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Abstract. Ring-like structures are very commonly used in civil, mechanical and aerospace
engineering. Typical examples of such structures are components in turbomachinery, compliant
gears, conventional pneumatic tires and more recent non-pneumatic tires, to name a few. In
this paper, a ring on elastic foundation is considered. The foundation, modelled as distributed
springs, connects the inner surface of the ring to an immovable axis. Focus is placed on the
in-plane response of the ring subjected to in-plane load only. A high-order ring model, which
accounts for the through-thickness variations of displacements is adopted for the study. Two
loading situations of a ring structure are of interest in practice: (i) a stationary ring subjected
to a circumferentially moving constant load; and (ii) a rotating ring under a stationary constant
load. For the first situation, it is well-known that resonances occur when the rotational speeds
of the load satisfy certain conditions. In a series of recent investigations, such resonance speeds
have been predicted for a rotating ring subjected to a stationary load. In this paper the case
of the rotating ring under a stationary constant load and that of a stationary ring subjected
to a moving load are compared in terms of their resonance speeds, as well as the steady-state
responses for various parameters. It is found that these two cases are distinguishable even for
system parameters which result at similar critical speeds.
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1 INTRODUCTION

The in-plane vibration of rings is a classical problem in solid mechanics due to the broad

applications of ring-like structures in practice. It is usually the case that the ring and the load

acting on it are in relative motion. Two particular situations, namely a stationary ring sub-

jected to a circumferentially moving load (hereafter it is termed as moving load case) and a

rotating ring under a stationary load (hefeafter it is termed as rotating ring case) are commonly

encountered in engineering. Despite the absence of consensus on the existence of resonances

of a rotating ring subjected to a stationary load with constant magnitude [1, 2], a seemingly

conclusive result has been obtained in [3] according to which resonance can occur in rotating

rings. Modes which are stationary as observed in a space-fixed reference system, are excited

by the load [4] when a ring rotates at high speeds, resulting in a steady-state response which is

time-invariant to a space-fixed observer. The experimental evidence of such a response is the

occurrence of the so-called “standing waves” in rolling tires [5]. Similar wave phenomena have

been reported in soft calenders of paper machines [6]. On the contrary, there is no doubt in the

literature that resonances of a stationary ring subjected to a circumferentially moving constant

load occur when the rotational speeds of the load equal to one of the natural frequencies divided

by the corresponding mode number. Investigations of the steady-state responses in such a case

can be found in [6, 7].

To what extent the moving load case and the rotating ring situation can be treated as equal

is of interest and some deliberations on the topic can be found in the literature. It is concluded

in [6] that the effect of rotation is negligible and the rotating ring under stationary load and

stationary ring under moving load can be treated as equal. In this work, the steady-state de-

flection patterns of the ring when the speed of the relative motion is lower and higher than the

minimum resonance speed are investigated for both moving load and rotating ring cases. The

high-order model adopted from [3] is employed to simulate the in-plane response of rings on

elastic foundation in relative motion with a load. The primary aim is to critically study the ear-

lier suggested equivalence between the two cases. The responses of the two cases are compared

in terms of their resonance speeds, as well as the steady-state responses for various parame-

ters. It is shown that these two cases need to be distinguished especially when the foundation

stiffness is relatively large.

2 HIGH-ORDER RING MODEL

A ring on elastic foundation subjected to a point load is shown in Fig. 1. The ring and the

load are in relative motion with Ωr being the rotating speed of the ring and Ωp the velocity of

the load. The inner surface of the ring is connected to an immovable axis by distributed radial

springs kr and circumferential springs kc. The in-plane radial and circumferential displacements

of the ring are designated by w(z, θ, t) and u(z, θ, t). A space-fixed coordinate system (r, θ) is

adopted to describe the motions of the ring. It is assumed that the mean radius of the ring is R.

An auxiliary coordinate z is introduced as z = r − R. The material properties of the ring are:

the density ρ, Young’s modulus E, shear modulus G, Poisson’s ratio ν, Lamé constants λ and

μ. The dissipation in the ring material is considered by replacing E by E∗ = E(1 + ζd/dt)
in which ζ is a loss factor of the material. In addition, A is the cross-sectional area, I is the

cross-sectional moment of inertia, b is the width of the ring. A constant point load P (t) = P0 is

applied on the outer surface of the ring.

The high-order model of the ring developed in [3] is employed. Plane strain configuration

is assumed for the model. The external load is incorporated in the governing equations by the
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Figure 1: An elastic ring on elastic foundation in relative motion with a point (line) load. Ωr and Ωp are the

rotational speeds of the ring and the load, respectively: left figure for front view; right figure for side view.

Hamilton’s principle. One is referred to [8] for details of the derivation procedure. According

to [3], the displacement fields are expressed as polynomial functions of the ring thickness z:

w(z, θ, t) =

l=N1∑
l=0

wl(θ, t) z
l, u(z, θ, t) =

q=N2∑
q=0

uq(θ, t) z
q (1)

in which l, q are integers and l ≥ 0, q ≥ 0. N1 and N2 are the orders of the polynomials of the

displacement fields. Assuming a radial point load of constant amplitude is applied on the outer

surface of a rotating ring, the equations of motion that govern the small vibrations of the ring

around the static equilibrium in the radial direction are:∫ h
2

−h
2

(Ilin
1 zl) dz + ρ

∫ h
2

−h
2

(
r(v̇1 + Ωr v

′
1 − Ωr v2)z

l
)

dz +
(
f lin
1 − f lin

2 (−1)l
)(h

2

)l

= −
(
h

2

)l

P (t)δ(θ) = −
(
h

2

)l

P0 δ(θ), (l = 0, 1, 2, 3...N1).

(2)

The dimension of P0 is N.m−1 and δ is the Dirac delta function.

The linearised equations of motion of a rotating ring in the circumferential direction are:∫ h
2

−h
2

(Ilin
2 zq) dz + ρ

∫ h
2

−h
2

(
r(v̇2 + Ωr v

′
2 + Ωr v1)z

q
)

dz +
(
f lin
3 − f lin

4 (−1)q
)(h

2

)q

= 0,

(q = 0, 1, 2, 3...N2).

(3)

The details of the governing equations including the expressions for Ilin
1 , Ilin

2 , f lin
1 − f lin

4 and the

velocities v1 and v2 of a differential element of the ring in radial and circumferential directions in

the left-hand side of Eqs. (2-3) can be found in [8]. For the case of a stationary ring subjected to

a circumferentially moving load of constant amplitude, the governing equations can be obtained

by setting Ωr and the static equilibrium to zero on the left side of Eqs. (2-3) and altering P0 δ(θ)
to P0 δ(θ − Ωpt) on the right-hand side of Eq. (2).

The following dimensionless parameters are introduced [3]:

k =
√
I/A, k̄ = k/R, γ̄ = n k̄, ω̄ = ω k/c0, v̄(r,p) = RΩ(r,p)/c0, k̄(r,c) = k(r,c)k

2/(Eh), (4)
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where c0 =
√
E/ρ is the speed of the longitudinal wave in the rod, I = bh3/12 is the cross

section area moment of inertia and k̄ is the non-dimensional radius of gyration. θ̄ = θ/k̄ and

τ = c0t/k are the dimensionless angle and temporal variables, respectively. P̄ = P0 k̄/(Eh) is

the dimensionless load amplitude.

3 MOVING LOAD VERSUS ROTATING RING

The load speeds causing resonance of a stationary ring subjected to a constant point load

moving circumferentially are well known [7], namely Ωp = ωn/n in which n is the circumfer-

ential mode number and ωn is the nth natural frequency of the ring. The minimum resonance

speed (the critical speed) is the lowest value of ωn/n. Resonance speeds of a rotating ring

subjected to a stationary constant load satisfy the condition ω̄n = 0 in which ω̄n is the natural

frequency calculated in a space-fixed reference system [3]. By substituting ω̄n = 0 into the fre-

quency equation [3], one can solve for resonance speeds for each circumferential wavenumber.

Theoretically, resonances of the moving load case always exist. However, in practice the load

speed can not always reach the resonance speeds, especially for stiff rings since their resonance

speeds are high. On the contrary, resonance occurs only for certain parameters of a rotating ring

subjected to a stationary load of constant magnitude. Specifically, resonances of a rotating ring

may only occur for relatively soft rings. For example; for a ring made of steel, resonance speeds

do not exist for the rotating ring case whereas resonance speeds of such a ring for the moving

load case do exist but are extremely large. One needs to bear in mind that if a ring is stiff, the

responses of the ring for the rotating ring and moving load cases are similar. The reason is that

in the operational speed range, the translational rigid-body like motion governs the response in

both cases. Thus, only soft rings are considered in this section because resonance speeds exist

for such rings for both moving load and rotating ring cases.

Figure 2: Comparison of resonance speeds, h/R = 0.1, k̄c = 0.1 using the high-order model with increasing

stiffness of radial springs. Grey dashed line for moving load case; Red dotted lines for rotating ring case: (a)

k̄r = 0.001; (b) k̄r = 0.01; (c) k̄r = 0.1.

3.1 Comparison of resonance speeds between both cases for relatively soft rings

Fig. 2 shows the comparisons of resonance speeds, as functions of the mode number, be-

tween moving load and rotating ring case with different values of the foundation stiffness. Since

high-order theory is used, there are several curves representing higher order motions of the ring.

In the figure, the lower abscissa in each plot is the dimensionless wavenumber, whereas the

upper abscissa is the corresponding discrete circumferential mode number n. All the chosen
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parameters represent relatively stiff foundation (soft ring) configuration since only in this case

resonance speeds of rotating rings exist.

In Fig. 2 the upper limit of the plots is set at v̄ = 1 and therefore only the lowest branch

of resonance speeds is shown. The reason is that at higher speeds, the predictions of other

branches are not accurate since the rotation-induced hoop tension is approaching unrealistically

high value. Generally, rotation stiffens the ring, therefore, the resonance speeds of rotating

rings are larger than those in the moving load case as shown in Fig. 2(a). With increasing

k̄r, the resonance speeds for the two lower branches of both cases become close as shown

in Figs. 2(b)(c). For the two higher branches of resonance speeds, the differences are still

large. The minimum resonance speed in Fig. 2 is a critical speed at which a wave-like steady-

state deformation pattern is initiated. For the parameters shown in Figs. 2(b)(c), the critical

speed converges to the Rayleigh wave speed with increasing wavenumber and a Rayleigh wave

resonance is expected when a stationary constant load is applied [6].

3.2 Steady-state response for soft rings on stiff elastic foundation

The steady-state responses of a ring in relative motion to a constant point load is investigated

in this section for a soft ring. The parameters are chosen the same as in Fig. 2(b). For this set of

parameters, resonance speeds in the two cases are close, especially for the lower order motion.

The dynamic responses are derived using the so-called ”method of the images” described in

[7, 8].
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Figure 3: Displacements at the middle surface of the ring for v̄r = v̄p = 0.3, k̄r = 0.01, k̄c = 0.1, ζ =
0.002, P̄ = 0.002: (a) Normalised radial displacement; (b) Normalised circumferential displacement.

As shown in Fig. 2(b), the minimum resonance speed in both cases is the same, namely

v̄cr ≈ 0.5. Therefore, two velocities of the relative motion are chosen: v̄r = v̄p = 0.3 as a

sub-critical speed and v̄r = v̄p = 0.7 as a super-critical one. Fig. 3 shows the displacements

(normalized with respect to the ring radius at the middle surface) at the middle surface of the

ring for the two cases. It can be seen that the responses are very close. In this case, the stiffening

effect due to rotation for the rotating ring case is not obvious. When the speeds increase, for

the rotating ring case, the static expansion due to rotation becomes large, resulting in high hoop

tension. This tension stiffens the ring, especially it suppresses the radial displacement of the

rotating ring comparing to the moving load case as shown in Fig. 4(a) for the super-critical case

v̄r = v̄p = 0.7. However, the stiffening effect is not obvious on the circumferential displacement
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Figure 4: Displacements at the middle surface of the ring for v̄r = v̄p = 0.7, k̄r = 0.01, k̄c = 0.1, ζ =
0.002, P̄ = 0.002: (a) Normalized radial displacement; (b) Normalized circumferential displacement; (c) Ring

deformation, moving load; (d) Ring deformation, rotating ring. The ring deformations are scaled by 5.

(Fig. 4(b)). In Figs. 4(c)(d), the ring deformations in both cases are illustrated. Besides the

different patterns, the rotating ring shows static radial expansion caused by rotation. In addition,

the effect of damping is more pronounced in the rotating ring case as the displacements decay

fast along the circumference away from the loading point.

3.3 Maximum deflection of the ring versus velocity

The maximum displacement at the middle surface (Dmax is defined as max{
√
w0

2 + u0
2}

in which w0 and u0 are the radial and circumferential displacements at the middle surface,

respectively) for a ring with the same parameters as used in section 3.2 is shown in Fig. 5(a).

For the chosen parameters, the resonance speeds of both cases are quite similar as shown in Fig.

2(b). However, the responses are different under the same load as shown in Fig. 5(a), especially

when the relative speeds between the load and the ring exceed the minimum resonance speed.

For rotating ring case, the rotation of the ring stiffens the ring, resulting in smaller responses. In

Figs. 5(b) and (c), the maximum middle surface displacements in the radial and circumferential

directions are demonstrated, respectively. It can be seen that the responses are mainly governed

by the radial motion. To conclude, for the moving load and rotating ring cases which have

similar resonance speeds, their responses are in large disagreement at higher speeds of the
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Figure 5: Comparison of maximum deflection at the middle surface versus velocity, k̄r = 0.01, k̄c = 0.1: (a)

Dmax; (b) maximum radial displacement; (c) maximum circumferential displacement.

relative motion between the load and the ring.

4 CONCLUSIONS

The equivalence of the rotating ring under a stationary constant load case and a stationary

subjected to a moving constant load case are discussed by comparing their resonance speeds, as

well as the steady-state responses. It is found that these two cases need to be distinguished even

for system parameters which result in similar critical speeds. The moving load on stationary

ring and the rotating ring under stationary load cases can only be considered equivalent when

the relative speeds between the ring and the load are low or the responses are mainly governed

by the n = 1 mode. First, if resonance speeds exist, these can be very different in the two cases

under consideration, which will result in different dynamic responses. Second, even for system

parameters which result in similar critical speeds, the responses under the same load can be

different due to the rotation effects.
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