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ABSTRACT

Drop-on-Demand Inkjet Printing requires jetting ink particles at 100kHz at velocities of
10m/s from sub-millimeter-scale printhead assemblies, and represents a physics-rich en-
gineering problem. CFD simulations have been used to study the jetting process. From
meniscus deformation at the nozzle, to the presence of entrained particles in the jet, model-
ing contact line dynamics is very important.

Color-Gradient Lattice Boltzmann (CG-LBM) simulations can capture surface tension be-
tween fluids. Contact angles with solids are often imposed on geometrical grounds as
boundary conditions. Alternative energy-based wetting, based on solid-liquid surface ten-
sion/energy arguments, is investigated for its applicability in the inkjet printing regime.

CG-LBM fluid-fluid interfaces are diffuse, despite modelling macroscopically sharp inter-
faces. This requires interpolation of viscosity in the interface region: new arguments are
given to support the idea that this interpolation is free, and can be chosen, for example, on
the basis of validation results.

New theory on CG-LBM for any number N of fluids is developed, and broadens the ap-
plicability of known N -fluid algorithms, allowing the use of in-simulation phase definitions
that are more suitable for large density ratios among fluids.

The use of superviscous particles is investigated, where an N -fluid CG-LBM implementation
is leveraged by using very viscous fluids to model solids. Wetting would then be mediated
by the CG-LBM fluid-fluid interaction framework. The way CG-LBM maintains fluid-fluid
interfaces is now also extended to the solid-fluid interfaces, and can lead to catastrophic
spurious smearing of physical features.

Separately, recognizing the fundamental physical similarity of surface-tension across fluid-
fluid and fluid-solid interfaces, wetting phenomena were simulated with additional fluid-
fluid-like interactions near walls. This solid-phase perturbation approach was consistently
formulated thanks to the new N -fluid CG-LBM theory developed earlier. Inaccuracies arise
when these interactions are not paired with a diffuse fluid-solid interface, similar to those
maintained between fluids in CG-LBM.

Sufficient results are obtained to motivate future development of solid-phase perturbation,
which indeed describes solid-fluid and fluid-fluid surface-tensile interaction in a unified
framework.
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Chapter 1 | Introduction

1.1 Drop-on-Demand Inkjet Printing

Inkjet printing is familiar for its application to graphical printing, but should be viewed fundamentally as a
sophisticated additive manufacturing or physical processing technique, with applications in the electronics
or pharmaceutical industries for example. Such applications can indeed benefit from the technique’s
precise control of delivered material and extreme achievable reliability [13, 22].

Whereas other older techniques used a continuous ink-jet’s instability and tendency to breakup into
droplets, drop-on-demand inkjet printing produces every drop individually by using a pressure-wave in the
printhead with a piezoelectric actuator. The interface with ambient air at the nozzle responds to this wave
and deforms, releasing a small jet which forms into a droplet. This principle is shown in figure 1.1. From
the printhead acoustics, surface-tensile effects and wetting near the nozzle, jet instabilities and droplet in-
flight dynamics, splashing and other phenomena on the substrate, all occurring for a sub-millimeter-scale
printhead assembly to eject micrometer-scale droplets at frequencies reaching 100kHz and velocities of
10m s−1, drop-on-demand inkjet printing is clearly a very physics-rich engineering problem[2, 13, 22].

Drop-on-demand inkjet printing demands extreme reliability, from droplet production to impact [13].
Because an accurate description of this microfluidic multiphase flow is necessary to good R&D, and due to
prototyping requirements and the difficulty of measurement (e.g. optical) access at such scales, numerical
modeling is a valuable tool to the development of better inkjet printing technology, also helping support
experimental results with a common theoretical basis [13]. Current research interests are discussed in
section 1.3, and have been tackled by Flow Matters Consultancy using lattice Boltzmann simulations.

1.2 Multiphase Lattice Boltzmann Simulations

The Navier-Stokes equations (NSE), the governing equations of fluid motion, can be solved numerically
with traditional finite-difference, finite-volume, and finite-elements methods [3, 9]. Lattice Boltzmann is a
family of alternative methods (LBM) which are profoundly different from the aforementioned discretization
techniques, because the equation being solved, the Boltzmann equation, is not the NSE, and is not for-
mulated for fluid flow. Indeed, while the NSE does describe fluid flow, the Boltzmann equation describes
the dynamics of large numbers of idealized particles, which resemble molecules more than fluid elements
[8, 17]. Remarkably, a mathematical link between Navier-Stokes and the Boltzmann equation means that
solutions to the latter can be consistent with those of the former. A unique strength of LBM is that all
major computational steps occur locally (in space and time) and are therefore completely independent of
each other, allowing for straightforward massive parallelization which traditional techniques cannot match
[8, 13]. LBM can be extended or reframed to study other advection-diffusion equations, multiphase flows,
fluid-structure interaction, turbulence, non-hydrodynamic transport phenomena, and quantum mechanics
[5, 6, 8, 17].

In LBM, the ability to act on simulated phenomena at the microscopic level greatly increases flexibility
in defining boundary conditions, contributing to its popularity in simulating complex geometries such as
porous media flow, and phenomena that can escape macroscopic formulation, such as phase change and
capillary phenomena [6, 8, 16, 17]. This uniquely marks LBM as a suitable technique for porous media
flows, with applications in geological engineering and carbon sequestration [4, 12, 20, 24], biological flows
and cardiovascular pathologies in particular [8, 16, 23], electrolyzer, battery, and fuel cell research [1, 7, 10,
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Figure 1.1: Drop-on-Demand Inkjet Printing Working Process. The piezoelectric element induces a pressure
wave and flow inside the printhead, the energy of which is directed towards the meniscus at the nozzle.
Fluid inertia pushes out a small jet, which forms a droplet. Adapted from [13].
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Figure 1.2: Publications over Time with “Lattice Boltzmann” as ‘topic’ (i.e. title, abstracts, and keywords)
in the Web of Science database. Adapted from [18] with new data, retrieved on November 14th 2024.

11, 14, 15, 19, 21], clearly in line with UN sustainable development goals of Good Health and Well-Being,
Affordable and Clean Energy, and Climate Action at the very least. These characteristics have contributed
to an exponential increase in LBM-related publications, as seen in figure 1.2.

1.3 Research Question and Report Structure

Researchers associated with Flow Matters Consultancy have successfully used LBM to study drop-on-
demand inkjet printing. This report’s precursor work [2] demonstrated that LBM was comparably stable
and accurate compared to established traditional methods. The ease of parallelization of LBM made it
possible to efficiently investigate asymmetric jetting, most notably due to nozzle defects or entrained solid
particles. Flow Matters Consultancy is specifically interested in better capturing meniscus contact-line
dynamics and wetting on moving particles, and their effects on jet and droplet dynamics after ejection.
The complexity of the simulated flow calls for continued development and especially improved support of
dynamic capillary phenomena. Such phenomena are a subtle interplay of microscopic interactions, which
combined with viscous and velocity-dependent parameters, have macroscopic consequences, raising the
following question:

®
How can Lattice Boltzmann Methods be used to simulate multiphase flows with
dynamic capillary phenomena?

To answer this question, part I will first summarize relevant background knowledge. Chapter 2 gives a
general overview of the relevant fluid dynamics. Chapter 3 then describes the LBM implementation in the
precursor work [2], Color-Gradient LBM (CG-LBM), which is suitable for multiphase simulations without
phase-change.

Part II includes the literature review and new theory on multiphase LBM simulations. Chapter 4 refines
the research question to investigate an intriguing class of wetting implementation, which mediates solid-
fluid capillary interaction similarly to how fluid-fluid interaction is handled. A systematic review of the
literature will confirm that these energy-based implementations have not been applied in the demanding
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regime of drop-on-demand inkjet printing simulations. Chapter 5 describes which techniques will be
attempted in the thesis, namely the use of very viscous fluids to model solids, and additional solid-fluid
interactions near walls. Finally, chapter 6 presents new theory concerning multiphase simulations in LBM,
extending the applicability of certain CG-LBM algorithms.

Part III contains the thesis’ results from simulations. Chapter 7 documents the extension of Flow
Matters’ LBM code to support any number N of fluids. Chapter 8 discusses the use of superviscous fluids
to model solids. CG-LBM is characterized by the use of diffuse (as opposed to sharp) interfaces between
fluids, the effects of which on superviscous fluids have not been studied. Chapter 9 presents an adaptation
of solid-phase perturbation, a technique that models wetting by setting surface-tensions between fluids and
solids. Chapter 10 concludes on recommendations arising from this thesis’ results.
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Chapter 2 | Fluid Dynamics

� Key Points

• Continuum Fluid Dynamics are described by the Navier-Stokes equations.

• Multiphase Flows are characterized by the presence of several fluid or solid phases
interacting with each other at interfaces.

• Interfacial phenomena related to intermolecular interactions manifest themselves at
the macroscopic level as surface tension and wetting.

• Dimensionless Numbers can be used to identify hydrodynamic regimes and relevant
physical phenomena.

• Drop-on-demand inkjet printing simulations must support large density and viscosity
ratios, as well as capture capillary phenomena in dynamic situations.

In this chapter, a basic sense of multiphase fluid dynamics is provided to help identify the necessary
capabilities of multiphase simulations of drop-on-demand inkjet printing.

2.1 The Navier-Stokes Equations

At the microscopic level, matter is described by the dynamics of individual atomic or subatomic parti-
cles. When a large enough number of these particles, constantly moving and undergoing interparticular
interactions (e.g. collisions), are at sufficient density, they form a continuous substance which follows fluid
behavior at a macroscopic level. A fluid is “a substance that deforms continuously under an applied shear
stress”[9]. This means that a fluid element (a small volume within the bulk of fluid) will immediately
deform in response to an applied shear stress. An incompressible fluid further does not exhibit any density
variations. In that case, the following form of the Navier-Stokes equations (NSE) describes fluid mechanics
[4, 8, 9]:

ρ∇ · u = 0 (2.1)

∂u

∂t
+ u · ∇u = −1

ρ
∇p+ µ

ρ
∇2u+

F

ρ
(2.2)

where equation (2.1) expresses mass conservation, and equation (2.2) momentum conservation; u is the
local fluid velocity, p pressure, F is any kind of applied surface or body force, ρ is the density of the
fluid, and µ is its (here, constant) dynamic viscosity, ∇ is the spatial gradient operator and t is time.
The quantity ν = µ/ρ is the fluid’s kinematic viscosity. Boundary conditions to these partial differential
equations notably include the no-slip boundary condition, where fluid in the immediate vicinity of a solid
surface or wall must move at that wall’s velocity.
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Figure 2.1: Stable, Laminar, Steady Stratified Couette Flow of fluid “1” over a fluid “2”. Each has its own
density and viscosity. Gravity is not considered here.

We can also write equation (2.2) with a material derivative D
Dt =

∂
∂t + u · ∇ [9]:

D

Dt
(ρu) = −∇p+ µ∇2(ρu) + F (2.3)

The left-hand side is the material derivative of momentum, expressing the overall transport of fluid ele-
ment momentum. This identifies the motors of fluid flow on the right-hand side: pressure gradients −∇p
and external forces F . The µ∇2(ρu) term represents viscous dissipation of momentum, and kinematic
viscosity ν = µ/ρ is therefore a momentum diffusivity, playing the same role as heat diffusivity α in the
heat equation[1]:

∂T

∂t
= α∇2T (2.4)

where T is temperature. Since equation (2.4) describes the transport of heat by conduction alone, we clearly
identify by analogy that viscosity and viscous dissipation tend to smoothen out momentum gradients.1

Returning to equation (2.2), we consider the flow field at a local point in space. With respect to some
direction, a positive acceleration of the flow field (the first term on the left-hand side) is caused by forces
in that direction, or favorable (negative) pressure gradients. The viscous term grows to the second order in
u: viscosity is a stabilizing term that always dissipates momentum, and does so increasingly with velocity.
Conversely, the u · ∇u advection term is nonlinear and notoriously troublesome, inviting chaos into the
flow field, ultimately leading to the onset of turbulent flow [9, 11].

2.2 Multiphase Flows

Multiphase flow is characterized by the presence of additional fluid (gaseous or liquid) or solid phases in
the flow. In the latter case, small solid particles could be entrained in the flow field. In the former, several
fluids must be distinguishable at the macroscopic scale [2]: small bubbles of air entrained in water flow,
stratified flow of oil above water, or the jetting of water through ambient air, for example.

Contact between distinguishable phases occurs at interfaces. Air above a pool of water, for example,
forms an interface with it. Just like a fluid typically obeys a no-slip boundary condition at a solid wall,
additional boundary conditions apply at interfaces. Consider the stratified flow conditions of figure 2.1.
At the moving top and fixed bottom wall, the fluids obey no-slip. But at the fluid-fluid interface, the shear
stress of one fluid shears the other. An appropriate boundary condition is not no-slip, but a continuity of
shear stresses, defined for fluids as:

µ1
∂u1
∂y

∣∣∣∣
interface

= µ2
∂u2
∂y

∣∣∣∣
interface

(2.5)

1For incompressible flow, we can even claim that viscosity smoothens out velocity gradients.

17



where ∂uk/∂y is the velocity gradient of fluid k orthogonal to the streamwise direction.2 The existence
of an interface between the two fluids implies that the fluids remain somewhat separate. If there is no
mass-flux whatsoever across the interface, the fluids are immiscible, and there is no phase-change between
the fluid phases: a fluid element in phase k located at the interface must not cross the interface. This
corresponds to a kinematic boundary condition:

(uuuk · n̂nn)|interface = uuuinterface · n̂nn (2.6)

where uuuk is the velocity of the fluid element of phase k, n̂nn is the interface-normal vector, and the right-hand
side is the interface’s velocity normal to itself [9].

Equations (2.5) and (2.6) together respectively constrain the tangential and normal velocities in either
phase around the interface. For immiscible, incompressible fluids, the Navier Stokes equations (2.2) apply
for either phase, but are coupled together hydrodynamically by these boundary conditions at the interface
[9].

2.2.1 Surface Tension

Immiscible fluids, such as oil and water, do not mix to form a single phase, and so coexist in separate
phases at the interface. Spontaneous phase separation supposes that immiscible fluids minimize their
free energy by remaining separate [6]. Conversely, attempting to mix immiscible fluids would raise this
energy. Since the fundamental difference between this situation and some other pair of miscible fluids is
the presence of the interface, these energy changes must be occurring at the deformable interface.

Interface

Bulk

Figure 2.2: Intermolecular cohesive forces in the bulk and at the interface. In the bulk, molecules are
surrounded and attracted by other molecules of their own kind. At the interface, they lose half of these
interactions: there is an energy cost to reside there, and there exists a net force towards the bulk. Adapted
from [5].

Molecules must attract one another to form a continuous fluid phase. Molecules also experience such
intermolecular forces with molecules of different substances. Figure 2.2 shows how molecules in the bulk
indeed experience more cohesive forces with molecules of their own substance than at the interface, where
they lose half of these interactions, owing to the different nature of the molecules on the other side of
the interface [5]. Molecules also experience adhesive forces with molecules of different species, but for
immiscible fluids, these are weaker than the cohesive forces. The resulting tendency for molecules to be
in the bulk implies an additional interface-normal pressure directed towards the bulk, and the tendency
to minimize the surface-area of the interface.

Therefore, there exists an interfacial phenomenon for two fluids at equilibrium that:

• minimizes the system’s free energy by maintaining an interface;

2Couette flow is essentially 1D, since velocity profiles only vary along y [9].
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p1

p2

Figure 2.3: A spherical droplet of fluid “2” immersed in fluid “1”. Its shape results from overpressure and
minimization of surface area (and hence, surface energy) associated with surface tension. The pressure p2
inside the droplet is larger than the pressure p1 outside, due to surface tension.

• manifests itself with an interface-normal pressure jump.

Surface tension σ is indeed both

• the change of free energy F for a change in interface area A at constant temperature T , volume V ,
and amount of matter n [5]:

σ =

[
∂F

∂A

]
T,V,n

(2.7)

• the scaling factor of the overpressure (or, Laplace pressure) ∆p caused by local mean interface
curvature κ̄ [5, 9]:3

∆p = 2σκ̄ (2.9)

Equation (2.7) is the change in force required to deform a surface. Since work is force applied over a
distance, we can also identify surface tension as the interface-normal force per unit length of interface
required to deform the interface [5].

In figure 2.3, a volume of fluid “2” is immersed in fluid “1”. Minimizing its surface area and the
fluid-fluid interface, the volume adopts a spherical shape with radius R, and the mean curvature is 1/R.
The droplet’s outward curvature indicates that the droplet is in state of overpressure, with pressure p2:

p2 = p1 +∆p = p1 + σ
2

R
(2.10)

2.2.2 Wetting and Contact Angles

Surface tension also exists between a fluid and solid phase, and will manifest itself at three-phase bound-
aries between two fluids and a solid. Consider a drop of liquid in ambient gas, deposited on a flat solid
surface. For the droplet to spread on the solid, it must:

1. deform its interface with the gas,

3The normal stress boundary condition is, more formally [9]:

∆p = −σ∇ · n̂ (2.8)

where n̂ is the unit-normal to the boundary’s surface. Note this equation represents an additional interfacial boundary condition.
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θE

Figure 2.4: Liquid droplets deposited on a flat solid surface. On the left, a non-wetting droplet. In the
middle, a partially wetting droplet. On the right, a fully wetting droplet would tend to form a film. The
equilibrium of forces at the contact line defines the equilibrium contact angle θE.

τvisc

Fcap

Figure 2.5: Capillary Intrusion in a Tube. The tube walls are wetting: capillary forces Fcap drive the red
fluid through the tube filled with blue fluid, while viscous stresses τvisc oppose this movement. Viscous
dissipation also happens at the meniscus and in the blue fluid, since it is displaced and must move.

2. increase its interface with the solid,

3. decrease the gas/solid interface.

These three processes are related respectively to the surface tensions:

1. between the two fluids σLG,

2. between the liquid and the solid σSL,

3. and between the gas and the solid σSG.

The work required for this spreading defines the contact angle θE formed by the three-phase contact line
with the flat solid surface [5].

Figure 2.4 shows deposited droplets at equilibrium, where the balance of surface-tensile forces yields
the equilibrium contact angle θE. The interface reduces to a line for three-phase contact. The surface-
tensile forces between the fluids and the solid are aligned with the flat surface, and that between the two
fluids is directed away from the solid surface at an angle θE. A simple force balance then yields Young’s
law [4, 5]:

cos θE =
σSG − σSL
σLG

(2.11)

A less-wetting liquid will have a large equilibrium contact angle, and vice versa. A fully wetting droplet will
tend to spread over the entire solid surface. Capillary forces associated with surface tension are stronger
for small contact angles, and can drive fluid flow, as shown in figure 2.5.

The dynamic contact angle θd is the actual apparent contact angle away from static equilibrium. It
is associated with a moving contact line overcoming viscous dissipation, and therefore is viscosity- and
velocity-dependent. In addition, contact angle movement on the solid implies that the fluid does not obey
no-slip at the microscopic scale, introducing dependence on a slip length, a microscopic material property
[3, 5, 7].

2.3 Dimensionless Numbers

2.3.1 Principle

Taking equation (2.9) and normalizing all variables in terms of macroscopic characteristic values (e.g.,
a tube’s diameter for characteristic length L) yields a non-dimensionalized Navier-Stokes equation. The
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viscous term becomes in terms of dimensionless velocity u∗ = u/U (where U is the flow’s characteristic
velocity, e.g. domain inlet velocity) Re−1∇2u∗, where Re is the Reynolds number [9]:

Re =
UL
ν

(2.12)

When Re is very large, the viscous term can then be neglected: momentum advection, represented by UL,
is much more important than kinematic viscosity (or, momentum diffusion) ν. Dimensionless quantities
like Re can be used to simplify equations by scaling out minor contributions. For an example, consider
again the stratified flow in figure 2.1 and the boundary condition in equation (2.5). If the dimensionless
viscosity ratio µ1/µ2 is very high, the boundary condition described by equation (2.5) can be simplified to
a free-surface condition [9]:

µ1
∂u1
∂y

∣∣∣∣
interface

≈ 0 (2.13)

Because physics should not depend on a particular set of units, dimensionless numbers can be used
to express similar behavior across a wide range of physical scales [9]. For example, any liquid drop sitting
on a partially wetting solid surface where the ambient gas density is negligible can be characterized by its
Bond number Bo [5]:4

Bo =
ρgV 2/3

σ
(2.14)

where ρ is the liquid’s density, g is gravitational acceleration, V is the bubble’s volume, and σ is the
surface tension between the fluids. For a large Bo, gravity dominates and the droplet flattens, spreading
despite surface tension opposing interface deformation. For a small Bo, surface tension dominates, gravity
can be neglected, and the droplet adopts a spherical shape, sitting on the solid surface according to its
equilibrium contact angle θE.

2.3.2 Inkjet Printing Parameter Space

Ink jetting in air supposes density ratios of λρ = O(103) and kinematic viscosity ratios of λν = O(102)
[4]. In piezoelectric drop-on-demand inkjet printing, droplet volumes are small, and so are Bond numbers:
gravity can be neglected in considering droplet shapes [10]. As discussed in chapter 1, we are especially
interested in the jetting of fluid particles through the nozzle. The pressure wave delivered by the piezo-
electric element imparts inertial (kinetic) energy per unit volume to the fluid scaling with ρU2R3, where
U is a characteristic ejection velocity for a droplet of characteristic length, or radius, R and density ρ.
For the jet to pierce through the fluid-fluid interface at the meniscus, it must deform the interface with the
surrounding gas, which is associated with an energy cost scaling with σR2. The ratio of these energies
gives the Weber number We:5

We =
ρU2R

σ
(2.15)

If the inertial contribution is too weak, no droplet will be ejected [10].
With respect to fluid viscosity: on one hand, it damps the inertial force as described by the Reynolds

number Re, which must then be large enough. Otherwise, all the energy from the pressure pulse is
dissipated before reaching the nozzle. On the other hand, the required interface deformation also implies
flow, and therefore viscous dissipation near the interface. The capillary number Ca represents this balance
of viscous and inertial forces:

Ca =
µU

σ
=

We
Re

(2.16)

4The ambient gas density is neglected here, assuming that the dimensionless ratio between the liquid density and gas density is
very large.

5These numbers are more typically defined in terms of force ratios, rather than energy ratios [10]. Either choice leads to the same
scaling, though.
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Figure 2.6: Dimensionless parameter map for “stable operation of drop-on-demand inkjet printing”.
Adapted from [10]

A similar scaling, but comparing viscous to capillary timescales yields the Ohnesorge number Oh [10]:6

Oh =
µ√
ρσR

=
We1/2

Re
(2.18)

If Oh is too large, then the meniscus will not deform due to viscous dissipation.
Figure 2.6 summarizes the requirements on dimensionless numbers for inkjet printing [10]. Low Re

or Oh means that there is insufficient inertia to overcome viscous dissipation in the bulk, or the surface
tension at the meniscus. If Oh is too large, too much energy is lost to viscous dissipation at the meniscus
for jetting to occur. If Oh is too small, surface tension is so strong that larger droplets are unstable, and
form smaller satellite droplets [2, 5, 10]. For large Re and smaller surface tensions (i.e., large Oh, owing to
equations (2.15) and (2.18) ), ejected droplets are susceptible to splash on the substrate, with is problematic
for precise printing [10]. These factors together form a limited dimensionless parameter space in which
drop-on-demand inkjet printing is possible.

The use of Lattice Boltzmann in the precursor work [4] and discussed in chapter 3 is rooted in the
method’s ability to simulate in this relevant parameter space:

• large fluid density and viscosity ratios,

• moderate Reynolds numbers corresponding to non-turbulent dynamic flow conditions with non-
negligible viscous dissipation,

6Characteristic timescales of phenomena are found by forming a number with units of time from the essential fluid or flow
properties associated with said phenomena. For viscous phenomena, one could use kinematic viscosity ν and any characteristic
lengthscale L:

tviscous ∼
L2

ν
(2.17)
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• moderate Ohnesorge numbers corresponding to non-negligible surface-tensile and capillary phe-
nomena.

The last point implies that wetting and contact-line dynamics should also be captured, justifying the search
for better wetting implementations.
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Chapter 3 | Lattice Boltzmann Methods

� Key Points

• The Boltzmann Equation (BE) describes the mesoscopic transport of particles popu-
lations, and has its roots in microscopic kinetic gas theory.

• The discretized BE, the Lattice Boltzmann Equation (LBE), can be broken down into
simple local steps, and is as such naturally suited to parallelization.

• The Chapman-Enskog procedure provides a link between the mesoscopic scale de-
scription of the LBE and macroscopic scale Navier-Stokes fluid behavior.

• Central Moment Lattice Boltzmann formulations improve stability by resolving issues
in Galilean invariance.

• Immiscible multiphase flows can be simulated with color-gradient methods.

This chapter describes the numerical method which will be used in the thesis, as a continuation of the
work in [5]: a Central Moment, color-gradient Lattice Boltzmann Method for Immiscible Multiphase Flows.
While certainly a mouthful, understanding the principle behind the technique is relatively straightforward.
Starting from the origin of Lattice Boltzmann methods, we will clarify the technique’s strengths and lim-
itations, which will later better inform any choices relating to the implementation of wetting phenomena.
Hurried readers already familiar with Lattice Boltzmann are invited to start at section 3.4.

3.1 Kinetic Gas Theory

3.1.1 The Particle Distribution Function and the Boltzmann Equation

Our starting point for Lattice Boltzmann Methods (LBM) is kinetic gas theory applied to dilute
monoatomic gases. Our initial object of study is therefore a large collection of point particles. We
introduce the particle distribution function f(x, ξ, t) to describe the local proportion (or density) of parti-
cles at position x and time t with velocity ξ [15]. Particle distributions f also express the probability of
particles occupying a certain velocity-state in space and time, describing mesoscopic population dynamics
rather than microscopic particle (molecular) dynamics [25]. The group of particles represented through f
is a population.

At the microscopic scale, Newton’s laws describe each particles’ motion between quasi-instantaneous
binary collision events, the outcome of which are constrained by conservation of mass and momentum.
The move to the mesoscopic scale averages the effects of collision events, lumping them together to affect
a population f as a whole [25]. An expression for the evolution of f(x, ξ, t) over time can be obtained by
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taking a total time derivative, with the chain rule yielding, with index notation for vectors [15]:

df

dt
=
∂f

∂t

dt

dt
+

∂f

∂xα

dxα
dt

+
∂f

∂ξα

dξα
dt

(3.1)

Since the variations of f are due to collision events, we call the total derivative df/dt the collision operator
Ω(f). The time-derivative of position xα is velocity ξα, and as particle dynamics are described by
Newton’s laws, the time-derivative of velocity ξα is an acceleration which can be expressed as a local body
force density Fα/ρ. In the absence of such a force, we recover the force-free Boltzmann equation (BE):

∂f

∂t
+ ξα

∂f

∂xα
= Ω(f) (3.2)

The variations of f , and therefore the action of the collision operator Ω, must satisfy conservation of mass
and momentum, the constraints to the microscopic collisions.

3.1.2 Moments of the Particle Distribution Function

The Boltzmann equation is also related to the macroscopic dynamics of the continuum gas formed by the
microscopic particles. By integrating f over velocity space, we recover a local normalized particle count;
in other words, the density ρ of the gas: ∫

fd3ξ = ρ (3.3)

Integrating f in velocity space after multiplying it by the velocity n times corresponds to taking the n-th
velocity moment of f , the zeroth moment then being mass density. Higher-order moments are related to
other macroscopic quantities, with the first-order moment yielding momentum density [15]:∫

fξαd
3ξ = ρuα (3.4)

Taking the moments of the entire Boltzmann equation yields macroscopic scale conservation equations
for mass and momentum [15].

3.1.3 Equilibrium Distributions and Collision Operators

At the microscopic scale, the particles in the system constantly travel and undergo elastic collisions across
which no energy is dissipated, meaning that individual particles’ velocity-states are constantly changing.
At the mesoscopic scale however, a population of particles can reach an equilibrium state described by
an equilibrium particle distribution function f eq, which is also defined locally in space and time. It further
depends on molecule velocities’ deviations from mean (bulk fluid) velocity u, which are associated with
fluid temperature T [4, 15, 25].1 An equilibrium distribution of particle velocity magnitudes is shown
qualitatively in figure 3.1.

This implies that through the action of the collision operator Ω(f), a particle distribution f tends
toward the equilibrium state f eq. Were some spatially homogeneous particle distribution f(ξ, t = 0) to
relax to f eq(ξ) through exponential decay, we would have:

f(ξ, t) = f eq(ξ) +
(
f(ξ, t = 0)− f eq(ξ)

)
e−t/τ (3.6)

where τ is a relaxation time, a property of the mesoscopic gas formed by the microscopic particles. The
consistency of equation (3.6) with the Boltzmann equation (3.2) leads to the definition of the BGK collision

1In the force-free case, f eq for a dilute monoatomic gas is [15]:

f eq(ρ,u, T, ξ) =
ρ

(2πRT )d/2
e−(ξ−u)2/(2RT ) (3.5)

where d is the number of spatial dimensions, and R = kB/m is the gas constant expressed with the Boltzmann constant kB and
particle mass m.
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f

Figure 3.1: A typical equilibrium Maxwell Boltzmann distribution shape for velocity magnitude, towards
which a population away from equilibrium tends to relax through collision events. Physically, population
states relax to equilibrium distributions for each velocity component, not velocity magnitude.

operator [15]:2

Ω(f) = −1

τ

(
f − f eq

)
(3.7)

Together with the Boltzmann equation (3.2), the definition of the collision operator (which does not have
to be the BGK) describes a system that can be discretized and solved numerically.

3.2 The Lattice Boltzmann Equation

3.2.1 Velocity, Space, and Time Discretization

Hermite Series Expansion

Owing to its form, the mesoscopic equilibrium f eq (see equation (3.5) in footnote 1) can also be expressed
with a Hermite series expansion. This procedure is not detailed here, although we note that the truncation
of the expansion is clearly related to the conservation of moments: in our case, we are only interested in
the first three orders, respectively related to conservation of mass, momentum, and energy. Following the
non-dimensionalization of the Hermite-expanded equation truncated at the third order, we obtain using
index notation [15]:

f eq(ρ,u, θ, ξ) ≈ ω(ξ)ρ
[
1 + ξαuα + (uαuβ + (θ − 1)δαβ)(ξαξβ − δαβ)

]
(3.8)

where θ is dimensionless temperature, δαβ is the Kronecker delta, and ω is a weight function of d the
number of spatial dimensions, deviations from local velocity ξ − u, and θ.3 Assuming an isothermal
gas, θ = 1. To finish the discretization, the Gauss-Hermite quadrature rule makes it possible to evaluate
integrals of (3.8) (and in our case, the macroscopic moments of interest) exactly as sums of the integrand
at points in velocity space called abscissae. Since we are only interested in reproducing the mesoscopic
equilibrium distribution insofar as its moments recover mass, momentum, and energy conservation, this

2Named after Bhatnagar, Gross and Krook.
3The weight function is given by:

ω =
1

(2π)d/2
e−(ξ−u)2/(2θ) (3.9)
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means that the weights ω can be replaced with a set of q weights wi related to Hermite polynomial values
at the abscissae [15]. Since the abscissae are points in velocity space, this also means that we only need
to consider a restricted set of q velocities ci to recover the macroscopic moments, and that f eq need only
be known for each of these velocities indexed i = 0, . . . , (q − 1). Velocity has been discretized, and we
recover the discrete equilibrium distribution in index notation [15]:

f
eq
i = wiρ

(
1 +

ciαuα
c2s

+
uαuβ(ciαciβ − c2sδαβ)

2c4s

)
(3.10)

where cs is the speed-of-sound, a constant related to the discrete velocity set as well as the equation of
state for the gas at pressure p = c2sρ. The identical procedure of Hermite expansion and Gauss-Hermite
quadrature can be applied to f , leading to the discrete-velocity Boltzmann equation [15]:

∂fi
∂t

+ ciα
∂fi
∂xα

= Ω(fi) (3.11)

along all q directions in the velocity set.

Velocity Sets

Velocity sets of admissible particle velocities ci arise naturally through the abscissae, and allow the
computation of macroscopic moments.4 Since the Hermite polynomial truncation and Gauss-Hermite
quadrature are compatible with the conservation of mass and momentum inherited from the microscopic
scale, the same moments are recovered at any f relaxing towards f eq, except that the integrals of equations
(3.3) and (3.4) are evaluated as discrete sums over the velocities ci in the set:

ρ =
∑
i

fi =
∑
i

f
eq
i (3.13)

ρu =
∑
i

fici =
∑
i

f
eq
i ci (3.14)

Velocity sets are frequently denoted using DdQq notation, where d is still the number of spatial dimensions,
and q is the number of discrete velocities. Figure 3.2 shows the velocity vectors in the D2Q9 velocity set,
with vector weights:

wi =


4/9, i = 0

1/9, i = {1, 2, 3, 4}
1/36, i = {5, 6, 7, 8}

(3.15)

and lengths (in terms of discretized unit length ∆x and timestep ∆t):

|ci| =


0, i = 0

1, i = {1, 2, 3, 4}√
2, i = {5, 6, 7, 8}

(3.16)

The actual distances spanned by those velocities will depend on the spatial discretization. For all velocity
sets used in this thesis, the lattice speed-of-sound is cs = 1/

√
3 [15].

4Velocity sets can also be constructed by the satisfaction of isotropic conditions, which constrain the moments of the weights wi

in the set. Such conditions include, for example [15]: ∑
i

wi = 1

∑
i

wiciα = 0 (3.12)

∑
i

wiciαciαciβ = c2sδαβ
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Figure 3.2: D2Q9 Velocity Set Diagram. The set is two-dimensional (D2) and contains nine (Q9) velocities,
including the rest velocity indexed 0, which is a zero-vector. All velocities are vectors that end at the nodes
of a uniform lattice.

Space and Time Discretization

Equation (3.11) is a first-order hyperbolic differential equation, for which the method of trajectories (or
characteristics) and a simple single-point (or rectangular) discretization of a resultant time-integral of the
collision operator Ω from 0 to timestep ∆t yields [15]:

fi(x+ ci∆t, t+∆t) = fi(x, t) + ∆tΩi(x, t) (3.17)

Space and time discretization are now clearly tied to the velocity sets: populations of particles represented
by their distribution function fi exist on lattice nodes at locations x in uniformly discretized space, and
move once per timestep in the direction prescribed by their velocity ci exactly to the location of another
node.

3.2.2 Numerical Solution

Streaming and Collision

Equation (3.17) with the BGK operator in equation (3.7) yields the lattice BGK equation (LBGK):

fi(x+ ci∆t, t+∆t) = fi(x, t)−
∆t

τ

(
fi(x, t)− f

eq
i (x, t)

)
(3.18)

The numerical solution of this equation is usually split into two separate and successive steps [15]:

• the collision step, where the precollision populations fi at some lattice node x and time t relax
towards equilibrium to become the post-collision populations: f⋆i

f⋆i (x, t) =

(
1− ∆t

τ

)
fi(x, t) +

∆t

τ
f
eq
i (x, t) (3.19)

• the streaming step, where post collision populations move to the lattice node prescribed by their
velocity ci:

fi(x+ ci∆t, t+∆t) = f⋆i (x, t) (3.20)

General Algorithm

Stepping equation (3.17) through time solves the mesoscopic behavior of our gas, and is connected to
macroscopic quantities through velocity moments of fi. Equations (3.19) and (3.20) display an extremely
valuable characteristic of LBM: the major steps occur entirely locally, meaning the equations are naturally
suited to parallelization. Information exchange between populations at a local site (and hence, between
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populations streaming from different nodes in the system) occurs through the equilibrium population
returned by equation (3.10), which requires the calculation of the macroscopic moments according to
equations (3.13) and (3.14).

3.3 Modeling Hydrodynamic Behavior

3.3.1 Chapman-Enskog Analysis

While there is a connection to macroscopic scale quantities through the velocity moments of the popula-
tions, it remains that we are modeling the mesoscopic population dynamics of many idealized particles.
Our interest in LBM, however, is its connection to fluid dynamics as described by the Navier-Stokes equa-
tions, and established by Chapman-Enskog analysis, the broad strokes of which are presented here following
the derivation in [15].

Taylor Expansion

Introducing the following shorthand notation for spatial and temporal derivatives:

∂

∂xα
= ∂α

∂

∂t
= ∂t (3.21)

and defining a total/material “lattice” derivative operator Dt [16, 24]:

Dt = ∂t + ciα∂α (3.22)

and so, Taylor-expanding fi(x + ci∆t, t + ∆t) with Dt with respect to fi(x, t) in equation (3.18), with
fi = fi(x, t)

∆tDtfi +
1

2
∆t2D2

t fi +O(∆t3) = −∆t

τ
(fi − f

eq
i ) (3.23)

truncating out the O(∆t3) terms and subtracting from equation (3.23) itself operated by (∆t/2)Dt, also
noting that the right-hand side of equation (3.23) has the non-equilibrium contribution to fi, f

neq
i = fi−f eqi ,

we obtain after reversing the substitutions of equation (3.22) [15]:

∆t(∂t + ciα∂α)fi = −∆t

τ
f
neq
i +∆t(∂t + ciα∂α)

∆t

2τ
f
neq
i (3.24)

The Perturbation Expansion

Taking the first order moment of equation (3.24) will result in a momentum conservation equation, and
the Euler equation when f ≈ f eq. This indicates that hydrodynamic behavior “beyond the Euler equation
must be connected to the non-equilibrium part of f” [15]. Departures of f from equilibrium can be
expressed as terms of orders of Kn = lmfp/L (where lmfp is the mean free path that microscopic particles
travel between collisions, and L is the macroscopic lengthscale), and so up to the second order [15, 25]:

fi = f
eq
i + ϵf

(1)
i + ϵ2f

(2)
i + . . . (3.25)

with ϵ = Kn. This further leads in the differential operators applied to f [15, 25]:

∂α = ϵ∂ (1)α (3.26)

∂t = ϵ∂
(1)
t + ϵ2∂

(2)
t (3.27)

Recovering the Navier-Stokes Equations

By exanding terms in equation (3.24) with equations (3.25), (3.26), and (3.27), one finds two separate equa-
tions with terms of respectively order O(ϵ) and O(ϵ2). By taking the velocity moments of these equations
separately, we obtain O(Kn) and O(Kn2) “moment equations”, with higher-order equations corresponding
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to “corrections” to lower-order equations [15]. Combining these equations together, reversing the order
expansions, recalling the ideal gas equation of state p = c2sρ, we obtain:

∂tρ+ ∂γ(ρuγ) = 0 (3.28)

∂t(ρuα) + ∂β(ρuαuβ) = −∂αp+ ∂β

[(
ρc2s(τ −∆t/2)

)
(∂βuα + ∂αuβ)

]
(3.29)

By comparing equation (3.29) with the Navier Stokes equation (2.2), we can establish a relationship between
the real, physical kinematic viscosity ν and the relaxation time τ of our gas:

ν = c2s

(
τ − ∆t

2

)
(3.30)

Once this substitution is made, an O(u3) term aside, we have an equation that is identical to the Navier
Stokes equation. This means that the macroscopic behavior of the virtual gas with mesoscopic relaxation
time τ is equivalent to that of a fluid described by the Navier Stokes equation with kinematic viscosity ν
[15, 25].

Lattice Boltzmann Numerical Methods

Chapman-Enskog analysis shows that LBM is a numerical method to solve the Navier-Stokes equations
(NSE), and so is based on the mesoscopic dynamics of fictitious microscopic particles, whose macroscopic
behavior is equivalent to that of a fluid as described by the NSE. The fictitious micro- and mesoscopic
physics do not have to reflect the actual micro- and mesoscopic physics of whatever composes the macro-
scopic scale fluid.5 With respect to the hydrodynamics, “particles have no physical meaning”, and only
exist as momentum carriers to mimic macroscopic scale fluid dynamics [10]. The content of equilibrium
distributions, the population distributions themselves, or collision operators can be adjusted to suit en-
tirely mathematical considerations relating to a particular macroscopic transport equation that is known a
priori [15, 25]. Relaxation time τ is strictly speaking only a numerical parameter, and equation (3.30) does
not establish τ as an actual mesoscopic property of the real fluid with viscosity ν. Yet, the fictitious or
approximate microscopic dynamics are apparently sufficient to explain to macroscopic dynamics at hand,
and it remains that real physical macroscopic transport phenomena have their roots in real microscopic
phenomena.

3.3.2 Accuracy and Stability

Accuracy

In section 3.2.1, the Hermite expansion of f eq was truncated at the third term in order to only recover
hydrodynamic moments from the equilibrium distribution, leading to an O(u3) modeling error term
(where u is the mean flow velocity) in the recovered NSE (3.29), which limits the applicability of the
presented LBM to low Mach number Ma regimes [15].

In section 3.3.1, the perturbation expansion and Chapman-Enskog analysis did not consider moment
equations or expansions of the spatial derivative above O(ϵ2), effectively rendering the LBM a second-
order accurate approximation in space of the NSE [15]. The scheme is also second-order accurate in time,
as it can be shown that a (second-order) trapezoidal discretization that gave equation (3.17) leads to the
very same LBE obtained by the single-point approximation used in section 3.2.1 [15].

Stability

For the BGK operator, both equations (3.6) and (3.30), for numerical stability as well as physical consis-
tency, require that τ > ∆t/2. Therefore, a choice of collision operator determines stability conditions
which can significantly restrict available parameter space [15].

5A tighter link is possible, and potentially desirable [25].
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The choice of velocity set, through its connection to Hermite polynomials, also limits the number of
independent conserved moments to the number of velocities in the set q. Many issues in stability are
related to the presence of “ghost modes”, the higher-order non-hydrodynamic moments beyond the first
six (relating to mass, components of momentum and stress in 3D) [7, 15]. From this, it is already plain
that larger velocity sets are required to capture relevant moments, and so larger velocity sets also add
controllable degrees of freedom with respect to ghost moments, which can contribute to stability, as errors
associated with these moments can grow especially when unaccounted for [15, 22, 25]. These issues can
limit the applicability of LBM in some reference frames, or at high velocities or low viscosities, unless
alternative implementations are used [15, 25].

3.3.3 Boundary Conditions

Boundary conditions to the NSE prescribe macroscopic variables at boundaries [16]. Since LBM is fun-
damentally a mesoscopic method, boundary conditions must be redefined at the population level. For
periodicity between two boundaries for example, populations fi streaming out of the domain at one
boundary stream back into it at the other boundary according to their velocity ciα [15]. Since there are
more populations than hydrodynamic moments at a given node, enforcing macroscopic boundary condi-
tions in LBM is a non-unique problem, meaning that several LBM boundary schemes can satisfy the same
macroscopic boundary condition [15].

Bounce-Back Boundary Conditions

Macroscopic no-slip boundary conditions prescribe a fluid velocity, corresponding to the fluid’s interaction
with a solid wall [15, 16]. At the microscopic level, particles collide with the wall to exchange momentum.
The reflection of a particle’s wall-normal momentum corresponds to zero normal particle flux through the
wall. If across a collision with the wall, the particle reverses its wall-tangential momentum, there is no
relative transverse velocity between the particle and the wall. The combination of these two criteria (e.g.,
the particle being reflected back where it streamed from) is called bounce-back, and correspond to a no-slip
boundary condition [15].

At the mesoscopic population level, since admissible velocities are discretized in the velocity set, the
boundary condition manifests itself as a redistribution of particles across populations.6 Figure 3.3 shows
how bounce-back boundary conditions are applied. The boundary nodes are located ∆x/2 away from
the flat immobile wall, which is aligned with the grid. During the streaming step, populations streaming
towards the wall will return to boundary nodes according to the reflection described above. Numerically,
this means that we are assigning particles streaming away from the wall based on the post-collision
populations streaming towards the wall.7 The bounce-back boundary condition for particles streaming
away from a resting wall is then [15]:

fī(xb, t+∆t) = f⋆i (xb, t) (3.31)

where fī is the population with velocity cī = −ci, xb is the position of a boundary node, t + ∆t is the
post-streaming time, and f⋆i (xb, t) is the post-collision population with velocity ci at the boundary node.

For a moving wall with velocity uuuw, we add tangential corrections corresponding to the redistribution
of particles across populations due to the wall’s movement [15]:

fī(xb, t+∆t) = f⋆i (xb, t)− 2wiρw
ccci · uuuw
c2s

(3.32)

where ρw is fluid density at the wall.8

6This is consistent with the fact that the particles are colliding with a wall: a collision operator Ωi also redistributes particles
across populations.

7Due to the reflection process, they are actually the same particles. Comfortingly, this satisfies conservation of mass and
momentum, since microscopic particles are conserved.

8Wall density must be closed, for example with the constant density of an incompressible flow, a local volume-average, or a fixed
density corresponding to a desired pressure. The simplest closure is to use the density of the node where the boundary condition is
being applied.[15].
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f⋆i (xb, t)

fī(xb, t+∆t)

∆t

Fluid

Wall

Solid

∆x

Figure 3.3: Bounce-Back Boundary Conditions. Bounce-Back boundary conditions are link-wise schemes,
where the boundary nodes do not coincide with the location of the wall. Microscopic particles are
conserved, because those streaming out the wall are those that previously streamed towards it. Adapted
from [15].

3.3.4 Forcing Schemes

Forces are momentum-sources in the NSE, and therefore are microscopic particle sources in the LBE.9 A
forcing scheme introduces these sources at the mesoscopic level to recover the macroscopic force Fα, with
Chapman-Enskog confirming the link between scales, while conserving mass and the momentum imparted
by the force.

The discrete velocity Boltzmann equation (3.11) with a forcing term Fi is [15]:

∂tfi + ciα∂αfi = Ωi + Fi (3.33)

The forcing term Fi modifies particle momentum and hence the distribution of particles in populations
fi like the collision operator Ωi, and so it comes as no surprise that Fi can be discretized much in the
same way Ωi was in section 3.2.1.10 Indeed, the second-order truncation of the Hermite expansion of the
forcing term Fi can be shown to be [15]:11

Fi = wi

(
ciα
c2s

+
(ciαciβ − c2sδαβ)uβ

c4s

)
Fα (3.34)

Following an algebraic redefinition of particle populations,12 a second-order discretization similar to that
done in section 3.2.1 with the BGK operator leads to:

f̄i(x+ ci∆, t+∆t) = f̄i −
∆t

τ̄

(
f̄i(x, t)− f̄

eq
i (x, t)

)
+
(
1− ∆t

2τ̄

)
Fi∆t (3.36)

where τ̄ = τ + ∆t/2 is the new relaxation time, with the same relation to fluid kinematic viscosity as
in equation (3.30). Chapman-Enskog analysis successfully recovers the NSE with a source term from
equation (3.36)[15]. The formal modification of the populations and relaxation time are mathematical
tricks to recover equations known a priori.13 Equation (3.36) can then be treated numerically in exactly the

9When LBM is used as a Navier-Stokes solver, the microscopic particles have “no [necessary] physical meaning”, and are only
momentum carriers [10].

10The Hermite series expansion was used to find the equilibrium distribution f
eq
i , but recall that in the first place, f eq

i is introduced
by the BGK operator in equation (3.7).

11This arises from the expansion of the Fα
ρ

f
ξa

term we originally omitted from the continuous Boltzmann equation in (3.1).
12The modified populations f̄i are [15]:

f̄i = fi −
(Ωi + Fi)∆t

2
(3.35)

This redefinition is merely a mathematical trick to recover formally familiar equations.
13This is not troublesome, since we are approaching LBM merely as a numerical method to solve the NSE.
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same way as equation (3.18), with the additional preliminary computation of the forcing term according
to equation (3.34). Since forces are momentum sources, and so modify the moments corresponding to
momentum, energy, etc., the addition of a forcing term and any change in variables (e.g. going from fi
to f̄i) will modify the computation of macroscopic moments. In the present case of Guo-type forcing, the
first-order moment in velocity of f̄i (i.e. momentum) used to compute velocity is changed to[11, 15]:

ρuuu =
∑
i

f̄ici +
∆t

2

∑
i

Ficcciα (3.37)

3.4 Central Moments LBM

The precursor work [5] to this literature review resolves stability issues by the implementation of a central
moments (CM) LBM as described in [7]. CM-LBM addresses the short-wavelength/high-frequency content
of non-hydrodynamic ghost modes associated with the O(u3) error-term of section 3.3.2 [15, 22]. We did
not initally discuss this error term with stability in mind, but since it introduces velocity-dependence in
the results (and by extension, in the transport properties of the fluid [15]), it indeed leads to violation of
Galilean invariance. The truncation ignores higher-order ghost moments for which Galilean invariance is
now no longer guaranteed, translating as a stability issue.

3.4.1 Moment-Space Relaxation

In section 3.1, we introduced collision operators Ω as relaxing populations towards equilibrium. This relax-
ation redistributes particles across velocities ciα, which means that Ω effectively changes the momentum-
or energy-state of particles, which are macroscopic moments: this implies that relaxation can also occur
in moment-space.

Indeed, it is possible to map populations fi to moment-space mk :

mk =
∑
i

Mkifi (3.38)

where Mki is a transformation matrix, adding populations to retrieve moments.14 Note that equation
(3.38) can also be applied to equilibrium distributions to find corresponding equilibrium moments meq

k :
relaxation during the collision step can now occur in moment-space. Using the BGK operator, we cannot
distinguish between the relaxation of momentum or energy states, despite the fact that they correspond
to different moments, since populations are relaxed directly. Following the transformation of equation
(3.38), it is now possible to relax different moments mk to post collision moments m⋆

k at different rates
ωk, including the troublesome ghosts of section 3.3.2, enhancing stability [15, 25]:

m⋆
k = mk + ωk

(
mk −m

eq
k

)
∆t (3.39)

before transforming back into population space. Only the macroscopic moments (which survive the
Chapman-Enskog procedure to establish a link with kinematic viscosity ν) require ωk = 1/τ [7, 15].

3.4.2 Central Moments

The transformation matrix Mki in equation (3.38) varies from method to method, and so there is signif-
icant freedom in defining which moments are being relaxed [15, 25]. The Galilean invariance of the flow
implies the relaxation of similarly Galilean invariant moments: to break the dependence on the reference
frame, CM-LBM relaxes central moments obtained by shifting lattice speeds ciα by local fluid velocity uα
[10], producing a new set of velocities c̄iα used to calculate moments:

c̄iα = ciα − uα (3.40)

Local central moments and equilibrium central moments are obtained with equation (3.38), using the
shifted velocities c̄iα in matrixMki. If the full set of q Hermite polynomials for a DdQq velocity set is used

14For example, summing all populations together (with a row of 1’s in the martix Mki) yields the zeroth-order moment, density ρ.

34



to define the equilibrium populations f eqi , most central equilibrium moments are actually null, and none
depend on local fluid velocity u (they only depend on local density): they are Galilean invariant [9]. Using
that full set for the equilibrium populations f eqi is actually done in certain CM-LBM implementations,
since the resulting annihilation of most central moments can dramatically reduce computational overhead
[8].15

Recall from section 3.3.4 that forces are momentum sources, and are therefore fundamentally similar to
collision/relaxation at the mesoscopic level, as both phenomena redistribute momentum while conserving
mass. Therefore, we can also treat forcing terms using central moments: again, using the full set of
Hermite polynomials, we only find velocity-independent contributions to the post-collision and post-
forcing populations [8].

3.5 Color-Gradient Multiphase Simulations

Among the many ways of simulating multiphase flows using LBM [14], we restrict ourselves to color-gradient
(CG) methods as we continue previous work in [5]. Other methods are very briefly discussed in the
literature in chapter 4. The method typically models two immiscible fluid phases with no phase change:
the situation is characterized by interface-normal surface tension σ which opposes the deformation of
fluid-fluid interfaces, leading to interface-normal pressure jumps proportional to σ and the interface’s
curvature [6].

The color in CG-LGM refers to either fluid: for example, a “red” fluid l = r and a “blue” fluid l = b,
each with their own single-phase reference densities ρ0l , leading to a density ratio λρ = ρ0r/ρ

0
b . Locally,

we distinguish between populations f li of either fluid, leading to the density of fluid l:

ρl =
∑
i

f li (3.41)

with total fluid density ρ =
∑

k ρk. To distinguish between phases in space, a phase-field indicator ρN is
introduced [5]:16:

ρN =
ρr − ρb
ρr + ρb

(3.42)

where ρN = 1 corresponds to pure red fluid, and ρN = −1 to pure blue fluid. A transition from
one phase to another then manifests itself as variations and sign reversals of the phase-field ρN . This
transition occurs over several lattice nodes, but actually models the presence of a sharp interface located
where ρN = 0 [5, 19, 20]. Indeed, the diffusive nature of the interface in CG-LBM is entirely “auxiliary”
to the implementation, especially enhancing stability and accuracy [17, 24].

3.5.1 Changes to Equilibrium and the Collision Step

The pressure pl in each fluid l is calculated with:

pl = ρl(c
l
s)

2 = ρl
1− αl

2
(3.43)

which introduces the parameter αl, which defines the speed-of-sound cls in the fluid l. It also appears in
the modified rest (i.e. velocity-independent) component of the equilibrium distribution function f l,eqi of
fluid l through a term ϕli, which is linear in αl. The effective equilibrium f

l,eq
i towards which each fluid

relaxes is now [5, 7, 21]:

f
l,eq
i = ρl

[
ϕli + wi

(
ciαuα
c2s

+
uαuβ(ciαciβ − c2sδαβ)

2c4s

)]
(3.44)

15Strategic choices in truncation (and lack of correction) can also be made, since many higher-order central (ghost) moments may
not harm the solution of a particular flow [7, 10].

16The densities can also be normalized by their reference state ρ0l to avoid over-weighting the denser fluid for larger density ratios
λρ [1, 5]
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where the parameter ϕli is defined for each velocity ci, like the weights wi.17 Note that all fluids share the
same local macroscopic velocity, which is computed with the first velocity moment with respect to total
density [18, 21]:

ρuα =
∑
i

∑
l

f li ciα (3.46)

This common velocity is how CG-LBM accomplishes hydrodynamic coupling: fluids are tied together by
their first-and-above-order velocity moments, which include momentum and energy.

The redefined equilibrium in equation (3.44) injects the ideal gas equations of state (3.43) in the LBM
algorithm, and therefore the density ratio λρ: a Chapman-Enskog analysis returns the correct NSE for
each fluid [21]. Equation (3.44) is for a second-order truncation of terms in the equilibrium distribution:
in CM-LBM, higher-order terms may of course be retained. A single local value of relaxation time τeff
(along with its corresponding relaxation rate ωeff and kinematic viscosity νeff), typically interpolated from
local fluids’ pure-fluid values, is used to relax all fluid populations to their respective equilibria, with the
collision operator Ωl(1)

i for fluid l, yielding its post-collision populations f l⋆i :

f l⋆i = Ω
l(1)
i (f li ) =

(
1− ∆t

τeff

)
f li +

∆t

τeff
f
l,eq
i (3.47)

In CM-LBM, the collision operator Ωl(1)
i relaxes local central moments for each fluid to the equilibrium

central moments to yield the post-collision populations f l⋆i [8].

Extended Equilibrium

The O(u3) term from section 3.3.2 also contains density gradients which are significant even at low Ma
in multiphase simulations with non-unity density ratios λρ [13, 17]. In this case, extended equilibrium (also
called enhanced equilibrium) terms are injected to remove the error on purely mathematical grounds [5,
19, 20]. These terms Φl

i are added to the fluid equilibria f l,eqi in equation 3.44, and can be expressed as
[5]:

Φl
i = νeff [ψi(uuu · ∇ρl) + ξi(GGGl : ccci ⊗ ccci)] (3.48)

GGGl = (uuu⊗∇ρl) + (uuu⊗∇ρl)⊤ (3.49)

where ψi and ξi are direction-dependent scalars.18

3.5.2 Perturbation and Recoloring

CG-LBM adds two additional steps in the algorithm, which are sequentially applied [7, 19, 21]:

• the perturbation step with operator Ωl,(2)
i , which generates interfacial tension in each phase to yield

post-perturbation populations f l⋆⋆i by generating a “volume-distributed interfacial force”:

f l⋆⋆i = Ω
l,(2)
i (f l⋆i ) = f l⋆i +

A

2
|∇ρN |

[
wi

(ci · ∇ρN )2

|∇ρN |2
−Bi

]
(3.50)

using a single spatially-varying parameter to inject a desired surface tension σ:

A =
9

4
σ/τeff (3.51)

17For the D2Q9 lattice, one may obtain:

ϕl
i =


(1 + 5αl)/6, i = 0

(1− αl)/6, i = {1, 2, 3, 4}
(1− αl)/24, i = {5, 6, 7, 8}

(3.45)

This results from the down-projection of a D3Q19 scheme in [21] to D2Q9, according to a procedure outlined in [15].
18The full terms are given in the reference.
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where Bi is defined for each velocity ci in the set,19 and ∇ρN is gradient of the phase-field ρN (the
color-gradient).

The perturbation step generates interfacial tension by modifying the populations near the interface.
For the implementation in [5], rooted in [21], Chapman-Enskog is used to find equation (3.50) by
enforcing the consistency of the perturbation operator Ω

(2)
i with an interfacial force at the NSE

level, locating a normal pressure jump across the interface defined by ρN . The perturbation step
and the generation of interfacial tension does not keep phases separate on either side of the interface,
however.

• the recoloring step with operator Ωl,(3)
i which enforces immiscibility by redistributing fluid l parti-

cles in the post-perturbation populations f l⋆⋆i into their fluid’s phase while conserving mass and
momentum, leading to the post-recoloring populations f l⋆⋆⋆i for each color:

f l⋆⋆⋆i = Ω
l,(3)
i (f l⋆⋆i ) =

{
ρr

ρ f
⋆⋆
i + β ρrρb

ρ2 cos(φi)f
eq
i |u=0, l = r

ρb

ρ f
⋆⋆
i − β ρrρb

ρ2 cos(φi)f
eq
i |u=0, l = b

(3.53)

where f⋆⋆i =
∑

l f
l⋆⋆
i is total post-perturbation population, β is a parameter related to the thickness

of the auxiliary interface,20 f
eq
i |u=0 =

∑
l f

l,eq
i |u=0 is the total equilibrium population at null

velocity, and φi is the angle between the color-gradient and a velocity ci, with:

cos(φi) =
ci · ∇ρN

|ci||∇ρN |
(3.54)

For either step, gradients are usually computed with isotropic gradient operators to preserve Galilean
invariance, which are central finite-differences with all directions ci in the velocity set weighted by wi, for
example for some scalar-valued function g [1, 5, 19]:

∇g(x) = 1

c2s

∑
i

wig(x+ ci)ciα (3.55)

3.5.3 Model Characteristics

Figure 3.4 shows the result of a CG-LBM simulation with density ratio λρ = 1000. The pressure jump
associated with surface tension manifests itself with the droplet’s spherical shape, corresponding to a state
of overpressure throughout the droplet. The precursor work [5] demonstrated that CG-LBM unlocked
the parameter space required for inkjet printing simulations, namely a density ratio λρ = O(103), with
stabilizing central-moments implementations with enhanced equilibria. CG-LBM also allows to define
viscous relaxation time τ independently from surface tension σ, which further facilitates parameter access
and selection. Unlike other models, CG-LBM does not allow phase change (i.e. mass transfer across
phases), which although limiting its use to immiscible fluids at timescales precluding evaporation, saves it
from purely numerical phase change which can dissipate smaller droplets and features [5, 21].

Multiphase LBM is typically affected by spurious velocities near the interface, which are associated with
lack of Galilean invariance and instability, and interface disintegration: CG-LBM with central-moments or
enhanced equilibria, as well as isotropic gradient operators can keep those in check [5, 21, 24, 26]. Figure
3.5 shows velocity magnitudes for the droplet in figure 3.4: for this steady-state rest case, this entire field
is due to spurious velocities. The latter occur along CG-LBM interfaces. Note that their magnitudes are
smaller when the interface normal (and hence, the color-gradient) tends to align with the directions in the

19For example for D2Q9:

Bi =


−2/9, i = 0

1/9, i = {1, 2, 3, 4}
1/36, i = {5, 6, 7, 8}

(3.52)

This results from down-projection as indicated for ϕl
i.

200 < β <1, although β < 1/
√
2 is required for stability [12].
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Figure 3.4: phase-field for a light blue droplet in heavy red medium in a converged CG-LBM simulation.
The density ratio is λρ = 1000, and the input surface tension is σ = 0.1. The radius of the circle fitted to
the ρN = 0 contour corresponds to droplet radius and interface curvature, and using the pressure jump
on either side of the interface where |ρN | → 1, we can compute an effective in-simulation surface tension
within 0.88% of the input value.

D2Q9 velocity set being used. The spurious velocity field hence depends on one’s frame of reference, and
is related to lack of Galilean invariance.

Using a Taylor series expansion, it can be shown that CG-LBM is, with respect to the interface itself,
equivalent to an interface-tracking Allen-Cahn equation: this means that CG-LBM implictly tracks the
interface [24]. Lower β parameters in the recoloring operator Ω(3)

i lead to broader interfaces and more
accuracy in evaluating the color-gradients ∇ρN . That being said, the diffuse nature of the interface also
adds an unphysical lengthscale to the simulation, which when of the order of actual flow features (e.g.
droplet diameter) may interfere with results [24]. Figure 3.6 shows a planar interface maintained by the
segregation operator. Analysis of the segregation operator and the equivalent Allen-Cahn system reveals
a tanh phase-field transition across the interface [3, 23]. The analytical profile for a planar interface at
rest and centered about x = 0, with the blue phase (ρN < 0) located at x < 0 is [12]:

ρN (x) = tanh(βx) (3.56)

where x is expressed in lattice units, and β is the segregation parameter used in the recoloring operator
in equation (3.53).

3.6 Conclusions

LBM originates as a mesoscopic simulation tool, resolving the dynamics of large populations of molecule-
like particles [25]. While its use to solve the NSE does not require flow-accurate mesoscopic or microscopic
dynamics (the correct behavior arising at the macroscopic scale of interest), this connection to microscopic
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Figure 3.5: Velocity Magnitude Field for the droplet in figure 3.4. The magnitude of these spurious
velocities is small. Note that a geometrical pattern arises, aligned with the D2Q9 velocity set in use:
spurious velocities are related to a lack of Galilean invariance.

behavior is central to formulating even the simplest boundary conditions [15], where particle/population-
boundary interactions are set, rather than at the macroscopic scale like in traditional CFD [16]. This
connection is also valuable when expanding models to macroscopic phenomena strongly linked to the mi-
croscopic scale, such as surface tension and wetting originating from intermolecular forces [21]. Therefore,
we will try to judge wetting schemes in relation to the microscopic interactions they imply.

Enforced macroscopic scale or micro/mesoscopic-scale-emergent behavior can be verified using
Chapman-Enskog analysis [15], especially when the micro/mesoscopic connection was not the explicit
starting point of an LBM extension, such as with CG-LBM.21 Consequently, we will also consider wetting
schemes by carefully analyzing their macroscopic content.

Extended equilibria arise essentially from mathematical considerations. Indeed, LBM stability is very
much tied to Galilean invariance, and the presence of error terms which become problematic at certain
regimes. We will leverage the advantages of CM-LBM and extended equilibria, which will allow us to
investigate a wide range of density and viscosity ratios in multiphase simulations. It will be important,
however, to temper claims by clearly identifying simulation regimes. For example, a CG-LBM imple-
mentation giving excellent results for static bubbles with non-unity density ratios can fail spectacularly
for layered Poiseuille flow [19]. From a mathematical point of view as well, we will avoid harming LBM’s
locality.

21We note that a posteriori particle interactions were found to lead to an earlier form of CG-LBM, which indeed is usually designed
to enforce known macroscopic behavior [2].
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Figure 3.6: CG-LBM phase-field transition at the interface, with red phase to the left of the interface,
blue phase to the right. At nodes close to the interface ρN = 0, both fluids exist in different proportions:
the interface is diffuse. The segregation operator maintains tanh phase-field profiles according to the
equation 3.56. The thickness of the interface is controlled by the segregation parameter β.
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Chapter 4 | Literature Review

� Key Points

• Energy-based wetting implementations in multiphase LBM define solid-liquid interac-
tion forces or energies, sometimes at the microscopic level, from which contact angles
naturally arise.

• Geometry-based wetting implementations in multiphase LBM directly define and en-
force contact angles.

• A systematic literature review reveals that energy-based methods that work at high
density and viscosity ratios have not been developed for CG-LBM.

4.1 Towards Alternatives

In chapter 2, we outlined that ink-jetting simulations must handle immiscible fluids at high density and
viscosity ratios under dynamic conditions. Described in chapter 3, Central Moment Color-Gradient
LBM has already been used to successfully simulate this jetting process [4, 20]. Expanding on these
achievements, the implementation of wetting on mobile particles, along with the better capture of dynamic
wetting phenomena at the meniscus, is desired, as discussed in chapter 1.

The physical relation between the apparent macroscopic contact angle, another contact angle mea-
sured closer to the contact line, and other microscopic parameters such as slip length, especially in
dynamic situations, is not always clear [5]. What is clear, though, is that:

�
Intermolecular interactions precede their macroscopic manifestations, such as contact an-
gles.

Just beyond the molecular scale of cohesive and adhesive intermolecular forces, surface tension character-
izes an interface as soon as it can be described continuously. Apparent contact angles are described at
the macroscopic scale, and therefore depend on the aforementioned microscopic interactions. This would
suggest that simulations might benefit from wetting implementations based on energy-related arguments
(such as surface energy or surface tension balance at equilibrium) and microscopic interactions, rather
than geometry and fixed contact angles. This goes hand-in-hand with the preference to leverage the
microscopic foundations of LBM indicated in the conclusions of chapter 3.

However, even without sub-lattice or microscopic input (e.g., contact angle hysteresis windows or mi-
croscopic slip lengths from section 2.2.2), geometry-based LBM wetting schemes that directly enforce
contact angles near solid surfaces actually exhibit variations in macroscopic contact angles in dynamic
situations, which remarkably can match physical scaling laws [15, 26]. This justifies the use of such con-
ditions in dynamic situations, like in [4]. Despite its reference to clearly-defined microscopic phenomena,
LBM does not need to reflect the real micro- and mesoscopic physics to mimic Navier-Stokes behavior [9,
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22] Additionally, because of CG-LBM’s implicit interface tracking, a geometry-based boundary condition
in CG-LBM may well be essentially equivalent to an energy-based condition, were interface-tracking done
explicitly [6]. Whether an energy-based framework is intrinsically advantageous therefore remains to be
seen.

Since we already know that CG-LBM will be used, and that we clarified our interest in defining and
evaluating energy-based wetting, the research question can be rephrased:

®
How can energy-based wetting implementations in CG-LBM be used to simulate mul-
tiphase flows with dynamic capillary phenomena?

4.2 Literature Search and Categorization

Appendix A documents the systematic approach used to gather the references to answer this question,
targeting wetting boundary conditions in general, and other implementations tailored for moving or
curved solid boundaries. References were categorized based on the refined research question in order to
highlight a research gap:

• Multiphase Method
Recognizing an energy-based implementation in CG-LBM starts by recognizing what LBM multi-
phase model was used. In addition, understanding non-CG wetting implementations may prove
useful in defining novel or alternative methods for CG-LBM. References are sorted between CG-
LBM, Shan-Chen (SC), and phase-field/Free-Energy (PF/FE). The latter two are fundamentally dif-
ferent multiphase methods, and in this report, PF/FE methods cover all explicitly interface-tracking
methods [12].

• Tested Density Ratio
Implementations with density ratios under O(102) were excluded from the review as unproven
techniques in the ink-jet printing regime. Remaining papers reach either O(102) or O(103) density
ratio. The viscosity ratio is not used as a selection criterion, because density ratio is a sufficient and
more stringent selection criterion.

• Wetting Method Basis
Clearly energy-related wetting implementations need to be identified. Results are divided between
energy-based and geometry-related techniques.

4.3 Wetting Implementations

To frame later discussion, an overview of the most notable wetting implementations identified during the
literature search is given.

4.3.1 Energy-based Techniques

Long-Range Forces

Long-range solid-fluid interactions, mirroring the physical microscopic basis of wetting [5],1 are typical
of Shan-Chen LBM multiphase models, where fluid-fluid cohesive interactions are implemented with a
force which depends on local component density and the presence of neighboring particles of the other
component. An analogous solid-fluid adhesion force Fads,k is used to mediate wetting between the solid
and fluid k [12]:

Fads,k = −Gads,kρk(x, t)
∑
i

wis(x+ ci∆t)ci (4.1)

1These in-simulation interactions are “long-range” insofar as they apply to fluid particles which are not in immediate physical
contact with the wall (i.e., they are not colliding with the wall). The physical counterpart interactions evoked here are Van der Waals
forces between the solid walls and the fluid molecules.
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where Gads,k is an interaction strength parameter which governs wetting, and s is a switch function that is
unity when x+ ci∆t is a solid node. The interaction force sometimes also includes a virtual solid density
as a tuning parameter [25, 27, 32]. Parameters are tuned by recovering a desired equilibrium contact
angle, either analytically or with preliminary calibration simulations.

Energy-Minimizing Boundary Conditions

For explicit interface-tracking methods (PF/FE), boundary conditions are set on the phase-field, which
follows the fluid-fluid interface: conditions on solid boundaries necessarily relate to contact-line behav-
ior. PF/FE methods hinge on free energy minimization [12] (which is compatible with a definition of
surface tension given in chapter 2 [5]) or the use of chemical energy potentials, which directly integrate
contributions from wetting.

4.3.2 Geometry-based Techniques

Direct Enforcement Boundary Conditions

CG-LBM often directly enforces a desired equilibrium contact angle by reorienting the color-gradient
vector ∇ρN at solid boundaries. Many such implementations redistribute particles to change the color-
gradient unit vector without changing its magnitude [1, 17, 33]. This technique is used in the precursor
work [4]. This direct enforcement may appear strict and inflexible, but can be augmented by contact angle
hysteresis windows or velocity-dependent dynamic contact angle recalculation [1, 28].

Adapted phase-field Boundary Conditions

It is possible to reformulate phase-field boundary conditions from explicit interface-tracking methods for
CG- and SC-LBM, which implicitly track the fluid-fluid interface, by identifying an equivalent proxy to the
phase-field (e.g., the indicator ρN for CG-LBM, or the equivalent order parameter of SC) [24, 26]. These
methods can lose their original energy-basis due to the lack of a free-energy minimization framework in
either CG- or SC-LBM, for example. Despite this, these boundary conditions can lead to emergent and
physically-consistent contact-line dynamics, likely due to embedded effective slip lengths [6, 26]. Since the
method is geometry-based and is meant to enforce a particular contact angle, hysteresis windows can also
be implemented.

4.4 Summary of Results

Table 4.1 shows the outcome of the categorization of the remaining references that were not filtered out
by the systematic accumulation of sources. A fully green row would have indicated a proven energy-based
CG-LBM wetting implementation, tried in the parameter space of drop-on-demand inkjet printing.

According to the literature review, and to the best of the author’s knowledge:

¨
There are no documented CG-LBM results with energy-based wetting implementations in
the parameter space of drop-on-demand inkjet printing (e.g. high density and viscosity
ratio under dynamic conditions).

Therefore, the refined research question from section 4.1 remains open. To answer it, we must first
formulate or find such an energy-based wetting implementation. Initially, the use of a Shan-Chen-type
long-range solid-fluid interaction in CG-LBM was considered. Shan-Chan uses formally-analogous short-
and long-range interactions to model fluid-fluid and fluid-solid interactions, respectively [12]. This self-
consistency acknowledges the fact that the intermolecular interactions that lead to surface tension are
related, whether for fluid-fluid or fluid-solid interfaces [5].

Applying the same consistency in CG-LBM would mean defining surface tensions between the solid
and the fluids. This would follow the conclusions of section 3.6, defining a method that:
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Reference Multiphase Model Density Ratio Wetting Method Basis
[1] CG 1000 Geometry
[2] SC 100 Energy
[3] PF/FE 1000 Energy
[7] PF/FE 1000 Geometry
[8] PF/FE 100 Energy
[10] PF/FE 100 Energy
[11] SC 1000 Energy
[13] PF/FE 1000 Geometry
[14] SC 1000 Geometry
[16] SC 1000 Energy
[17] CG 1000 Geometry
[18] PF/FE 1000 Energy
[21] PF/FE 100 Geometry
[23] PF/FE 1000 Geometry
[24] SC 1000 Geometry
[25] SC 100 Energy
[26] CG 100 Geometry
[27] SC 1000 Energy
[29] PF/FE 1000 Geometry
[30] SC 100 Energy
[31] SC 1000 Energy
[33] PF/FE 1000 Geometry
[34] CG 100 Geometry
[35] SC 1000 Energy

Table 4.1: Categorized Remaining References. A fully green row would have indicated a proven energy-
based CG-LBM wetting implementation, tried in the parameter space of drop-on-demand inkjet printing.

• describes wetting at the microscopic scale in an analogous way to fluid-fluid interactions, which is
physically consistent [5],

• mediates wetting with the perturbation and recoloring operators, which necessarily conserve mass
and momentum [19],

• leverages the stability and sound mathematical formulation of a CG-LBM proven to work in the
inkjet printing regime [4].
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Chapter 5 | Alternative CG Wetting

� Key Points

• Solid-Model Fluids (s-fluids) are fluid phases that mediate wetting on solid surfaces
with additional CG fluid-fluid interactions.

• Superviscous s-fluids could be used to model solid particles with any N -fluid CG
implementation.

• Solid Phase Perturbation (SPP) refers to additional fluid-phase perturbation near solid
walls that cause fluids to preferentially wet them.

• SPP could enforce wetting on solid surfaces without boundary-conditions for any
number of actual in-simulation fluid phases.

In this chapter, we discuss wetting implementations that, while unproven in the inkjet-printing regime,
approach the hypothetical energy-based and CG-consistent formulation of the concluding remarks of
section 4.4. After discussing their limitations, we describe possible adaptations to Flow Matters’ CG-
LBM implementation from [1]. We note that the described adaptations are by no means the only re-
interpretations of these alternative wetting techniques.

5.1 Solid-Model Fluids

As described in [7], one possible way to model wetting is to introduce an additional fluid or fluid-like
phase (the solid-model fluid ) to the simulation to model capillary effects near solid surfaces. Shown in
figure 5.1, a CG-LBM Smooth Particle Model (CG-SPM) models the solid with such a fluid, with its own
surface tensions with other (actual) fluids, and is involved in the perturbation and recoloring steps. In this
case, an N > 2 fluid CG implementation is required, which will be described in more detail in chapter
6: for the moment, consider only that CG can be extended to N -fluids by perturbing and recoloring each
fluid with each other fluid with superimposed and independent contributions [6, 7].

5.1.1 Original Implementation

The additional solid-model fluid (s-fluid) is initialized with a separate phase-field ϕP , where the ϕP = 0.5
contour marks the solid’s boundary.1 The diffuse interface transitions from the actual fluid to the solid with
a truncated hyperbolic tangent profile: the fluid-solid interfaces are of the exact same nature as typical
CG-LBM fluid-fluid interfaces. The s-fluid is contained within a thin solid wall which it wets completely,2

1The solid phase-field ϕP varies between 0 and 1, not −1 and 1.
2This is accomplished with a geometry-based boundary condition that directly enforces a null contact angle. The use of this

boundary condition is incidental to the implementation: the actual wetting (between fluids and the s-fluid) is handled by the
perturbation and recoloring operators through the surface tensions.
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s-fluid

Fluid A

Fluid B

Figure 5.1: CG-SPM Multiphase Simulations. Using a smooth-particle-method, solid particles are modeled
by a solid-model fluid (s-fluid), which is constrained within the actual boundaries of the solid (the dotted
line here), yet also has a tanh profile like fluid-fluid CG-LBM interfaces. Wetting is mediated by the solid-
model fluid’s surface tensions, corresponding to either actual fluid’s affinity with the actual solid. Adapted
from [7]

occupying the entirety of the solid volume. The s-fluid has its own surface tensions σSl with each fluid l,
as well as a density ρ0S matching that of the real solid being modelled. The s-fluid therefore also has its
own CG-LBM αS parameter and speed-of-sound cSs .

In N -fluid CG-LBM, the color-gradient FFF lm is expressed for each pair of fluids l and m as [6]:

FFF lm =
ρm
ρ

∇
(
ρl
ρ

)
− ρl
ρ
∇
(
ρm
ρ

)
(5.1)

where ρ =
∑

k ρk + ρSϕS is the total density calculated with all phases, including the k actual fluids and
the s-fluid. The color-gradient now also tracks solid boundaries. Both the perturbation and recoloring
operators are otherwise run for all pairs among the N fluids including the s-fluid, and wetting is now
mediated by the tunable solid-liquid surface tensions σSl. The involvement of solid-liquid surface tensions
is consistent with Young’s law in equation 2.11, which is used to define a wetting parameter χ, which for
N = 2 fluid simulations with a red r and blue b fluid is set by:

χ =
σSr − σSb

σrb
= cos θE (5.2)

where θE is the desired static equilibrium contact angle.
No-slip is not strictly enforced at the solid boundary. Solid particles’ positions are updated based on

a momentum-exchange scheme between the fluid in the vicinity of the solid boundary (marked by ϕS )
and the virtual solid particle. Hydrodynamic forces in the fluid bulk are essentially distributed across the
now-diffuse solid-boundary, and are the inverse of the force felt by the virtual solid particle, the position of
which is updated at every timestep and injected in the simulation by an updated solid phase-field ϕS . For
fixed particles especially, this model is very similar to so-called partially saturated bounce-back methods.
Both are able to accurately resolve hydrodynamic forces despite the diffuse solid interface, which can even
be beneficial to modelling curved surfaces [5, 10].

Limitations

The model requires setting density ρ0S and viscosity νS for the s-fluid. The original publication only
investigates unity density ratios across both fluids and the s-fluid [7]. For mobile particles, the density
is constrained by the actual solid density. In-simulation, the solid boundaries are identified by ρS/ρ =
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ρ0SϕS/ρ = 0.5, where ρ is the total local density.3 However, if a heavy fluid displaces a light fluid (or
vice versa), the local value of ρ will change for constant ρ0SϕS : the wall position is dependent on flow
conditions, which is a serious model error for simulating solid particles.

In CG-LBM, a single local value of viscosity must be used across relaxation and perturbation steps. For
unity viscosity ratio across all fluids, the presence of s-fluid does not affect local fluid viscosity regardless
of interpolation, and hydrodynamics near solid boundaries are treated exclusively by the momentum-
exchange algorithm and the body forces applied to the fluid. For any other viscosity ratio, the s-fluid’s
viscosity will pollute local relaxation, and affect hydrodynamic behavior unpredictably.

Together, these issues make it challenging to use s-fluids as formulated in [7] in the ink-jet printing
regime. Additionally, while SPM resolves the required hydrodynamics, the momentum-exchange and
resulting forcing is significantly more complex than bounce-back boundary conditions, even in their
extended formulations for curved or sub-lattice surfaces [5, 9]. This adds complexity to the code and
reduces flexibility in handling solid surfaces.

5.1.2 Adapting the Model

The modeling of mobile particles constrains s-fluid density to that of the actual solid, and density ratios
across fluids are practically inevitable. The issue of fluid-density-dependent wall/interface positions actu-
ally mirrors an issue with CG phase-fields in general, which will be described in more detail in chapter 7.
Indeed, alternative phase-field formulations yield more consistent interface positions at non-unity density
ratios. However, to the best of the author’s knowledge, N > 2 fluid CG-LBM publications define the
color- (or phase-field-) gradient without defining what the corresponding individual fluid phase-fields are
[6, 7]. Clarifying which interfaces N -fluid CG-LBM is actually tracking is an important first step before
using it for any purpose.

To avoid the added complexity of actually diffuse solid surfaces and the momentum exchange algo-
rithm, we will investigate the use of actual fluid directly as a solid model. Leveraging the extended range of
accessible viscosity of CM-LBM, extremely viscous fluid particles could be used to approach rigid-body
motion.

Physically, these superviscous fluid particles would enforce no-slip by viscous dissipation near their
surfaces. The particles will of course shear and deform, a model error which dissipates energy. For s-fluid
viscosity tending towards infinity, momentum is transferred and shared instantaneously throughout the
s-fluid. When viscosity (or shear resistance) is high enough, the particle should convert applied forces
(hydrodynamic or capillary) into other less resistive degrees of freedom, such as linear or rotational
momentum, and display rigid-body-like motion.

Numerically, CG-LBM additionally features diffuse interfaces and local viscosity interpolation, the ef-
fects of which on s-fluid modeling need to be investigated. S-fluid particle surfaces are actually maintained
by the recoloring operator, since they are effectively fluid-fluid interfaces. The consequences of this are
also unclear.

This leads to the following questions:

®
Research Questions: Superviscous Particles

• What are the phase-fields for N -fluid CG?

• What is the effect of diffuse CG-LBM interfaces on momentum-transfer to s-fluids?

• Could superviscous particles be used in the ink-jet printing regime?

3Reference [7] doesn’t explicitly state this, but must be the case for unity density ratios for the condition “ρC = 0.5” actually
given in the paper, index C corresponding to the s-fluid.
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5.2 Solid-Phase Perturbation

Reference [7] on CG-SPM mediates wetting with fluid-fluid-like interactions by using an s-fluid, but also
defines an entirely different fluid population, which streams, relaxes, and requires boundary treatment,
whereas it was only needed to define additional perturbation. Similar to Shan-Chen long-range solid/liquid
interaction [3], additional perturbation to the actual fluid populations near solid walls, solid-phase pertur-
bation (SPP), could be used to mediate wetting without the definition of an additional fluid.

5.2.1 Original Implementation

In [2], SPP acts on fluid l population by an additional perturbation ∆f li applied near solid boundaries:

∆f li = ρl cos(2(θw − θi))σSl (5.3)

where θw is the “orientation of the wall”, θi is that of the perturbed direction i, and σSl is a “wetting
surface tension”. The latter is analogous to fluid-fluid surface tensions, and is defined for each fluid l
interacting with the solid S: a difference in σSl among fluids will cause preferential wetting. All surface
tension parameters are comparable to actual fluid surface tensions, and qualitatively satisfies Young’s
equation on the contact angle from equation 5.2.

Reference [4] presents a similar scheme by treating the wall as a “stationary fluid” with constant mass
density at nodes by the wall, likewise leading to additional perturbation near the wall: no full fluid is
allocated for this. Fluids then undergo regular perturbation with this wall-“fluid”, presumably using the
wall-normal vector as the interface-marking vector.

While additional perturbation is applied, the solid is not involved in the recoloring step: in CG-
LBM, recoloring is a numerically-based (as opposed to being formulated from thermodynamics) operation
keeping phases separate. For the solid and the liquid, segregation is enforced by bounce-back boundary
conditions, and CG-like recoloring steps are not required.

Limitations

Both [2] and [4] investigate density and viscosity ratios of O(1). Furthermore, while the term in equation
5.3 has some passing resemblance to our perturbation operator in equation (6.11),4 it is expressed for a
substantially different algorithm. Both references use older implementations of CG-LBM, with especially
different segregation operators.5

For both [2] and [4], the authors do not make a firm claim on the relationship between the numerical
surface tension parameters and the actual physical surface tensions with the solid. Equation (5.3) scales its
perturbations with local fluid l density, and [4] uses a virtual constant solid density at solid boundaries as
input to the wall-perturbation. Perturbation-weighting or such additional parameters have unclear physical
basis, although they clearly have effects in-simulation, such as the tuning of dynamic contact angles [4].

Despite using perturbation very similar to that in section 3.5, reference [4] breaks the 1-to-1 correspon-
dence between physical surface tension and the numerical parameter mediating surface tension: setting
surface tensions even across fluid-fluid interfaces must be calibrated beforehand.6 This is in sharp con-
tract to modern CG-LBM, which maintains a strict relationship by fully constraining the expression for
the perturbation step [8].

More importantly, while SPP in [4] is calibrated and produces a linear relationship between σSr−σSb

σrb

and equilibrium contact angle, and therefore has practical use,7 this linear relationship does not strictly
reproduce equation (5.2). In fact, for equal surface tension between either fluid and the solid, or even
no surface tension between fluids and solid, the contact angle is not neutral (90◦). This occurs despite
there being supposedly no physical mechanism for any fluid to preferably wet and produce a non-neutral
contact angle: the model is inaccurate. Quantitative performance of SPP in [2] is not given, and could not
be evaluated away from neutral wetting.

4Consider that the dot product in equation (3.50) is similar to the dot product of wall-normals and velocity in equation (5.3).
5Reference [4] uses a very similar perturbation operator, however.
6We note that the relationship between the surface tension parameter and the physical surface tension is linear: the physics are

actually reflected, and the 1-to-1 relationship is only broken by incorrect constant scaling of the perturbation term.
7At least at unity density and viscosity ratio.
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5.2.2 Adapting the Model

To the author’s knowledge, SPP has not been adapted to modern CG-LBM as described in section 3.5.
Modern CG-LBM actually uses physical surface tension directly as a numerical parameter [6, 8], making
it perhaps possible to directly use physical surface energies in defining fluid-solid relationships.

Initially, it was believed that adapting this technique would require defining a fully diffuse solid-liquid
interface placed in the vicinity of solid walls. This would resemble the s-fluid method of reference [7], but
only using ϕS in entirely separate perturbation steps near solid boundaries, and without defining an actual
fluid. However, for fixed solid boundaries especially, why define a diffuse interface when the exact position
of the fluid-solid interface is actually known, at least for flat walls coinciding with domain boundaries?
Since SPP is completely unproven for modern CG-LBM, it is sensible to start with such a simple case.
Besides, using a diffuse boundary implies the definition of a diffuse interface thickness for the solid, an
additional parameter with no connection to any physical phenomena. Therefore, perturbation formally
similar to typical fluid-fluid CG-LBM interaction near solid walls will only be added at the first boundary
node beyond the wall.

As few additional non-physical parameters as possible will be added: no solid density will be defined
as in [4]. However, special care will be given to understand the effect of boundary conditions: the non-
neutral contact angle produced in [4] for no or neutral SPP is apparently caused only by the prescription
of solid density at the wall.

Together, this poses the following questions:

®
Research Questions: Solid-Phase Perturbation

• Can SPP be adapted to modern CG-LBM to induce wetting/dewetting behavior?

• Can SPP be restricted to a single node off solid boundaries?

• Could SPP be used in the ink-jet printing regime?
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Chapter 6 |N-fluid CG-LBM Theory

� Key Points

• Colorblind CG-LBM is a strictly equivalent formulation of CG-LBM which limits
computation storage.

• In CG-LBM, fluids locally form a multi-component mixture with its own properties.

• Some of these mixture properties are constrained, while the choice of local viscosity
is free.

• A novel N -fluid phase-field formulation is proposed that links N -fluid CG-LBM to its
tracked phase-fields.

In this chapter, extensions of CG-LBM to N -fluids are presented, notably in their memory- and com-
putationally efficient form: Colorblind CG-LBM. New theory regarding phase-fields and mixture properties
in N -fluid CG-LBM is presented, showing that local viscosity interpolation is free, and revealing the con-
nection between N -fluid color-gradient and phase-fields for the first time.

6.1 N-Fluid CG-LBM

CG-LBM can be extended to N -fluids by increasing the number of populations fki , each with their own
fluid density ρk and contribution to momentum. Each additional fluid phase undergoes perturbation and
recoloring with the others.

6.1.1 Colorblind CG-LBM

We first describe the state-of-the-art for colorblind CG-LBM, as developed in [5] and used in [6]. A total
population f is used, which is the sum of individual fluid k populations [5]:

fi =
∑
k

fki (6.1)

from which follows a definition of macroscopic moments, with total density ρ equal to sum of individual
fluid densities ρk :

ρ =
∑
i

fi (6.2)

ρ =
∑
i

∑
k

fki =
∑
k

∑
i

fki (6.3)

ρ =
∑
k

ρk (6.4)
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and total momentum ρuα:

ρuα =
∑
i

ficiα (6.5)

ρuα =
∑
i

∑
k

fki ciα =
∑
k

∑
i

fki ciα (6.6)

Through equations (6.4) and (6.5), these moments contain the same macroscopic information as the CG-
LBM presented in section 3.5, with the first-order moment equation (6.6) being identical to equation
(3.46): indeed, cbCG is a strictly equivalent formulation of CG, without any simplifications or additional
assumptions. The formulas presented here for colorblind populations are also always the corresponding
sums of the individual fluid populations from section 3.5.

The colorblind function equilibrium f
eq
i is the sum of individual fluid k equilibria from equation (3.44)

[5]:

f
eq
i =

∑
k

f
k,eq
i (6.7)

which in fact simplifies to:

f
eq
i = ρ

[
ϕ̄i + wi

(
ciαuα
c2s

+
uαuβ(ciαciβ − c2sδαβ)

2c4s

)]
(6.8)

where ϕ̄i =
∑

k(
ρk

ρ )ϕki is the density-weighted arithmetic average of the rest component,1 a point further
discussed in section 6.1.2. Relaxation towards this equilibrium is otherwise unaffected, progressing at the
same local relaxation time τeff from section 3.5 to yield the post-relaxation populations:

f⋆i =
∑
k

fk⋆i = fi

(
1− ∆t

τeff

)
+ f

eq
i

∆t

τeff
(6.9)

As noted in section 5.1, the color-gradient FFF lm between two fluids l and m is [5]:

Flm =
ρm
ρ

∇
(
ρl
ρ

)
− ρl
ρ
∇
(
ρm
ρ

)
(6.10)

This color-gradient is used to perturb fluid l’s post-relaxation populations f l⋆i with all other fluids to give
the post-perturbation populations:

f l⋆⋆i = Ω
l,(2)
i (f l⋆i ) = f l⋆i +

∑
m

m̸=l

1

2
AlmClm|Flm|

[
wi

(ci · Flm)2

|Flm|2
−Bi

]
(6.11)

with

Alm =
9

2
σlmωeff (6.12)

with σlm the surface tension between the two fluids, and ωeff = 1/τeff the local relaxation rate. The
concentration factor Clm limits the perturbations for sufficient local densities of the fluids.2 The perturba-
tions in equation (6.11) are independent of each other across all fluids: the total population can be directly
perturbed to yield the total perturbed population f⋆⋆i [5]:

f⋆⋆i =
∑
k

fk⋆⋆i =
∑
k

Ω
k,(2)
i (fk⋆i ) (6.14)

1Publications will usually refer to an average of αk → ᾱ [5]. Because ϕk
i is a linear function of αk , using either average is

equivalent.
2With a suggested form [5]:

Clm = min

{
η
ρl

ρ0l

ρm

ρ0m
, 1

}
(6.13)
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The recoloring operator recovers the post-recoloring fluid l population f l⋆⋆⋆i from the total post-
perturbation population:

f l⋆⋆⋆i = Ω
l,(3)
i (f⋆⋆i ) =

ρl
ρ
f⋆⋆i +

∑
m

m ̸=l

βlm
ρl
ρ

ρm
ρ

cos(φlm
i )f

eq
i |u=0 (6.15)

where βlm is the fluid-pair segregation parameter, and cos(φlm
i ) is defined with the fluid-pair color-

gradient Flm as in equation (3.54).3 Fluids are recolored and streamed one-by-one from the total post-
perturbation population f⋆⋆i , recovering the fluids’ densities as the zeroth moment in velocity of the
streamed populations [5]. The sum of all streamed populations is the next timestep’s total population.

Extended Equilibria and Central Moments

The extended equilibrium terms in equations (3.48) and (3.49) are summed over all fluids to yield color-
blind/total extended equilibrium terms Φi, which can be computed directly with the total density gradient
∇ρ [3]. Likewise, the CM implementation used in [1] is formulated colorblind with extended equilibrium
terms [2]: it is possible to directly take the central moments of the total populations fi. These total terms
or total moments are strictly equivalent to the sum of individual fluid terms or moments because fluids all
share the same local velocity and relaxation rate.

Relevance to Alternative Wetting

For N fluids, we have 1
2N(N − 1) unique fluid pairs. Instead of storing populations growing with O(N2),

cbCG stores a single total population,4 with a O(N) growth in density fields. The O(N2) color-gradients
of equation (6.10) are computed as required and not stored, with only the fractional densities ρk

ρ and their
gradients ∇(ρk

ρ ) being computed and stored, requiring storage and gradient computation needs growing
with O(N) [5]. For M superviscous particles, each modeled with a separate fluid, cbCG ensures storage
needs scale with O(M)

Since only the total population is relaxed, cbCG also reduces local relaxation computations from O(N)
to O(1) in each direction. The colorblind perturbation step in equation (6.14) requires 1

2N(N − 1) =
O(N2) local computations. The total number of computations can be divided by two, perturbing the total
population by independent fluid-pairs, leveraging Flm = −Fml:

f⋆⋆i = Ω
(2)
i (f⋆i ) = f⋆i +

∑
l

∑
m>l

AlmClm|Flm|

[
wi

(ci · Flm)2

|Flm|2
−Bi

]
(6.16)

To the best of the author’s knowledge, this is the first time pair-wise perturbation is presented.
Equation (6.16) also includes the concentration term Clm for each unique fluid-pair. Since solid-phase

perturbation (SPP) should model the contact line, it should only be activated when at least two fluids
are sufficiently present, which is exactly what Clm does. Conversely, SPP is also relevant to N -fluid CG,
insofar as it would set equilibrium contact angles for many fluids without an N -fluid generalized geometric
boundary condition.

6.1.2 Local Mixtures

In this section, we argue that individual fluids present at a node form local mixtures. This has important
consequences on local mixture properties, which are not consistently defined across publications. This fact
will also prove very useful in section 6.2 when we define which phase-fields are being tracked in N -fluid
CG-LBM.

3There is an ambiguity in documented N -fluid implementations for the rest equilibrium f
eq
i |uuu=0, which could be computed

using all local fluids’ equilibria, or only the fluids in the pair formed by fluids l and m [5, 6].
4Depending on the implementation of streaming, a cbCG implementation will typically need to store the total population, allocate

a population used for the streaming of individual fluids, and a temporary population to store the sum of streamed fluid populations.
This leads to a (constant) total of three populations to allocate.
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At a given node in the interface region, several fluids must coexist. As was noted in section 3.5.1 for
CG-LBM in general, fluids locally share the same macroscopic velocity uα. Inspecting equation (6.6), we
find the quantity: ∑

i

f li ciα (6.17)

This is the individual fluid l’s contribution to total momentum, but this quantity is not necessarily con-
served: only total local momentum ρuα is recovered as the first velocity moment of the total population
fi, even when CG-LBM is not formulated colorblind [2, 5, 7, 9]. This allows local momentum transfer
across components: the individual components collide with one another, and therefore form a local mixture.
At the macroscopic level, this multi-component fluid mixture must be also associated with its own local
fluid properties.

Conversely, claiming that term (6.17) can be rewritten as:∑
i

f li ciα = ρlu
l
α (6.18)

leads to an expression of individual fluid l momentum-conservation, and introduces a fluid velocity ulα.
For equation (6.6) to necessarily be satisfied requires ulα = uα: all fluids’ momentum contributions must be
colinear. The simplest way to enforce this is by making all contributions to total population components
(per velocity in the set) colinear as well:

f li =
ρl
ρ
fi (6.19)

The recoloring step in equation (6.15) seems to imply this by recovering the fluid l populations with its
fractional density. Yet, the single-fluid perturbation step in equation (6.11) violates equation (6.19) by
perturbing some fluids more than others. Therefore, we will avoid the ambiguous claim that fluids have
their own velocity ukα, because component momentum-conservation is not necessarily satisfied. Therefore,
we still consider that fluids form local mixtures.

Speed-of-Sound Constant

Equations (6.7), which defines colorblind equilibrium as the sum of local fluid equilibria, and equation
(3.44) defining said fluid equilibria, lead to:

f
eq
i =

∑
k

f
k,eq
i

=
∑
k

ρk

[
ϕki + wi

(
ciαuα
c2s

+
uαuβ(ciαciβ − c2sδαβ)

2c4s

)]

f
eq
i =

∑
k

ρkϕ
k
i +

∑
k

ρkwi

(
ciαuα
c2s

+
uαuβ(ciαciβ − c2sδαβ)

2c4s

)
(6.20)

=
∑
k

ρ
ρk
ρ
ϕki + ρwi

(
ciαuα
c2s

+
uαuβ(ciαciβ − c2sδαβ)

2c4s

)

f
eq
i = ρ

[
ϕ̄ki + wi

(
ciαuα
c2s

+
uαuβ(ciαciβ − c2sδαβ)

2c4s

)]
(6.21)

where ϕ̄i =
∑

k(
ρk

ρ )ϕki , as noted previously. Recalling the CG-LBM equation of state (3.43) which defines

a linear relationship between ϕki and αk, ϕ̄i also defines a mixture speed-of-sound constant:

ᾱ =
∑
k

(
ρk
ρ

)
αk (6.22)
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which is a property of the local mixture. Its definition required that the velocity-related terms in (6.20) not
depend on the summed k fluid index: a common local velocity among fluids implies a single multicom-
ponent mixture, with a constrained mixture speed-of-sound constant ᾱ. This point is not trivial, as some
publications propose inconsistent mixture speed-of-sound formulations which are not equivalent to (6.22)
[2].5

Viscosity

As seen in equations (3.51) or (6.12), CG-LBM, colorblind or not, requires a single local relaxation time
τeff = 1/ωeff in the perturbation step, also corresponding to a single local mixture viscosity νeff through
Chapman-Enskog. Because only total momentum is definitely conserved, it is not necessarily the case that
individual fluids locally relax at their pure-fluid times τk, as is proposed in [7].6 For this to be consistent
with colorblind equilibrium in equation (6.7) or colorblind relaxation in (6.9) actually requires (6.19), which
we have already outlined as debatable.7

Therefore, it is only important that the same local value be used across relaxation and perturbation
steps, and the interpolation of local viscosity appears to be free.8

6.2 N-Fluid phase-fields

To the best of the author’s knowledge, this section clarifies which phase-fields are being tracked in N -fluid
CG-LBM, for the first time, and a firm relationship between phase-field and color-gradient is established.

The cbCG implementation presented in [5] does not clearly define the phase-field for the fluids it is
tracking with the color-gradient Flm in equation (6.10).9 CG-LBM indeed implicitly tracks the interface
[10]: as long as the color-gradient Flm is defined, the algorithm does not need to “know” or report where
the interface is actually located.

An important clue is given in reference [5], which indicates that its color-gradient Flm for N = 2 is
half as long as ∇ρN , the phase-field gradient presented in section 3.5[7]: the N -fluid color-gradient is
related to ρN . We therefore define a two-fluid phase-field ρNlm:

ρNlm =
ρl − ρm
ρl + ρm

(6.24)

and because ρ = ρl + ρm and ρm

ρ = 1− ρl

ρ :

ρNlm|N=2 = 2

(
ρl
ρ

)
− 1 (6.25)

which shifted and rescaled to vary between 0 and 1 rather than −1 and 1:

ρN̄lm =
1

2

(
ρNlm + 1

)
ρN̄lm =

(
ρl
ρ

)
(6.26)

5The cited reference [2] indeed uses an arithmetic average of a phase-field normalized by pure-fluid densities.
6In the perturbation step, the same reference interpolates local mixture velocity separately as τeff =

∑
k(ρk/ρ)τk . This phase-

field-weighted arithmetic average of relaxation times is fortunately equivalent to the density-weighted arithmetic average of the
employed phase-field.

7See appendix B for the corresponding algebra.
8Other publications indeed make interpolation choices, but do not explain why this interpolation is admissible [2, 5, 7].
9Its RGB figures imply a phase-field, for example, for a red fluid R:

R =

ρr
ρ0r∑
k

ρk
ρ0
k

(6.23)

whereas pure-fluid density normalization does not appear anywhere in the algorithm: the tracked phase-field is never explicitly
defined. Using the same author, the same first author produces RGB figures without normalization by pure-fluid densities in a
separate publication [4].

61



Still for N = 2, the color-gradient is, from equation (6.10):

Flm|N=2 =
ρm
ρ

∇
(
ρl
ρ

)
− ρl
ρ
∇
(
ρm
ρ

)
=

(
1− ρl

ρ

)
∇
(
ρl
ρ

)
−
(
ρl
ρ

)
∇
(
1− ρl

ρ

)
= ∇

(
ρl
ρ

)
Flm|N=2 = ∇ρN̄lm (6.27)

indeed showing a relationship between Flm and ρN : equation (6.26) is the candidate phase-field of fluid l
for the color-gradient in equation (6.10).

This N = 2 argument can be extended to N > 2. Indeed, since fluids locally form a multicomponent
mixture, there is a single local set of macroscopic quantities, including phase-fields, which only depend
on local component densities. There are no local interfaces separating components from one another.10

Additionally, if all components mix locally, then there is no difference between mixing N components with
one another, and mixing one component with N − 1 components. For example, in defining total density:

ρ =
∑
k

ρk

ρ = ρl +
∑
m

m ̸=l

ρm

ρ = ρl + ρµ

where µ is an index denoting the sum for all local components except l. Therefore, for any fluid l, we can
define its phase-field ρN̄l , starting from equation (6.24) but replacing index m with µ:

ρNl = ρNlµ

ρNl = 2

(
ρl
ρ

)
− 1

ρN̄l =
ρl
ρ

(6.28)

where ρN̄l > 0.5 marks phase l. We note an important requirement on phase-fields, which equation (6.28)
satisfies: ∑

k

ρN̄k = 1 (6.29)

otherwise several phases could be defined at the same lattice node.
Substituting equation (6.28) into the color-gradient Flm we find:

Flm = ρN̄m∇ρN̄l − ρN̄l ∇ρN̄m (6.30)

which directly connects N -fluid CG-LBM to its phase-fields. Equation (6.30) notably implies that alterna-
tive phase-fields can also be used.

6.2.1 Normalized phase-fields

For N = 2, it is common for the following pure-fluid-density-normalized phase-field to be used when there
are density ratios [1, 2, 8]:

ρNn
lm =

ρl

ρ0
l
− ρm

ρ0
m

ρl

ρ0
l
+ ρm

ρ0
m

(6.31)

10The interface is tracked implicitly and is only reconstructed later with contours or isosurfaces of phase-field values across several
nodes.
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This phase-field can be extended to N -fluids by following the same steps that led to equation (6.28):

ρNn
l = ρNn

lµ

ρNn
l =

ρl

ρ0
l
− ρµ

ρ0
µ

ρl

ρ0
l
+

ρµ

ρ0
µ

(6.32)

and using:

ρl
ρ0l

+
ρµ
ρ0µ

=
∑
k

ρk
ρ0k

(6.33)

ρN̄n
lm =

1

2

(
ρNn
lm + 1

)
(6.34)

we indeed find:

ρN̄n
l =

ρl/ρ
0
l∑

k ρk/ρ
0
k

(6.35)

This phase field can be directly used in the expression for the color-gradient in equation (6.30).
Figure 6.1 shows how the non-normalized ρN̄l will lead to different interfaces upon initialization de-

pending on the density ratio with surrounding fluid, as the phase-field is biased towards dense fluids.
A red droplet’s density ρr profile is initialized with a tanh profile with suitable thickness, with value at
location x for a droplet of initial radius R0 and center x0:

ρR(x)|t=0 =
1

2
ρ0r

[
1 + tanh

(
β

(
R0 − |x− x0|

))]
(6.36)

where ρ0r is the red pure-fluid density and β is the segregation parameter used in the recoloring step. All
simulations are initialized with the same amount of red fluid, and with the same initial density profile.
However, the simulation with the non-normalized phase-field ρN̄l leads to a droplet that is significantly
larger than the initialization radius. Indeed, ρN̄l in equation (6.28) leads to variations in phase-field
depending on the density ratio across the interface, due to the total density ρ in the denominator, which
depends on the density of ambient fluid. Since the blue medium is lighter than the red bubble, smaller
amounts of red fluid lead to an interface ρN̄r = 0.5 marking the droplet interface. This means the
segregation operator maintains an interface deeper into the lighter blue medium than it would in for unity
density ratio, even though the same mass of fluid is present.11

The normalized phase-field in equation (6.31) is not affected by this issue, hence its use when density
ratios exist across fluids. Thanks to the discovery of the link between phase-field and N -fluid color
gradient in equation (6.30), the normalized phase field can be formulated for N -fluid CG-LBM as ρN̄n

l in
equation (6.35).

6.3 Conclusions

By clarifying the existence of local mixtures between components at a node, we were able to show that
mixture speed-of-sound constants, used in colorblind CG-LBM formulations [2, 5], are fully constrained.
Mixture viscosity interpolation, however, is free, justifying the investigation of various interpolation meth-
ods in the thesis. The choice on which averaging to use can be motivated by performance in different
validation cases.

More importantly, the phase-fields for N -fluid CG-LBM were clarified for the first time, and a clear
relationship between them and the N -fluid color-gradient was found. This seamlessly allows the use of
normalized phase-fields in N -fluid CG-LBM, expanding its reliability at high density ratios λν .

11Using the non-normalized phase-field ρN (or ρN̄ ), even when there are density ratios, will not lead to an incorrect pressure jump
across the interface: it is the position of the interface which will be incorrect, and biased to push towards lighter fluids. CG-LBM is
otherwise formulated to generate the pressure jump across the interface, wherever it is defined [7].
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Figure 6.1: Droplet of dense red r fluid initialized in a medium of lighter blue fluid, with density ratio
λρ = 1000. The droplet is initialized with its pure-fluid density with a tanh interface profile centered
around radius R0. On the left, the interface maintained when using the non-normalized phase-field ρN̄l .
On the right, using a normalized phase-field ρN̄n

l , the effective radius of the droplet identified at ρN̄r = 0.5
is practically R0, as this phase-field is more reliable for non-unity density ratios.

The first research question on superviscous fluids in section 5.1.2 has been answered:

®
Research Questions: Superviscous Particles

• What are the phase-fields for N -fluid CG?

¥
For a phase-field equivalent to equation (3.42), the phase-field ρN̄l
varying between 0 and 1 for fluid l is:

ρN̄l =
ρl
ρ

For a pure-fluid-density-normalized phase field ρN̄n
l , appropriate at

non-unity density ratios λν :

ρN̄n
l =

ρl/ρ
0
l∑

k ρk/ρ
0
k

Regardless of its particular definition, normalized or not, the phase-

fields ρN̄(n)
l enter the definition of the color-gradient between fluid l

and m directly:

Flm = ρN̄(n)
m ∇ρN̄(n)

l − ρ
N̄(n)
l ∇ρN̄(n)

m

• What is the effect of diffuse CG-LBM interfaces on momentum-transfer to s-fluids?

• Could superviscous particles be used in the ink-jet printing regime?

We also note that the new expression for the color-gradient Flm apparently allows us to define phase-
fields without defining whole new fluids: fluids can interact directly with phase-fields. This will turn out to
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be extremely important in chapter 9, where we will try to have fluids interact with solids using additional
perturbation.
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Part III

Simulations and Results
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Chapter 7 | Code Validation

� Key Points

• Colorblind CG-LBM was developed for Flow Matters during the thesis.

• The code was validated with steady-state and transient cases, with hydrodynamic and
capillary phenomena.

Superviscous Particles in more than one fluid phase would require an N -fluid CG-LBM solver. Sep-
arately, Solid-Phase Perturbation may be a practical way to impose contact angles for N fluids without
separate boundary conditions. In this chapter, the N -fluid CG-LBM implementation delivered to Flow
Matters is documented, along with validation cases.

7.1 The CGN Submbodule

CG-LBM was developed for Flow Matters’ C code before the thesis, lbe-direct, as part of the work in
[3]. These capabilities were expanded during the thesis to support N -fluid CG-LBM, whereas the code
was originally limited to N = 2. This was done through an optional submodule, CGN. The colorblind
algorithm from [7], described in section 6.1.1, was implemented to limit memory needs.

The novel pair-wise perturbation step in equation (6.16) is used, halving the number of perturbation
operations. phase-fields for fluid l, can be non-normalized ρN̄l or normalized ρN̄n

l , per equations (6.28) and
(6.35), respectively. phase-fields vary between 0 and 1, with ρN̄l > 0.5 associated with phase l. Compared
to the algorithm in [7], CGN explicity uses the relationship between phase-field and color-gradient in
equation 6.30. phase-fields are therefore computed separately, and their gradient components (rather than
the fractional density gradients) are stored to compute the color-gradient when needed. Local mixture
speed-of-sound ᾱ is always expressed by equation (6.22), but mixture viscosity νeff can be computed using
as harmonic or artihmetic phase-field averages.1

Flow Matters’ lbe-direct code is parallelized, and supports 3D simulations. The standard lattice is
D3Q19 [3, 6].

1So-called q-averages from reference [7] where implemented:

νeff =

(∑
k

Wi(νk)
q

)1/q

(7.1)

where Wk
i is the weight for each fluid, either the phase-field ρ

N̄(n)
k or fractional density ρk

ρ
, νk is the pure-fluid viscosity of fluid

k, and q ̸= 0 is the averaging variable, with q = 1 corresponding to an arithmetic average, and q = −1 to a harmonic average. The
user can select how to weight the average along with the q value.
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7.2 Capturing Surface-Tension

7.2.1 3D N = 3 Fluid Laplace Test

Figure 7.1 shows the N = 3 Laplace test case, with a (red) droplet/bubble contained within a capsule
of another (blue) fluid, itself in contact with background (green) fluid. Across each diffuse N = 2 fluid
interface, CG-LBM must generate a pressure jump according to equation (2.8). Since the interface is not
sharp, neither is the distributed pressure jump, and so the pressure pl in phase l is measured as the average
of points where ρN̄n

l → 1. Total pressure is measured at those points, since fluids form local mixtures,
and components indexed m ̸= l still contribute to pressure at points ρN̄n

l > 0.5 . Therefore, with a single
pressure associated with each phase, we compute per equations (3.43) and (6.22):

pl =

〈
ρ
1− ᾱ

2

〉∣∣∣∣∣
(ρN̄n

l →1)

(7.2)

where ⟨.⟩ is the average operator. Pressure jumps ∆p across interfaces are calculated using these phase
pressures. The droplet and capsule outer radii are computed from the surface area A of the 0.5 phase-field
contours of the red and green phases, respectively:

R =
1

2

√
A/π (7.3)

The in-simulation apparent surface tension σsim is computed:

σsim =
R

2
∆p (7.4)

and is compared to the input surface tension for the fluid-pair corresponding to the interface. All post-
processing was done in ParaView. Normalized phase-fields ρN̄n

l are used. Viscosity interpolation is
irrelevant at steady state without fluid motion, and relaxation time τ = 1 is selected for all fluids.

The blue pure-fluid density ρ0b is varied to impose a density ratio across all fluid-fluid interfaces.
Simulations are run in a 80× 80× 80 domain. The following parameters, in lattice units, remain constant
across runs:

• initial red droplet radius 10 ;

• initial blue capsule radius 30 ;

• segregation parameter β = 0.9 ;

• fluid-fluid surface tension σlm = 0.1 .

Densities are initialized with tanh interface profiles so that interfaces are initialized with as close as
possible to a typical CG-LBM fluid-fluid interface.2 This is the case for all simulations in this thesis,
except when stated otherwise.

Table 7.1 shows the tests results after 5000 timesteps, for different pure-fluid densities ρ0r , ρ
0
b , and ρ

0
g of

the red, blue, and green fluids, respectively. Each increase in ρ0b correspondingly raises the density ratio
across the red-blue (bubble-to-capsule) and blue-green (capsule-to-background) interfaces. The model
performs well and consistently for density ratios up to O(103). The larger error on the red-blue interface

2Interfaces are initialized according to the expected analytical interface maintained by the recoloring operator [2, 5, 12]. For
example, for a fluid l defined up to x = X (i.e., its phase-field drops under 0.5 at X ):

ρl(x, t = 0) =
1

2
ρ0l [ 1− tanh(β(x−X)) ] (7.5)

Note the use of β as a “smoothing factor”. It is also used to initialized curved features, such as spheres of fluid l of radius R0

centered about X [9]:

ρl(x, t = 0) =
1

2
ρ0l [ 1 + tanh (β(R0 − |x−X|)) ] (7.6)
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Figure 7.1: N = 3 Laplace Test. A red droplet/bubble is contained within a capsule of blue fluid within
a green fluid background. The algorithm must handle N = 3 fluids, although only N = 2 interfaces are
present. Phases are identified when respective phase-fields are above 0.5

ρ0r ρ0b ρ0g σsim,rb Relative Error σsim,bg Relative Error
1 1 1 0.010198 1.98% 0.010094 0.94%
1 100 1 0.010180 1.80% 0.010013 0.13%
1 1000 1 0.010187 1.87% 0.009928 0.72%

Table 7.1: N = 3 Laplace Test Results. σsim,rb is the apparent in-simulation surface tension between the
red and blue fluids, as evaluated between the droplet and capsule with equation (7.4). Likewise for σsim,bg

for the interface between the blue capsule and the green background fluid.

is due to the fact that there are fewer points for which ρN̄(n)
r → 1, or ρN̄(n)

b → 1, and those points are
for values farther away from 1. Indeed, those phase-fields are constrained on either side and cannot freely
increase to 1 (on the inside of the droplet/bubble or capsule).3 This could be remediated by a larger
domain, and larger initialization radii.

The test shows that the algorithm is able to reproduce the correct pressure jump across interfaces
defined by the phase-fields. This is the first steady state N > 2 result with surface tension ever obtained
with Flow Matters’ code.

7.3 Capturing Hydrodynamic Behavior

7.3.1 1D N = 4 Steady-State Couette Flow

Figure 7.2 shows the diagram for N = 4 Couette Flow.
Figure 7.3 shows the velocity profile for a 1D Couette flow with N = 4 in a 64 node wide domain

after 106 timesteps. Fluid-fluid interfaces are visible as velocity discontinuities in the analytical profile.
Simulation parameters are, in lattice units:

• individual fluid layer are initialized L = 16 nodes thick;

3The phase-field profile does not have the “space” to approach 1 as it does in the background fluid.

70



Figure 7.2: N = 4 Couette Flow Diagram. Fluid layers are accelerated by momentum diffusing from the
moving boundaries.

Figure 7.3: Results for N = 4 Steady State Couette Flow, unity density ratio, variable viscosity ratios.
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• unity density ratio across all fluids with ρ = 1 ;

• left wall velocity vy|left = −0.05 ;

• right wall velocity vy|right = 0.05 ;

• segregation parameter β = 0.9 ;

• no surface tension between fluids σ = 0 .4

From left to right, in each 16-node layer, pure-fluid viscosities νi for fluids indexed i are:

• ν0 = 1/300 ;

• ν1 = 1/96 ;

• ν2 = 1/10 ;

• ν3 = 1/300 .

Local viscosity νeff is computed as the phase-field-weighted harmonic average of the pure-fluid viscosities.
The analytical solution is obtained using momentum diffusion circuits (see appendix C), analogously

to heat transfer circuits [1]. This technique yields a momentum diffusion resistance Rν,i =
L
µi

in the i fluid
layer, where µi = ρνi is the fluid’s dynamic viscosity. The total resistance allows us to define the Reynolds
number for the entire flow, with characteristic velocity U = vy|right − vy|left:

Re =
ρUL
µ

= ρU(Rν)|total

= ρU
∑
i

L

ρνi

Re = 1129.6

Numerical results are very close to the analytical profile. Small discrepancies near the interfaces are
attributable to the diffuse interface viscosity averaging.

This is the first N > 2 steady state hydrodynamic result with non-zero velocity profile ever obtained
with Flow Matters’ code.

7.3.2 1D N = 2 Transient Couette Flow

Figure 7.4 shows the solution for 1D transient Couette flow at various timesteps in a H = 64 node wide
domain. Parameters are, in lattice units:

• prescribed velocity on right-hand wall U = 0.1 ;

• fluid viscosity is ν = 0.128 ;

• fluid density is ρ0 = 1 .

This leads to a viscous timescale τµ = H2/ν = 32000 and a Reynolds number Re = 50.
The numerical solution is compared to a known analytical solution [11], with which we observe good

agreement. Small discrepancies for the earliest represented timestep can be attributed to the sharpness of
the velocity profile compared to a small number of nodes: lattice resolution is perhaps slightly too low.
This does not harm the development of the solution at later timesteps.

This validation case is supplied to confirm the submodule’s ability to reproduce transient hydrody-
namics, rather than showcase any new capability.
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Figure 7.4: Single-Phase Transient Couette Flow Results, Re = 50.

Figure 7.5: N = 2 Poiseuille Flow Diagram. The flow is driven by a gravitational acceleration a. No-slip
applies at the fixed walls at the boundaries.

73



Figure 7.6: N = 2 Steady-State Poiseuille Flow for Unity Viscosity Ratio.

Figure 7.7: N = 2 Steady-State Poiseuille Flow for Viscosity Ratio λν = 50 with more viscous inner core.
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Figure 7.8: N = 2 Steady-State Poiseuille Flow for Viscosity Ratio λν = 50 with more viscous outer core.

7.3.3 1D N = 2 Steady-State Poiseuille Flow

Figure 7.5 shows the diagram for N = 2 Poiseuille Flow with inner and outer cores of different fluids.
Figures 7.6, 7.7, and 7.8 show the velocity profiles for N = 2 Poiseuille flow at unity density ratio, and

respectively unity viscosity ratio, viscosity ratio λν = 50 with a more viscous inner core, and viscosity
ratio λν = 50 with a more viscous outer core, in a 64-node wide domain. The flow is force-driven,
with a gravitational acceleration a in the streamwise direction. Guo forcing from section 3.3.4 is used.
Parameters are, in lattice units:

• inner core is initialized 32 nodes wide;

• fluid densities are ρ = 1 ;

• when the viscosity ratio is λν = 1, fluid viscosities are ν = 1/300 ;

• when λν = 50, the most viscous fluid has viscosity ν = 1/6 ;

• gravitational acceleration is a = 10−7 ;

• segregation parameter is β = 0.9 ;

• no surface tension between fluids σ = 0 .

Local viscosity νeff is computed as the phase-field-weighted harmonic average of the pure-fluid viscosities.
Non-normalized phase-fields ρN̄l are used. Fluid-fluid interfaces on the figures coincide with the velocity
discontinuities on the analytical profiles.

The numerical solution is compared to a known analytical solution, following a publication with this
very validation case [10]. Small discrepancies in the interface region are attributable to the diffuse interface
and viscosity averaging.

This validation case is supplied to introduce the submodule’s ability to support viscosity ratios, rather
than showcase any new capability.

4The recoloring operator indeed keeps phases separate entirely separately from the perturbation operator. No surface tension is
required to keep phases separate.
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7.4 Central Moments and Extended Equilibria

Central Moments and Extended Equilibria were also implemented for the CGN submodule. Fortunately, as
described in 6.1.1, both can be implemented by directly acting on the total populations fi and the total
density ρ. Central Moments are implemented as in the original CG-LBM code, on a D3Q27 lattice [3, 4,
6].

7.4.1 1D Steady-State N = 2 Couette Flow with Density Ratios

CG-LBM without Extended Equilibria is not able to capture momentum discontinuities resulting from
density gradients across interfaces. Figures 7.9, 7.10, and 7.11 reproduce a validation case from [8], where,
respectively:

• case LD-LV with density ratio λρ = 2 and viscosity ratio λν = 2 ;

• case MD-MV with λρ = 20 and λν = 20 ;

• case HD-HV with λρ = 1000 and λν = 100 .

Note that figures plot momentum profiles, accounting for both local density and velocity, across a 160-
node domain. Fluid-fluid interfaces coincide with discontinuities in the analytical profile. The following
parameters are used, in lattice units:

• each fluid layer is initialized 80-nodes thick;

• the lighter fluid’s density is ρmin = 1 ;

• the least viscous fluid’s viscosity is νmin = 1/2 ;

• the left wall velocity is vwall = 0.0001 ;

• the right wall velocity is vwall = −0.01 ;

• the segregation parameter is β = 0.9 ;

• no surface tension between fluids σ = 0 .

Local viscosity νeff is computed as the phase-field-weighted harmonic average of the pure-fluid vis-
cosities. Fluid-fluid interfaces on the figures coincide with the velocity discontinuities on the analytical
profiles.

Although there are rather significant differences between the numerical results and the analytical
profiles, the momentum profile is able to transition quickly across the interface.5 We note that the
differences with the analytical profile closely follow (if they are not identical) to those in [8], where this
validation originates from. How well Extended Equilibria reproduce momentum discontinuities arising
from density ratios is very flow-dependent, and the figures do not suggest that Extended Equilibria perform
better

5Without Extended Equilibria, CG-LBM completely fails to capture momentum discontinuities arising from density ratios [8].
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Figure 7.9: N = 2 Steady-State Couette Flow for case LD-LV.

Figure 7.10: N = 2 Steady-State Couette Flow for case MD-MV.
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Figure 7.11: N = 2 Steady-State Couette Flow for case HD-HV.

7.4.2 3D N = 2 Ligament Contraction

Figure 7.12 shows the ligament contraction case, chosen from [3]. A long ligament capped by hemispheres
of radius R0 is initialized, and contracts into a sphere under the effect of surface tension. The ligament
half-length x(t) is measured from the midplane to the end of the ligament. This case was selected
to validate the CGN submodule in dynamic conditions with viscous and capillary behavior, against the
original CG submodule developed before the start of the thesis.

Simulation parameters are, in lattice units, for both the CG and CGN runs:

• fluid densities ρ = 1 ;

• ligament fluid viscosity ν0 = 1/6 ;

• background fluid viscosity ν1 = 1/6000 ;6

• initial capsule radius is R0 = 12 ;

• initial ligament length (excluding the hemispheric caps) is L = 100 .

• segregation parameter is β = 0.5 ;

• surface tension is σ = 0.05 ;

These parameters lead to a capillary timescale tcap =
√
ρR3

0/σ = 185.9 .
Figure 7.13 shows that the new CGN produces the same results as the extensively validated original

CG code from [3]. Even in this N = 2 case, the CGN submodule uses the colorblind algorithm, which
is structured very differently from the original CG. Since colorblind formulations are meant to be strictly
mathematically equivalent to non-colorblind CG-LBM, figure 7.13 confirms there are no accidental differ-
ences across algorithms.

6Note the viscosity ratio is λν = 103, with background fluid relaxation time τ1 = 0.5005, which would not be stably accessible
without Central Moments.
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Figure 7.12: 3D N = 2 Ligament Contraction Case Diagram. The ligament contracts under the effect of
surface tension. Red color qualitatively chose rightward local velocity, blue leftward.

Figure 7.13: 3D N = 2 Ligament Contraction Results from the new CGN submodule against the original
CG code.
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Chapter 8 | Superviscous Fluids

� Key Points

• CG-LBM superviscous fluids’ effect on surrounding flow depends on viscosity inter-
polation in the interface region.

• The CG-LBM recoloring operator can catastrophically deform superviscous fluid par-
ticles depending on initialization.

• CG-LBM superviscous fluids are not recommended for the ink-jet printing regime.

In this chapter, we investigate the use of superviscous fluids (s-fluids) to model solid particles. As
s-fluid viscosity grows, resistance to shear deformation increases, and applied forces should increasingly
go to other mechanical degrees of freedom. Indeed, when viscosity tends towards infinity, a force applied
to the surface of the s-fluid generates a momentum change that is instantaneously diffused throughout the
whole phase, and induces solid-body-like linear or rotational motion.

As CG-LBM users, our interest is in mediating wetting on the s-fluids’ surfaces with perturbation with
surrounding fluids according to equation (6.16). The use of superviscous fluids in CG-LBM introduces at
least two unusual features:

• particles formed with s-fluid now have a diffuse interface;

• this interface is maintained by the recoloring operator of equation (6.15).

The diffuse interface can cause viscosity-interpolation-dependent wall positions or slip, but can still prove
useful for small, light particles. The recoloring operator, however, can generate forces that have no physical
basis and yet deform particles of s-fluid.

8.1 Effects of the Diffuse Interface on Momentum Transfer

CG-LBM phase-field interfaces are diffuse, and local viscosity must be interpolated. Differences between
pure-fluid and local mixture viscosities, which are interpolation-dependent, can affect the flow field [3].
Phase-field-weighted arithmetic and harmonic averages of pure fluid viscosities are typical choices for
mixture viscosities [2, 3], and are investigated in this section. Figure 8.1 shows the steady-state result for
a 1D N = 2 Couette flow with a viscosity ratio λν = 100. The domain is separated into two equal-width
fluid layers. A Reynolds number of Re = 20 is obtained by assuming all viscous dissipation occurs in the
least viscous fluid layer (to the left). The harmonic averaging of fluid kinematic viscosities in the diffuse
interface leads to a better match with the analytical solution. The difference in results is directly caused
by the choice in viscosity averaging.
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Figure 8.1: Simulation Results for 1D N = 2 Steady State Couette Flow with Reynolds Number Re = 20
and viscosity ratio λν = 100 (more viscous fluid to the right). LBM simulation solutions with either
harmonic or arithmetic averaging of viscosities. Viscosity interpolation at higher viscosity ratios can
significantly affect the flow, especially when arithmetic averaging is used.

Figure 8.2: Local Viscosity across a Fluid/S-Fluid Interface at different viscosity ratios λν and for harmonic
or arithmetic averaging of pure-fluid viscosities. Solid vertical line represents the position of the interface.
Segregation parameter β = 0.7 .
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8.1.1 Viscosity across a CG-LBM Interface

Figure 8.2 shows local viscosity across a planar interface at different viscosity ratios. The lower viscosity
region is the fluid region, and the higher viscosity region is the superviscous region. The plot is continuous,
as the phase-fields ρN̄f and ρN̄S , respectively of the fluid and solid regions, are computed from the expected
analytical tanh profile maintained by the recoloring operator for β = 0.7, centered at the origin:

ρN̄f =
1

2
(1 + tanh(βx))

ρN̄S = 1− ρN̄f

The lower x-axis is defined in lattice units, and plot readings spaced by 1 on this axis correspond to
node-to-node differences in corresponding CG-LBM simulations. We observe that:

• arithmetic averaging consistently contaminates the fluid side of the interface with the higher s-fluid
viscosity;1

• harmonic averaging consistently contaminates the superviscous side of the interface with the lower
fluid viscosity.

However, every increase in order in viscosity ratio λν leads to:

• for arithmetic averaging, an increase in order in local viscosity in the fluid region very close to the
interface;

• for harmonic averaging, very small changes in local viscosity in the superviscous region very close
to the interface.

This suggests that arithmetic averaging will increasingly affect the flow for every increase in s-fluid viscos-
ity, whereas harmonic averaging isolates changes to the superviscous region. This will be in fact confirmed
in the following test case, and mark harmonic averaging as preferable for s-fluid applications.

8.1.2 S-Fluid Particle in Shear Flow

S-fluids shear continuously, and must therefore be given different degrees of freedom to convert applied
forces into motion approaching that of a solid body, rather than shear dissipation. A simple 1D case was
used to study the conversion of shear forces into linear momentum, and the effects of viscosity averaging.
For light particles in shear flow, harmonic viscosity averaging was shown to model solid response to flow
well. Arithmetic averaging on the other hand leads to significant change in the flow field in the fluids.

The Accelerated Slab Test Case

Figure 8.3 shows a test case for the acceleration of a particle under shear flow: 1D N = 1 Couette flow with
an accelerated wall. A fixed velocity U is set on the left-hand wall. Due to fluid viscosity νf , momentum
diffuses across the H-wide profile to the right-hand wall, which is accelerated by viscous shear forces. This
flow is equivalent to the acceleration of a slab in a channel shear flow, shown in figure 8.4. When shear
forces reach the right-hand wall, they are transferred to the rigid slab and converted to linear momentum.
By the continuity of momentum flow at this boundary, we indeed have:

−ρfνf
∂u

∂x

∣∣∣∣∣
x=H

= LρS
dVwall
dt

(8.1)

where ρf and νf are respectively fluid density and viscosity, u is the flow velocity, Vwall is the velocity of
the right-hand wall, L is the half-length of the 1D solid slab, and ρS is the solid density. As shown in

1The effect or arithmetic averaging explains the discrepancy in figure 8.1: the large viscosity from the high-viscosity region bleeds
into the low-viscosity region and significantly increases resistance to shear close to the interface, leading to more shear dissipation
to occur in the low viscosity region farther away from the interface.
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Figure 8.3: 1D N = 1 Couette Flow with Accelerated Wall. The left wall moves at constant velocity
U , whereas the right wall is progressively accelerated by the flow. This is the 1D approximation of the
acceleration of a solid slab by a shear flow in a channel, shown in figure 8.4.

Figure 8.4: Solid Slab Acceleration in Couette Flow. A slab is located in the center of a channel, and is
accelerated by momentum diffusing across the fluid layers.

appendix D, this boundary defines the following slab acceleration timescale ta:

ta =
ρSHL

ρfνf
(8.2)

Appendix D also shows how benchmark results are obtained with a Finite Difference (FD) method.
As shown in figure 8.5, this case can also be run in a CG-LBM simulation with an s-fluid modeling

the solid slab. The equivalent slab acceleration case is symmetrical about the axis cutting the slab into
two halves, and the right-hand wall is now a free-slip boundary condition. Either phase is initialized with
a CG-LBM tanh profile with β = 0.7 segregation parameter. There is no surface tension between the
fluids. The s-fluid is sheared by the fluid at the interface, but its high viscosity converts shear forces into
momentum, which is distributed across the entire slab.

To approach a case relevant to the inkjet printing regime, we set:

• a Reynolds number Ref = 100 in the fluid region, matching the upper range of inkjet printing
values [5];

• an s-fluid half-length L = H/2 half the fluid region’s characteristic lengthscale;

• unity density ratio between the s-fluid and the fluid.

Using a fluid region H = 32-nodes long, the Reynolds number and fluid viscosity set the left-wall velocity
U . The next two settings lead to the following dimensionless quantity, scaling with the ratio of phase
masses (in lattice units):

ρfH

ρSL
=

1 · 32
1 · 16

= 2 (8.3)
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Figure 8.5: 1D N = 1 Couette Flow with Accelerated Wall, using an s-fluid. The half-slab of length L is
now part of the simulation domain.

Compare this with the ratio obtained from parameters used in the mobile particle jetting simulations in [1]
(where a particle of radius Rp = Dp/2 is present in the nozzle of radius Rnozzle, and using fluid properties
of the ink present in the nozzle):

ρf
ρS

· Rnozzle

Rp
=

1

2.3
· 15µm
6.67µm/2

= 1.96

Therefore, dimensionless quantities are matched for inkjet printing. It should be noted, however, that the
current test case is a pure shear flow, which the full jetting simulation is not. The case is characterized by
a ratio of viscous timescale in the fluid phase tν to the particle acceleration timescale ta:

tν
ta

=
H2/νf
ρSHL
ρfνf

=
ρfH

ρSL
= 2 (8.4)

which we note is the same as the ratio of masses in equation 8.3 for this shear flow.
Physically, the fact that ta < tν means that the solid will be very responsive to the flow. Indeed, the

smaller this effective particle response time ta, the more similar the boundary between the fluid and the
solid is to a free-slip wall. This means that larger ratios in equation (8.4) lead to less shear stress at the
interface to be distributed across the s-fluid. The current regime is suited for s-fluid simulations, since
shear will be limited. The distribution of applied shear stresses and its conversion into rigid-body-like
momentum is ensured by the viscosity ratio λν between the s-fluid and actual fluid. Clearly, the viscous
timescale in the s-fluid L2/νs (where ν is the s-fluid viscosity) must be very short compared to either tν
or ta in order to diffuse momentum across the s-fluid without interfering with physical timescales.

Viscosity-Interpolation Effective Wall Position

Figure (8.6) shows the wall velocity response over time for CG-LBM with s-fluids. Wall velocity is measured
at the phase-field interface between the fluid and s-fluid. Local viscosity is computed with arithmetic
averaging. With every increase in viscosity ratio λν , we observe a faster-than-expected particle response
time, when compared to the FD benchmark. Indeed, due to the arithemtic averaging of viscosities,
increases in λν leads to significant increases in viscosity in the fluid region close to the interface, as
explained by figure 8.2. This pushes the effective extent of the superviscous layer (and hence the effective
accelerated wall position) into the fluid. The region where viscosity is on the order of that of the pure
fluid becomes narrower, raising the shear rate and hence the shear accelerating the s-fluid, quickening the
convergence to U .

The effective wall position can be found by finding the position of the sharpest velocity discontinuity
in the CG-LBM simulation. This is measured after the diffusing momentum reaches the s-fluid and begins
to accelerate it, and does not vary over time after t/ta ∼ 0.2 . Indeed, once the acceleration of the wall is
underway, this effective wall position is determined by the phase-field interface profile and local viscosity,
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Figure 8.6: Solid Wall Velocity Vwall over Time for Different Viscosity Ratios λν , with Arithmetic Viscosity
Averaging for CG-LBM. FD benchmark measured at the right-hand simulation boundary. LBM results
measured at the phase-field boundary between fluid and s-fluid layers.

λν Node with Maximum ∂2u/∂x2 Distance From Interface
10 29 2.5
50 28 3.5
100 27 4.5
500 26 5.5

Table 8.1: Node with Maximum ∂2u/∂x2 after momentum diffusion reaches the s-fluid, a proxy for
effective accelerated wall position, for the CG-LBM simulations with arithmetic averaging. The fluid/s-
fluid interface is actualy located between the 31st and 32nd nodes.

which is constant through time. The sharpest discontinuity is coarsely measured as the node where
∂2u/∂x2 is maximum. Table 8.1 shows how each increase in viscosity pushes the effective wall position
towards the fluid phase-field, away from the actual interface. Clearly, for a case roughly representative of
inkjet printing, arithmetic viscosity averaging causes significant changes in the flow in the fluid-phase.

Figure 8.7 shows the same s-fluid response, but using harmonic viscosity averaging. The s-fluid re-
sponse times are very close to the FD benchmark. CG-LBM response curves are practically indistinguish-
able from each other, and the s-fluid predicts the solid particle response at even very moderate viscosity
ratio. CG-LBM curves are so similar because very close to the interface, increases in viscosity ratio are
barely felt under harmonic averaging (see figure 8.2).

From this, we conclude even very mild viscosity ratios are sufficient for the s-fluid to emulate a solid
accelerated slab’s response to the shear flow. This is in fact due to the small ta/tν ratio: the particle is
small and light enough to respond to the flow faster, accelerate, and prevent significant shear from growing
on the particle surface in the first place. Therefore, viscosity-deficit in the s-fluid close to the interface
under harmonic averaging does not affect the physics as significantly as the viscosity-surplus in the fluid
phase under arithmetic averaging.

Viscous Dissipation in the Solid

Even if the wall response time is captured correctly, some energy is still lost to s-fluid shearing. Fortunately,
this is limited in the first place by the fast particle response time ta. Figure 8.8 shows the fraction of
viscous dissipation in the CG-LBM domain that occurs in the s-fluid. After the diffusing momentum
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Figure 8.7: Solid Wall Velocity Vwall over Time for Different Viscosity Ratios λν , with Harmonic Viscosity
Averaging for CG-LBM. FD benchmark measured at the right-hand simulation boundary. LBM results
measured at the phase-field boundary between fluid and s-fluid layers.

reaches the s-fluid, this fraction is essentially constant; less than a percent of all energy dissipated in
the domain is dissipated in the s-fluid. This does not change the fact that the fluid shears continuously,
and accumulated displacement on the surface of the s-fluid may be significant over time. Furthermore,
as the s-fluid accelerates towards the left-side velocity U , shear rates drop throughout the domain, and
the effective Reynolds number drops. This case and the measurement of velocity at the interface were
therefore particular suited to be captured by an s-fluid.

8.2 Effects of the Recoloring Operator

In CG-LBM, immiscibility and phase-field interfaces are maintained by the recoloring operator (equation
(6.15) for colorblind CG-LBM). Because the recoloring operator introduces an additional, purely numerical
lengthscale δ ∼ 1/β through the segregation parameter β, it can induce non-physical phenomena in the
flow field through the diffuse interface.

8.2.1 Spurious Smearing

As mentioned in section 3.5.3, the recoloring operator implicitly solves an Allen-Cahn interface-tracking
equation, which describes the time-evolution of the tracked phase-field [7]. When explicitly tracking the
interface, an interface mobility parameter is tuned to control the movement of the phase-field interface.
In CG-LBM, however, this parameter is not only hidden and implicitly defined, it is not free, and de-
pends on the lattice speed-of-sound.2 Analysis of the implied Allen-Cahn system shows that there is
a mobility-dependent “artificial diffusion-like mechanism that attempts to achieve radial symmetry” and
smears out sharp phase-field corners [7]. Therefore, through this spurious smearing, the recoloring operator
itself can cause fluid motion, through effective forces which are entirely numerical and have no basis in
hydrodynamic or capillary phenomena.3

2Alternative CG-LBM formulations can allow interface mobility tuning [6].
3For N = 2 fluids, such sharp corners are unlikely except perhaps at initialization. For N > 2, however, three-phase contact

between fluids can occur. Fortunately, N -fluid CG-LBM is able to reproduce the sharp contact angles between the fluid phases,
which depend on their respective surface tensions [3].
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Figure 8.8: Fraction of Viscous Dissipation occurring in the S-fluid, of the total Viscous Dissipation in the
domain. Accelerated Wall Case under harmonic viscosity averaging.

This effect is strictly limited to sharp features across phase-field interfaces maintained by the recoloring
operator. Hence, in two-phase flow, while the contact line must necessarily intercept a solid wall at a sharp
contact angle, the interface between individual fluids and the wall is not maintained by recoloring, and no
spurious smearing occurs. The same is true for contact lines on any solid particle, which can be modelled
without issues [4]. However, s-fluid particle surfaces, which are maintained by the recoloring operator,
are now subject to such smearing effects. This limits admissible s-fluid particle geometries: in 2D, for
instance, an angular feature will smear its sharp edges and approach a circular shape [7]. However, certain
flow conditions may induce these sharp edges even for radially symmetrical s-fluid particles.

8.2.2 Catastrophic S-Fluid Particle Smearing

In this section, we discuss how spurious smearing can catastrophically deform s-fluid particles, even when
they are radially symmetrical.

Figure 8.9: Particle at a Fluid-Fluid Interface. On the left, the steady-state solution for a solid particle,
which migrates towards the fluid that preferentially wets in to minimize its interfacial surface energy.
On the right, the steady state for a liquid droplet, which deforms into a lens, with interface curvatures
reflecting surface tensions with either other fluid, and forms contact angles with the flat fluid-fluid interface
as predicted by Young’s law.

Figure 8.9 shows a good validation case for wettable particles. A solid particle located at a fluid-
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fluid interface will experience capillary forces that push it towards the fluid that preferentially wets it.
Mechanical equilibrium is reached when the particle migrates at a position predicted by the fluid-fluid
surface tensions and both solid-fluid surface tensions [4, 8]. The case is also a good test for s-fluid
particles. Since the latter are, in fact, fluids, the steady-state solution is that for fluids: a lensed particle
which exhibits contact angles predicted by Young’s law. A sufficiently viscous s-fluid particle, however,
should converge to the solid’s steady-state solution first, and experience limited deformation to the fluid
steady-state over a limited span of time, which in our case should match that of ink-jetting phenomena
after scaling.

This 2D case was initially selected to study s-fluid particles’ ability to convert capillary forces into linear
momentum. A circular s-fluid particle is initialized at the interface, with viscosity ratio λν = 100 between
the s-fluid particle and the fluids. Surface tension between the fluids is obtained from an Ohnesorge
number Oh = 0.5 representative of ink-jet printing [5], and therefore correctly scaled to the viscosity
inside the fluids; droplet radius is used as a characteristic length. Preferential wetting of the s-fluid
particle is adjusted by setting different solid-fluid surface tensions, which are of the same order as the
fluid-fluid surface tension to avoid high spurious velocities from perturbation. A capillary timescale tcap
can be computed for the particle as:

tcap =

√
ρSR3

σ
(8.5)

where ρS is the s-fluid density, R is its initialization radius, and σ is the surface tension between the fluids.

Figure 8.10: Catastrophic S-Fluid Particle Deformation. Each line represents the ρN̄S = 0.5 s-fluid phase-
field marking the particle. The horizontal dashed line represents the plane of the fluid-fluid interface where
the particle rests. Vertical line marks an axis of symmetry for the initialized particle. Successive red-green-
blue contours respectively correspond to t = {0, 0.1tcap, 0.2tcap} where tcap is a capillary timescale for
the particle. The particle deforms symmetrically to the fluid-fluid interface, which is not consistent with
either physical tendency towards the steady-state solutions for a solid or fluid particle. The deformation
is in fact due to spurious smearing.

Figure 8.10 shows three phase-field contours marking the boundaries of an s-fluid particle in such a
simulation. Surface tension parameters are such that the steady-state solution should lead the particle to
migrate upwards above the fluid-fluid interface, the plane of which is denoted by the horizontal dashed
line. The fluid steady-state solution should lead to droplet to bulge into the fluid on the top, with which it
has a lower surface tension. However, after little time (on the scale of capillary behavior on the particle),
the particle displays a quasi-symmetrical deformation which stretches it tangentially along the fluid-fluid
interface. This deformation is not consistent with a tendency:

• towards the solid steady-state solution, which leads to forces normal to the fluid-fluid interface
pushing the particle upwards;
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Figure 8.11: Spurious Smearing for N = 2 case. Each line represents the interface between the two
phases. Successive red-green-blue lines correspond to increasing timesteps. Simulation contains no phys-
ical mechanism to cause fluid flow, and yet the interface deforms under the effect of phase-field mobility.
The contact of the hemispherical feature with the otherwise flat interface is in fact a sharp edge which the
recoloring operator will smear.

• towards the liquid steady-state solution, which is not symmetrical and also leads to a net movement
of fluid towards the upper fluid.

This deformation is catastrophic, because the particle is no longer spherical, and has apparently deformed
due to a non-physical phenomena. The same behavior is observed even in the absence of surface tension,
and is due to the recoloring perturbation.

Figure 8.11 shows a similar N = 2 case, obtained with Flow Matter’s original code, before the imple-
mentation of N -fluid CG-LBM. Two fluids with equal density, viscosity, and no surface tension between
them are initialized across a flat interface. The fluid at the bottom is also initialized with a hemispherical
sector jutting into the fluid at the top. There are no physical parameters that could induce flow in this
simulation. However, the intersection of the hemispherical profile, orthogonal to the flat interface, is a
sharp edge, and tends to be smoothed by the perturbation operator. The segregation lengthscale δ ∼ 1/β
and the implicit interface mobility are the only possible cause for the resulting flow.

Therefore, even if the particle in figure 8.10 was initially radially symmetrical, its presence at the
interface caused a sharp edge in the phase-fields of either fluid. The resulting smearing of the fluid
phase-fields must also be accompanied by a smearing of the particle.

8.3 Conclusions

The use of s-fluids in inkjet printing simulations was initially considered as a means to use CG-LBM
perturbation to mediate wetting on particles entrained in jets. Therefore, s-fluid particles would necessarily
be used in the presence of at least two other actual fluids. The recoloring-induced spurious smearing of
s-fluid particles is sufficient cause to not recommend their use in such simulations, since even radially
symmetrical particles can apparently cause unphysical flows when located at an interface. It is not clear
whether setting arbitrarily large surface tensions between the fluids and the solid could have maintained
the s-fluid particle interface. Doing so, however, would induce larger spurious velocities in the actual
fluids. It is also possible that s-fluid particles are less susceptible to these smearing effects if initialized
away from a fluid-fluid interface, and allowed to evolve towards them through actual flow.

The second research question on superviscous fluids in section 5.1.2 can be answered, and a first
recommendation on the third research question given:
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®
Research Questions: Superviscous Particles

• What are the phase-fields for N -fluid CG?

¥
See section 6.3.

• What is the effect of diffuse CG-LBM interfaces on momentum-transfer to s-fluids?

¥
Diffuse CG-LBM interfaces lead to continuous transitions in viscos-
ity between fluid and artifically superviscous s-fluids. Viscosity aver-
aging at the interface determines how this affects the flow field. When
arithmetic viscosity averaging is used, high s-fluid viscosity bleeds into
the fluid. Effective s-fluid particle surfaces appear to penetrate deeper
and deeper into the fluid. Harmonic viscosity averaging limits viscos-
ity discrepancies to the s-fluid-side of the interface, and allows s-fluid
particle response to flow to approach that of an actual solid particle.
Diffuse CG-LBM interfaces also mean that s-fluid surfaces are main-
tained by the recoloring operator. The latter tends to smoothen sharp
corners formed by phase-fields, which leads to catastrophic spurious
smearing of even radially symmetrical s-fluid particles, when located
at fluid-fluid interfaces.

• Could superviscous particles be used in the ink-jet printing regime?

®
Spurious smearing is sufficient cause to not recommend s-fluid par-
ticles for use in the inkjet printing regime. However, s-fluid particles
were shown to be able to respond well to single-phase flows, and
the case revealing the issue of spurious smearing may be avoided by
other initializations.
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Chapter 9 | Solid-Phase Perturbation

� Key Points

• Solid-Phase Perturbation (SPP) can be adapted to modern CG-LBM.

• SPP is very sensitive to phase-field boundary treatment near walls.

• SPP reproduces physical wetting/dewetting phenomena when a solid phase-field is
defined.

• The novel colorblind CG-LBM color-gradient formulation from chapter 6 can be used
to directly recover a consistent SPP operator.

• Single-Node SPP is not appropriate in the ink-jet printing regime due to inaccuracies
resulting from sharp phase-field gradients near walls.

In this chapter, SPP ideas from [2] and [4] are adapted to modern CG-LBM. In section 9.1, SPP is
developed by injecting information about wall-normal vectors into the perturbation operator. Among other
problems, this gives no information on how to treat phase-fields near the wall, and leads to competing
enforcement of different contact angles. In section 9.2, a different approach considering a solid phase-
field directly produces a consistent SPP operator, and physically consistent contact angles. Previously
unresolved inaccuracies also arising in [4] are explained.

Following other energy-based wetting implementations [2, 4, 5], we define a wetting parameter χlm

for a fluid-pair lm using Young’s law in equation (2.11) and a desired contact angle θlm,in for the fluid pair
and the solid surface:

χlm = cos θlm,in =
σSm − σSl

σlm
(9.1)

where σSl is the surface tension between the solid and fluid l, and likewise with σSm and fluid m. For
N = 2, we denote χ the single wetting parameter. Flat walls coinciding with domain boundaries are
considered.

9.1 Single-Node SPP with Wall-Normal Vectors

CG-LBM perturbation generates the interfacial force at the interface, in a direction normal to it. Since
the interface is diffuse, it is localized by proxy with the color-gradient Flm. For a known wall position
captured with the bounce-back boundary condition from section 3.3.3, the interface location is known
exactly, and we replace, in the perturbation operator in equation (6.16):

Flm → n

where n is the wall-normal vector located at the first node off the wall. We set n = 0 in the bulk away
from these nodes. Recall that since no-slip is enforced at the wall, no recoloring needs to occur between
the fluid and the wall.
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9.1.1 SPP Operator

Since pair-wise perturbation for colorblind CG-LBM from equation 6.16 is used, we recover the corre-
sponding single-node SPP operator Ω(2S)

i acting on the post-(fluid-fluid)-perturbation populations f⋆⋆i to
yield to post solid-fluid-perturbation populations fS⋆⋆

i :

fS⋆⋆
i = Ω

(2S)
i (f⋆⋆i ) = f⋆⋆i +

∑
l

∑
m>l

AS
lmClm|n|

[
wi

(ci · n)2

|n|2
−Bi

]
(9.2)

where AS
lm contains information about fluid-solid surface tensions. The combination of the concentration

factor Clm and our definition of n mean that SPP is only active for sufficient concentrations of both fluids
l and m near the wall marked by n ̸= 0. From equation (6.12), while local relaxation rate ωeff is defined,
SPP surface tension is not. Since surface tension σSl between the wall and a fluid l is a property defined at
the interface between the wall and the fluid, we weight the surface tension from each fluid by its phase-field

ρ
N̄(n)
l , leading to:1

AS
lm =

9

2

(
ρ
N̄(n)
l σSl + ρN̄(n)

m σSm

)
ωeff (9.3)

We can identify several issues with this line of thinking, and the SPP operator defined by equations
(9.2) and (9.3):

• we have no information about how to normalize the wall-normal vector n, and its magnitude is free;

• the phase-field averaging in (9.3) is a guess, and is not constrained by this “derivation”;

• since the weighting of surface tensions or wall-normal vectors is not constrained, the 9/2 scalar
factor in (9.3) is entirely unclear;

• no information is given as to the treatment of phase-fields near walls.

9.1.2 Competition with Boundary Conditions

In the code, the physical domain is enclosed by ghost nodes where information is included to enable
information to stream in or out of domain boundaries, and evaluate gradients there. When SPP in (9.2)
is used, fluid phase-field gradients near the wall still need to be closed by assigning phase-field values
to the ghost-nodes. A natural choice is set ghost node phase-field values as the average computed from
neighboring fluid nodes.2 However, note that this necessarily suppresses phase-field gradients at the wall:
if an interface meets the wall with no gradients, it is orthogonal to it, and a neutral 90◦ contact-angle is
enforced by means of a geometry-based wetting boundary condition. This effective boundary condition
will in fact compete with the SPP operator in equation 9.2.

Figure 9.1 shows the time-evolution towards steady state of the phase-field contour for a droplet on
a solid surface, using SPP from equation (9.2) and the phase-field average treatment described above.
SPP is able to induce dewetting (left) and wetting (right) phenomena.3 However, it competes with the
geometry-based boundary condition.

Figure 9.2 shows how in a simulation with no surface tension, neither between the fluids or with the
solids through SPP, the contact line moves to form a neutral contact angle. Without fluid-fluid surface
tension, the rest of the droplet’s shape mostly does not adjust to reflect this. The fact that a contact
angle is enforced despite the absence of surface tension also underlines the complete disconnect between
fluid-fluid perturbation and geometry-based boundary conditions.

1The SPP operator (5.3) from [2] suggests that surface tensions be density-weighted. However, in equation (6.16), concentration
factor aside, it is the magnitude of the color-gradient Flm which determines the magnitude of the perturbation. For a variation
in color-gradient of order 1 (from a pure phase to the absence thereof) across an interface width δ ∼ 1/β = O(1), we find
|Flm| = O(1), with no density-weighting. This supports the idea of phase-field-weighting used here.

2This is similar to the treatment of fluid density at the wall used in the bounce-back boundary condition with moving walls of
equation 3.32.

3The dewetting on the left of figure 9.1 could also be attributed in part to the phase-field boundary condition.
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Figure 9.1: Time-Evolution of Droplet Contours using SPP with Wall-Normal Vectors. On the left, a value
of χ implying dewetting is used; on the right, a value implying wetting. This SPP competes with an implied
geometry-based boundary conditions which tends to impose a neutral contact angle.

Figure 9.2: Time-Evolution of Droplet Contours with no Surface Tension or SPP. The phase-field boundary
treatment implies a neutral contact angle, towards which the contact line evolves.
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In simulations, it was noted that regardless of input χ, if the droplet was initialized with a neutral
contact angle, SPP was not able to move the contact line at all. The problematic effects of the phase-
field boundary treatment also appeared to depend on the required path towards the desired contact
angle. Therefore, we conclude that SPP should not be formulated only using wall-normal vectors, due to
undefined boundary treatment and competing wetting enforcement.

9.2 SPP with Solid phase-field

In reference [4], fluids interact with the wall by treating it as a “stationary fluid” with “constant mass density
at the boundary nodes”. This information affects the color-gradient at the boundary nodes. The authors
of the publication achieve controllable wetting behavior after generating a calibration curve. Especially
since constant density and viscosity ratios are considered, this constant “solid” density implies a constant
solid phase-field.

Following a similar approach, this section defines a consistent SPP operator through the definition of a
solid phase-field. Physical wetting behavior is achieved, and unresolved inaccuracies in [4] are addressed.

9.2.1 SPP Operator

The wall is not treated as a stationary fluid, has no corresponding density, and is directly defined through
a phase-field ρN̄S , with ρN̄S = 1 defining pure solid. The sum of local phase-fields now includes ρN̄S ,
which therefore defines the fluid-solid interfaces for CG-LBM. The solid phase-field is constant, and is not
recolored: it is not a fluid’s phase-field.

The resulting SPP operator can be written with no assumptions. Thanks to the new relationship found

between the fluid phase-fields ρN̄(n)
k and the color-gradient Flm in equation (6.30), the color-gradient FlS

between a fluid l and the solid is:

FlS = ρN̄S ∇ρN̄(n)
l − ρ

N̄(n)
l ∇ρN̄S (9.4)

And so, merely applying the perturbation operator from equation (6.11) between all fluid k’s phase-fields
and the solid S’s phase-field:

fS⋆⋆
i = Ω

(2)
i (f⋆i ) = f⋆i +

∑
k

1

2
AkS |FkS |

[
wi

(ci · FkS)
2

|FkS |2
−Bi

]
(9.5)

where the concentration factor has been removed for conciseness, noting the return of the 1/2 factor since
there is no solid population to perturb, and:

AkS =
9

2
σSkωeff (9.6)

where σSk is the surface tension between the solid S and the fluid k.

9.2.2 Single-Node SPP with ρN̄S

Recall that we are attempting single-node SPP only, where SPP is limited to the first node off the wall. For
single-node SPP, no diffuse solid phase-field is defined, and we treat the ghost nodes as physical solid nodes.

There, inside the solid walls, we set ρN̄S = 1 and fluid phase-fields
∑

k ρ
N̄(n)
k = 0, whereas ρN̄S = 0 and∑

k ρ
N̄(n)
k = 1 in the fluid nodes. In this way, SPP only occurs in the first fluid node off the wall, where the

phase-field gradient ∇ρN̄(n)
l for fluid l is affected by the (physical) ghost node values, and where ρN̄S = 0.

There, equation (9.4) yields for single-node SPP:

FlS = −ρN̄(n)
l ∇ρN̄S (9.7)
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and in turn, noting |FlS | = ρ
N̄(n)
l |∇ρN̄S |, equation (9.5) can be rewritten:

fS⋆⋆
i = Ω

(2)
i (f⋆⋆i ) = f⋆⋆i +

∑
k

1

2
AkSρ

N̄(n)
l |∇ρN̄S |

[
wi

(
−ρN̄(n)

l

ρ
N̄(n)
l

)2
(ci · ∇ρN̄S )2

|∇ρN̄S |2
−Bi

]

= f⋆⋆i +
∑
k

1

2
AkSρ

N̄(n)
l |∇ρN̄S |

[
wi

(ci · ∇ρN̄S )2

|∇ρN̄S |2
−Bi

]

fS⋆⋆
i = f⋆⋆i +

1

2

9

2

(∑
k

ρ
N̄(n)
k σSk

)[
wi

(ci · ∇ρN̄S )2

|∇ρN̄S |2
−Bi

]
(9.8)

Equation (9.8) shows that, following a phase-field-weighted arithmetic average of fluid-solid surface ten-
sions, single-node SPP can be simplified to a single operation, down from N operations (one for each
fluid). For N = 2 fluids l and m, we write:

fS⋆⋆
i = f⋆⋆i +

1

2

9

2

(
ρ
N̄(n)
l σSl + ρN̄(n)

m σSm

)[
wi

(ci · ∇ρN̄S )2

|∇ρN̄S |2
−Bi

]
(9.9)

Considering the local gradients are computed using immediate neighbors only [1, 6], we have ∇ρN̄S = 0
at all points not in immediate contact with solid nodes. Therefore, if N = 2, the SPP operator can
reintegrate the Clm concentration factor, and SPP only occurs for sufficient concentrations of two different
fluids near a solid wall. From equation (9.9), we therefore use for single-node SPP with N = 2:

fS⋆⋆
i = f⋆i +

1

2

9

2
Clm

(
ρ
N̄(n)
l σSl + ρN̄(n)

m σSm

)[
wi

(ci · ∇ρN̄S )2

|∇ρN̄S |2
−Bi

]
(9.10)

Note that following the definition of a solid phase-field, no assumptions were made to obtain equation (9.5)
(or (9.8) for single-node SPP, or (9.10) for N = 2), the form of which is fully constrained by the original
perturbation operator in equation (6.11) and the relationship between phase-fields and color-gradients in
equation (6.30). No solid density or viscosity was defined either.

Initially, the wall-normal vector n used in section 9.1 was used in equation (9.10) in place of ∇ρN̄S .
However, it is more consistent to use the isotropic gradient operator from equation (3.55) (the same used
to compute other phase-field gradients), which for our flat walls, is nonzero for the first fluid nodes off the
wall, with:

|∇ρN̄S | = 0.5

Figure 9.3 shows a red droplet in a blue medium for different contact angles, for different values of
the wetting parameter χ from equation 9.1. From a neutral initialization (θ = 90◦), both wetting (top) and
dewetting (bottom) behavior is qualitatively captured.

9.2.3 Assessing the Method

To understand what this SPP is capturing, a series of N = 2 droplet simulations with different wetting
parameters χ was run. In a 120× 80 domain, common parameters are, in lattice units:

• hemispherical droplet initialization radius R0 = 40 (initialized with a neutral contact angle with the
bottom wall);

• fluid density ρ = 1 with unity density ratio λρ = 1 across fluids;

• fluid viscosity ν = 1/6 with unity viscosity ratio λν = 1 across fluids;

• segregation parameter β = 0.7;

• surface tension between fluids σrb = 0.01.
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Figure 9.3: Red Drops in Blue Fluid with Different Contact Angles, as recovered by SPP in equation (9.10),
identified by respective phase-fields above 0.5 . Steady state results for different values of the wetting
parameter χ.
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σSb σSr χin θin
0.02 0.02 0 90◦

0.02 0.019 0.1 84.26◦

0.02 0.018 0.2 78.46◦

0.02 0.017 0.3 72.54◦

0.02 0.016 0.4 66.42◦

0.02 0.015 0.5 60◦

0.02 0.014 0.6 50.13◦

0.02 0.013 0.7 45.57◦

Table 9.1: Input Wetting Parameters for the Simulation, with expected equilibrium contact angle θin.

At unity density ratio, non-normalized and normalized phase-fields are equivalent. Viscosity interpolation
is irrelevant for unity viscosity ratio. Table 9.1 shows the range of tested parameters, with different
combinations of σSb and σSr leading to different wetting parameters χin input into the simulation. After
200 000 timesteps, the contact angle is measured by measuring the base c and height h of an assumed
spherical cap droplet of radius R, and computing the contact angle θout from trigonometry:

R =
h

2
+
c2

8h

θ = arctan

(
c/2

R− h

)
(9.11)

Equation (9.11) yields a contact angle that describes the droplet as a whole.4 These output contact angles
θout are used to compute apparent in-simulation output wetting parameters χout, and to plot an input-
output curve.

Different simulation outcomes can be identified. If the input-output χ curve is:

1. completely nonlinear, the SPP method has failed, as there is no consistent and predictable effect of
wetting parameter χ;

2. linear, but does not pass through the origin, regardless of its slope, the SPP method is physically
inaccurate, but can be calibrated for practical use;

3. linear, passes through the origin, but with a non-unity slope, the SPP method is correctly formulated,
but the perturbation operator is incorrectly scaled;

4. χout = χin, then the SPP method is entirely successful, and strict equivalence between physical and
simulation surface tensions/energies for all fluid-fluid and fluid-solid interfaces is maintained.

Figure 9.4 shows SPP simulation results consistent with predicted outcome 2. A linear fit closely
follows results. The linear fit with the circular cap assumption also confirms by proxy that surface tension
maintains a circular cap.5 The recovery of a linear profile clearly indicates that the boundary treatment
with physical solid phase-fields is conceptually correct, and produces controllable and consistent contact
angles. Something at the boundary is adversely affecting the relationship between physical and simulation

4At least, if the droplet is in fact a spherical cap.
5The contact angle was also measured by fitting a polynomial function g to the last 2 points (nearest to the wall) of the ρN̄r = 0.5

contour marking the fluid-fluid interface on the solid wall, and computing the contact angle from the gradient thereof:

θ = arctan (∇g) (9.12)

Including the last 2 points nearest to the wall reveals that contact angle directly off the wall is not the same as the contact angle
that describes the overall droplet shape. Including the last 2 points after that first point off the wall yielded contact angles that
were practically equal to those computed with the spherical cap assumption, confirming the droplets have a spherical shape. Not
including that first point is common for energy-based wetting [7], and merely isolates out near-boundary effects which do not reflect
actual droplet shape. This data is not shown here, because the interpolation script is unreliable at time of writing, and requires some
manual oversight for which time ran out.
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Figure 9.4: Input-Output Curve for single-node SPP with ρN̄S .

parameters, but the linear profile indicates no irresolvable bias towards a different contact angle, as was
the case in section 9.1.

While the response could be calibrated, it depends on many parameters, and doing so would mean
to abandon attempting to recover a fully physically consistent SPP with strict equivalence of physical
and simulation parameters. The slope of the calibration curve appeared to depend on viscosity ratio.6

This marks single-node SPP as inappropriate in the ink-jet printing regime, due to necessary viscosity
and density ratios: attempting to tune the calibration curve only furthers the disconnection from physical
parameters, with unpredictable effects on dynamic response, for instance.

9.2.4 Explaining Inaccuracies

In figure 9.4, we note that for χin = 0, where there should be no mechanism for either fluid to preferentially
wet the solid, a non-neutral contact angle is recovered. Since a linear relationship is still obtained, this
does not point to a competing contact angle enforcement, but specifically to a source of inaccuracies. This
result is similar to that from [4]. The latter reference, however, does not comment on this, and uses SPP
after obtaining the calibration curve.

Since we have defined a solid phase-field ρN̄S , we have also implicitly implied a macroscopic interface
between fluid and solid regions. As shown in figure 9.5 the single-node treatment means that fluid phase-
fields must transition to 0 across a single node, and vice versa for the solid phase-field. Even though we
know where the wall is located, the phase-field transition is so abrupt that it could occur anywhere across

the lattice link to the ghost (wall) node: gradient ρN̄(n)
l and ρN̄S evaluations, respectively for fluid l and the

solid, will be inaccurate. The position of the solid-fluid interface marker ρN̄S = 0.5 is sub-grid and badly
resolved. Consistently with the fact that the fluid-solid interface is essentially defined like a fluid-fluid
interface, this mirrors a feature of CG-LBM interfaces in general. Fluid-fluid interfaces are maintained by
the perturbation operator over a thickness δ ∼ 1/β. Smaller values of β extend the thickness of interfaces,
meaning phase-field transitions are spread over a larger number of nodes: gradients are better resolved

6In one simulation, a neutral χin = 0 with viscosity ratio λν = 103 setting caused an extremely violent dewetting event which
caused the droplet to fly off the solid wall.
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Fluid

Wall

Solid

∆x

ρN̄S = 0

ρN̄S = 1

Figure 9.5: Schematic Solid Phase-Field Transition for Single-Node SPP. LBM nodes are represented by
the gray circles. A possible solid phase-field transition with a tanh profile is qualitatively shown: the phase
transition is too abrupt and entirely sub-grid, and gradient evaluations for both the fluid and solid phase
fields will be inaccurate near the wall.

and measured more accurately. Instead, single-node SPP leads to fluid-solid interfaces where β > 1 or
β → ∞, in the limit of a very sharp interface. This leads to poor phase-field gradient accuracy near solid
walls, and a skewed input/output relationship for χ. In addition, the large resultant color-gradients are
associated with larger spurious velocities from perturbation operations [6].7

Note that despite the implied β > 1 parameter for the solid-fluid interfaces, no instabilities are
observed as would be for fluid-fluid interfaces [3]. This is because segregation between the fluid and solid
phases is effectively maintained by the bounce-back boundary condition, rather than by the segregation
operator, which indeed requires 0 < β < 1 in general and β < 0.7 for more consistent stability.

9.3 Conclusions

A solid phase-field ρN̄S can be directly integrated in the new formulation of N -fluid color-gradients in
equation (6.30) to yield a model-consistent SPP operator with no additional assumptions. The single-node
application of this SPP, which only defines non-zero solid phase fields at a single node, is able to capture
wetting/dewetting behavior as in [4]. The method is inaccurate but precise, yielding a linear and calibratable
relationship between fluid-solid surface-tensions and apparent contact angles. These inaccuracies can be
explained by the effective sharpness of solid-fluid phase-field interfaces in CG-LBM.

The first two research questions from section 5.2.2 have been answered. Sufficient insights have been
obtained to give a first recommendation for SPP applicability to inkjet printing:

7These large spurious velocities, when large viscosity ratios were attempted, were observed to cause significant spurious flow
(including vortex formation and detachment) in the less-viscous phase.
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®
Research Questions: Solid-Phase Perturbation

• Can SPP be adapted to modern CG-LBM to induce wetting/dewetting behavior?

¥
SPP can be adapted to N -fluid CG-LBM by defining a solid phase-
field ρN̄S which is directly injected in the new color-gradient formula-
tion in equation (6.30) to yield a fluid-l-solid color-gradient:

FlS = ρN̄S ∇ρN̄(n)
l − ρ

N̄(n)
l ∇ρN̄S

which can be used in regular inter-phase perturbation.

• Can SPP be restricted to a single node off solid boundaries?

¥
Single-node SPP leads to precise but inaccurate contact-angle en-
forcement. Inaccuracies arise because fluid-solid transitions are too
abrupt, and CG-LBM requires diffuse interfaces to accurately com-
pute phase-field gradients. Input-parameter response can be cali-
brated.

• Could SPP be used in the ink-jet printing regime?

®
Only single-node SPP could be attempted in this report, a technique
which is not suited for larger density or viscosity ratios, which affect
the calibration of input-parameter response. However, the inaccu-
racies of single-node SPP could be resolved by using a diffuse solid
phase-field.
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Chapter 10 | Recommendations

� Key Points

• The connection between N -fluid phase-field and color-gradient could be used to
significantly reduce the number of recoloring operations.

• Superviscous fluids should be tested in single-phase hydrodynamic flows.

• Superviscous fluid susceptibility to spurious smearing should be investigated further,
especially with more “permissive” initialization.

• The connection between N -fluid phase-field and color-gradient could also be used to
improve the CG-SPM approach in [4] and extend its applicability to non-unity density
and viscosity ratios.

• Solid-Phase Perturbation with Solid Phase-Fields should be attempted with diffuse
solid phase-fields.

In this final chapter, we discuss recommendations based on the conclusions of chapters 6, 8, and 9.

10.1 Reducing Recoloring Operations

In chapter 6, a new link between phase-fields ρN̄(n)
l and N -fluid color-gradient Flm was found in equation

(6.30):
Flm = ρN̄m∇ρN̄l − ρN̄l ∇ρN̄m

Consider that CG-LBM recoloring is a numerical operation that artificially keeps phases separate [5],
even in the absence of surface tension. Recoloring effectively identifies the position of the interface and
re-assigns particle color to keep them on “their” side of the interface. In the original colorblind CG-
LBM implementation, fluids are individually recolored by all other fluids, one-by-one, through the color
gradients Flm, as in equation (6.15) [3]. This means each fluid must interact with N − 1 other fluids, for
recoloring operations scaling with O(N2)

Since we have found the phase-fields ρN̄(n)
l of N -fluid CG-LBM, it may be possible to directly recolor

fluids with their phase-field gradient ∇ρN̄(n)
l . Note indeed that the color-gradient between fluid l and all

other fluids µ ̸= l is:

Flµ = ρN̄µ ∇ρN̄l − ρN̄l ∇ρN̄µ
=
(
1− ρN̄l

)
∇ρN̄l − ρN̄l ∇

(
1− ρN̄l

)
Flµ = ∇ρN̄(n)

l (10.1)
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which is consistent with the idea that ∇ρN̄(n)
l should include information about fluid l interfaces with any

other fluid.
For N = 2 interfaces, where fluid l is anyway effectively recolored by a single fluid m, equation (10.1)

(with µ → m) is already equivalent to the color-gradient Flm that recolors fluid l. In any case, the

presumed form of recoloring operations done directly with ∇ρN̄(n)
l is, if a single segregation parameter β

is in use:1

f l⋆⋆⋆i = Ω
l,(3)
i (f⋆⋆i ) =

ρl
ρ
f⋆⋆i + β

ρl
ρ

(
1− ρl

ρ

)
cos(φl

i)f
eq
i |u=0 (10.2)

where:

cos(φl
i) =

ci · ∇ρN̄(n)
l

|ci||∇ρN̄(n)
l |

This would reduce the number of recoloring operations by a whole order, down to O(N). The exact form
of this single-phase-field recoloring, its mass- and momentum-conserving properties, and equivalence to
standard recoloring should be investigated.

That being said, computations can also be saved by using operations nominally scaling with O(N2),
but that are only triggered for sufficient concentrations of a particular fluid. Instead of (or, in addition to)
using fluid-pair concentration factor Clm, boolean evaluations of sufficient phase-field or color-gradient
magnitudes would determine which fluid-pairs interact in perturbation and recoloring.

10.2 Superviscous Particles

10.2.1 For N = 1 Single-Phase Flows

In chapter 8, a superviscous fluid was in fact able to capture the benchmark solution of a 1D momentum
diffusion problem. Although the measurement of wall velocity was probably especially suited to be cap-
tured correctly,2 this suggests that s-fluids could be used in other simple flows where applied forces can be
readily converted to linear or rotational momentum. As long as the s-fluid particles have radial symmetry
(such as for a sphere), particles would not be affected by spurious smearing in single-phase flows. For users
equipped with a CG-LBM implementation, this may represent a practical way to investigate particle-laden
flows without having to implement bounce-back on moving particles, or to decide how to initialize fluid
nodes that are uncovered by a moving solid particle [2].

10.2.2 To Mediate Wetting

The spurious smearing issue in chapter 8 led to catastrophic non-physical deformation of a particle,
before it could exhibit either solid- or fluid-like behavior. Because this occurred when an s-fluid particle
was directly initialized at a fluid-fluid interface, it is not clear if these issues would occur with more
“permissive” initializations away from fluid-fluid interfaces, or later in simulations where s-fluid particles
move towards fluid-fluid interfaces.

When a fluid is initialized with a curved interface in CG-LBM, the segregation parameter β can be used
to generate model-consistent diffuse interfaces. Consider an s-fluid particle initialized in a single other
fluid. The perturbation step will begin to generate a pressure jump across the s-fluid/fluid interface. What
this corresponds to physically, for a solid, is not clear, but it is known that N -fluid CG-LBM can reproduce
static contact angles between fluids, despite resulting in sharp phase-field edges [3]. These contact angles
are enforced by fluid-fluid perturbation: s-fluid particles might be more resilient to spurious smearing if
the initialization allows for them to first develop a pressure jump with their surrounding fluid.

Under those conditions, one could study s-fluid particles moving towards fluid-fluid interfaces, and
study how interface mobility or spurious smearing affects simulations.

1This would not allow the use of different segregation parameters βlm for fluid-pairs lm. Special relations that locally redefine
β to achieve higher accuracy in resolving small static three-phase contact angles are also probably no longer usable [3]. Note this is
likely not an issue for dynamic simulations.

2Measuring mass-flux of s-fluid, for example, would have accounted for undesired shearing inside the s-fluid.
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10.3 Solid-Phase Perturbation

10.3.1 Improved CG-SPM

The main weakness of the original CG-SPM approach in [4] is the lack of support of non-unity density
ratios. As discussed in chapter 5, this is because the effective solid-fluid interface location implied by
the color-gradient depends on the density of surrounding fluids. This is a feature of non-normalized
phase-fields, which chapter 6 clarified were the phase-fields for the original colorblind CG-LBM used in
CG-SPM [3, 4].

Users of CG-SPM could directly use the conclusions of chapter 6, and use a normalized phase-field,
which does not lead to density-ratio-dependent phase-field interfaces. This should immediately extend
the applicability of CG-SPM to non-unity density ratios.

10.3.2 Diffuse Solid Phase-Fields

In CG-SPM, a full additional fluid is defined to mediate wetting. This s-fluid has its own viscosity and
population, which relaxes and streams (albeit confined by the desired solid geometry) [4]. The only
desirable feature of this fluid’s presence is its incorporation in the perturbation step in order to mediate
wetting. The presence of the additional viscosity is in fact problematic, since it is a non-physical parameter,
and complicates the use of the model at non-unity viscosity ratios.

Chapter 6 revealed a direct connection between phase-field and N -fluid color-gradients, which allowed
us to directly define a solid phase field ρN̄S in chapter 9. This solid phase-field was sufficient to use the
perturbation operator to reproduce wetting phenomena. The method’s inaccuracy for single-node solid-
phase perturbation was attributable to the effective sharpness of solid-fluid phase-field interfaces, and is
believed to be resolvable by a diffuse interface and solid phase-field.

Considering that CG-SPM users have already implemented diffuse solid interfaces [4, 6], the lessons
of chapters 6 and 9 could be used to remove the presence of the additional fluid, and only use the solid
phase field to mediate wetting. This would reduce computational costs associated with additional fluid
relaxation and streaming, and remove the need for an additional viscosity.

Indeed, diffuse solid-fluid phase-field interfaces should resolve the inaccuracies of single-node SPP
presented in section 9.2. Because fluids are not recolored by the wall (since “immiscibility” is enforced
by bounce-back), diffuse solid-fluid interfaces should only be as thick as is required to achieve accurate
wetting (i.e., a 1:1 correspondence of input and output static contact angles implied by all surface tensions)
that is independent of density and viscosity ratios. The resulting energy-based wetting implementation
might be applicable to the inkjet printing regime.

Because solid phase-fields could be used as “masks” following solid particles, and because dynamic
contact angle response is probably tunable through the magnitude of the solid-liquid surface tensions [1],
SPP with diffuse solid-phase fields might prove useful in capturing wetting on moving particles, and in
adjusting meniscus response to the pressure waves in inkjet printing.
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Appendix A | Systematic Literature
Review

This appendix details the systematic literature search process used to identify the research gap to emerge
from the research question from chapter 1:

®
How can Lattice Boltzmann Methods be used to simulate multiphase flows with dynamic
capillary phenomena?

A.1 Research Database Selection

The following databases were selected from the TU Delft library recommended sources for Mechanical
Engineering:

• Scopus

• Web of Science

The selection was made according to the following additional criteria:

• focus on academic publications,

• support of advanced search with boolean search operators,

• search engine with “relevance” metric,

• ability to filter, save, and merge search results,

• ability to export citations to a citation management format.

A.2 Advanced Search

For a single search, the first 25 most relevant papers are retained (based on the search engine’s own
assessment), along with the 25 most recent in order to orient results towards new results. These two sets
of results may overlap. Each search employs additive (each are added with AND) boolean search field to
the content inside the title, abstract, and keywords of a search result. Search fields are divided in universal
fields, which are always applied, and filter fields. Individual advanced searches always include all universal
fields, and a combination of filter fields. For a given set of filter fields, all possible combinations are tested.

To target boundary-condition-based wetting implementations typical of CG-LBM, the following search
field set was used:
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Û
Search Field Set 1 - Universal Fields

• lattice AND boltzmann

• wetting

• boundary AND condition

Filter Fields

• curved OR moving

• (color AND gradient) or (rothman)

To target wetting implementations for moving or curved boundaries with applications to particle-laden
flows especially:

Û
Search Field Set 2 - Universal Fields

• lattice AND boltzmann

• wetting

• (colloidal OR suspension) OR particle OR laden

Filter Fields

• curved OR moving

• (color AND gradient) or (rothman)

• “boundary condition” OR “boundary conditions”

• angle OR (contact AND line)

The results of both search field sets, which may overlap, are combined.

A.3 Article Filtering

The following criteria were used to exclude articles from the accumulated references:

• the article is not in English,

• the article does not use LBM,

• the article couples LBM with a non-LBM method,

• the article’s focus is AI/ML- or GPU-acceleration-related,

• the model considers heat transfer and/or phase change,

• the implementation is not tested for fluid density ratio above 100,

• the simulation does not model dynamic phenomena, or an equilibrium that is the outcome of
dynamic phenomena,

• the model includes more than two fluids,
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• the article not does not provide a clear analytical or experimental validation, or comparison with
another source’s numerical results,

• the model’s wetting implementation is not clearly defined.

The filtering is operated in three phases:

1. on the basis of article titles and abstracts,

2. on the basis of a cursory read,

3. during the categorization process for outliers.

A.4 Categorization

Remaining articles are read and categorized following section 4.2.

111



Appendix B | Requirements on
Independent Relaxation
of Mixture Components

Section 6.1.2 describes how local mixture components in CG-LBM must all relax at the same rate. Al-
though viscosity interpolation is free, reference [1] interpolates for a local mixture relaxation time τeff from
the relaxation times τk of local components:

τeff =
1 + ρN

2
τr +

1− ρN

2
τb (B.1)

where indices r and b respectively refer to the (N = 2) red and blue fluids, with the original CG-LBM
phase field from equation (3.42). This interpolation is actually equivalent to a density-weighted arithmetic
average of relaxation times, summed over all fluids k.

τeff =
∑
k

(
ρk
ρ

)
τk (B.2)

Separately, during the relaxation step, reference [1] claims that individual fluid component populations fki
relax at their pure-fluid relaxation times τk to yield post-relaxation populations fk⋆i :

fk⋆i =

(
1− ∆t

τk

)
fki +

∆t

τk
f
k,eq
i (B.3)

and therefore claims that mixture components independently relax according to their pure-fluid relaxation
times τk. This not only suggests that components do not collide with each other during the relaxation
step, it also makes a hard claim on local viscosity, which is now constrained by equation (B.3).

For any N , a total population fi =
∑

k f
k
i is always defined, even if colorblind CG-LBM is not in use,

at least to define the total momentum:

ρuα =
∑
i

ficiα =
∑
i

∑
k

fki ciα (B.4)

and since relaxation conserves mass and momentum, the total population is always defined, including at
equilibrium:

fi =
∑
k

fki (B.5)

f
eq
i =

∑
k

f
k,eq
i (B.6)

and indeed including during relaxation, to yield the total post-relaxation population f⋆i :

f⋆i =
∑
k

fk⋆i (B.7)
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Combining equations (B.7) and (B.3), we obtain:

f⋆i =
∑
k

fki −
∑
k

∆t

τk
fki +

∑
k

∆t

τk
f
k,eq
i

f⋆i = fi −∆t
∑
k

1

τk
fki +∆t

∑
k

1

τk
f
k,eq
i (B.8)

For consistency across CG-LBM steps, the effective local viscosity τeff relaxing the total population fi in
equation (B.2) must lead to a total relaxation equivalent in equation (B.8), or vice versa. By requiring the
condition in equation (6.19):

fki =
ρk
ρ
fi

we find from equation (B.8):

f⋆i = fi −∆t
∑
k

1

τk

1

ρk/ρ
fi +∆t

∑
k

1

τk

1

ρk/ρ
f
k,eq
i (B.9)

= fi − fi∆t
∑
k

(
1

ρk

ρ τk

)
+ f

eq
i ∆t

∑
k

(
1

ρk

ρ τk

)

f⋆i =

(
1− ∆t

τeff

)
fi +

∆t

τeff
f
eq
i (B.10)

recovering the claimed value of local relaxation τeff in equation (B.2). And so, requiring fluids to relax
according to their pure-fluid relaxation times per equation (B.3), maintaining consistency with both the
definition of a total population and the requirement for a single local relaxation rate τeff from equation
(B.2), is contingent on the additional condition in equation (6.19).
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Appendix C |Momentum Diffusion
Circuits

Simple steady diffusion problems can be solved with circuits, in analogy to electric charge and heat
diffusion [1]. We only consider 1D problems here.

Consider the flow of momentum τ for shear momentum diffusion in a 1D Couette Flow [2]:

τ = ρν
∂u

∂y
(C.1)

where ρ and ν are fluid density and kinematic viscosity, u is velocity, and y is the coordinate normal to
the fluid bounds. For steady-state Couette flow, the velocity gradient is constant and determined by the
velocity difference ∆U across the fluid layer of thickness H :

τ = ρν
∆U

H

=
∆U

H/(ρν)

τ =
∆U

Rν
(C.2)

where Rν is resistance to momentum diffusion:

Rν =
H

ρν
(C.3)

where ρν = µ dynamic viscosity plays the same role as heat conductivity in analogous heat circuits [1].
Figure C.1 shows a simple single-resistance momentum diffusion circuit. This approach is convenient

to solve N > 1 multilayered Couette flows, since resistances can be aligned in series, with each resistance
representing a different fluid layer. The amount of shear flowing through each resistance is the same at
steady state. Total resistance

∑
Rν across all layers can be used with boundary velocities to find total

shear flow, and then to solve for velocities across individual layers. The problem can also be solved with
a matrix system, as with other circuits-based approaches [1, 3].

Figure C.1: Single-Resistance Momentum Diffusion Circuit, across a velocity difference ∆V and momen-
tum diffusion resistance Rν , which define the momentum flow τ across the circuit.

115



Appendix C References

[1] Theodore L. Bergman et al. Fundamentals of Heat and Mass Transfer. 8th ed. 1 online resource (1045
pages) vols. New York: Wiley, 2017.

[2] Pijush K. Kundu et al. Fluid Mechanics. Sixth edition. Amsterdam: Elsevier/AP, 2016.

[3] Sébastien Leclaire, Marcelo Reggio, and Jean-Yves Trépanier. “Progress and investigation on lattice
Boltzmann modeling of multiple immiscible fluids or components with variable density and viscosity
ratios”. In: Journal of Computational Physics 246 (2013). doi: https://doi.org/10.1016/j.jcp.
2013.03.039.

116

https://doi.org/https://doi.org/10.1016/j.jcp.2013.03.039
https://doi.org/https://doi.org/10.1016/j.jcp.2013.03.039


Appendix D | 1D Slab Acceleration
Benchmark

Section 8.1.2 uses a simple 1D shear flow to study the use of s-fluids to convert shear forces to linear
momentum. This situation can also be simulated using the case represented in figure D.1.

In the bulk of the fluid, the Navier-Stokes equations in 1D with flow orthogonal to the width of the
channel (as in N = 1 fluid Couette flow) yields a 1D momentum diffusion equation:

∂u

∂t
= νf

∂2u

∂x2
(D.1)

where u is the flow velocity, and νf is fluid kinematic viscosity (also momentum diffusivity). At the left
wall, fluid velocity matches the constant imposed wall velocity U which drives the flow:

u|x=0 = U (D.2)

At the right wall, the shearing momentum flow from the bulk is transferred to the wall, accelerating it.
This acceleration is a momentum change over time, which must match the flux from the wall:

−ρfνf
∂u

∂x

∣∣∣∣∣
x=H

= LρS
dVwall
dt

(D.3)

where L is the half-width of the slab which is effectively accelerated by the flow, ρS is solid density, and
Vwall = u|right is the slab velocity, which due to no-slip must also be the flow velocity at the right wall.

D.1 Semi-Analytical Solution

The introduction of the particle lengthscale L also implies the introduction of a particle acceleration
timescale ta. Although it can also be found through dimensional analysis, equation (D.3) can also be
simplified to reveal approximate particle response.

Figure D.1: 1D N = 1 Couette Flow with Accelerated Wall. The left wall moves at constant velocity
U , whereas the right wall is progressively accelerated by the flow. This is the 1D approximation of the
acceleration of a solid slab by a shear flow in a channel, shown in figure 8.4.
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For a heavy particle, the timescale of momentum diffusion in the fluid layer tν = H2/ν is shorter
than ta, and the right-hand wall is almost fixed. This leads to a linear Couette-flow-like velocity profile to
develop in the fluid layer, between the velocities at the left wall U and the right Vwall. Therefore, we have:

∂u

dx
≈ Vwall − U

H − 0

In this limit, we write from equation (D.3):

LρS
dVwall
dt

= −ρfνf
Vwall − U

H

and with:

V ∗ = Vwall − U

dV ∗ = dVwall

we have:

LρS
dV ∗

dt
= −ρfνf

V ∗

H
dV ∗

V ∗ = − ρfνf
ρSHL

dt

dV ∗

V ∗ = − 1

ta
dt (D.4)

with the particle acceleration timescale ta:

ta =
ρSHL

ρfνf
(D.5)

and integrating equation D.4 and reversing our substitution, for an initial state t = 0 with quiescent flow
and slab:

lnV ∗∣∣t
t=0

= − t

ta

∣∣t
t=0

ln

(
Vwall − U

−U

)
= − t

ta

−Vwall
U

+ 1 = e−t/ta

Vwall
U

= 1− e−t/ta (D.6)

Depending on the ratio between tν and ta, we can expect this response to vary with a scalar k (depending
also on fluid-layer Reynolds number), for a rough semi-analytical solution:

Vwall
U

≈ 1− e−k t
ta (D.7)

A light solid tν > ta will respond faster and the right wall approaches a free-slip boundary condition. A
heavy solid tν < ta will respond slower and the right wall approaches a no-slip boundary condition for a
resting wall.

D.2 Finite Difference Benchmark Solution

A Finite Difference scheme was used to solve the numerical problem posed by equations (D.1), (D.2), and
(D.3), with resting initial conditions. A Crank-Nicolson scheme was chosen for its second-order accuracy
in time and space, and unconditional stability [1].
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In the bulk, from equation (D.1), we find for the velocity uti at node indexed i and timestep t:

−aut+1
i−1 + (1 + 2a)ut+1

i − aut+1
i+1 = auti−1 + (1− 2a)uti + auti+1 (D.8)

with:

a =
νf∆t

2(∆x)2
(D.9)

The LHS of equation (D.8) yields a tridiagonal system matrix for the array of velocities at t+1. The RHS
vector contains only known values in the bulk.

At the left boundary, we have a constant velocity which is directly substituted in the bulk-solution
equation for the first node off the boundary, yielding for the first inner node at xi=1 = 0 +∆x:

(1 + 2a)ut+1
1 − aut+1

2 = 2aU + (1− 2a)ut1 + aut2 (D.10)

with a LHS which does not change the system matrix in its upper left corner, and a known RHS which
directly incorporates the left-wall velocity at x = 0, a point which is not in the velocity solution vector.

At the right boundary i = N , Crank-Nicolson yields for equation (D.3), with a second-order accurate
backward finite difference for the spatial derivative:

−1

2
but+1

N−2 + 2but+1
N−1 +

(
1− 3

2
b

)
ut+1
N =

1

2
butN−2 − 2butN−1 +

(
1 +

3

2

)
utN (D.11)

The LHS changes the system matrix at the boundary to maintain second order accuracy. The RHS is
modified accordingly.
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