] have shown that there are two main
causes of errors during DNA synthesising and sequencing: homopolymer runs and
the GC-weight. In this section two constraints are explained that are used to reduce
the number of occuring errors.

A homopolymer run in a strand of nucleotides is a repetition of nucleotides within
the strand. When reading a strand every nucleotide is read as a colour signal which
means an error is more likely to occur when multiple neighbouring nucleotides are
the same. The runlength constraint restricts the maximum number of repeating
nucleotides allowed in a word.

4

Definition 7. The maximum runlength of a word x, denoted by r(x), is the
maximum number of repeated symbols in x:

r(x) = max{r : ∃i such that xi = xi+1 · · · = xi+r−1}.

The number of G and C nucleotides in a word also called the GC-weight is the other
important source of errors. The chance of errors occurring is higher in words with
a GC-weight higher than 60% or lower than 40%. For this reason the GC-weight
constraint is introduced.

Definition 8. The GC-weight of a word x, denoted by w(x), is the number of
symbols in x that are equal to 2 or 3:

w(x) = |{i : xi ∈ {2, 3}}|.

Example 4. Let x = (0, 1, 1, 3, 2, 2, 2, 1). Then r(x) = 3 since the largest number
of repeated symbols is the three 2’s, and w(x) = 4.

Definition 9. The symbols 0 and 1 are called opposite symbols of each other and
2 and 3 are opposite symbols of each other.

2.4 The DNA set

With the knowledge from the previous sections we can now define DNA sets that
satisfy given parameters and constraints. Considering the set of all words with
length n, a subset of this set contains all the words that also have GC-weight w.

Definition 10. B(n,w) is the DNA set of all words with length n and GC-weight
w.

A subset of B(n,w) contains all such words that have no more than r repeated
symbols.

Definition 11. We define Br(n,w) as the DNA set of all words that have length
n, GC-weight w and maximum runlength r:

Br(n,w) = {x : x has length n ∧ w(x) = w ∧ r(x) ≤ r}.

Its cardinality is denoted by |Br(n,w)| = Br(n,w).

Remark: B1(n,w) ⊆ B2(n,w) ⊆ · · · ⊆ Bn(n,w) = Bn+1(n,w) = · · · = B(n,w)

This set of words can always be generated by taking the entire set of words with
length n and removing the words that do not meet the requirements. The Python
code for generating the set can be found in Appendix A.1

Example 5. Let us generate the set B1(3, 1). This is the set of all words with length
n = 3, GC-weight w = 1 and maximum runlength r = 1. This means that every
word has one 2 or one 3 and has no repeating symbols.

B1(3, 1) = {(0, 1, 2), (0, 1, 3), (0, 2, 0), (0, 2, 1), (0, 3, 0), (0, 3, 1), (1, 0, 2), (1, 0, 3),

(1, 2, 0), (1, 2, 1), (1, 3, 0), (1, 3, 1), (2, 0, 1), (2, 1, 0), (3, 0, 1), (3, 1, 0)}.

5

The number of words in this set is B2(3, 1) = 16. Any other combination of sym-
bols either does not have length 3, or does not satisfy the GC-weight or runlength
constraint so it is not in this set.

The number of words in the set Br(n,w) are counted in Theorem 1 from [3]. The
result is a recursive formula involving the subset of all words that do not end with
a 0:

Nr(n,w) = {x ∈ Br(n,w) : xn 6= 0}.

The number of words for which this is the case is denoted by Nr(n,w). The following
property is also stated in [3] which will be used in Section 4.3:

Nr(n,w) = |{x ∈ Br(n,w) : xn 6= 0}| = |{x ∈ Br(n,w) : xn 6= 1}|.

Theorem 1. For 0 ≤ w ≤ n and r ≥ 1, it holds that
Nr(0, 0) = 1,

Nr(n,w) = 2n−1
(
n− 1

w

)
+ 2n

(
n− 1

w − 1

)
(1)

if 1 ≤ n ≤ r,

Nr(n,w) =

min {r,n−w}∑
j=1

Nr(n− j, w) + 2

min {r,w}∑
j=1

Nr(n− j, n− w) (2)

if n > r, and

Br(n,w) =

min {r,n−w}∑
j=0

Nr(n− j, w). (3)

Table 1: Br(n,w) from Theorem 1 with w = bn
2
c.

Br(n,w)
n r = 1 r = 2 r = 3 r = 4
2 8 8 8 8
3 16 24 24 24
4 56 96 96 96
5 128 296 320 320
6 424 1160 1280 1280
7 1040 3784 4416 4480
8 3352 14696 17608 17920
9 8576 49392 62408 64352
10 27208 190848 248360 257288

To reduce the number of errors that occur the DNA set satisfies the GC-weight and
runlength constraints. To increase the robustness of the set a minimum distance
property is included. A general research challenge is determining a largest possible
subset of Br(n,w) that has minimum distance d.

6

Definition 12. A set C is called a DNA code if C ⊆ Br(n,w) and d(C) ≥ 2.

Definition 13. We define Br(n,w, d) as the number of words in a largest possible
DNA code with length n, GC-weight w and maximum runlength r with minimum
distance d,

Br(n,w, d) = max{|C| : C ⊆ Br(n,w) ∧ d(C) = d}.

Remark: Br(n,w, 1) = Br(n,w)

Example 6. We know the set B1(3, 1) from Example 5. By deleting words we can
obtain minimum distance 2. For example the distance between the first two words
d((0, 1, 2), (0, 1, 3)) = 1. This means we can never have both words in the set if
we want minimum distance 2, so we delete the word (0, 1, 3). Let us assume after
deleting 12 words that the following code is obtained:

{(0, 1, 2), (0, 2, 0), (1, 3, 0), (3, 1, 1)}.

This code is a DNA code with minimum distance 2 with size 4, and so B1(3, 1, 2) ≥ 4.
It is not of maximum size. In the next Chapter we show a larger code can be
constructed with the same parameters.

We note that there are many ways of constructing DNA codes with minimum dis-
tance d and we will outline some in the next Chapter. Also there may be multiple
DNA codes with size Br(n,w, d).

In [2] the case for r = 1 has been investigated and in [2] and [3] a formula for
B1(n,w, 2) is stated and proven. Here we investigate Br(n,w, 2) with a relaxed
runlength constraint i.e. r > 1.

7

3 Six algorithms to construct a DNA code

To find a lower bound for Br(n,w, 2) it is sufficient to construct a DNA code that
fits the parameters. Every time a code is constructed. we know Br(n,w, 2) is at
least as large as the size of the code. In this section six algorithms are explained that
each construct a DNA code that satisfies the constraints and has minimum distance
2. Each algorithm starts by generating the set Br(n,w), which already satisfies the
GC-weight and runlength constraints, and deletes words in order to obtain minimum
distance 2. The order in which the words appear in this set is important, here the
set is generated in lexicographical order [2].

The first algorithm is from Limbachiya et al. [6] and the second and third algorithm
are from Van Leeuwen [2]. Here the same algorithms are adjusted to account for
an arbitrary maximum runlength r. Algorithms 4,5 and 6 were conceived in this
research to improve the lower bound obtained in the first three algorithms. Every
algorithm takes as input a length n, a GC-weight w, a maximum runlength r and
a minimum distance d and results in a code that satisfies the parameters. The
algorithms were implemented in Python code, which can be found in Appendices
A.2 and A.3.

3.1 Algorithms 1,2 and 3

Algorithm 1:

1. The set Br(n,w) is generated lexicographically which contains all the words
that have length n and satisfy the GC-weight w and maximum runlength r.

2. The algorithm checks for every word in this set how many other words are
within d− 1 distance of this word and places this information in a dictionary
with the words as keys and the number of words within the d − 1 radius as
values.

3. It iterates through the dictionary with each iteration removing a key with the
maximum value. Every time a key is removed the values are adjusted since
this word should no longer be counted.

4. After the iterations there are no words within d− 1 distance of each other so
the words in the dictionary have minimum distance d. The number of words
in the dictionary can be counted to obtain a lower bound for Br(n,w, d).

Algorithm 2 which is a variation of the first algorithm:

1. A dictionary is created in the same way as Algorithm 1 and an empty list is
created.

2. Instead of removing keys with the maximum value from the dictionary, the
iteration adds the key with the lowest value to the empty list.

3. This key is removed from the dictionary along with all the words that have
distance up to d− 1 to this key.

8

4. The values of all the keys that have distance up to d− 1 of the removed words
are reduced.

5. The iteration repeats until the dictionary is empty. The words in the list have
minimum distance d resulting in a lower bound for Br(n,w, d).

Algorithm 3 which is simpler than the previous two algorithms as it does not create
a dictionary:

1. A list with all the words from Br(n,w) is generated lexicographically, and an
empty list is created.

2. In the first iteration the first word is moved to the empty list.

3. With every iteration the algorithm checks if the next word has at least a
distance of d with every word in the other list. If it does, the word is moved
to this list. If it does not the word is deleted.

4. The result is a list with words that satisfies minimum distance d so the size of
this list is a lower bound for Br(n,w, d).

3.2 Algorithms 4,5 and 6

Van Leeuwen [2] proves that the first three algorithms generate codes of maximum
possible size for B1(n, bn2 c, 2). This means the lower bound produced by those algo-
rithms was of maximum size. The next three algorithms were conceived based on
this result in an attempt to improve on the lower bounds obtained for Br(n,w, 2) in
the first three algorithms.

Algorithm 4:

1. This algorithm starts by generating a code with maximum runlength r = 1
and minimum distance d = 2 using Algorithm 1. We know this code is of
maximum size for w = bn

2
c. The list of words in Br(n,w) is also generated.

2. With every iteration the algorithm checks if a word from Br(n,w) has a dis-
tance of at least 2 with every word in the code. If it does the word is added
to the code. If not the word is deleted from the list.

3. The resulting code has words from Br(n,w) and has minimum distance 2.

Algorithm 5:

1. Step 1 from Algorithm 4.

2. Generate the set of all words in Br(n,w) without the words that satisfy r = 1,
Br(n,w)\B1(n,w). Note that no words from this set are in the generated code
since only words from B1(n,w) can be in the code.

3. The algorithm proceeds to add the words from Br(n,w)\B1(n,w) to the code,
and then applies Algorithm 1 on the code again to obtain minimum distance 2.

4. The resulting code has words from Br(n,w) and has minimum distance 2.

9

Algorithm 6 follows the same principle as Algorithm 5 but uses Algorithm 3 to
generate the code and obtain minimum distance 2 at the end instead of Algorithm
1.

3.3 Evaluation of the Algorithms

The results from every algorithm for r = 2 and r = 3 are given in Tables 2 and 3
respectively for 2 ≤ n ≤ 9 and GC-weight bn

2
c. For the values of n where different

lower bounds are obtained the largest lower bound is underlined. In Appendix B.1
tables can be found for other values of w.

For the case r = 1, Algorithms 1,2 and 3 all obtained the maximum possible value
for B1(n, bn2 c, 2) [2]. This maximum value is given in Table 2.

From Tables 2 and 3 we see that different algorithms obtain the largest lower bound
for r ≥ 2. For n = 7 and r = 2, algorithms 1 and 2 obtain larger lower bounds than
Algorithm 3, while for n = 8 and r = 2 Algorithm 2 obtains a larger lower bound
than algorithms 1 and 3. For n = 8 and r = 3, Algorithm 3 produces the largest
lower bound.

We can see that Algorithms 4,5 and 6 did not improve on the lower bound for
Br(n,w, 2) compared to Algorithms 1,2 and 3.

Table 2: Lower bounds for B2(n,w, 2) from each algorithm with w = bn
2
c.

r = 1 r = 2
n Alg 1 Alg 2 Alg 3 Alg 4 Alg 5 Alg 6
2 4 4 4 4 4 4 4
3 8 12 12 12 12 12 12
4 32 48 48 48 48 48 48
5 68 148 148 148 125 120 138
6 216 580 580 580 472 504 544
7 528 1892 1892 1864 1419 1672 1694
8 1704 7344 7352 7244 5414 6512 6736
9 4336 24632 24696 23996 17057 22624 22464

10

Table 3: Lower bounds for B3(n,w, 2) from each algorithm with w = bn
2
c.

r = 3
n Alg 1 Alg 2 Alg 3 Alg 4 Alg 5 Alg 6
2 4 4 4 4 4 4
3 12 12 12 12 12 12
4 48 48 48 48 48 48
5 160 160 160 131 138 154
6 640 640 640 496 564 628
7 2208 2208 2208 1618 2036 2100
8 8800 8800 8808 6182 8056 8512
9 31092 31204 31088 21230 29376 22464

11

4 Parity Symbol Construction

One of the most common examples of error-detecting codes with minimum distance
d = 2 in the binary case involves the use of a parity bit also called a check bit [9].
Starting with binary words with length n− 1 a bit can be added to each word such
that the total sum of the bits is even. The resulting code with length n will have
the property that the minimum distance is 2 since changing any bit would result
in a word with an odd weight indicating the word is not in the code. A similar
construction can be built for DNA codes that satisfy the constraints.

4.1 Applying the constraints

It seems that one of the problems with applying this idea to DNA codes is that
there always exists two symbols that when added result in a word with even weight:
{0, 2} or {1, 3}. However choosing different symbols affects the GC-weight of the
word so the symbol can be specifically chosen to either increase the GC-weight, or
keep it constant. Depending on which is chosen, the initial set of words with length
n − 1 should have GC-weight w or w − 1. When constructing a subset of Br(n,w)
both cases need to be considered. This is illustrated in the following example.

Example 7. We construct a subset of B2(3, 1) with minimum distance d = 2 using
this method. The runlength constraint is redundant in this case since no word can
have 3 of the same symbol, due to the GC-weight.

We start with two sets of words with length n− 1 = 2. The difference between the
two sets is the GC-weight, one has GC-weight w − 1 and the other has GC-weight
w. Those two sets are:

B2(2, 0) = {00, 01, 10, 11} and B2(2, 1) = {02, 03, 12, 13, 20, 21, 30, 31}.

We add a symbol at the end of each word to make the total sum of the symbols
even. In the first set only a 2 or 3 can be added to obtain w = 1. In the second set
only a 0 or 1 can be added. This results in the following subset of B2(3, 1):

C = {002, 013, 103, 112} ∪ {020, 031, 121, 130, 200, 211, 301, 310}.

Notice that changing a 1 into a 3 in any word would keep the total sum even but
change the GC-weight of the word so it is not in B2(3, 1). In the same way a 0
cannot be interchanged with a 2. Additionally every word in C differs in at least
two positions compared to any other word from C, which means d(C) = 2. Thus a
subset of B2(3, 1) has been constructed with minimum distance 2.

Combining the two sets we constructed a DNA code with size 12 that satisfies the
given constraints and indicating

B2(3, 1, 2) ≥ B2(2, 0) + B2(2, 1) = 4 + 8 = 12.

The argument above can be used in the same way to construct any DNA code with
the property r ≥ max{w, n−w} as adding a symbol cannot increase the maximum

12

runlength in a word. However, when this is not the case there is a set of words that
would violate the runlength constraint.

We have shown that the GC-weight constraint does not cause any issues with the
construction of DNA codes using the method in Example 7. Taking the runlength
constraint into account is more difficult. It is possible that the added symbol is
equal to the last r symbols of a word which would lead to r + 1 repeated symbols.
This word cannot be in the code as it violates the runlength constraint.

Example 8. Consider the set B2(5, 2). To construct a code with words from this set
using the method in Example 7, we start with all words from B2(4, 2) and add either
a 0 or a 1 to make the total sum of the symbols even. The words 2200 and 3300 are
in this set and would have a 0 added to it which violates the runlength constraint.
Similarly the words 2311 and 3211 cannot have a 1 added to it. By inspection there
are no other words that would violate the runlength constraint in this way so there
are 4 words out of the B2(4, 2) = 96 that should not be counted.

Next we look at all the words from B2(4, 1) where we add either a 2 or a 3. Since
w = 1, adding either would never violate the runlength constraint. So there are
B2(4, 1) = 56 words that satisfy the conditions.

Combining the 2 results gives a DNA code that satisfies n = 5, r = 2, w = 2 and
d = 2 showing

B2(5, 2, 2) ≥ B2(4, 2) + B2(4, 1)− 4 = 96 + 56− 4 = 148.

Both examples ended up with lower bounds for Br(n,w, 2) that are equal to the
maximum values obtained using the algorithms in Chapter 3. The method used in
examples 7 and 8 is generalised in the next section.

4.2 The Parity symbol

Definition 14. For given values of n, r and w, the parity symbol xp of a word x
is defined as

xp =

0 if x ∈ Br(n,w) ∧ wt(x) is even,

1 if x ∈ Br(n,w) ∧ wt(x) is odd,

2 if x ∈ Br(n,w − 1) ∧ wt(x) is even,

3 if x ∈ Br(n,w − 1) ∧ wt(x) is odd.

Definition 14 indicates which symbol is added at the end of any word that results
in a word with length n + 1, even weight, GC-weight w and most importantly has
minimum distance 2 with any other word that is generated using the parity symbol.

13

Theorem 2. Let n, w, and r be integers satisfying 0 ≤ w ≤ n and r ≥ 1. Let
C1 = Br(n,w) and C2 = Br(n,w − 1). Let C be the DNA code generated by C1 and
C2 by adding the parity symbol to every word in the two codes:

C = {xxp : x ∈ C1 ∪ C2}. (4)

Then C has words with length n + 1, GC-weight w and C has minimum distance 2.

Proof. The words in C are words with length n with one symbol added. So the
words clearly have length n + 1

If x ∈ Br(n,w) then xp ∈ {0, 1} and so xxp has GC-weight w. If on the other hand
x ∈ Br(n,w − 1) then xp ∈ {2, 3} so xxp also has GC-weight w. Thus C only has
words with GC-weight w.

To prove the minimum distance, let x, y ∈ C1 ∪C2 with x 6= y and xp and yp their
parity symbols. There are two cases to consider, xp = yp and xp 6= yp.

If xp = yp, then wt(x)= wt(y) and either the GC-weight of both words is w or it is
w − 1. Suppose d(x,y) = 1 and let i denote the position in which x and y differ.
Since the GC-weights are equal, there are four possibilities for (xi, yi) : (0, 1), (1, 0),
(2, 3) and (3, 2). The rest of the symbols of x and y are equal, so this indicates one
word has even weight and one has odd weight which is a contradiction.

If xp 6= yp, then xxp differs in at least 2 positions compared to yyp since x 6= y.
Together with the case xp = yp this indicates the words in C have minimum distance
≥ 2.

To obtain minimum distance 2 we show two words exist that have distance 2. Let
x ∈ C1 and y ∈ C2 with xi = yi for 1 ≤ i ≤ n− 1, xn = 0 and yn = 2. Then xp 6= yp
so d(xxp,yyp) = 2.

Theorem 2 shows the construction of DNA codes using the parity symbol always
results in the code having minimum distance 2.

We can now formally define the set of words that violate the runlength constraint
like the words in Example 8.

Definition 15. We define Rr(n,w) as the set of all words from Br(n,w) and
Br(n,w − 1) with the property that the last r symbols are equal to the parity
symbol:

Rr(n,w) = {x ∈ Br(n,w) ∪ Br(n,w − 1) : xn−r+1 = · · · = xn = xp}.

Its cardinality is denoted by |Rr(n,w)| = Rr(n,w).

The set Rr(n,w) can be viewed as the set of all words with the given parameters
that would violate the runlength constraint if a parity symbol is added. If we omit
those words from the construction, adding the parity symbol will not violate the

14

runlength constraint and every word in Br(n,w) and Br(n,w − 1) corresponds to a
unique word with length n+ 1 that differs in at least two positions from every other
word. This results in the following lower bound for Br(n,w, 2):

Br(n,w, 2) ≥ Br(n− 1, w) + Br(n− 1, w − 1)−Rr(n− 1, w). (5)

4.3 A formula for Rr(n,w)

In this section we focus on the number of words in Rr(n,w). We start by defining
several required sets with different properties which are then used in proving a
recursive formula for Rr(n,w). The proof of this formula follows a similar approach
to the proof of Theorem 1 from [3].

We start by seperating the words in Rr(n,w). There are four disjoint sets of words
that would violate the runlength constraint when a parity symbol is added:

R0 = {x ∈ Br(n,w) : wt(x) is even ∧ xn−r+1 = · · · = xn = 0},
R1 = {x ∈ Br(n,w) : wt(x) is odd ∧ xn−r+1 = · · · = xn = 1},
R2 = {x ∈ Br(n,w − 1) : wt(x) is even ∧ xn−r+1 = · · · = xn = 2},
R3 = {x ∈ Br(n,w − 1) : wt(x) is odd ∧ xn−r+1 = · · · = xn = 3}.

(6)

Resulting in
Rr(n,w) = R0 ∪R1 ∪R2 ∪R3, (7)

and
Rr(n,w) = |R0|+ |R1|+ |R2|+ |R3|.

Example 9. Following Example 8, the words in R2(4, 2) can be written using
R0,R1,R2,R3:

R0 = {2200, 3300},
R1 = {2311, 3211},
R2 = ∅,
R3 = ∅.

This results in R2(4, 2) = {2200, 3300, 2311, 3211} and R2(4, 2) = 4.

To obtain a formula for the general value of Rr(n,w) the number of words in Ri

with i ∈ {0, 1, 2, 3} can be counted. This can be done by looking more closely at the
properties of Ri. With the last r symbols of each word being equal, we can consider
the symbols before the last r symbols to be from the set Br(n− r, w) for R0 and R1

and from the set Br(n − r, w − r − 1) for R2 and R3. However, the words cannot
end with the symbol in question and also have even/odd weight requirements.

Before we state and prove the recursive formula for Rr(n,w) a number of sets are
defined which apply these requirements:

15

Definition 16. NE0
r (n,w) is defined as the subset of all words in Br(n,w) with even

weight that do not end in a 0, and NE1
r (n,w) the subset of even words that do not

end in a 1. NO0
r (n,w) and NO1

r (n,w) are the respective subsets with odd weight
instead of even weight.

NE0
r (n,w) = {x ∈ Br(n,w) : wt(x) is even ∧ xn 6= 0},
NE1

r (n,w) = {x ∈ Br(n,w) : wt(x) is even ∧ xn 6= 1},
NO0

r (n,w) = {x ∈ Br(n,w) : wt(x) is odd ∧ xn 6= 0},
NO1

r (n,w) = {x ∈ Br(n,w) : wt(x) is odd ∧ xn 6= 1}.

Their cardinalities are denoted by NE0
r (n,w), NE1

r (n,w), NO0
r (n,w), and NO1

r (n,w)
respectively.

First Remark: The words with even weight and words with odd weight not ending
with a 0 together form the set Nr(n,w) with the formula for Nr(n,w) shown in
Theorem 1. The number of words not ending with a 1 also equals Nr(n,w). In
equation:

NE0
r (n,w) + NO0

r (n,w) = Nr(n,w) = NE1
r (n,w) + NO1

r (n,w). (8)

Second Remark: It may seem that NE0
r (n,w) and NO1

r (n,w) are equal in size for
some parameters. The following is a counter-example:

Example 10. With the binary set B2(4, 0) (w = 0 therefore no 2’s and 3’s) the
following sets are as defined in Definition 16.

NE0
2 (4, 0) = {(0, 0, 1, 1), (0, 1, 0, 1), (1, 0, 0, 1)},
NE1

2 (4, 0) = {(0, 1, 1, 0), (1, 0, 1, 0), (1, 1, 0, 0)},
NO0

2 (4, 0) = {(1, 0, 1, 1), (1, 1, 0, 1)},
NO1

2 (4, 0) = {(0, 0, 1, 0), (0, 1, 0, 0)}.

This shows NE0
2 (4, 0) 6= NO1

2 (4, 0).

For the cases xn 6= 2, 3 symmetrical formulas can be obtained. Consider the set
NE0

r (n,w). Now replace every 0 by a 2, 1 by a 3 and vice-versa. Then the set is
obtained containing all words with even weight not ending in a 2 that satisfy the
runlength constraint r and have GC-weight n−w. The number of words in this set
is the same as the number of words in the set NE0

r (n, n− w).

|{x ∈ Br(n,w) : wt(x) is even xn 6= i}| =

NE0

r (n,w) if i = 0,

NE1
r (n,w) if i = 1,

NE0
r (n, n− w) if i = 2,

NE1
r (n, n− w) if i = 3.

(9)

16

|{x ∈ Br(n,w) : wt(x) is odd xn 6= i}| =

NO0

r (n,w) if i = 0,

NO1
r (n,w) if i = 1,

NO0
r (n, n− w) if i = 2,

NO1
r (n, n− w) if i = 3.

(10)

Example 11. For the case n = 4, r = 2, and w = 2 which are the parameters used
in Example 9, the last 2 symbols of every word in R0 and R1 are equal. By removing
the last 2 symbols we obtain unique words with length n − 2 = 2 and GC-weight
w = 2. For R0 the resulting word has even weight and does not end in a 0. For R1

the resulting word has odd weight and does not end with a 1. This gives:

for R0 : NE0
r (n− r, w) = NE0

2 (2, 2) = {22, 33},
for R1 : NE0

r (n− r, w) = NO1
2 (2, 2) = {23, 32}.

The sets R2 and R3 in this case are the empty set. Suppose there were words in
these sets. Then for every word the last two symbols would be equal and the GC-
weight would be w − 1 = 1. Removing the last two symbols would result in unique
words with length n − 2 = 2 and GC-weight w − 1 − r = −1. Since a word can
not have a GC-weight of −1 we expect the result to be 0 in this case. For R2 the
resulting word has even weight and does not end in a 2. For R3 the resulting word
has odd weight and does not end in a 3. Applying the formulas in (9) and (10) the
number of words with these properties is:

for R2 : NE0
r ((n− r), (n− r)− (w − 1− r)) = NE0

2 (2, 3) = |∅| = 0,

for R3 : NO1
r ((n− r), (n− r)− (w − 1− r)) = NE1

2 (2, 3) = |∅| = 0.

The number of words in each of the sets in Definition 16 can be obtained using the
following recursion formula. It follows a similar idea to the recursion formula for
Nr(n,w) obtained in [3].

Theorem 3. For 0 ≤ w ≤ n and r ≥ 1, it holds that

NE0
r (n,w) = NE1

r (n,w) = NO0
r (n,w) = NO1

r (n,w) =

= 2n−2
(
n− 1

w

)
+ 2n−1

(
n− 1

w − 1

)
,

(11)

if 1 ≤ n ≤ r,

NE0
r (n,w) =

min {r,w}∑
j=1

NE0
r (n− j, n− w) +

min {r,n−w}∑
j=1,odd

NO1
r (n− j, w)

+

min {r,n−w}∑
j=2,even

NE1
r (n− j, w) +

min {r,w}∑
j=1,odd

NO1
r (n− j, n− w)

+

min {r,w}∑
j=2,even

NE1
r (n− j, n− w),

(12)

17

NO0
r (n,w) =

min {r,w}∑
j=1

NO0
r (n− j, n− w) +

min {r,n−w}∑
j=1,odd

NE1
r (n− j, w)

+

min {r,n−w}∑
j=2,even

NO1
r (n− j, w) +

min {r,w}∑
j=1,odd

NE1
r (n− j, n− w)

+

min {r,w}∑
j=2,even

NO1
r (n− j, n− w),

(13)

NE1
r (n,w) =

min {r,n−w}∑
j=1

NE0
r (n− j, w) +

min {r,w}∑
j=1

NE0
r (n− j, n− w)

+

min {r,w}∑
j=1,odd

NO1
r (n− j, n− w) +

min {r,w}∑
j=2,even

NE1
r (n− j, n− w),

(14)

NO1
r (n,w) =

min {r,n−w}∑
j=1

NO0
r (n− j, w) +

min {r,w}∑
j=1

NO0
r (n− j, n− w)

+

min {r,w}∑
j=1,odd

NE1
r (n− j, n− w) +

min {r,w}∑
j=2,even

NO1
r (n− j, n− w),

(15)

if n > r, and

Rr(n,w) = NE0
r (n−r, w)+NO1

r (n−r, w)+NE0
r (n−r, n−w+1)+NO1

r (n−r, n−w+1)
(16)

if r is even,

Rr(n,w) = NE0
r (n−r, w)+NE1

r (n−r, w)+NE0
r (n−r, n−w+1)+NE1

r (n−r, n−w+1)
(17)

if r is odd.

Proof. In the case n ≤ r any word from the set Br(n,w) = B(n,w) satisfies the
runlength constraint. To find NE0

r (n,w) we can simply count the number of words
in B(n,w) that have even weight and end in i ∈ {1, 2, 3}.

If i = 1, the last symbol can be removed to form a word from Br(n− 1, w) with odd
weight. In every such word there are w symbols from {2, 3} and n− 1−w symbols
from {0, 1}. In every position, if one symbol results in a word with even weight, the
other symbol results in a word with odd weight. This means for every word with even
weight there is a word with odd weight. Thus there are 2n−1(n−1

w

)
/2 = 2n−2(n−1

w

)
such words with even weight (and of odd weight) that end in a 1.

If i = 2, the same argument applies but instead of a word from Br(n − 1, w) with
odd weight, it is a word from Br(n − 1, w − 1) with even weight. This results in
2n−1(n−1

w−1

)
/2 = 2n−2(n−1

w−1

)
such words. If i = 3, the word is from Br(n − 1, w − 1)

with odd weight also resulting in 2n−1(n−1
w−1

)
/2 = 2n−2(n−1

w−1

)
words.

18

This results in 2n−2(n−1
w

)
+2n−1(n−1

w−1

)
words for NE0

r (n,w). A symmetrical argument

exists for NE1
r (n,w), NO0

r (n,w) and NO1
r (n,w). Together this proves equation (11)

If n > r, then any word inNE0
r (n,w) can be decomposed into a word from Br(n−j, v)

not ending with an i ∈ {1, 2, 3} followed by j equal symbols i.

If i = 1, then v = w and j ∈ {1, 2, ..,min{r, n−w}}, with j ≤ r due to the runlength
constraint and j ≤ n−w as that is the maximum number of ones in the word. If j is
odd then the word from Br(n− j, v) has odd weight and does not end in a 1. There
are NO1

r (n− j, w) such words for each odd j, summing over the odd values of j gives

a total of
∑min{r,n−w}

j=1,odd NO1
r (n − j, w). If j is even then the word from Br(n − j, v)

has even weight and does not end in a 1. Summing over the even values of j there
are

∑min{r,n−w}
j=2,even NE1

r (n− j, w) such words.

If i = 2, then v = w−j and j ∈ {1, 2, ..,min{r, w}} and the word from Br(n−j, v) has
even weight and does not end in a 2. By applying formula (9) there are NE0

r (n−j, n−
w) such words for each j, summing over j gives in total

∑min{r,w}
j=1 NE0

r (n− j, n−w)
words.

If i = 3, then v = w − j and j ∈ {1, 2, ..,min{r, w}}. If j is odd then the word
from Br(n − j, v) has odd weight and does not end in a 3. If j is even it has even
weight and does not end in a 3. Again applying (9), for the odd values of j the
number of words is NO1

r (n− j, n−w) and for even values of j the number of words
is NE1

r (n− j, n− w)

Summing over all the possible values of j this proves equation (12).

The proof for equation (14) follows the same idea. This proof is shown in Appendix
B.3.

To prove equation (13) we can use NO0
r (n,w) = Nr(n,w) − NE0

r (n,w) and the
formula in Theorem 1.

19

NO0
r (n,w) =

min {r,n−w}∑
j=1

Nr(n−j, n−w)+2

min {r,w}∑
j=1

Nr(n−j, n−w)−NE0
r (n,w) (18)

=

min {r,n−w}∑
j=1,odd

(Nr(n− j, w)−NO1
r (n− j, w))

+

min {r,n−w}∑
j=2,even

(Nr(n− j, w)−NE1
r (n− j, w))

+

min {r,w}∑
j=1

(Nr(n− j, n− w)−NE0
r (n− j, n− w))

+

min {r,w}∑
j=1,odd

(Nr(n− j, n− w)−NO1
r (n− j, n− w))

+

min {r,w}∑
j=2,even

(Nr(n− j, n− w)−NE1
r (n− j, n− w))

(19)

Using formula (8) again we obtain equation (13). The proof for equation (15) is
similar and is shown in Appendix B.3

Finally we prove (16) and (17). The number of words in the set Rr(n,w) is the sum
of the number of words in the sets R0,R1,R2 and R3. We start with counting the
number of words in R0.

From (6) every word in R0 can be reduced to a word in Br(n−r, w) with even weight
not ending in a 0 by removing the last r symbols. This means the number of words
in R0 is NE0

r (n − r, w). For R1 removing the last r symbols results in a word from
Br(n − r, w) not ending with a 1. If r is even the resulting word must have odd
weight of which there are NO1

r (n − r, w) words. If r is odd the resulting word has
even weight resulting in NE1

r (n− r, w).

For R2 every word can be reduced to a word in Br(n− r, w−1− r) with even weight
not ending in a 2. Applying (9) there are NE0

r (n−r, n−w+1) such words. Similarly
for R3 there are NO1

r (n− r, n−w + 1) words if r is even, and NE1
r (n− r, n−w + 1)

words if r is odd.

4.4 Evaluation of the Parity Symbol Construction

Using Theorem 3 to count the number of words in Rr(n,w) the results of values
on the right side of (5) are given in Tables 4 and 5 for the values r = 1 and r = 2
respectively. The resulting lower bound is also shown. The Python code can be
found in Appendix A.6.

20

Table 4: Values of B1(n − 1, w), B1(n − 1, w − 1), R1(n − 1, w) and the resulting
lower bound for different values of n, w = bn

2
c.

n B1(n− 1, w) B1(n− 1, w − 1) R1(n− 1, w) Lower bound for B1(n,w, 2)

3 8 2 2 8
4 16 16 0 32
5 56 24 16 64
6 128 128 44 212
7 424 232 136 520
8 1040 1040 376 1704
9 3352 2104 1168 4288
10 8576 8576 3548 13604

Table 5: Values of B2(n − 1, w), B2(n − 1, w − 1), R2(n − 1, w) and the resulting
lower bound for different values of n, w = bn

2
c.

n B2(n− 1, w) B2(n− 1, w − 1) R2(n− 1, w) Lower bound for B2(n,w, 2)

3 8 4 0 12
4 24 24 0 48
5 96 56 4 148
6 296 296 12 580
7 1160 792 60 1892
8 3784 3784 216 7352
9 14696 10896 896 24696
10 49392 49392 3360 95424

The tables for r = 3 and r = 4 are given in Appendix B.2.

Remarkably the lower bounds calculated are always equal to the largest lower bound
obtained from the algorithms in Chapter 3 for r ≥ 2 even in cases where only one of
the algorithms produced such a lower bound. For r = 1 the lower bound is smaller
than the maximum size possible for some values of n, an explanation for this is
provided the next section.

4.5 The case r=1

Comparing the results in Table 4 to the lower bounds for B1(n,w, 2) in Table 2,
shows that using the parity symbol method does not always produce the largest
possible lower bound code when r = 1. For all 5 ≤ n ≤ 10 except n = 8, the lower
bound is too small. This suggests there are words that could be added to the set
while maintaining d = 2. In this section we show that for r = 1 there are words
with odd weight with a specific property that can be added in this way. We also
show that this property does not occur for larger values of r.

When using the parity symbol method, R1(n,w) is the set of words with no repeated
symbols and the property that with a parity symbol added the runlength constraint

21

is violated. However, it is possible that after adding the parity symbol, every symbol
in the word is next to its opposite symbol (see Definition 9). If this is the case the
parity symbol can be replaced by a different symbol while maintaining minimum
distance 2 and satisfying the constraints. This is explained in three examples that
also explain why for n = 8 the parity symbol construction does produce the largest
possible DNA code.

Definition 17. Let x be a word and xp its parity symbol for given parameters n,
r and w as in Definition 14. Then the odd version of the word xxp is xyp with yp
being the opposite symbol of xp:

yp =

0 if xp = 1,

1 if xp = 0,

2 if xp = 3,

3 if xp = 2.

Example 12. In this example the case n = 5, w = 2, r = 1 and d = 2 is examined.
Let BP

1 (5, 2, 2) be the DNA code generated using the parity symbol construction,
and R1(4, 2) the subset of words from B1(4, 2) and B1(4, 1) that would violate the
runlength constraint if the parity symbol is added. From Table 4, |BP

1 (5, 2, 2)| = 64
and |R1(4, 2)| = 16. The number of words in the code with maximum size is
B1(5, 2, 2) = 68, so it appears as if 4 words are missing.

Note that all the words in BP
1 (5, 2, 2) have even weight. Analysing every word in

R1(4, 2) with its parity symbol added, we observe that all have even weight and two
equal symbols at the end. For example, (2, 0, 2, 0, 0). The odd version, (2, 0, 2, 0, 1),
can not be added to BP

1 (5, 2, 2) without affecting the minimum distance because
(3, 0, 2, 0, 1) is already in the code. This can be observed by looking at the initial
word (2, 0, 2, 0, 0). The odd version, (2, 0, 2, 0, 1) certainly has a distance of 1 to at
least one word in BP

1 (5, 2, 2), since if the first 2 is flipped to its opposite symbol 3 the
runlength and GC-weight constraints are satisfied, and the word has even weight.

Some words do not have this property, e.g. (1, 0, 1, 2, 2). This word is not in
BP
1 (5, 2, 2) since it violates the runlength constraint, so without its last symbol this

word is in R1(4, 2). In this case the odd version, (1, 0, 1, 2, 3) does have at least dis-
tance 2 to every word in BP

1 (5, 2, 2). This occurs because no symbol in (1, 0, 1, 2, 3)
can be swapped to its opposite symbol without violating the runlength constraint.
But swapping any symbol to a different symbol results in the GC-weight changing
and so the word is not in BP

1 (5, 2, 2). Thus (1, 0, 1, 2, 3) differs in at least two posi-
tions to every word in BP

1 (5, 2, 2) and can be added without changing the minimum
distance.

There are three more words in R1(4, 2) with this property: (2, 3, 1, 0), (3, 2, 1, 0) and
(1, 0, 1, 3).

Adding the odd versions of these words to BP
1 (5, 2, 2) does not change the minimum

distance. This DNA code has 64+4 = 68 words of which 64 words have even weight
and 4 words have odd weight and this is the maximum size possible.

22

Example 13. Now we look at the case n = 7, w = 3, r = 1 and d = 2. The set of
words generated using the parity symbol construction has size 520 while B1(7, 3, 2) =
528. Call the set of words generated using the parity symbol BP

1 (7, 3, 2). In R1(6, 3)
there are eight words where every symbol is next to its opposite symbol after the
parity symbol is added:

(2, 3, 2, 0, 1, 0, 0), (2, 3, 2, 1, 0, 1, 1), (0, 1, 0, 1, 2, 3, 3}, (1, 0, 1, 0, 2, 3, 3),
(0, 1, 2, 3, 2, 0, 0), (0, 1, 2, 3, 2, 1, 1), (1, 0, 2, 3, 2, 0, 0}, (1, 0, 2, 3, 2, 1, 1).

With the same argument as in Example 12, the odd versions can be added to
BP
1 (7, 3, 2) without affecting the minimum distance.

(2, 3, 2, 0, 1, 0, 1), (2, 3, 2, 1, 0, 1, 0), (0, 1, 0, 1, 2, 3, 2), (1, 0, 1, 0, 2, 3, 2),
(0, 1, 2, 3, 2, 0, 1), (0, 1, 2, 3, 2, 1, 0), (1, 0, 2, 3, 2, 0, 1), (1, 0, 2, 3, 2, 1, 0).

This means the DNA code including these words and the words from BP
1 (7, 3, 2) has

size 520 + 8 = 528 which is the maximum size possible.

We give another example to show what happens in the case n = 8. Note that the set
generated using the parity symbol construction is already of maximum size 1704.

Example 14. The setR1(7, 4) contains 376 words and with the parity symbol added
the words have even weight, GC-weight 4 and end with two equal symbols. We are
looking for a word where every symbol is next its opposite symbol and the word
without the parity symbol is in R1(7, 4). There are four symbols from {0, 1}, and
four symbols from {2, 3}. For every word the symbols must be split in four pairs of
symbols which are each others opposite symbol. If this is not the case then at least
one symbol does not have a neighbouring opposite symbol.

If the four symbols from both sets are adjacent the word is any of the following:

(2, 3, 2, 3, 1, 0, 1, 0), (2, 3, 2, 3, 0, 1, 0, 1), (3, 2, 3, 2, 1, 0, 1, 0), (3, 2, 3, 2, 0, 1, 0, 1),
(1, 0, 1, 0, 2, 3, 2, 3), (0, 1, 0, 1, 2, 3, 2, 3), (1, 0, 1, 0, 3, 2, 3, 2), (0, 1, 0, 1, 3, 2, 3, 2).

Except all these words are already in the DNA code. This means without the last
symbol the words are not in R1(7, 4). If the pairs are split differently the same
conclusion is reached because the first seven symbols can not be in R1(7, 4).

The examples above explain why the sets generated using the parity symbol con-
struction are smaller than the maximum size possible for r = 1. This construction
only considers words with even weight, while the words with odd weight can be
added while maintaining minimum distance 2. Moreover, Example 14 explains why
it is of maximum size for n = 8.

Now consider r = 2, then two repeated symbols are permitted. If a word is in
R2(n − 1, w) then the word with its parity symbol ends with three equal symbols.
Following Examples 12 and 13, if the odd version has a distance of at least two to
every word in the generated code then it can be added to the code. However in this

23

case the second to last symbol can be changed to its opposite without violating the
runlength constraint, unlike when r = 1.

Example 15. Consider the set B2(5, 2) from Example 8 and the DNA code gener-
ated from this set using the parity symbol construction. The words in R2(4, 2) with
the parity symbol are

{(2, 2, 0, 0, 0), (3, 3, 0, 0, 0), (2, 3, 1, 1, 1), (3, 2, 1, 1, 1)}.

The odd versions are

{(2, 2, 0, 0, 1), (3, 3, 0, 0, 1), (2, 3, 1, 1, 0), (3, 2, 1, 1, 0)}.

These words can not be added to the DNA code while maintaining minimum distance
2 since changing the fourth symbol to its opposite produces a word already in the
code.

{(2, 2, 0, 1, 1), (3, 3, 0, 1, 1), (2, 3, 1, 0, 0), (3, 2, 1, 0, 0)}

The odd versions will always have a corresponding word that only differs in the
second to last position already in the DNA code.

For r = 1 we are able to find words with odd weight that when added to the DNA
code produce codes of maximum size for some values of n and w. We assume this is
also the case for other values of n and w but this is not proven in this thesis.

24

5 Upper and Lower bounds for Br(n,w, 2)

In this Chapter an additional lower bound is proven and the upper and lower bounds
obtained for Br(n,w, 2) so far are summarised. After comparing the bounds a con-
jecture is put forward which proposes a formula for Br(n,w, 2), however for w = 0
and w = n, a counter example has been found.

5.1 Even/odd weight lower bound

A lower bound for the size of Br(n,w, 2) is obtained by considering the subset of
Br(n,w) containing only words with even weight and the subset containing only
words with odd weight.

Theorem 4. For 0 ≤ w ≤ n and r ≥ 1, it holds that

Br(n,w, 2) ≥ Br(n,w)

2
. (20)

Proof. The subset of words in Br(n,w) with even weight has minimum distance 2
since changing any one symbol either makes the word have odd weight or changes
the GC-weight. The same argument applies for the subset of words in Br(n,w)
with odd weight. Since the two subsets are disjoint and together form the whole set
Br(n,w), at least one of the two subsets must have size Br(n,w)

2
or larger resulting in

a subset with minimum distance 2 with that size.

The lower bound in Theorem 4 may seem trivial but it is important when comparing
it to the lower bounds from the parity symbol construction in Chapter 4. The DNA
code produced by using the parity symbol construction contains only words with
even weight from Br(n,w). This means if the number of words with even weight in
Br(n,w) is the same as the number of words with odd weight, the parity symbol
construction will not produce a larger lower bound compared to Theorem 4.

Example 16. Consider the set B3(4, 0). This is the set B(4, 0) without the words
with 4 repeated symbols:

B3(4, 0) = B(4, 0) \ {(0, 0, 0, 0), (1, 1, 1, 1)}.

B(4, 0) contains 8 words with even weight and 8 words with odd weight. This means
B3(4, 0) contains 6 words with even weight and 8 words with odd weight. So the
DNA code with minimum distance 2 produced by the parity symbol construction
for n = 4, w = 0 and r = 3 will contain at most 6 words, while Theorem 4 states

B3(4, 0, 2) ≥ B3(4, 0)

2
= 7.

Therefore the parity symbol construction produces a smaller lower bound for B3(4, 0, 2)
than the lower bound in Theorem 4.

25

5.2 Parity symbol construction bounds

In Chapter 4.2 the parity symbol construction provides insights into other bounds
for Br(n,w, 2) by constructing a DNA code using words with even weight. The
number of words in the constructed DNA code provides a lower bound:

Br(n,w, 2) ≥ Br(n− 1, w) + Br(n− 1, w − 1)−Rr(n− 1, w). (21)

This lower bound suggested the possibility of Br(n− 1, w) + Br(n− 1, w− 1) being
an upper bound for Br(n,w, 2). In the next theorem we prove this is the case.

Theorem 5. For 1 ≤ w ≤ n and r ≥ 1, it holds that

Br(n,w, 2) ≤ Br(n− 1, w) + Br(n− 1, w − 1). (22)

Proof. Let Br(n,w, 2) be a DNA code of maximum size. For every x ∈ Br(n,w, 2)
the last symbol xn is removed resulting in a unique word y with length n− 1. The
word is unique since the minimum distance is 2 so removing any one symbol from
two different words in Br(n,w, 2) can never result in the same word. If xn ∈ {0, 1}
then y ∈ Br(n − 1, w) and if xn ∈ {2, 3} then y ∈ Br(n − 1, w − 1). Thus the
number of words in Br(n,w, 2) is bounded above by the sum of the number of words
in Br(n− 1, w − 1) and Br(n− 1, w − 1) which results in (22).

Equations (21) and (22) provide a lower bound and an upper bound for Br(n,w, 2)
with a range of Rr(n− 1, w).

5.3 Comparing the bounds

The lower and upper bounds explained in the previous two sections are shown in
Tables 6 and 7 for r = 2 and r = 3. The largest lower bound obtained from the
algorithms in Chapter 3 is also shown.

Table 6: Upper and lower bounds for B2(n,w, 2) with w = bn
2
c

Lower bounds Upper bound

n B2(n,w)
2

Algorithms Parity symbol bound B2(n− 1, w) + B2(n− 1, w − 1)

3 12 12 12 12
4 48 48 48 48
5 148 148 148 152
6 580 580 580 592
7 1892 1892 1892 1952
8 7348 7352 7352 7568
9 24696 24696 24696 25592
10 95424 95424 98784

26

Table 7: Upper and lower bounds for B3(n,w, 2) with w = bn
2
c

Lower bounds Upper bound

n B3(n,w)
2

Algorithms Parity symbol bound B2(n− 1, w) + B2(n− 1, w − 1)

3 12 12 12 12
4 48 48 48 48
5 160 160 160 160
6 640 640 640 640
7 2208 2208 2208 2216
8 8804 8808 8808 8832
9 31204 31204 31204 31368
10 124180 124180 124816

The parity symbol construction does not produce larger lower bounds than Br(n, bn2 c)/2
other than for n = 8. It also produces the same lower bound as the lower bound from
the algorithms for r ≥ 2. Since the bounds from the parity symbol construction and
Theorem 4 depend on the number of even words, it is likely the differences occur
when there is an unequal distribution of even and odd words (see Example 16). The
upper bound is relatively close to the lower bounds which indicates if a larger DNA
code exists then it is not much larger than the DNA code produced by the parity
symbol construction. In Example 16 the code with odd weight produces one such
larger DNA code.

Since for r ≥ 2 no larger DNA code has been found than the one constructed in
the parity symbol construction it is possible the constructed code is of maximum
size. If this is the case then a formula exists for Br(n,w, 2) if r ≥ 2. For the binary
case w = 0 (and symmetrically w = n), Example 16 states a counterexample to this
but for other values of w no counterexamples have been found yet. Because of this
counterexample we believe the following conjecture does not hold for other values
of w and n as well.

Conjecture 1. For 1 ≤ w ≤ n− 1 and r ≥ 2, it holds that

For r ≤ max{w, n− w},

Br(n,w, 2) = Br(n− 1, w) + Br(n− 1, w − 1)−Rr(n− 1, w). (23)

For r > max{w, n− w},

Br(n,w, 2) = Br(n− 1, w) + Br(n− 1, w − 1). (24)

Note that for r > max{w, n− w} we know Rr(n− 1, w) = 0 which means with the
upper bound in Theorem 5 this part of the conjecture is true.

27

6 Conclusions and Future Research

In this chapter the conclusions of the research done in this thesis are discussed. In
the last section some recommendations for future research are discussed.

6.1 Conclusions

In Chapter 2 the set Br(n,w) is defined as the set of all DNA words with parameters
n the length, w the GC-weight and r the maximum runlength of the words. A DNA
code with minimum Hamming distance d that is of maximum size is Br(n,w, d) with
size Br(n,w, d). The aim of this thesis was to investigate Br(n,w, 2) for r > 1. The
case for B1(n,w, 2) was settled in [2],[3].

Six algorithms were discussed in Chapter 3 that obtained lower bounds for Br(n,w, 2).
The first three algorithms produced the same maximum value for B1(n,w, 2) in [2]
but produced different lower bounds for the case r ≥ 2 and n ≥ 7. The other three
algorithms were an attempt to improve the lower bound but did not do so. Since
there is no clear maximum lower bound there is the possibility that some or none of
the algorithms produced DNA codes of maximum size.

A common method to produce codes with minimum distance 2 is constructing a
code containing words with even weight. In Chapter 4 this idea is applied to the
DNA context to further investigate Br(n,w, 2). A small subset of words Rr(n,w)
does not satisfy the runlength constraint after adding a symbol. By excluding this
subset a lower bound is obtained for Br(n,w, 2):

Br(n,w, 2) ≥ Br(n− 1, w) + Br(n− 1, w − 1)−Rr(n− 1, w). (25)

A formula for the number of words in Rr(n,w) is given in Section 4.3. The results
from using this method are evaluated in Section 4.4. In Section 5.3 a conjecture is
put forward that suggests inequality 25 is equality for 1 ≤ w ≤ n− 1.

In Chapter 5 we prove an upper bound for Br(n,w, 2) which together with inequality
(25) indicates Br(n,w, 2) falls within a range of Rr(n− 1, w) values:

Br(n,w, 2) ≤ Br(n− 1, w) + Br(n− 1, w − 1) (26)

Since Rr(n−1, w) is relatively small compared to Br(n−1, w) and Br(n−1, w−1),
this gives an accurate impression of the size of the maximum sized DNA codes with
minimum distance 2.

28

6.2 Future Research

This thesis focuses on maximum sized DNA codes with minimum distance d = 2.
There are multiple ideas for further research.

The research in this thesis was limited to DNA codes that can detect single substi-
tution errors. It is of interest to investigate DNA codes with more error-detecting
and correcting capabilities. The parity symbol method most likely cannot be used
in this case as it focuses on words with even weight. Finding a different construction
that allows for arbitrary values of d and r will give more insights into maximum
sized DNA codes.

The formula proposed for Br(n,w, 2) remains a conjecture. More research can be
done to find a proof or a counter-example. If disproven then Br(n,w, 2) is within
a range of size Rr(n − 1, w) values but a larger DNA code exists than the code
constructed with the parity symbol construction. If it exists, it would be of great
interest to find this maximum sized code to settle how much information can be
stored in DNA codes with these parameters.

Further research into the algorithms is also advised. The algorithms used in this
thesis do not produce larger DNA codes than the conjecture suggests is possible.
Perhaps a different algorithm would result in larger DNA codes which would disprove
the conjecture. In addition the algorithms used could be optimised for run time to
allow computation of DNA codes for larger values of n.

29

Bibliography

[1] B. Cao, S. Zhao, X. Li, and B. Wang, “K-means multi-verse optimizer (KMVO)
algorithm to construct DNA storage codes,” IEEE Access, vol. 8, pp. 29547-
29556, 2020.

[2] C.J.(Lot)van Leeuwen,“Constrained Codes for DNA-Based Storage Sys-
tems,”Bachelor Thesis, Delft University of Technology, May 2020.

[3] J.H. Weber, J.A.M. de Groot, and C.J. van Leeuwen,“On Single-Error-Detecting
Codes for DNA-Based Data Storage,” accepted for publication in IEEE Com-
mun. Lett., 2020

[4] J. Bornholt, R. Lopez, D. M. Carmean, L. Ceze, G. Seelig, and K. Strauss, ”A
DNA-Based Archival Storage System,” IEEE Micro, vol. 37, no. 3, pp. 98-104,
2016.

[5] S. M. H. T. Yazdi, H. M. Kiah, E. Garcia-Ruiz, J. Ma, H. Zhao and O.
Milenkovic, ”DNA-Based Storage: Trends and Methods,” in IEEE Transac-
tions on Molecular, Biological and Multi-Scale Communications, vol. 1, no. 3,
pp. 230-248, Sept. 2015

[6] D. Limbachiya, M. K. Gupta,and V. Aggarwal,“Family of constrained codes
for archival DNA data storage,” IEEE Commun. Lett., vol. 22, no. 10, pp.
1972–1975, Oct. 2018.

[7] K. A. S. Immink and K. Cai, “Efficient Balanced and Maximum Homopolymer-
Run Restricted Block Codes for DNA-based Storage,” IEEE Commun. Lett.,
vol. 23, no. 10, pp. 1676–1679, Oct. 2019.

[8] D.R. Hankerson, D.G. Homan, D. A. Leonard, C. C. Lindner, K. T. Phelps,
C. A. Rodger andJ. R. Wall, Coding Theory And Cryptography, the essentials.
Auburn, Alabama, Auburn University.

[9] Ziemer, RodgerE.; Tranter, William H. Principles of communication : sys-
tems, modulation, and noise (Seventh ed.). Hoboken, New Jersey. ISBN
9781118078914. OCLC 856647730

30

A Python Code

import numpy as np
import math
import i t e r t o o l s
import s c ipy as sp
from sc ipy import s p e c i a l

de f runlength (word , r) :
#Checks f o r r repeated d i g i t s in a word , r e tu rn s True i f the word
#agree s with the runlength c o n s t r a i n t
f o r i in range (l en (word)−r) :

t=0
f o r j in range (0 , r) :

i f (word [i] == word [i+j +1]) :
t += 1

i f (t >= r) :
r e turn Fal se

re turn True

de f has run length (word) :
#func t i on that checks i f a word has run−l ength
re turn any (word [i]==word [i +1] f o r i in range (l en (word) −1))

de f gcweight (word) :
#Returns the GC−weighs o f a word
re turn word . count (2) + word . count (3)

de f d i s t anc e (word1 , word2) :
#Returns the hamming−d i s t ance between two words o f equal l ength
i f l en (word1) != l en (word2) :

r e turn ”The words are not o f equal l ength ”
e l s e :

r e turn l en ([i f o r i in range (l en (word1)) i f word1 [i] !=
word2 [i]])

de f ne ighbours (code , codeword , d) :
#Returns a l l words with in d−1 d i s t ance o f the word
re turn [w f o r w in code i f 0<d i s t ance (codeword , w)<d]

de f minimum distance (code) :
#Returns the minimum d i s t anc e o f a code
d = 1000
f o r codeword1 in code :

f o r codeword2 in code :
i f codeword1 != codeword2 :

31

min di s tance = d i s t ance (codeword1 , codeword2)
i f d > min di s tance :

d = min d i s tance
re turn d

de f maximum1(d i s t a n c e s) :
#Returns the word with the maximum value o f the d i s t a n c e s in the
#d i c t i o n a r y
max1 = max(d i s tance s , key=d i s t a n c e s . get)
re turn max1

de f minimum1(d i s t a n c e s) :
#Returns the word with the minimum value o f the d i s t a n c e s in the
#d i c t i o n a r y
min1 = min (d i s tance s , key=d i s t a n c e s . get)
re turn min1

A.1 Generating Br(n,w)

de f DNA(n ,w, r) :
#This func t i on r e tu rn s the DNA code that s a t i s f i e s the run−l ength
#c o n s t r a i n t r , GC−weight and i s o f l ength n .
Code = l i s t (i t e r t o o l s . product (range (4) , r epeat=n))
DNAcode = [codeword f o r codeword in Code i f run length (codeword , r) and gcweight (codeword) == w]
re turn DNAcode

A.2 Algorithms 1,2 and 3

################# ALGORITHM 1 ##################

def a l g 1 s t e p 2 l i s t (DNAcode , d) :
#A l i s t / d i c t i o n a r y i s made o f a l l the words in DNAcode with each word showing i t s ne ighbours with in d−1 d i s t ance .
words in sphe re = {codeword : ne ighbours (DNAcode , codeword , d) f o r codeword in DNAcode}
r e turn words in sphe re

de f a l g 1 s t e p 2 d i s t (words in sphe re) :
#A d i c t i o n a r y as in the prev ious func t i on but the ne ighbours are shown as t o t a l number o f ne ighbours .
d i s t a n c e s = {key : l en (va lue) f o r key , va lue in words in sphe re . i tems ()}
r e turn d i s t a n c e s

de f a l g 1 s t e p 3 (d i s tance s , words in sphe re) :
#This func t i on d e f i n e s the word with maximum dis tance , d e l e t e s i t from the d i c t i o n a r y that i n c l u d e s d i s t a n c e s
#and reduces the value o f each d−1 neighbour by one . I t a l s o removes the word from the d i c t i o n a r y that i n c l u d e s the ne ighbours .
maximum = maximum1(d i s t a n c e s)
de l d i s t a n c e s [maximum]
f o r va lue in words in sphe re [maximum] :

32

d i s t a n c e s [va lue] −= 1
words in sphe re [va lue] . remove (maximum)

de l words in sphe re [maximum]

de f a l g 1 s t e p 4 (d i s tance s , words in sphe re) :
#While the d i c t i o n a r y d i s t a n c e s i s not empty keep i t e r a t i n g a l g 1 s t e p 3
whi le max(d i s t a n c e s . va lue s ()) >0:

a l g 1 s t e p 3 (d i s tance s , words in sphe re)
re turn words in sphe re

de f a lg1 (n ,w, r , d) :
DNAcode = DNA(n ,w, r)
s t e p 2 l i s t = a l g 1 s t e p 2 l i s t (DNAcode , d)
s t e p 2 d i s t = a l g 1 s t e p 2 d i s t (s t e p 2 l i s t)
s tep3 = a l g 1 s t e p 4 (s t ep2d i s t , s t e p 2 l i s t)
r e turn step3

################# ALGORITHM 2 ##################

def a l g 2 s t e p 3 (d i s tance s , words in sphere , code) :
minimum = minimum1(d i s t a n c e s)
code . append (minimum)
de l d i s t a n c e s [minimum]
f o r va lue in words in sphe re [minimum] :

de l d i s t a n c e s [va lue]
f o r va l in words in sphe re [va lue] :

i f va l in d i s t a n c e s :
words in sphe re [va l] . remove (value)
d i s t a n c e s [va l]−=1

de l words in sphe re [va lue]
de l words in sphe re [minimum]
re turn code

de f a l g 2 s t e p 4 (d i s tance s , words in sphere , code) :
whi l e words in sphe re :

a l g 2 s t e p 3 (d i s tance s , words in sphere , code)
re turn code

de f a lg2 (n ,w, r , d) :
DNAcode = DNA(n ,w, r)
s t e p 2 l i s t = a l g 1 s t e p 2 l i s t (DNAcode , d)
s t e p 2 d i s t = a l g 1 s t e p 2 d i s t (s t e p 2 l i s t)
DNAdistance = []
s tep3 = a l g 2 s t e p 3 (s t ep2d i s t , s t e p 2 l i s t , DNAdistance)
step4 = a l g 2 s t e p 4 (s t ep2d i s t , s t e p 2 l i s t , s tep3)
re turn l en (step4)

33

################# ALGORITHM 3 ##################

def a l g 3 s t e p 1 (d i s tancecode , DNAcode , d) :
word = DNAcode [0]
i f a l l (d i s t anc e (word , codeword)>=d f o r codeword in d i s tancecode) :

d i s tancecode . append (word)
DNAcode . remove (word)
re turn di s tancecode , DNAcode

de f a l g 3 s t e p 2 (d i s tancecode , DNAcode , d) :
whi l e DNAcode :

a l g 3 s t e p 1 (d i s tancecode , DNAcode , d)
re turn d i s tancecode

de f a lg3 (n ,w, r , d) :
DNAcode = DNA(n ,w, r)
DNAdistance = []
step1a , step1b = a l g 3 s t e p 1 (DNAdistance , DNAcode , d)
step2 = a l g 3 s t e p 2 (step1a , step1b , d)
re turn step2

A.3 Algorithms 4,5 and 6

################# ALGORITHM 4 ##################

def a lg4 (n ,w, r , d) :
DNAcode = alg3 (n ,w, 1 , d)
DNAcode2 = DNA(n ,w, r)
f o r word in DNAcode2 :

i f a l l (d i s t anc e (word , codeword)>=d f o r codeword in DNAcode) :
DNAcode . append (word)
DNAcode2 . remove (word)

re turn l en (DNAcode) , l en (DNAcode2)

################# ALGORITHM 5 ##################

def a l g 5 s t e p 1 a (n ,w, d) :
DNAcode = alg1 (n ,w, 1 , d)
d i c t l i s t = []
f o r key , va lue in DNAcode . i tems () :

d i c t l i s t . append (key)
re turn d i c t l i s t

de f a l g 5 s t e p 1 (n ,w, d) :
DNAcode = alg3 (n ,w, 1 , d)
re turn DNAcode

34

de f a l g 5 s t e p 2 l i s t (DNAcode , n ,w, r) :
x = DNA(n ,w, r)
x2 = []
y = DNAcode
f o r element in x :

i f e lement not in y :
x2 . append (element)

f o r element in x2 :
y . append (element)

re turn y

de f a lg5 (n ,w, r , d) :
s tep1 = a l g 5 s t e p 1 (n ,w, d)
s t ep2 code = a l g 5 s t e p 2 l i s t (step1 , n ,w, r)
s t e p 3 a l g 1 l i s t = a l g 1 s t e p 2 l i s t (s tep2 code , d)
s t e p 4 a l g 1 d i s t = a l g 1 s t e p 2 d i s t (s t e p 3 a l g 1 l i s t)
s tep5 = a l g 1 s t e p 4 (s t e p 4 a l g 1 d i s t , s t e p 3 a l g 1 l i s t)
r e turn step5

################# ALGORITHM 6 ##################

def a l g 6 s t e p 1 a (n ,w, d) :
DNAcode = alg1 (n ,w, 1 , d)
d i c t l i s t = []
f o r key , va lue in DNAcode . i tems () :

d i c t l i s t . append (key)
re turn d i c t l i s t

de f a l g 6 s t e p 1 (n ,w, d) :
DNAcode = alg3 (n ,w, 1 , d)
re turn DNAcode

de f a l g 6 s t e p 2 l i s t (DNAcode , n ,w, r) :
x = DNA(n ,w, r)
x2 = []
y = DNAcode
f o r element in x :

i f e lement not in y :
x2 . append (element)

f o r element in x2 :
y . append (element)

re turn y

de f a lg6 (n ,w, r , d) :
s tep1 = a l g 6 s t e p 1 (n ,w, d)

35

s t ep2 code = a l g 6 s t e p 2 l i s t (step1 , n ,w, r)
s t e p 3 a l g 1 l i s t = a l g 1 s t e p 2 l i s t (s tep2 code , d)
s t e p 4 a l g 1 d i s t = a l g 1 s t e p 2 d i s t (s t e p 3 a l g 1 l i s t)
s tep5 = a l g 1 s t e p 4 (s t e p 4 a l g 1 d i s t , s t e p 3 a l g 1 l i s t)
r e turn step5

A.4 Recursive formula for Br(n,w)

#The func t i on below c a l c u l a t e s the va lue s f o r N r (n ,w) and B r (n ,w)

de f Nrnw(r , n ,w) :
i f (n==0 and w==0):

r e turn 1
e l i f n <= r :

x = (2∗∗ (n−1))∗ sp . s p e c i a l . binom (n−1,w) + (2∗∗ (n))∗ sp . s p e c i a l . binom (n−1,w−1)
re turn x

e l s e :
part1 = 0
part2 = 0
f o r i in range (1 , min (r , n−w)+1):

part1 = part1 + Nrnw(r , n−i , w)
f o r i in range (1 , min (r ,w)+1):

part2 = part2 + 2∗Nrnw(r , n−i , n−w)
return part1+part2

de f Brnw(r , n ,w) :
x=0
f o r i in range (0 , min (r , n−w)+1):

x += Nrnw(r , n−i ,w)
re turn x

A.5 Recursive formulas

de f NrE0(n ,w, r) :
i f (n==1 and w==0):

r e turn 0
e l i f n <= r :

x = (2∗∗ (n−2))∗ sp . s p e c i a l . binom (n−1,w) + (2∗∗ (n−1))∗ sp . s p e c i a l . binom (n−1,w−1)
p r i n t (x)
p r i n t (”E0”)
re turn x

e l s e :
part1 = 0
part2 = 0
part3 = 0
part4 = 0

36

part5 = 0
f o r i in range (1 , min (r ,w)+1):

part1 = part1 + NrE0(n−i , n−w, r)
f o r i in range (1 , min (r , n−w)+1 ,2) :

part2 = part2 + NrO1(n−i ,w, r)
f o r i in range (2 , min (r , n−w)+1 ,2) :

part3 = part3 + NrE1(n−i ,w, r)
f o r i in range (1 , min (r ,w)+1 ,2) :

part4 = part4 + NrO1(n−i , n−w, r)
f o r i in range (2 , min (r ,w)+1 ,2) :

part5 = part5 + NrE1(n−i , n−w, r)
re turn part1+part2+part3+part4+part5

de f NrO0(n ,w, r) :
i f (n==1 and w==0):

r e turn 1
e l i f n <= r :

x = (2∗∗ (n−2))∗ sp . s p e c i a l . binom (n−1,w) + (2∗∗ (n−1))∗ sp . s p e c i a l . binom (n−1,w−1)
p r i n t (x)
p r i n t (”O0”)
re turn x

e l s e :
part1 = 0
part2 = 0
part3 = 0
part4 = 0
part5 = 0
f o r i in range (1 , min (r ,w)+1):

part1 = part1 + NrO0(n−i , n−w, r)
f o r i in range (1 , min (r , n−w)+1 ,2) :

part2 = part2 + NrE1(n−i ,w, r)
f o r i in range (2 , min (r , n−w)+1 ,2) :

part3 = part3 + NrO1(n−i ,w, r)
f o r i in range (1 , min (r ,w)+1 ,2) :

part4 = part4 + NrE1(n−i , n−w, r)
f o r i in range (2 , min (r ,w)+1 ,2) :

part5 = part5 + NrO1(n−i , n−w, r)
re turn part1+part2+part3+part4+part5

de f NrE1(n ,w, r) :
i f (n==1 and w==0):

r e turn 1
e l i f n <= r :

x = (2∗∗ (n−2))∗ sp . s p e c i a l . binom (n−1,w) + (2∗∗ (n−1))∗ sp . s p e c i a l . binom (n−1,w−1)
p r i n t (x)
p r i n t (”E1”)

37

r e turn x
e l s e :

part1 = 0
part2 = 0
part3 = 0
part4 = 0
f o r i in range (1 , min (r , n−w)+1):

part1 = part1 + NrE0(n−i ,w, r)
f o r i in range (1 , min (r ,w)+1):

part2 = part2 + NrE0(n−i , n−w, r)
f o r i in range (1 , min (r ,w)+1 ,2) :

part3 = part3 + NrO1(n−i , n−w, r)
f o r i in range (2 , min (r ,w)+1 ,2) :

part4 = part4 + NrE1(n−i , n−w, r)
re turn part1+part2+part3+part4

de f NrO1(n ,w, r) :
i f (n==1 and w==0):

r e turn 0
e l i f n <= r :

x = (2∗∗ (n−2))∗ sp . s p e c i a l . binom (n−1,w) + (2∗∗ (n−1))∗ sp . s p e c i a l . binom (n−1,w−1)
p r i n t (x)
p r i n t (”O1”)
re turn x

e l s e :
part1 = 0
part2 = 0
part3 = 0
part4 = 0
f o r i in range (1 , min (r , n−w)+1):

part1 = part1 + NrO0(n−i ,w, r)
f o r i in range (1 , min (r ,w)+1):

part2 = part2 + NrO0(n−i , n−w, r)
f o r i in range (1 , min (r ,w)+1 ,2) :

part3 = part3 + NrE1(n−i , n−w, r)
f o r i in range (2 , min (r ,w)+1 ,2) :

part4 = part4 + NrO1(n−i , n−w, r)
re turn part1+part2+part3+part4

de f Rrnw(n ,w, r) :
i f (r%2 ==0):

x = NrE0(n−r ,w, r)+NrO1(n−r ,w, r)+NrE0(n−r , n−w+1, r)+NrO1(n−r , n−w+1, r)
re turn x

e l s e :
x = NrE0(n−r ,w, r)+NrE1(n−r ,w, r)+NrE0(n−r , n−w+1, r)+NrE1(n−r , n−w+1, r)

38

r e turn x

A.6 Algorithm to obtain the number of words in Rr(n,w)

#This func t i on outputs the number o f words that would
#s a t i s f y the runlength c o n s t r a i n t f o l l owed by the number o f words
#that would not .

de f p a r i t y b i t e v e n (n ,w, r) :
x = DNA(n−1,w, r)
y = DNA(n−1,w−1, r)
x1 = []
y2 = []
f o r i in x :

i f (i [n−1−r] == 0 and i [n−r] ==0 and . . . and i [n−2] == 0) :
t=0
f o r j in range (0 , n−1):

t += i [j]
i f (t % 2)==0:

x1 . append (i)
i f (i [n−1−r] == 0 and i [n−r] ==0 and . . . and i [n−2] == 0) :

t=0
f o r j in range (0 , n−1):

t += i [j]
i f (t % 2)==1:

x1 . append (i)
f o r e l e in x1 :

x . remove (e l e)
f o r i in y :

i f (i [n−1−r] == 0 and i [n−r] ==0 and . . . and i [n−2] == 0) :
t=0
f o r j in range (0 , n−1):

t += i [j]
i f (t % 2)==0:

y2 . append (i)
i f (i [n−1−r] == 0 and i [n−r] ==0 and . . . and i [n−2] == 0) :

t=0
f o r j in range (0 , n−1):

t += i [j]
i f (t % 2)==1:

y2 . append (i)
f o r e l e in y2 :

y . remove (e l e)
r e turn l en (x) , l en (y) , l en (x1) , l en (y2)

39

B Parity Symbol construction

B.1 Lower bounds for Br(n,w, d) for other values of w

Table 8: Lower bounds for B2(n,w, 2) from algorithms 1,2 and 3 for w = bn
2
c − 1

and w = dn
2
e+ 1

w = bn
2
c − 1 w = dn

2
e+ 1

n Alg 1 Alg 2 Alg 3 Alg 1 Alg 2 Alg 3

2 2 2 2 2 2 2
3 3 3 3 3 3 3
4 28 28 48 28 28 28
5 56 60 56 56 60 56
6 396 396 384 396 396 384
7 948 960 900 948 960 900
8 5420 5448 5236 5420 5448 5236
9 14176 14360 13424 14176 14360 13424

Table 9: Lower bounds for B2(n,w, 2) from algorithms 1,2 and 3 for w = bn
2
c − 2

and w = dn
2
e+ 2

w = bn
2
c − 2 w = dn

2
e+ 2

n Alg 1 Alg 2 Alg 3 Alg 1 Alg 2 Alg 3

4 6 6 3 6 6 3
5 7 8 6 7 8 6
6 118 120 108 118 120 108
7 222 232 208 222 232 208
8 2132 2180 1988 2132 2180 1988
9 4536 4716 4200 4536 4716 4200

B.2 Parity symbol table for r = 3 and r = 4

Table 10: Values of B3(n − 1, w), B3(n − 1, w − 1), R3(n − 1, w) and the resulting
lower bound for different values of n, w = bn

2
c.

n B3(n− 1, w) B3(n− 1, w − 1) R3(n− 1, w) Lower bound for B3(n,w, 2)
4 24 24 0 48
5 96 64 0 160
6 320 320 0 640
7 1280 936 8 2208
8 4416 4416 24 8808
9 17608 13872 164 31204
10 62408 62408 636 124180

40

Table 11: Values of B4(n − 1, w), B4(n − 1, w − 1), R4(n − 1, w) and the resulting
lower bound for different values of n, w = bn

2
c.

n B4(n− 1, w) B4(n− 1, w − 1) R4(n− 1, w) Lower bound for B4(n,w, 2)
4 24 24 0 48
5 96 64 0 160
6 320 320 0 640
7 1280 960 0 2240
8 4480 4480 0 8960
9 17920 14272 16 32176
10 64352 64352 60 128644

B.3 Recursive formula proof

Proof for NE1
r (n,w):

Any word in NE1
r (n,w) can be decomposed into a word from Br(n− j, v) not ending

with an i ∈ {0, 2, 3} followed by j equal symbols i.

If i = 0, then v = w and j ∈ {1, 2, ..,min{r, n − w}}, with j ≤ r due to the run-
length constraint and j ≤ n − w as that is the maximum number of ones in the
word. The word is from Br(n − j, w), has even weight and does not end in a 0.
There are NE0

r (n − j, w) such words for each j, summing over j gives a total of∑min{r,n−w}
j=1 NE1

r (n− j, w) words.

If i = 2, then v = w−j and j ∈ {1, 2, ..,min{r, w}} and the word from Br(n−j, v) has
even weight and does not end in a 2. By applying formula (9) there are NE0

r (n−j, n−
w) such words for each j, summing over j gives in total

∑min{r,w}
j=1 NE0

r (n− j, n−w)
words.

If i = 3, then v = w − j and j ∈ {1, 2, ..,min{r, w}}. If j is odd then the word
from Br(n − j, v) has odd weight and does not end in a 3. If j is even it has even
weight and does not end in a 3. Again applying (9), for the odd values of j the
number of words is NO1

r (n− j, n−w) and for even values of j the number of words
is NE1

r (n− j, n− w)

Summing over all the possible values of j this proves equation (13).

Proof for NO1
r (n,w):

To prove equation (15) we can use NO1
r (n,w) = Nr(n,w) − NE1

r (n,w) and the
formula in Theorem 1.

NO1
r (n,w) =

min {r,n−w}∑
j=1

Nr(n−j, n−w)+2

min {r,w}∑
j=1

Nr(n−j, n−w)−NE1
r (n,w) (27)

41

=

min {r,n−w}∑
j=1

(Nr(n− j, w)−NE0
r (n− j, w))

+

min {r,w}∑
j=1

(Nr(n− j, n− w)−NE0
r (n− j, n− w))

+

min {r,w}∑
j=1,odd

(Nr(n− j, n− w)−NE1
r (n− j, n− w))

+

min {r,w}∑
j=2,even

(Nr(n− j, n− w)−NO1
r (n− j, n− w))

(28)

Using formula (8) again we obtain equation (13).

42

	Introduction
	Motivation
	Research question
	Organisation of the thesis

	Prerequisites
	What is DNA?
	Basic coding concepts
	Constraints on DNA-based codes
	The DNA set

	Six algorithms to construct a DNA code
	Algorithms 1,2 and 3
	Algorithms 4,5 and 6
	Evaluation of the Algorithms

	Parity Symbol Construction
	Applying the constraints
	The Parity symbol
	A formula for Rr(n,w)
	Evaluation of the Parity Symbol Construction
	The case r=1

	Upper and Lower bounds for Br(n,w,2)
	Even/odd weight lower bound
	Parity symbol construction bounds
	Comparing the bounds

	Conclusions and Future Research
	Conclusions
	Future Research

	Bibliography
	Python Code
	Generating Br(n,w)
	Algorithms 1,2 and 3
	Algorithms 4,5 and 6
	Recursive formula for Br(n,w)
	Recursive formulas
	Algorithm to obtain the number of words in Rr(n,w)

	Parity Symbol construction
	Lower bounds for Br(n,w,d) for other values of w
	Parity symbol table for r=3 and r=4
	Recursive formula proof

