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Abstract

The optimal transmit power in various nonlinear Fourier transform-based transmission systems has been observed to decrease
with the signal duration when bandwidth is fixed. A new theoretical explanation for this behavior is provided for a specific
b-modulator and validated in simulations.

1 Introduction

The nonlinear Fourier transform (NFT) [1] can solve the
normalized nonlinear Schrödinger equation (NSE)

i
∂q

∂z
+

1

2

∂2q

∂t2
+ |q|2q = 0, q = q(z, t), (1)

which is a model for an ideal lossless single-mode fiber
obtained after suitable normalization and path averaging [2,
Ch. 5]. Here q(z, t) is the slowly varying pulse envelope, z is
the location and t is retarded time, all in normalized units. The
nonlinear evolution of the signal along the fiber equals a sim-
ple phase rotation in the nonlinear Fourier domain (NFD) [1].
Hence it was suggested to embed data in the NFD and use the
NFT to recover the data [3, 4]. This idea is known as nonlinear
frequency division multiplexing (NFDM).

NFDM has garnered much attention in recent years and
many different NFDM system designs have been proposed [5–
8]. A common problem with many NFDM designs is that the
optimum transmit power decreases with signal duration, mak-
ing it difficult to utilize signals significantly longer than the
channel memory [9–11]. Thus, signals are typically short with
a large portion acting as a guard interval that contains no infor-
mation, leading to low spectral efficiencies. The difficulties
with transmitting longer signals at sufficiently high powers are
typically attributed to interactions between the signal and noise
during the numerical computation of the NFT [9–12].

In this paper we provide a new explanation for this phe-
nomenon. We derive an upper bound on transmit power for the
specific NFDM system proposed in [14]. The bound decreases
with signal duration when the bandwidth is kept constant.
Since our implementation achieves transmit powers close to
that bound, we show that signal-noise interactions are not a
major limiting factor in our setup.

2 Review of b-modulation

The NFT is obtained by solving the initial-value problem [1]

∂φ(λ, t)

∂t
=

[
−iλ q(t)
−q∗(t) iλ

]
φ(λ, t), lim

t→−∞
φ(λ, t) =

(
e−iλt

0

)
,

where z is considered fixed and thus dropped. The Jost scat-
tering coefficients are defined as a(λ) = lim

t→∞
φ1(λ, t)e

iλt and
b(λ) = lim

t→∞
φ2(λ, t)e

−iλt, where λ is a complex parameter.
Information can be embedded in the Jost scattering coefficients
in various ways. The NFDM technique in which information is
embedded in b(ξ), ξ ∈ R, is known as b-modulation [13]. The
advantages of b-modulation are tight control over signal dura-
tion and lower sensitivity w.r.t. noise [11, 13]. For b-modulation
the normalized energy

∫∞
−∞ |q(t)|

2dt is equal to [13]

E[b(ξ)] = − 1

π

∫∞
−∞

ln(1− |b(ξ)|2)dξ. (2)

Power control by constellation reshaping (PCCR): In this paper
we analyze the system from [14], where

b(ξ) =
N∑

k=−N

skΨ(ξ − k∆ξ). (3)

Here, Ψ(ξ) is a specific flat-top carrier, ∆ξ is the carrier spacing
and the sk are information symbols. The average signal power
is controlled by using a suitably shaped constellation for the
sk. The constellation is shaped such that E{E[skΨ(ξ)]} = Ed,
where E denotes expectation w.r.t. the sk, Ed > 0 is a design
parameter, and E[snΨ(ξ)]/E[skΨ(ξ)] = |sn|2/|sk|2 for n 6=
k. This system design ensures that [14]

E{E[b(ξ)]} ≈ (2N + 1)Ed (4)

assuming that ∆ξ is not too small. By definition of the NFT, for
the case of anomalous dispersion, |b(ξ)| < 1. The parameter
Ed thus has to stay below the maximum carrier energy [14]:

MCE[Ψ(ξ)] := lim
A→(1/ supξ |Ψ(ξ)|)−

E[AΨ(ξ)] ≥ Ed. (5)

The MCE has been observed to be finite for common carri-
ers which result in time-limited signals [14, Sec. 2.4]. The
duration of the generated signals can be manipulated by scal-
ing the carrier Ψ(ξ)→ Ψ(cξ)⇒ q(t)→ q(t/c), c > 0, [3, IV-
D]. To keep utilizing the complete provided bandwidth, we
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Fig. 1 a) PCCR: The two energy estimates agree almost upto the theoretical maximum. b) PCRB: The two estimates also start
to decrease with number of subcarriers (signal duration) due to signal truncation and finite precision (similar to [12, Fig. 6a]).

choose cN = (2N + 1)c0 and increase the number of subcar-
riers proportionally. We thus consider the following nonlinear
spectrum

bN(ξ) =

N∑
k=−N

skΨ (cNξ − k∆ξ) (6)

in this paper. The generated signals have 2N + 1 subcarriers
and are of duration TN = (2N + 1)T0. The bandwidth stays
approximately constant because the subcarriers shrink with N .

3 Theoretical Analysis

In this section we analyze how the maximum power that the
b-modulator discussed in the previous section can achieve
depends on the number of subcarriers, which is directly propor-
tional to the signal duration. Our analysis rests on two simple
insights. First, since the signals are of finite duration, energy
translates directly into power. Second, since E[Ψ(cNξ)] =
c−1
N E[Ψ(ξ)] by basic integration laws,

MCE[Ψ(cNξ)] = c−1
N MCE[Ψ(ξ)]. (7)

We bound the average power PN achieved with 2N + 1 sub-
carriers using (4), (5), (7) and cN = (2N + 1)c0:

PN =
E{E[bN(ξ)]}

TN
≈ (2N + 1)Ed

TN

≤ (2N + 1)MCE[Ψ(cNξ)]

TN
=
c−1
0 MCE[Ψ(ξ)]

TN
.

(8)

Note that the numerator is a constant independent of the num-
ber of subcarriers, so that the bound on the transmit power PN
decreases with the signal duration TN . To the best of our knowl-
edge this is the first bound on transmit power ever reported
for a NFDM system. We will observe in the simulation results
that instructing the algorithms to achieve powers beyond this
bound leads to numerical failure and rapidly decaying system
performance. Hence our bound strongly suggests that for any
signal duration TN there is a finite optimum transmit power. We
remark that even though our analysis holds for the particular
b-modulation scheme in [14], similar observations have been
reported also for other NFDM architectures [9–11].

4 Simulations

The goal of this section is two-fold. First, we demonstrate that
our theoretical bound is useful to describe actual system behav-
ior. Second, we compare the analyzed PCCR approach from
Sec. 2 with an alternative scheme from [15] that we call power
control by reshaping b(ξ) (PCRB). The advantage of PCRB is
that – in theory – arbitrarily large energies can be achieved.
The disadvantage is that the generated signals are not of finite
duration anymore. We want to investigate whether in practice
PCRB can generate higher signal powers than PCCR.

Setup: We used the carrier waveform [14, (18)] with T = 0.5
for both systems. We chose the constants c0, T0 and ∆ξ from
Sec. 2 as 1.0, 0.5 and 135 respectively. The signals generated
using PCRB were truncated to duration TN . The signals gener-
ated using PCCR were of duration TN by design. The symbols
sk were drawn from a QPSK constellation. The simulations
were carried out using NFDMLab [16], which uses the soft-
ware library FNFT [17] to compute (inverse) NFTs. To avoid
algorithm breakdowns, all b(ξ) were clipped such that |b(ξ)| ≤
1− 2.2204× 10−15. Furthermore a numerical improvement to
the inverse NFT (INFT) described in the appendix was used.
The fiber parameters were β2 = −5× 10−27 s2/m, γ = 1.2×
10−3 (Wm)

−1 and α = 2× 10−4 m−1. The signal duration in
real-world units was 1.25TN ns. The transmitted and received
signals were low-pass filtered to 40GHz. Amplification was
carried out using EDFAs with a 6dB noise figure.

Impact of finite precision: Recall that the energy of the signal
can be computed from b(ξ) via (2) or from q(t). Since b(ξ)
is the input to the INFT and q(t) is the output, we compare
these two energies in order to assess the accuracy of the INFT.
In Fig. 1, we show the average signal energy (taken over 20
signal realizations) divided by the number of subcarriers for
both PCCR and PCRB. In Fig. 1a we see that both energy esti-
mates stay close together which hints that numerical effects in
the INFT are not the major limiting factor for PCCR. In Fig.
1b we see that the energy via b(ξ) eventually starts decreasing
even though it should stay constant in theory. This behavior is
due to the clipping mentioned above. The gap to energy via
q(t) is larger than in Fig. 1a, which we attribute to the signal
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Fig. 2. a) B2B for PCCR b) B2B for PCRB c) Transmission for PCCR d) Transmission for PCRB

truncation mentioned above. The energies via q(t) in Fig. 1b
are higher than those in Fig. 1a but show a similar decay.

Back-to-back (B2B): We simulated 1m of fiber followed by a
single amplifier to add noise. After demodulation and equaliza-
tion, estimates ŝk of the transmitted symbols sk were obtained.
For PCCR, error vector magnitudes (EVMs) between ŝk and
sk were computed. For PCRB the inverse of the map R(u) =√

1− e−|u|2ei∠u [15, Fig. 2a] was applied to ŝk before comput-
ing the EVM. This was done to ensure similarly shaped noise
balls. The results are shown in Figs. 2a-b. In Fig. 2a, PCCR
eventually breaks down due to ill-conditioning in the INFT
algorithms. However, this happens only when trying to exceed
the theoretical limit depicted in Fig. 1a. The initial decay of
the curves seems to be a result of the nonlinear nature of the
NFT which squeezes the noise balls [18, Fig. 2]. From Fig.
2b we observe that PCRB performs better than PCCR at low
subcarrier energies but worse at the high one.

Transmission: We finally compared PCCR and PCRB in a
transmission scenario. To make the scenario more realistic, we
added precompensation as in [9, 11] and truncated the signals
to 0.556TN ns before transmission so that now both methods
suffer from truncation errors. The signals were transmitted over
a 8× 80 km link. The results are shown in Figs. 2c-d. By
comparing Figs. 2a and 2c, we observe that the breakdowns
still occur approximately for the same number of subcarriers,
which hints that the transmit power limitation from our theo-
retical analysis is a dominant effect even in our transmission
setup. The spike in the Ed = 16 curve seems to occur due to
numerical issues. We remark that it occurs when the maximum
number of subcarriers for this Ed has been exceeded. Similar
observations can be made when comparing Figs. 2b and 2d.

5 Conclusion

We derived an upper bound on the achievable transmit power
for the b-modulator from [14] (PCCR) that decreases with sig-
nal duration for fixed bandwidth. It seems to be the first such
bound for NFDM. In simulations we achieved transmit powers
close to the theoretical bound which suggests that – in our setup
– numerical signal-noise interactions were a minor issue. We
found that another b-modulator from [15] (PCRB) suffers from
similar limitations even though the maximum carrier energy
argument used in our analysis does not apply to that case. We
plan to use our analysis to improve NFDM system designs.
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Appendix The INFT was computed as described in [13] with
FNFT [17]. To run the algorithm we require D samples of

B(τ) =
1

2π

∫∞
−∞

b(ξ)eiτξdξ ≈ eiτξ−

2π

∫ ξ+
ξ−

b(ξ)eiτ(ξ−ξ−)dξ

(9)
on a grid τk = τ− + kδ. We approximate the right integral by

B̂(τk) =
eiτkξ−

2π

M−1∑
n=0

b(ξn)eiτk(ξn−ξ−)ε

=
εeiτkξ−

2π

M−1∑
n=0

b(ξn)(eiτ−ε(eiδε)−k)−n,

(10)

where ξn = ξ− + nε. The B(τk) are computed fast by apply-
ing chirp z-transform [19] to the last sum.
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