Compiling with Command Trees

Master’s Thesis

i

¥

)

)
AR

ey

Bernard Bot

Compiling with Command Trees

THESIS

submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE
in
COMPUTER SCIENCE
by

Bernard Bot
born in Amsterdam, the Netherlands

]
TUDelft

Programming Languages Group
Department of Software Technology
Faculty EEMCS, Delft University of Technology
Delft, the Netherlands

www . ewi . tudelft.nl

www.ewi.tudelft.nl

©2021 Bernard Bot.
Cover picture: Circles generated with JavaScript.

Source Code available on GitHub: https://github.com/BernardBot/LamToWat

https://github.com/BernardBot/LamToWat

Compiling with Command Trees

Author: Bernard Bot
Studentid: 4497228

Abstract

Compilers translate high-level source code into low-level machine code. To repre-
sent source code a compiler uses a language called the intermediate representation (IR).
An IR for the compilation of functional languages is continuation-passing style (CPS).
It provides convenient abstractions for both data flow and control flow. However, CPS
conversion is hard to write and the transformations on CPS are untyped.

In this thesis we develop an IR based on CPS using the command tree data structure.
Command trees allow us to express compiler transformations typically, declaratively, and
modularly. The monadic nature of command trees allows us to bind commands together
in a succinct manner.

We test the usefulness of the new IR by building two versions of the LamToWat com-
piler that translates the lambda calculus into WebAssembly. The first version will use a
CPS IR and the second version a command tree IR.

Thesis Committee:

Chair: Prof. dr. E. Visser, Faculty EEMCS, TU Delft
Committee Member: Dr. B. K. Ozkan, Faculty EEMCS, TU Delft
University Supervisor: Dr. C. Bach Poulsen, Faculty EEMCS, TU Delft

Preface

I would like to thank my supervisor Casper Bach Poulsen for introducing me to Haskell. His
guidance and our weekly meetings were essential to the completion of this thesis. I think my
view on programming has been changed permanently for the better.

I'would also like to thank my parents for motivating me to finish writing this document.
If they had not pushed me, I would now be constructing the 30th version of the LamToWat
compiler.

A special thanks goes to my roommates, who helped me release stress when it was neces-
sary. Another special thanks goes to my friends from the library, who helped me put things
in perspective.

Bernard Bot
Delft, the Netherlands
May 18, 2021

iii

Contents

Preface iii
Contents v
List of Figures vii
1 Introduction 1
2 Compiling with Continuations 3
21 DataTypes e 4
2.2 Transformations e e 7
2.3 DiSCuSSION e e e e e e 11
3 Compiling with Command Trees 13
3.1 Command Trees o i e e 14
3.2 Tree Transformations e 17
3.3 Command Tree Improvements 22
3.4 DiSCUSSION o e e e e 22
4 Compiler Validation and Extension 25
41 Testing e 25
4.2 Performance e e e e 25
4.3 Other Transformations o i i e 26
5 Related Work 27
51 TheFreeMonad e 27
52 TheOperational Monad 28
5.3 Modular Denotational Semantics 29
5.4 Extending Algebraic Effects0 0L 31
6 Conclusion 33
Bibliography 35
A A 39
A.1 LamToWat Version 1 Transformation of: (\x->x+1)41) 39
A.2 LamToWat Version 1 Transformation of: (\xy->x+y)1329) 44
A.3 LamToWat Version 2 Transformation of: (\x->x+1)41) 49
A4 LamToWat Version 2 Transformation of: (\xy->x+y)1329) 56

1.1

2.1

3.1

List of Figures

Abstract compiler organization made up of multiple Intermediate Representation
(IR)steps o o o e

LamToWat Version 1: compiler organization.

LamToWat Version 2: compiler organization. Transformations are sequenced up
to reordering of commands, see3.1and33.o oL

vii

13

Chapter 1

Introduction

Continuation-passing style (CPS) is a time-tested paradigm of functional compilation [25, 2].
It bridges the gap between high-level programming languages and (abstract) machine code.
Primarily used for compiling first-class functions, CPS is flexible enough to compile many
other language features. CPS is a style of programming, but can also be seen as a language
in itself, namely a restricted form of the lambda calculus [9, 3]. This fact gives it a solid
theoretical foundation.

The language that is used by a compiler to represent source code is called an intermedi-
ate representation, as can be seen in figure 1.1. A compiler writer uses an IR to implement
optimizations and translations. An IR is designed to make compilation possible and pleas-
ant. This is what CPS provides with its records and continuations. Resulting in a convenient
abstraction for data flow and control flow [5].

We will examine the following improvements on CPS in this thesis:

¢ Easier to write CPS conversion.
¢ The ability to type compiler transformations more strongly.

* A modular compiler interface for the programmer.

The data structure we will use for this examination is a command tree [22]. Our command
tree based IR will have a declarative front-end and a modular structure.

To validate the usefulness of the changes to our IR we will build a small compiler in
Haskell [14] for WebAssembly [29]. Haskell implements languages using data structures,
which formalize the specification of a language. Our source language will be the lambda
calculus. Even though the lambda calculus is a very simple functional programming lan-
guage, it has sufficient abstraction to necessitate compilation to a low-level language like
WebAssembly. The first-class functions of the lambda calculus will need to be translated to
the second-class functions of WebAssembly. The compiler will have multiple smaller trans-
lation steps and multiple passes over the IR. The translation from the lambda calculus to our
IR and the elimination of first-class functions will demonstrate the usefulness of our IR.

The contributions of this thesis are the following;:

¢ Two version of LamToWat: a WebAssembly compiler for the lambda calculus.

String P IRy h, ., IR, cmit String

Figure 1.1: Abstract compiler organization made up of multiple Intermediate Representation
(IR) steps

1. INTRODUCTION

¢ Command Trees as an IR for functional language compilation.

This thesis will continue with a chapter on the first version of the compiler based on CPS.
In the third chapter we will go into some detail about command trees and show the improved
version of the compiler. We will evaluate the improvements by comparing both versions of
the compiler. In chapter 4 we will discuss validation and extension of our compiler. In chap-
ter 5 we will discuss related work to support our analysis and give context to our compilation
scheme.

Chapter 2

Compiling with Continuations

In this chapter we will develop the first version of the LamToWat compiler that translates
the Lam language into the wat language. Our compiler will be written in Haskell [14] and as
such Lam and wat are implemented as Haskell data types. We follow a minimal version of
the approach by Appel [2]. Consequently, a simplified version of the CPS language used by
Appel will serve as IR and have its own data type Cps.

What makes CPS favorable as an IR is that it makes control flow and data flow explicit.
These features nicely represent the objective of a compiler: translating from a high-level to
a low-level language by describing abstractions in finer detail. CPS uses special functions,
called ‘continuations’, to describe more complex control flow constructs. The fact that con-
tinuations are special functions becomes essential when translating languages with first-class
functions.

The purpose of building LamToWat is to examine and then improve its IR. The complexity
of CPS conversion and difficulties with the untyped IR transformations will become apparent.
If we can improve upon the already favorable features of CPS, we are creating a better IR to
program in. Although we are not concerned with the peripherals of the compiler, an IR is
not used in a vacuum. We want to examine the compiler passes that map to and from the IR
as well as the ones that map to the IR itself.

LamToWat is a multipass compiler. This means that multiple passes over the IR will
be made, each transforming a part of the representation. The complete compiler comprises
these IR transformations with additional passes to parse lambda calculus source files and
emit WebAssembly, such that it can be compiled and interpreted by the WebAssembly Binary
Toolkit (WABT) [28].

Each compiler pass will have a type. A type indicates what a compiler pass does. For
example, when we transform Lam into Cps with lam2cps, the type of this transformation is
lam2cps :: Lam -> Cps. The double colon indicates a type declaration in Haskell. Some trans-
formations need extra functionality, like generating fresh variable names. This functionality
or effect will be handled by a helper function. For the example this will be 12¢, which can
generate fresh variables, but has a much more complicated type. We will focus on the type
of the ‘main’ function, such as lam2cps when comparing the two version of LamToWat.

In this version of LamToWat the data types we will be using are Lam, Cps, and wat. To
read in source files we also need the data type string. LamToWat will be composed of the
sequences of transformations in figure 2.1.

parse lam2cps cps2cps cps2wat emit
Cps Cps

Lam Wat — String

String

Figure 2.1: LamToWat Version 1: Compiler organization.

2. CoMmPILING WITH CONTINUATIONS

LamToWat is split into a front-end and a back-end. The front-end of the compiler is made
up of parsing (parse), and CPS conversion (lam2cps). We will not discuss parsing in detail, as
the topic is orthogonal to the research in this thesis. We use parsec [20] to build a parser for
our compiler. The back-end of LamToWat consist of three transformations on the IR: closure
conversion, hoisting, and emitting (cps2wat). In the first version of the compiler hoisting and
closure conversion are combined in cps2cps.

The following sections will first describe the data types Lam, Cps, and wat used in Lam-
ToWat with specific attention to cps. We will adhere to the organization of the compiler and
discuss the relevant compiler passes over these data types in the order described in figure
2.1.

2.1 Data Types

The data types of LamToWat will be implemented as Haskell data types. Haskell data types
are indicated with the data keyword. Every data type has a name, which comes after the
keyword. A number of constructors follow separated by vertical bars. Data types can be
recursively defined. Type aliases indicated with the type keyword are also used; providing
new names for existing data types.

First, we give definitions of types and data types that are used by all passes of the compiler.
We define variables that indicate names of functions and values with simple Strings. This is
a design choice as it allows for nonsense programs that use undefined variables, but also for
easy manipulation of variables and generation of variable names. A Function is a triple of a
function name, list of function parameter names, and a body. A Fixpoint of functions is a list
of functions and a final expression.

type Var = String
(Var, [Var],e)
([Fun e],e)

type Fun e

(0]
1

type Fix

Our compiler uses a notion of values that is incorporated in all data types. We use LABELs
for variables indicating function names and VARs for everything else.

data Vval
= INT Int
| VAR Var
| LABEL Var

2.1.1 The Lam Language

The Lam data type represents the abstract syntax tree (AST) of the lambda calculus. The three
constructors for Lambda abstraction and Application encompass the standard definition of the
lambda calculus. values are represented by the val constructor. A constructors for Addition
is added to make basic arithmetic possible. The lambda calculus is one of the smallest func-
tional languages that still has many of the interesting properties of functional languages,
such as first-class functions and recursion. Moreover, the lambda calculus is well-studied
[3]. Programs written in the lambda calculus will be used for testing LamToWat.

data Lam
= Lam Var Lam
| App Lam Lam
| Add Lam Lam
| val val

2.1. Data Types

Two programs will be used as running examples throughout this thesis to show how the
compilation process works. Their representation in different stages of both versions of the
compiler can be found in appendix A. In the Lam language they are written as follows.

App (Lam "x" (Add (Val (VAR "x")) (Val (INT 1)))) (Val (INT 41))

App

(App
(Lam "x" (Lam "y" (Add (vVal (VAR "x")) (Val (VAR "y")))))
(val (INT 13)))

(Val (INT 29))

The first program applies an anonymous function that adds 1 to its argument x to the
number 41. The second programs applies a nested anonymous function that adds its argu-
ments to the numbers 13 and 29. Both programs evaluate to the number 42. We choose
a program with nested functions and a program without nested functions as examples to
display the compilation of this language feature separately.

LamToWat provides a parser for the Lamlanguage. The accepted syntax is the same as the
lambda calculus syntax in Haskell. The symbols \ and -> are used for lambda abstraction
and a space is used for application. With this syntax the two example programs are written
as follows:

(\ x > x + 1) 41

(\ x > (\y => x +y)) 13 29

2.1.2 The Cps Language

We follow the CPS language data type definition and semantics by Appel [2] with some mi-
nor adjustments. It is used as IR because it facilitates compiler transformations relevant to
functional programming languages. The data type is similar to the control flow graph of
a program. Control flow is modeled with functions and function calls. Data flow is mod-
eled with records. LamToWat uses Cps to transform nested, higher-order functions to simple
functions.

Cps functions are made up of a name, argument names, and a body. They are defined
in mutually recursive Fixed function blocks. All expressions except App and val have a Cps
continuation as their last argument. Since the Add, Record, and Select expressions produce
a value, they name it before continuing. val represents a final value or return statement, it
does not adhere to continuation-passing style. No problems are caused by it, because we will
make sure that it is the final expression of our programs. This makes it a global return of the
program itself, not of a function.

data Cps
= App Val [Val]
| val val
| Record [Val] Var Cps
| Select Int val Var Cps
| Add val Vval Var Cps
| Fix [Fun Cps] Cps

The cps data type guarantees that compiler transformations can be easily implemented
by enforcing the following properties:

¢ Functions do not return, instead the last thing a function does is call a continuation.

¢ Function parameters can only be values.

2. CoMmPILING WITH CONTINUATIONS

¢ All intermediate values have names.

CPS also requires all user functions to have an extra continuation argument. This require-
ment is not enforced by the data type, but needs to be fulfilled in order for it to be proper
CPS. To illustrate how the cps data type is used we will translate the first lambda calculus
example into Cps:

Fix [(nfu’ [llxll]’
Add (VAR "x") (INT 1) "r" (Val (VAR "r")))1]
(App (VAR "f") [INT 41])

We define a function in a Fix block with name f and argument x. The body of this function
adds x and 1, names the result r, and returns this result. Finally, we apply f to 41.

2.1.3 The Wat Language

The wat language is a hierarchical, high-level assembly language and a simplification of We-
bAssembly [29]. As the final language in the compilation process it gives some guarantees
about the well-formedness of the output of the compiler. The fundamental unit of code is a
Fix made up of Exp.

We have chosen wat as the output language of LamToWat, because it is a relatively high-
level language without first-class functions. It can be easily translated to WebAssembly, but
still has enough abstraction to be able to target other languages. The absence of first-class
functions requires LamToWat to actually compile the Lam language, which does have this
feature. By keeping the output of LamToWat as a Haskell data type, we can compare the
semantics of the Lam, Cps, and wat data types more easily.

If we look at the data type definition below, we see that wat is quite similar to cps. It is
easy to translate from Cps to Wat after closure conversion and hosting. The Record and Select
constructors are replaced with Malloc, Store, and Load. The LABEL constructor from vatl is
not used, because functions are now represented by integers serving as an index into the
module’s function list. Fix is replaced with a top-level Fix, ensuring that there are no nested
functions anymore.

type Wat = Fix Exp

type Offset = Int

data Exp
= Malloc Int Var Exp
| Store Offset Val Val Exp
| Load Offset Val Var Exp
| Add val val Var Exp
| App Val [Val]
| val val

The translation of our simple example program (\ x -> x + 1) 41 into the wat language
is shown below. The only real difference with cps is the use of the an INT instead of a LABEL
to indicate a function pointer.

([(llfll’[llxll]’
Add (VAR "x") (INT 1) "r"™ (Val (VAR "r")))1,
(App (INT ©) [INT 41]))

We can emit wat as WebAssembly that can be compiled and interpreted by WABT. When
we translate to WebAssembly our program becomes a lot longer and there are many new
keywords. WebAssembly requires the programmer to declare some extra information, which

6

2.2. Transformations

leads to a lot of syntactic noise. This information can be deduced from the previous simpler
Wat expression, so we can emit it automatically, see the following:

(module

(memory 1)

(global $_p (mut i32) (i32.const 0))

(table 1 funcref)

(elem (i32.const 0) $f)

(type $_t1 (func (param i32) (result i32)))

(export "_start" (func $_start))

(func $_start (result 1i32)
(call_indirect (type $_t1l) (i32.const 41) (i32.const 0))

)

(func $f (param $x 1i32) (result i32) (local $r i32)
(local.set $r (i32.add (local.get $x) (i32.const 1)))
(local.get Sr)

The first seven lines of the printed WebAssembly program declare that there is one page
of mutable global memory and a mutable heap pointer. We declare one function reference
of the function f. This function has type _t1. In order to run the program we need to export
the _start function. Following the preamble we see the entry point of our program in the
form of the function _start and our original function f. Function signatures now include a
result type (which is always 132 for the programs we compile) and all locally used variables
indicated with the local keyword. When we call a function we indicate the type of that
function with the type keyword. To refer to a function we use its index in the function table.
In this case we refer to the function f by i32.const o.

2.2 Transformations

Transformations or compiler passes of LamToWat will be implemented as Haskell functions.
These functions will transform the data types of the previous section. A transformation can
convert a data type to a different data type, or to the same data type with certain properties. A
graph representation of the example lambda programs throughout the compilation process
can be found in Appendix A.1 and A.2.

2.2.1 CPS Conversion

CPS conversion will transform the Lam data type into the Cps data type and is the second trans-
formation of LamToWat, see figure 2.1. By converting our program to continuation-passing
style we make control flow and data flow explicit. In practice this means that we generate
fresh variable names for intermediate values and use a metacontinuation (a continuation in
the metalanguage Haskell) to indicate the order of expressions.

Appel describes a CPS conversion function that takes an extra metacontinuation as ar-
gument. It also assumes some way of generating fresh variable names, which is not further
specified. In Haskell the signature of such a function would look as follows. It uses state for
fresh variable name generation.

12c :: Lam -> (Val -> State Int Cps) -> State Int Cps

12c is split up into cases for each constructor of Lam. Converting val is trivial: apply the
metacontinuation c to it. To convert the anonymous function Lam we generate fresh variables

7

2. CoMmPILING WITH CONTINUATIONS

f and k to name the function and its continuation. We pass the function name to the meta-
continuation c. We convert the body of the function e, giving it a metacontinuation which
calls the continuation with the result z. Finally, we construct a Fix to contain our converted
function and update continuation c'. The App and Add cases follow a similar approach.

12c (Val v) c = c v
12c (Lam x e) c = do
f <- fresh "f"
k <= fresh "k"
c' <- ¢ (LABEL)
cf <- 12c e $ \ z -> return $ App (VAR k) [z]
return $ Fix [(f,[x,k],cf)] c'
12c (App el e2) c = do
r <- fresh "r"
x <= fresh "x"
c' <- ¢ (VAR x)
cf <= 12c e1 $ \ vl -> 12c e2 $ \ v2 -> return $ App vl [v2, LABEL r]
return $ Fix [(r,[x],c')] cf
12c (Add el e2) c = do
x <= fresh "x"
c' <- ¢ (VAR x)
12c e1 $ \ vl => 12c e2 $ \ v2 -> return $ Add vl v2 x c'

How the 12¢ function works is not obvious. We have to generate variable names, pass
these to the continuation and sometimes wrap the resulting values in a Fix. This is quite
complex, control flow should be easier to describe. For binary operators like App and Add we
want to evaluate the left argument first (arbitrarily chosen order), the right argument second
and finally add the two resulting values. We would like to write something like the following
instead of generating a variable name and exposing the metacontinuation.

12c' (Add el e2) = do
vl <- 12c' el
v2 <- 12c' e2
add vl v2

The case for App is especially complicated as we have to create a return point function
to serve as continuation argument to the final application. Keeping track of continuations
becomes even more non-trivial when we have multiple of them. For example when we want
to have exception handlers in our source language.

2.2.2 C(Closure Conversion

Closure conversion transforms the cps data type into the cps data type where functions do
not contain free variables. It is the third transformation in LamToWat, see figure 2.1. The free
variables of a function are passed to the function via an extra argument. We will package a
function with its free variables, this package is called a "closure’.

There are many approaches to generating closures. We take an approach optimized for
simplicity. We implement closures as records, where the first element is a function pointer
(implemented as a LABEL) and the second element is the environment of free variables. We
use effects to keep track of variables (ask,local) in scope and to hoist functions to the top-level
(tell), which makes the type of c2c the following:

c2c :: Cps -> WriterT [Fun Cps] (Reader [Var]) Cps

The cases for Fix and App are at the heart of the transformation. For the other constructors
we simply update the environment with their assigned names.

8

2.2. Transformations

When we encounter a Fix we ask what variables are in scope. For each function we add an
extra first argument _closure: the closure record. We prefix the function body with selecting
and naming all variables in scope that do not have the same name as any of the function’s
arguments. We open the closure by selecting the environment from the closure record and
naming it _env.

When we encounter an App we create a record with all variables in scope and call it _env.
We pack it with all function pointers to create closures and rename them by prefixing an
underscore. There are now two cases for application: closures and function pointers. To
apply a function pointer we create a closure and add it as the first argument. To apply a
closure we select the closure’s first element and apply that to the closure and the closure’s
original arguments.

c2c (Fix fs e) = do
fs' <- mapM funClos fs
tell fs'
c2c e
where funClos (name,args,body) = do
nv <- ask
body' <- local (++args) (c2c body)
return $
(name
, "_closure" : args
, Select 1 (VAR "_closure") "_env" $
foldr (openClos args) body' (zip [0..] nv)

openClos args (i,x) =
if x “elem’ args then id else Select i (VAR "_env") x

c2c (App fun args) = do
nv <- ask
return $
Record (map VAR nv) "_env" $
foldr mkClos appClos args
where appClos = case fun of
LABEL fp -> let cl = '_' : fp 1in
Record [LABEL fp,VAR "_env"] cl $
App (LABEL fp) (VAR cl : args')

VAR cl -> let fp = '_'" : cl 1in
Select ® (VAR cl) fp $
App (VAR fp) (VAR cl : args')

mkClos (LABEL x) = Record [LABEL x, VAR "_env"] ('_' : x)
mkClos _ = 1d

args' = map rename args

rename (LABEL x) = VAR $ '_' : x

rename v = v

c2c (Record vs x e) = withvar x e $ Record vs

2. CoMmPILING WITH CONTINUATIONS

c2c (Select i v x e) = withvar x e $ Select i v
c2c (Add vl v2 x e) = withvar x e $ Add vl v2
c2c (vVal v) = return s vVal v

withvar x e op = do
e' <= local (++[x]) (c2c e)

return $ op x e'

The main defect of cps2cps is that it gives no indication of the fact that our cps expressions
no longer contain Fix expressions. When we encounter a Fix, we use the tell function to
write all functions to a list. It is obvious from the implementation that they are no longer
present, however, the type cps2cps :: Cps -> Cps of the transformation gives no recognition
of this fact. If we were to pass a Cps expression to the next pass of the compiler that has nested
Fixes, it would cause an error.

2.2.3 Emitting

Emitting transforms the cps data type into the wat data type. We create a list of function
names ns to map function names to indices. The most interesting parts of the transformation
are for the Record case and the LABEL case. Records are transformed into a combination of
Malloc and Store, because Wat does not support such a high level abstraction as records, but
just has simple heap operations. LABELs are mapped to their index in the list of function
names, transforming function labels into function pointers.

This transformation could benefit from the reuse of constructors. We see that App is trans-
formed to its wat counterpart App. We could just leave these parts of the data type untouched
and only show the essence of the transformation, it would benefit both the reader and the
writer of this code. What the transformation does would be more explicit and less code nat-
urally leads to a smaller number of errors.

cps2wat :: Cps -> Wat
cps2wat (C.Fix fs e) = (map (fmap c2w) fs,c2w e)
where ns = map (\ (f,as,b) -> f) fs

c2w (C.val v) W.val (v2v v)
c2w (C.App v vs) = W.App (v2v v) (map v2v vs)
c2w (C.Add vl v2 x e) W.Add (v2v v1l) (v2v v2) x (c2w e)
c2w (C.Select i v x e) = W.Load i (v2v v) x (c2w e)
c2w (C.Record vs x e) =

W.Malloc (length vs) x $

foldr (\ (i,v) -> W.Store i (VAR x) (v2v v))

(c2w e) (zip [0..] vs)

v2v (LABEL x) INT $ fromJust $ x "elemIndex ns

V2V Vv = Vv

In order to run our converted expression we need WABT and indicate where the wat2wasm
and wasm-interp binaries are located. We can then run the command from within a interac-
tive Haskell session with shake [24]. A ghci session where we would run a converted lambda
calculus expression would look as follows:

> putStrLn $ emit $ cps2wat $ cps2cps $ lam2cps $ parse "(\\ x -> x + 1) 41"
(module

10

2.3. Discussion

> Wat.emitRun $ cps2wat $ cps2cps $ lam2cps $ parse "(\\ x -> x + 1) 41"
_start() => 1i32:42

2.3 Discussion

In this chapter we have shown how to build a compiler that translates Lam into wat. We used
three data types: Lam, Cps, and wat. By applying the transformations parse, lam2cps, cps2cps,
and cps2wat to a well formatted lambda calculus string, we obtain a low-level language out-
put that can be printed as WebAssembly. By looking at two example lambda expressions,
we tracked the state of our program throughout the compilation process, see Appendix A.1
and A.2.

We identified three problems with the transformations on the data types and the data
types itself. These are summarized as follows:

¢ Complex specification of control flow in lam2cps

lam2cps is itself written in Continuation-Passing Style. It requires us to expose the
metacontinuation. This leads to a confusing specification of control flow where the
programmer needs to constantly switch between continuation and metacontinuation.

* No types to indicate change of Cps after cps2cps

Closure conversion has type cps2cps :: Cps -> Cps. The Cps data type is free to con-
tain nested Fix expressions. We want to guarantee that functions are no longer nested.
All function definitions should be contained in a single, top-level Fix. The bodies of
the Fix should be made up of expressions containing only addition, records, and appli-
cation.

Alternatively, we could write separate data types for each transformation. These could
indicate the types we want. However, this would lead to a lot of duplicate code, as
mentioned in the next problem. The number of the extra lines of source code is calcu-
lated as follows: multiply the number of lines of your original data type (in our case
Cps) with the number of transformations you want to perform. We see immediately
that this leads to a lot of lines of code for a larger number of transformations.

¢ Duplicate constructors in Cps and wat

If we look at both data types we see that addition and application constructors match
one-to-one. We would like to only transform Record expressions into Malloc expres-
sions.

In the next chapter we will try to alleviate these shortcomings of the first version of our
compiler by proposing a new data type: command trees.

11

Chapter 3

Compiling with Command Trees

In this chapter we propose command trees as an improvement upon the cps data type of the
previous chapter. The new compiler uses the Tree and Tps data type as IR. These data types
are modular in the commands they use and have an internalized notion of control flow. This
allows us to solve the problems from section 2.3: complex control flow specification, absence
of indicative type changes, and duplicate constructors.

Compiler passes on the new IR will have a type that looks like:

pass :: Tps cmd Val -> Tps cmd' Val

The differences between cmd and cmd' indicate what a pass does.

If we look at the transformations in figure 3.1, we notice that our compiler consist of
more transformations than before. We also note the reuse of the Lam and wat data types,
which are the same as in the previous version of LamToWat. Our notion of values remains
the same too. We combine different commands by using open unions (+ in the figure, and
:+: in code). The increase in compiler steps does mean an increase in complexity, but also
an increase in explicitness and declarativity. The complexity was present in the previous
version of LamToWat, but remained hidden. The new type of Tps gives the programmer
information about the transformations.

Tree is used in the front-end of the compiler, while Tps is used in the back-end. This chap-
ter is structured in the same order as the previous chapter: we will first discuss the new Tree

. arse
String 25

lam2tree
Lam

Tree(Comp + Fiz + Base)Val Lreedtps,

Tps(Fix + Base)Val fiClos,

Tps(Fix + Record + Base)Val hRecord

Tps(Fiz + Malloc + Base)Val LLLEN

Fix(Tps(Malloc + Base)Val) tps2wat
Wat <24,

String

Figure 3.1: LamToWat Version 2: compiler organization. Transformations are sequenced up
to reordering of commands, see 3.1 and 3.3.

13

3. CompILING WITH COMMAND TREES

and Tps data types and then examine their transformations. A graph representation of the ex-
ample lambda programs throughout the compilation process can be found in Appendix A.3
and A.4. Finally, we will suggest command tree improvements and discuss how command
trees have solved the problems of the first version of LamToWat.

3.1 Command Trees

Command trees are a data type used to sequence commands. A well known data type that
is also capable of sequencing is a list. Command trees improve upon lists by adding subcon-
tinuations and by providing the ability to use the result of our command in the commands
after that. Command trees can be easily sequenced using Haskell’s do-notation.

The meaning of a command is something that is left to the programmer [21, 31]. What
a command does is implemented later in a function called a handler. Command trees are
used to model effects in denotational semantics. We can write handlers for effects to create
an interpreter. In this chapter we try to extend this approach to writing a compiler. Com-
mands can be used in a modular manner by using open unions. We give two derivations
of command trees in section 5.1 and section 5.2 and discuss the role of command trees in
(modular) denotational semantics in more detail in section 5.3.

The structure and monadic nature of command trees have already been discussed in Com-
pilers for Free [22]. A modified version of the discussion will be restated in this chapter for
completeness. A command tree consists of two constructors: Leaf and Node. Leaf a is the
smallest form of command tree that exists and simply returns the value a. A Node cmd ks k
command tree is somewhat more complex and is made up of three parts:

¢ A command cmd that may have a signature,
¢ A list of subcontinuations ks,

* An optional continuation (also called join-point) k.

We will call the data type Tree a semantic command tree and Tps a syntactic command
tree.

Semantic command trees are well suited for defining the initial translation into CPS. How-
ever, the abstract nature of semantic command trees prevents us from defining closure con-
version without escaping from its abstraction. The fundamental problem is that continua-
tions are defined as functions in the metalanguage instead of syntactic constructs in the IR
itself. This prevents us from doing free variable analysis, which is at the heart of closure
conversion.

Syntactic command trees have, as their name implies, syntactic representation of name
binding in their constructors. They are specific to the notion of values in cps. We require a
function to translate from our semantic command trees to syntactic command trees in order
to compile our lambda calculus source code. Because syntactic and semantic command trees
represent the same piece of source code, we conjecture that a function that translates syntactic
command trees back into semantic command trees must also exist. We have not implemented
such a function yet, see section 3.3.

Command trees are implemented using Haskell’s Generalized Algebraic Data Type (GADT).
A GADT gives us the power to add more types to our IR. The notation of a GADT is some-
what different than the notation of a normal data type. After the data keyword we specify a
name and type parameters, a where keyword follows. Then the different constructors of the
GADT are declared. The constructors are given a name followed by : :. The types of the argu-
ments follow, separated by ->. Finally, we declare the constructor with its type parameters,
which can relate to the types of the arguments.

Command trees are defined by a GADT as follows:

14

3.1. Command Trees

-- semantic command tree
data Tree sig a where
Leaf :: a -> Tree sig a
Node :: signb pr g ->
Vec n (p -> Tree sig r) ->
Option b (g -> Tree sig a) ->
Tree sig a
-- syntactic command tree
data Tps (sig :: Sig) a where
Leaf :: a -> Tps sig a
Node :: signbpr q ->
Vec n (Tps sig Val) ->
Option b (Var, Tps sig a) ->
Tps sig a

A command tree does not know what set of commands is used. However, it does en-
code strong type constraints on its subcontinuations and continuation. To enforce these con-
straints we use a signature sig. This way a command tells the command tree what comes
after itself. More formally a signature has type:

type Sig = Nat -> Bool -> * -> x -> * -> %

A signature instance sig n b p r g tells us the following:

¢ The tag of the command and its enclosed parameters sig.

The number of subcontinuations n.

If the command has a continuation b.

The argument p and return type r of the subcontinuations.

The argument type q of the continuation.

Notice that Tps does not use all signature information. Tps is specialized to mirror the
structure and types of cps and thus only uses the n and b part of the signature.

Without commands we can not do anything with our command trees. We will use a set
of commands that reflect the constructors from the cps data type. We also define a number
of extra commands that will help us compile.

data Base :: Sig where
Add :: Val -> val —> Base Z True Void Void Val
App :: Val -> [Val] -> Base Z False Void Void Val
data Fix :: Sig where
Fix :: Vec n (Var,[Var]) -> Fix n True () val ()

data Comp :: Sig where

GetK :: Var —> Comp Z True Val Val Val

SetK :: Var -> Val —> Comp Z True Val Val ()

Block :: Comp (S Z) True () val Val

Fresh :: Var -> Comp Z True Void Void Var
data Record :: Sig where

Record :: [val] -> Record Z True Void Void Val

Select :: Int -> Val -> Record Z True Void Void Val

15

3. CompILING WITH COMMAND TREES

data Malloc :: Sig where
Malloc :: Int -> Malloc Z True Void Void Val
Load :: Int -> val —> Malloc Z True Void Void Val
Store :: Int -> val -> val -> Malloc Z True Void Void ()

data Empty :: Sig where

If we look at the definition of commands above, we can see that our original constructors
Add, App, Fix from the Cps data type are here. The val constructor will be modeled by the Leaf
constructor. The val type is the same as in cps. The four compilation commands represent
a continuation store (GetK, Setk), command concatenation (Block), and fresh variable name
generation (Fresh). We also have the Malloc commands to represent the heap operations of
Wat.

We take a look at the signatures of the commands to see how they are structured. The
Block and Fix command are the only ones that have subcontinuations. The Vvoid type indi-
cates that there are no subcontinuations. Fix has a subcontinuation for every function defi-
nition. This is required by the constructor itself as the natural number n appears in both the
function name with arguments and subcontinuations. The App command does not have a
continuation, which will lead to some trouble when trying to concatenate it with other com-
mands. The return type of commands indicates that commands will bind to a variable val,
or only produce a side-effect ().

The Empty command is special because it does not have any members. It is used to write
transformations generically. For example, we define a transformation of a command to an-
other command as the following function:

foo :: Tps (cmd :+: rest) Val -> Tps (cmd' :+: rest) Val

This transformation should also work if the only command in the tree is cmd. The tree
would have type Tps cmd Vval, but this does not match because there is no rest. This is where
the Empty command takes the place of rest:

foo :: Tps (cmd :+: Empty) Val -> Tps (cmd' :+: Empty) Val

The rest problem is caused by the way we have implemented open unions in Haskell,
see subsection 3.1 and section 3.3.

Let’s see how our example (\ x -> x + 1) 41) translates to a semantic command tree.
The translation is very similar to the Cps translation. We use a Fix command to create a
function f with argument x. The body of this function adds x and the number one 1. The
continuation is a leaf node, which serves the same purpose as the val constructor. The func-
tion name and arguments are separated by the function body, which is a vector of thunks
(functions that take () as argument). The continuation of our function node is an application
node. Here we apply the function f to the argument 41.

Node (L (Fix (("f", ["x"]) ::: NiL))) ((\ () —->
Node (R (Add (VAR "x") (INT 1)) Nil (Some (\ n -> Leaf n)))) ::: Nil) (Some (\ () ->
Node (R (App (VAR "f'") [INT 41])) Nil None))

The syntactic syntax is similar to its semantic counterpart. The main difference is that
function variables have been replaced with strings. In this case we use the empty string ""
to represents continuations that take () as an argument.

Node (L (Fix (("f", ["x"]) ::: Nil))) ((
Node (R (Add (VAR "x") (INT 1))) Nil (Some ("n", Leaf (VAR "n")))) ::: Nil) (Some ("",
Node (R (App (VAR "f'") [INT 41])) Nil None))

16

3.2. Tree Transformations

Open Unions

In order to compile Lam into wat we will have to make use of all our command modules. We
will combine our commands using an open union or extensible sum data type. An open
union can be viewed as a list of data types. More precisely, it is a binary tree which has
data types as leaf nodes. :+: is right-associative and has two constructors L and r, which
inject a data type into the left or right side of the tree, respectively [16]. Note that we can
nest instances of open unions to create open unions. Open unions make our command tree
modular, because we can add new commands to an existing union to represent new language
features.

data (:+:) :: Sig -> Sig -> Sig where
L :: siglnbprg->(sigl :+: sigr) nbprq
R :: sigrnbpr g -> (sigl :+: sigr) nb pr q

class (sub :: Sig) :<: (sup :: Sig) where
inj 1t subnbprqg->supnbprg

The typeclass :<: allows us to inject data types into an open union automatically. We
use smart constructors to mitigate the syntactic overhead of injecting [16] even further. For
example to lift our Add command into the command tree we can define the following func-
tion. The constraint Base :<: cmd ensures that Add is located somewhere in the commands
of the command tree. We will rarely use the original commands and mostly use their smart
constructors when writing our tree transformations.

add :: Base :<: cmd => Val -> Val -> Var -> Tps cmd ()
add v1 v2 x = LiftT (inj (Add vl v2)) Nil x (Leaf ())

3.2 Tree Transformations

Transformations for the new version of LamToWat will be implemented as Haskell functions.
We will program mostly using do-notation. A graph representation of the example lambda
programs throughout the compilation process can be found in Appendix A.3 and A.4.

3.2.1 CPS Conversion

Using Tree, we can define an improved CPS conversion. The function is easier to read and
write. We no longer have a metacontinuation hidden inside a continuation monad. This
simplifies the notation significantly. We still operate in a monad, however, this monad is the
command tree. The order of our listed operations matches the order of our final program
more closely. There are some details that spoil the declarativity of our conversion somewhat.
The advantages and disadvantages of our new approach become clear when we examine

the conversion of a lambda abstraction in comparison to the one in the previous version of
LamToWat.

lam2tree :: Lam -> Tree (Comp :+: Fix :+: Base) Val
lam2tree (Val v) = return v
lam2tree (Lam x e) = do
f <~ fresh "f"
k <= fresh "k"
fix ((f,[x,k],do
v <- lam2tree e
app (VAR k) [v])
t: Nil)

17

3. CompILING WITH COMMAND TREES

return (LABEL f)
lam2tree (App el e2)

vl <- lam2tree el

v2 <- lam2tree e2

k <- getk "_nxt"

app vl [v2,Kk])
lam2tree (Add el e2) = do

vl <- lam2tree el

v2 <- lam2tree e2

add vl v2

block (do

We take a look at the conversion of Lam. We generate a fresh function variable f and
continuation variable k. We use these variables to create a function with name f that has
as argument the original variable and a continuation named k. The body of the function
will be the converted original body and a final statement that applies the continuation to the
resulting variable. Finally, we return a LABEL with the function name.

3.22 Tree Compilation

The Tree that is output by lam2tree contains commands that represent effects. We will need to
handle these commands and instantiate name binding commands with generated variables
before we can closure convert. This is necessary in order to perform variable analysis. The
transformation is called tree2tps and is performed using effects for generating fresh variable
names (fresh) and accessing and updating an environment that associates vars with vals
(ask,local). The type of t2t becomes:

t2t :: Tree (Comp :+: Fix :+: Base) Val ->
StateT Int (Reader [(Var,Val)]) Tps (Fix :+: Base :+: Empty) Val

Notice that we add the Empty command to the end of the signature of Tps. t2t itself is
defined as follows:

t2t (Leaf x) = return (done x)
t2t (Node (R (R (Add v1 v2))) Nil (Some k)) = do
x <= fresh "x"
k' <- t2t (k (VAR x))
return (add vl v2 x k')
t2t (Node (R (R (App v vs))) Nil None) =
return (app v vs)
t2t (Node (R (L (Fix fxs))) bs (Some k)) = do
bs' <- mapM (\ b -> t2t (b ())) bs
k' <= t2t (k ())
return (fix' fxs bs' k')
t2t (Node (L (SetK x v)) Nil (Some k)) =
local ((x,v):) (t2t (k ()))
t2t (Node (L (GetK x)) Nil (Some k)) = do
nv <- ask
case lookup x nv of
Just v > t2t (k v)
Nothing -> error (x ++ " 4is not in env " ++ show nv)
t2t (Node (L Block) (b ::: Nil) (Some k)) = do
r <- fresh "r"
x <= fresh "x"
b' <- local

18

3.2. Tree Transformations

(("_nxt",LABEL r):)
(t2t (do v <= b ()
T.app (LABEL r) [v]))
k' <= t2t (k (VAR x))
return (fix' ((r,[x]) ::: Nil) (k' ::: Nil) b'")
t2t (Node (L (Fresh x)) Nil (Some k)) = do

f <- fresh x
t2t (k f)

The compilation of the Fresh command seems trivial, because we use the helper func-
tion fresh. This helper function should not be confused by the sugared version of the Fresh
command. This function updates the state and returns a fresh variable (in this case a string).

The compilation of Add shows the instantiation of variables in the metalanguage with vari-
ables in the syntactic command trees. We generate a fresh variable x, pass it to the continu-
ation and compile the continuation, and finally plug the result into the syntactic command
tree.

The setk and Getk commands update and fetch named continuations. In our case there is
only a continuation that is named _nxt. The Block command tells us to compile the continu-
ation k by passing it VAR x and wrap it in a continuation function with name r and argument
x. We set the continuation _nxt to the function label LABEL r. We extend the body of the
block with a final application of the continuation function r to the result v and compile with
the updated continuation list. Finally, we create the continuation function and give it the
compiled body b' as continuation.

After tree compilation we obtain a Tps with the commands Fix and Base. We have done
two transformations to obtain the same result as with cps. However, these transformations
are significantly easier to write and the conversion from Tree to Tps only has to be written
once if we keep the command set that Tree has now.

3.2.3 Closure Conversion

Now that we have eliminated the comp commands we can closure convert our syntactic com-
mand tree. We will follow the same approach as in the previous version of LamToWat: collect
names of expression and use these to construct records. We will make the assumption that
the only place where expressions are named (and thus our environment is extended) is in
the join-point of a node and in functions. We do not hoist our function definitions to the top
level immediately. We now have an extra transformation for this.

Separating the transformations also gives as a chance to better describe the type of the
command tree before and after. The modular open unions of commands allows us to do so
without having to write completely new data types which are mostly the same. Moreover,
the transformations described in this section are modular: we can reuse them for different
unions of commands.

The transformation only changes the Fix and App nodes. The other nodes simply extend
the environment with their binding variable. The environment effect is now implemented as
an extra argument to hCl.

hCl :: [Var] ->
Tps (Fix :+: Base :+: cmd) Val ->
Tps (Record :+: Fix :+: Base :+: cmd) Val
hCl nv (Node (L (Fix fxs)) bs (Some (_,k))) =
fix' (mapV addArg fxs)
(zipWithV funClos fxs bs)
(hCl nv k)
where addArg (name,args) = (name,"_closure":args)

19

3. CompILING WITH COMMAND TREES

funClos (name,args) body = do
select_ 1 (VAR "_closure") "_env"
zipWithM_ (openClos args) [0..] nv
hCl (nv++args) body

openClos args i x =
if x “elem’ args then return () else select_ i (VAR "_env") x

hCl nv (Node (R (L (App fun args))) Nil None) = do
record_ (map VAR nv) "_env"
args' <- mapM mkClos args

case fun of
LABEL fp -> let cl = '_' : fp 1in do
record_ [LABEL fp,VAR "_env"] cl
app (LABEL fp) (VAR cl : args')

VAR cl -> let fp = '_' : cl 1in do
select_ 0 (VAR cl) fp
app (VAR fp) (VAR cl : args')

where mkClos (LABEL x) = let _x = '_' : x 1in do
record_ [LABEL x,VAR "_env"] _x
return $ VAR _x

mkClos v = return v

hCl nv (Leaf v) = Leaf v
hCl nv (Node cmd ks k) =
Node (R cmd)
(fmap (hCl nv) ks)
(fmap (\ (x,k) -> (x,hCl (extendnv nv x) k)) k)
where extendnv nv "" = nv

extendnv nv x = nv ++ [x]

Before we hoist our function definitions to the top level we can transform our Record
commands into Malloc commands. Here we see that we can fix our shortcoming of repeated
constructors quite easily with command trees. We can focus on a particular command and
translate it into its lower-level counterpart. In this case only Record as truly translated as
Select and Load have a one-to-one mapping.

hRecord :: Tps (Record :+: cmd) Val -> Tps (Malloc :+: cmd) Val
hRecord (Node (L (Record vs)) Nil (Some (x,k))) = do

malloc_ (length vs) x

zipWithMm_ (\ i -> store_ i (VAR x)) [0..] vs

hRecord k

hRecord (Node (L (Select i v)) Nil (Some (x,k))) =
load i v x (hRecord k)

hRecord (Leaf v) = Leaf v
hRecord (Node (R cmd) ks k) =

Node (R cmd)

20

3.2. Tree Transformations

(fmap hRecord ks)
(fmap (fmap hRecord) k)

Hoisting is done with the hrix function. We will need to be able to open the join-point of a
Node of our command tree in order to be able to hoist, because it is a non-local transformation.
A non-local transformation affects the entire tree. In the case of hoisting we are chopping up
the tree into individual commands, separating the Fix commands and putting them into a
list, and glueing the other commands back together to form a new tree. The type of hFix
clearly indicates that functions no longer contain other functions.

hFix :: Tps (Fix :+: cmd) Val -> T.Fix (Tps cmd Val)
hFix (Leaf v) = ([],Leaf v)
hFix (Node (R cmd) ks k) = case k of

Some (x,k) -> (fs++fs',Node cmd ks' (Some (x,k')))
where (fs,k') = hFix k

None -> (fs',Node cmd ks' None)

where ks' = mapV (snd . hFix) ks
fs' = concatMap (fst . hFix) $ tolist ks

hFix (Node (L (Fix fxs)) bs (Some ("",k))) = (fs'++fs,k')
where fs' = concat $ zipWith hFun (toList fxs) (toList bs)
(fs,k') = hFix k

hFun (f,as) b = (f,as,b') : fs
where (fs,b') = hFix b

3.24 Emitting

The emit step now becomes even more trivial, as we have also eliminated records from our
command tree and replaced them with malloc commands. We include this step for com-
pleteness and testing purposes. We could use the command tree output by hFix to generate
WebAssembly code. The mapping is one-to-one for expressions: every remaining tree com-
mand has a wat counterpart. However, the transformation of vals does need to change labels
into integers.

tps2wat :: WatTps -> Wat
tps2wat (fs,e) = (map (fmap t2w) fs,t2w e)
where ns = map (\ (f,as,b) -> f) fs

t2w (Leaf v) = val (v2v v)

t2w (Node cmd ks k) = case (cmd,ks,k) of
((L (T.Malloc 1)), Nil, (Some (x,k))) -> Malloc i x (t2w k)
((L (T.Load 1 v)), Nil, (Some (x,k))) -> Load i (v2v v) x (t2w k)
((L (T.Store i s t)), Nil, (Some (_,k))) -> Store i (v2v s) (v2v t) (t2w k)
((R (L (T.Add v1 v2))), Nil, (Some (x,k))) -> Add (v2v v1) (v2v v2) x (t2w k)
((R (L (T.App v vs))), Nil, None) => App (v2v v) (map v2v vs)

v2v (LABEL x)

V2V Vv

INT $ fromJust $ x "elemIndex’ ns

\Y

21

3. CompILING WITH COMMAND TREES

A ghci session where we would run a converted lambda calculus expression would look
as follows:

> putStrLn $ emit $ tps2wat $ hFix $ swapTps $ hRecord $
hClos $ tree2tps $ lam2tree $ parse "(\\ x -> x + 1) 41"
(module

> Wat.emitRun $ tps2wat $ hFix $ swapTps $ hRecord $
hClos $ tree2tps $ lam2tree $ parse "(\\ x -> x + 1) 41"
_start() => i32:42

3.3 Command Tree Improvements

In this section we will explore the design space for command trees and discuss the shortcom-
ings of the second version of LamToWat. During the development of the LamToWat compiler
a number of different command trees were examined to see if they could provide us with a
replacement for cps. We will discuss some of the relevant features here.

Although command trees provide a useful abstraction for language implementers, it does
require knowledge of the block model for control flow. Command trees help the programmer
somewhat by providing metacontinuation store, which can be manipulated with the setk
and Getk commands. The language implementer will still need to wrap certain parts of code
inside a block and fetch the right continuation at the right point. The responsibility is now
put on the compiler writer, who has to compile the semantic command tree into a syntactic
command tree.

In order to check intermediate results of the compiler after the initial CPS conversion,
we would like to have an interpreter for Tree. We can now only print Tree, but we would
like to map Tree to a common domain. The abstract nature of Tree is the main problem
when writing an interpreter for it that is modular in the set of commands. A function called
tps2tree that transforms Tps back into Tree for the right set of commands would serve a
similar purpose. This would show the isomorphism between the two and give another check
of the compilation process.

Our command trees have some types, but we would like our types to do even more. For
example we want a type to indicate that an expression is closed after closure conversion, i.e.,
it does not have any free variables. Transforming syntactic command trees into semantic
ones would work as a sort of type checking function. Typing closure conversion has been
studied in Haskell and other languages [13, 8, 18]. We tried to implement something similar
in LamToWat but found Haskell’s type system uncooperative [17].

The implementation of open unions we have used for making Tps modular can be im-
proved. There is still some extra work required of the programmer. Extensible sums should
behave like sets, but are implemented as binary trees. This means that the order of com-
mands matters, e.g., A :+: BisnotthesameasB :+: Ainthe eyes of the Haskell type system.
To mitigate this we can write helper functions that transform the structure of our extensible
sums. There are a number of other implementations of open unions in the Haskell language
which may provide the functionality we require [11, 19]. Haskell’s typeclasses could be used
to derive the necessary operations on open unions.

3.4 Discussion

In this chapter we have shown how the three shortcomings of our original compiler are elim-
inated by using command trees as IR. Each of the shortcomings addressed at the end of the

22

3.4. Discussion

previous chapter in section 2.3 is alleviated as follows:

* CPS conversion becomes easier to specify by using blocks in lam2tree
¢ The type of the output of hFix indicates that functions are no longer nested

® hRecord only transforms records and thus removes duplicate constructors

We separated Cps into two command trees: semantic and syntactic. Semantic command
trees give us the power to write a declarative CPS conversion function, improving the front-
end of LamToWat. Syntactic command trees specific to Cps allow the programmer to write
modular, declarative transformations in the back-end of LamToWat without losing the ability
to do variable analysis.

We can combine commands to create a modular approach to compilation. With the help
of smart constructors and destructors we reduce syntactic overhead. More transformations
are performed on the command tree than on cps, because we have to handle effects our-
selves. Although it requires a little more effort on behalf of the programmer, it also provides
a method to make transformations explicit and declarative. In the next chapter we will dis-
cuss the how we validated the performance of the compiler.

23

Chapter 4

Compiler Validation and Extension

In this section we will discuss how we validated that our compiler worked and the per-
formance of the transformations and command trees. We will also address some of the
compiler transformations we did not implement because they were out of scope of this the-
sis. The online repository with the source code for LamToWat can be found on GitHub:
https://github.com/BernardBot/LamToWat.

4.1 Testing

In order to test if all transformations were performed correctly we have written interpreters
for the Lam, Cps, Wat, and Tps languages/data types. This allowed us to test programs at
different steps of the compilation process. We compare the interpreter’s results and check
that they are the same. Of course this does not guarantee equality between programs. We
could obtain the expected result by a wrong calculation, or by using other effects.

To automate the testing process we use Cabal [27], which allows us to create a test suite.
By simply executing the cabal test command we run all automated tests. A folder of lambda
calculus source files that are used for testing is provided in the projects repository.

4.2 Performance

How do command trees perform in comparison with monad transformers? The paper “Freer
monads, more extensible effects” [15] compares the mt1 library with their own extensible ef-
fects library based on the freer monad. Their results show that algebraic effects outperform
monad transformers when we nest multiple effects. Since the Haskell compiler GHC has spe-
cific optimizations for the mt1 library and especially the state monad, monad transformers
are sometimes faster for single effects.

In order to compile command trees we have used separate handlers (hClos,hRecord, hFix).
This is quite inefficient, because we have to build intermediate trees and traverse the entire
data structure for each handler. Instead, we can fuse [30] a sequence of handlers and remove
both these performance pain points. Fusion is not yet implemented for the current command
trees, but may lead to a significant performance gain.

While testing both versions of LamToWat no noticeable difference was observed for both
compilation and execution time of the generated programs. Since programs were compara-
tively small, this does not give a good indication of how command trees would perform on
larger bodies of code.

25

https://github.com/BernardBot/LamToWat

4. COMPILER VALIDATION AND EXTENSION

4.3 Other Transformations

Our compiler is a very simplified version of the compiler described in Compiling with Con-
tinuations (corr. version) [2]. Appel discusses a number of other transformations that im-
prove the performance of the generated code and compile other language features:

26

¢ Closure Optimization

Creating efficient closures is not trivial. LamToWat makes simple but inefficient clo-
sures. In order to create closures that are optimized for speed or memory usage we
will need to perform extended variable analysis. We could create a command that is
a special form of Fix that carries this variable information with it. We can then imple-
ment two transformations: one that does the analysis and one that creates the better
closures. The syntactic nature of Tps allows us to do this optimization.

Compilation of pattern matching

Pattern matching is a feature that benefits many functional languages. To compile pat-
tern matching we can use switch expressions. switch expressions take a value and a list
of expressions. We would need to add a switch expression to Cps in the first version of
LamToWat and a switch command to both Tree and Tps. Our source language would
have case statements. These would need to be compiled to switch expressions. This
translation can be optimized by way of a decision-tree algorithm.

Inlining functions

The inlining of functions substitutes a function body for a function call. This increases
performance of a program. Substitution of function bodies may be problematic if not
performed correctly, because it may lead to a large increase in program size. To imple-
ment this feature in LamToWat we could create a new command that identifies function
bodies as candidates for inline expansion. We would have one command for candidate
functions and one for non-candidate functions. We would possibly need an auxiliary
function to perform the candidate analysis.

Chapter 5

Related Work

In this chapter we will look at some of the theory behind the compilation scheme used in
this thesis: monads and denotational semantics. Lastly, we will look at recent work on the
extension of algebraic effects.

5.1 The Free Monad

Both the command tree and the compute data type are a specialization of the free monad
[26]. The free monad arises naturally when composing functors. In mathematical terms a
functor is a mapping between categories [4]. In practical terms a functor is something that
can be mapped over. A list is an example of a functor. We will take as our example functor a
modified version of the Maybe data type and show what happens when we compose it with
itself [12]. It describes a programming language where we either stop with execution or
sound a Bell and continue.

data Program a = Stop | Bell a

pO® :: Program (Program a)
poO Bell Stop

pl :: Program (Program (Program a))
pl = Bell (Bell Stop)

We see that our type grows with our expression. Both pe and p1 should have the type
Program a. We want a function of type Program (Program a) -> Program a that removes the
nesting of functors. What we need is a fix-point of a functor.

data Fix f where
Fix :: f (Fix f) -> Fix f

The type of Fix reflects the type of the function that we wanted. Our new programs will
be of type Fix Program.

fpO :: Fix Program
fpo Fix (Bell (Fix Stop))

fpl :: Fix Program
fpl = Fix (Bell (Fix (Bell (Fix Stop))))

Fix is almost a monad. What we need is a generic way to terminate programs. We will
also need to parameterize over the return type instead of a functor. This leads us to the free
monad.

27

5. ReLaTED WoORK

data Free f a where
Pure HE- | -> Free f a
Impure :: f (Free f a) -> Free f a

The free monad is thus a way to nest a functor, while maintaining a basic type of that func-
tor. The free monad is restricted by this functor requirement. Without it, it is not a monad.
Command trees do not have this requirement. We use a wrapper for our commands that
ensures they are functors. This wrapper is a complex functor, but the principle is based on a
simpler concept: pretending a mapping happened. The data type that captures this notion
is the functor by construction F. It consists of something resembling a functor and a mapping
over the contents of this fake functor. Whenever we map over F, we simply compose with
the second argument. We pretend something happened; we update our mapping function.

data F f a where
F::fa->(aa->b)->FfFfb

instance Functor (F f) where
fmap g (F f h) = F f (g . h)

If we extend this idea to the free monad we obtain the freer monad. The functor Tps uses
is of a more specialized nature related to cps and val.

data G f a where
G :: f -> [val]l] -> (val -=> b) > G f b

instance Functor (G f) where
fmap g (G f ks k) = G f ks (g . k)

5.2 The Operational Monad

In this section we will derive the command tree monad and show how it relates to modular
denotational semantics. We follow the style of the paper “Freer monads, more extensible
effects” [15], which gives a derivation of the freer monad, a close relative of the command tree.
The main problem the command tree and its relatives address is: expressing side-effectful
computation in a composable/modular manner. We will start by unpacking this definition.

A side-effect can be understood as an interaction of an expression with its context [6]. A
concrete example is the communication between a number of clients and a central server. A
side-effect is a request from a client to the server. This can be a request for some data or an
action. From this it follows immediately that we can model side effects with data types that
specify such a request. A trivial example is a ping request:

data Request = Ping

The result of the ping request may be used in another part of the program. Our Request
data type does not indicate what the return type of a ping request will be. Moreover, there
is no place where the reply of the request is bound. We can define a data type that helps us
with both these problems. We will call it Compute.

data Compute = Done Int | Compute Request (Int -> Compute)

Compute has two constructors that have the same role as those of the command tree. The
Done constructor represents a computation without side effects that returns an integer. Compute
binds Requests together. The result of a request is an integer and may be used in the follow-
ing computations. An example shows the data types in action. We send two sequential ping
requests to the central server and bind them to the variables i and j. Finally, we return the av-
erage of both. How a ping request is actually implemented is left open. Request just provides
the interface for effectful computation.

28

5.3. Modular Denotational Semantics

pingtwiceavg = Compute Ping (\ i -> Compute Ping (\ j -> Done ((i + j) “div’ 2)))

This way of defining sequences of effectful computations is called operational [1]. It is
an alternative to other monadic implementations of side-effects. The upside of operational
monads is their compositional nature. Traditional implementation of side-effects such as
monad transformers [16] also compose, but suffer from non-commutative behavior [10].

Haskell provides typeclasses for defining monads. These are similar to an interface. Our
Compute data type does not qualify for these, because Haskell requires monads to be param-
eterized over a type. We define our own bind function, which composes two computations;
the unit function creates a trivial computation. In the implementation of the bind function
we see that it pushes a function from an integer to a computation into the continuation of a
computation. This is similar to list concatenation.

bind (Done 1) f =711
bind (Compute r k) f = Compute r (\ i -> bind (k i) f)
--— unit is trivial

unit = Done

With our monadic definitions in place we can create a pretty version of our previous
program that takes the average ping. We will define a helper function that represent a pro-
gram that sends a ping request and returns the result. This enables us to bind these smaller
programs together.

ping = Compute Ping Done

prettyping =
ping “bind® \ i ->
ping “bind® \ j ->
unit ((i + j) “div’ 2)
If we substitute our requests for commands and add subcontinuations to Compute we ob-
tain our command tree.
In this and the previous section we have shown that command trees arise when we want
to nest functors or model requests. This corresponds nicely to the objectives of modular de-
notational semantics where we work with semantic language modules that may have effects.

5.3 Modular Denotational Semantics

In this section we will give a short introduction to modular denotational semantics and then
show how it relates to the work on the LamToWat compiler in this thesis. We will begin by
stating some definitions. Denotational semantics is a method of giving meaning to programs
by constructing mathematical objects which we often call 'values’. A programming language
consists of multiple interacting parts called "terms’, like a function module or an arithmetic
module. Terms can be given corresponding values separately. Then the meaning of the
combined modules which make up a language is simply the sum or composition of these
mappings. There are two popular approaches to solving this problem: algebraic effects [6]
and monad transformers [16]. To give meaning to a program we write a program called an
‘interpreter’ that maps terms in each module to their respective denotation.

A denotational semantics is made up of three things: terms, values, and effects. We
represent all three with Haskell constructs. A semantics is modular when we are able to
split and extend all three components. In Haskell open unions give us the power to do this
for terms and values. To model effects we will need monads: either monad transformers or
the free monad depending on which approach we choose.

Now we will give an example of a modular denotational semantics for a simple language
that can manipulate one memory cell fetch, setand doaddition add, int. We will illustrate

29

5. ReLaTED WoORK

the relation between monad transformers and algebraic effects [23]. One can be translated
into the other and vice-versa. Both approaches allow one to construct an interpreter for our
toy language. We will use Haskell typeclasses to represent modular interfaces for terms and
highlight the relation by providing instances for both. The typeclasses are defined as follows:

class Cell d where
fetch :: d
set ::d ->d

class Addition d where
add :: d > d ->d
int :: Int -> d

The domain of our language will simply be Haskell integers 1nt. We said before that
our domain must also be extendible, we can also do that here by using open unions and
describing integers as an element of the union like so: Int :<: dom => ... dom However,
this would lead to syntactic overhead which would only hinder the illustrative purposes of
this example.

The monad transformer approach uses the state monad transformer to implement the
effects of the cel1 typeclass. It is included in the mt1 package and is defined as follows, where
s is the type of the internal state, m is a monad, and a is the return type.

newtype StateT s (m :: x -> x) a = StateT {runStateT :: s -> m (a, s)}

We can supply (modular) instances for both our typeclasses by adding a MonadState con-
straint, which is a typeclass in itself. This means that we get access to the operations get, put,
which are very similar to fetch, set.

instance MonadState Int m => Cell (m Int) where
fetch = get
set d = do
d' <-d
put d'
return d'

instance MonadState Int m => Addition (m Int) where

add a b = do
i <- a
j <-b

return (i + j)
int = return

The Algebraic Effects approach requires a bit more preliminary work, because the monad
is not taken from a package. We first define a new version of the operational/free monad that
is specific to our domain of integers. We also define two command representing the get, put
from the state monad transformer. We create smart constructors for both called get' and put",
respectively.

data Freer' cmd d where
Pure :: d -> Freer' cmd d
Impure :: cmd -> (Int -> Freer' cmd d) -> Freer' cmd d
data Cmd = Get | Put Int
We can now give instances for our typeclasses, which look almost the same. We now

constrain our commands instead of an effect typeclass.

30

5.4. Extending Algebraic Effects

instance Cmd :<: cmd => Cell (Freer' cmd Int) where

fetch = get'

set d = do
d' <-d
put' d'

instance Cmd :<: cmd => Addition (Freer' cmd Int) where

add a b = do
i <- a
j <-b

return (i + j)
int = return

We will also have to define a handler for cmd commands called hcmd as follows.

hCmd :: Cmd :<: cmd => Freer' cmd a -> Int -> Freer' cmd (a, Int)
hCmd (Pure d) s = Pure (d,s)
hCmd (Impure cmd k) s = case prj cmd of

Just Get -> hCmd (k s) s

Just (Put s) -> hCmd (k s) s
-> Impure cmd (\ d -> hCmd (k d) s)

We see that both approaches allow us to define instances for our language terms modu-
larly. Both approaches use constraints to make the instances modular: monad transformers
use typeclass constraints, while algebraic effects use constraints on the open union of com-
mands.

Why did we use modular denotational semantics to write a compiler? Denotational se-
mantics are very useful because they lead to a method of proving equality of terms of a lan-
guage. When two terms have the same denotational value, they have the same meaning and
one can be replaced by the other. This gives rise to many optimizations, which are provably
correct.

One of the goals of a compiler is to optimize code, thus one can see where denotational
semantics comes in. Moreover, it is important that the meaning of a program is not changed
during compilation. In this thesis we have tried to extend this concept of denotational seman-
tics from interpreters to compilers. In the second version of LamToWat we used algebraic
effects represented by command trees.

5.4 Extending Algebraic Effects

Algebraic effects are able to model many effectful operations. However, there are some con-
structs that can not be given a proper semantics using algebraic effects. In this thesis we
specialized our semantic command trees to syntactic command trees in order to perform
variable analysis for closure conversion. It may be possible to instead generalize the notion
of effects to tackle this problem. In this section we discuss two extensions of algebraic effects:
scoped effects and latent effects.

The paper “Effect handlers in scope” [31] presents two approaches to extending algebraic
effect with scoping constructs. Scoping constructs are constructs that are given meaning by
scoping handlers, such as exception handlers. What makes scoping handlers different from
normal handlers is that they create a local scope in which the impact of an effect is contained.
The two roles of scoping handlers, semantics and scoping, conflict and lead to undesired
interaction. By decoupling semantics and scoping and incorporating scoping in the syntax
this problem may be solved. The first solution presented in the paper adds scope markers
to the syntax of algebraic effects, which indicate the start and end of a scope. This solution

31

5. ReLaTED WoORK

plays nicely with free monad infrastructure already present, but gives the user the possibility
to go wrong by having unbalanced markers. The second solution uses higher-order syntax
and requires a new version of the free monad. A specification of how a handler traverses
higher-order signatures (commands) is needed too. The upside of higher-order syntax is
their expressiveness and no risk of unbalanced markers.

The paper “Latent Effects” [7] builds on the idea of scoped effects. Latent effects may
postpone computations for later execution. They address the requirements that algebraic
effects should always be expressible as a function with a certain type and satisfy the algebraic
property. An example of a postponed computation is a function abstraction, which can not
be modeled with algebraic effects. The central idea of latent effects is that when a handler is
applied to a signature it may decorate the return type of a computation with latent effects.
Latent effects live inside latent effect trees, which are an even higher-order version of the free
monads presented in the scoped effects paper.

32

Chapter 6

Conclusion

In this thesis we have examined how CPS can be improved upon as an IR in three ways:
simpler control flow specification, typed transformations, and a modular interface. We have
proposed command trees as a solution, which help both language implementers and com-
piler writers. Our new compilation scheme is validated by using it to implement LamToWat,
a compiler that translates the lambda calculus into WebAssembly.

We started by discussing a reference implementation of LamToWat and showed how the
source code is transformed by CPS conversion, closure conversion, and emitting. We identi-
fied three shortcomings of the IR: complex specification of CPS conversion, no types to show
that functions are not nested, and constructor duplication when emitting.

We proposed command trees as the solution to these shortcomings. There are two types
of command trees: semantic and syntactic. We had to split our data type because the seman-
tic command trees did not allow for variable analysis, which is essential to closure conversion.
We conjecture the possibility of an isomorphism between the two types of command trees.

The monadic nature of command trees allowed us to bind commands together and write
the CPS conversion step easily. Open unions provided a modular approach to compilation
by allowing the programmer to extend her set of commands. By having each transformation
change specific command modules we clearly indicated what it altered. The implementa-
tion of command trees in this thesis can be extended in many aspects. We proposed some
improvements of command trees, such as type constraints to show the absence of free vari-
ables or open unions that behave more like real sets.

We tested both implementations of LamToWat by compiling and running programs in
the lambda calculus and checking their results. We listed a number of improvements with
respect to the compiler itself: optimized closures and the inlining of functions.

33

[10]

[11]

[12]

Bibliography

Heinrich Apfelmus. The Operational Monad Tutorial. https://apfelmus.nfshost.com/
articles/operational-monad.html. Accessed: 2020-12-08.

Andrew W. Appel. Compiling with Continuations (corr. version). Cambridge Univer-
sity Press, 2006. 1sBN: 978-0-521-03311-4.

Hendrik P Barendregt et al. The lambda calculus. Vol. 3. North-Holland Amsterdam,
1984.

Michael Barr and Charles Wells. Category theory for computing science. Vol. 49. Pren-
tice Hall New York, 1990.

Chiel Bruin. “Dynamix on the Frame VM: Declarative dynamic semantics on a VM
using scopes as frames”. In: (2020). URL: http://resolver.tudelft.nl/uuid:ddedcel4-
65ad-4f16-912e-6b0658eaeccO.

Robert Cartwright and Matthias Felleisen. “Extensible Denotational Language Spec-
ifications”. In: Theoretical Aspects of Computer Software, International Conference
TACS "94, Sendai, Japan, April 19-22, 1994, Proceedings. Ed. by Masami Hagiya and
John C. Mitchell. Vol. 789. Lecture Notes in Computer Science. Springer, 1994, pp. 244-
272. 1sBN: 3-540-57887-0. por: 160.1007/3-540-57887-0_99. URL: https://doi.org/10.
1007/3-540-57887-0%5C_99.

Anonymous Casper Bach Poulsen. “Latent Effects”. In: (2021).

Adam Chlipala. “A certified type-preserving compiler from lambda calculus to assem-
bly language”. In: Proceedings of the ACM SIGPLAN 2007 Conference on Program-
ming Language Design and Implementation, San Diego, California, USA, June 10-13,
2007. Ed. by Jeanne Ferrante and Kathryn S. McKinley. ACM, 2007, pp. 54—65. 1sBN: 978-
1-59593-633-2. poI: 160.1145/1250734.1250742. URL: https://doi.org/10.1145/1250734.
1250742.

Alonzo Church. The Calculi of Lambda Conversion.(AM-6), Volume 6. Princeton Uni-
versity Press, 2016.

Laurence E. Day and Graham Hutton. “Compilation a la Carte”. In: Proceedings of
the 25th Symposium on Implementation and Application of Functional Languages,
Nijmegen, The Netherlands, August 28-30, 2013. Ed. by Rinus Plasmeijer. ACM, 2013,
p- 13. 1sBN: 978-1-4503-2988-0. DOI: 10.1145/2620678.2620680. URL: https://doi.org/10.
1145/2620678.2620680.

extensible-effects | Hackage. https: / / hackage . haskell. org/ package / extensible -
effects. Accessed: 2021-01-04.

Gabriel Gonzalez. Why free monads matter. http://www.haskellforall.com/2012/06/
you-could-have-invented-free-monads.html. Accessed: 2020-12-09.

35

https://apfelmus.nfshost.com/articles/operational-monad.html
https://apfelmus.nfshost.com/articles/operational-monad.html
http://resolver.tudelft.nl/uuid:ddedce14-65ad-4f16-912e-6b0658eaecc0
http://resolver.tudelft.nl/uuid:ddedce14-65ad-4f16-912e-6b0658eaecc0
https://doi.org/10.1007/3-540-57887-0_99
https://doi.org/10.1007/3-540-57887-0%5C_99
https://doi.org/10.1007/3-540-57887-0%5C_99
https://doi.org/10.1145/1250734.1250742
https://doi.org/10.1145/1250734.1250742
https://doi.org/10.1145/1250734.1250742
https://doi.org/10.1145/2620678.2620680
https://doi.org/10.1145/2620678.2620680
https://doi.org/10.1145/2620678.2620680
https://hackage.haskell.org/package/extensible-effects
https://hackage.haskell.org/package/extensible-effects
http://www.haskellforall.com/2012/06/you-could-have-invented-free-monads.html
http://www.haskellforall.com/2012/06/you-could-have-invented-free-monads.html

BiBLIOGRAPHY

[13]

[14]
[15]

[16]

(18]

(20]

[21]

[22]

(23]

[24]
[25]
[26]

(27]

36

Louis-Julien Guillemette and Stefan Monnier. “A type-preserving closure conversion
in haskell”. In: Proceedings of the ACM SIGPLAN Workshop on Haskell, Haskell 2007,
Freiburg, Germany, September 30, 2007. Ed. by Gabriele Keller. ACM, 2007, pp. 83-92.
1SBN: 978-1-59593-674-5. por1: 10.1145/12912601.1291212. URL: https://doi.org/10.1145/
1291201.1291212.

Haskell Home Page. https://haskell.org. Accessed: 2020-12-01.

Oleg Kiselyov and Hiromi Ishii. “Freer monads, more extensible effects”. In: Proceed-
ings of the 8th ACM SIGPLAN Symposium on Haskell, Haskell 2015, Vancouver, BC,
Canada, September 3-4, 2015. Ed. by Ben Lippmeier. ACM, 2015, pp. 94-105. 1sBN: 978-
1-4503-3808-0. por: 16.1145/2804302.2804319. URL: https://doi.org/10.1145/2804302.
2804319.

Sheng Liang, Paul Hudak, and Mark P. Jones. “Monad Transformers and Modular
Interpreters”. In: Conference Record of POPL'95: 22nd ACM SIGPLAN-SIGACT Sym-
posium on Principles of Programming Languages, San Francisco, California, USA, Jan-
uary 23-25, 1995. Ed. by Ron K. Cytron and Peter Lee. ACM Press, 1995, pp. 333-343.
1sBN: 0-89791-692-1. pOI: 16.1145/199448.199528. URL: https://doi.org/10.1145/199448.
199528.

Sam Lindley and Conor McBride. “Hasochism: The Pleasure and Pain of Dependently
Typed Haskell Programming”. In: SIGPLAN Not. 48.12 (Sept. 2013), pp. 81-92. 1ssn:
0362-1340. por: 16.1145 /2578854 . 2503786. URL: https://doi.org/10.1145/2578854.
2503786.

J. Gregory Morrisett et al. “From System F to Typed Assembly Language”. In: POPL
'98, Proceedings of the 25th ACM SIGPLAN-SIGACT Symposium on Principles of Pro-
gramming Languages, San Diego, CA, USA, January 19-21, 1998. Ed. by David B. Mac-
Queen and Luca Cardelli. ACM, 1998, pp. 85-97. 1sen: 0-89791-979-3. por: 10 . 1145/
268946.268954. URL: https://doi.org/10.1145/268946.268954.

open-union | Hackage. https://hackage.haskell.org/package/open-union. Accessed:
2021-01-04.

parsec: Monadic parser combinators. https: / /hackage.haskell.org/package/parsec/.
Accessed: 2021-04-29.

Gordon D. Plotkin and Matija Pretnar. “Handling Algebraic Effects”. In: Log. Methods
Comput. Sci. 9.4 (2013). por: 16.2168/LMCS-9(4:23)2013. URL: https://doi.org/10.
2168/LMCS-9(4:23)2013.

Casper Bach Poulsen. Compilers for Free. http: / / casperbp . net / posts /2020 - 04 -
compilers-for-free/draft/#free-monad. Accessed: 2020-12-06.

Tom Schrijvers et al. “Monad transformers and modular algebraic effects: what binds
them together”. In: Proceedings of the 12th ACM SIGPLAN International Symposium
on Haskell, Haskell@ICFP 2019, Berlin, Germany, August 18-23, 2019. Ed. by Richard
A. Eisenberg. ACM, 2019, pp. 98-113. 1sBN: 978-1-4503-6813-1. por: 10 . 1145 /3331545 .
3342595. URL: https://doi.org/10.1145/3331545.3342595.

Shake Build System. https://shakebuild.com/. Accessed: 2021-01-25.
Guy L Steele Jr. “Rabbit: A compiler for Scheme”. In: (1978).

Wouter Swierstra. “Data types a la carte”. In: Journal of functional programming 18.4
(2008), p. 423.

The Haskell Cabal | Overview. https://www.haskell.org/cabal/. Accessed: 2021-03-
31.

https://doi.org/10.1145/1291201.1291212
https://doi.org/10.1145/1291201.1291212
https://doi.org/10.1145/1291201.1291212
https://haskell.org
https://doi.org/10.1145/2804302.2804319
https://doi.org/10.1145/2804302.2804319
https://doi.org/10.1145/2804302.2804319
https://doi.org/10.1145/199448.199528
https://doi.org/10.1145/199448.199528
https://doi.org/10.1145/199448.199528
https://doi.org/10.1145/2578854.2503786
https://doi.org/10.1145/2578854.2503786
https://doi.org/10.1145/2578854.2503786
https://doi.org/10.1145/268946.268954
https://doi.org/10.1145/268946.268954
https://doi.org/10.1145/268946.268954
https://hackage.haskell.org/package/open-union
https://hackage.haskell.org/package/parsec/
https://doi.org/10.2168/LMCS-9(4:23)2013
https://doi.org/10.2168/LMCS-9(4:23)2013
https://doi.org/10.2168/LMCS-9(4:23)2013
http://casperbp.net/posts/2020-04-compilers-for-free/draft/#free-monad
http://casperbp.net/posts/2020-04-compilers-for-free/draft/#free-monad
https://doi.org/10.1145/3331545.3342595
https://doi.org/10.1145/3331545.3342595
https://doi.org/10.1145/3331545.3342595
https://shakebuild.com/
https://www.haskell.org/cabal/

Bibliography

[28]

[29]
[30]

[31]

WABT: The WebAssembly Binary Toolkit. https : / / github . com/webassembly / wabt.
Accessed: 2021-01-17.

WebAssembly Home Page. https://webassembly.org. Accessed: 2020-12-01.

Nicolas Wu and Tom Schrijvers. “Fusion for Free - Efficient Algebraic Effect Handlers”.
In: Mathematics of Program Construction - 12th International Conference, MPC 2015,
Koénigswinter, Germany, June 29 - July 1, 2015. Proceedings. Ed. by Ralf Hinze and Janis
Voigtlander. Vol. 9129. Lecture Notes in Computer Science. Springer, 2015, pp. 302-322.
1SBN: 978-3-319-19796-8. por: 160.1607/978-3-319-19797-5_15. URL: https://doi.org/
10.1007/978-3-319-19797-5%5C_15.

Nicolas Wu, Tom Schrijvers, and Ralf Hinze. “Effect handlers in scope”. In: Proceedings
of the 2014 ACM SIGPLAN symposium on Haskell, Gothenburg, Sweden, September
4-5,2014. Ed. by Wouter Swierstra. ACM, 2014, pp. 1-12. 1sBn: 978-1-4503-3041-1. por:
10.1145/2633357.2633358. URL: https://doi.org/10.1145/2633357.2633358.

37

https://github.com/webassembly/wabt
https://webassembly.org
https://doi.org/10.1007/978-3-319-19797-5_15
https://doi.org/10.1007/978-3-319-19797-5%5C_15
https://doi.org/10.1007/978-3-319-19797-5%5C_15
https://doi.org/10.1145/2633357.2633358
https://doi.org/10.1145/2633357.2633358

Appendix A

A.1 LamToWat Version 1 Transformation of: ((\x -> x + 1) 41)

39

0v

. lam2 2 2wat
Stmng parse am2cps C’ps cps2cps C’ps cps2wa

emit

VAR "x" INT 1

Graph representation of the AST of our simple lambda expression (\ x -> x + 1) 41.

Wat String

i

. arse lam2cps cps2cps cps2wat emit
Stmngp—>Lam—p> PR, COps 2 Wat String

Fix
I

/ \
fs Fix
I I

Il_r-Oll ["_Xl"] _________________________________
I / \

VAR "_x1" fs App (LABEL "_f2") [INT 41,LABEL "_ro"]

n lel [llxll,ll k3l|]
I
_x4 = Add (VAR "x") (INT 1)

I
App (VAR "_k3") [VAR "_x4"]

In the graph above we see how our simple lambda calculus program is converted with 1am2cps. Freshly generated variables are prefixed with a _.
We see two functions _f2 and _re have been created. The first represents our original function with an additional continuation argument _k3. The
body of the function adds the number one to x and passes the result to the continuation. The _ro function represents a return point. In this case the
return point of the entire program as it uses the val constructor in its body. Finally, we see the call to _f2 where we pass the original argument and
the _ro function as the continuation.

(1% (1 + X <-X\)) :JO UOT}eULIOJSURI] T UOISIIA Jepofwe] ‘1Y

(44

"_rO" ["_Closure","_xl"]

_env = Select 1 (VAR "_closure")

VAR "_x1"

. arse lam2cps cps2cps cps2wat it .
String X% Lam P, ops =2 P Wat <™ String

n fz" [H CIOSUFG","X"," k3“]

I
_env = Select 1 (VAR "_closure")

I

_x4 = Add (VAR "x") (INT 1)
I

_env = Record [VAR "x",VAR "_k3",VAR "_x4"]

I

__k3 = Select 0 (VAR "_k3")

App (VAR "__k3") [VAR "_k3",VAR "_x4"]

_env = Record []

r® = Record [LABEL "_r0",VAR "_env"]

__f2 = Record [LABEL "_f2",VAR "_env"]

I
App (LABEL "_f2") [VAR "__f2" INT 41,VAR "__ro"]

1374

. lam?2 2
Stmng parse Lam, am2cps Cps cps2cps

Cps cps2wat emit String

_r0@ = Malloc 2

I
Store 0 (VAR "__r0") (INT 0)

Store 1 (VAR "__r@") (VAR "_env")

Fix
I
/
fs
I
/ \
"_I"O" [Il_closurell s Il_xlll] n_.f:zll ["_closure" s Myt s ll_ksll]
I I
_env = Load 1 (VAR "_closure") _env = Load 1 (VAR "_closure")
I I
VAR "_x1" _x4 = Add (VAR "x") (INT 1)

_env = Malloc 3

Store @ (VAR "_env") (VAR "x")

Store 1 (VAR "_env") (VAR "_k3")

Store 2 (VAR "_env") (VAR "_x4")

I
__k3 = Load © (VAR "_k3")

I
App (VAR "__k3") [VAR "_k3",VAR "_x4"]

__f2 = Malloc 2

Store 0@ (VAR "__f2") (INT 1)

Store 1 (VAR "__f2") (VAR "_env")

App (INT 1) [VAR "__f2" ,INT 41,VAR "__

ro"]

(1% (1 + X <-X\)) :JO UOT}eULIOJSURI] T UOISIIA Jepofwe] ‘1Y

A A

A.2 LamToWat Version 1 Transformation of: ((\x y -> x +y) 13 29)

44

v

. lam2
String 24, am2eps s

App
I
/ \
App INT 29
I
/ \
Lam "x" INT 13
I
Lam llyll
I
Add
I
/ \

VAR I|X|l VAR ||yl|

emit

cps2cps cps2wat
Cps

Graph representation of the AST of our simple lambda expression (\ x y -> x + y) 13 29.

Wat String

(62 €T (A + X <- £x\)) :JO UOT}PULIOJSURI] T UOISIOA JEAOTWET TV

9

. arse lam2cps cps2cps cps2wat emit .
String 25 Lam—p> PR, Ops & Wat String

Fix
|
/ \
fs Fix
| |
ll_roll ["_Xl”] ___
| / \
VAR "_x1" fs Fix
| |
Il_rzll ["_X3|l] __
| / \
App (VAR "_x3") [INT 29,LABEL "_ro"] fs App (LABEL "_f4") [INT 13,LABEL "_r2"]
|
ll_f4" [HXH Il_ksll]
|
Fix
|
/ \
fs App (VAR "_k5") [LABEL "_f6"]

"_f6" [||y|l’ll_k7ll]
|
X8 = Add (VAR "X”) (VAR nyn)

|
App (VAR "_K7") [VAR "_x8"]

Ly

. lam2cps cps2cps cps2wat it .
String X% Lam —=2°, Ops 2222 e Wat <" String

Fix

/ \

fs _env = Record []

r2 = Record [LABEL "_r2",VAR "_env"]

"_ro" [",cl(/)sure",",xl"] "_r2" [",cllsure",",x3”] "_fe" [",closLllre”,"y",",w"] "_fan" [",clos:re“,"x",”,ks"] __f4 = Record [LABllzL "_f4" ,VAR "_env"]
_env = Select 1|(VAR "_closure") _env = Select l‘(VAR "_closure") _env = Select 1 (VAR "_closure") _env = Select 1 (VAR "_closure") App (LABEL "_f4") [VAR "__f4",INT 13,VAR "__r2"]
VAR 'I'_xl“ _env = Recon‘i [VAR "_x3"] x = Select 0@ (VAR "_env") _env = Record [VAR "x",VAR "_k5"]
__ro = Record [LABt‘EL "_ro",VAR "_env"] _k5 = Select l (VAR "_env") __f6 = Record [LABEL "_f6",VAR "_env"]

I
_x3 = Select © (VAR "_x3") _x8 = Add (VAR "x") (VAR "y") __k5 = Select © (VAR "_k5")
| |
App (VAR "__x3") [VAR "_x3",INT 29,VAR "__r@"] _env = Record [VAR "x",VAR "_k5",VAR "y",VAR "_k7",VAR "_x8"] App (VAR "__k5") [VAR "_k5",VAR "__f6"]

__k7 = Select 0 (VAR "_k7")

App (VAR "__k7") [VAR "_Kk7",VAR "_x8"]

If we take a look at the above graphic, the first thing we notice is that functions are no longer nested; there is only one, top-level F1x. We also see
the addition of Record and Select expressions. We have four functions representing our original two functions and the two applications. We can
see how the original function bodies are prefixed with opening closures and postfixed with creating closures before application. All functions have
an extra _closure argument. If a function was originally nested more deeply, it will open and create a closure with more elements, because there
will be more variables in scope. This is the case for the function _f6, where the addition of x and y happens. The first closure that is created in our
program before calling _f4 is empty. This is because at the top level there are no free variables. The two closures for _f4 and _r2 named __f4 and
__r2, respectively, are a sort of dummy closure only containing a function pointer and a empty environment.

(62 €T (A + X <- £x\)) :JO UOT}PULIOJSURI] T UOISIOA JEAOTWET TV

87

\

env = Malloc ©

_r2 = Malloc 2

. parse lam2cps cps2cps cps2wat emit .
String —— Lam Cps Cps —— String
Fix
|

/

fs -

|
/ | | \)

"_ro" ["_closure","_x1"] "_r2" ["_closure","_x3"
| |
_env = Load 1 (VAR "_closure") _env = Load 1 (VAR "_closure")
| |
VAR "_x1" env = Malloc 1
|
Store © (VAR "_env'") (VAR "_x3")
|
re = Malloc 2
|
Store © (VAR "__r@") (INT @)
|
Store 1 (VAR "__r@") (VAR "_env")
|
x3 = Load © (VAR "_x3")
|
App (VAR "__x3") [VAR "_x3",INT 29,VAR "__r0"]

"_f6" ["_closure","y","_Kk7"]
|
_env = Load 1 (VAR "_closure")
|
x = Load O (VAR "_env")
|
_k5 = Load 1 (VAR "_env")
|
_x8 = Add (VAR "x") (VAR "y")
|
_env = Malloc 5
|
Store © (VAR "_env") (VAR "x")
|
Store 1 (VAR "_env") (VAR "_k5")
|
Store 2 (VAR "_env") (VAR "y")
|
Store 3 (VAR "_env") (VAR "_k7")
|
Store 4 (VAR "_env") (VAR "_x8")
|
_k7 = Load 0 (VAR "_k7")
|
App (VAR "__K7") [VAR "_K7",VAR "_x8"]

"_fa" ["_closure","x","_k5"]

I
_env = Load 1 (VAR "_closure")
I
_env = Malloc 2
I
Store © (VAR "_env") (VAR "x")
I
Store 1 (VAR "_env") (VAR "_k5")
I
__fé6 = Malloc 2
I
Store @ (VAR "__f6") (INT 2)
I
Store 1 (VAR "__f6") (VAR "_env")
I
__k5 = Load @ (VAR "_k5")

I
App (VAR "__k5") [VAR "_k5",VAR "__f6"]

I
Store 0 (VAR "__r2")
I
Store 1 (VAR "__r2") (VAR "_env")

I
f4 = Malloc 2

|
Store 0 (VAR "__f4") (INT 3)
I

Store 1 (VAR "__f4") (VAR "_env")

I
App (INT 3) [VAR "__f4" ,INT 13,VAR "__r2"]

(INT 1)

A.3. LamToWat Version 2 Transformation of: ((\x -> x + 1) 41)

A.3 LamToWat Version 2 Transformation of: ((\x -> x + 1) 41)

49

0s

. Jam2tree, Tree(Comp + Fix + Base)Val Bree2ips, ..
L Block
I
/ \
ko VAR "_x0"
|
_fi1 =1L (Fresh "f")
|
_k2 = L (Fresh "k")
|
R (L (Fix (("_f1",["x","_k2"]) ::: Nil)))
|
/ \
ks X4 = L (GetK "_nxt")

| |
_x3 = R (R (Add (VAR "x") (INT 1))) R (R (App (LABEL "_f1") [INT 41,VAR "_x4"]))

|
R (R (App (VAR "_k2") [VAR "_x3"1))
The most notable novelty in the command tree based CPS conversion is the use of the extensible sum constructors L and R and the use of a Block.
Blocks are used to bind parts of code together and replace the metacontinuation of the original version. If we take the code outside the block it
would end with an application of _f1. Since applications do not have a continuation, any code after it would be discarded. Since in this case the
application is the last thing that happens it does not really matter, but when we more than one application in our expression it becomes a problem.
Continuations will be dropped. This is not the behavior we want, so we use Blocks instead.

19

tree2tps hClos
—_—

Tps(Fix + Base)Val ‘ neros L.

L (Fix (("_r0",["_x1"]) ::: Nil))
I
/ \
ks L (Fix (("_f2",["x","_k3"]) ::: Nil))
| |
VAR "_Xl" ___
/ \
ks R (L (App (LABEL "_f2") [INT 41,LABEL "_r0"1))

_x4 = R (L (Add (VAR "x") (INT 1)))

R (L (App (VAR "_k3") [VAR "_x4"1))

After tree2tps our example no longer contains blocks. They have been replaced by continuation functions. In our example this means that block
_be has been replaced by function _re. We see that no more fresh commands are present. The program is the same as the program of the original
version before closure conversion up to renaming of variables. The structure of Fix is also a bit different, as the function names and parameters are
stored inside the Fix command and the function bodies are stored in the subcontinuations ks. We have handled the extra compilation commands
that were used to describe control flow Block and generate fresh variable names Fresh.

(1% (1 + X <- X\)) :JO UOT}UWLIOJSURI], T UOISIOA JeA O W] ‘€'Y

4]

hClos . hRecord
- —— | T'ps(Fix + Record + Base)Val ‘ —
R (L (Fix (("_ro",["_closure","_x1"]) ::: Nil)))
|
/ \
ks R (L (Fix (("_f2",["_closure","x","_k3"]) ::: Nil)))
| |
_env = L (Select 1 (VAR "_closure")) o
| / \
VAR "_x1" ks _env = L (Record [])
| |
_env = L (Select 1 (VAR "_closure")) __r0 = L (Record [LABEL "_r0",VAR "_env"])
| |
x4 = R (R (L (Add (VAR "x") (INT 1)))) __f2 = L (Record [LABEL "_f2",VAR "_env"])
| |
_env = L (Record [VAR "x",VAR "_k3",VAR "_x4"]) R (R (L (App (LABEL "_f2") [VAR "__f2" INT 41,VAR "__r0"])))

__k3 = L (Select 0 (VAR "_k3"))

[
R (R (L (App (VAR "__k3") [VAR "_k3",VAR "_x4"1)))

After closure conversion functions have an extra _closure argument. Bodies of functions are prefixed with opening the closure and postfixed with
creating closures before calling another function. In the previous version of LamToWat we did not get to see this rendering of our example, because

it was hoisted immediately.

€S

hRecord hFix
L

‘Tps(Fi:z + Malloc + Base)Val ‘ —_—

R (L (Fix (("_ro",["_closure","_x1"]) ::: Nil)))
|
c \
ks R (L (Fix (("_f2",["_closure","x","_k3"]) ::: Nil)))
_env = L (Load 1|(VAR "_closure")) ——————————————————————————————l —————————————————————————
I / \
VAR "_x1" ks _env = L (Malloc 0)
_env = L (Load 1|(VAR "_closure™")) __ro =1L lMalloc 2)
_x4 =R (R (L (Add |(VAR "x") (INT 1)))) L (Store 0 (VAR "_er") (LABEL "_ro"))
_env = L lMalloc 3) L (Store 1 (VAR ”_lro") (VAR "_env"))
L (Store © (VAR l_env") (VAR "x")) __f2 =1L lMalloc 2)
L (Store 1 (VAR "lenv") (VAR "_k3")) L (Store 0 (VAR "_le") (LABEL "_f2"))
L (Store 2 (VAR "lenv") (VAR "_x4")) L (Store 1 (VAR ”_lfz") (VAR "_env"))
__k3 =1L (Loadlo (VAR "_k3")) R (R (L (App (LABEL "_f2") [VJ\R "__f2",INT 41,VAR "__r0"])))

R (R (L (App (VAR "__k3") [VAR "_k3",VAR "_x4"1)))

(1% (1 + X <- X\)) :JO UOT}UWLIOJSURI], T UOISIOA JeA O W] ‘€'Y

1]

hFix

e ‘ (Fiz(T'ps(Malloc + Base)Val)) ‘ pszwat,

Fix
|
/ \
fs _env = L (Malloc 0)
| |
——— __r6 = L (Malloc 2)
/ \
"_ro" ["_closure","_x1"] "_f2" ["_closure","x","_k3"] L (Store @ (VAR "__r0Q") (LABEL "_ro"))
| | |
_env = L (Load 1 (VAR "_closure")) _env = L (Load 1 (VAR "_closure")) L (Store 1 (VAR "__r0") (VAR "_env"))
| | |
VAR "_x1" _x4 = R (L (Add (VAR "x") (INT 1))) __f2 = L (Malloc 2)
| |
_env = L (Malloc 3) L (Store © (VAR "__f2") (LABEL "_f2"))
| |
L (Store © (VAR "_env") (VAR "x")) L (Store 1 (VAR "__f2") (VAR "_env"))
| |
L (Store 1 (VAR "_env") (VAR "_k3")) R (L (App (LABEL "_f2") [VAR "__f2" INT 41,VAR "__ro"]))

L (Store 2 (VAR "_env") (VAR "_x4"))
|
__k3 = L (Load @ (VAR "_k3"))

|
R (L (App (VAR "__k3") [VAR "_k3",VAR "_x4"]))

qs

tps2wat emit .
S s String

Fix
I
/
fs
I
/ \
"_I"O" [Il_closurell s Il_xlll] n_.f:zll ["_closure" s Myt s ll_ksll]
I I
_env = Load 1 (VAR "_closure") _env = Load 1 (VAR "_closure")
I I
VAR "_x1" _x4 = Add (VAR "x") (INT 1)

_env = Malloc 3

Store @ (VAR "_env") (VAR "x")

Store 1 (VAR "_env") (VAR "_k3")

Store 2 (VAR "_env") (VAR "_x4")

I
__k3 = Load © (VAR "_k3")

I
App (VAR "__k3") [VAR "_k3",VAR "_x4"]

_r0@ = Malloc 2

I
Store 0 (VAR "__r0") (INT 0)

Store 1 (VAR "__r@") (VAR "_env")

__f2 = Malloc 2

Store 0@ (VAR "__f2") (INT 1)

Store 1 (VAR "__f2") (VAR "_env")

App (INT 1) [VAR "__f2",INT 41,VAR "__ro"]

(1% (1 + X <- X\)) :JO UOT}UWLIOJSURI], T UOISIOA JeA O W] ‘€'Y

A A

A4 LamToWat Version 2 Transformation of: ((\x y -> x +y) 13 29)

56

lam2tree . tree2tps
Tree(Comp + Fix + Base)Val | ———
L Block
/ \
ko VAR "_x0"
|
L Block
I
/ \
ko _x8 = L (GetK "_nxt")
I
_f2 = L (Fresh "f") R (R (App (VAR "_x1") [INT 29,VAR "_x8"])
I
_k3 = L (Fresh "k")
I
RO(L (Fix (("_f2",["x","_k3"]) ::: Nil))

/
ks
I
_f4 = L (Fresh "f")
I
_k5 = L (Fresh "k")

\
_X7 = L (GetK "_nxt")

R (R (App (LABEL "_f2") [INT 13,VAR "_x7"]))

RO(L (Fix (("_fa",["y","_k5"]) ::: Nil)))
/ \
ks R (R (App (VAR "_k3") [LABEL "_f4"]))

|
_x6 = R (R (Add (VAR "x") (VAR "y")))

R (R (App (VAR "_k5") [VAR "_x6"]))

VA,

(67 €T (A + X <- £X\)) :JO UOI}PULIOJSURI] 7 UOISIOA JeAOTWET “§'Y

8¢

tree2tps
—_

Tps(Fiz + Base)Val ‘

/
ks

VAR "_x1"

hClos

_— 5 ..

L (Fix (("_r@",["_x1"]) ::: Nil))
I
\
L (Fix (("_r2",["_x3"]) ::: Nil))
I
/ \
ks L (Fix (("_fa",["x","_k5"]) ::: Nil))
| I
R (L (App (VAR "_x3") [INT 29,LABEL "_r0"]))
/ \
ks R (L (App (LABEL "_f4") [INT 13,LABEL "_r2"]))
L (Fix (("_fe",["y","_k7"]) ::: Nil))
/ \
ks R (L (App (VAR "_k5") [LABEL "_f6"]))

_x8 = R (L (Add (VAR "x") (VAR "y")))

|
R (L (App (VAR "_k7") [VAR "_x8"]))

6S

hClos . hRecord
-+« —— | T'ps(Fix + Record + Base)Val | ——
R (L (Fix (("_re",["_closure","_x1"]) ::: Nil)))

/ \

ks R (L (Fix (("_r2",["_closure","_x3"]) ::: Nil)))

| I

_env = L (Select 1 (VAR "_closure"))
| / \
VAR "_x1" ks R (L (Fix (("_f4",["_closure","x","_k5"]) Nil)))
I I
_env = L (Select 1 (VAR "_closure"))
/ \
_env = L (Record [VAR "_x3"]) ks _env = L (Record [])
__r® = L (Record [LABEL "_r@",VAR "_env"]) _env = L (Select 1 (VAR "_closure")) __r2 = L (Record [LABEL "_r2",VAR "_env"])
I
__x3 = L (Select 0 (VAR "_x3")) R (L (Fix (("_f6",["_closure","y","_k7"]) NiD))) __fa = L (Record [LABEL "_f4",VAR "_env"])
I
R (R (L (App (VAR "__x3") [VAR "_x3",INT 29,VAR "__r0"]))) R (R (L (App (LABEL "_f4") [VAR "__f4",INT 13,VAR "__r2"])))
/ \
ks _env = L (Record [VAR "x",VAR "_k5"])

I
6 = L (Record [LABEL "_f6",VAR "_env"])
I
x =L (Select @ (VAR "_env")) __k5 = L (Select © (VAR "_k5"))
|
_k5 = L (Select 1 (VAR "_env")) R (R (L (App (VAR "__k5") [VAR "_k5",VAR "__f6"])))

_env = L (Select 1 (VAR "_closure"))

_x8 = R (R (L (Add (VAR "x") (VAR "y"))))

_env = L (Record [VAR "x",VAR "_K5",VAR "y",VAR "_K7",VAR "_x8"])

__K7 = L (Select ® (VAR "_k7"))

R (R (L (App (VAR "__k7") [VAR "_k7",VAR "_x8"])))

vV

JO UOT)eULIOJSURI], T UOISIOA JeAM O We |

(6T €T (A +x <- £x1))

09

... hltecord, ‘ Tps(Fix + Malloc + Base)Val ‘ LLIEN
R (L (Fix (("_re",["_closure","_x1"]) ::: Nil)))
|
/ \
ks R (L (Fix (("_r2",["_closure","_x3"]) ::: Nil))
_env = L (Load 1‘(VAR "_closure"))
VAR "',xl" l/<s R (L (Fix ((",H",[",clos:re",”x",",ks"]) ti NiL)))
_env = L (Load 1‘(VAR "_closure"))
_env = L LMalloc 1) ﬁs _env =
L (Store 0 (VAR "lenv”) (VAR "_x3")) _env = L (Load 1 (VAR "_closure")) _r2 =
_ro =1L ‘(Mauoc 2) R (L (Fix ((”,fﬁ",[”,closll.ire","y",”J<7"]) ti: NAL))) L (Store 0 (VAR
L (Store © (VAR ",lr@”) (LABEL "_ro")) : L (Store 1 (VAR
L (Store 1 (VAR "7lr0”) (VAR "_env")) is _env = L EMaIIoc 2) __fa =
X3 =1L (Load‘@ (VAR "_x3")) _env = L (Load 1‘(VAR "_closure")) L (Store 0 (VAR "_env") (VAR "x")) L (Store @ (VAR
R (R (L (App (VAR "__x3") [VLR "_x3",INT 29,VAR "__r0"1))) x = L (Load 0‘(VAR "_env")) L (Store 1 (VAR "_env") (VAR "_k5")) L (Store 1 (VAR
_k5 = L (Load 1 (VAR "_env")) _f6 = L (Malloc 2) R (R (L (App (LABEL "_fa"

R (R (L (Add (aAR "x") (VAR "y"))))
L ‘(Malloc 5)

L (Store 0 (VAR l_env") (VAR "x"))
L (Store 1 (VAR "lenv") (VAR "_k5"))

L (Store 2 (VAR l_env") (VAR "y"))

L (Store 3 (VAR "_env") (VAR "_K7"))

X8 =

_env =

L (Store 4 (VAR "_env") (VAR "_x8"))
|
L (Load @ (VAR "_k7"))

R (R (L (App (VAR "__k7") [VAR "_k7",VAR "_x8"])))

k7 =

L (Store 0 (VAR "__f6") (LABEL "_f6"))

L (Store 1 (VAR "__f6") (VAR "_env"))

k5 = L (Load © (VAR "_Kk5"))

R (R (L (App (VAR "__k5") [VAR "_k5",VAR "__f6"])))

\
L (Malloc 0)

L lMa'L'Loc 2)
"__r2") (LABEL "_r2"))
"__r2") (VAR "_env"))
L !Malloc 2)
n__fam) (LABEL "_fa"))

"__fa") (VAR "_env"))

[VAR "__f4",INT 13,VAR "__r2"])))

19

hFix

e —

‘ (Fiz(T'ps(Malloc + Base)Val

)) ‘ tps2wat

Fix

/
"_re" ["_closure","_x1"]

_env = L (Load 1 (VAR "_closure"))

VAR "_x1"

"_r2" ["_closure","_x3"]

_env = L (Load 1 (VAR "_closure"))

_env = L (Malloc 1)

L (Store @ (VAR "_env") (VAR "_x3"))

|
__ro = L (Malloc 2)

L (Store © (VAR "__r@") (LABEL "_ro"))

L (Store 1 (VAR "__r0") (VAR "_env"))

|
x3 = L (Load 0 (VAR "_x3"))

(VAR "__x3") [VAR "_x3",INT 29,VAR "__ro"]))

El

"_fan ["_closlre”,"x",”_ks"]
_env = L (Load 1‘(VAR "_closure"))
_env = L LMalloc 2)
L (Store @ (VAR i_env") (VAR "x"))
L (Store 1 (VAR ”lenv“) (VAR "_k5"))
__fe =1L LMalloc 2)
L (Store @ (VAR ",[FG”) (LABEL "_f6"))
L (Store 1 (VAR ",[FG”) (VAR "_env"))
__ks =1L (Load‘@ (VAR "_k5"))

|
(L (App (VAR "__k5") [VAR "_Kk5",VAR "__f6"]))

o

"_fe" ["_clos:re",”y”,”_k7"]
env = L (Load 1‘(VAR "_closure"))
x = L (Load 0‘(VAR "_env"))
_k5 = L (Load l (VAR "_env"))
_x8 = R (L (Add (VLR "x") (VAR "y")))
_env = L LMalloc 5)
L (Store @ (VAR l,env") (VAR "x"))
L (Store 1 (VAR ”[env") (VAR "_k5"))
L (Store 2 (VAR l_env”) (VAR "y"))
L (Store 3 (VAR ”lenv") (VAR "_Kk7"))
L (Store 4 (VAR ”lenv") (VAR "_x8"))
k7 =L (Load‘@ (VAR "_K7"))

|
(L (App (VAR "__k7") [VAR "_k7",VAR "_x8"1))

L (Store © (VAR

L (Store 1 (VAR

__fa =

L (Store © (VAR

L (Store 1 (VAR

R (L (App (LABEL "_f4") [VAR "__f4" INT 13,VAR "__r2"]))

\

L (Malloc 0)
|

L (Malloc 2)

"__r2") (LABEL "_r2"))
|

"__r2") (VAR "_env'"))

|
L (Malloc 2)

"__f4") (LABEL "_f4"))

|
"__f4") (VAR "_env"))

vV

JO UOT)eULIOJSURI], T UOISIOA JeAM O We |

(6T €T (A +x <- £x1))

29

tps2wat
—_

Fix

emit String

/
fs
|
/ I |
"_re" ["_closure","_x1"] "_r2" ["_closure","_x3"] "_f4" ["_closure","x","_k5"]
|
_env = Load 1 (VAR "_closure") _env = Load 1 (VAR "_closure") _env = Load 1 (VAR "_closure")
I I |
VAR "_x1" _env = Malloc 1 _env = Malloc 2
I |
Store O (VAR "_env") (VAR "_x3") Store @ (VAR "_env") (VAR "x")
I
_re = Malloc 2 Store 1 (VAR "_env") (VAR "_k5")
I |
Store 0 (VAR "__r@") (INT 0) __f6 = Malloc 2
I |
Store 1 (VAR "__r0") (VAR "_env") Store © (VAR "__f6") (INT 3)
I |
__X3 = Load 0 (VAR "_x3") Store 1 (VAR "__f6") (VAR "_env")
I |
App (VAR "__x3") [VAR "_x3",INT 29,VAR "__ro"] __k5 = Load © (VAR "_k5")

App (VAR "__k5") [VAR "_k5",VAR "__f6"]

"_fe" ["7clos:re”,"y",",k7"]
_env = Load 1 (LAR "_closure")
x = Load @ LVAR "_env")
_k5 = Load 1‘(VAR "_env")
_x8 = Add (VAR"‘x”) (VAR "y")
_env = ;alloc 5
Store 0 (VAR "1env") (VAR "x™")
Store 1 (VAR "_lnv“) (VAR "_k5")
Store 2 (VAR ”lenv“) (VAR "y")
Store 3 (VAR “_lnv") (VAR "_k7")
Store 4 (VAR "_an") (VAR "_x8")
_k7 = Load cL (VAR "_Kk7")

App (VAR "__k7") [VAR "_k7",VAR "_x8"]

\

env = Malloc 0
I

_r2 = Malloc 2
I

Store © (VAR "__r2") (INT 1)

Store 1 (VAR "__r2") (VAR "_env")

__f4 = Malloc 2

I
Store 0 (VAR "__f4") (INT 2)
Store 1 (VAR "__f4") (VAR "_env")

App (INT 2) [VAR "__f4" ,INT 13,VAR "__r2"]

	Preface
	Contents
	List of Figures
	Introduction
	Compiling with Continuations
	Data Types
	Transformations
	Discussion

	Compiling with Command Trees
	Command Trees
	Tree Transformations
	Command Tree Improvements
	Discussion

	Compiler Validation and Extension
	Testing
	Performance
	Other Transformations

	Related Work
	The Free Monad
	The Operational Monad
	Modular Denotational Semantics
	Extending Algebraic Effects

	Conclusion
	Bibliography
	A
	LamToWat Version 1 Transformation of: ((\x -> x + 1) 41)
	LamToWat Version 1 Transformation of: ((\x y -> x + y) 13 29)
	LamToWat Version 2 Transformation of: ((\x -> x + 1) 41)
	LamToWat Version 2 Transformation of: ((\x y -> x + y) 13 29)

