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Abstract
Tracker-level fusion (TLF) is recognized as an effective approach to comprehensively improve visual
object tracking performance by combining the capabilities of multiple baseline trackers. Although there
is considerable interest in TLF, there are still challenges related to insufficient understanding, high
cost, and unstable performance that make studying TLF difficult. In this thesis, I begin with an explicit
summary of the overall pipeline of TLF which has significant guidance for TLF study. Additionally, I
conduct a deep analysis of the positive and negative effects of baseline trackers to fully understand their
influence on TLF. For visual object tracking, I propose three TLF frameworks based on three Distributed
Kalman filters which are optimized for different scenarios and enable the fusion of different baseline
trackers to enhance tracking performance. My TLF frameworks fuse the tracking results of different
baseline trackers based on the principle of minimal trace to produce fusion results. Additionally, they
exhibit superior and stable performance with general baseline tracker requirements, while also being
simple, online, and real-time. Furthermore, the proposed frameworks can benefit from state-of-the-
art baseline trackers over time, which will further improve their tracking performance. The proposed
analysis and frameworks are studied extensively on three challenging benchmarks: generic tracking
OTB2015, short-term tracking GOT-10k, and long-term tracking LaSOT. At over 240 FPS, the state-of-
the-art success AUC score of 72.7% is achieved on OTB2015.

Keywords: Visual object tracking, Tracker-level fusion, Distributed Kalman filtering
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Nomenclature
• VOT: Visual Object Tracking

• MOT: Multiple Object Tracking

• IoU: Intersection over Union

• KF: Kalman Filter

• TLF: Tracker-Level Fusion

• bbox: Bounding Box

• CF: Correlation Filtering

• FPS: Frames per Second

• CNN: Convolutional Neural Network

• FC: Fully Connected Layer

• ROI: Region of Interest

• DL: Deep Learning

• CV: Linear Constant Velocity

• CP: Linear Constant Position

• AUC: Area Under Curve

• GT: Ground Truth

• std: Standard Derivation

• RL: Reinforcement Learning
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1
Introduction

1.1. Background
Visual Object Tracking (VOT), also known as Single Object Tracking, is an essential task in computer
vision and has wide application in domains, including video surveillance (Brunetti et al., 2018; Tang et
al., 2017; Haritaoglu et al., 2000), human-robotic interaction (Bonin-Font et al., 2008), and autonomous
driving (Lee and Hwang, 2015). Therefore, studying VOT is paramount as it facilitates the application of
computer vision technology in practice. However, for VOT, only the initial target state (e.g., position and
scale) is available for the tracker, which limits the target information and poses a considerable challenge
for VOT. Nonetheless, this unique nature of initialization offers VOTmethods various possibilities in real-
life scenarios. Compared with model-based tracking, such as tracking-by-detection, which can only
track objects with the same classes as those in the training set, a significant advantage of VOTmethods
is that they can track objects of different classes, which can be classified as model-free tracking. This
advantage of VOT methods provides an excellent solution to track some special targets, such as a
person wearing clothing with a particular style in a crowd which is hard to obtain a sufficient dataset for
training. However, there are many challenging factors for VOT tasks in real scenes, such as occlusion,
scale variation, fast motion, background clutters, illumination variation, deformation, and more (Wu et
al., 2015), as shown in Figs.1.1-1.5.

Figure 1.1: Occlusion: the target is partially or fully occluded. The top-left number is the frame step of the sequence.

1.2. Motivation
Nowadays, more and more scholars are interested in VOT with numerous significant works proposed.
Generally, I divide VOT methods into two types based on the number of trackers in the tracking system:
single tracker systems and multiple tracker systems. The former is more common for the VOT task. For
example, now the most famous VOT method is the Siamese Network Tracking family, while previously
popular trackers were based on Correlation Filtering (CF). These methods concentrate on enhancing
the robustness of target appearance representation and mitigating inaccurate Bounding Box (bbox)
prediction within a single tracker to address appearance and scale changes in a target. Undoubtedly,
this is the basis for solving the VOT task, and it will still be the mainstream research direction in the

1



2 1. Introduction

Figure 1.2: Scale Variation: the ratio of the bounding boxes of the first frame and the current frame is out of the range 2.

Figure 1.3: Background Clutters: the background near the target has a similar color or texture as the target.

Figure 1.4: Illumination Variation: the illumination in the target region is significantly changed.

Figure 1.5: Deformation: non-rigid object deformation.
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future. Nonetheless, as demonstrated in Figs.1.1-1.5, different trackers exhibit different tracking per-
formances on various tracking scenes, making it challenging to identify a single tracker that performs
well in all scenarios. To improve tracking performance, a simple, yet reasonable solution is to construct
a tracking system that comprises multiple baseline trackers to leverage their strengths and circumvent
their limitations. This methodology is called Tracker-level Fusion (TLF) or ensemble-based tracking
(N. Wang et al., 2015). Here, TLF refers to the methods based on the tracking results of baseline
trackers. Driven by this notion, several TLF methods have emerged to provide more reliable tracking
performance by fusing the tracking results of different baseline trackers in recent times.

Despite the usefulness of TLF methods, questions remain concerning whether they adequately
address the critical components of a TLF method, and whether the impact of tracking results from
baseline trackers is adequately diagnosed. TLF methods tend to focus on proposing new approaches,
leading to insufficient exploration of the above problems. It is worth noting that understanding the
critical components has guiding significance on how to present a new TLF method. And diagnosing
the influence of the baseline trackers is also crucial since the fusion result is based on the tracking
results of the baseline trackers. Furthermore, while single-tracker-related work has seen vigorous
development, the research on TLF is relatively limited. To enrich VOT task methods, it is essential
to actively explore the TLF topic. While contemplating the proposal of a new TLF method, I discover
various works (single tracker systems) that utilize Kalman Filtering (KF) (Kalman, 1960) for the VOT
tasks, such as Rais and Munir (2021) and Iqbal et al. (2022). However, no work combines Distributed
KF with TLF, where Distributed KF is a variant of KF that requires multiple trackers to collaboratively
estimate target state. As KF plays an important role in practical engineering, investigating the relevant
topic of combining Distributed KF with TLF idea for the VOT task is essential.

1.3. Objectives
Motivated by the aforementioned analysis, I propose the following research questions to be investigated
in this thesis:

1. What are the essential components for designing and implementing a TLF method?

2. How do the baseline tracker’s tracking results affect the accuracy and robustness of the TLF
method’s fusion result?

3. How can Distributed Kalman Filter be leveraged to propose a TLF method that improves tracking
accuracy and robustness?

1.4. Contributions
In this thesis, I aim to answer the above research questions. To address the first research question,
I deconstruct TLF methods into four constituent components: Tracker Ensemble, Tracker Evaluation,
Result Fusion, and Feedback. Here, these four capitalized words above refer to the components.
These components are commonly found in existing TLF methods. For the second research question,
I conduct an in-depth analysis of baseline trackers to identify the positive and negative effects of their
tracking results. The positive effect is tracker diversity, while negative effects include the limited number
of baseline trackers, acceptability of the baseline tracker for feedback, occasional poor tracking results,
and inevitable poor tracking results.

Concerning the third research question, I first propose the Standard Flexible Optimal KF (FOKF-
Standard) for the VOT scenario based on our previous work (Zhong and Liu, 2021). Based on the
above works for the first research question and Standard FOKF, I design a new TLF method, namely,
TLF-FOKF-Standard. It considers the tracking results of baseline trackers as the local and community
measurements before generating the fusion result. This fusion result is then fed back into baseline
trackers to improve the stability of their tracking results. However, since FOKF-Standard only performs
better for baseline trackers with similar tracking uncertainty which relies on the idea of average, I up-
grade FOKF-Standard to FOKF-R by modifying the weight state vector. FOKF-R is effective in dealing
with baseline trackers with significant differences in tracking uncertainty as long as there are accurate
tracking uncertainties. Building upon the same strategy as TLF-FOKF-Standard, I present TLF-FOKF-
R based on FOKF-R. To reduce the time complexity and exploit vague prior knowledge that only the
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best baseline tracker in the tracker ensemble is known, I design FOKF-M by compressing the number
of KF trackers of FOKF and propose TLF-FOKF-M similarly.

Overall, this thesis proposes a systematic approach for designing and implementing TLF methods
by deconstructing them into essential components, analyzing the effects of baseline tracker results,
and leveraging the capabilities of Distributed KF to improve tracking accuracy and robustness. My
contributions can be summarized in four-fold:

1. By analyzing the existing TLF methods, I summarize four critical components of a TLF method
with a general pipeline, which can guide the practical design of modern TLFmethods and improve
our understanding of TLF methods.

2. I identify the key characteristics of baseline trackers and their impact on the fusion result, offering
important insights for the development and application of TLF methods in practical engineering.

3. I employ FOKF techniques on VOT and propose three simple but powerful TLF-FOKF methods
that bridge the gap in Distributed KF applications for VOT.

4. My approach achieves state-of-the-art performance on three challenging benchmarks. To the
best of my knowledge, my TLF-FOKF is the first TLF method that achieves success AUC score
72.7% on OTB2015 while running over 240 FPS.

In summary, Chapter 2 provides an overview of related works, including the general VOT tracker
framework, baseline trackers, TLF methods, Distributed KF, and a summary. Chapter 3 presents the
critical components of a TLF method. Additionally, this chapter discusses the influence of baseline
trackers and proposes related TLF-FOKFmethods. In Chapter 4, extensive experiments are performed
to evaluate the effectiveness of the proposed analysis and methods thoroughly. The results demon-
strate the superiority of the proposed TLF-FOKF methods. Finally, Chapter 5 concludes the thesis by
summarizing the main findings and contributions, and offering recommendations for future research
directions.



2
Related Work

The previous chapter has introduced the motivation and research questions of this thesis, but further
details are required. In this chapter, I introduce a general VOT tracker framework that describes the
common tracking mechanism used by baseline trackers and TLF methods. Then, I discuss common
baseline trackers used in VOT and briefly describe their methodologies. The chapter also reviews state-
of-the-art TLF methods and provides a description of Distributed KF to establish its feasibility in TLF.
Finally, I summarize the key findings of this chapter, specifically highlighting important observations
and research gaps addressed by my thesis.

2.1. A General VOT Tracker Framework
VOT is an important research topic in the field of computer vision, image understanding, and pattern
recognition. The primary objective of VOT is to automatically obtain the states of the object in the
subsequent video frames by giving the initial state (center location and scale) of an object in the first
frame. N. Wang et al. (2015) proposed a general VOT tracker framework that summarizes the tracking
mechanism of the existing tracking methods in the following steps: 1. initializing the observation model
with a bbox of IT in the first frame; 2. generating candidate regions through the motion model; 3.
extracting features of the candidate regions by the feature extractor; 4. calculating their probabilities
using the observation model and selecting the region with the highest probability as an estimation of the
IT object; 5. deciding whether the observation model requires an update based on its output; 6. using
the ensemble post-processor to combine the bboxs of multiple trackers for a more accurate estimation.
According to the these steps, the tracking methods based on the above five steps are defined as the
baseline tracker, while the tracking methods involving step six are defined as the TLF methods.

2.2. Baseline Trackers for Visual Object Tracking
Based on the information provided in the previous section, it is evident that TLF methods rely on base-
line trackers. Therefore, it is crucial to have an understanding of the methodology of baseline trackers
to understand the role they play in TLF methods. The selection of baseline trackers is typically based
on methodology categories and popularity.

2.2.1. Correlation Filtering-Based Tracking
Correlation filtering (CF) is one of the earliest VOTmethods known for its simplicity and speed, achieved
by applying a correlation filter to find the maximum response area of IT. MOSSE (Bolme et al., 2010)
is a famous early work that achieved an ultra-fast tracking speed of 615 FPS using CF (Y. Zhang et
al., 2021). Inspired by MOSSE, CSK (Henriques et al., 2012) proposed circulant matrices to achieve
dense samples for improved performance at hundreds of FPS. However, neither of thesemethods could
address the scale adaptive problem adequately, and their ability to express features was not strong
enough. To overcome these limitations, SAMF (Y. Li and Zhu, 2014) integrated different features, and
a scale pool was used to improve overall tracking capability. To further improve the ability to handle
significant appearance variation in the object, LCT (Ma et al., 2015) introduced the temporal context
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model to address large deformations and heavy occlusions. Boundary effects caused by sampling
became more notable in the CF methods leading Dai et al. (2019) to propose a novel adaptive spatially-
regularized correlation filters model to estimate better filter coefficients and spatial regularization weight.
However, pursuing better performance has led to increased time complexity and the risk of overfitting
in CF methods. ECO (Danelljan et al., 2017) revisited the core CF formulation, striking a balance
between time complexity, accuracy, and robustness. Despite their initial popularity, recent years have
seen minimal refreshing work in the field of CF.

2.2.2. Deep Learning-Based Tracking
Deep learning-based trackers are currently more popular due to the powerful feature representation
capabilities of deep neural networks. Initially, scholars trained CNN for general feature representation
and used fully connected layers (FC) to classify foreground and background or regress the location
of IT, leading to models such as MDNet (Nam and Han, 2016), TCNN (Nam et al., 2016), and DSLT
(Lu et al., 2018). However, these tracking models were bulky, with a low running speed. Similar
to the way CF tracking worked and motivated by the strong feature representation abilities of CNN,
Siamese Networks-based trackers summarized the VOT problem as measuring the similarity of the
template of IT and ROI based on CNN feature representation. This approach significantly improved
accuracy, running speed, and robustness. The pioneering work for VOT is SiamFC (Bertinetto et al.,
2016). Several works have been proposed to improve the feature representation, scale adaptation, and
temporal context, including GOTURN (Held et al., 2016), SiamRPN (B. Li et al., 2018), SiamRPN++
(B. Li et al., 2019), SiamFC++ (Xu et al., 2020), and STMTrack (Fu et al., 2021). However, CNN-
based trackers have limited long-term tracking capabilities as their correlation-based feature-matching
process cannot handle object appearance changes in long tracking sequences. As a result, there has
been increasing interest in using transformers for object tracking, leveraging the development of the
Attention mechanism (Vaswani et al., 2017). STARK (Yan et al., 2021) and SwinTrack (L. Lin et al.,
2021), among others, have shown superior performance on long-term tracking by exploiting temporal
context. However, the transformer’s acquisition of local information is not as strong as CNN, and
tracking continuity is challenging due to the encoding of location information.

2.3. Tracker-Level Fusion
As stated in the introduction of the previous section, the significant developments of baseline trackers
have led to a considerable diversity of these trackers. Each has its own strengths and drawbacks in
different VOT scenarios. TLF methods can absorb the strengths of different baseline trackers to further
improve tracking performance. Therefore, this section discusses existing TLF methods to understand
the current research status and identify research gaps.

Tracker-level fusion (TLF), also known as ensemble-based tracking, involves implementing multiple
baseline trackers to achieve better tracking performance (Biresaw et al., 2014). A commonly employed
TLF framework for enhancing feature representation and improving performance involves using mul-
tiple baseline trackers, each with distinct features (Yoon et al., 2012; N. Wang et al., 2018; Moorthy
and Joo, 2021). Although effective, this technique’s limitations arise from being exclusive to feature
representation techniques.

Therefore, in an effort to extract more information from the baseline trackers and be more versatile,
other researchers have proposed a bbox majority voting approach directly from the tracker level. One
notable study, (Bailer et al., 2014), required only bbox inputs and introduced a loss function for bbox
majority voting. This method essentially converts the fusion problem into maximizing energy or mini-
mizing entropy by evaluating pairwise distances between different bbox of various baseline trackers,
as demonstrated by J. Zhang et al. (2014) and Xie et al. (2019). This approach, however, often neces-
sitates a large number of baseline trackers to achieve stable performance, leading to increased usage
costs.

In contrast to the approach of using more baseline trackers to improve performance, some re-
searchers are investigating how to efficiently fuse a small number of baseline trackers. For instance,
Dunnhofer et al. (2022) presented an example of the complementary relationship between STARK and
SuperDiMP (Bhat et al., 2019), where STARK produces bboxs that tightly fit the target, but with in-
consistent tracking confidence (either wrong or overconfident). In contrast, SuperDiMP provides less
accurate target localizations, but its tracking confidence is more consistent. Leveraging the comple-



2.4. Distributed Kalman Filtering 7

mentary strengths of these two baseline trackers, the authors propose a tracker evaluation function to
determine which tracker is correctly following the target. However, this approach is heavily dependent
on the selection of the baseline trackers.

Recently, as reinforcement learning (RL) has gained momentum, some new studies have proposed
a tracker selection strategy based on RL, including Dunnhofer et al. (2020) and W. Zhang et al. (2020).
However, using a new baseline tracker requires additional training, which poses a significant challenge
compared to majority voting. Additionally, RL-based algorithms are frequently unstable, especially
when adapting to new environments.

2.4. Distributed Kalman Filtering
This section provides an overview of Distributed Kalman Filtering and explores its potential for use in
TLF. Distributed KF is a variant of KF that differs in that it is designed for use in a distributed system
where sensors and estimators operate independently and exchange information. Distributed KF is
composed of multiple KF trackers that collaborate to estimate target states for improved estimation
performance. Numerous works in the field of automatic control engineering have used Distributed KF
for typical state estimation, including Zhong and Liu (2021), Yonggui and Bugong (2012), G. Wang et
al. (2017), and Zhao and Guo (2017). One advantage of Distributed KF is its ability to optimally utilize
subsystem information for fusion estimation in linear systems with Gaussian noise, while also retaining
the simplicity, speed, and stability of KF. Based on this analysis, it is possible to treat the baseline
trackers as sensors to generate measurements for corresponding KF trackers, which could act as a
TLF method. To the best of our knowledge, no work has explored the application of Distributed KF to
VOT, making further research in this area highly significant.

2.5. Summary
To summarize Sections 2.1 and 2.2, current research on baseline trackers concentrates on improv-
ing the feature extractor, motion model, observation model, and model updater to enhance tracking
performance. While these improvements have resulted in unique advantages for baseline trackers, it
remains challenging to find a tracker that performs well in all scenarios. Therefore, TLF represents
an effective way to enhance tracking accuracy and robustness by combining the strengths of multiple
baseline trackers from a broader perspective.

Regarding the development and use of baseline trackers ensembles, there are several categories
of TLF methods, each with its own limitations. TLF methods based on feature fusion, special base-
line tracker ensembles, and RL suffer from limited potential tracking performance or high usage costs
since each requires a specific tracker ensemble which makes it difficult to benefit from new baseline
trackers. Additionally, the stability of these methods’ fusion performance is questionable due to the
lack of solid mathematical derivation explaining their fusion process. TLF methods based on majority
voting require a large number of baseline trackers to maintain stable fusion performance. Therefore,
this thesis proposes a solution to address these challenges by applying the principles of Distributed
KF. The proposed approach offers a simple and fast method for obtaining superior fusion performance
while maintaining low usage costs and significant potential for enhancements. Furthermore, this work
fills the gap in the field of VOT by introducing the application of Distributed KF.





3
Methodology

In this chapter, my proposed overview pipeline of a TLF method with four critical components is pre-
sented in Section 3.1. My deep analysis of the influence of tracking results of baseline trackers is given
in Section 3.2. I propose FOKF-Standard which is revised for VOT in Section 3.3, while its proposed
TLF method, namely, TLF-FOKF-Standard, is introduced in Section 3.4. In Section 3.5, I present an
upgraded version of FOKF-Standard, FOKF-R, to overcome its limitations when tracking uncertainty
of baseline trackers is significantly dissimilar, followed by TLF-FOKF-R in Section 3.6. Given that it
is challenging to obtain accurate measurement uncertainty values for each frame and each baseline
tracker in practice, I propose FOKF-M and TLF-FOKF-M in Section 3.7 and Section 3.8 by selecting
the best baseline tracker as the main baseline tracker to take advantage of easy-to-learn prior knowl-
edge. Moreover, FOKF-M demonstrates significantly reduced time complexity from quadratic-level to
linear-level.

3.1. Critical Components of A Tracker-Level Fusion Method
In this section, I summarize the general pipeline and critical components of TLF methods. After re-
viewing various TLF techniques, I decompose the methodology into four constituent parts, outlined in
Fig.3.1. Their functions are detailed below. Most TLF methods can be viewed as variations of this
pipeline, including the pioneering work of Bailer et al. (2014), where these four components are par-
tially incorporated but not explicitly defined or summarized. Additionally, Xie et al. (2019) proposed a
comparable pipeline, including Tracker Ensemble, Result Fusion, and Tracker Evaluation but omitting
Feedback. Dunnhofer et al. (2022) also designed a similar pipeline, but with a unique Result Fusion
module that selects one of the tracking results of baseline trackers as the fusion output. Similarly, my
pipeline framework can be used to understand the works of Moorthy and Joo (2021), N. Wang et al.
(2018), Vojir et al. (2016), and other related studies.

Figure 3.1: Overview pipeline of the proposed framework of most TLF methods. The various color dots correspond to different
baseline trackers, while the surrounding rectangles depict the corresponding components involved.

1. Tracker Ensemble: This module comprises several baseline trackers that generate tracking re-
sults in parallel or sequentially from the same frame.

2. Tracker Evaluation: Its primary function is to assess the credibility of a tracker based on its

9
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tracking results for Result Fusion. It determines whether the tracker’s output passes to Result
Fusion or not.

3. Result Fusion: This component weighs the tracking results and produces the final tracking output
based on the credibility information derived from Tracker Evaluation.

4. Feedback: This module governs the strategy and frequency of updating the final result for the
baseline trackers. It has to balance the trade-off between enhancing and hindering the tracking
performance of the baseline trackers.

A tracking system that employs multiple baseline trackers typically initializes Tracker Ensemble,
Tracker Evaluation, and Result Fusion with the given bounding box of the target in the initial frame. In
each subsequent frame, the multiple baseline trackers in Tracker Ensemble generate candidate track-
ing results in parallel. Tracker Evaluation then evaluates these candidate results to compute their eval-
uation metrics, such as the probability of being the target. Based on the evaluation metrics, unreliable
baseline trackers are removed from the ensemble, and the remaining tracking outputs are assigned
their corresponding evaluation metrics. Result Fusion subsequently weights these tracking results
based on the assigned evaluation metrics to produce the final result. If feedback is used to enhance
the tracking performance of the baseline trackers and support the fusion process, the TLF algorithm is
actively performed using the final result as its feedback. The pipeline is presented in Fig.3.1.

3.2. Deep Analysis of Baseline Trackers’ Influence
Fig.1.1-1.5 clearly demonstrate the varying tracking results of different baseline trackers across differ-
ent scenes. TLF methods attempt to achieve more accurate fusion results by skillfully leveraging the
complementarity of each baseline tracker’s tracking characteristics. However, inadequate knowledge
of the baseline trackers’ behavior may hinder the fusion process more than support it. This section
presents how the tracking results of baseline trackers affect TLF in both positive and negative ways.
The positive effect is the diversity that multiple trackers offer, while the negative effects include the
limited number of baseline trackers, the baseline tracker’s acceptability for Feedback, and occasional
poor tracking results that are inevitable. Properly managing the positive effect can lead to a more stable
and accurate fusion result, while neglecting the negative effects may hinder the overall performance
improvement of TLF methods.

3.2.1. Positive Effect
Tracker diversity is a critical aspect to enhance the effectiveness of TLF methods N. Wang et al., 2015,
which is defined as the overall performance of different baseline trackers. An essential evaluation
metric that explicitly represents tracker diversity is the upper bound, as determined by selecting the
tracking result of the baseline tracker with the highest GT-based IoU in each frame as the fusion output
(Bailer et al., 2014). To demonstrate this idea clearly, we designed an ideal TLF algorithm that selects
the best tracking result based on the GT-based IoU of baseline trackers in each frame, which generates
the upper bound. An example of this outcome is shown in Fig.3.2. It can be observed that the tracker
diversity of STMTrack and ECO_HC is significantly higher than that of STMTrack and SiamRPN, and
their upper bounds manifest a positive correlation. This finding indicates that the improved tracking
performance of TLF methods, as reflected by the higher Upper Bound curve, is mainly attributable to
tracker diversity. Further and more comprehensive experiments are presented in Section 4.2.4.

3.2.2. Negative Effects
However, it is evident that introducing more baseline trackers enhances diversity but may also cause
hindrances, as illustrated in Fig. 3.2; for instance, SiamRPN underperforms during frames [500,700],
and STMTrack’s performance deteriorates during frames [300,500]. Accordingly, it is imperative to
identify the common negative impact of tracking results of baseline trackers for developing TLF ap-
proaches. To facilitate comprehensive comprehension of TLF methods, I advance four challenging
factors, presented as follows. More comprehensive experimental results are shown in Sections 4.2.4
and 4.2.7.

1. Limited Number of Baseline Trackers: Tracker diversity is influenced by the number of base-
line trackers used. For example, in Fig.3.2, STMTrack’s average intersection-over-union (IoU)
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Figure 3.2: Tracker diversity. This figure illustrates the tracker diversity of STMTrack, ECO_HC, and SiamRPN along a sequence,
as represented by the IoU curves. The corresponding simple TLF trackers are shown by the upper bound curves. The red
rectangle represents the ground truth label, while the green rectangle indicates the tracking result. The red curve represents
the upper bound curve, and the number after the legends is the average IoU. The top sub-figure (STMTrack+ECO_HC) exhibits
a greater tracker diversity, resulting in a higher tracking performance for the corresponding TLF tracker (0.775). In contrast,
the bottom sub-figure (STMTrack+SiamRPN) displays a lower tracker diversity, yielding a lower tracking performance for the
corresponding TLF tracker (0.563).

is lower (0.515) than that of STMTrack+ECO_HC (0.839). Additionally, TLF methods require a
minimum number of tracking results to achieve optimal performance. For instance, Xie et al.
(2019) demonstrates that their TLF method performs better with three baseline trackers and has
the best performance with eight, compared to using one or twenty. However, using too many
baseline trackers presents challenges since they increase the computational, storage, and im-
plementation costs, thus limiting the performance of TLF methods.

2. Acceptability of Baseline Tracker for Feedback: If a TLF algorithm requires feedback, the
feasibility of the baseline tracker to support the fusion process must be taken into account. Bailer
et al. (2014) reported that baseline trackers are usually not designed to receive feedback or be
corrected by fusion results.

3. Occasional Poor Tracking Results: Occasional poor tracking results occur randomly with no
discernable pattern. For instance, the reason for the poor performance of STMTrack and SiamRPN
during frame 300 is unknown, although they perform reasonably well at some other times.

4. Inevitable Poor Tracking Results: Inevitable poor tracking results occur when a baseline tracker
is limited in some scenes. For example, as shown in Fig.1.5, MOSSE performs poorly in scenes
with drastic scale changes since it does not have scale changeability. DeepSORT is limited by
a fixed set of classes and object bbox sizes based on the training set, which explains its poor
performance on unrestricted test sets. Fig.1.4 shows that DeepSORT tracks the whole singer
instead of just the upper body for VOT tasks, caused by misalignment of training and test sets.
STARK jumps repeatedly in a large range when encountering similar targets (Fig.1.3), making it
difficult to track objects effectively sometimes.

3.3. Standard Flexible Optimal Kalman Filtering
In this section, I describe my proposed Standard Flexible Optimal KF (FOKF-Standard) in detail. The
idea is derived from our previous work (FOKF) (Zhong and Liu, 2021), and the equations of FOKF-
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Standard are similar to FOKF. However, due to the different measurement definitions of 𝑍𝑖𝑡, there are
slight differences in their corresponding equations. In FOKF, 𝑍𝑖𝑡 is defined as 𝑍𝑖𝑡 = 𝑎𝑖𝑡𝐻𝑖𝑡𝑋𝑡 + 𝑣𝑖𝑡 since it
incorporates the actual sensor noise of the sensor. On the other hand, FOKF-Standard defines 𝑍𝑖𝑡 as
Eq.3.2 as it does not need to account for the noise of the baseline tracker for VOT tasks if the tracking
result is invalid.

FOKF-Standard is an extension of FOKF that incorporates the refinement proposed in Eq.3.2. It
is a distributed Kalman filter that can optimally estimate the state of the target across intermittent ob-
servations and varying sensing states. Based on the minimum error covariance trace principle, FOKF-
Standard can optimally and collaboratively estimate the state of the target via their own and community
observations, which derive the local Kalman gain and the community Kalman gain, respectively. In
addition, the design of the flexible values can satisfactorily represent the various circumstances, in-
cluding partial trackers lost, all trackers lost, and no trackers lost. Here, the tracker lost denotes that
the baseline tracker provides an invalid measurement. With a limited number of trackers in the tracker
ensemble, which is usually constrained by hardware and labor costs, FOKF-Standard has a low time
complexity of 𝑂(𝑁𝑀) with 𝑁 and 𝑀 representing the number of baseline trackers and the community
of one of the baseline trackers, respectively.

3.3.1. Problem Formulation
In a TLF method, the initial step involves the use of a baseline tracker ensemble to generate tracking
results (measurements). Based on the nature of the VOT task, the following notation and assumptions
can be made:

Notation: For a baseline tracker ensemble that provides measurements, a corresponding KF
tracker ensemble can be created. Let 𝑇𝑡 = {1, 2, ..., 𝑁} denote the KF tracker ensemble at time step
𝑡, whereby 𝑖 ∈ 𝑇𝑡 represents the index of KF tracker 𝑠𝑖. The KF tracker 𝑠𝑖 is connected to a set of
indices representing its community, denoted 𝐶𝑖𝑡 = {𝑗 ∈ 𝑇𝑡 ∶ 𝑗 ≠ 𝑖}. In VOT tasks, there is no limitation
on the interchange of information among KF trackers, thus allowing 𝑠𝑖 to freely exchange information
with other KF trackers.

Assumption 1:𝑎𝑖𝑡, 𝑐𝑖𝑡, and 𝑑𝑖𝑡 are defined as the flexible values. Here, 𝑎𝑖𝑡 = 1 if the measurement
of 𝑠𝑖 is valid, otherwise, 𝑎𝑖𝑡 = 0. 𝑐𝑖𝑡 = 1 if its community 𝐶𝑖𝑡 has the element 𝑗’s 𝑎𝑗𝑡 = 1 or 𝑠𝑖 ’s 𝑎𝑖𝑡 = 1,
otherwise, 𝑐𝑖𝑡 = 0. 𝑑𝑖𝑡 = 1 if 𝑎𝑖𝑡 = 0 and 𝑐𝑖𝑡 = 0, otherwise, 𝑑𝑖𝑡 = 0. 𝑛𝑖𝑡 = ∑𝑗∈𝐶𝑖𝑡 𝑎

𝑗
𝑡 . Note that 𝑎𝑖𝑡 is used to

indicate whether measurement 𝑍𝑖𝑡 is valid, 𝑐𝑖𝑡 is used to represent whether there is more than one valid
measurement, 𝑑𝑖𝑡 is used to guarantee FOKF-Standard to be normal in extreme cases (without valid
measurements), 𝑛𝑖𝑡 is used to count the number of valid community measurements.

The movement of the target in VOT tasks can be represented as a linear discrete time-varying
system with Gaussian Distributed noise 𝑤𝑡 as follows:

𝑋𝑡 = 𝐴𝑡𝑋𝑡−1 +𝑤𝑡 (3.1)

Because the sensing noise does not need to be considered in the VOT task if the measurement is
invalid, the measurement 𝑍𝑖𝑡 can be defined as follows:

𝑍𝑖𝑡 = 𝑎𝑖𝑡(𝐻𝑖𝑡𝑋𝑡 + 𝑣𝑖𝑡) (3.2)

where 𝑋𝑡 ∈ 𝑅𝑛 is the true state vector of IT, 𝑍𝑖𝑡 ∈ 𝑅𝑚 is the measurement vector received by 𝑠𝑖.
𝐴𝑡 ∈ 𝑅𝑛×𝑛 is the state transition matrix, while 𝐻𝑖𝑡 ∈ 𝑅𝑚×𝑛 is the state-to-measurement matrix. 𝑤𝑡 ∈ 𝑅𝑛
is the processing Gaussian Noise with zero mean and covariance matrix 𝑄𝑡, while 𝑣𝑡 ∈ 𝑅𝑚 is the
measurement Gaussian Noise with zero mean and covariance matrix 𝑅𝑖𝑡.



3.3. Standard Flexible Optimal Kalman Filtering 13

The designed filter is shown as follows:

𝑒𝑖𝑡 = 𝑎𝑖𝑡(𝑍𝑖𝑡 − 𝐻𝑖𝑡𝑋𝑤𝑡|𝑡−1) (3.3)

𝑋𝑖𝑡|𝑡 = (𝑐𝑖𝑡 + 𝑑𝑖𝑡)𝑋𝑤𝑡|𝑡−1 + 𝑎𝑖𝑡𝐿𝑖𝑡𝑒𝑖𝑡 + 𝑁𝑖𝑡 ∑
𝑗∈𝐶𝑖𝑡

𝑒𝑗𝑡 (3.4)

𝑋𝑖𝑡+1|𝑡 = 𝐴𝑡𝑋𝑖𝑡|𝑡 (3.5)

𝑋𝑤𝑡|𝑡 =
∑𝑖∈𝑇𝑡 𝑋

𝑖
𝑡|𝑡

∑𝑖∈𝑇𝑡 𝑐
𝑖
𝑡 + 𝑑𝑖𝑡

(3.6)

𝑋𝑤𝑡+1|𝑡 =
∑𝑖∈𝑇𝑡 𝑋

𝑖
𝑡+1|𝑡

∑𝑖∈𝑇𝑡 𝑐
𝑖
𝑡 + 𝑑𝑖𝑡

(3.7)

where 𝑒𝑖𝑡 ∈ 𝑅𝑚 is the residual error, 𝑋𝑖𝑡|𝑡 ∈ 𝑅𝑛, 𝑋𝑡+1|𝑡 ∈ 𝑅𝑛 and 𝑋𝑤𝑡+1|𝑡 are the update, prediction, weight
update, and weight prediction estimation of 𝑠𝑖, respectively. 𝐿𝑖𝑡 and 𝑁𝑖𝑡 ∈ 𝑅𝑛×𝑚 are called local Kalman
gain and community Kalman gain, respectively.

3.3.2. Derivation
According to Eqs.3.1, 3.4, 3.5 and 3.7, the corresponding estimation errors are defined as:

𝑋𝑖𝑡+1|𝑡 ≡ (𝑐𝑖𝑡 + 𝑑𝑖𝑡)𝑋𝑡+1 − 𝑋𝑖𝑡+1|𝑡 (3.8)

𝑋𝑖𝑡|𝑡 ≡ (𝑐𝑖𝑡 + 𝑑𝑖𝑡)𝑋𝑡 − 𝑋𝑖𝑡|𝑡 (3.9)

𝑋𝑡 ≡ 𝑋𝑡 − 𝑋𝑤𝑡|𝑡−1 (3.10)

Based on Eqs.3.1, 3.5, 3.8, it can derive as follows:

𝑋𝑖𝑡+1|𝑡 = 𝐴𝑡𝑋𝑖𝑡|𝑡 + (𝑐𝑖𝑡 + 𝑑𝑖𝑡)𝑤𝑡 (3.11)

For Eqs.3.2-3.4 and 3.9-3.10, the update estimation error is derived as follows:

𝑋𝑖𝑡|𝑡 = [(𝑐𝑖𝑡 + 𝑑𝑖𝑡)𝐼𝑝 − 𝑎𝑖𝑡𝐿𝑖𝑡𝐻𝑖𝑡 − 𝑛𝑖𝑡𝑁𝑖𝑡𝐻𝑖𝑡]𝑋𝑡 − 𝑎𝑖𝑡𝐿𝑖𝑡𝑣𝑖𝑡 − 𝑁𝑖𝑡 ∑
𝑗∈𝐶𝑖𝑡

𝑎𝑗𝑡𝑣𝑗𝑡 (3.12)

where 𝑛𝑖𝑡 = ∑𝑗∈𝐶𝑖𝑡 𝑎
𝑗
𝑡 and I assume 𝐻𝑖𝑡 = 𝐻𝑗𝑡 .

The optimal estimation can be obtained by minimizing the following cost function:

𝐽 = ∑
𝑖∈𝑇𝑡

𝐸[𝑋𝑖𝑡|𝑡(𝑋𝑖𝑡|𝑡)𝑇] (3.13)

According to Eqs.3.8 and 3.13, the prediction error edge-covariance is defined and derived as fol-
lows:

𝑃𝑖,𝑗𝑡+1|𝑡 ≡ 𝐸[𝑋𝑖𝑡+1|𝑡(𝑋
𝑗
𝑡+1|𝑡)𝑇] = 𝐴𝑡𝑃

𝑖,𝑗
𝑡|𝑡 (𝐴𝑡)𝑇 + (𝑐𝑖𝑡 + 𝑑𝑖𝑡)(𝑐

𝑗
𝑡 + 𝑑𝑗𝑡 )𝑄𝑡 (3.14)

Because my goal is to minimize the cost function Eq.3.13, I assume 𝑖 = 𝑗, and then the prediction
error variance and the weight prediction error variance can be derived as follows:

𝑃𝑖,𝑖𝑡+1|𝑡 ≡ 𝑃𝑖𝑡+1|𝑡 = 𝐴𝑡𝑃𝑖𝑡|𝑡(𝐴𝑡)𝑇 + (𝑐𝑖𝑡 + 𝑑𝑖𝑡)𝑄𝑡 (3.15)

𝑃𝑤𝑡+1|𝑡 ≡ 𝐸[𝑋𝑡+1(𝑋𝑡+1)𝑇] =
∑𝑖∈𝑇𝑡 𝑃

𝑖
𝑡+1|𝑡

∑𝑖∈𝑇𝑡(𝑐
𝑖
𝑡 + 𝑑𝑖𝑡)

(3.16)
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Similarly, the update error covariance can be obtained according to Eq.3.12:

𝑃𝑖,𝑗𝑡|𝑡 ≡ 𝐸[𝑋𝑖𝑡|𝑡(𝑋
𝑗
𝑡|𝑡)𝑇]

= [𝐹𝑖𝑡𝑃𝑤𝑡|𝑡−1(𝐹
𝑗
𝑡 )𝑇] + 𝑎𝑖𝑡𝑎𝑗𝑡𝐿𝑖𝑡𝑅𝑖,𝑗𝑡 (𝐿𝑗𝑡)𝑇 + 𝑎𝑖𝑡𝐿𝑖𝑡 ∑

𝑠∈𝐶𝑗𝑡

𝑎𝑠𝑡𝑅𝑖,𝑠𝑡 (𝑁𝑗𝑡 )𝑇

+ 𝑁𝑖𝑡 (∑
𝑟∈𝐶𝑖𝑡

𝑎𝑟𝑡𝑣𝑟𝑡 ∑
𝑠∈𝐶𝑗𝑡

𝑎𝑠𝑡(𝑣𝑠𝑡 )𝑇)(𝑁𝑗𝑡 )𝑇 + 𝑎𝑗𝑡𝑁𝑖𝑡 ∑
𝑟∈𝐶𝑖𝑡

𝑎𝑟𝑡𝑅𝑟,𝑗𝑡 (𝐿𝑗𝑡)𝑇

= [𝐹𝑖𝑡𝑃𝑤𝑡|𝑡−1(𝐹
𝑗
𝑡 )𝑇] + 𝑎𝑖𝑡𝑎𝑗𝑡𝐿𝑖𝑡𝑅𝑖,𝑗𝑡 (𝐿𝑗𝑡)𝑇 + 𝑁𝑖𝑡 ∑

𝑟∈𝐶𝑖𝑡∩𝐶
𝑗
𝑡

𝑎𝑟𝑡𝑅𝑟,𝑟𝑡 (𝑁𝑗𝑡 )𝑇

(3.17)

where 𝐹𝑖𝑡 = (𝑐𝑖𝑡+𝑑𝑖𝑡)𝐼𝑝−𝑎𝑖𝑡𝐿𝑖𝑡𝐻𝑖𝑡−𝑛𝑖𝑡𝑁𝑖𝑡𝐻𝑖𝑡 . Because the measurement noises are mutually independent,
it can get that ∑𝑠∈𝐶𝑗𝑡 𝑅

𝑖,𝑠
𝑡 = 0, ∑𝑟∈𝐶𝑖𝑡 𝑅

𝑟,𝑗
𝑡 and ∑𝑟∈𝐶𝑖𝑡 𝑣

𝑟
𝑡 ∑𝑠∈𝐶𝑗𝑡 (𝑣

𝑠
𝑡 )𝑇 = ∑𝑟∈𝐶𝑖𝑡∩𝐶𝑗𝑡 𝑅

𝑟,𝑟
𝑡 .

Also, I assume 𝑖 = 𝑗, Eq.3.17 is rewritten as below:

𝑃𝑖,𝑖𝑡|𝑡 ≡ 𝑃𝑖𝑡|𝑡 = [𝐹𝑖𝑡𝑃𝑤𝑡|𝑡−1(𝐹𝑖𝑡 )𝑇] + 𝑎𝑖𝑡𝐿𝑖𝑡𝑅𝑖𝑡(𝐿𝑖𝑡)𝑇 + 𝑁𝑖𝑡 ∑
𝑗∈𝐶𝑖𝑡

𝑎𝑗𝑡𝑅𝑗𝑡 (𝑁𝑖𝑡)𝑇 (3.18)

Definition 1: A class of distributed KF with the flexible values, the local Kalman gain, and the
community Kalman gain is defined as the Standard Flexible Optimal Kalman Filter (FOKF-Standard),
which minimizes the trace ∑𝑖∈𝑇𝑡 𝑡𝑟{𝑃

𝑖
𝑡|𝑡} and consists of the following Eqs.3.3-3.7, 3.15, 3.16, 3.18-3.21.

Theorem 1: According to Eqs.3.1, 3.2, 3.18 and Assumption 1, there exists the following local and
community Kalman gains:

𝐿𝑖𝑡 = [𝑎𝑖𝑡(𝑐𝑖𝑡 + 𝑑𝑖𝑡)𝑃𝑤𝑡|𝑡−1(𝐻𝑖𝑡)𝑇(𝐼𝑚 − (𝑛𝑖𝑡)2𝐺𝑖𝑡𝑆𝑖𝑡)𝑆̄𝑖𝑡][𝐼𝑚 − 𝑎𝑖𝑡(𝑛𝑖𝑡)2𝑆𝑖𝑡𝐺𝑖𝑡𝑆𝑖𝑡𝑆̄𝑖𝑡]−1 (3.19)

𝑁𝑖𝑡 = [𝑛𝑖𝑡(𝑐𝑖𝑡 + 𝑑𝑖𝑡)𝑃𝑤𝑡|𝑡−1(𝐻𝑖𝑡)𝑇(𝐼𝑚 − 𝑎𝑖𝑡𝑆̄𝑖𝑡𝑆𝑖𝑡)𝐺𝑖𝑡][𝐼𝑚 − 𝑎𝑖𝑡(𝑛𝑖𝑡)2𝑆𝑖𝑡𝑆̄𝑖𝑡𝑆𝑖𝑡𝐺𝑖𝑡]−1 (3.20)

where

⎧
⎪

⎨
⎪
⎩

𝑆𝑖𝑡 = 𝐻𝑖𝑡𝑃𝑤𝑡|𝑡−1(𝐻𝑖𝑡)𝑇

𝑆̄𝑖𝑡 = [𝑎𝑖𝑡(𝑆𝑖𝑡 + 𝑅𝑖𝑡)]−1

𝐺𝑖𝑡 = [(𝑛𝑖𝑡)2𝑆𝑖𝑡 + ∑
𝑗∈𝐶𝑖𝑡

𝑎𝑗𝑡𝑅𝑗𝑡 ]−1
(3.21)

Proof 1: Based on Assumption 1, the following properties can be obtained have been used in the
above-related equations:

{
𝑎𝑖𝑡 = (𝑎𝑖𝑡)2

𝑐𝑖𝑡 + 𝑑𝑖𝑡 = (𝑐𝑖𝑡 + 𝑑𝑖𝑡)2

𝐸[𝑎𝑖𝑡𝑣𝑖𝑡(𝑎𝑖𝑡𝑣𝑖𝑡)𝑇] ≡ 𝑎𝑖𝑡𝑅𝑖𝑡
(3.22)

The optimal local Kalman gain 𝐿𝑖𝑡 and the community Kalman gain 𝑁𝑖𝑡 can be solved by the following
equations:

⎧⎪
⎨⎪
⎩

𝜕𝑡𝑟(𝑃𝑖𝑡|𝑡)
𝜕𝐿𝑖𝑡

= 0

𝜕𝑡𝑟(𝑃𝑖𝑡|𝑡)
𝜕𝑁𝑖𝑡

= 0
(3.23)

Based on Eqs.3.18, 3.22, 3.23, there are:

𝜕𝑡𝑟(𝑃𝑖𝑡|𝑡)
𝜕𝐿𝑖𝑡

= −2𝑎𝑖𝑡(𝑐𝑖𝑡 + 𝑑𝑖𝑡)𝑃𝑤𝑡|𝑡−1(𝐻𝑖𝑡)𝑇 + 2𝑎𝑖𝑡𝐿𝑖𝑡𝐻𝑖𝑡𝑃𝑤𝑡|𝑡−1(𝐻𝑖𝑡)𝑇

+ 2𝑎𝑖𝑡𝑛𝑖𝑡𝑁𝑖𝑡𝐻𝑖𝑡𝑃𝑤𝑡|𝑡−1(𝐻𝑖𝑡)𝑇 + 2𝑎𝑖𝑡𝐿𝑖𝑡𝑅𝑖𝑡 = 0
(3.24)
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The optimal local Kalman gain 𝐿𝑖𝑡 can be yielded by the above equation as:

𝐿𝑖𝑡 = 𝑎𝑖𝑡[(𝑐𝑖𝑡 + 𝑑𝑖𝑡)𝐼𝑝 − 𝑛𝑖𝑡𝑁𝑖𝑡𝐻𝑖𝑡]𝑃𝑤𝑡|𝑡−1(𝐻𝑖𝑡)𝑇[𝑎𝑖𝑡(𝐻𝑖𝑡𝑃𝑤𝑡|𝑡−1(𝐻𝑖𝑡)𝑇 + 𝑅𝑖𝑡)]−1 (3.25)

Similarly, solving Eq.3.26 yields the optimal community Kalman gain 𝑁𝑖𝑡 as Eq.3.27:

𝜕𝑡𝑟(𝑃𝑖𝑡|𝑡)
𝜕𝑁𝑖𝑡

= −2𝑛𝑖𝑡(𝑐𝑖𝑡 + 𝑑𝑖𝑡)𝑃𝑤𝑡|𝑡−1(𝐻𝑖𝑡)𝑇 + 2𝑎𝑖𝑡𝑛𝑖𝑡𝐿𝑖𝑡𝐻𝑖𝑡𝑃𝑤𝑡|𝑡−1(𝐻𝑖𝑡)𝑇

+ 2(𝑛𝑖𝑡)2𝑁𝑖𝑡𝐻𝑖𝑡𝑃𝑤𝑡|𝑡−1(𝐻𝑖𝑡)𝑇 + 2𝑁𝑖𝑡 ∑
𝑗∈𝐶𝑖𝑡

𝑎𝑗𝑡𝑅𝑗𝑡 = 0
(3.26)

𝑁𝑖𝑡 = 𝑛𝑖𝑡[(𝑐𝑖𝑡 + 𝑑𝑖𝑡)𝐼𝑝 − 𝑎𝑖𝑡𝐿𝑖𝑡𝐻𝑖𝑡]𝑃𝑤𝑡|𝑡−1(𝐻𝑖𝑡)𝑇[(𝑛𝑖𝑡)2𝐻𝑖𝑡𝑃𝑤𝑡|𝑡−1(𝐻𝑖𝑡)𝑇 + ∑
𝑗∈𝐶𝑖𝑡

𝑎𝑗𝑡𝑅𝑗𝑡 ]−1 (3.27)

Two Eqs.3.25 and 3.27 contain two unknown variables 𝐿𝑖𝑡 and 𝑁𝑖𝑡 , and thus, two equations with two
unknown variables can be solved. The results are shown in Eqs.3.19-3.21.

3.3.3. Analysis
FOKF-Standard is a versatile algorithm that adapts tomultiple patterns with varying degrees of flexibility.
For example, FOKF-Standard is similar to the distributed optimal KF (Yonggui and Bugong, 2012) when
𝑎𝑖𝑡 = 1, 𝑛𝑖𝑡 ≠ 0. FOKF-Standard is reduced to the single KF when 𝑎𝑖𝑡 = 1, 𝑛𝑖𝑡 = 0. FOKF-Standard is
reduced to the open-loop KF when 𝑑𝑖𝑡 = 1 which skips the update step of FOKF-Standard. In addition,
considering the abnormal cases of 𝑎𝑖𝑡 = 0 and 𝑛𝑖𝑡 = 0, it can use a small value for Eq. 3.21 for
calculation. The algorithm of FOKF-Standard is designed as Algorithm 1.

FOKF-Standard has several prerequisites that need to be met to achieve optimal performance. It
requires themotionmodel of the target to be linear and the system noise to followGaussian Distribution.
In addition, the key hyperparameters, namely 𝐴𝑡, 𝑄𝑡, and 𝑅𝑖𝑡, must accurately represent the true states.
Due to the average design of the weight estimation, FOKF-Standard performs best when 𝑅𝑖𝑡 ≡ 𝑅𝑡.
However, it can be challenging to fulfill all these prerequisites in real-life applications. Nevertheless,
as long as the actual situation closely aligns with these prerequisites, FOKF-Standard can still provide
reliable results. To evaluate the effectiveness of FOKF-Standard, we conducted extensive experiments
in Sections 4.1.2 to 4.1.5.

Algorithm 1: FOKF-Standard for object tracking.
Initialize: 𝑋𝑤0|−1 = 𝑋0, 𝑃𝑤0|−1 = 𝑃0, set 𝑇𝑡 = {∅} and 𝐶𝑖𝑡 = {∅} if they will change, 𝑎𝑖𝑡 = 𝑐𝑖𝑡 = 𝑑𝑖𝑡 = 𝑛𝑖𝑡 = 0.
Input: Measurement vectors 𝑍𝑖𝑡.
1: Update 𝑇𝑡 and 𝐶𝑖𝑡 if they change and update the flexible values (𝑎𝑖𝑡, 𝑐𝑖𝑡, 𝑑𝑖𝑡) and 𝑛𝑖𝑡 based on mea-
surements.
2: Do the update step of FOKF-Standard by using Eqs.3.3, 3.4, 3.18-3.21.
3: Do the prediction step of FOKF-Standard by using Eqs.3.5, 3.15.
4: Do the weight step of FOKF-Standard by using Eqs.3.7, 3.16.
5: Update time step 𝑡, jump to Step 1, return 𝑋𝑤𝑡+1|𝑡and 𝑃𝑤𝑡+1|𝑡.

3.4. Tracker-Level Fusion Based on FOKF-Standard
The primary objective of this section is to propose TLF-FOKF-Standard for the VOT task. TLF-FOKF-
Standard utilizes FOKF-Standard as the component Tracker Evaluation and Result Fusion of the TLF
algorithm. The section provides an overview of the TLF-FOKF-Standard framework and defines the
state space of the critical parameters of FOKF-Standard in detail.

3.4.1. Proposed Framework
Sections 3.1 and 3.3 establish that FOKF-Standard satisfies the requirements of the component Tracker
Evaluation and Result Fusion of a TLF algorithm. Moreover, the component Tracker Ensemble is es-
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sential for a TLF algorithm. As FOKF-Standard does not design the strategy of baseline tracker re-
moval, the component Feedback is necessary to prevent the baseline trackers from generating too
many outlier tracking results. Therefore, I propose TLF-FOKF-Standard by combining the four capital-
ized components mentioned above. This combination results in an optimal TLF algorithm as long as
the prerequisites of FOKF-Standard are in place. The proposed framework is shown in Fig.3.3. The
detailed design of each component is described below.

Figure 3.3: The primary framework of TLF-FOKF-Standard: the left side is Tracker Ensemble for generating measurement 𝑍𝑖𝑡.
The Tracker Evaluation component for updating flexible values and calculating residual errors lies in the middle. The Result
Fusion based on FOKF-Standard is on the right side for updating IT’s state vector 𝑋𝑖𝑡 and state covariance matrix 𝑃𝑖𝑡 . After
acquiring the weight estimation states, they are fed back to Tracker Ensemble and the residual error update module for iteration.
It is a typical TLF algorithm that contains the component Tracker Ensemble, Tracker Evaluation, Result Fusion, and Feedback.
Feedback here is designed to help converge the tracking results of baseline trackers and alleviate the problem of outlier mea-
surements.

Tracker Ensemble: To make the insertion of baseline trackers more straightforward and improve
practicality, TLF-FOKF-Standard requires the baseline trackers to meet the following conditions:

1. The baseline tracker must be capable of performing the VOT task independently, including taking
raw input images and outputting the IT states.

2. The baseline tracker must be able to update the intermediate states of the IT according to the
feedback of FOKF-Standard, such as the weighted state. This requirement can be disregarded
when feedback is unnecessary.

This design has the advantage of being compatible with most current baseline trackers, as the
requirements are straightforward and practical. Users require only knowledge of the baseline tracker’s
interface to insert it into the Tracker Ensemble. Moreover, if a pre-trained tracker exists, users can use
it directly without incurring the cost of retraining it. For the experimental evaluation in this study, we
have selected nine baseline trackers that satisfy the requirements, ensuring the results are universal.
The selected trackers are MOSSE, ECO, DeepSORT, GOTURN, SiamRPN, SiamRPN++, SiamFC++,
STMTrack, and STARK, as presented in Table 3.1.

Tracker Evalution: The measurement vector 𝑍𝑖𝑡 is the input of this module and is modeled as Eq.
3.28, where [𝑥𝑐 , 𝑦𝑐] are designed as the horizontal and vertical pixel location of the center of the bbox,
while the scale 𝑤 and ℎ represent the width and height, respectively. After that, 𝑎𝑖𝑡 is updated based on
whether the 𝑍𝑖𝑡 is valid. And then, the flexible values 𝑐𝑖𝑡, 𝑑𝑖𝑡, 𝑛𝑖𝑡, and the residual error 𝑒𝑖𝑡 are updated and
output as the input of the Result Fusion. They contain information on trackers’ states and credibility.
𝐻𝑖𝑡 depends on the relationship between 𝑋𝑖𝑡 and 𝑍𝑖𝑡.

𝑍𝑖𝑡 = [𝑥𝑐 , 𝑦𝑐 , 𝑤, ℎ]𝑇 (3.28)
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Table 3.1: A overview of baseline trackers.

Baseline Tracker Main Technology Citation

MOSSE CF Bolme et al., 2010
GOTURN DL(Siamese) Held et al., 2016

ECO CF Danelljan et al., 2017
DeepSORT DL(Tracking by Detection) Wojke et al., 2017
SiamRPN DL(Siamese) B. Li et al., 2018

SiamRPN++ DL(Siamese) B. Li et al., 2019
SiamFC++ DL(Siamese) Xu et al., 2020
STMTrack DL(Siamese) Fu et al., 2021
STARK DL(Self-Attention) Yan et al., 2021

Result Fusion: Baseline trackers, denoted as 𝑠𝑖, are each associated with a KF tracker that has
an estimation state vector 𝑋𝑖𝑡 and an estimation state covariance 𝑃𝑖𝑡 . The vector 𝑋𝑖𝑡 is defined by the
equation shown in Eq. 3.29. To perform the update step, local measurements and community measure-
ments are employed to optimally solve for 𝑋𝑖𝑡|𝑡 using the FOKF-Standard framework. The prediction
step uses the CV motion model (𝐴𝑡) to determine 𝑋𝑖𝑡+1|𝑡. Once the weight estimation state vectors have
been obtained, they are utilized as the final tracking trajectory and fed back to the Tracker Ensemble to
synchronize the intermediate states of the baseline trackers, thus enabling convergence of the tracking
results.

𝑋𝑖𝑡 = [𝑥𝑐 , 𝑦𝑐 , 𝑤, ℎ, 𝑣𝑥 , 𝑣𝑦 , 𝑣𝑤 , 𝑣ℎ]𝑇 (3.29)

𝐴𝑡 =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 0 0 0 Δ𝑡 0 0 0
0 1 0 0 0 Δ𝑡 0 0
0 0 1 0 0 0 Δ𝑡 0
0 0 0 1 0 0 0 Δ𝑡
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(3.30)

where [𝑥𝑐 , 𝑦𝑐 , 𝑤, ℎ] are same as the above definition of 𝑍𝑖𝑡, while [𝑣𝑥 , 𝑣𝑦 , 𝑣𝑤 , 𝑣ℎ] are the corresponding
velocities. As for TLF-FOKF-Standard, I assume all KF trackers have same the state transition ma-
trix 𝐴𝑡, the state-to-measurement matrix 𝐻𝑖𝑡 , the process covariance matrix 𝑄𝑡 and the measurement
covariance matrix 𝑅𝑖𝑡.

Feedback: In order to feed back the fusion results to the baseline trackers, it is necessary to have
a thorough understanding of the baseline trackers’ algorithms. This is because most baseline trackers
were not designed to accommodate feedback. To overcome this issue, it may be necessary to cus-
tomize the method of feeding back the weight states. This can be achieved by fine-tuning the type of
feedback that is provided, such as providing feedback on only the object’s location, both the location
and scale or the state covariance at a specific time step (either 𝑡 or 𝑡+1). The specific type of feedback
used should be tailored to the baseline trackers’ algorithms and the tracking performance the following
feedback.

3.4.2. Analysis
The key advantages of this framework are summarized as follows:

1. Simple and Fast: TLF-FOKF-Standard is a simplified and fast algorithm, employing several
concise and explicit equations with low time complexity 𝑂(𝑁𝑀).

2. Optimal: TLF-FOKF-Standard is an optimal TLF algorithm as long as it meets the prerequisites
of FOKF-Standard.
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3. Flexible: TLF-FOKF-Standard has the ability to adapt to any number of baseline trackers based
on the flexible design of the values in FOKF-Standard. The most important component of TLF-
FOKF-Standard is the Result Fusion, which provides ample room for improvement in order to
achieve better tracking performance. For instance, an algorithm for removing baseline trackers
could be added to enhance the Tracker Evaluation component and alleviate the requirement
for feedback, or an algorithm could be designed to determine the hyperparameters for better
approximating the ground truth model.

4. Explainable: TLF-FOKF-Standard is a white-box model, meaning that its behaviors, production
of fusion results, and the influence of variables can be clearly explained. This is particularly
important in actual applications, such as autonomous driving, where minimizing uncontrollable
risk is crucial. This is especially relevant at present, where AI models are becoming more intricate
and harder to explain.

On the contrary, the drawbacks of TLF-FOKF-Standard are listed as follows:

1. Similar Measurement Uncertainty: The performance of FOKF-Standard is best suited for base-
line trackers with similar measurement uncertainties (𝑅𝑖𝑡) due to the weight estimation design.
When themeasurement uncertainties significantly differ, it could hinder the performance of FOKF-
Standard.

2. Hyperparameter: Currently, the values of hyperparameters such as 𝐴𝑡, 𝑄𝑡, and 𝑅𝑖𝑡 are hand-
crafted, and may not optimally represent the true model under different scenes.

3. Baseline Tracker Removal: The algorithm lacks the ability to remove unreliable measurements,
making it sensitive to poor measurements, and necessitating the inclusion of the Feedback com-
ponent.

3.5. Dissimilar Measurement Uncertainties-Based FOKF
This section focuses on addressing the limitation of FOKF-Standard that requires baseline trackers with
similar measurement uncertainties 𝑅𝑖𝑡. By addressing this limitation, the scope of the FOKF algorithm
becomes more flexible and gains wider applicability. For the sake of simplicity, the augmented version
of FOKF designed to handle differences in measurement uncertainties will be referred to as FOKF-R.
Any symbols used in FOKF-R that are not specifically defined can be taken as the same as those used
in Section 3.3.

3.5.1. Problem Formulation
To address the limitation of requiring similar measurement uncertainties and to accommodate the fact
that FOKF-Standard utilizes average weighting for the state estimation vectors, I propose FOKF-R.
FOKF-R overcomes this limitation by replacing 𝑋𝑤𝑡|𝑡−1 with 𝑋𝑖𝑡|𝑡−1 to maintain the independence of the
state estimation vectors for each KF filter 𝑠𝑖. The rationale behind FOKF’s use of average weighting as
described in Zhong and Liu, 2021 is mainly to conserve sensor energy by keeping only the most recent
state estimation. However, this point is not a major concern for VOT tasks. Therefore, it is feasible to
replace 𝑋𝑤𝑡|𝑡−1 with 𝑋𝑖𝑡|𝑡−1 in FOKF-R.

In terms of the system and the measurement equations, they are as same as Eq.3.1 and 3.2,
respectively. The designed FOKF-R filter is shown as follows:

𝑒𝑖𝑡 = 𝑎𝑖𝑡(𝑍𝑖𝑡 − 𝐻𝑖𝑡𝑋𝑖𝑡|𝑡−1) (3.31)

𝑒𝑗𝑡 = 𝑎𝑗𝑡(𝑍𝑗𝑡 − 𝑎𝑗𝑡𝐻𝑗𝑡𝑋𝑖𝑡|𝑡−1) (3.32)

𝑋𝑖𝑡|𝑡 = (𝑐𝑖𝑡 + 𝑑𝑖𝑡)𝑋𝑖𝑡|𝑡−1 + 𝑎𝑖𝑡𝐿𝑖𝑡𝑒𝑖𝑡 + 𝑁𝑖𝑡 ∑
𝑗∈𝐶𝑖𝑡

𝑒𝑗𝑡 (3.33)

𝑋𝑖𝑡+1|𝑡 = 𝐴𝑡𝑋𝑖𝑡|𝑡 (3.34)
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3.5.2. Derivation
Based on Eqs.3.1, 3.33, 3.34, the corresponding equations are the same as Eqs.3.8, 3.9, 3.11. The
update estimation error is derived according to Eqs.3.2, 3.31-3.33, which considers 𝑛𝑖𝑡 = ∑𝑗∈𝐶𝑖𝑡 𝑎

𝑗
𝑡 ,

𝐻𝑖𝑡 = 𝐻𝑗𝑡 and 𝑐𝑖𝑡 + 𝑑𝑖𝑡 ≡ 1 for each 𝑠𝑖:

𝑋𝑖𝑡|𝑡 = [𝐼𝑝 − 𝑎𝑖𝑡𝐿𝑖𝑡𝐻𝑖𝑡 − 𝑛𝑖𝑡𝑁𝑖𝑡𝐻𝑖𝑡]𝑋𝑖𝑡|𝑡−1 − 𝑎𝑖𝑡𝐿𝑖𝑡𝑣𝑖𝑡 − 𝑁𝑖𝑡 ∑
𝑗∈𝐶𝑖𝑡

𝑎𝑗𝑡𝑣𝑗𝑡 (3.35)

The cost function for the optimal estimation is the same as Eq.3.13. Similarly, the prediction error
edge-covariance and the prediction error variance are derived as the same as Eqs.3.14 and 3.15.

As for the update error covariance, it can be obtained according to Eqs.3.8 and 3.35 as follows:

𝑃𝑖,𝑗𝑡|𝑡 ≡ 𝐸[𝑋𝑖𝑡|𝑡(𝑋
𝑗
𝑡|𝑡)𝑇]

= [𝐹𝑖𝑡𝑃𝑖𝑡|𝑡−1(𝐹
𝑗
𝑡 )𝑇] + 𝑎𝑖𝑡𝑎𝑗𝑡𝐿𝑖𝑡𝑅𝑖,𝑗𝑡 (𝐿𝑗𝑡)𝑇 + 𝑁𝑖𝑡 ∑

𝑟∈𝐶𝑖𝑡∩𝐶
𝑗
𝑡

𝑎𝑟𝑡𝑅𝑟,𝑟𝑡 (𝑁𝑗𝑡 )𝑇 (3.36)

Assume 𝑖 = 𝑗, Eq.3.36 is rewritten as follows:

𝑃𝑖,𝑖𝑡|𝑡 ≡ 𝑃𝑖𝑡|𝑡 = [𝐹𝑖𝑡𝑃𝑖𝑡|𝑡−1(𝐹𝑖𝑡 )𝑇] + 𝑎𝑖𝑡𝐿𝑖𝑡𝑅𝑖𝑡(𝐿𝑖𝑡)𝑇 + 𝑁𝑖𝑡 ∑
𝑗∈𝐶𝑖𝑡

𝑎𝑗𝑡𝑅𝑗𝑡 (𝑁𝑖𝑡)𝑇 (3.37)

Definition 2: A class of distributed KF with the flexible values, the local Kalman gain, and the
community Kalman gain but without the weight estimation is defined as the Different Measurement
Uncertainties-Based FOKF (FOKF-R), which minimizes the trace ∑𝑖∈𝑇𝑡 𝑡𝑟{𝑃

𝑖
𝑡|𝑡} and consists of the fol-

lowing Eqs.3.31-3.34, 3.15, and 3.37-3.40.
Theorem 2: According to Eqs.3.1, 3.2, 3.37 and Assumption 1, there exists the following local and

community Kalman gains:

𝐿𝑖𝑡 = [𝑎𝑖𝑡(𝑐𝑖𝑡 + 𝑑𝑖𝑡)𝑃𝑖𝑡|𝑡−1(𝐻𝑖𝑡)𝑇(𝐼𝑚 − (𝑛𝑖𝑡)2𝐺𝑖𝑡𝑆𝑖𝑡)𝑆̄𝑖𝑡][𝐼𝑚 − 𝑎𝑖𝑡(𝑛𝑖𝑡)2𝑆𝑖𝑡𝐺𝑖𝑡𝑆𝑖𝑡𝑆̄𝑖𝑡]−1 (3.38)

𝑁𝑖𝑡 = [𝑛𝑖𝑡(𝑐𝑖𝑡 + 𝑑𝑖𝑡)𝑃𝑖𝑡|𝑡−1(𝐻𝑖𝑡)𝑇(𝐼𝑚 − 𝑎𝑖𝑡𝑆̄𝑖𝑡𝑆𝑖𝑡)𝐺𝑖𝑡][𝐼𝑚 − 𝑎𝑖𝑡(𝑛𝑖𝑡)2𝑆𝑖𝑡𝑆̄𝑖𝑡𝑆𝑖𝑡𝐺𝑖𝑡]−1 (3.39)

where

⎧
⎪

⎨
⎪
⎩

𝑆𝑖𝑡 = 𝐻𝑖𝑡𝑃𝑖𝑡|𝑡−1(𝐻𝑖𝑡)𝑇

𝑆̄𝑖𝑡 = [𝑎𝑖𝑡(𝑆𝑖𝑡 + 𝑅𝑖𝑡)]−1

𝐺𝑖𝑡 = [(𝑛𝑖𝑡)2𝑆𝑖𝑡 + ∑
𝑗∈𝐶𝑖𝑡

𝑎𝑗𝑡𝑅𝑗𝑡 ]−1
(3.40)

Proof 2: The proof is omitted here, please refer to Proof 1.

3.5.3. Analysis
The analysis of FOKF-R closely resembles that of FOKF-Standard, with the exception being that the
weight step is omitted to avoid the issue of needing similar measurement uncertainties. In terms of pre-
requisites for achieving optimal performance, FOKF-R is similar to FOKF-Standard, with the exception
that it does not require 𝑅𝑖𝑡 = 𝑅𝑡 as long as the accurate value for 𝑅𝑖𝑡 is known. Additional experiments
are conducted in Sections 4.1.2-4.1.5 to provide a more extensive evaluation of FOKF-R.

3.6. Tracker-Level Fusion Based on FOKF-R
This section presents a new approach, TLF-FOKF-R, for addressing the VOT task. This method re-
places FOKF-Standard with FOKF-R and is described in detail, along with its key differences from
TLF-FOKF-Standard, in the following paragraphs.

As shown in Fig.3.4, TLF-FOKF-R is structurally similar to TLF-FOKF-Standard, but features a
novel definition of the fusion result, 𝑋𝑤𝑡|𝑡 and 𝑃𝑤𝑡|𝑡, where 𝑤 = {𝑖 ∈ 𝑇𝑡 ∶ 𝑚𝑖𝑛(𝑡𝑟(𝑃𝑖𝑡|𝑡))}. Because 𝑃𝑖𝑡|𝑡 is
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Algorithm 2: FOKF-R for object tracking
Initialize: 𝑋̄0|−1 = 𝑋0, 𝑃̄0|−1 = 𝑃0, set 𝑇𝑡 = {∅} and 𝐶𝑖𝑡 = {∅} if they will change, 𝑎𝑖𝑡 = 𝑐𝑖𝑡 = 𝑑𝑖𝑡 = 𝑛𝑖𝑡 = 0.
Input: Measurement vectors 𝑍𝑖𝑡.
1: Update 𝑇𝑡 and 𝐶𝑖𝑡 if they change and update the flexible values (𝑎𝑖𝑡, 𝑐𝑖𝑡, 𝑑𝑖𝑡) and 𝑛𝑖𝑡 based on mea-
surements.
2: Do the update step of FOKF-R by using Eqs.3.31-3.33, 3.37-3.40.
3: Do the prediction step of FOKF-R by using Eqs.3.34 and 3.15.
4: Update time step 𝑡, jump to Step 1.

the update state covariance matrix which can represent the distance between the update estimation
𝑋𝑖𝑡|𝑡 and the true state vector 𝑋𝑡, I select the 𝑋𝑖𝑡|𝑡 with the minimal 𝑃𝑖𝑡|𝑡 among all 𝑠𝑖 as the fusion result
and feed it back to Tracker Ensemble according to the trace of 𝑃𝑖𝑡|𝑡. It makes up for the lack of the
weight step of FOKF-R to provide the fusion result. The key advantages of TLF-FOKF-R are the
same as TLF-FOKF-Standard, while it eliminates the drawback of similar measurement uncertainty.
In addition, TLF-FOKF-R can possess a part of the function of the baseline tracker removal algorithm
if 𝑅𝑖𝑡 is accurate. The rest content of this section is similar to that in Section 3.4.

Figure 3.4: The main framework of TLF-FOKF-R: it is similar with TLF-FOKF-Standard, excluding FOKF Weigh and Residual
Update. As for FOKF Weigh, it is used for the fusion result where𝑤 = {𝑖 ∈ 𝑇𝑡 ∶ 𝑚𝑖𝑛(𝑡𝑟(𝑃𝑖𝑡|𝑡))}. In terms of residual error update,
it follows the definition of FOKF-R.

3.7. Main Baseline Tracker-Based FOKF
In this section, I propose the Main Baseline Tracker-Based FOKF (FOKF-M) in detail. In the context of
the VOT task, it’s observed that TLF methods only need one fusion result as the final outcome. Inspired
by FOKF-Standard and FOKF-R, I note that 𝑋𝑖𝑡|𝑡 is weighted by 𝐿𝑖𝑡𝑒𝑖𝑡 and 𝑁𝑖𝑡 ∑𝑗∈𝐶𝑖𝑡 𝑒

𝑗
𝑡 where the values of

𝐿𝑖𝑡 and 𝑁𝑖𝑡 determines whether 𝑠𝑖 relies more on the local measurement 𝑒𝑖𝑡 or the sum of the community
measurements 𝑒𝑗𝑡 . But when the number of baseline trackers is large, the weight of a single 𝑒𝑗𝑡 gets
diluted by the step of summing and averaging. In this way, 𝑒𝑖𝑡 plays a more important role than that of
individual 𝑒𝑗𝑡 . Based on this observation, Table 3.2 shows that FOKF-Standard performs best when the
real 𝑅𝑖𝑡 is similar, while FOKF-R performs best when the estimated 𝑅𝑖𝑡 is accurate enough for the real
𝑅𝑖𝑡. However, such ideal conditions are less common in engineering applications, where it’s challenging
to ensure that the actual 𝑅𝑖𝑡 is consistently similar or accurate estimated 𝑅𝑖𝑡 can be obtained. The most
possible situation is that we only know which baseline tracker performs best according to experience
but without knowing the accurate real 𝑅𝑖𝑡. Furthermore, considering the computational complexity,
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especially when the number of baseline trackers is substantial, FOKF-M is introduced to address these
scenarios.

Table 3.2: A comparison of FOKF-Standard, FOKF-R, and FOKF-M under different prerequisites when the baseline tracker’s
number is large. The more +, the better performance. Here, ’partially’ denotes at least knowing which baseline tracker is the
best.

Similar real 𝑅𝑖𝑡 Accurate estimated 𝑅𝑖𝑡 FOKF-Standard FOKF-R FOKF-M

Yes No +++ ++ +
No Yes ++ +++ ++
No Partially + ++ +++

The essence of FOKF-M is to leverage two types of prior knowledge: first, that TLF necessitates
only one fusion result, and second, that we know which baseline tracker performs the best among
several baseline trackers. In contrast to FOKF-R, FOKF-M defines the best baseline tracker as the
primary baseline tracker 𝑚, with its corresponding KF tracker 𝑠𝑚 as the only KF tracker. As a result,
the time complexity of FOKF-M is reduced to 𝑂(𝑀).

3.7.1. Problem Formulation
As for the system and the measurement equations, they are the same as Eq.3.1 and 3.2. Based on the
aforementioned discussion, there is only one KF tracker 𝑠𝑚 and the designed FOKF-M filter is shown
as follows:

𝑒𝑚𝑡 = 𝑎𝑚𝑡 (𝑍𝑚𝑡 − 𝐻𝑚𝑡 𝑋𝑚𝑡|𝑡−1) (3.41)

𝑒𝑗𝑡 = 𝑎𝑗𝑡(𝑍𝑗𝑡 − 𝑎𝑗𝑡𝐻𝑗𝑡𝑋𝑚𝑡|𝑡−1) (3.42)

𝑋𝑚𝑡|𝑡 = (𝑐𝑚𝑡 + 𝑑𝑚𝑡 )𝑋𝑚𝑡|𝑡−1 + 𝑎𝑚𝑡 𝐿𝑚𝑡 𝑒𝑚𝑡 + 𝑁𝑚𝑡 ∑
𝑗∈𝐶𝑚𝑡

𝑒𝑗𝑡 (3.43)

𝑋𝑚𝑡+1|𝑡 = 𝐴𝑡𝑋𝑚𝑡|𝑡 (3.44)

3.7.2. Derivation
Based on Eqs.3.1, 3.43, 3.44, the corresponding equations are defined as:

𝑋𝑚𝑡+1|𝑡 ≡ (𝑐𝑚𝑡 + 𝑑𝑚𝑡 )𝑋𝑡+1 − 𝑋𝑚𝑡+1|𝑡 (3.45)

𝑋𝑚𝑡|𝑡 ≡ (𝑐𝑚𝑡 + 𝑑𝑚𝑡 )𝑋𝑡 − 𝑋𝑚𝑡|𝑡 (3.46)

Based on Eqs.3.1, 3.44, 3.45, it can derive as follows:

𝑋𝑚𝑡+1|𝑡 = 𝐴𝑡𝑋𝑚𝑡|𝑡 + (𝑐𝑚𝑡 + 𝑑𝑚𝑡 )𝑤𝑡 (3.47)

For Eqs.3.2, 3.41-3.43 and 3.45-3.46, the update estimation error is derived as follows:

𝑋𝑚𝑡|𝑡 = [(𝑐𝑚𝑡 + 𝑑𝑚𝑡 )𝐼𝑝 − 𝑎𝑚𝑡 𝐿𝑚𝑡 𝐻𝑚𝑡 − 𝑛𝑚𝑡 𝑁𝑚𝑡 𝐻𝑚𝑡 ]𝑋𝑡|𝑡−1 − 𝑎𝑚𝑡 𝐿𝑚𝑡 𝑣𝑚𝑡 − 𝑁𝑚𝑡 ∑
𝑗∈𝐶𝑚𝑡

𝑎𝑗𝑡𝑣𝑗𝑡 (3.48)

where 𝑛𝑚𝑡 = ∑𝑗∈𝐶𝑚𝑡 𝑎
𝑗
𝑡 and I assume 𝐻𝑚𝑡 = 𝐻𝑗𝑡 .

The optimal estimation can be obtained by minimizing the following cost function:

𝐽 = 𝐸[𝑋𝑚𝑡|𝑡(𝑋𝑚𝑡|𝑡)𝑇] (3.49)

According to Eqs.3.45 and 3.49, the prediction error variance is defined and derived as follows:

𝑃𝑚𝑡+1|𝑡 ≡ 𝐸[𝑋𝑚𝑡+1|𝑡(𝑋𝑚𝑡+1|𝑡)𝑇] = 𝐴𝑡𝑃𝑚𝑡|𝑡(𝐴𝑡)𝑇 + (𝑐𝑚𝑡 + 𝑑𝑚𝑡 )𝑄𝑡 (3.50)

Similarly, the update error variance can be obtained according to Eq.3.48:

𝑃𝑚𝑡|𝑡 ≡ 𝐸[𝑋𝑚𝑡|𝑡(𝑋𝑚𝑡|𝑡)𝑇]

= [𝐹𝑚𝑡 𝑃𝑚𝑡|𝑡−1(𝐹𝑚𝑡 )𝑇] + 𝑎𝑚𝑡 𝐿𝑚𝑡 𝑅𝑚𝑡 (𝐿𝑚𝑡 )𝑇 + 𝑁𝑚𝑡 ∑
𝑗∈𝐶𝑚𝑡

𝑎𝑗𝑡𝑅𝑗𝑡 (𝑁𝑚𝑡 )𝑇 (3.51)
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where 𝐹𝑚𝑡 = (𝑐𝑚𝑡 + 𝑑𝑚𝑡 )𝐼𝑝 − 𝑎𝑚𝑡 𝐿𝑚𝑡 𝐻𝑚𝑡 − 𝑛𝑚𝑡 𝑁𝑚𝑡 𝐻𝑚𝑡 .

Definition 3: A class of distributed KF with the flexible values, the local Kalman gain, the community
Kalman gain, and the main KF tracker is defined as the Main Baseline Tracker-based FOKF (FOKF-M),
which minimizes the trace 𝑡𝑟{𝑃𝑚𝑡|𝑡} and consists of the following Eqs.3.41-3.44, and 3.50-3.54.

Theorem 3: According to Eqs.3.1, 3.2, 3.51 and Assumption 1, there exists the following local and
community Kalman gains:

𝐿𝑚𝑡 = [𝑎𝑚𝑡 (𝑐𝑚𝑡 + 𝑑𝑚𝑡 )𝑃𝑚𝑡|𝑡−1(𝐻𝑚𝑡 )𝑇(𝐼𝑚 − (𝑛𝑚𝑡 )2𝐺𝑚𝑡 𝑆𝑚𝑡 )𝑆̄𝑚𝑡 ][𝐼𝑚 − 𝑎𝑚𝑡 (𝑛𝑚𝑡 )2𝑆𝑚𝑡 𝐺𝑚𝑡 𝑆𝑚𝑡 𝑆̄𝑚𝑡 ]−1 (3.52)
𝑁𝑚𝑡 = [𝑛𝑚𝑡 (𝑐𝑚𝑡 + 𝑑𝑚𝑡 )𝑃𝑚𝑡|𝑡−1(𝐻𝑚𝑡 )𝑇(𝐼𝑚 − 𝑎𝑚𝑡 𝑆̄𝑚𝑡 𝑆𝑚𝑡 )𝐺𝑚𝑡 ][𝐼𝑚 − 𝑎𝑚𝑡 (𝑛𝑚𝑡 )2𝑆𝑚𝑡 𝑆̄𝑚𝑡 𝑆𝑚𝑡 𝐺𝑚𝑡 ]−1 (3.53)

where

⎧
⎪
⎨
⎪
⎩

𝑆𝑚𝑡 = 𝐻𝑚𝑡 𝑃𝑚𝑡|𝑡−1(𝐻𝑚𝑡 )𝑇

𝑆̄𝑚𝑡 = [𝑎𝑚𝑡 (𝑆𝑚𝑡 + 𝑅𝑚𝑡 )]−1

𝐺𝑚𝑡 = [(𝑛𝑚𝑡 )2𝑆𝑚𝑡 + ∑
𝑗∈𝐶𝑚𝑡

𝑎𝑗𝑡𝑅𝑗𝑡 ]−1
(3.54)

Proof 3: The proof is omitted here, please refer to Proof 1.

3.7.3. Analysis
The analysis of FOKF-M is similar to that of FOKF-Standard, except for two differences: first, there’s
only one KF tracker, and second, the weight step is removed in FOKF-M. The prerequisites for FOKF-
M’s optimal performance are also similar to those of FOKF-R. Further details on performance evalua-
tions can be found in Sections 4.1.2-4.1.5, where we report the results of extensive experiments.

Algorithm 3: FOKF-M for object tracking
Initialize: 𝑋̄0|−1 = 𝑋0, 𝑃̄0|−1 = 𝑃0, set 𝑇𝑡 = {∅} and 𝐶𝑚𝑡 = {∅} if they will change, 𝑎𝑖𝑡 = 𝑐𝑚𝑡 = 𝑑𝑚𝑡 = 𝑛𝑚𝑡 =
0.
Input: Measurement vectors 𝑍𝑖𝑡.
1: Update 𝑇𝑡 and 𝐶𝑚𝑡 if they change and update the flexible values (𝑎𝑖𝑡, 𝑐𝑚𝑡 , 𝑑𝑚𝑡 ) and 𝑛𝑚𝑡 based on
measurements.
2: Do the update step of FOKF-M by using Eqs.3.41-3.43, 3.51-3.54.
3: Do the prediction step of FOKF-M by using Eqs.3.44 and 3.50.
4: Update time step 𝑡, jump to Step 1.

3.8. Tracker-Level Fusion Based on FOKF-M
This section introduces TLF-FOKF-M for the VOT task by replacing FOKF-R with FOKF-M. It outlines
the framework of TLF-FOKF-M and highlights the differences between TLF-FOKF-R and TLF-FOKF-
M. As depicted in Fig.3.5, TLF-FOKF-M emphasizes the use of a single KF tracker 𝑠𝑚 to handle the
measurements from the baseline trackers. Consequently, the estimation 𝑋𝑚𝑡|𝑡 of the corresponding KF
tracker serves as the fusion result. The estimation states are then fed back to the Tracker Ensemble
and residual error update module for further iteration. TLF-FOKF-M delivers the same benefits as TLF-
FOKF-R while reducing the need for precise knowledge of 𝑅𝑖𝑡 and focusing on a priori knowledge of the
best baseline tracker. Additionally, TLF-FOKF-M reduces the time complexity from 𝑂(𝑁𝑀) to 𝑂(𝑀).
The remaining content of this section is similar to Section 3.4.
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Figure 3.5: The framework of TLF-FOKF-M. The key differences between TLF-FOKF-R and TLF-FOKF-M are that there is only
one KF tracker and the weight step is deleted in TLF-FOKF-M.





4
Experiments

This chapter reports two primary experiments. The first experiment aims to demonstrate the efficiency
of FOKF-Standard, FOKF-R, and FOKF-M in trajectory estimation tasks under ideal circumstances. To
simplify matters, FOKF-Standard is referred to as FOKF-S. The second experiment evaluates the VOT
tracking performance enhanced by TLF-FOKF-S, TLF-FOKF-R, and TLF-FOKF-M. These experiments
also support my in-depth analysis of the impact of baseline trackers in Section 3.2.

4.1. FOKF-Related Experiments
There are two reasons why it is crucial to evaluate the effectiveness of FOKF under perfectly modeled
conditions. Firstly, FOKF forms the basis of TLF-FOKF. Secondly, it is hard to accurately model the
VOT scenario of TLF-FOKF at present, which could introduce uncertainty in the results. For example,
it is challenging to determine if the tracking results of the baseline trackers comply with a Gaussian
distribution and estimate hyperparameters accurately. Therefore, this section aims to assess the ef-
fectiveness of FOKF-S, FOKF-R, and FOKF-M under various ideal conditions, focusing on the critical
role of measurement uncertainties. These ideal conditions include scenarios where measurement un-
certainties are uniform and accurately known.

4.1.1. Implementation Details
To demonstrate the performance of the trajectory estimation of FOKF-related (FOKF-S, FOKF-R, and
FOKF-M), I design a monitored area, where the KF tracker 𝑠𝑖 can measure the target and transfer
the messages to all other KF trackers in this area. The area could be measured in meters or pixels,
with the latter demonstrating no impact on performance evaluation. To decrease the complexity of
testing, I assume there is no update for 𝑇𝑡 and 𝐶𝑖𝑡 . To decrease the effect caused by the random
motion disturbance 𝑤𝑡 of the system for the experiment results, I run 50 times simulation with identical
parameters (𝐴𝑡, 𝑄𝑡, and 𝐻𝑖𝑡) to obtain the mean estimation error and the estimation error standard
derivation (std).

Moreover, the initial values for the target and each 𝑠𝑖 are defined as 𝑋0 = [0 0]𝑇, 𝑋𝑖0|0 = [−10 +
20 ∗ 𝑟𝑎𝑛𝑑 − 10 + 20 ∗ 𝑟𝑎𝑛𝑑]𝑇, 𝑃𝑖0|0 = 10𝐼𝑝, where 𝑟𝑎𝑛𝑑 denotes a random function that generates
uniformly distributed random number between 0 and 1. Here, the estimated state vector 𝑋𝑖𝑡|𝑡 represents
the horizontal and vertical position of this area. And the total time steps 𝑡 = 500. The weight estimation
of FOKF-R uses the definition in Section 3.6. As for FOKF-M, the selection of 𝑠𝑚 is the first KF tracker 𝑠1
for simplicity. In addition, the typical KF (Kalman, 1960) is also tested to clearly show the improvement
of FOKF-related, where it obtains the measurement 𝑍1𝑡 for iteration. As for the systems, the parameters
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are set as follows:

𝐴𝑡 = [
0.9996 −0.0300
0.0300 0.9996 ] (4.1)

𝑄𝑡 = [
0.8 0
0 0.8] (4.2)

𝐻𝑖𝑡 = [1 1] (4.3)

For a real VOT task, the real 𝑅𝑖𝑡 of the baseline tracker is unknown, and the only way is to estimate
it. Therefore, FOKF-related experiments divide the 𝑅𝑖𝑡 as two parts for testing, where the real 𝑅𝑖𝑡 is
for generating the measurement (Eq.3.2) while the estimated 𝑅𝑖𝑡 is used for KF tracker 𝑠𝑖 to estimate
uncertainty, such as Eq.3.18). As for the evaluation metrics, the mean estimation error and the total
mean estimation error (𝑡𝑎𝑒) are defined as follows:

𝑒𝑟𝑡 = √(𝑋1,𝑡 − 𝑋𝑤1,𝑡|𝑡)2 + (𝑋2,𝑡 − 𝑋𝑤2,𝑡|𝑡)2 (4.4)

𝑡𝑎𝑒 = 1
𝑠𝑡𝑒𝑝𝑠

𝑠𝑡𝑒𝑝𝑠

∑
𝑡=1

𝑒𝑟𝑡 (4.5)

where 𝑋𝑤𝑡|𝑡 is the final result of each method as mentioned in Chapter 3.

4.1.2. Experiment 1: Known and Similar Measurement Uncertainties

Figure 4.1: Experiment 1: Snapshot of the estimation of KF, FOKF-S, FOKF-R, FOKF-M, and the real position of GT when
the tracker number is 10 and the measurement uncertainties are known and similar. It is a snapshot of one of the 50 times
simulations that the final estimated positions and the real positions are given every 10-time steps, whereas the time steps are
given every 20-time steps. For aesthetics, the shown GT points are connected to represent truth trajectories. The numbers after
the legends are the 𝑡𝑎𝑒.

This experiment aims at testing the performance of FOKF-related when 𝑅𝑖𝑡 = 𝑅𝑡 = 50 are set both
for the real 𝑅𝑖𝑡 and the estimated 𝑅𝑖𝑡. A qualitative example is shown in Fig.4.1. With regard to the
effect of the tracker number for FOKF-related, Fig.4.2 shows the performance under different tracker
numbers from 1 to 20 of the typical KF and FOKF-related. Both of these two Figures can clearly see
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that FOKF-related (mean estimation error around 4.352𝑚 and std 0.715) significantly outperforms the
typical KF (mean estimation error 4.889𝑚 and std 0.734), which shows FOKF-related take advantage
of collaborative information to improve tracking accuracy and robustness. Moreover, the obvious trend
that the performance is improved with the increase of the tracker number can be seen in Fig.4.2. Fur-
thermore, FOKF-S slightly surpasses FOKF-R and FOKF-M with an overall 0.001𝑚, while the largest
boost is 0.007𝑚 when the tracker number is 9. The above experiments show that FOKF-S is the best
among FOKF-related under the situation of known and similar 𝑅𝑖𝑡, while FOKF-R and FOKF-M have
the same performance because they have the same 𝑅𝑖𝑡 and select the estimation result of the same
KF tracker 𝑠1 as the final result.

Figure 4.2: Experiment 1: Performance influence on tracker number of the Tracker Ensemble of FOKF-S, FOKF-R, FOKF-M
when the measurement uncertainties are known and similar. The numbers after the legends are the average 𝑡𝑎𝑒 and its standard
derivation of different tracker numbers, while the numbers near the point are the average 𝑡𝑎𝑒 of 50 times simulation.

4.1.3. Experiment 2: Unknown and Similar Measurement Uncertainties
This experiment aims at testing the performance of FOKF-related when the real 𝑅𝑖𝑡 = 𝑅𝑡 = 50 for Eq.3.2
are unknown for KF tracker 𝑠𝑖, where the inaccurate estimated 𝑅𝑖𝑡 = 50 + 20 ∗ (𝑖 − 1) are estimated.
Similar to Section 4.1.2, Figs.4.3 and 4.4 are shown as follows. Similar to that in Section 4.1.2, FOKF-
related significantly outperforms the typical KF, which is shown in Fig.4.4. Also, the accuracy of FOKF-S
(4.399𝑚) is better than FOKF-R and FOKF-M (4.415𝑚). Note that 𝑠1 has the overall lowest uncertainty
measurements, which is satisfied with the requirement of FOKF-M knowing the best KF tracker.

4.1.4. Experiment 3: Known and Dissimilar Measurement Uncertainties
This experiment aims at testing the performance of FOKF-related when the dissimilar real 𝑅𝑖𝑡 = 50 +
20∗(𝑖−1)∗𝑟𝑎𝑛𝑑1−40∗𝑟𝑎𝑛𝑑2 are known for KF tracker 𝑠𝑖. Here, 𝑟𝑎𝑛𝑑 is updated for each KF tracker
𝑠𝑖 at each tracker number. Different from Section 4.1.3, FOKF-R is the best method (3.374𝑚) when the
real 𝑅𝑖𝑡 is dissimilar and known because it is not limited by the average step of FOKF-S or the simple
single KF tracker fusion estimation of FOKF-M.

4.1.5. Experiment 4: Unknown and Dissimilar Measurement Uncertainties
This experiment aims at testing the performance of FOKF-related when the dissimilar real 𝑅𝑖𝑡 = 50 +
20 ∗ (𝑖 − 1) ∗ 𝑟𝑎𝑛𝑑1 − 40 ∗ 𝑟𝑎𝑛𝑑2 are unknown for KF tracker 𝑠𝑖, where the inaccurate estimated
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Figure 4.3: Experiment 2: Snapshot when the measurement uncertainties are unknown and similar. The rest is similar to the
caption of Fig.4.1.

Figure 4.4: Experiment 2: Tracker number influence when the measurement uncertainties are unknown and similar. The rest is
similar to the caption of Fig.4.1.
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Figure 4.5: Experiment 3: Snapshot when the measurement uncertainties are known and dissimilar. The rest is similar to the
caption of Fig.4.1.

Figure 4.6: Experiment 3: Tracker number influence when the measurement uncertainties are known and dissimilar. The rest is
similar to the caption of Fig.4.1.
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Figure 4.7: Experiment 4: Snapshot when the measurement uncertainties are unknown and dissimilar. The rest is similar to the
caption of Fig.4.1.

Figure 4.8: Experiment 4: Tracker number influence when the measurement uncertainties are unknown and dissimilar. The
rest is similar to the caption of Fig.4.1.
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𝑅𝑖𝑡 = 50 + 40 ∗ (𝑖 − 1) ∗ 𝑟𝑎𝑛𝑑3 are estimated for trajectory estimation. As shown in Figs.4.7 and 4.8,
FOKF-M is the best method in this situation because the selection of the main tracker can weaken the
adverse conditions to some extent that 𝑅𝑖𝑡 is dissimilar and unknown, where the former hinders FOKF-S
while the latter inhibits FOKF-R.

4.1.6. Discussion
Based on the results of the experiments, we can validate Table 3.2. In terms of fusion performance,
FOKF-related algorithms have distinct advantages and drawbacks under different circumstances. FOKF-
S performs better when the baseline trackers have similar 𝑅𝑖𝑡. FOKF-R performs better when accurate
estimation of 𝑅𝑖𝑡 is possible, even if 𝑅𝑖𝑡 values are dissimilar. FOKF-M is competitive when the best
baseline tracker is known, without facing the dilemma of FOKF-R’s need for accurate 𝑅𝑖𝑡. In terms of
time complexity, FOKF-M is the fastest method, with a complexity of 𝑂(𝑀). FOKF-S and FOKF-R have
the same time complexity of 𝑂(𝑁𝑀). These experiments were conducted on a laptop with an AMD
Ryzen 7 4800H CPU. For instance, when the number of trackers is 2, the processing times for the typ-
ical KF, FOKF-S, FOKF-R, and FOKF-M are 0.1𝑚𝑠, 1.3𝑚𝑠, 1.3𝑚𝑠, and 0.6𝑚𝑠, respectively. When the
number of trackers is 10, the processing times for FOKF-S, FOKF-R, and FOKF-M are 7.2𝑚𝑠, 7.2𝑚𝑠,
and 0.9𝑚𝑠, respectively.

Section 4.1 primarily evaluates the performance of FOKF-related algorithms under various 𝑅𝑖𝑡 sit-
uations, with a particular focus on scenarios where 𝑅𝑖𝑡 values are known and similar for KF tracker
𝑠𝑖. This is an important consideration since estimating 𝑅𝑖𝑡 for baseline trackers in VOT tasks is often
challenging. The experimental results demonstrate that FOKF-related algorithms are highly effective in
leveraging collaborative information to improve tracking performance, as demonstrated by their supe-
rior performance over the typical KF. Additionally, the experiments reveal that FOKF-S, FOKF-R, and
FOKF-M exhibit different fusion performances under different 𝑅𝑖𝑡 situations, providing valuable insights
for selecting the most appropriate FOKF-related method for VOT tasks.

4.2. TLF-FOKF-Related Experiments
This section focuses on testing TLF-FOKF-related methods on three challenging VOT benchmarks.
TLF-FOKF-related includes TLF-FOKF-Standard (namely TLF-FOKF-S for simplicity), TLF-FOKF-R,
TLF-FOKF-M. First, implementation details and descriptions of testing benchmarks are provided. To
demonstrate the effectiveness of TLF-FOKF-related methods, comparative experiments with baseline
trackers are conducted by considering similar measurement uncertainties. Additionally, to investigate
the positive effect of tracker diversity and the negative effect of acceptability of baseline tracker for
feedback, experiments with two baseline trackers are designed with similar measurement uncertain-
ties to eliminate interference from other factors. The influence of the number of baseline trackers for
TLF-FOKF-related and their corresponding running speeds are also evaluated, which also addresses
the negative effect of a limited number of baseline trackers. Dissimilar measurement uncertainties
are used to test the sensitivity of TLF-FOKF-related and to support the claim of the negative effects of
occasional and inevitable poor tracking results. Experiments to analyze the influence of process uncer-
tainty are also conducted. Due to differences in baseline trackers and a scarcity of public repositories
of TLF methods, comparisons with state-of-the-art TLF methods are based on inference. Finally, the
strengths and weaknesses of TLF-FOKF-related are analyzed based on the experiment results, and
the implications and potential impact of the findings are discussed.

4.2.1. Implementation Details
The TLF-FOKF-related methods were implemented using Python 3.8 and PyTorch 1.7.0. The experi-
ments were conducted on a laptop equipped with an AMD Ryzen 7 4800H CPU and a 4GB GeForce
GTX 1650 GPU.

Hyperparameters: As for TLF-FOKF-related methods, there are 6 hyperparameters needed to be
determined in advance, including 𝑋𝑡, 𝑍𝑖𝑡, 𝐴𝑡, 𝑄𝑡, 𝐻𝑖𝑡 and 𝑅𝑖𝑡. The state vector 𝑋𝑖𝑡 and the measurement
𝑍𝑖𝑡 which are defined as Eqs.3.28 and 3.29 are based on the requirement of the VOT task. And then the
state-to-measurement matrix 𝐻𝑖𝑡 is derived according to 𝑋𝑖𝑡 and 𝑍𝑖𝑡 as Eq.4.6. The rest hyperparameters
are difficult but important to be estimated accurately. But because the goal of this thesis is not focusing
on estimating 𝐴𝑡, 𝑄𝑡, and 𝑅𝑖𝑡, I simply handcraft them roughly. The state transition matrix 𝐴𝑡 is derived
as Eq.3.30 according to 𝑋𝑖𝑡. Motivated by Wojke et al. (2017), the uncertainty is relevant with the std of
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position and velocity and the height ℎ of the bbox of the target. The std of position and velocity are set
as 1/20 and 1/160, respectively. Thus, I define that 𝜎𝑝𝑜𝑠 = 𝑠𝑡𝑑𝑝𝑜𝑠 ∗ ℎ and 𝜎𝑣𝑒𝑙 = 𝑠𝑡𝑑𝑣𝑒𝑙 ∗ ℎ. And then,
the processing Gaussian covariance matrix 𝑄𝑡 and the measurement Gaussian covariance matrix are
defined as Eqs.4.7 and 4.8, respectively. These hyperparameters are validated on OTBCOCO which
is described in Section 4.9.

𝐻𝑖𝑡 =
⎡
⎢
⎢
⎣

1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0

⎤
⎥
⎥
⎦

(4.6)

𝑄𝑡 =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

100𝜎2𝑝𝑜𝑠 0 0 0 0 0 0 0
0 100𝜎2𝑝𝑜𝑠 0 0 0 0 0 0
0 0 100𝜎2𝑝𝑜𝑠 0 0 0 0 0
0 0 0 100𝜎2𝑝𝑜𝑠 0 0 0 0
0 0 0 0 100𝜎2𝑣𝑒𝑙 0 0 0
0 0 0 0 0 100𝜎2𝑣𝑒𝑙 0 0
0 0 0 0 0 0 100𝜎2𝑣𝑒𝑙 0
0 0 0 0 0 0 0 100𝜎2𝑣𝑒𝑙

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(4.7)

𝑅𝑡 =
⎡
⎢
⎢
⎣

𝜎2𝑝𝑜𝑠 0 0 0
0 𝜎2𝑝𝑜𝑠 0 0
0 0 𝜎2𝑝𝑜𝑠 0
0 0 0 𝜎2𝑝𝑜𝑠

⎤
⎥
⎥
⎦

(4.8)

Tracker Ensemble: The Tracker Ensemble is the only part for TLF-FOKF-related requiring training
or a pre-trained model. Since training on a benchmark’s training set alone is not essential to compare
the improvements of TLF-FOKF-related with baseline trackers, all baseline trackers were trained using
pre-trained models and pre-defined hyperparameters to save time. The training set of each candidate
baseline tracker is shown in Table 4.1. Additionally, the same baseline tracker was tested with dif-
ferent backbones. The baseline trackers evaluated in this study include MOSSE, GOTURN, ECO_HC
(Using handcrafted features), SiamRPN, SiamRPN++_ResNet (He et al., 2016), SiamRPN++_AlexNet
(Krizhevsky et al., 2017), SiamRPN++_Mobilev2 (Howard et al., 2017), SiamFC++_AlexNet, SiamFC++
_GoogleNet (Szegedy et al., 2015), STMTrack and STARK. Here STARK is the version of STARK
_Lightning which is accelerated by ONNXRUNTIME. The citations indicate the works proposing the
backbone. Yolov3_DeepSORT was excluded from the evaluation as it is not suitable for the VOT task
due to a lack of overlap between the training set of Yolov3 and the test set of VOT benchmarks.

Table 4.1: The training set of some baseline trackers

Baseline Tracker Training Set

GOTURN ALOV300++ (Smeulders et al., 2013) + ImageNet (Russakovsky et al., 2015)
SiamRPN Youtube-BB (Real et al., 2017) + ImageNet

SiamRPN++ COCO (T.-Y. Lin et al., 2014 + ImageNet + Youtube-BB
SiamFC++ COCO + ImageNet + Youtube-BB + LaSOT (Fan et al., 2019) + GOT-10k
STMTrack TrackingNet + LaSOT + GOT-10k (Huang et al., 2019) + ImageNet + COCO
STARK TrackingNet (Muller et al., 2018) + LaSOT + GOT-10k + COCO

Feedback: To reduce the impact of outlier baseline trackers, it is essential to provide feedback
on the fusion result to each baseline tracker in TLF-FOKF-S, TLF-FOKF-R, and TLF-FOKF-M. The
feedback mechanism is described in Table 4.2.

4.2.2. Descriptions of Testing Benchmarks
The performance of TLF-FOKF-related was evaluated on three challenging tracking datasets: OTB
(Wu et al., 2015), GOT-10k (Huang et al., 2019), and LaSOT testing set (Fan et al., 2019), after con-
sidering the characteristics of each dataset. OTB focuses mainly on mid-term sequences (sequences
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Table 4.2: Feedback detail for baseline trackers

Baseline Tracker Feedback detail

MOSSE Position
GOTURN Position + Scale
ECO_HC Position on OTB while Position + Scale on GOT-10k and LaSOT
SiamRPN Position on OTB while Position + Scale on GOT-10k and LaSOT

SiamRPN++ Position + Scale
SiamFC++ Position + Scale
STMTrack Position + Scale on OTB while Position on GOT-10k and LaSOT
STARK Position + Scale

with more than 100 frames but less than 1000 frames) with a few short and long sequences. GOT-
10k comprises short-term sequences (sequences with less than 100 frames), while LaSOT consists
of long-term sequences (sequences with more than 1000 frames). This evaluation allowed for a com-
prehensive assessment of the performance of TLF-FOKF-related. Fig.4.9 shows some examples from
these datasets.

OTB: OTB is a popular and widely used dataset, that comprises short, medium, and long sequences
of multiple classes of targets on multiple scenes. The total dataset, OTB2015, comprises 100 se-
quences collected from common object-tracking videos. The precision and success plot are the two
main metrics for evaluation. The precision plot represents the percentage of frames where the tracking
results are within the location pixel error threshold of IT. The success plot denotes the ratio of success-
ful frames when the overlap threshold varies from 0 to 1. The successful frame means its overlap is
larger than the given threshold. The area under the curve (AUC) of the success plot is used to rank
tracking algorithms. The AUC scores of the above two plots are used as the performance measure.
Moreover, I select 50 sequences from OTB2015 as the validation set to fine-tune hyperparameters
according to whether Yolov3 (Redmon and Farhadi, 2018) (trained on the COCO dataset) can detect
the objects, which is called OTBCOCO.

GOT-10k: GOT-10k is a novel and challenging dataset, where the sequences are taken from the
moving object in the real world. The test set embodies 84 object classes and 32 motion classes with
only 180 video sequences, which is also regarded as a short-term dataset because the sequence is
usually around 100 frames. The validation set has a similar structure to the test set The main evaluation
metrics are the average overlap and the success rate. The average overlap is the mean of IoU in every
frame, while the success rate is counted by the percentage of frames where the overlap is larger than
the IoU threshold (0.5 in this thesis). And GOT-10k provides an online evaluation server to avoid tuning
parameters on it.

LaSOT: LaSOT focuses on the long-term VOT task with a large scale and high quality. Its test set
contains 70 classes target where each class has 4 sequences and an average sequences length of
around 2,500 frames. For simplicity, I select the AUC scores as the same as OTB.

4.2.3. Experiment 1: Comparison with Baseline Trackers
To demonstrate the effectiveness of TLF-FOKF-related methods when the measurement uncertainties
are similar, it is important to compare the tracking performance of baseline trackers with their TLF-
FOKF-related methods. Table 4.3 presents the experimental results on OTB2015, while Table 4.4 and
Table 4.5 show the results on the GOT-10k test set and LaSOT test set, respectively.

From the above tables, it is clear to see the effectiveness of TLF-FOKF-related methods for the
improvement of tracking performance as long as the hyperparameters can approximate the real model.
For example, TLF-FOKF-related improve around 1.3%AUC scores of precision and success onOTB2015
based on Table 4.3 when there are five baseline trackers. In addition, a similar level of accuracy im-
provement is shown on the GOT-10k test set according to Table 4.4. The largest accuracy improvement
is shown on the LaSOT test set according to the left column of Table 4.5, where the AUC scores are in-
creased by around 6% with only using three baseline trackers. Notice that the right column of Table 4.5
shows that the precision AUC scores of TLF-FOKF-related are slightly smaller than the baseline tracker
STMTrack (0.1%) which is caused by the difference of the measurement uncertainties on the precision
of these two baseline trackers too large, while the success AUC scores show normally because the
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Figure 4.9: Qualitative examples of OTB2015, GOT-10k, LaSOT from top to bottom, respectively.

Table 4.3: A AUC performance table on OTB2015 using precision AUC score (P) and success AUC score (S) to compare TLF-
FOKF-related methods and their baseline trackers when the measurement uncertainties are similar. For simplicity, my methods,
TLF-FOKF-S, TLF-FOKF-R, and TLF-FOKF-M are namely TFS, TFR, and TFM. The number after ± shows the std according to
the values of each sequence. Red, blue, and green are used to rank the top three performances from high to low.

Method (Block1) P% S% Method P% S%

TFS (my) 93.3 ± 14.3 72.7 ± 12.3 SiamRPN++_ResNet 89.1 ± 19.5 68.5 ± 15.2
TFR (my) 93.2 ± 14.5 72.7 ± 12.3 SiamFC++_AlexNet 87.3 ± 21.3 67.6 ± 17.4
TFM (my) 92.7 ± 15.8 72.4 ± 13.1 ECO_HC 84.8 ± 25.4 63.9 ± 20.4
STMTrack 91.7 ± 18.3 71.3 ± 13.6 SiamRPN 83.8 ± 22.7 63.0 ± 16.6

Table 4.4: A performance table on the GOT-10k test set using the average overlap (AO) and success rate (SR) for a compar-
ison between TLF-FOKF-related methods and their baseline trackers. The left and right blocks represent two different tracker
ensembles. Because the GOT-10k online evaluation server does not provide the std, they are omitted in this table.

Method (Block1) AO% SR% Method (Block2) AO% SR%

TFS (my) 48.6 57.7 TFS (my) 63.4 74.9
TFR (my) 48.6 57.7 TFR (my) 63.4 74.9
TFM (my) 48.5 57.4 TFM (my) 62.4 74.0

SiamRPN++_ResNet 46.4 54.7 STMTrack 62.3 73.8
SiamRPN++_Mobilev2 46.5 54.7 SiamFC++_GoogleNet 59.4 70.4

SiamRPN 45.9 55.6
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Table 4.5: A AUC performance table on LaSOT test set using precision AUC score and success AUC score to compare TLF-
FOKF-related methods and their baseline trackers. The left and right blocks represent two different tracker ensembles.

Method (Block1) P% S% Method (Block2) P% S%

TFS (my) 50.3 ± 30.8 50.6 ± 24.2 TFS (my) 62.3 ± 29.3 62.4 ± 21.8
TFR (my) 50.4 ± 30.5 50.7 ± 23.8 TFR (my) 62.3 ± 29.3 62.4 ± 21.8
TFM (my) 49.5 ± 31.0 49.7 ± 24.2 TFM (my) 62.3 ± 29.3 62.4 ± 21.8
SiamRPN 44.2 ± 30.6 45.5 ± 24.8 STMTrack 62.4 ± 31.4 60.5 ± 25.7

SiamRPN++_Mobilev2 45.2 ± 31.2 45.1 ± 24.9 STARK 57.8 ± 29.0 58.6 ± 20.9
SiamRPN++_AlexNet 43.6 ± 30.4 44.8 ± 24.1

measurement uncertainties on the success of them are similar.
An interesting observation from the experiments is that TFS and TFR perform similarly, while TFM

often shows worse performance. Regarding the former, this is due to the assumption that all baseline
trackers have similar measurement uncertainties, leading to no significant differences between TFS and
TFR. Concerning the latter, there are three reasons: Firstly, the decrease in the number of KF trackers 𝑠𝑖
results in a lack of comprehensive estimation. Secondly, the variation in the Tracker Ensemble leads to
normal experimental results fluctuating. Finally, the estimation of the real model is not accurate enough,
resulting in unpredictable experimental outcomes. Nonetheless, these limitations do not impede the
effectiveness of TFM in improving tracking performance, especially considering its faster speed of
execution. Fig.4.10 presents some qualitative examples of the performance of TLF-FOKF-related (my)
in comparison with the baseline trackers.

Figure 4.10: Qualitative examples of the tracking ability achieved by the proposed TFS, TFR, and TFM in comparison with the
corresponding baseline trackers. The first column of images presents the first frame of each sequence. In the top-left corner of
each frame, the frame elapsed since the beginning of the sequence is reported. From top to bottom, the sequences come from
the OTB2015, GOT-10k validation set, and LaSOT testing set, respectively. Overall, the solution improves the accuracy and
robustness of target tracking by combining the capabilities of the underlying baseline trackers. Additionally, the feedback design
of the solution helps the weaker baseline tracker to avoid tracking failure, as indicated in the bottom subplot.
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4.2.4. Experiment 2: Tracker Diversity and Acceptability for Feedback
Because I assume 𝑅𝑖𝑡 is the same for each baseline tracker, this experiment only considers the baseline
tracker with similar measurement uncertainties as the Tracker Ensemble in order to guarantee the
normal performance of TFS, TFR, and TFM. Moreover, I consider the situation that the baseline tracker
number is two to decrease the effect of other unknown factors.

To better demonstrate the utilization of tracker diversity, I propose two evaluation metrics, the uti-
lization of the upper bound based on the upper baseline tracker (𝑈𝑈) and the utilization of the upper
bound based on the mean baseline tracker (𝑈𝑀). Actually, as for evaluating a TLF method, these
two evaluation metrics are more important than simply evaluating the improvement compared with the
baseline tracker, because they indicate the utilization ability of a TLF method for the strength of the
baseline tracker. The 𝑈𝑈 metric has practical significance for engineering as it indicates the scale
of performance improvement compared with the best baseline tracker, while 𝑈𝑀 has scientific value
for analyzing TLF methods because it considers the average performance of baseline trackers. The
definitions are shown as Eqs. 4.9 and 4.10.

𝑈𝑈 = 𝑇𝐹 − 𝑈𝐵
𝑈𝑃 − 𝑈𝐵 (4.9)

𝑈𝑀 = 𝑇𝐹 −𝑀𝐵
𝑈𝑃 −𝑀𝐵 (4.10)

where 𝑇𝐹 is the performance of TLF-FOKF-related methods, and 𝑈𝑃 is the performance of the Upper
Bound which has been described in Section 3.2. 𝑈𝐵 is the performance of the best baseline tracker
in the tracker ensemble, while 𝑀𝐵 is the mean performance of the baseline trackers in the tracker
ensemble.

Table 4.6: A AUC performance table on OTB2015 using success AUC score, 𝑈𝑈, 𝑈𝑀 to compare the performance and the
utilization of tracker diversity of TLF-FOKF-related methods and their baseline trackers when the measurement uncertainties are
similar. Each block contains one kind of tracker ensemble and the corresponding TFS, TFR, and TFM. Each TLF-FOKF-related
method is given corresponding 𝑈𝑈 and 𝑈𝑀 in the form of 𝑥𝑥/𝑥𝑥 in the third column in each block. The first baseline tracker
is given the corresponding 𝑈𝑃 of its tracker ensemble in the third column. For simplicity, some of the baseline tracker names
are abbreviated and only the top three performances are highlighted in red, blue, and green from high to low for each evaluation
metric and block.

Method S% 𝑈𝑈/𝑈𝑀% Method S% 𝑈𝑈/𝑈𝑀%

TFS 72.4 ± 12.9 27.5/46.3 TFS 72.5 ± 12.8 32.4/55.0
TFR 72.4 ± 12.9 27.5/46.3 TFR 72.5 ± 12.8 32.4/55.0
TFM 71.8 ± 14.0 12.5/35.2 TFM 72.3 ± 12.7 27.0/51.4

STMTrack 71.3 ± 13.6 75.3 ± 11.2 STMTrack 71.3 ± 13.6 75.0 ± 11.1
SiamRPN++_Res 68.5 ± 15.2 Block1 SiamFC++_Alex 67.6 ± 17.4 Block2

TFS 69.2 ± 16.0 13.5/20.4 TFS 69.2 ± 17.2 33.3/36.0
TFR 69.2 ± 16.0 13.5/20.4 TFR 69.1 ± 17.2 31.2/34.0
TFM 68.8 ± 16.7 5.8/13.3 TFM 69.0 ± 16.3 29.2/32.0

SiamRPN++_Res 68.5 ± 15.2 73.7 ± 12.5 SiamFC++_Alex 67.6 ± 17.4 72.4 ± 14.6
SiamFC++_Alex 67.6 ± 17.4 Block3 SiamFC++_Google 67.2 ± 17.2 Block4

TFS 67.7 ± 14.9 43.1/45.9 TFS 69.4 ± 14.7 61.1/63.0
TFR 67.7 ± 14.9 43.1/45.9 TFR 68.8 ± 15.6 54.4/56.6
TFM 67.2 ± 16.1 34.5/37.7 TFM 68.9 ± 15.1 55.6/57.7

SiamRPN++_Mobile 65.2 ± 18.1 71.0 ± 14.9 ECO_HC 63.9 ± 20.4 72.9 ± 13.0
SiamRPN++_Alex 64.6 ± 16.9 Block5 SiamRPN 63.0 ± 16.6 Block6

The group design of the above experiments is based on the ranking of the mean performance of
baseline trackers from high to low, as shown in Table 4.6. These experimental results not only again
demonstrate the performance improved by TLF-FOKF-related but also show the positive correlation be-
tween the fusion performance and the tracker diversity proposed by Section 3.2. For example, the first
row of Table 4.6 TLF-FOKF-related have a better performance when their upper bounds (UP) also have
the highest success AUC score around 75.3%, compared with other tracker ensembles on OTB2015.
Moreover, a strong evidence example is the tracker ensemble with ECO_HC and SiamRPN. It has a
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Table 4.7: A performance table on GOT-10k validation set using average overlap (AO), 𝑈𝑈, 𝑈𝑀 to compare the performance and
the utilization of tracker diversity of TLF-FOKF-related methods and their baseline trackers when the measurement uncertainties
are similar. Here, the validation set is used for analysis convenience of std. And it only indicates the best performance in red.
The rest is the same as Table 4.6.

Method AO% 𝑈𝑈/𝑈𝑀% Method AO% 𝑈𝑈/𝑈𝑀%
TFS 75.4 ± 17.7 20.7/27.6 TFS 64.6 ± 21.8 22.9/28.2
TFR 75.4 ± 17.7 20.7/27.6 TFR 64.6 ± 21.8 22.9/28.2
TFM 74.9 ± 18.1 12.1/19.7 TFM 64.3 ± 21.9 16.7/22.3

SiamFC++_Google 74.2 ± 19.8 80.0 ± 14.8 SiamRPN++_Mobile 63.5 ± 23.1 68.3 ± 20.8
STARK 73.1 ± 18.2 Block1 SiamRPN++_Alex 62.8 ± 20.9 Block2

Table 4.8: A performance table on LaSOT testing set using success AUC score, 𝑈𝑈, 𝑈𝑀 to compare the performance and the
utilization of tracker diversity of TLF-FOKF-related methods and their baseline trackers when the measurement uncertainties are
similar. The rest is the same as Table 4.6.

Method S% 𝑈𝑈/𝑈𝑀% Method S% 𝑈𝑈/𝑈𝑀%
TFS 62.4 ± 21.8 20.7/28.1 TFS 48.0 ± 24.0 33.7/34.9
TFR 62.4 ± 21.8 20.7/28.1 TFR 48.4 ± 23.9 38.4/39.4
TFM 62.4 ± 21.8 20.7/28.1 TFM 48.7 ± 23.7 41.9/42.9

STMTrack 60.5 ± 25.7 69.7 ± 19.0 SiamRPN++_Mobile 45.1 ± 24.9 53.7 ± 23.6
STARK 58.6 ± 20.9 Block1 SiamRPN++_Alex 44.8 ± 24.1 Block2

Figure 4.11: Qualitative examples for experiment 2 achieved by the proposed TFS in comparison on OTB2015 with the corre-
sponding baseline trackers. From top to bottom, there are three different tracker ensembles and three different tracker diversity
listed in Table 4.6. Overall, the top sub-figure has the highest tracker diversity, and hence TFS performs best, while the other two
tracker ensembles have similar tracker diversity, and their TFS have similar tracking performance. Note that although tracker
diversity is crucial for fusion performance, there are many impact factors, such as the acceptability of the baseline tracker for
feedback and the TLF method itself.
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much lower mean baseline tracker success AUC score (around 63.5%) but its TFS has an outstanding
fusion performance (69.4%). Another persuasive metric is to calculate the Pearson correlation coeffi-
cient according to Tables 4.6-4.8, where the Pearson correlation coefficient ranges from -1 to 1, with
a value of -1 indicating a perfect negative correlation, a value of 0 indicating no linear correlation, and
a value of 1 indicating a perfect positive correlation. Table 4.9 demonstrates the strong positive corre-
lation between the tracker diversity and the TLF-FOKF-related methods with the Pearson correlation
coefficients of about 0.8.

Table 4.9: The Pearson correlation coefficient about TLF-FOKF-related and the upper bound according to Tables 4.6-4.8, 4.11-
4.13 and Figs.4.12-4.14 with the total 24 data where the estimated measurement uncertainties are the same.

Method TFS TFR TFM
Coefficient 0.8198 0.8203 0.8030

It is worth noting that the UU values of TLF-FOKF-related methods are primarily concentrated in
the interval of [20,40], while the UM values are concentrated in the interval of [30,50]. These two
metrics provide a clear indication of the scale of the utilization of the upper bound of TLF-FOKF-related
methods.

There is evidence to support the acceptability of baseline trackers for feedback. Comparing the
success AUC scores of Block1 and Block2 in Table 4.6, we can clearly observe that the success AUC
scores of TLF-FOKF-related containing the baseline tracker SiamRPN++_ResNet always performs
worse, although their upper bound and the mean baseline tracker performance are higher. It can infer
that the acceptability of SiamRPN++_ResNet for feedback is worse than others because the other
variables are similar. Some qualitative examples of the performance of TFS in comparison with different
baseline trackers on OTB2015 are shown in Fig.4.11.

4.2.5. Experiment 3: Baseline Trackers’ Number

Figure 4.12: The influence of baseline trackers’ number with similar measurement uncertainties on OTB2015 for performance
and utilization of tracker diversity, where the baseline tracker is added one by one, including STMTrack, SiamRPN++_ResNet,
SiamFC++_AlexNet, ECO_HC, SiamRPN. The top side corresponds to the success AUC score, while the bottom side corre-
sponds to the utilization of tracker diversity by 𝑈𝑈 and 𝑈𝑀. The std is calculated based on each sequence and shown on the
graph after being scaled down by a factor of 5 for aesthetics.
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Figure 4.13: The influence of baseline trackers’ number with similar measurement uncertainties on GOT-10k validation set for
performance and utilization of tracker diversity. The std is calculated based on each sequence and shown on the graph after
being scaled down by a factor of 10 for aesthetics.

Figure 4.14: The influence of baseline trackers’ number with similar measurement uncertainties on LaSOT testing set for per-
formance and utilization of tracker diversity. The std is calculated based on each sequence and shown on the graph after being
scaled down by a factor of 10 for aesthetics.
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Figure 4.15: Qualitative examples for experiment 3 achieved by the proposed TFR in comparison on the GOT-10k validation set
with two different number baseline trackers. Here, TFR2 uses the tracker ensemble: SiamRPN++_Mobilev2 and SiamRPN, while
TFR3 adds one more baseline tracker (SiamRPN++_AlexNet) based on the tracker ensemble of TFR2, which is a qualitative
example of Fig.4.13. Comparing TFR2 and TFR3, better performance is achieved by TFR3, especially in frame 40.

A key advantage of the TLF method is its ability to enhance performance with an increasing number
of baseline trackers. However, the efficacy of this advantage is subject to various challenging factors,
including the TLF method’s own prerequisites, negative effects as proposed in Section 3.2, and others.
Hence, this section primarily aims to investigate the influence of the number of baseline trackers on TLF-
FOKF-related methods, under the constraint of maintaining the TLF-FOKF-related method’s feasibility.
Experimental results demonstrating the findings are presented in Figs. 4.12-4.14.

Figs. 4.12-4.14 all clearly show that the fusion performance of TLF-FOKF-related is improved with
the addition of the number of baseline trackers. As for the accuracy performance, Fig.4.12 adds the
baseline tracker from high to low based on their performance. It is obvious that the success AUC scores
increase while the std decrease with the growth of the baseline tracker’s number. On the contrary, the
AUC and std of the baseline trackers are opposite. The AUC of TLF-FOKF-related is also increased
with the number of baseline trackers, except after adding ECO_HC. This sudden drop is because the
measurement uncertainty of ECO_HC is vastly dissimilar to that of other baseline trackers, causing
some extent of performance degradation. Similar situations are also observable in Fig.4.13 and 4.14
after adding SiamRPN++_ResNet. However, the performance improvement of TLF-FOKF-related is
satisfactory when the measurement uncertainties are close enough because all baseline trackers have
the same 𝑅𝑖𝑡. Analysis of Fig.4.12-4.14 indicates that TFS and TFR typically have comparable accuracy
performance. TFM performs somewhat more poorly when the number of baseline trackers is small but
performs better when the number of baseline trackers is sufficiently large. Moreover, the negative effect
of a limited number of baseline trackers is also evident based on these analyses and figures. Using
more baseline trackers brings more tracker diversity, but also brings more negative effects, which also
need to be considered.

Regarding the utilization of the upper bound, 𝑈𝑈 mostly falls in the range [10, 40], while 𝑈𝑀 is
concentrated in the interval [25, 45], making it more stable. The stability of 𝑈𝑀 confirms that TLF-
FOKF-related can harness tracker diversity to improve tracking performance consistently. In contrast,
the fluctuation in 𝑈𝑈 is primarily due to the imprecise estimation of 𝑅𝑖𝑡. Fig.4.15 shows some qualitative
examples of TFR’s performance concerning different numbers of baseline trackers on the GOT-10k
validation set.

4.2.6. Experiment 4: Running Speed

Table 4.10: Comparison of the running speed of TLF methods, where the top two methods are highlighted in red and blue.

method Xie et al. Dunnhofer et al. W. Zhang et al. Dunnhofer et al. TFS/TFR TFM
Year 2019 2020 2020 2022 2023 2023

FPS 60~500 30 200 20~90 160~630 820~1100

The running speed of a TLF method is a crucial evaluation metric since the TLF method’s running
speed plus the baseline trackers are inherently slower than that of the baseline trackers. Thus, knowing
the operational speed of TLF-FOKF-related is crucial in determining whether it significantly affects
tracking speed in practical applications. Fig.4.16 indicates that TFS and TFR’s running speed exhibits
a quadratic pattern, allowing the fastest operation to reach 630 FPS with two baseline trackers, while
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the slowest reaches over 150 FPS with seven baseline trackers. On the other hand, TFM’s running
speed demonstrates a linear pattern, with the slowest operation recorded at over 800 FPS with seven
baseline trackers. Such running speeds enable TLF-FOKF-related to achieve effective real-time fusion.
The total speed equals the sum of the baseline trackers’ speed (either sequential or parallel) and the
speed of TLF-FOKF-related.

Figure 4.16: The running speed of TFS, TFR, and TFM, which is tested on the sequence Basketball of OTB2015. The reason
for only testing on one sequence is the running speed of TLF-FOKF-related mainly related to the number of trackers while inde-
pendent of the sequence. Here the selection of baseline trackers is only for testing speed without considering their capabilities.

In addition, a comparison of the state-of-the-art TLF method running speeds can be made based
on their respective literature, as depicted in Table 4.10. Notably, TFS and TFR exhibit superior running
speeds, with TFR outpacing all other methods.

4.2.7. Experiment 5: Dissimilar Measurement Uncertainties and Negative Ef-
fects

The preceding experiments mostly considered baseline trackers with comparable measurement uncer-
tainties. However, dissimilar measurement uncertainties are more prevalent in practical engineering
applications. Thus, it is pivotal to analyze the performance of TLF-FOKF-related concerning dissimilar
measurement uncertainties. Such disparate uncertainties are occasionally associated with negative
effects, such as poor tracking outcomes, which become particularly evident in comparisons between
robust and weak baseline trackers. Hence, the experiments presented herein will assess such negative
effects.

The reason why similar measurement uncertainties were employed for all baseline trackers in the
preceding experiments is that accurately gauging the measurement uncertainties for all baseline track-
ers and frames remains challenging. Nonetheless, this does not imply that TLF-FOKF-related methods
are inadequate for handling dissimilar measurement uncertainties. To demonstrate this, succeeding
experiments utilize rough hand-crafted measurement uncertainties, as depicted in Tables 4.11-4.13.

Tables 4.11-4.13 demonstrate that TLF-FOKF-related methods exhibit considerably better perfor-
mance following the utilization of more suitable measurement uncertainties. This strongly suggests that
TLF-FOKF-related methods possess the potential to perform optimally under varying measurement un-
certainties provided that their estimation is accurate enough. When the number of baseline trackers
is relatively large and rough hand-crafted measurement uncertainties are used, TFR-Score frequently
exhibits the best performance, while TFS-Score fares the worst, with TFM-Score ranking in between.
The resulting data support the Table 3.2 proposition.

In Section 3.2, it is highlighted that STARK and MOSSE inevitably produce poor tracking results, as
evidenced in Tables 4.11 and 4.13, which demonstrate that TLF-FOKF-based trackers perform poorly
when STARK and MOSSE are used as the baseline trackers. The negative impact of these poor track-
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Table 4.11: A AUC performance table on OTB2015 using success AUC score, 𝑈𝑈, 𝑈𝑀 to compare the performance and the
utilization of tracker diversity after using different 𝑅𝑖𝑡 when the measurement uncertainties are dissimilar. Each horizontal block
represents one kind of tracker ensemble, while the TLF-FOKF-related suffix with ’Score’ in each vertical second column block
represents that the estimated 𝑅𝑖𝑡 is different. For each vertical second block, it uses 𝑅1𝑡 = 0.1𝑅𝑡 and 𝑅2𝑡 = 𝑅𝑡. TLF-FOKF-related
are compared with TLF-FOKF-related-Score, where better performance is indicated in red.

Method AUC% 𝑈𝑈/𝑈𝑀% Method AUC% 𝑈𝑈/𝑈𝑀%
TFS 65.3 ± 18.3 −157.9/ − 24.8 TFS-Score 70.0 ± 14.6 −34.2/35.0
TFR 65.2 ± 18.3 −160.5/ − 26.1 TFR-Score 70.0 ± 14.6 −34.2/35.0
TFM 64.9 ± 18.7 −168.4/ − 29.9 TFM-Score 70.2 ± 14.0 −28.9/37.6

STMTrack1 71.3 ± 13.6 75.1 ± 10.2 STARK2 63.2 ± 18.4 Block1

TFS 71.0 ± 13.1 −17.6/89.0 TFS-Score 71.2 ± 12.8 −5.9/90.1
TFR 71.0 ± 13.1 −17.6/89.0 TFR-Score 71.2 ± 12.8 −5.9/90.1
TFM 70.6 ± 14.2 −41.2/86.7 TFM-Score 70.6 ± 14.2 −41.2/86.7

STMTrack1 71.3 ± 13.6 73.0 ± 11.9 GOTURN2 38.5 ± 22.6 Block2

Table 4.12: A performance table on GOT-10k validation set using average overlap (AO), 𝑈𝑈, 𝑈𝑀 to compare the performance
and the utilization of tracker diversity after using different𝑅𝑖𝑡 when themeasurement uncertainties are dissimilar. For the horizontal
first vertical second block, it uses 𝑅1𝑡 = 0.1𝑅𝑡 and 𝑅2𝑡 = 𝑅𝑡. For the horizontal second vertical second block, it uses 𝑅1𝑡 = 0.1𝑅𝑡,
𝑅2𝑡 = 0.7𝑅𝑡, 𝑅3𝑡 = 0.9𝑅𝑡, 𝑅4𝑡 = 𝑅𝑡.

Method AO% 𝑈𝑈/𝑈𝑀% Method AO% 𝑈𝑈/𝑈𝑀%
TFS 65.2 ± 20.3 −352.6/5.2 TFS-Score 77.5 ± 16.9 −28.9/73.0
TFR 65.2 ± 20.3 −352.6/5.2 TFR-Score 77.5 ± 16.9 −28.9/73.0
TFM 63.8 ± 21.5 −389.5/ − 2.5 TFM-Score 76.4 ± 17.4 −57.9/66.9

STMTrack1 78.6 ± 17.5 82.4 ± 13.7 ECO_HC2 49.9 ± 25.0 Block1

TFS 76.5 ± 17.1 −67.7/54.8 TFS-Score 77.4 ± 17.4 −38.7/62.6
TFR 76.5 ± 17.1 −67.7/54.8 TFR-Score 78.6 ± 17.1 0.0/73.0
TFM 76.2 ± 17.1 −77.4/52.2 TFM-Score 78.4 ± 16.8 −6.5/71.3

STMTrack1 78.6 ± 17.5 81.7 ± 15.7 SiamFC++_Google2 74.2 ± 19.8 −
SiamRPN++_Res3 65.0 ± 21.9 − SiamRPN4 63.0 ± 21.6 Block2

Table 4.13: A performance table on LaSOT testing set using success AUC score, 𝑈𝑈, 𝑈𝑀 to compare the performance and the
utilization of tracker diversity after using different 𝑅𝑖𝑡 when the measurement uncertainties are dissimilar. For the horizontal first
vertical second block, it uses 𝑅1𝑡 = 0.5𝑅𝑡 and 𝑅2𝑡 = 𝑅𝑡. For the horizontal second vertical second block, it uses 𝑅1𝑡 = 0.1𝑅𝑡,
𝑅2𝑡 = 0.3𝑅𝑡, 𝑅3𝑡 = 0.7𝑅𝑡, 𝑅4𝑡 = 0.9𝑅𝑡, 𝑅5𝑡 = 𝑅𝑡, 𝑅6𝑡 = 1.2𝑅𝑡.

Method AUC% 𝑈𝑈/𝑈𝑀% Method AUC% 𝑈𝑈/𝑈𝑀%
TFS 60.2 ± 25.2 −6.7/31.4 TFS-Score 60.6 ± 25.0 2.2/37.1
TFR 60.0 ± 25.2 −11.1/28.6 TFR-Score 60.6 ± 25.0 2.2/37.1
TFM 60.1 ± 24.9 −8.9/30.0 TFM-Score 60.4 ± 24.9 −2.2/34.3

STMTrack1 60.5 ± 25.7 65.0 ± 23.6 SiamFC++_Google2 55.5 ± 24.8 Block1

TFS 44.1 ± 21.3 −205.0/21.8 TFS-Score 49.2 ± 21.6 −141.2/38.1
TFR 44.3 ± 20.8 −202.5/22.4 TFR-Score 56.6 ± 23.1 −48.7/61.8
TFM 42.7 ± 21.3 −222.5/17.3 TFM-Score 54.6 ± 23.1 −73.7/55.4

STMTrack1 60.5 ± 25.7 68.5 ± 21.8 SiamFC++_Google2 55.5 ± 24.8 −
SiamRPN++_Mobile3 45.1 ± 24.9 − ECO_HC4 29.4 ± 22.5 −

GOTURN5 21.3 ± 20.3 − MOSSE6 12.1 ± 15.1 Block2



4.2. TLF-FOKF-Related Experiments 43

ing results severely affects the performance of TLF-FOKF-based trackers. In addition, the performance
of TLF-FOKF-based trackers in Block2 of Table 4.12 is also weak, despite the fact that the four baseline
trackers used in this block do not have any notable drawbacks. This indicates that the occasional poor
tracking results have a detrimental effect on the performance of TLF-FOKF-based trackers. Notably,
the second block in Table 4.11 registers the highest 𝑈𝑀 among the three tables. This can be attributed
to the fact that the GOTURN tracking object is entirely based on the previous frame’s estimation and
is, therefore, relatively more receptive to feedback.

4.2.8. Experiment 6: Process Uncertainty
In addition to measurement uncertainty 𝑅𝑖𝑡, process uncertainty 𝑄𝑡 is also an important hyperparameter
for TLF-FOKF-related. The process uncertainty reflects the accuracy of the object motion model 𝐴𝑡 (the
state transition matrix). Therefore, this section aims to evaluate the influence of process uncertainty
on the tracking performance as demonstrated in Tables 4.14 to 4.16.

Table 4.14: A AUC performance table on OTB2015 using precision AUC score (P) and success AUC score (S) to compare the
performance and the utilization of tracker diversity after using different 𝑄𝑡 when the measurement uncertainties are similar. The
TLF-FOKF-related suffix with ’Q’ in the fourth column represents that the estimated𝑄𝑡 is different. Here, it uses𝑄𝑛𝑒𝑤𝑡 = 0.01𝑄𝑜𝑙𝑑𝑡 .
TLF-FOKF-related are compared with TLF-FOKF-related-Q, where better performance is indicated in red.

Method (Block1) P% S% Method P% S%

TFS 92.4 ± 16.9 71.8 ± 14.5 TFS-Q 92.0 ± 18.0 71.2 ± 15.0
TFR 92.4 ± 16.9 71.8 ± 14.5 TFR-Q 91.2 ± 18.9 70.8 ± 15.3
TFM 92.9 ± 15.7 72.3 ± 13.8 TFM-Q 91.5 ± 18.1 71.0 ± 14.9

STMTrack 91.7 ± 18.3 71.3 ± 13.6 SiamRPN++_Res 89.1 ± 19.5 68.5 ± 15.2
SiamFC++_Alex 87.3 ± 21.3 67.6 ± 12.0 ECO_HC 84.8 ± 25.4 63.9 ± 20.4

Table 4.15: A performance table on GOT-10k validation set using the average overlap (AO) and success rate (SR) to compare
the performance and the utilization of tracker diversity after using different 𝑄𝑡 when the measurement uncertainties are similar.
Here, it uses 𝑄𝑛𝑒𝑤𝑡 = 0.01𝑄𝑜𝑙𝑑𝑡 .

Method (Block1) AO% SR% Method AO% SR%

TFS 65.4 ± 21.4 76.7 ± 30.7 TFS-Q 64.1 ± 21.8 75.5 ± 31.0
TFR 65.4 ± 21.4 76.7 ± 30.7 TFR-Q 64.1 ± 21.8 75.5 ± 31.0
TFM 65.2 ± 21.9 76.4 ± 31.1 TFM-Q 63.7 ± 22.1 75.0 ± 31.2

SiamRPN++_Mobile 63.4 ± 23.1 74.5 ± 31.9 SiamRPN 63.0 ± 21.6 75.0 ± 31.2
SiamRPN++_Alex 62.8 ± 20.9 74.3 ± 30.5

Table 4.16: A AUC performance table on LaSOT testing set using precision AUC score (P) and success AUC score (S) to
compare the performance and the utilization of tracker diversity after using different 𝑄𝑡 when the measurement uncertainties are
similar. Here, it uses 𝑄𝑛𝑒𝑤𝑡 = 0.01𝑄𝑜𝑙𝑑𝑡 .

Method (Block1) P% S% Method P% S%

TFS 50.3 ± 30.8 50.6 ± 24.2 TFS-Q 49.8 ± 20.6 50.2 ± 24.0
TFR 50.4 ± 30.5 50.7 ± 23.8 TFR-Q 49.8 ± 30.6 50.2 ± 24.0
TFM 49.5 ± 31.0 49.7 ± 24.2 TFM-Q 48.3 ± 30.4 48.6 ± 24.0

SiamRPN 44.2 ± 30.6 45.5 ± 24.8 SiamRPN++_Mobile 45.2 ± 31.2 45.1 ± 24.9
SiamRPN++_Alex 43.6 ± 30.4 44.8 ± 24.1

From the results presented in the aforementioned tables, it is evident that for TLF-FOKF-related
trackers which utilize the CV model for object motion modeling, a lower process uncertainty leads to
over-belief in the CV model, which in turn mildly reduces the tracking performance. This outcome sug-
gests that the CV model is not capable of adequately capturing the dynamics of real object movements.
Furthermore, it emphasizes that the hyperparameter 𝑄𝑡 plays a vital role in the tracking process and
cannot be ignored, despite its influence being less significant than 𝑅𝑖𝑡.
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4.2.9. Comparison with the state-of-the-art TLF Methods
Comparing TLF-FOKF-related trackers to the state-of-the-art TLF methods is more challenging than
comparing with the baseline tracker methods. A fair comparison requires the use of the same tracker
ensemble; however, many TLF methods have unique designs for their tracker ensembles, making it
nearly impossible to achieve fairness in this context. Additionally, most TLFmethods do not have openly
accessible code repositories, further complicating the process of reproducing their results. Hence, in
this section, I present a comparison between TLF-FOKF-related and other TLF methods based on a
thorough analysis of their respective papers to ensure a fair comparison as far as possible.

The best performance (S:65.0%, P:83.2%) of the work of Bailer et al. is tested on OTB2013 (Wu et
al., 2013) which is a subset of OTB2015. They used 29 baseline trackers from (Wu et al., 2013) with the
success AUC score interval [21.0%, 50.5%]. The improvement of success AUC score is up to 14.5%.
As for TFS, it uses 3 baseline trackers of my work with success AUC scores about 65.0% and reaches
the fusion performance up to 70.9%, where the improvement is up to 5.9%. Since the improvement
in tracking performance becomes progressively more challenging as the performance approaches the
upper bound of a dataset, and given the remarkable difference in the number of baseline trackers,
TLF-FOKF-related trackers continue to be a competitive alternative to the work of Bailer et al. (2014),
despite the variations in the baseline trackers and tracking performance measures.

Similarly, the work of Xie et al. (2019) can reach the success AUC score 69.0% on OTB2015 by
using 10 baseline trackers with the success AUC score interval [53.4%, 64.8%]. TFS using 2 baseline
trackers with success AUC scores about 63.5% can reach 69.4%. Both of the aforementioned tracker
ensembles utilize ECO_HC as a baseline tracker. In such a scenario, it is evident that TLF-FOKF-
related trackers perform considerably better, particularly when the number of baseline trackers is small.

Moreover, Dunnhofer et al. (2020) used the tracker ensemble (SiamRPN + ECO_HC) and ob-
tained the success AUC score 67.0%, while TFS uses the same tracker ensemble and reaches 69.4%,
which is a clear fair comparison with the better performance. In addition, W. Zhang et al. (2020)
used SiamRPN++_ResNet (S:49.6%) and ATOM (Danelljan et al., 2019) (S:51.5%) as the baseline
trackers and achieved the fusion performance of success AUC score 51.6% on LaSOT, while TFS
uses SiamRPN++_ResNet (S:49.3%) and SiamFC++_AlexNet (S:51.4%) as the baseline trackers and
achieves 54.2% which is prominently better, although these two tracker ensembles are not the com-
pletely same.

The studies mentioned above are not excessively critical of the choice of baseline tracker. But
the work of Dunnhofer et al., 2022 (2022) required to use of the complementary trackers, SuperDiMP
(Bhat et al., 2019 and Danelljan et al., 2020) (S:63.1%) and STARK-ST50 (S:66.4%), and obtained
the outstanding success AUC score 68.5% on LaSOT. Although the baseline trackers in this thesis
do not have similar performance as the above two trackers, TFS can use SiamRPN++_ResNet and
SiamFC++_AlexNet as the baseline trackers with the fusion performance 54.2% to compare. Based
on the extent of performance improvement and difference observed between the two chosen baseline
trackers, we can conclude that TLF-FOKF-related trackers have a comparable fusion performance to
the approach by Dunnhofer et al. (2022).

Based on the comparison made above, assuming the same measurement uncertainty for the base-
line trackers, TLF-FOKF-related trackers in their current form already demonstrate state-of-the-art
tracking performance.

4.2.10. Analysis
This section provides a general summary of the experimental results presented above, along with a
discussion of the advantages and disadvantages of the TLF-FOKF method. Furthermore, I examine
the implications of our findings and their potential impact.

As for the strengths of TLF-FOKF-related, they can be summarized as follows:

1. Superior Fusion Performance: The TLF-FOKF method provides remarkable performance im-
provements compared to baseline trackers, evidenced by 𝑈𝑀 interval concentrations between
25 and 45. As a TLF method, TLF-FOKF achieves state-of-the-art fusion performance when
hyperparameters are accurately selected.

2. Fast Execution Speed: The TLF-FOKF method executes extremely fast, with the lowest TFM
speed up to 820 FPS, as reported in Section 4.2.6.
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3. Explainable Model: The TLF-FOKFmethod is a white-box model that can explain the generation
of fusion results with clarity.

4. Cost-Effective Implementation: The TLF-FOKF method has low storage and hardware cost
while only saving the previous frame states, which can be easily implemented by a few equations.

5. Insensitive to Number of Baseline Trackers: Unlike Xie et al. (2019), which requires at least
three baseline trackers and performs best with eight or more, the TLF-FOKF method has no
requirement for the number of baseline trackers.

The drawbacks of TLF-FOKF-related can be summarized as follows:

1. Hyperparameters Estimation: The TLF-FOKF method does not resolve the problem of estimat-
ing hyperparameters 𝐴𝑡, 𝑄𝑡, and 𝑅𝑖𝑡, attributing to poor baseline tracker quality that can degrade
the fusion performance.

2. Limitations of Linear System andGaussian Distribution: The TLF-FOKFmodel, like the KF, is
based on the linear system assumption and Gaussian distribution of process and measurement
noise. This assumption limits the model’s versatility in cases where the actual model is non-
Gaussian or nonlinear.

In addition to TLF-FOKF-related, I have also demonstrated a strong correlation between tracker
diversity and TLF fusion performance, as well as the adverse effects of poor baseline trackers. These
findings have significant implications and can guide future research on the VOT task and the TLF topic.
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Conclusion

This section provides an overview of my entire thesis, outlines areas for future research based on
current limitations, and offers practical recommendations for the application of TLF-FOKF-related.

5.1. Summary
The Introduction chapter provides an overview of the VOT task and its challenges. The motivation for
this thesis is explained, where the potential of TLF methods for the VOT task is identified along with
the gap in employing Distributed KF. The chapter concludes by proposing three research questions to
address this gap and providing a brief summary of the contributions of the thesis.

The Related Work chapter provides a detailed introduction to the general framework of a VOT
tracker and the existing baseline trackers for the VOT task. TLF methods and the key methodology,
Distributed KF, are also described for further understanding. The chapter concludes with a summary
of observations about the above works and the identification of research gaps.

In the Methodology chapter, I present my work. Firstly, I provide a summary of the current TLF
methods and propose a general pipeline for TLFmethods, which is aimed at answering the first research
question in Section 1.3. This proposal is meant to serve as a guideline for creating TLF methods. I
also conduct an in-depth analysis of the impacts of baseline trackers to answer the second research
question, discussing the positive effects (tracker diversity) and four negative effects. This analysis has
practical implications for engineers and researchers and can aid in explaining various experimental
results. Subsequently, I propose FOKF-Standard for the VOT scenario, motivated by our previous work
(Zhong and Liu, 2021). Thismethod revises the definition of measurements to answer the third research
question. FOKF-Standard is a Distributed Kalman Filter that collaboratively estimates states using local
and community measurements. Additionally, I present TLF-FOKF-Standard, which combines FOKF-
Standard with Tracker Ensemble. To tackle the issue of FOKF-Standard performing better only under
similar measurement uncertainties, I introduce the FOKF-R method. This method further enhances
performance by eliminating the weight step of FOKF-Standard. Similarly, I propose TLF-FOKF-R for
VOT by selecting the minimal state covariance matrix 𝑃𝑖𝑡|𝑡 as the fusion result. To further reduce time
complexity and utilize vague prior knowledge, I develop FOKF-M by compressing the number of KF
trackers and selecting the optimal baseline tracker as the primary tracker. TLF-FOKF-M is presented
in a similar manner.

In the Experiments chapter, I evaluate the performance of FOKF-related and TLF-FOKF-related
methods under different experimental conditions. For FOKF-related methods, I conduct experiments
using ideal variables that follow a Gaussian distribution, where measurement uncertainties, whether
known or unknown, and whether similar or dissimilar, are tested. The results show that FOKF-Standard
performs best when measurement uncertainties are similar, while FOKF-R is optimal when uncertain-
ties are dissimilar and known, and FOKF-M outperforms the other two when uncertainties are dissimilar
but unknown. For TLF-FOKF-related methods, I test them on three challenging VOT benchmarks, in-
cluding experiments on comparing them with baseline trackers, evaluating tracker diversity and accept-
ability of baseline trackers for feedback, analyzing the influence of the number of baseline trackers and
running speed, studying dissimilar measurement uncertainties and negative effects, and evaluating the
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impact of process uncertainty. In addition, I provide inference-based comparisons with state-of-the-art
TLF methods. These experiments clearly demonstrate that TLF-FOKF-related methods have superior
fusion performance and support my hypothesis regarding their positive and negative effects. Finally, I
conclude by discussing the strengths and limitations of TLF-FOKF-related methods and the potential
impact of my findings.

5.2. Future Works
The main limitation of TLF-FOKF-related methods is the difficulty in accurately estimating hyperpa-
rameters such as 𝐴𝑡, 𝑄𝑡, and 𝑅𝑖𝑡. Addressing this challenge successfully could significantly enhance
the fusion performance of TLF-FOKF-related methods, particularly when measurement uncertainties
differ considerably or when dealing with negative effects discussed in Section 3.2. Therefore, future
work should focus on developing approaches to estimate hyperparameters accurately, which is the first
crucial step in advancing this area of research.

5.3. Recommendations
Although TLF-FOKF-related methods are not perfect and have limitations, it is remarkable that they can
improve overall tracking performance by fusing multiple baseline trackers. The simplicity, efficiency,
interpretability, and low requirements of these methods make them tremendously valuable in prac-
tice. For industrial applications, engineers could integrate two or three baseline trackers as trackers to
enhance tracking performance, maintain cost control, and ensure robustness to some extent.

Moreover, the success of FOKF in VOT underscores the enormous potential of FOKF in other areas.
For instance, rather than relying on baseline trackers, we can employ multiple sensors to improve
tracking accuracy. In addition, the applications of FOKF need not be limited to VOT but could be
extended to multi-target tracking, object detection, pose estimation, and beyond. Future research could
further explore the potential applications of FOKF in various fields.
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