
 
 

Delft University of Technology

NASCTY
Neuroevolution to Attack Side-Channel Leakages Yielding Convolutional Neural Networks
Schijlen, Fiske; Wu, Lichao; Mariot, Luca

DOI
10.3390/math11122616
Publication date
2023
Document Version
Final published version
Published in
Mathematics

Citation (APA)
Schijlen, F., Wu, L., & Mariot, L. (2023). NASCTY: Neuroevolution to Attack Side-Channel Leakages
Yielding Convolutional Neural Networks. Mathematics, 11(12), Article 2616.
https://doi.org/10.3390/math11122616

Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.3390/math11122616
https://doi.org/10.3390/math11122616


Citation: Schijlen, F.; Wu, L.; Mariot,

L. NASCTY: Neuroevolution to

Attack Side-Channel Leakages

Yielding Convolutional Neural

Networks. Mathematics 2023, 11, 2616.

https://doi.org/10.3390/

math11122616

Academic Editor: Ioannis G.

Tsoulos

Received: 28 April 2023

Revised: 3 June 2023

Accepted: 6 June 2023

Published: 7 June 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

mathematics

Article

NASCTY: Neuroevolution to Attack Side-Channel Leakages
Yielding Convolutional Neural Networks
Fiske Schijlen 1, Lichao Wu 1 and Luca Mariot 2,*

1 Cybersecurity Research Group, Delft University of Technology, Mekelweg 5, 2628 CD Delft, The Netherlands;
fiske_schijlen@hotmail.com (F.S.); l.wu-4@tudelft.nl (L.W.)

2 Semantics, Cybersecurity and Services Group, University of Twente, Drienerlolaan 5,
7522 NB Enschede, The Netherlands

* Correspondence: l.mariot@utwente.nl

Abstract: Side-channel analysis (SCA) is a class of attacks on the physical implementation of a cipher,
which enables the extraction of confidential key information by exploiting unintended leaks generated
by a device. In recent years, researchers have observed that neural networks (NNs) can be utilized to
perform highly effective SCA profiling, even against countermeasure-hardened targets. This study
investigates a new approach to designing NNs for SCA, called neuroevolution to attack side-channel
traces yielding convolutional neural networks (NASCTY-CNNs). This method is based on a genetic
algorithm (GA) that evolves the architectural hyperparameters to automatically create CNNs for
side-channel analysis. The findings of this research demonstrate that we can achieve performance
results comparable to state-of-the-art methods when dealing with desynchronized leakages protected
by masking techniques. This indicates that employing similar neuroevolutionary techniques could
serve as a promising avenue for further exploration. Moreover, the similarities observed among the
constructed neural networks shed light on how NASCTY effectively constructs architectures and
addresses the implemented countermeasures.

Keywords: side-channel analysis (SCA); genetic algorithm (GA); neural network (NN); neural
architecture search (NAS)

MSC: 94A60; 68P25; 68T07; 68W50

1. Introduction

Cryptographic algorithms are a ubiquitous part of modern life since they allow us to
preserve the confidentiality and integrity of sensitive data. However, the implementation
of such algorithms (even if they are mathematically secure) can sometimes leak information
about security assets, for instance, through power [1] or electromagnetic radiation [2,3].
An attacker can attempt a side-channel analysis (SCA) on leakages to exploit that leakage
and retrieve the secret key or its parts.

Assuming that the attacker has an identical copy of the target device, profiling SCA
becomes one of the most potent attack methods. Such an attack leverages traces generated
on the copy to construct a model that profiles leakage patterns corresponding to the key-
related intermediate data or the key itself. The profiling model can then recover the secret
key from traces generated by the target device. Recently, neural networks (NNs) became
popular profiling models, since they are able to achieve good attack performance even
on devices that are protected by SCA countermeasures [4–8]. These types of attacks are
commonly referred to as deep learning-based side-channel analysis (DL-SCA) [9].

The architecture of an NN refers to its inner components, such as the neurons and the
connections in between. In side-channel analysis research, an NN’s architecture is often
decided empirically, resulting in different architectures even on the same dataset [4,7,8].
In practice, one of the biggest obstacles to applying DL-SCA is the design of the NN

Mathematics 2023, 11, 2616. https://doi.org/10.3390/math11122616 https://www.mdpi.com/journal/mathematics

https://doi.org/10.3390/math11122616
https://doi.org/10.3390/math11122616
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com
https://orcid.org/0000-0003-3089-6517
https://doi.org/10.3390/math11122616
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com/article/10.3390/math11122616?type=check_update&version=1


Mathematics 2023, 11, 2616 2 of 20

architecture and the optimization of its hyperparameters. As a matter of fact, a NN can
be composed of hundreds of neurons and, therefore, of hyperparameters that specify the
NN’s architecture. This gives rise to a combinatorial problem: exhaustively testing all
hyperparameter combinations to find the best-performing one is unfeasible in practice,
given the enormous amounts. Even worse, the selected architecture may not be transferable
when attacking different datasets or implementations. Therefore, it would be helpful to
have a sophisticated and automated approach to build an architecture for an SCA on
any given dataset. While there are other approaches to the automated design for neural
networks for SCA, they also come with specific issues. For instance, Rijsdijk et al. used
reinforcement learning that produced top-performing neural networks, but the authors
still needed to start with a general description of the architectures to be designed [10].
Additionally, a reinforcement learning approach is computationally expensive and requires
a cluster of GPUs and tuning time days. On the other hand, Wu et al. used Bayesian
optimization to find neural network architectures for SCA [11]. This approach is much faster
than reinforcement learning while providing similar results (in terms of attack performance).
Still, the authors needed to select the surrogate model and acquisition function for Bayesian
optimization, which can again make hyperparameter tuning significantly harder. Moreover,
both aforementioned methods rely on the experience obtained from iterations, and the
question “Is the selected model global optimal?” is tricky to answer.

In this paper, we propose a genetic algorithm (GA) as an alternative to the above-
mentioned methods for the hyperparameter tuning task in the context of DL-SCA. In gen-
eral, GAs are quite versatile metaheuristics for hyperparameter tuning. They optimize
a population of candidate hyperparameter vectors (or individuals, in GA terminology).
A GA mimics the natural evolution of these vectors by applying genetic operators, such as
recombination and mutation, pruning the population with a selection method, and evalu-
ating them against a fitness function. This process is iterated over multiple generations,
after which, the last generation’s best-performing hyperparameter vector is taken as a
solution. In principle, a GA allows for obtaining robust models for leakages acquired from
different cryptographic implementations.

The main contributions of this work are:

1. We provide a methodology based on genetic algorithms for tuning the hyperparam-
eters of neural networks used in profiling side-channel analysis. Our approach is
automated, extensible, and capable of producing various neural networks.

2. We analyze the components of well-performing architectures constructed with our
method, giving insights into the effectiveness of CNN hyperparameter options for
side-channel analysis.

The rest of this paper is organized as follows. In Section 2, we provide informa-
tion about profiling SCA, neural networks, genetic algorithms, and the datasets we use.
Section 3 provides an overview of related works. In Section 4, we provide details about
our novel methodology. Section 5 provides details about the experimental setup and
reports the obtained results. In Section 6, we provide a discussion about the obtained
architectures. Finally, in Section 7, we conclude the paper.

2. Background

In this section, we cover all necessary background concepts related to side-channel
analysis, neural networks, and genetic algorithms that form the basis of our contribution.
The treatment is essential, as a complete overview of these subjects is clearly out of the
scope of this manuscript. For further information, the reader can refer to Picek et al.’s recent
paper about the systematization of knowledge [9].

2.1. Profiling Side-Channel Analysis

When analyzing the security of a system, the first step always requires the definition of
a threat model that specifies precisely the capabilities of an attacker. This commonly includes
the adversarial goal (what the attacker is aiming for), the type and amount of information



Mathematics 2023, 11, 2616 3 of 20

about the system that can be exploited, and the computational resources to perform an
attack. As we mentioned in the introduction, the aim of SCA is to infer secret information
from a cryptographic device (usually, the encryption key) by observing and measuring its
physical leakages. The value of the key cannot be directly measured through side-channel
analysis since it would assume that an attacker can basically control everything related to
the cryptographic device, yielding an unrealistic threat model. Instead, a chosen plaintext
attack is usually assumed: the adversary has access to a clone device equipped with the
secret key meant to be discovered, and they can encrypt whatever plaintext they wish
using this key, observing the corresponding ciphertext and any side-channel leakage that
occurred during the encryption process. This type of attack is also called a profiling attack in
the SCA context.

A profiling attack consists of a profiling phase and an attack phase, which are roughly
analogous, respectively, to the training and test phases in the context of supervised learning
machine learning. In the profiling phase, an attacker uses leakages from a clone device
to construct a model that maps the relationship between leakages and corresponding
labels (i.e., key-related intermediate data). In the attack phase, the attacker iterates over
all possible key candidates and obtains the respective output probabilities for their labels.
By repeating this process for each trace and summing the logarithms of the probabilities
assigned to each key candidate, the attacker ends up with a log probability vector used to
determine the likelihood of each candidate being the correct key. Equation (1) formulates
the procedure of obtaining the log probability for a key candidate k′ over N attack traces:

Plog(k′) =
N−1

∑
i=0

log(P(l(pi, k′))), (1)

where pi denotes the plaintext used for trace i, l(·) is the cryptographic operation pro-
ducing the targeted intermediate data, or equivalently, the output label, and P(·) is the
probability assigned by the profiling model to the output label passed as an argument.
Thus, Equation (1) sums the log of the probabilities assigned by the profiling model to each
output label obtained by encrypting different plaintexts under the same key candidate k′.

The attack performance is evaluated with the key rank metric [9] as follows:

KR =
∣∣{k′|Plog(k′) > Plog(k)}

∣∣. (2)

Intuitively, the key rank is the number of key candidates with a higher likelihood of
correctness than the correct key value. An attack is successful when the correct key is
predicted with the highest likelihood or can be brute-forced after being placed among the
few highest-likelihood candidates. In this work, we discuss the mean key rank achieved
over multiple experimental runs, in which case, the metric is commonly referred to as the
guessing entropy [12]. Furthermore, as common in the related works, we will assess the
attack performance against a single key byte only (which is denoted as partial guessing
entropy), but for simplicity, we will denote it as guessing entropy. A common assumption
is that attacking a single key byte reveals the average effort required for other key bytes as
well [10,13].

2.1.1. Countermeasures

SCA countermeasures aim to mitigate the information leakage produced during cryp-
tographic operations, and they can be classified into two main groups: masking and hiding
countermeasures [9]. In the masking approach, the sensitive intermediate values are split
into different shares to decrease the key dependency [3]. In a hiding countermeasure,
the goal is to make the traces look similar to random noise. Usual approaches to design hid-
ing countermeasures include random delay interrupts and desynchronization techniques.
In this work, we focus on Boolean masking and desynchronization, since they are the most
commonly adopted SCA countermeasures.



Mathematics 2023, 11, 2616 4 of 20

For instance, as implemented in the considered datasets [4], a random mask r is applied
after the AddRoundKey operation in the first round of AES encryption. The intermediate
value is then computed as:

Z = SBOX(p⊕ k)⊕ r. (3)

Desynchronization is a common type of hiding countermeasure that introduces time
randomness to the leakages. In practice, such effects can be realized by adding clock jitters
and inserting random instructions. We simulate this effect by randomly shifting with an
upper bound for each trace [4,6].

2.2. Neural Networks

SCA can be considered a classification task that aims to map the input leakages to a
cluster corresponding to the targeted labels. Such a task can be accomplished with a neural
network (NN), which is essentially a nonlinear function composed of layers of neurons,
sometimes referred to as nodes. The output of a neuron is defined as follows:

y = φ(
n

∑
i=i

wixi + bk), (4)

which is computed by multiplying the neuron’s inputs x1, . . . , xn from the previous layer
with their corresponding weights w1, . . . , wn, adding the bias value bk corresponding to
neuron k, and transforming the result with the activation function φ. The activation function
acts as a source of nonlinearity and often improves the efficiency of the training phase. Two
common activation functions for NNs in SCA are the rectified linear unit (ReLU) and scaled
exponential linear unit (SELU).

When training a neural network, the weight and bias of each neuron are updated
with gradient descent to minimize the loss function. Categorical cross-entropy (CCE) is
one common loss function in multi-class classification problems. Cross-entropy is a measure
of the difference between two distributions. Minimizing the cross-entropy between the true
distribution of the classes and the distribution modeled by the neural network improves
its predictions:

CCE(y, ŷ) = − 1
n

l

∑
i=1

c

∑
j=1

yi,j · log(ŷi,j), (5)

where c and l, respectively, denote the number of classes and data, y is the true value, and ŷ
is the predicted value.

A primary type of NN architecture in SCA is the multilayer perceptron (MLP), in which
a sequence of fully connected hidden layers of neurons is followed by an output layer
that transforms the final output values to label prediction probabilities. A convolutional
neural network (CNN) is another commonly used type of network in SCA. It prepends its
first fully connected layer with one or more convolutional blocks. Such a block consists
of a convolutional layer that attempts to compute local features over the input data, and it
is optionally followed by a pooling layer that aggregates the resulting values, e.g., by
calculating n-wise averages. Equation (6) formally displays the application of j convolution
filters with the kernel size k on inputs (xi, xi+1, . . . , xi+j). A convolutional layer repeats
such convolutions until it shifts through all n inputs, resulting in n · j inputs for the fully
connected layers. Formally, this operation can be stated as follows:

conv((xi, xi+1, . . . , xi+j}) = {c0,0c0,1 . . . c0,k−1xi,

c1,0c1,1 . . . c1,k−1xi+1,

. . . ,

cj−1,0cj−1,1 . . . cj−1,k−1xi+j),

(6)

where the cl,m for 0 ≤ l < j and 0 ≤ m < k represent the coefficients of the j convolution
filters.



Mathematics 2023, 11, 2616 5 of 20

2.3. Genetic Algorithms

A genetic algorithm (GA) is a type of population-based optimization algorithm that
typically utilizes elements from biological evolution [14]. A GA’s objective is to optimize a
solution to some problem by maintaining a population of such solutions and evolving them
over several generations. We refer to such a solution as an individual or genome consisting
of building blocks known as genes. One generation is formed by evaluating the fitness
of each genome, selecting fit genomes as parents for reproduction, and applying genetic
operators, such as mutations and crossovers on those parents to generate the offspring,
which represents the next generation.

Before commencing the first generation, the genomes in the population are randomly
initialized for diversity. One then starts an iteration of generations until the fitness evalua-
tion budget expires or the fitness value of the best genome achieves a predefined threshold.
Each generation starts with a fitness evaluation, by assigning a fitness value to each genome
that measures how well the corresponding individual performs concerning the relative
optimization problem. The next step is selection, which aims to cull weak genomes from the
population so that the algorithm favors genetic modifications that create fitter genomes.
Rather than straightforwardly selecting a number of the fittest genomes, modern GAs
employ more sophisticated methods to preserve diversity in the population. One such
method is tournament selection [15–17], which determines parents by holding ‘tournaments’
of some randomly picked genomes and retaining those with the best fitness as parents.

After selecting the parents, a GA typically generates as many offspring as the number
of parents. The production of one child’s genome involves applying one or multiple genetic
operators to one or multiple parents. These operators include mutations and crossovers [16–18],
although the latter can be omitted in a non-mating GA. Mutation only requires one parent,
which is cloned and randomly modified with a predefined mutation function to produce
one child. On the other hand, crossover refers to the combination of properties of two
or more parents to construct a child. In this work, we apply the polynomial mutation, a
mutation method for real-valued parameters originally introduced by Deb and Agrawal for
GA in [19], and then apply it to other metaheuristics, such as multi-objective evolutionary
algorithms [20] and differential evolution [21]. This mutation operator is designed for
variables with predefined minimum and maximum boundaries. The method mutates
a variable x towards the lower boundary xL or the upper boundary xU with a uniform
probability. The degree of the mutation is then determined by a pseudorandom number
0 ≤ u < 1 and parameter η, with a higher value of η resulting in a smaller mutation range.
In other words, the mutated value x′ is equal to x + δ̄L(x− xL) or x + δ̄R(xR − x) with δ̄L
and δ̄R scaling with u and η, as defined in Equation (7).

δ̄L =(2u)
1

1+η − 1

δ̄R =1− (2(1− u))
1

1+η .
(7)

Neuroevolution refers to the use of an evolutionary algorithm for constructing or
optimizing an NN. In this work, we will use a GA to construct a neural network architecture
for SCA. In such a scenario, a genome in a GA describes the hyperparameter combination
of an NN. The fitness is determined through the evaluation of the network’s performance.

2.4. Datasets

We used the ANSSI SCA Database (ASCAD) [4], where each trace comprises 700 trace
points corresponding to the S-box operation of the third key byte. This is a standard dataset
in the SCA research community, which is used as a common benchmark to evaluate the
performance of a particular SCA attack or countermeasure technique [7,8,10,11]. For this
reason, we decided to adopt it for our experiments and compare our results with those
achieved by other state-of-the-art methods. Note that we are referring to the fixed-key
ASCAD dataset, where the same encryption key is used in all AES operations. These traces



Mathematics 2023, 11, 2616 6 of 20

are protected with the masking countermeasure, so the intermediate value Z was computed
as in Equation (3) for a random mask byte r.

The training (35,584) and validation (3840) sets were balanced samples taken from
the 50,000 training traces. Their respective numbers were chosen such that both sets were
sufficiently large for their respective purposes. Since we used the identity leakage model in
all our experiments with this method, the numbers of both sets are multiples of 256, which
corresponds to the number of output labels. Note that while we do not expect many issues
with the identity leakage model and class imbalance [22], we still balance the classes to
mitigate any undesired effects. Ten thousand attack traces were used to assess the attack
performance. Finally, we conducted experiments on this dataset with and without the
desynchronization countermeasure.

3. Related Work

We now provide an overview of the literature concerning optimizing NN’s architec-
tures for the SCA domain, considering both manual and fully automated approaches. Next,
we will briefly survey the automated methods based on neuroevolution.

3.1. Network Architecture Optimization in SCA

To the best of our knowledge, the first work concerning the use of deep learning
for SCA dates back to Maghrebi et al [23]. There, the authors investigated the effective-
ness of several SCA attacks enhanced by DL on the DPAv2 dataset [24] and custom AES
implementations with and without first-order masking. The neural networks obtained
through this method achieved a null key rank by using less than 103 training traces on
the masked implementation. Interestingly, the CNN architecture was determined with a
genetic algorithm by using the guessing entropy as a fitness function, but the authors did
not provide a detailed elaboration on their methodology.

Benadjila et al. [4] further explored the performances of neural networks in the SCA
context. In particular, the authors observed that the VGG-16 model proposed in [25],
or CNNs with a similar architecture, achieved good results for SCA. Next, Kim et al. [5]
employed the data augmentation technique to improve the performance of the SCA attack
based on a CNN. This method was found to be effective at improving the CNN when deal-
ing with different types of SCA countermeasures. Successively, Zaid et al. introduced new
architectures for CNNs in [7], which were shown to achieve state-of-the-art performances
while significantly reducing the sizes of the neural networks. Wouters et al. [8] further
reduced the network size with data preprocessing strategies.

In addition to manual optimization of neural networks, recent research has also ex-
plored fully automated approaches for network architecture searches. Rijsdijk et al. [10]
customized the MetaQNN reinforcement learning algorithm for SCA to automatically find
CNN architectures. However, the search space is roughly limited to hyperparameters
that we know to be effective, and pure MLP architectures are not discussed. Each NN is
evaluated by training it for 50 epochs using the Adam optimizer and the SELU activation
function in their work. Wu et al. proposed AutoSCA [11], which uses the Bayesian opti-
mization to find architectural hyperparameters for both MLPs and CNNs. Their approach
produced good results and mainly focused on finding larger architectures with at least
100 neurons in each dense layer.

3.2. Evolution-Based Network Architecture Search

Evolutionary approaches have been widely used in automated network architecture
searches. Real et al. [26] developed one such method for image classification on modern
datasets, a task that requires large networks. They propose a non-mating GA with both
NEAT-like [27] mutations and layer-level mutations to evolve CNNs on granular and large
scales. Specifically, each genome is trained with backpropagation on 45,000 samples before
evaluating its fitness. In this approach, a child’s genome keeps the weights and biases of its
parent, effectively training each network over time.



Mathematics 2023, 11, 2616 7 of 20

Other successful neuroevolution methods that construct CNNs for image classification
include the deep evolutionary network structured representation approach, DENSER [28],
and EvoCNN [29]. DENSER uses a two-level genotype, where the first level encodes the
NN hyperparameters while the second encodes layer-specific variables, such as the number
of neurons or the variables of a convolutional filter. This structure enables the algorithm to
be used for MLPs, CNNs, and other types, as long as they can be appropriately defined
in the genome’s second level. Furthermore, DENSER trains NNs with backpropagation
before evaluating the fitness on a validation set. EvoCNN works similarly but evolves the
weight initialization values along with the architecture’s hyperparameters.

3.3. Neuroevolution for SCA

The use of neuroevolution to perform side-channel analysis has scarcely been explored
in existing work. Knezevic et al. used genetic programming to evolve custom activation
functions specifically designed for side-channel analysis [30]; these functions can outper-
form the widely used ReLU function. In their approach, the genome encodes an activation
function as a tree structure consisting of unary and binary operators, with leaves represent-
ing the function’s inputs. Such a tree is initially initialized with a depth ranging from two
to five levels and is limited to twelve levels during evolution. For the fitness evaluation,
they computed the mean number of attack traces required to obtain a key rank of zero
over one hundredfold, and then add it to one minus the accuracy. The method resulted in
novel activation functions that improved the performances of large and efficient MLPs and
CNNs. Acharya et al. proposed InfoNEAT [31], an approach that tailors the neuroevolution
of augmenting topologies (NEAT) algorithm [27], specifically for the side-channel analysis.
Their approach considers the identity leakage model and uses NEAT to evolve an NN
architecture with a single output node for each of the 256 output classes. The resulting 256
binary networks are combined by a stacking approach that uses the network outputs as
inputs for a logistic regression model. Such a stacked model is created for multiple folds
of balanced trances taken from the complete dataset, after which, those model prediction
probabilities can be summed to form a final prediction for each attack trace.

In our preliminary investigations, we also considered the NEAT approach, which
focused on evolving only the architecture of a NN for SCA attacks, while InfoNEAT
targeted both the architecture and the weights of the network. However, the results on the
ASCAD dataset were definitely not encouraging and, thus, we dropped NEAT to develop
our own NASCTY methodology. A full account of the experiments with the modified
InfoNEAT algorithm on the ASCAD dataset can be found in the first author’s thesis [32].

4. NASCTY

Neuroevolution to attack side-channel traces yielding convolutional neural networks (NASCTY-
CNNs) is a GA that modifies hyperparameters of CNNs for the side-channel analysis.
Algorithm 1 shows the main procedure of our approach. This section will specify the
genome structure, the initialization of the population, the fitness evaluation method, and the
method used to produce offspring.

Algorithm 1 The NASCTY-CNNs algorithm.

1: train_traces, train_labels, valid_traces, valid_labels← sample(ascad_data)
2: pop← initialise_population()
3: while gen < max_gens do
4: evaluate_fitness_values(pop, train_traces, train_labels, trainplaintexts)
5: parents← tournament_selection(pop)
6: o f f spring← produce_offspring(parents)
7: pop← parents ∪ o f f spring
8: end while
9: return genome in pop with the lowest fitness



Mathematics 2023, 11, 2616 8 of 20

Note that the sampling of training and validation data was only performed once,
meaning that we used the same data for the fitness evaluation in every generation. More-
over, we ensured the usage of balanced data samples, wherein a selected set of traces
consisted of an equal number of traces associated with each feasible output label. In line
with previous works, such as [26,28,29], our selection process involved a tournament size
of 3. This indicates that we randomly selected three individuals and identified the most fit
individual among them as a potential parent for reproduction. It is important to highlight
that all experiments conducted in this study focus on targeting the third (masked) key byte
of the fixed-key ASCAD dataset. Each trace in the dataset consists of 700 points, and each
point is normalized to fall within the range of −1 to 1, as conducted by Wouters et al. [8].

4.1. Genome Structure

The NASCTY genome represents a CNN and consists of a list that can contain zero
to five convolutional blocks, an optional pooling layer when no convolutional blocks are
present, and a list of one to five dense layers. Each convolutional block is described with
the number of convolutional filters, the filter size, a Boolean denoting the presence of a
batch normalization layer, and a pooling layer. Any pooling layer in the genome comprises
a pooling type, either max pooling or average pooling, a pool size, and a pool stride. Finally,
a dense layer is described only by its number of neurons. An example of the genome
structure is presented in Figure 1.

Figure 1. An example of the genome encoding used in the NASCTY algorithm.

When expressing a NASCTY genome as a neural network, following the state-of-the-
art architectures, we always use the SELU activation function for all hidden neurons, the He
weight initialization for the convolutional blocks and dense layers, and the Glorot uniform
weight initialization for the output layer, which uses the softmax activation function.
Although enlarging the genome parameter spaces would increase the diversity of the
populations, applying the prior knowledge would speed up the evolution process.

4.2. Population Initialization

We initialize the networks by assigning random values to the hyperparameters within
the specified ranges detailed in Table 1. Such ranges and the structure of the genome
are inspired by previous research on SCA, particularly the VGG-like networks mentioned
in [4,5]. Additionally, we incorporate ideas from the reinforcement learning-based approach
for the automated architecture search in SCA described in [10].

Notably, to reduce the time required for the evaluation, one can initialize the popula-
tion with architectures that have a minimal number of trainable parameters. However, we
opt to completely initialize the population at random to avoid local optima that may come
about due to the reduced diversity in the population.



Mathematics 2023, 11, 2616 9 of 20

Table 1. Ranges for CNN genome hyperparameters in the NASCTY algorithm.

Parameter Options

Num. convolutional blocks 0 to 5 in a step of 1

Num. dense layers 1 to 5 in a step of 1

Num. convolutional filters 2 to 128 in a step of 1

Filter size 1 to 50 in a step of 1

Batch normalization layer False, True

Pooling type Average, Max

Pool size 2 to 50 in a step of 1

Pool stride 2 to 50 in a step of 1

Num. dense neurons 1 to 20 in a step of 1

4.3. Fitness Evaluation

Once a genome is defined, the corresponding CNN is trained using the Adam opti-
mizer (all networks are trained with the same seed in every generation to ensure a fair
comparison between them). The loss value on the validation set is used for the fitness
evaluation. By minimizing loss, we aim to have a system aligned with the related works
in DL-SCA. Naturally, one could consider other options here, for instance, the ones ap-
plied in [11]. The purpose of training the networks prior to evaluation is to enhance our
ability to discern their quality with greater precision. Following previous papers on the
subject [11,28,29], we opted to train each network for ten epochs. Our initial experiments,
conducted according to the methodology recommendations provided by [29], demon-
strated that this duration is sufficient for networks of similar sizes to exhibit noticeable
differences in their CCE values, indicating varying levels of quality.

The objective of training the networks before evaluating them is to enable us to
differentiate their quality more accurately. We chose to train each network for ten epochs
as other works do [11,28,29] and preliminary experiments following the methodology
recommendations by [29] showed that this is enough for similarly sized networks to
observe significant CCE differences in networks of different qualities.

4.4. Offspring Production

After evaluating the fitness of each genome in one generation, the members of the next
generation (offspring) can be produced. Half of these members are produced by applying
the tournament selection to the population to find fit genomes that will act as parents.
The remaining half, on the other hand, is constructed by randomly choosing pairs of those
parents on which the crossover and mutation operations are applied. Optionally, we may
only apply tournament selection to a proportion of the top-performing members of the
population to select parents. This operation is performed to ensure that the best genomes
are maintained in the population, a concept known as elitism, which can be tuned with a
truncation proportion parameter.

Our algorithm uses one of two possible crossover types, i.e., one-point crossover or
parameter-wise crossover; both are common crossover strategies in genetic algorithms.
The performances of these two methods are evaluated in Section 5.2. To enact a one-point
crossover with two parents, we apply one-point crossover separately on the parents’ lists
of convolutional blocks and dense layers. For a list of either convolutional blocks or dense
layers, we achieve this operation by picking a random cutoff point in both parents’ lists of
the corresponding layer type. The first child’s list of that type is then created by connecting
the first parent’s list before its cutoff point to the second parent’s list after its cutoff point;
the second child’s list is created by connecting the remaining units. The one-point crossover
operation is then finalized by randomly dividing the parents’ optional pooling layers that
are present in the absence of convolutional blocks among the offspring (see Figure 2).



Mathematics 2023, 11, 2616 10 of 20

(a) Each parent’s list of layers or blocks.

(b) The parents’ respective random cutoff points.

(c) The two lists of layers or blocks present in the offspring after the
crossover.

Figure 2. Visualization of the one-point crossover on a list of convolutional blocks or dense layers in
a NASCTY genome.

In our implementation of the parameter-wise crossover, the first child’s genome is
created by iterating over pairs of convolutional blocks from the parents and randomly
inheriting convolutional block genes from either parent. The second child’s genome then
inherits the remaining hyperparameters for these blocks. The exact process is repeated
for the parents’ lists of dense layers. In the typical scenario where one parent has more
convolutional blocks or dense layers than the other parent, the excess units are appended
to the first child’s genome without any modifications.

After the crossover operation, the offspring are mutated through one of the following
methods with a uniform probability:

• Adding one random convolutional block or dense layer with randomly initialized
hyperparameters;

• Removing one random convolutional block or dense layer;
• Modifying all hyperparameters through polynomial mutation with a probability of 1

n ,
where n is the total number of modifiable hyperparameters in the genome.

The polynomial mutation is described in Section 2.3 and is designed for variables with
predefined minimum and maximum boundaries, which fits our task of exploring proper
hyperparameter values within predefined ranges. This genetic operator is defined by a
parameter η, also known as the distribution index in [33], which controls the similarity
between the child solutions and their parents. A large value for η implies that the mutated
children will be very close to their parents; conversely, a small value will yield children that
differ more from their parents. The related literature recommends a range for η between
20 and 100. Of course, an appropriate value for this parameter can be determined more
precisely by tuning it experimentally on the specific optimization problem.

5. Experiments

In this section, we discuss the experimental evaluation of NASCTY. We start by
describing the setup of our experiments. Then, we show the outcome of the preliminary



Mathematics 2023, 11, 2616 11 of 20

tuning phase based on a grid search. Finally, we present the results obtained by the GA
with the best-performing parameter combination on masked and desynchronized traces
of ASCAD.

5.1. Experimental Setup

For the experimental validation of our approach, we optimize GA parameters through
a grid search, then evaluate the performance on the masked ASCAD traces and masked
and desynchronized ASCAD traces for several desynchronization levels. The objectives of
these experiments are to determine:

• The effectiveness of GA parameters for our approach;
• Whether our automated approach can produce NNs that outperform similar NNs

found through trial and error;
• Architecture components that contribute to the effectiveness of an SCA.

To account for the randomness introduced by the mutation operations, we ran five
experiments for each GA parameter configuration and report the best results. The best
genome resulting from the NASCTY algorithm was evaluated by training the corresponding
NN for 50 epochs and computing the mean key rank, which is equivalent to the guessing
entropy [12], over 100 folds.

All experiments were executed with 52 parallel workers, each of which ran at ap-
proximately 2.1 GHz on an Intel E5-2683 v4 CPU. With these computational resources,
the discussed experiments required 84 GB RAM and took at least four days, but no more
than seven days, to complete. This significant variance in runtime complexity is caused by
the pseudorandom nature of GAs, which results in the construction and evaluation of NNs
of varying sizes.

5.2. Parameter Tuning by Grid Search

Table 2 shows a summary of the GA parameters for the grid search. Note that addi-
tional parameter options, mutation strategies, and crossover strategies could potentially
result in better performance, but such adjustments would have to significantly diverge from
our current strategy to assess the general effectiveness of the algorithm. We ran each grid
search experiment with a population size of 52 to match the number of available parallel
workers and ran the GA for ten generations. Furthermore, each experiment used the same
training data, validation data, and initial population to observe the impact of the parameter
changes more accurately.

Table 2. The parameter values we considered during the grid search for NASCTY.

Parameter Options

Polynomial mutation η 20, 40

Crossover type One-point, parameter-wise

Truncation proportion 0.5, 1.0

We expect that setting the distribution index η for the polynomial mutation oper-
ator [19] is more suitable for our experiments, where we run the GA for relatively few
generations. As we mentioned before in Section 4.4, smaller values of η cause the mutated
children to be less similar to their parents. Hence, using a small distribution index could be
beneficial in terms of finding better-performing networks in fewer generations. However,
one also needs to strike a balance to avoid potentially damaging mutations by choosing
a value that is too small [33]. For this reason, we settled for η = 20. Similarly, a larger
truncation proportion would yield better results since, in this way, the diversity of the
population (which is already limited in size) is preserved. However, its influence is likely
not as significant as that of the chosen crossover and mutation configurations since those
can modify the population more straightforwardly. Finally, we expect either crossover



Mathematics 2023, 11, 2616 12 of 20

strategy to perform well since both allow the algorithm to find effective architectures in the
predefined hyperparameter ranges. The performance of the final network obtained from
the best run for each parameter combination is depicted in Figure 3.

(a) The mean performance of the best runs over 100 folds.

(b) The fitness progressions of the best runs (the lower the better).

Figure 3. NASCTY grid search results corresponding to the best network obtained with each parame-
ter combination.

Figure 3a implies that each parameter combination is capable of producing fit archi-
tectures for the considered ASCAD traces. Similarly, the fitness plots of the best runs over
generations shown in Figure 3b demonstrate that the best genome’s CCE, i.e., the validation
loss, can improve significantly in as few as ten generations, regardless of the parameter
combination under consideration.

The best mean incremental key rank among all grid search experiments was approx-
imately 0.50419 and resulted from the experiments with a polynomial mutation η value
of 20, a 1-point crossover, and a truncation proportion of 1.0. Therefore, those parameters
are applied for all further experiments. To determine each GA parameter’s influence on
the final performance, we observe the effect of modifying one variable at a time while
keeping the others constant at the aforementioned best-observed values. Table 3 displays
how such modifications affect the mean incremental key rank. From the table, we can
infer that only the crossover strategy significantly affects the final performance among



Mathematics 2023, 11, 2616 13 of 20

the parameters we considered; one-point crossover is preferred over the parameter-wise
crossover. Since the best runs using parameter-wise crossover in Figure 3 still perform
well, the performance difference likely results from poor consistency compared to runs
using the one-point crossover. We suspect that the additional consistency observed with
the one-point crossover is achieved through its advantage in retaining functional sequences
of convolutional blocks or dense layers. In addition, one-point crossover on lists of layers
intuitively provides synergy with our mutation strategy of adding or removing an entire
layer because effective additions or removals can be identified more quickly when they are
separated into offspring in a modular fashion.

Table 3. The effect of each parameter on the final incremental key rank in NASCTY grid search
experiments.

η Crossover Type Truncation
Proportion

Mean Incremental
Key Rank

20 One-point 1.0 0.50419

40 One-point 1.0 0.50880

20 Parameter-wise 1.0 0.89354

20 One-point 0.5 0.50966

5.3. ASCAD: Masked and Desynchronized

All remaining experiments were run with the best-performing parameter options
found through our grid search experiments. In addition, we ran these experiments with a
population size of 100 to fully exploit the resources at our disposal. In contrast to our grid
search experiments, these experiments did not use a seed for the pseudorandom numbers
involved anywhere in the GA except for the fitness evaluation procedure, where we used a
seed for the training of each NN to ensure that the genomes were fairly compared.

We first ran NASCTY on masked ASCAD traces for 75 generations to evaluate the algo-
rithm’s general effectiveness. Then, we ran experiments on the same masked dataset, which
was further protected with desynchronization as described in Section 2.1.1. Specifically,
we ran 3 sets of experiments with desynchronization levels of 10, 30, and 50, respectively.
With this approach, we aim to determine whether NASCTY can circumvent or mitigate
countermeasures without additional algorithm modifications and whether larger desyn-
chronization levels hinder NASCTY’s ability to find good architectures.

The fitness progression trends in Figure 3b indicate that more generations would
improve the observed fitness of the best genome. Following this, we first ran NASCTY on
masked ASCAD traces for 75 generations with a population size of 100. Figure 4 shows the
results of this first experiment.

As shown in Figure 4a, the best-obtained network converges smoothly. Ultimately,
the network breaks the target into 314 attack traces and achieves a mean incremental
key rank of 0.51857. The best fitness value progresses (Figure 4b) continually after ten
generations have passed, then stagnates well before the seventy-fifth generation is reached.
Moreover, despite the difference in the population size and the number of generations,
the best network is outperformed by several of the NNs obtained with our grid search
experiments. This observed fitness stagnation implies that the algorithm may be prone to
becoming stuck in local optima. Typically, the mutation is the source of the global search
in a GA, so we recommend that future work evaluates lower values of η for polynomial
mutation strategies or possibly more perturbing mutation strategies.

Due to the fitness progress observation in the previous experiment, we ran NASCTY on
the masked and desynchronized ASCAD traces for 50 generations instead of 75. The results
for desynchronization levels 10, 30, and 50 are displayed in Figure 5.



Mathematics 2023, 11, 2616 14 of 20

(a) The mean performance of the best neural network over 100 folds.

(b) The fitness progression of the best run.

Figure 4. NASCTY results corresponding to the best network obtained on masked ASCAD traces.

As shown in Figure 5a, the time-randomness introduced by desynchronization affects
the algorithm’s performance, considering that both fitness progress and final performance
are noticeably diminished as the desynchronization level increases. Still, the results show
that NASCTY can find effective architectures despite the added countermeasures, with the
networks evaluated in Figure 5b being able to obtain key rank 0 in 338, 474, or 531 traces,
respectively, for desynchronization levels 10, 30, and 50.



Mathematics 2023, 11, 2616 15 of 20

(a) The fitness progressions of the best runs.

(b) The mean performance of the best runs over 100 folds.

Figure 5. NASCTY results for ASCAD traces at desynchronization levels 10, 30, and 50.

6. Discussion

The best run on the synchronized ASCAD traces produced the CNN architecture
shown in Figure 6a. It has 10,470 trainable parameters and vaguely resembles the efficient
CNN proposed by Zaid et al. [7].

In comparison, the architecture produced with NASCTY has an additional dense
layer and possesses several unintuitive components, such as 27 convolutional filters of
size 45 and a pool stride that exceeds the pool size. Since the efficient MLP proposed by
Wouters et al. [8] only required two layers of ten neurons each, we surmise that NASCTY
may be inclined to include the unnecessary model complexity. In other words, NASCTY
does not sufficiently discourage redundant model complexity. Indeed, by increasing the
desynchronization from 30 to 50, the number of trainable parameters of the best architecture
decreases from 90,379 to 68,427. A possible solution would be to introduce a model size
penalty in the fitness function. Still, NASCTY, with the current configuration, is sufficient at
generating good network architectures. Tables 4 and 5 show how NASCTY compares with
other state-of-the-art automated hyperparameter tuning methods for SCA, respectively, for
synchronized traces and a desynchronization level of 50.



Mathematics 2023, 11, 2616 16 of 20

(a) (b) (c) (d)

Figure 6. Best architectures produced by NASCTY for masked ASCAD traces protected with several
desynchronization levels. (a) Synchronized; (b) desynchronization level 10; (c) desynchronization
level 30; (d) desynchronization level 50.

Table 4. Comparison of automated hyperparameter tuning methods for SCA on synchronized,
masked ASCAD traces.

Method Num. Traces to Num. Trainable ParametersObtain Mean Key Rank 0

Zaid et al. [7] 191 16,960

Wouters et al. [8] ≈200 6436

RL-SCA [10] 242 1282

AutoSCA [11] 158 54,752

NASCTY 314 10,470

Table 5. Comparison of automated hyperparameter tuning methods for SCA on masked ASCAD
traces with a desynchronization level of 50.

Method Num. Traces to Num. Trainable ParametersObtain Mean Key Rank 0

Zaid et al. [7] 244 87,279

Wouters et al. [8] ≈250 41,052

RL-SCA [10] 242 1282

NASCTY 531 68,427



Mathematics 2023, 11, 2616 17 of 20

It can be seen that the performances are similar to the state-of-the-art methods pro-
posed in [7,8,10,11]. NASCTY requires a few hundred traces to achieve a mean key rank
of 0, and the number of trainable parameters ranges in the order of tens of thousands.
It can also be observed that NASCTY yields slightly suboptimal results in terms of the
number of traces compared to the other methods, but we deem that by further optimizing
the GA hyperparameters, it could decrease up to the point of reaching the same level as the
other methods, or even outperform them. We leave these experiments as a direction for
future research.

The architecture corresponding to a desynchronization level of 10 is similar to the
architecture for synchronized traces in both structure and size, with the main difference
being the addition of more convolutional filters and another dense layer. Both architectures
also feature a pooling layer with a stride that exceeds its size, suggesting their convolutional
layers have produced features that are either redundant or incorrectly utilized.

The NASCTY architectures for the two more severe desynchronization levels (30 and
50) provide more insight into NASCTY’s way of mitigating this countermeasure. As can be
seen in Figure 6c,d, both of these architectures start with a convolutional layer with over
100 filters, a significantly larger number than that of the other architectures’ convolutional
layers. In addition, both feature two convolutional blocks and two dense layers, with the
first dense layer in each network having two neurons. The larger number of filters is
consistent with existing approaches to mitigate desynchronization, but the usage of such
small dense layers is uncommon when attempting to break protected ASCAD traces. Finally,
average pooling appears to be the preferred pooling type in these networks, with max
pooling only occurring once.

7. Conclusions and Future Work

This paper proposes a genetic algorithm for the network architecture search in the
SCA domain. In NASCTY, each genome encodes the hyperparameters representing a
CNN’s architecture, and a genome’s fitness is evaluated by the validation loss. During
offspring production, we apply either one-point crossover on the parents’ lists of layers or
parameter-wise crossover to create a pair of child genomes that we immediately mutate
by adding a layer, removing a layer, or applying polynomial mutation on their genes.
With this approach, NASCTY could produce comparable architectures to state-of-the-art
techniques. The redundant complexity and unintuitive architecture components found in
some NASCTY networks suggest that our method can likely be improved further, implying
unexplored potential to match or surpass current state-of-the-art approaches.

Furthermore, NASCTY found effective architectures for traces protected with masking
and desynchronization levels up to 50, while keeping its GA parameters and implemen-
tation largely unmodified. However, the desynchronization affected the final network
performances: networks produced by NASCTY for desynchronization levels 0, 10, 30,
and 50 obtained key rank 0 within 314, 338, 474, and 531 attack traces, respectively. We
recommend that future work evaluate NASCTY’s effectiveness and resulting architecture
patterns on traces protected with other countermeasures. The observed network architec-
tures showed that NASCTY tends to combat desynchronization by adding a convolutional
layer and increasing the number of filters in the first convolutional layer, which was the
case in architectures generated for desynchronization levels 30 and 50. Interestingly, these
networks initiated their fully connected part with a dense layer consisting of two neurons.
Additionally, some architectures contained pooling layers with a stride larger than their size,
which is uncommon in other approaches, and suggests that NASCTY may be generating
redundant features through unnecessarily large numbers of convolutional filters. The archi-
tectures NASCTY generated for synchronized and mildly desynchronized traces also came
with more trainable parameters than models from related work, which achieved better
performances on the same task [8], corroborating the hypothesis that NASCTY is prone
to adding redundant model complexity. Regardless of the presence of desynchronization,
average pooling was preferred to max-pooling in nearly all pooling layers.



Mathematics 2023, 11, 2616 18 of 20

In future work, it would be interesting to explore the application of a complexity
penalty to the fitness evaluation or population initialization, to reduce the network size
by promoting minimal architectures. Furthermore, we recommend experimenting with
more mutation parameters to stimulate a better global search to avoid becoming stuck in
a local optimum, which often seems to occur well before the algorithm terminates. Once
those drawbacks are resolved, we may find better, more interesting architectures, which
could possibly outperform the number of traces required by other state-of-the-art methods
(although NASCTY comes quite close to them). To do so, we suggest introducing new
hyperparameters to the genome, e.g., activation functions for each layer and the learning
rate for more general applications. Moreover, one could consider using other types of
evolutionary algorithms to perform the search, such as genetic programming, or other
metaheuristics, such as swarm intelligence algorithms. Finally, our approach considers the
ASCAD dataset with a fixed key. It will be interesting to see how well our approach works
with other, more difficult datasets, such as ASCAD with random keys.

Author Contributions: Conceptualization, F.S., L.W. and L.M.; methodology, F.S., L.W. and L.M.;
software, F.S.; validation, F.S., L.W. and L.M.; formal analysis, F.S., L.W. and L.M.; writing—original
draft preparation, F.S.; writing—review and editing, F.S., L.W. and L.M.; supervision, L.M. All authors
have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The NASCTY source code used for the experiments in this manuscript
is available as a GitHub repository at https://github.com/fistaco/nascty-cnns (accessed on 3
June 2023).

Acknowledgments: The authors wish to thank Stjepan Picek for the useful comments and discussions
regarding both the experiments and the structure of the manuscript.

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations
The following abbreviations are used in this manuscript:

SCA side-channel analysis
NN neural network
CNN convolutional NN
NASCTY-CNN neuroevolution to attack side-channel traces yielding CNNs
DL-SCA deep learning-based SCA
GA genetic algorithm
AES advanced encryption standard
ASCAD ANSSI SCA Database
ANSSI Agence Nationale de la Sécurité des Systèmes d’Information
ReLU rectified linear unit
SELU scaled exponential linear unit
CCE categorical cross-entropy
MLP multi-layer perceptron
NEAT neuroevolution of augmenting topologies
DENSER deep evolutionary network structured representation

References
1. Kocher, P.C.; Jaffe, J.; Jun, B. Differential Power Analysis. In Proceedings of the 19th Annual International Cryptology Conference

on Advances in Cryptology, Santa Barbara, CA, USA, 15–19 August 1999; Springer: London, UK, 1999; CRYPTO ’99. pp. 388–397.
2. Quisquater, J.J.; Samyde, D. ElectroMagnetic Analysis (EMA): Measures and Counter-measures for Smart Cards. In Proceedings of

the Smart Card Programming and Security; Attali, I., Jensen, T., Eds.; Springer: Berlin/Heidelberg, Germany, 2001; pp. 200–210.

https://github.com/fistaco/nascty-cnns


Mathematics 2023, 11, 2616 19 of 20

3. Mangard, S.; Oswald, E.; Popp, T. Power Analysis Attacks: Revealing the Secrets of Smart Cards; Springer: Berlin/Heidelberg,
Germany, 2006; p. 338. ISBN 0-387-30857-1. Available online: http://www.dpabook.org/ (accessed on 3 June 2023).

4. Benadjila, R.; Prouff, E.; Strullu, R.; Cagli, E.; Dumas, C. Study of deep learning techniques for side-channel analysis and
introduction to ASCAD database. IACR Cryptol. ePrint Arch. 2018, 22, 2018.

5. Kim, J.; Picek, S.; Heuser, A.; Bhasin, S.; Hanjalic, A. Make some noise. Unleashing the power of convolutional neural networks
for profiled side-channel analysis. IACR Trans. Cryptogr. Hardw. Embed. Syst. 2019, 2019, 148–179. [CrossRef]

6. Wu, L.; Picek, S. Remove some noise: On pre-processing of side-channel measurements with autoencoders. IACR Trans. Cryptogr.
Hardw. Embed. Syst. 2020, 2020, 389–415. [CrossRef]

7. Zaid, G.; Bossuet, L.; Habrard, A.; Venelli, A. Methodology for efficient CNN architectures in profiling attacks. IACR Trans.
Cryptogr. Hardw. Embed. Syst. 2019, 2020, 1–36. [CrossRef]

8. Wouters, L.; Arribas, V.; Gierlichs, B.; Preneel, B. Revisiting a Methodology for Efficient CNN Architectures in Profiling Attacks.
IACR Trans. Cryptogr. Hardw. Embed. Syst. 2020, 2020, 147–168. [CrossRef]

9. Picek, S.; Perin, G.; Mariot, L.; Wu, L.; Batina, L. SoK: Deep Learning-Based Physical Side-Channel Analysis. ACM Comput. Surv.
2023 , 55, 1–35. [CrossRef]

10. Rijsdijk, J.; Wu, L.; Perin, G.; Picek, S. Reinforcement Learning for Hyperparameter Tuning in Deep Learning-based Side-channel
Analysis. IACR Trans. Cryptogr. Hardw. Embed. Syst. 2021, 2021, 677–707. [CrossRef]

11. Wu, L.; Perin, G.; Picek, S. I Choose You: Automated Hyperparameter Tuning for Deep Learning-based Side-channel Analysis.
IACR Cryptol. ePrint Arch. 2020, 2020, 1293. [CrossRef]

12. Standaert, F.X.; Malkin, T.G.; Yung, M. A Unified Framework for the Analysis of Side-Channel Key Recovery Attacks. In
Proceedings of the Advances in Cryptology—EUROCRYPT 2009; Joux, A., Ed.; Springer: Berlin/Heidelberg, Germany, 2009;
pp. 443–461.

13. Wu, L.; Won, Y.S.; Jap, D.; Perin, G.; Bhasin, S.; Picek, S. Explain Some Noise: Ablation Analysis for Deep Learning-Based Physical
Side-Channel Analysis; Cryptology ePrint Archive, Paper 2021/717; 2021. Available online: https://eprint.iacr.org/2021/717
(accessed on 3 June 2023).

14. Eiben, A.E.; Smith, J.E. Introduction to Evolutionary Computing, 2nd ed.; Springer Publishing Company, Incorporated:
Berlin/Heidelberg, Germany, 2015.

15. Miller, B.L.; Goldberg, D.E. Genetic Algorithms, Selection Schemes, and the Varying Effects of Noise. Evol. Comput. 1996,
4, 113–131. [CrossRef]

16. Luke, S. Essentials of Metaheuristics, 2nd ed.; Lulu: Raleigh, NC, USA, 2013. Available online: http://cs.gmu.edu/~sean/book/
metaheuristics/ (accessed on 3 June 2023).

17. Katoch, S.; Chauhan, S.S.; Kumar, V. A review on genetic algorithm: Past, present, and future. Multim. Tools Appl. 2021,
80, 8091–8126. [CrossRef] [PubMed]

18. Holland, J.H. Genetic algorithms. Sci. Am. 1992, 267, 66–73. [CrossRef]
19. Deb, K.; Agrawal, S. A niched-penalty approach for constraint handling in genetic algorithms. In Proceedings of the Artificial

Neural Nets and Genetic Algorithms; Springer: Vienna, Austria, 1999; pp. 235–243.
20. Liagkouras, K.; Metaxiotis, K. An Elitist Polynomial Mutation Operator for Improved Performance of MOEAs in Computer

Networks. In Proceedings of the 22nd International Conference on Computer Communication and Networks, ICCCN 2013,
Nassau, Bahamas, 30 July–2 August 2013; pp. 1–5.

21. Blank, J.; Deb, K. Parameter Tuning and Control: A Case Study on Differential Evolution With Polynomial Mutation. In
Proceedings of the IEEE Congress on Evolutionary Computation, CEC 2022, Padua, Italy, 18–23 July 2022; pp. 1–8.

22. Picek, S.; Heuser, A.; Jovic, A.; Bhasin, S.; Regazzoni, F. The Curse of Class Imbalance and Conflicting Metrics with Machine
Learning for Side-channel Evaluations. IACR Trans. Cryptogr. Hardw. Embed. Syst. 2018, 2019, 209–237. [CrossRef]

23. Maghrebi, H.; Portigliatti, T.; Prouff, E. Breaking cryptographic implementations using deep learning techniques. In Proceedings
of the International Conference on Security, Privacy, and Applied Cryptography Engineering; Springer: Berlin/Heidelberg, Germany,
2016; pp. 3–26.

24. TELECOM ParisTech SEN Research Group. DPA Contest, 2nd ed.; 2010 .
25. Simonyan, K.; Zisserman, A. Very deep convolutional networks for large-scale image recognition. arXiv 2014, arXiv:1409.1556.
26. Real, E.; Moore, S.; Selle, A.; Saxena, S.; Suematsu, Y.L.; Tan, J.; Le, Q.; Kurakin, A. Large-scale evolution of image classifiers.

arXiv 2017, arXiv:1703.01041.
27. Stanley, K.O.; Miikkulainen, R. Evolving neural networks through augmenting topologies. Evol. Comput. 2002, 10, 99–127.

[CrossRef] [PubMed]
28. Assunção, F.; Lourenço, N.; Machado, P.; Ribeiro, B. DENSER: Deep evolutionary network structured representation. Genet.

Program. Evolvable Mach. 2019, 20, 5–35. [CrossRef]
29. Sun, Y.; Xue, B.; Zhang, M.; Yen, G.G. Evolving deep convolutional neural networks for image classification. IEEE Trans. Evol.

Comput. 2019, 24, 394–407. [CrossRef]
30. Knezevic, K.; Fulir, J.; Jakobovic, D.; Picek, S. NeuroSCA: Evolving Activation Functions for Side-channel Analysis. IACR Cryptol.

EPrint Arch. 2021, 2021, 249. [CrossRef]
31. Acharya, R.Y.; Ganji, F.; Forte, D. InfoNEAT: Information Theory-based NeuroEvolution of Augmenting Topologies for Side-

channel Analysis. arXiv 2021, arXiv:2105.00117.

http://www.dpabook.org/
http://doi.org/10.46586/tches.v2019.i3.148-179
http://dx.doi.org/10.46586/tches.v2020.i4.389-415
http://dx.doi.org/10.46586/tches.v2020.i1.1-36
http://dx.doi.org/10.46586/tches.v2020.i3.147-168
http://dx.doi.org/10.1145/3569577
http://dx.doi.org/10.46586/tches.v2021.i3.677-707
http://dx.doi.org/10.1109/TETC.2022.3218372
https://eprint.iacr.org/2021/717
http://dx.doi.org/10.1162/evco.1996.4.2.113
http://cs.gmu.edu/~sean/book/metaheuristics/
http://cs.gmu.edu/~sean/book/metaheuristics/
http://dx.doi.org/10.1007/s11042-020-10139-6
http://www.ncbi.nlm.nih.gov/pubmed/33162782
http://dx.doi.org/10.1038/scientificamerican0792-66
http://dx.doi.org/10.46586/tches.v2019.i1.209-237
http://dx.doi.org/10.1162/106365602320169811
http://www.ncbi.nlm.nih.gov/pubmed/12180173
http://dx.doi.org/10.1007/s10710-018-9339-y
http://dx.doi.org/10.1109/TEVC.2019.2916183
http://dx.doi.org/10.1109/ACCESS.2022.3232064


Mathematics 2023, 11, 2616 20 of 20

32. Schijlen, F. Neuroevolution Applied to Profiled Side-Channel Attacks. Master’s Thesis, Delft University of Technology, Delft,
The Netherlands, 2022.

33. Deb, K.; Deb, D. Analysing mutation schemes for real-parameter genetic algorithms. Int. J. Artif. Intell. Soft Comput. 2014, 4, 1–28.
[CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1504/IJAISC.2014.059280

	Introduction
	Background
	Profiling Side-Channel Analysis
	Countermeasures

	Neural Networks
	Genetic Algorithms
	Datasets

	Related Work
	Network Architecture Optimization in SCA
	Evolution-Based Network Architecture Search
	Neuroevolution for SCA

	NASCTY
	Genome Structure
	Population Initialization
	Fitness Evaluation
	Offspring Production

	Experiments
	Experimental Setup
	Parameter Tuning by Grid Search
	ASCAD: Masked and Desynchronized

	Discussion
	Conclusions and Future Work
	References

