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ABSTRACT 

This thesis discusses the characterization of the undrained shear strength, 𝑆𝑢 from 

the net cone resistance, 𝑞𝑛𝑒𝑡 of clay in Dutch sites using Hierarchical Bayesian Modelling 

(HBM). The performance of the HBM is compared with the current practice methods of the 

site characterization which propose either the use of only site–specific observations 

(unpooled models) or the whole data simultaneously (pooled models). HBM can 

incorporate information from multiple sources such as prior knowledge of the engineers 

and behaviour met in the examined and the neighbouring sites. The use of different sources 

of information has been proposed by Eurocode-7 without providing a formal / 

mathematical procedure. 

Literature studies have highlighted the potential benefits of incorporating the HBM 

into the characterization of the geotechnical parameter values. Therefore, this thesis aims 

to assess whether HBM can enhance the geotechnical decision-making by precisely 

quantifying the uncertainty in the geotechnical parameter values and making more 

accurate predictions of them. The impact of using input from the HBM results in a reliability 

analysis of a dike slope is examined as well. 

First, a considerable number of paired 𝑞𝑛𝑒𝑡–𝑆𝑢 measurements is collected, and 

subsequently is divided into groups. Different statistical models are employed to describe 

this collected data. Two components characterize a statistical model; the functional form 

which is the relationship between 𝑆𝑢 and 𝑞𝑛𝑒𝑡 and the pooling family (pooled, unpooled 

and HBM), the method followed to train the statistical model parameters. The statistical 

models are applied in a comparative study to select the fittest one and to compare the 

behaviour of the HBM to the other pooling families. The comparative study is performed 

by applying the Bayesian Data Analysis (BDA) whose applicability is ensured by applying it 

in an artificial example using artificial data. 

The first result of the BDA with real data is the comparison of the HBM with the 

current practice pooled and unpooled models suggesting the ln 𝑆𝑢 − ln 𝑞𝑛𝑒𝑡 HBM as the 

fittest model. The HBM estimations for the statistical model parameters fall between the 

current practice’s methods and they experience lower uncertainty by borrowing 
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information from the neighbouring sites to make site-specific estimations. Between the 

current practice and the HBM, the latter predicts the 𝑆𝑢 with lower uncertainty. 

The reliability analysis using input from the HBM yields different reliability indices 

than those proposed by the current practice models. This situation combined with the 

choice of the HBM after following the BDA workflow propose that the HBM can lead to 

safer and more economic design. 

Overall, the use of the HBM for predicting the 𝑆𝑢 from 𝑞𝑛𝑒𝑡 with grouped data can be 

beneficial for the engineering practice. First, the HBM reduces the uncertainty of the 

statistical model parameters without inheriting extreme values and provides more certain 

prediction for the 𝑆𝑢 accounting for the prior engineering knowledge and the behaviour 

met in neighbouring sites. Additionally, performing reliability analysis of a dike slope 

exhibits that the use of HBM derived values can suggest safer and more economic design 

over the standard approach. 
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1. INTRODUCTION 

The design of structures demands geotechnical calculations to be made, which are 

based on the soil model or a representative soil stratigraphy and geotechnical parameters 

values. However, these parameters usually vary spatially. In addition, site investigation (SI) 

data is often limited and the knowledge of the subsurface is not extended at each point of 

the site. In other words, geotechnical parameters are observed in point measurements. 

Moreover, many SI tests provide measurements that need to be transformed into useable 

geotechnical parameters. Such transformations may induce uncertainty in parameter 

determination. Consequently, geotechnical parameter estimation contains uncertainty which 

propagates into the design. Managing this uncertainty is central to geotechnical design. 

Typically, standards such as Eurocode-7 (EC-7) offer guidance on dealing with uncertainty in 

a practical and conservative fashion. 

Site characterization practice defines the geotechnical parameter values and their 

associated uncertainty. Typically, engineers rely not only on site-specific measurements but 

also on knowledge from other relevant sites and their well-established experience. Yet, this 

practice does not always yield optimal results and is prone to subjectivity. To counter this, 

data-driven site characterization (DDSC) offers a methodology that consistently quantifies 

information from multiple sources during the characterization of geotechnical parameters. 

Additionally, Bayesian statistics offer a valuable perspective to the DDSC problem. Adopting 

Bayesian statistics holds several advantages which allow to explicitly quantify uncertainty. 

Among the numerous advantages, one investigation could be towards the DDSC 

capability of using data from relevant sites and prior knowledge to make conclusions for a 

specific site. The value of using broader data in making site-specific predictions can be 

explored. It is expected also that the engineering decision making will be supported as this 

DDSC skill is able to provide ranges–distributions of the site-specific parameter values, 

determining the uncertainty quantification and propagation. Moreover, a similar capability of 

the DDSC that could be explored is the ability to identify the three-dimensional soil variability 

patterns. These two branches of the application of the Bayesian methods in the context of 

DDSC can provide better representation of the geotechnical uncertainty. 
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The impact of adopting advanced statistics for the derivation of the geotechnical 

parameter values can be highlighted by applying their results in a reliability analysis of 

geotechnical structure. The results of this analysis must be compared with the results of the 

analysis using input data obtained by applying methods of the current practice. 

It is proven from the literature that the adoption of Bayesian statistics to complement 

the SI holds many benefits for the geotechnical engineers. However, Bayesian statistics have 

not been applied extensively in the field of geotechnical engineering. Moreover, it is not 

thoroughly investigated the impact of applying Bayesian statistics into the uncertainty 

propagation from the uncertainty of the geotechnical parameter values to the design of the 

geotechnical structure. The current practice guidelines do not include a robust mathematical 

procedure to incorporate engineering experience and knowledge on relevant sites to make 

site specific conclusions. 

1.1 BACKGROUND 

The current practice of the geotechnical parameter values derivation demands a strong 

intuitive process from the engineers. EC-7 explicitly states that apart from the results of the 

direct measurements of the geotechnical parameters, engineers must account for non–

quantifiable knowledge such as experience, history of the site and behaviour met in 

neighbouring sites to derive the site-specific geotechnical parameter values. However, a 

mathematical framework is missing. Furthermore, EC-7 suggests making conservative 

estimations to achieve safe design overcoming the geotechnical uncertainty, leading to 

expensive design and without accurately evaluating the probability of failure. 

The geotechnical data is usually divided into different groups or sites which can be 

regarded as different geographical regions. In the current practice, there are two major 

methods of defining geotechnical parameter values having as input observations divided into 

different groups. The first one is the pooled model which uses the observations of all groups 

equally to derive the geotechnical parameter values of a specific group. The statistical model 

that predicts the geotechnical parameter values in this case is the same for all groups. The 

second model is the unpooled where the prediction of the geotechnical parameter values of 
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a specific site arises from a statistical model which uses only this site’s available data to be 

trained. 

The Hierarchical Bayesian Model (HBM) constitutes a statistical model which is flexible 

to perform between pooled and unpooled models. This model is trained based both on site-

specific and global observations and it can account for the engineering experience. The 

pooled, unpooled and HBM can be compared by applying the Bayesian Data Analysis (BDA) 

workflow. 

Consequently, advanced statistical methods are proposed that quantitatively combine 

data with engineering judgement (DDSC) as well as they can quantify the uncertainty of the 

geotechnical parameter values. The application of Bayesian statistics can combine data from 

the examined site, relevant sites, and engineering judgement to make conclusions relatively 

the geotechnical parameters values for the examined site, relevant sites and for a new site 

without available measurements. 

1.2 MOTIVATION 

The comprehensive study of the proposals given by the EC-7 regarding geotechnical 

parameter derivation and the current practice of the site characterization has made apparent 

the shortages of these procedures. At the same time, the introduction of advanced statistical 

methods in the context of DDSC gives the opportunity for supporting the engineers upon site 

characterization and the derivation of the geotechnical parameter values. As it will be 

presented in the section of literature review below several papers suggest that DDSC using 

Bayesian statistics presents satisfactory results. The outcome of these papers boosts further 

research on using the Bayesian methods for predicting geotechnical parameter values and 

the evaluation of their performance under some benchmark examples. 

This thesis aims to assess the possible benefits of applying HBM through BDA for 

quantifying the uncertainty of the geotechnical parameters over the standard practice. The 

impact of this method will be further highlighted in the context of a reliability analysis of a 

slope stability project. 
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1.3 RESEARCH QUESTIONS 

The geotechnical parameter values derivation with methods of current practice has 

uncertainty which can be further reduced. Geotechnical engineering community adopts 

conservative estimations to achieve safe design, leading to large expenditure. Recent 

literature studies introduce DDSC using Bayesian statistics to gain insight into the geotechnical 

parameter uncertainty. The aim of this thesis is to answer the following main research 

question.  

Q: Can HBM enhance geotechnical decision-making and achieve safe, and economic designs 

over the standard approach? 

The answer to this question is complex and it must be subdivided into simpler questions. 

• Q1: What datasets that can support DDSC are available? 

• Q2: How does the performance of HBM and the standard practice models compare in an 

artificial example? 

• Q3: What is the uncertainty quantification of the geotechnical parameter values achieved 

by HBM versus standard approach in the datasets gathered in Q1? 

• Q4: How the results of a dike slope reliability analysis when using as input the results of the 

HBM and the current practice models are compared? 

• Q5: What steps are suggested for future research? 

1.4 RESEARCH OBJECTIVES 

It is desired to answer if the DDSC using Bayesian statistics can support the geotechnical 

decision making upon the estimation of the geotechnical parameter values reducing the 

conservatism. Attention is drawn to HBM because it is expected to bring added value to the 

engineering community. Can this advanced approach perform better than the current 

practice models in terms of more accurate and less uncertain predictions of the geotechnical 

parameter values? 
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Additionally, it will be beneficial for the experts to detect the impact on areliability 

analysis of a dike slope when implementing values from the DDSC results using Bayesian 

statistics. Can this procedure propose safe and simultaneously economic design over the 

standard approach? 

1.5 APPROACH OF THE THESIS 

In the context of this thesis, the uncertainty in the estimation of the undrained shear 

strength, 𝑆𝑢 from measurements of the net cone resistance, 𝑞𝑛𝑒𝑡 of clay in Dutch sites will be 

investigated using HBM. The efficiency of adopting HBM will be further reviewed by 

comparing its results with the standard approach. The predictions derived from different 

statistical models will be compared. 

Two components constitute a statistical model. The relationship or functional form 

between 𝑆𝑢 and 𝑞𝑛𝑒𝑡and the pooling family which describes how the grouped data is used to 

calibrate the models. The available pooling families are the pooled, unpooled and the HBM. 

The BDA workflow will render the comparison of the statistical models feasible. The focus will 

be on the results of HBM, and it will be judged whether it is more beneficial for the 

engineering practice compared to the other two pooling families. Additionally, the fittest 

functional form will be identified. Eventually, the impact of using HBM predictions for 

reliability analysis of a dike slope is evaluated by comparing the performance of the results 

obtained per statistical methodology in fully probabilistic analyses. The reasons lying behind 

choosing this project are the numerous applications that are available in the Netherlands, the 

big domain of influence which is sparsely covered by SI, the extensive literature, and research 

available. 

1.6 OUTLINE OF THE THESIS 

Chapter 2 presents an extensive literature review on the current practice and modern 

methods of site investigation. Some research projects where the HBM has been successfully 

applied are introduced, highlighting the potential of this method. 
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In chapter 3, the background of the Bayesian statistics and the thesis’ methodology are 

presented. Chapter 4 describes the data collection and its clustering into different groups 

while the chapter 5 outlines the artificial example where the BDA workflow is validated to be 

further used with real data.  

The main part of the thesis is the comparison of the HBM with the current practice 

models by applying the BDA workflow using real data as input in chapter 6. The comparison 

is based on model rankings, the posterior distributions of the statistical model parameters 

and the predictions of 𝑆𝑢 achieved by each model. Subsequently, chapter 7 demonstrates the 

reliability analysis of a dike slope using input from the current practice models and HBM and 

their results are compared. The last two chapters 8 and 9 present the conclusions of the thesis 

by answering the research questions and the limitations along with proposals for future 

research respectively. 
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2. LITERATURE REVIEW 

In this chapter, the current practice for the derivation of the geotechnical parameter 

values and the procedure for the SI will be presented as well as modern developments of 

these fields. Initially, the proposals of the EC-7 are demonstrated as well as the current 

practice of the SI. Following, applications of the DDSC and Bayesian statistics in the context of 

SI and geotechnical parameter values calculation are presented. Eventually, some conclusions 

are drawn from the literature review regarding the content of this thesis. 

2.1 CURRENT PRACTICE OF EUROCODE-7 

CEN - European Committee for standardization (2004) provides a set of harmonized 

technical rules for the design of geotechnical construction works. The purpose of these rules 

is the elimination of technical obstacles to trade and the harmonization of technical 

specifications. Among its guidelines, it suggests that an engineer should use his / her 

experience and prior knowledge to derive the geotechnical parameter values. 

The procedure for the derivation of the geotechnical parameters values is not 

transparent. The lab and the in-situ tests can yield results for the specific point of the site or 

the area of influence of the test. However, EC-7 proposes that these results should not be 

inhered without any judgement and the engineer should use experience and critical thinking 

on the selection of the parameters’ values for the whole site. To this extent, it proposes 

conservative estimations for safe derivation of geotechnical parameters. Hence, 

interpretation of EC – 7 leaves room for the application of statistical tools which can result to 

more accurate parameter estimation and to reduction of the conservatism in design.  

The interpretation of some specific parts obtained by the CEN - European Committee 

for standardization (2004) will be presented. The proposals of these parts can be enhanced 

by using Bayesian statistics. These are proposing conservative estimations to the engineer 

and to make use of non-quantifiable knowledge, such as experience, history of the site and 

the behavior met in neighboring sites.  
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First, the EC-7 introduces some general definitions that will be continuously used as 

reference in the guidelines it proposes. To be more specific, it introduces “comparable 

experience” (1.5.2.2) (CEN - European Committee for standardization, 2004) which says that 

an engineer should consider relevant structures and relevant soil/rock conditions, designing 

the structure and the information gained locally is considered to be particularly relevant. 

However, it doesn’t provide any way on how to use local information from local and similar 

sites / soil conditions. Such a relationship can only be established through critical thinking 

based on the EC-7. 

Another definition introduced by EC-7 is the “derived value” (1.5.2.5) (CEN - European 

Committee for standardization, 2004). It suggests that the parameter value that will be used 

in the analysis should be obtained by theory, correlation, or empiricism from test results. In 

other words, the engineer should not rely exclusively on the results of laboratory / in situ test 

but should also consider additional factors upon determining the parameter values to be used 

in an engineering analysis. When there is absence or insufficient tests, the parameter 

derivation can be supported by an advanced predictive model. 

In addition, EC-7 admits that the SI is limited and not always reliable. The more limited 

it is and the lower quality it has, the less knowledge is gained upon the ground conditions 

(2.4.1 (2)) (CEN - European Committee for standardization, 2004); Thus, methods for 

enhancing the predictions of the soil properties at points where SI is not available must be 

developed which will probably use the data from sites relevant to the examined one. 

EC-7 proposes that the establishment of geotechnical parameters values should 

consider relevant published data, local and general experience. The results of any large-scale 

field tests trials and measurements from neighboring structures should be accounted for 

(2.4.3 (5)) (CEN - European Committee for standardization, 2004). However, it is not clear how 

it is possible to quantify the association of the local data with the relevant published data and 

with experience in the surrounding region. 

Following, EC-7 suggests on deriving the characteristic values of soil properties. First, in 

the section (2.4.5.2 (1)) indicates the same procedure as this of the “derived value”, which 

has been discussed above. Additionally, it states that the selection must be based on 

geological and other background information, such as data from previous projects (2.4.5.2 
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(4), 3.2.1 (1), 3.2.2 (1), 3.2.3 (5)); Nevertheless, a procedure for using this data is missing. The 

selection must also account for variability of the measured parameter values and other 

relevant information (2.4.5.2 (4)); yet the type, either local or regional of the variability is not 

specified. It suggests also making a conservative assumption by taking the most unfavorable 

combination of upper and lower values of independent parameters (2.4.5.2 (6)). In other 

words, it proposes to not account for the correlation between the properties and to use the 

extreme unfavorable values in conservatism. 

EC-7 implicitly states to use statistical methods which allow to incorporate data from 

prior knowledge. To be more specific, using statistical methods for the characteristic values 

for ground properties must differentiate between local and regional sampling and make use 

of prior knowledge of comparable ground properties (2.4.5.2 (10), 3.1 (1)) (CEN - European 

Committee for standardization, 2004). However, it doesn’t expand on which statistical 

methods exist on this case and how can the a priori knowledge be incorporated in the 

selection of the characteristic values. The method of exploiting samples and data from 

regional sites is missing. Lastly, optimization of the design can be achieved as new information 

is retrieved during the construction operation by updating the statistical models (3.1 (2)). 

2.2 CURRENT PRACTICE OF SITE CHARACTERIZATION  

Baecher & Christian (2003) define site characterization as an accumulation of actions 

that are executed prior to any engineering calculations and analyses. It is intended to provide 

the engineers with knowledge on the geology and the relevant material properties that 

prevail on the construction site. 

So far, site characterization is largely based on engineering judgement as it constitutes 

a strongly intuitive process, and it is usually comprised of three stages. The first one is the 

reconnaissance where qualitative estimations are made upon the local and regional geology. 

The means for doing these estimations are the geological and topographic maps, air photos, 

and records of nearby constructions. At this stage, qualitative hypotheses are made which 

will be further investigated by sampling and testing. Secondly, the preliminary investigation 

is performed where the first quantitative estimations are made by executing limited borings, 

tests, and surveys. At this stage, the reconnaissance stage is expanded by confirming the 
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qualitative hypotheses and introducing the first quantitative hypotheses. The third stage is 

the detailed investigation, where it is sought to confirm the quantitative hypotheses made 

previously. More detailed measurements are executed to obtain information on the 

geometry and the material properties. The final measurements are available only at some 

specific points. The engineer should decide upon the continuity of the measurements 

between the points relying on the qualitative hypotheses he/she has made during exploration 

/ investigation stage. Schematically, the procedure of site characterization is presented at 

Figure 2.1. 

 

Figure 2.1: Procedure for site characterization in standard practice, taken from Baecher & Christian 

(2003) 

The site characterization practice hints that an engineer should use prior knowledge 

from relevant projects and geological regimes for the expression mainly of the qualitative 

hypotheses. Apart from that, the records from similar and nearby constructions sites are 

valuable for the conceptualization of the soil subsurface where the construction works are 

going to operate. However, up until now this procedure is executed through the engineering 

judgement, without the support that it could be provided with quantifying the prior 

knowledge and the information that is available from neighbouring sites. 
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2.3 DATA DRIVEN SITE CHARACTERIZATION AND BAYESIAN INFERENCE 

DDSC acts as a means to tackle the drawbacks of the standard SI procedure. DDSC has 

been introduced to support site characterization by quantitatively combining data with 

engineering judgement. The nature of useable information is very broad as it can contain site 

specific data and data from relevant sites either from present or the past A schematization of 

the procedure employed by the DDSC can be seen in Figure 2.2. 

 

Figure 2.2: Procedure of the DDSC obtained by Baecher & Christian (2003) 

DDSC has to cope with some challenges. First, it must be able to represent as accurate 

as possible the characteristics of the data that deviate significantly from the ideal situation. 

In addition, it must be able to identify the “site uniqueness”, the characteristics of the site 

that make it different from others. Thus, the available data that exists from other sites can be 

combined effectively to make inferences for the new site. Last, the procedure must be able 

to map the soil layers boundaries in the three – dimensional space based on the site–specific 

data. 

2.3.1  Bayesian inference 

DDSC can be performed via Bayesian statistics. The main attribute of the Bayesian 

statistics is the Bayesian inference, a particular type of statistical inference. According to it, a 

probability model (probability distribution) is used to describe the data. The parameters of 

the statistical model, 𝜃 are calibrated based on the prior knowledge through the prior 

distributions, 𝑝(𝜃) and the likelihood function, 𝑝(𝑦|𝜃) which represents the probability of 
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observing the observed data given that it arises from the assumed probability model. The 

multiplication of these two factors results to the posterior probability, p(θ|y) of the model 

parameters. This represents the probability distribution of the model parameters given the 

observed data. 

Bayesian inference yields some significant advantages, making it preferable than the 

frequentist inference in civil engineering problems. The first benefit presented by Gelman et 

al. (2013) is the clarity in its definitions which align with the engineering mindset. For instance, 

the Bayesian credible interval for an unknown quantity of interest, can be interpreted as a 

degree of belief in the interval containing the unknown quantity, whereas the frequentist 

confidence interval can be regarded as a sequence of similar inferences that might be made 

in repeated practice. Secondly, Bayesian inference can incorporate multiple levels of 

randomness; thus, it can combine data from multiple sources and then make estimations. 

2.3.2 DDSC applications using Bayesian inference 

In this section the main reported advantages of applying Bayesian methods will be 

presented through some acknowledged publications. The main functions of the Bayesian 

statistics are the identification of the three-dimensional soil properties (subsurface mapping) 

and the HBM which uses large databases to augment the predictions of the examined 

geotechnical property. 

Bayesian inference is advantageous in the field of the geotechnical engineering because 

it can prevent the adverse effects of the limited site-specific data and can acknowledge the 

differences between the different sites. Bayesian inference enhances the available data by 

using prior knowledge in the form of prior distributions and by using already existing data 

with the HBM. Consequently, more accurate statistical models are obtained to describe the 

geotechnical parameter values by quantifying the uncertainty of the model parameters 

through the posterior distributions(Bozorgzadeh et al., 2019). 

First, Ching & Phoon (2020) describe the methodology for addressing the special 

characteristics of the soil over the depth profiles. At each site, geotechnical data are typically 

Multivariate, Uncertain, unique (to some degree), Sparse and InComplete which is 
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abbreviated as MUSIC. These properties pose as significant challenges for statistical 

characterization of a site. Although, generic assumptions are made to describe statistically 

the soil parameters such as disconnecting the soil parameters from the spatial variability, 

Ching & Phoon (2020) have removed the depth independence assumption. The resulting 

method can estimate the soil parameters beyond one depth; –it can simulate the site–specific 

random field profiles of the soil parameters. The generated database by Ching & Phoon (2020) 

MUSIC, is enriched with spatial correlations resulting to MUSIC-X which makes estimations 

based on both soil parameter and spatial information. This method can also simulate site-

specific samples for the whole design parameter depth profiles and in fact, the entire family 

of depth profiles for all test parameters. Moreover, MUSIC-X can also learn spatial variability 

patterns over depth. Ultimately, this method allows for predictions of soil parameters over 

the subsurface which can be used in simulating the spatial variability of soil. 

Phoon et al. (2022) apply the DDSC in practical cases. Among other applications, DDSC 

techniques intend to produce a 3D stratigraphic map of the subsurface domain below a site 

and to estimate relevant engineering properties at each spatial point based on SI. Uncertainty 

quantification is necessary, as data is insufficient, incomplete, and/or not directly relevant to 

derive a deterministic map. The research in DDSC can be enhanced by benchmark examples 

to compare the performance of different methodologies. The purpose of Phoon et al. (2022) 

is to propose standard benchmark examples for DDSC subsurface mapping and a 

benchmarking procedure to measure the performance of any method in a balanced and 

unbiased way. The benchmark examples are based on synthetic cone penetration test data 

(cone tip resistance and sleeve friction) that are plausible outcomes from some idealized 

stratigraphy. The GLasso method is employed for the DDSC, and the accuracy of the 

predictions is quantified by two performance metrics: (1) root-mean-square error (RMSE) of 

the cone tip resistance and (2) identification rate (IR) of the soil behavior type (SBT). Similarly, 

in this thesis the research on the HBM will be enhanced by applying its results in a reliability 

analysis of a slope stability case. 

Bozorgzadeh et al. (2019) explore the use of the Bayesian statistics by employing 

already existing data from other sites in the form of prior distributions, to augment the project 

specific data. The authors develop a Hierarchical Bayesian non-linear model for fitting the 
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empirical Hoek-Brown strength criterion to data sets from multiple sites of triaxial strength 

of a given rock type. Following, this model and an independent parameter model are applied 

simultaneously to 40 datasets of granite triaxial strength test results. The cross-validation 

results yield that the HBM predicts more accurately the strength of the above-mentioned 

verification dataset than does the independent parameter model, Moreover, the results of 

the HBM at the group-level can be further used in the future to augment the limited project 

specific data. 

Bozorgzadeh & Bathurst (2022) demonstrate the applicability of the HBM for the 

statistical analysis of geotechnical engineering data. A practical application “mechanically 

stabilized earth wall” is elaborated and the authors propose the optimal design method for 

designing such structures. On the one hand, customary statistical analysis, which is broadly 

used, lacks the necessary perception, and assumes that all the variation is within the observed 

random variable without any between–group variation. On the other hand, HBM can 

distinguish the components of parameter variation between and within groups by utilizing 

data from multiple sites. Moreover, they can be applied to a significant number of different 

geotechnical datasets. Applying the HBM to the practical case proves that this procedure 

allows for the uncertainty quantification from different sources of variation which can be 

subsequently used for essential predictions in the context of “reliability-based design” and 

“load and resistance factor design”. 

Bozorgzadeh et al. 2023 deal with the application of HBM for the calibration of a 

regression model based on CPT measurements that predicts the axial capacity of piles driven 

in mainly fine-grained soil. The main goals of this study are to evaluate the uncertainty of the 

linear regression model parameters and to assess at what extent the model parameters differ 

between different sites of the measurements. A database of total 39 measurements from 20 

different clay sites is used and the shaft friction is only modelled by the statistical model. The 

calibration obtained by the HBM is compared with the corresponding calibration of the widely 

used complete pooling model. Initially, the Hierarchical model accounts for the site-specific 

data more than does the complete pooling model but with reserving large uncertainty in the 

model parameters avoiding the overfitting to these data. Additionally, observing the residual 

plots, the Hierarchical model represents more accurately the outlier measurements, and its 



15 

 

 

 

predictive accuracy is higher than that of the pooled model. Lastly, the HBM provides wider 

posterior distributions but still informative which are useful when new data is observed 

(updating). The paper explores the use of HBM for geotechnical model calibration, using an 

example of axial capacity of piles in clay. It addresses two overlooked uncertainties: statistical 

model parameter uncertainty and variations between sub-groups in a generic database. The 

HBM outperforms the complete pooling model, offering a more representative uncertainty 

assessment by allowing group-specific parameters and borrowing information. This paper's 

findings align with my thesis, where I investigate the application of HBM to characterize the 

𝑆𝑢 of clay using 𝑞𝑛𝑒𝑡 in Dutch sites. 

’Kahlstrom & ’Bozorgzadeh (2022) examine the adoption of an optimal statistical model 

for predicting the 𝑆𝑢 from results of CPT and from the water content, 𝑤 obtained by the index 

lab testing. The database used for the training refers to clay material primarily from Norway. 

Four different statistical models are trained ranging from complicated incorporating many 

independent parameters to the simplest accounting exclusively for the 𝑞𝑛𝑒𝑡. Bayesian 

regression model is used, and all the data is treated as identical without defining any sub-

groups inside the dataset (pooled model). The authors point out that estimating the 

uncertainty in the regression model parameters allows for the accurate calculation of the 

mean 𝑆𝑢 value and to the construction of prior distributions without knowing the real data. 

Following, the predictive accuracy of the models has been compared and it is suggested to 

not use the model with only independent parameter the 𝑞𝑛𝑒𝑡. Lastly, updated predictions are 

obtained with the models by adding a few data points. The update is not significant because 

the initial predictions were based on equivalently on the whole initial dataset. Authors 

conclude that the potential benefits of obtaining new site-specific data can be obtained by 

applying HBM which allows the determination of site-specific model parameters in grouped 

dataset. In this thesis the relationship between 𝑞𝑛𝑒𝑡 and 𝑆𝑢 will be explored because it is 

aimed to highlight the impact of the HBM compared to pooled and unpooled models. 

Feng et al. (2023) compare the performance of the HBM with the unpooled model in 

the context of predicting the state of in-situ stresses of rocks using measurements obtained 

from the overcoring (OC) test. Bayesian regression models calibrated by the unpooled, and 

partially pooled technique are applied. The parameters of these statistical models are the in-
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situ stresses to be determined. The database used for the calibration of these models is 

comprised of five boreholes with several tests per each borehole varying from three to six. 

HBM obtains less uncertain estimates for the in-situ stresses than the no-pooling model. The 

latter exhibits high epistemic uncertainty due to many uncertainty sources that affect the 

unpooled model since it accounts for only the test specific data. On the contrary, the partially 

pooled model allows the borrowing of information from neighbouring tests and provide more 

certain estimates for the in-situ stresses. Lastly, the predictive adequacy of the models has 

been compared judging the predictions of unseen new data and the partially pooled is the 

most competent in this field as well. Overall, the significant number of uncertainty sources 

that affect the calculation of the in-situ stresses of the rocks render the no-pooling models 

uncertain yielding not reliable point-estimates for the stresses. HBM can act as a mean to 

reduce the impact of these uncertainty sources and has greater predictive power than the no-

pooling model. Similarly, in my thesis the HBM will be tested by characterizing the 𝑆𝑢 from 

measurements of 𝑞𝑛𝑒𝑡. Its performance will be compared with the custom pooled and 

unpooled models. 

Feng, Bozorgzadeh, et al. (2023) examine the use of Bayesian data analysis to develop 

statistical models for evaluating the small strain shear modulus, 𝐺𝑚𝑎𝑥  based on the CPT tip 

resistance corrected for pore pressure, 𝑞𝑡. For this reason, it is crucial to incorporate data 

from various sources such as prior knowledge, experts’ experience, and data from 

neighbouring sites. Moreover, this paper addresses the use of HBM to construct informative 

prior distributions for the future Bayesian statistical analyses based on already existing 

databases. The authors employ Hierarchical regression in a statistical model that 

characterizes the 𝐺𝑚𝑎𝑥  based on 𝑞𝑡. The data analysed for the calibration of the model is 

comprised of 335 paired CPT and 𝐺𝑚𝑎𝑥  measurements from 31 borehole locations and divided 

into 13 different soil units. The results of the analyses demonstrate that the different locations 

of the data have higher impact on the posterior distributions of the model parameters than 

that of the soil units. Additionally, the performance of the HBM in terms of making 

informative prior distributions is investigated. This is achieved by leaving out of the analysis 

one group of data and then assessing the goodness of fit of the model posterior predictive 

distributions at these held out points. These points are very well captured by the model 

indicating that the HBM can construct informative prior distributions. Overall, HBM 
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constitutes an appropriate method for constructing informative prior distributions. These 

findings motivate the use of the HBM in the context of the Bayesian data analysis to predict 

the 𝑆𝑢 from CPT results and to construct informative prior distributions for this purpose. 

2.4 CPT BASED DERIVATION OF 𝑆𝑢 

Cone Penetration Test (CPT) is widely used in soft soil regimes to identify the sequence 

of the soil strata and the ground water conditions. Additionally, it can describe the mechanical 

and the physical properties of the soil layers (P. K. Robertson & K. L. Cabal, 2015). CPT is 

extensively used because of its significant benefits for the engineers. First, it is a fast process 

yielding continuous profiling and reliable data. Moreover, it has reasonable cost and there is 

a lot of knowledge on converting the results of the CPT into useful engineering parameters 

(P. K. Robertson & K. L. Cabal, 2015).The current practice employs the 𝑁𝑘𝑡 model which relates 

the 𝑞𝑛𝑒𝑡 with the 𝑆𝑢. It is developed based on theoretical solutions and it accounts for the 

anisotropy, strain rate and the effects of the sample disturbance (P. K. Robertson & K. L. Cabal, 

2015). 

𝑆𝑢 =
𝑞𝑛𝑒𝑡

𝑁𝑘𝑡
  (2.1) 

Experts demonstrate that for clay in the Netherlands and for assessing the soil strength 

in a dike spanning several kilometers, such as the one assumed in this thesis, the 𝑁𝑘𝑡 can vary 

from values of 7 to values of 40. 

2.5 CONCLUSIONS  

The guidelines of the current practice propose some measures that can reduce the 

effects of the soil uncertainty and achieve safe design. However, these guidelines propose 

conservative estimations which lead to expensive design. Moreover, they propose the use of 

non-quantifiable knowledge such as engineering judgement, accounting for the history of the 

site and the behaviour met in neighbouring sites. Yet, a procedure for incorporating these 

factors into the design is missing. 
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Research on the topic of DDSC has shown that it can support the engineering judgement 

by providing geotechnical parameters uncertainty quantification. Especially, the application 

of Bayesian statistics in the context of DDSC can provide results that can be directly used by 

the engineers. Bayesian statistics can assist on identifying the three-dimensional patterns of 

the geotechnical parameter values (subsurface mapping) and to incorporate data from 

various sources to make site-specific estimations (HBM). In this thesis only the HBM will be 

investigated from the two methodologies of Bayesian statistics. 

In conclusion, the research already done it these fields suggests that the application of 

Bayesian statistics in the context of DDSC can offer solutions for the drawbacks of the current 

practice. The main deficiencies are the conservative estimations and the lack of a robust 

methodology to incorporate the prior knowledge, engineering judgement and data from 

relevant sites into estimating the geotechnical parameter values. Additionally, the 

assumptions made by the engineers are subjective most of the times and the use of generic 

databases as one database does not allow to identify site-specific attributes of the data. The 

application of the HBM through the BDA can provide more accurate estimates of the 

geotechnical parameter values dealing with the current practice deficiencies. It can 

incorporate prior knowledge and data from relevant sites to make site specific estimations. 

Hence, it supports the engineers to overcome to deficiencies of the current practice site 

characterization.  
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3. BAYESIAN DATA ANALYSIS BACKGROUND AND THESIS METHODOLOGY 

3.1 INTRODUCTION 

In this chapter, the theoretical and mathematical background of the Bayesian statistics 

will be presented. In this context, the BDA workflow will be described as well as the 

methodology for the investigation of the thesis’ project. 

Davidson (2003) describes the statistical model as a probability distribution based on 

observations that allows inferences and decision to be created. It consists of two components: 

the functional form and the pooling family. The functional form describes the type of the 

model for example ordinary linear regression in the 𝑥 − 𝑦 or in the 𝑥 − ln 𝑦 plane. The pooling 

family describes how the observations are used to calibrate the model. 

In this thesis, the relationship of 𝑆𝑢 as a function of 𝑞𝑛𝑒𝑡 will be investigated. For this 

purpose, several combinations of functional forms and pooling families will be explored. For 

each functional form, five different pooling families can be used to calibrate the model 

parameters, resulting to five different statistical models. Bayesian statistics will be used to 

train those models. 

The aim is to identify the fittest statistical model. This will be achieved by applying the 

BDA workflow. One step of the BDA workflow is the model validation which enables the 

model comparison resulting to the recognition of the fittest statistical model. The model 

comparison and the processing of the models’ results will highlight the possible benefits of 

the HBM over the standard practice pooled / unpooled models. Lastly, a procedure to make 

predictions will be presented. 

3.2 HIERARCHICAL BAYESIAN MODELLING AND POOLING FAMILIES 

In the case of ordinary linear regression models used in the thesis (’Montgomery et al., 

2012), the statistical models are composed of the outcome variable, 𝑦 (𝑆𝑢), the statistical 

model parameters, 𝜃 and the covariate 𝑋 (𝑞𝑛𝑒𝑡). The training of 𝜃 is based on the observed 

data. In the context of the geotechnical engineering the observations are usually divided into 

different groups or sites which represent different geographical regions. 
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In Figure 3.1 the ellipses with 𝑦 represent a specific site with paired observations, 𝑆𝑢 −

𝑞𝑛𝑒𝑡. The ellipses with 𝜃 represent the site-specific statistical model parameters. The solid 

lines represent statistical dependence namely the assumption that the 𝑦 has been generated 

from the statistical model with parameters, 𝜃. The dashed – line denotes which observed 

dataset is used to calibrate the 𝜃. 

In Figure 3.1 three different methodologies for developing the statistical models and 

calibrating their 𝜃 are presented. On the left side the unpooled model is elaborated. The 

statistical model of each site has different 𝜃 and it is calibrated by accounting for only the 

site–specific observations. The sites are different between them (high between group 

variability) and they do not share any similarities. Unpooled models are inefficient against the 

limited site–specific data (Bozorgzadeh et al., 2019) because in this case they result to 𝜃 with 

high uncertainty. Additionally, they are affected by various uncertainty sources that they 

cannot be captured by the statistical model (Feng, Gao, et al., 2023). Additionally, they cannot 

make predictions for a new site without available measurements. On the contrary, at the right 

side of the Figure 3.1 the pooled model is described. In this case, a single 𝜃 is assumed for all 

sites while those are perceived as one identical site. The training of 𝜃 is equivalently based on 

the observations of all sites. 

The middle ground of these two models is the HBM as presented in the middle part of 

Figure 3.1. HBM is trained accounting for the site–specific data as well as it borrows 

information from the other similar sites (Bozorgzadeh et al., 2023) through the 

hyperparameters, 𝜉 which define the 𝜃. Fundamental concept in the HBM is the 

exchangeability. It means that the groups are similar and there are not significant differences 

that would determine the groups of the data (Thomas Wiecki, 2014). The relation between 

the hyperparameters and the parameters are further illustrated in Figure 3.2. 
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Figure 3.1: Graphical representation of the statistical model families inspired by Bozorgzadeh et al. 

(2019) 

 

Figure 3.2: Structure of the Hierarchical model inspired by Gelman et al. (2013) 

3.3 BAYESIAN INFERENCE 

In section 3.2 the procedures of how the available grouped data can be used to calibrate 

𝜃 are described. In this section, the mathematical process that uses the observations to 

calibrate 𝜃 using Bayesian inference will be elaborated. The 𝜃 are not constant numbers and 

they are expressed with probability distributions. 

First, the core of the Bayesian inference is the Bayes’ rule, Eq. (3.1) and it aims to make 

probability statements about θ given the observations, 𝑦. 



22 

 

 

 

𝑝(𝜃|𝑦) =
𝑝(𝜃, 𝑦)

𝑝(𝑦)
=

𝑝(𝜃) 𝑝(𝑦|𝜃)

𝑝(𝑦)
 

 
(3.1) 

The prior distribution 𝑝(𝜃) represents the prior distribution of 𝜃 without observing the 

available data. These are made based on engineering judgement and prior knowledge. 

The probability distribution 𝑝(𝑦|𝜃) is the likelihood function which represents the 

probability for observing the observed data given 𝜃 and will be symbolized as L(y|𝜃). It 

quantifies how well the statistical model explains the observed data. Lastly, the denominator, 

𝑝(𝑦) represents the evidence which is the probability of observing the data regardless the 𝜃. 

It is evaluated by summing (discrete distribution) or integrating (continuous distribution) the 

product of the likelihood times the prior distribution over the entire space 𝜃. Additionally, the 

evidence acts as normalization factor that ensures that the posterior distribution integrates 

or sums to one to comply with probability distribution axioms. 

After performing the Eq. (3.1), the posterior probability distribution of 𝜃 given the 

observations 𝑦, 𝑝(𝜃| 𝑦) is evaluated. This process enables the updating of the knowledge one 

has on 𝜃 based on the observations. The uncertainty of 𝜃 is called epistemic uncertainty which 

represents the uncertainty of the model, and it can be reduced. On the contrary, the aleatory 

uncertainty refers to the uncertainty inherent in the data and it cannot be reduced. 

3.4 FUNCTIONAL FORMS OF THE STATISTICAL MODELS 

3.4.1 𝒙–  𝒚 functional form 

In this thesis, ordinary linear regression models will be investigated which incorporate 

two variables. The response variable, 𝑦 which represents the 𝑆𝑢 and the independent variable 

or covariate 𝑋, which represents the 𝑞𝑛𝑒𝑡. Ordinary linear regression is applied where the 

observation errors are independent and have equal variance. Therefore, the formulation of 

the likelihood is L(y|θ, X) and there are n paired observations (𝑦𝑖, 𝑋𝑖) (Gelman et al., 2013). 

The mathematical formulation of the ordinary linear regression is depicted in Eq. (3.2) and 

the graphical representation in Figure 3.3 
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𝑦|𝛽, 𝜎𝑦 , 𝛸 ~ 𝛮(𝛸 ∙ 𝛽, 𝜎𝑦 2)  (3.2) 

 

 

Figure 3.3: Graphical representation of the ordinary linear regression between 𝑞𝑛𝑒𝑡 and 𝑆𝑢 inspired 

by Davidson (2003) 

The outcome variable, 𝑦 is a column vector containing the depended variable, Eq. (3.3). 

The covariate matrix 𝑋 is presented at Eq. (3.4); the first column contains ones for the 

intercept term while the second the measurements of the 𝑞𝑛𝑒𝑡. The 𝛽 array, Eq. (3.5) contains 

the intercept, 𝛽0 and slope 𝛽1 and along with the standard deviation, 𝜎𝑦 of the error around 

the expected value constitute the 𝜃 Eq. (3.6). 

𝑦 =  [

𝑦1

𝑦2

⋮
𝑦𝑛

]  (3.3) 

𝑋 = [

1 𝑋1

1 𝑋2

⋮ ⋮
1 𝑋𝑛

]  (3.4) 

𝛽 = [
𝛽0

𝛽1
]  (3.5) 
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𝜃 = [

𝛽0

𝛽1

𝜎𝑦

]  (3.6) 

The expected value, �̂� is evaluated by applying the Eq. (3.7) and lastly, the likelihood is 

evaluated by the Eq. (3.8) and it is equal to probability density function, 𝑝𝑑𝑓 of the Νormal 

distribution which is symbolized as 𝑓𝑁 . 

�̂� = 𝑋 ∙ 𝛽  (3.7) 

𝐿 (𝑦|𝜃, 𝑋) = fN(y|𝑋𝛽, 𝜎𝑦 2)  (3.8) 

Ordinary linear regression will be applied in the 𝑥 − ln 𝑦 and the ln 𝑥 − ln 𝑦 space. 

Hence, three different functional forms of the linear regression can be identified and will be 

analysed in the sections 3.4.2, and 3.4.3. 

3.4.2 𝒙 – 𝐥𝐧 𝒚 functional form 

At this functional form ordinary linear regression is performed at the 𝑥 − ln 𝑦 space 

where the natural logarithm of the 𝑦, is a linear function of the observed values, 𝑋  Eq. (3.9) 

ln �̂� =  𝑋 ∙ 𝛽  (3.9) 

The mathematical formulation of this functional form in the 𝑥 − ln 𝑦 is presented in the 

Eq. (3.10). 

ln y | �̂�, 𝜎𝑦  ~ 𝑁𝑜𝑟𝑚𝑎𝑙(ln �̂� , 𝜎𝑦 2)  (3.10) 

This distribution must be converted into the 𝑥 –  𝑦 plane to be compatible with the 

physical meaning of the variables (𝑞net, 𝑆u). Thus, the likelihood of this model is developed by 

applying the Eq. (3.11). The likelihood at this case is the 𝑝𝑑𝑓 of the LogNormal distribution, 

𝑓LN. 

𝐿(𝑦 | �̂�, 𝜎𝑦) =  𝑓𝐿𝑁(ln�̂�, 𝜎𝑦 2)  (3.11) 
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The expected value of this model in the 𝑥 − 𝑦 plane can be evaluated by applying the 

Eq. (3.12). 

�̂� =  𝑒ln�̂�+0.5 ∙ 𝜎𝑦
2
  (3.12) 

3.4.3 𝐥𝐧 𝐱 – 𝐥𝐧 𝐲 functional form 

This functional form represents ordinary linear regression in the ln 𝑥  – ln 𝑦 space. The 

equations for making this functional form are the same with the 𝑥 – ln 𝑦  functional form 

except from the natural logarithm of the mean value which can be seen at the Eq. (3.13). It 

must be noted that the first column of the 𝑋 matrix (3.4) is now equal to 𝑒 and not ones. 

ln �̂� = ln 𝑋 ∙ 𝛽  (3.13) 

Additionally, the statistical model of this functional form has the equation of the 

Eq.(3.10). The likelihood function of the model in the 𝑥 –  𝑦 plane can be evaluated using the 

Eq. (3.11) and lastly, the mean value at the 𝑥 –  𝑦 plane is evaluated with Eq.(3.12). 

3.5 ORDINARY LINEAR REGRESSION PER POOLING FAMILY 

The procedure for estimating the 𝜃 differs per pooling family. First, the evaluation 

procedure of the statistical model parameters, 𝛽 differs between the pooling families while 

the standard deviation 𝜎y. is at all cases the same for all groups (pooled parameter). Standard 

deviation, 𝜎𝑦 is not expected to vary significantly between the sites and not enough data for 

training is available. Also, if it is not considered as pooled, it will render the analysis extremely 

costly (Bozorgzadeh et al., 2023). In this chapter the statistical model families will be 

presented for the case of the 𝑥 –  𝑦 functional form. 

3.5.1 Pooled model 

The pooled model performs one holistic regression across all sites, without 

distinguishing any differences between the groups (identical sites. The expected value of the 

pooled model, �̂�𝑗 is evaluated by applying the Eq. (3.14). The 𝑗 indicates the group that the 
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model is referring to. The likelihood function of the model is formulated in Eq. (3.15). Figure 

3.4 describes the pooled ordinary linear regression. 

�̂�𝑗 =  𝛸𝑗  𝛽  (3.14) 

𝐿(𝑦𝑗|�̂�𝑗, 𝜎𝑦) = 𝑓𝑁(�̂�𝑗, 𝜎𝑦 2)  (3.15) 

 

Figure 3.4: Pooled model's probabilistic graphical model 

3.5.2 Unpooled model 

The complete opposite model of the pooled is the unpooled (Figure 3.5). It performs 

separate regressions per each group, accounting for each group’s data exclusively. The model 

parameters, 𝛽 are different per each group, as it is denoted by the indicator 𝑗. The likelihood 

function is identical to that of the pooled model, Eq. (3.15). Figure 3.5 describes the structure 

of the unpooled ordinary linear regression model. 

�̂�𝑗 =  𝛸𝑗  𝛽𝑗   (3.16) 
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Figure 3.5: Unpooled model's probabilistic graphical model 

3.5.3 Hierarchical Bayesian Model 

ΗΒΜ allows for the inheritance of different linear regression parameters, 𝛽 at each 

group with considering the data of the other sites as well through the hyperprior distributions 

(Gelman et al., 2013). 

Each parameter, 𝛽 follows a prior distribution and the coefficients of the prior 

distributions, 𝜉 follow a common, hyperprior distribution. The coefficients of the hyperprior 

distributions 𝜉 are called hyperparameters. This structure allows the exchange of information 

between the sites to make site specific estimations of 𝛽. The expected value is evaluated with 

Eq. (3.16) and the likelihood with Eq. (3.15). Figure 3.6 describes the partially pooled ordinary 

linear regression.  



28 

 

 

 

 

Figure 3.6: HBM's probabilistic graphical model 

3.5.4 One – parameter partially pooled model 

This statistical model family refers to the case when either slope or intercept is partially 

pooled, and the other parameter is pooled. Subsequently, two models are formulated: one 

with partially pooled intercept and pooled slope and another with pooled intercept and 

partially pooled slope.  

Similarly, to the partially pooled model the expected value of the model is evaluated 

using the Eq. (3.16) and the likelihood is formulated using the Eq. (3.15). Figure 3.7 describes 

this type of model in the context of the ordinary linear regression. 
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Figure 3.7: HBM of either slope or intercept probabilistic graphical model. 

3.6 PRIOR / HYPERPRIOR DISTRIBUTIONS 

The application of the Bayes’ rule demands the determination of the prior distributions, 

𝑝(𝜃). This reflects the prior knowledge one has on the parameters (β, 𝜎𝑦) of the models 

without accounting for the observed data. Very weak prior distributions have been chosen 

(Gelman et al., 2020) because they cover the possible range of the 𝑆u values. They must 

maintain reasonable values, otherwise, numerical instabilities at the sampler leading to 

divergencies of the Markov – Chain Monte Carlo (section 3.7) will occur. Prior predictive 

checks (Gelman et al., 2020) are used to define the parameters of the prior and hyperprior 

distributions along with the range of the 𝑁𝑘𝑡 values to maintain reasonable values of 𝑆𝑢. 

Table 3.1 demonstrates the prior and the hyperprior distributions of the slope and the 

intercept while Table 3.2 informs about the prior distribution of the standard deviation 𝜎𝑦. 
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Table 3.1: Prior and hyperprior distributions for slope and intercept 

  

Slope, β1 
Intercept, 

β0 
μβ1 σβ1 μβ0 σβ0 

  

Truncated 
Normal 

Normal 
Truncated 

Normal 
Inverse Gamma Normal 

Inverse 
Gamma 

x-y 

μβ1 = 1 / 15 

σβ1 = 1/ 70 

lower = 0 

upper = ∞ 

μβ1 = 0 

σβ1  = 2 

mean = 1 / 15 

st. dev = 1 / 50 

lower = 0 

upper = ∞ 

mean = 1 /50 

st. dev = 1 / 50 
 

mean = 0 

st. dev = 1 
 

mean = 1 

st. dev = 1 
 

x–lny 

μβ1 = 0.003 

σβ1 = 0.0002 

lower = 0 

upper = ∞ 

μβ1 = 1.5 

σβ1  = 0.7 

mean = 0.003 

st. dev = 0.0001 

lower = 0 

upper = ∞ 

mean = 0.0001 

st. dev = 0.0001 

 

mean = 1.5 

st. dev = 0.5 

 

mean = 0.2 

st. dev = 0.15 

 

lnx–

lny 

μβ1 = 0.6 

σβ1 = 0.04 

lower = 0 

upper = ∞ 

μβ1 = -0.1 

σβ1  = 0.4 

mean = 0.6 

st. dev = 0.04 

lower = 0 

upper = ∞ 

mean = 0.02 

st. dev = 0.01 

 

mean = -0.1 

st. dev = 0.4 

 

mean = 0.2 

st. dev = 0.1 

 

 

Table 3.2: Prior distribution for the standard deviation, σy 

  
Standard deviation, σy 

  

Truncated Normal 

lower = 0 

upper = ∞ 

x-y 
μβ1 = 15 

σβ1 = 15  

x–lny 
μβ1 = 0.4 

σβ1 = 0.2 

lnx–lny 
μβ1 = 0.3 

σβ1 = 0.15 
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3.7 INFERENCE AND COMPUTATION 

The inference is done by applying the Bayes’ rule of Eq. (3.1). The equation of the Bayes’ 

rule is analytical in closed form only for the case of simple models. However, in the context 

of this thesis complicated models are used with many observations and multilevel 

randomness (HBM) rendering the solution analytically not feasible. 

For this reason, numerical methods have been developed. Specifically, the Markov 

Chain Monte Carlo (MCMC) is employed from the Python package of PyMC5. MCMC methods 

utilize the concept of a Markov chain, which is a mathematical framework describing a 

sequence of random variables in which the probability of transitioning from one state to the 

next depends only on the current state. In MCMC, a Markov chain is constructed such that its 

equilibrium distribution matches the desired target distribution. Specifically, the Hamiltonian 

Monte Carlo (HMC) is employed because it is generally efficient in terms of sampling 

(Betancourt, 2017). The No – U turn sampler variation of HMC has been used because it 

enables faster evaluation of the posterior distributions. The inference is done by four parallel 

chains with 1000 warm – up and 1000 simulations (total 8000 simulations). All chains were 

examined to ensure the lack of divergencies. 

3.8 BAYESIAN DATA ANALYSIS WORKFLOW-COMPARING THE MODELS 

Three different functional forms and five different pooling families have been 

introduced. Hence, 15 different statistical models will be introduced, and it is crucial to 

identify the fittest one. This will be achieved by applying the Bayesian data analysis workflow 

(BDA). 

The Bayesian inference deals exclusively with the evaluation of the posterior 

distribution of 𝜃 given the observed data and it comprises one step of the BDA workflow, 

(Gelman et al., 2020). The BDA workflow is a summation of three steps. Initially, a statistical 

model is generated and subsequently by applying Bayesian inference the posterior 

distribution of its parameters are evaluated. Lastly, the model is checked and validated. The 

BDA workflow can be summarized in Figure 3.8 (Gelman et al., 2020). So far, the steps of 
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constituting a statistical model and making inferences have been described. The subsequent 

steps of the BDA workflow will be described in the section 3.9. 

 

Figure 3.8: Description of the BDA workflow as described in Gelman et al. (2020) 

3.9 MODEL CHECKING AND VALIDATION 

3.9.1 Model checking 

Model checking refers to the verification of the model fitting to the observed data and 

to the developers’ substantive knowledge (Gelman et al., 2013). It constitutes a vital step of 

the Bayesian analysis as it can detect dysfunctionalities at the prior distributions, likelihood, 

and the hierarchy of the parameters at the case of the HBM. Model checking can be 

performed with a number of procedures. 

In the context of this thesis posterior predictive check is performed to accomplish the 

model checking. The posterior predictive check draws values from the posterior predictive 

distribution to replicate the observed data. Following, it compares the replicated data with 
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the observed data, and it evaluates the fit between these two components. If there are any 

systematic discrepancies between the two parts, the model can possibly be invalid. The 

observed data and the posterior samples are compared visually by plotting the density plots 

of these two datasets. 

3.9.2 Model validation 

The process of the model validation aims to evaluate the predictive accuracy of the 

statistical model. Moreover, its results enable for the model comparison of many statistical 

models and finally propose the one that has learned most from the data to perform inferences 

and predictions (model selection). 

Two widely used methods for applying model validation are the information criteria and 

the cross – validation. Cross validation is a set of techniques that assess the fitting of the data 

at previously unseen data. The model is trained at a subset of the observed data and performs 

predictions for the remaining observed data (Aki Vehtari, 2020). The accuracy of these 

predictions informs about the predictive power of the model. The model validation is this 

thesis is done by applying cross – validation and the two techniques will be analyzed in 

sections 3.9.2.1 and 3.9.2.2. 

3.9.2.1 Leave one out cross validation 

The principle of the LOO-CV is to divide the observed data into two groups; one will be 

the training dataset and the other constitutes the test dataset. The first one is used to fit the 

model while the second one is used to evaluate the precision of model’s prediction. LOO-CV 

makes training datasets by using all the points except one, 𝑦−i, repeatedly for all the points. 

Following, it evaluates the natural logarithm of the predictive density of the held-out data 

point 𝑦i. The sum of all the natural logarithms over the whole dataset is evaluated which 

represents the expected log pointwise predictive density, 𝑒𝑙𝑝𝑑 as described in Eq. (3.17). 

𝑒𝑙𝑝𝑑𝑙𝑜𝑜 =  ∑ 𝑙𝑜𝑔𝑝(𝑦𝑖|𝑦−𝑖)
𝑛
𝑖=1     (3.17) 
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The procedure that was described above is not computationally efficient; hence, a fast 

and stable computation for the LOO-CV have been proposed using existing simulation draws 

from the inference process (section 3.7). The efficient computation method used is called 

Pareto-smoothed importance sampling (PSIS), a procedure for regularizing importance 

weights (Vehtari et al., 2017). The greater the value of the 𝑒𝑙𝑝𝑑, the most accurate are the 

predictions and the model is considered more valid. Since the analysis does not make a full 

calculation of 𝑒𝑙𝑝𝑑, but rather approximates via Importance Sampling, the standard error of 

the 𝑒𝑙𝑝𝑑 approximation is evaluated. Lastly, the 𝑒𝑙𝑝𝑑 difference between these models is 

demonstrated along with its standard error. 

3.9.2.2 Leave one group out cross validation 

The second validation metric used for this purpose is the LOGO-CV. It is used evaluate 

the predictive accuracy for a new group without measurements. The method for calculating 

this metric is like the LOO-CV but instead of leaving one point out, one group is left out. Again, 

the higher is the value of the 𝑒𝑙𝑝𝑑, the more representative is the model and the LOGO-CV 

can be used for model selection (Aki Vehtari, 2022). 

3.9.2.3 Akaike information criterion 

Model validation is operated with the information criteria as well and they will be 

presented for comparison reasons. They consider the goodness–of–fit and the complexity of 

the model. 

The predictive accuracy with this criterion is obtained by the Eq. (3.18). The evaluation 

of the 𝑒𝑙𝑝𝑑 with this method is done by the log posterior density of the observed data 𝑦 given 

a point estimate 𝜃𝑀𝐿𝐸. Also, it incorporates correction for bias due to overfitting through the 

parameter 𝑘. However, AIC is not appropriate for non–linear models without flat priors where 

the k cannot be simply added. Hierarchical structures and informative priors tend to reduce 

the overfitting. 

𝐴𝐼𝐶 =  −2𝑙𝑜𝑔𝑝(𝑦|𝜃𝑀𝐿𝐸) + 2𝑘    (3.18) 
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3.9.2.4 Deviance information criterion (DIC) 

DIC can be regarded as the Bayesian version of the AIC. The 𝜃𝑀𝐿𝐸  is replaced by the 

posterior mean of θ, 𝜃𝐵𝑎𝑦𝑒𝑠 and the k with a data – based bias correction (Gelman et al., 

2013). It is evaluated with the Eq. (3.19). However, the WAIC validation metric that will be 

presented below is a more complete version of DIC. 

𝐷𝐼𝐶 =  −2𝑙𝑜𝑔𝑝(𝑦|𝜃𝐵𝑎𝑦𝑒𝑠) + 2𝑝𝐷𝐼𝐶     (3.19) 

3.9.2.5 Watanabe – Akaike or widely available information criterion (WAIC) 

WAIC is a more Bayesian approach to predict the expectation of the out–of–sample 

points. It computes the log pointwise posterior predictive density, and it adds a correction for 

effective number of parameters to adjust for overfitting (Gelman et al., 2013). The estimated 

log pointwise posterior density at the case of WAIC is evaluated by the following formula. 

𝑒𝑙𝑝�̂�𝑤𝑎𝑖𝑐 =  𝑙𝑝�̂� −  �̂�𝑤𝑎𝑖𝑐    (3.20) 

Where �̂�𝑤𝑎𝑖𝑐 is a simulation–estimated effective number of parameters. 

�̂�𝑤𝑎𝑖𝑐 =  ∑ 𝑉𝑠=1
𝑆𝑛

𝑖=1  (log 𝑝(𝑦𝑖|𝜃
𝑠))    (3.21) 

Where 𝑉𝑠=1
𝑆  represents the sample variance. 

WAIC sums the variance for each datapoint rendering more stable than DIC. WAIC is 

asymptotically equal to LOO – CV but the latter when evaluated by the PSIS is more robust 

(Vehtari et al., 2017). 

3.10 PREDICTION 

After performing the BDA workflow and comparing the models the subsequent step is 

the prediction of 𝑆𝑢 values (�̃�) by evaluating the posterior predictive distribution, 𝑝(�̃�|𝑦). It 

is evaluated with Eq. (3.22) for the case of pooled and unpooled models (Gelman et al., 2013) 

and with Eq. (3.23) for the case of the HBM. 
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𝑝(�̃�|𝑦) =  ∫ 𝑝(�̃�|𝜃) 𝑝(𝜃|𝑦)𝑑𝜃 
 (3.22) 

𝑝(�̃�|𝑦) =  ∫ 𝑝(�̃�|𝜃)  ∙  𝑝 (𝜉, 𝜃)  ∙  𝑝(𝜃, 𝜉 |𝑦) 𝑑𝜃  (3.23) 

The predictions, �̃� refer to the predictions of observable quantities (𝑆u) at the 𝑋-points 

where measurements are available. Whatsoever, it is desired to obtain predictions at points 

where measurements are not available. These predictions are denoted as, 𝑝(�̃�𝑝𝑟𝑒𝑑|𝑦) and 

they can be evaluated by applying the Eq. (3.24) for the cases of unpooled and pooled models. 

The corresponding formula for predictions with the partially pooled model is Eq. (3.25). 

𝑝(�̃�𝑝𝑟𝑒𝑑|𝑦) =  ∫ 𝑝(�̃�𝑝𝑟𝑒𝑑|𝜃) 𝑝 (𝜃 |𝑦)𝑑𝜃  (3.24) 

𝑝(�̃�𝑝𝑟𝑒𝑑|𝑦) =  ∫ 𝑝(�̃�𝑝𝑟𝑒𝑑|𝜃)  ∙  𝑝 (𝜉, 𝜃)  ∙  𝑝(𝜃, 𝜉 |𝑦) 𝑑𝜃 
 (3.25) 

Lastly, one of the goals of the process is to make predictions for a new group. This is 

possible only for the cases of the pooled and the partially pooled models. The formula for the 

case of pooled model is Eq. (3.24) while for the HBM can be seen below. 

𝑝(�̃�𝑝𝑟𝑒𝑑,𝑛𝑒𝑤 𝑔𝑟𝑜𝑢𝑝|𝑦) = ∫ 𝑝(�̃�𝑝𝑟𝑒𝑑,𝑛𝑒𝑤 𝑔𝑟𝑜𝑢𝑝|𝜃)  ∙  𝑝 (𝜉, 𝜃)  ∙  𝑝(𝜃, 𝜉 |𝑦) 𝑑𝜃 
 (3.26) 

3.11 PROCEDURE FOR OBTAINING THE RESEARCH OBJECTIVES 

As stated at the section 1.3 of the research questions, the first step is to find appropriate 

dataset that can be further used for the training of the statistical models (Q1). Following, the 

BDA workflow is applied at an artificial example using replicated data. The HBM is compared 

with the pooled and unpooled models and it is judged whether the BDA workflow is validated, 

and it can subsequently be applied with real data (Q2). 

Upon validation of the BDA workflow, it is applied using as input the real data. The 

analysis is operated with all the statistical models and the models’ rankings are constituted 

based on the validation metrics. Following, the optimal model is selected based on the 
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rankings and the engineering judgement. Moreover, the posterior distributions of 𝜃 obtained 

by the models of the top ranked functional form are compared. In addition, random 

predictions of 𝑆u at the points of measurements proposed by the models of the top ranked 

functional form are compared as well. The focus of the comparison is between the HBM, and 

the current practice pooled and unpooled models. Conclusions are drawn regarding the 

uncertainty quantification obtained between these models (Q3). 

The subsequent step is to assess the impact of using data from the HBM results at a 

reliability analysis of a dike slope. These reliability analysis results will be compared with the 

corresponding results of the current practice pooled and unpooled models. Conclusions will 

be drawn on whether the HBM can propose safe and economic design over the standard 

approach of pooled and unpooled models (Q4). The procedure followed in this thesis is 

depicted in the form of a flow chart in Figure 3.9. 

 

Figure 3.9: Procedure followed in the thesis to answer the research questions and to obtain the 

research objectives 
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4. DATA COLLECTION 

4.1 INTRODUCTION 

In this chapter, the datasets that can support the DDSC will be collected and processed. 

Initially, the process of data acquisition will be presented referring to the type of the data 

obtained, the databases used and the handling of the data. Following, the procedure of 

clustering the data into groups is presented. The complete dataset and its summary statistics 

are provided in the appendix (APPENDIX). 

4.2 DATA ACQUISITION 

Paired measurements from the same depth and position of 𝑞net, and 𝑆u of clay in Dutch 

sites have been retrieved. Both the measurements of 𝑞net and 𝑆u have been converted to 

units of kPa. The 𝑆u measurements are obtained by triaxial undrained compression (TX) tests. 

The 𝑆𝑢 measurement at high strain level is examined because geotechnical practice adopts it 

for dike slope stability problems, as the case that is examined later in section 7. Moreover, 

the coordinates of the measurements have been retrieved because the data will be divided 

into different sites. The main sources of data are the database STOWA of Rijkswaterstaat 

(STOWA, n.d.),the database of (’Lengkeek, 2022) and databases from Deltares’ projects. In 

conclusion, 458 paired measurements have been obtained (Figure 4.1). 

4.3 DIVISION OF DATA INTO GROUPS 

Initially, the positions of the measurements have been pointed at the map (Figure 4.1) 

and subsequently data have been divided into groups / sites (Figure 4.2).They have been split 

accounting for geographical position of the measurements and the 𝑞net by applying K-means 

clustering (Mannor et al., 2011). The K-means clustering algorithm uses the standardized 

coordinates and standardized 𝑞𝑛𝑒𝑡 between the minimum and maximum values to create the 

groups of the data. The 𝑞𝑛𝑒𝑡 influences the clustering as it splits the groups per similar 𝑞𝑛𝑒𝑡 

values which is expected to occur in the reality. The procedure for the clustering maintains 

the exchangeability of the data which renders the HBM applicable. The exchangeability refers 
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to similar slope and intercept values of the model between the groups. Lastly, Figure 4.3 

shows the scatterplot of the 𝑆𝑢-𝑞𝑛𝑒𝑡 with the data divided into groups. 

 

Figure 4.1: Geographical positions of the total datasets of paired measurements qnet – Su without 

subdivision. The number of the total measurements is projected as well. 

 

Figure 4.2: Geographical positions of the total dataset subdivided into groups / sites. The number of 

the measurements per site is presented as well. 
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Figure 4.3: Scatterplot of 𝑆𝑢- 𝑞𝑛𝑒𝑡 per group / site 
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5. ARTIFICIAL EXAMPLE 

5.1 INTRODUCTION 

Before using the data of chapter 4 the HBM is compared with the current practice 

models of pooled and unpooled in an artificial example. This comparison is performed by the 

application of the BDA workflow in the artificial example. The goal is to assess the 

effectiveness of the BDA in several cases of pooling, in order to ensure that it can be further 

applied in analyzing the real data. 

5.2 PURPOSE OF THE ARTIFICIAL EXAMPLE 

Before applying the BDA on the actual data, its applicability should be validated. For this 

reason, an artificial example has been determined where the BDA workflow is applied at 

artificial data and the performance of the HBM is compared with the current practice of 

pooled and unpooled models. Consequently, the purpose of the artificial example is to verify 

the adequacy of the BDA and approve it for further use with real data. 

In the artificial example, artificial data is used to train several soil strength models in a 

Bayesian context and the proposed BDA is then used to select the fittest one. If the choice of 

the fittest model and its posterior distributions fulfill the validation criteria, the BDA can 

further be applied at the real data. 

5.3 PROCEDURE OF THE ARTIFICIAL EXAMPLE 

In this section, the procedure followed for the artificial example will be analyzed. In 

short, the basic processes of the artificial example are the artificial data generation, their use 

for training different models and finally the criticism of the BDA results based on two criteria. 

Three different clustered datasets are generated using a selected functional form, each 

one representing a pooled, an unpooled dataset and a partially pooled (HBM) dataset. 

Following, each dataset is used as input in the BDA workflow (section 3.8). Monitoring the 

posterior distributions of the models and the model rankings, it is examined if the BDA is 
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validated (5.4). The procedure of the artificial example is presented concisely at the figure 

below. 

 

Figure 5.1: Procedure of the artificial example 

5.4 BDA WORKFLOW VALIDATION CRITERIA 

Two criteria have been implemented for validation purposes. The first one is relevant 

to model ranking. After running the BDA workflow for each of the three different datasets, 

two rankings are created using each of the LOO-CV and LOGO-CV. The name of this criterion 

is: validation with model rankings and its formulation is the following: 

Does the first ranked model per artificial dataset using LOO-CV and LOGO-CV coincide with 

the model that generated the artificial data? 

Satisfying this criterion, the workflow will propose the correct model to perform the 

statistical analysis with the real data where no knowledge on the “true” statistical model, in 

regard to pooling and functional form, is available. 

The second validation criterion refers to the comparison of the model parameters 

posterior distributions with the parameters that were used to generate the artificial data. The 

uncertainty of the model parameters is called credible interval (CI) of the model parameter. 

Also, the CI of a model represents the uncertainty of the model and the distribution of the 
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mean value. The name of the second validation criterion is validation with posterior 

distributions and its formulation is the following: 

Does the 90% posterior credible interval of a model parameter obtained by the first ranked 

model from the former validation criterion contain the parameter that was used for the 

artificial data generation? 

 

Fulfilling this criterion verifies that the posterior distributions of the best model 

proposed the BDA workflow can approximate the parameter set that generated the data.  

5.5 GENERATION OF ARTIFICIAL DATASETS 

Three different artificial datasets are generated in the context of the artificial example; 

namely pooled, partially pooled and unpooled datasets. In the case of the pooled dataset, it 

is assumed that the separate groups are generated using the same underlying parameters. 

On the other hand, in the case of the unpooled dataset it is assumed that the groups are 

completely different among each other. Lastly, the partially pooled dataset assumes that the 

data between the groups come from different distributions, which are following a global 

trend. The presentation of each artificial dataset can be seen at Figure 5.2 along with the 

models for generating and the 95 % percentiles of the data. The functional form of the models 

that generated the artificial data is ln 𝑥  – ln 𝑦 because the trend of the real data is concave, 

𝑆𝑢 is bound to non-negative values and the variance increases as the 𝑞net increases. 
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Figure 5.2: Artificially generated data with pooled, HBM and unpooled model. The mean values and 

the 95% percentile of the generated data 

5.6 RESULTS AND DISCUSSION 

5.6.1 Validation with model ranking 

The model rankings for the analysis of the pooled the dataset are inspected. The BDA 

identifies the ln 𝑥 − ln 𝑦 pooled model as the fittest which coincides with the artificial data 

generating model. This model achieves the greatest ranking in both LOO-CV (Figure 5.3) and 

LOGO-CV (Figure 5.4). 
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Figure 5.3: Model rankings based on the LOO-CV for the pooled dataset. 

 

Figure 5.4: Model rankings based on the LOGO-CV for the pooled dataset. 

The next rankings that will be presented are created after running the BDA workflow 

for the partially pooled dataset. The model rankings created by the LOO-CV show that the 

best model is the ln x – ln y HBM that accords with the artificial data generation model 

(Figure 5.5). As far as the LOGO-CV ranking, the first model is again the model used for 

artificial data generation (Figure 5.6). 
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Figure 5.5: Model rankings based on the LOO-CV for the partially pooled dataset. 

 

Figure 5.6: Model rankings based on the LOGO-CV for the partially pooled dataset 

Lastly, the results of the model rankings after running the BDA workflow for the 

unpooled dataset are presented. The ranking based on the LOO-CV exhibits that the optimally 

performing model is the ln x – ln y HBM while the ln x – ln y unpooled model is ranked 

second. However, the difference between the first and the second model is negligible, and it 

is sensible to consider that the criterion is still fulfilled (Figure 5.7). The HBM has flexibility to 

tend to the unpooled model if needed. 
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Figure 5.7: Model rankings based on the LOO-CV for the unpooled dataset. 

For the case of the LOGO-CV, the unpooled models are not included as they are not able 

of making predictions for the geotechnical parameter values of groups without paired 

measurements. In this case, the ln x – ln y HBM model is ranked first (Figure 5.8). 

 

Figure 5.8: Model rankings based on the LOGO-CV for the unpooled dataset. 

In conclusion, after running the BDA workflow for the three different datasets, the 

models ranked first using the LOO-CV and the LOGO-CV coincide with the models that were 

used to generate each artificial dataset. An exception is met in the case of the unpooled 

dataset, where the HBM is the best model based on the LOO-CV. However, the difference 

between the second – unpooled model is negligible and this ranking is acceptable. 
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5.6.2 Validation with posterior distributions 

The second validation criterion refers to the comparison of the model parameters 

posterior distributions with the parameters that were used to generate the artificial data. The 

answer to this validation criterion is not straightforward because the Bayesian model does 

not realize the parameter used for data generation but the information that artificial data can 

transfer. Since linear regression models are employed, the raw information transfer is 

expressed by the Ordinary Least Squares (OLS) (’Montgomery et al., 2012) estimators and 

their uncertainty. Therefore, it is essential to compare the statistical parameters of slope and 

intercept obtained by the OLS regression complemented by their uncertainty. For the case of 

𝜎𝑦 only the posterior distribution and the value used for data generation are depicted. These 

figures are presented in the following sections for each dataset. 

First, the posterior distributions of ln x – ln y pooled model will be presented when 

trained at the ln x – ln y pooled dataset. The training of this model is done directly using the 

entire dataset and one common posterior distribution is produced for all groups per model 

parameter. 

The ln x – ln y pooled artificial data has OLS estimators that tend to the “true” 

parameter and their uncertainty is low (Figure 5.9). The reason that in pooled modelling, 

training uses all observations of the data simultaneously, leading to a great decrease of 

epistemic uncertainty. The 90% CI’s of the OLS estimators contain the “true” parameter. 

Moreover, the 90 % CI of the posterior distribution contain the OLS estimator. Thus, the 

posterior distributions can represent the “true” parameters that were used for the data 

generation. 

In the case of the posterior distribution of the 𝜎𝑦 , the 90% CI of the posterior distribution 

contain the value that was used for data generation (Figure 5.10). 
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Figure 5.9: Combined plot of posterior distribution, OLS estimator, OLS uncertainty and parameter 

used for data generation for both slope and intercept. Results presented for all groups and for the 

case of pooled dataset 

 

Figure 5.10: Posterior distribution of the 𝜎𝑦 and the value used for data generation. Case of pooled 

model 

In the case of the partially pooled dataset, the parameters of the slope and the intercept 

used for data generation are similar (Figure 5.11). The posterior distributions for each group 

are retrieved from inference with the ln x – ln y HBM which is the top ranked model for this 

dataset. The OLS statistics of the artificially generated data of each group have great 
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uncertainty, especially in the groups three and five where the data points are significantly 

fewer that the other groups. The OLS uncertainty is significantly larger compared to the OLS 

uncertainty of the ln x – ln y unpooled dataset (Figure 5.13) because the 𝜎𝑦 used for each 

dataset is larger, causing for higher OLS uncertainty of the examined dataset than the 

unpooled. 

The posterior distributions’ 90 % CI of groups two, three and five contain the “true” 

parameter. Groups three and five have small amount of data and they are subsequently 

affected by the HBM “borrowing” information from other groups. In groups three and five is 

noticed large uncertainty of the OLS estimators because they have small amount of data. 

Their posterior distributions are affected significantly by the HBM. Consequently, their 

posterior distributions contain the “true” parameters that was used for the data generation. 

Additionally, the 90 % CI of the second group posterior distribution can grasp directly the 

“true” parameter that was used for artificial data generation. 

Lastly, the most complex situations are those of group one and four. In group one the 

HBM can grasp the OLS estimator while in group four the 90 % CI of the posterior overlaps 

significantly with the OLS 90 % CI. The OLS estimator represents the learning ability of the 

model but due to the large OLS estimator variance the “true” parameter is far. Bayesian 

inference is successful because the posterior distributions can grasp the OLS. However, it 

happens that OLS is too uncertain, and the estimates lie far from the truth. 

At many cases the 90% CI of the posterior distributions does not represent the “true” 

parameter of the artificial data. However, the HBM grasps the OLS which represents the 

learning ability of the model. The OLS sometimes has large uncertainty, and its estimates lie 

far from the “true” parameters. Therefore, the meeting of the OLS by the HBM 90 % CI is 

considered success for the second validation criterion. 

The 90 % CI of the 𝜎𝑦 posterior distribution contains the 𝜎𝑦 used for data generation 

(Figure 5.12). 



51 

 

 

 

 

Figure 5.11: Combined plot of posterior distribution, OLS estimator, OLS uncertainty and parameter 

used for data generation for both slope and intercept. Results presented for all groups and for the 

case of partially pooled dataset. 

 

Figure 5.12: Posterior distribution of the 𝜎𝑦 and the value used for data generation. Case of partially 

pooled model 
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The generation of the unpooled dataset uses low 𝜎y value, leading to data that is 

concentrated around lines. At this case, the uncertainty of the OLS estimators is significantly 

restricted as it is visible from the following distributions (Figure 5.13). 

There is low influence between the groups in the case of the unpooled dataset. 

Moreover, weak prior distributions have been used leading to domination of the likelihood in 

the inference. The OLS is purely based on the likelihood; hence, posterior distribution meets 

the OLS, and the second criterion is validated at the unpooled dataset. The 90% CI posterior 

distribution of the 𝜎y contains the parameter that was used for unpooled artificial data 

generation (Figure 5.14). 

 

Figure 5.13: Combined plot of posterior distribution, OLS estimator, OLS uncertainty and parameter 

used for data generation for both slope and intercept. Results presented for all groups and for the 

case of unpooled dataset. The posterior distribution is obtained from the HBM (1st ranked model) 
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Figure 5.14: Posterior distribution of 𝜎𝑦 obtained by the HBM (1st ranked model) and the 𝜎𝑦 value 

used for data generation. Case of unpooled dataset 

5.7 CONCLUSIONS 

The validity of the BDA workflow is examined at two different criteria: the validation 

with model ranking and the validation with examining the posterior distributions. In the case 

of model rankings, the top ranked model is the same with the model used for data generation 

except from the case of the unpooled dataset. The elpd difference of the fittest model from 

the second contender, the unpooled model, which was used to generate the dataset, is 

negligible. Hence, the BDA workflow can identify the “true” model, in terms of pooling and 

functional form and the first criterion is satisfied.  

As far the second criterion is concerned, the posterior distributions obtained by the 

pooled dataset contain the “true” parameter. In the case of the partially pooled datasets, in 

some groups the posterior distribution contains the “true” parameters and in the remaining 

groups they contain the OLS. The OLS can have large variance and its estimates can lie far 

from the true parameter. Therefore, the posterior distributions can represent the true 

parameter and if not, the reason lies at the large uncertainty of the OLS. 

Therefore, both the first and the second criteria are satisfied, and the BDA workflow is 

validated.  
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6. REAL CASE ANALYSIS 

This chapter delves into the primary objective of this thesis: investigating the 

relationship between 𝑞𝑛𝑒𝑡 and 𝑆𝑢 using real data. This investigation involves calibrating the 

relationship through Bayesian inference, utilizing the Hierarchical Bayesian Model (HBM), and 

comparing it against the pooled and unpooled models by following the BDA. 

6.1 PURPOSE OF THE REAL CASE ANALYSIS 

The main aim of this real case analysis serves a dual purpose. Firstly, it seeks to quantify 

the uncertainty in 𝑆𝑢 by employing the 𝑞𝑛𝑒𝑡 derived from the HBM and the pooled and 

unpooled models. Secondly, it strives to identify the most appropriate statistical model that 

accurately represents the relationship between 𝑆𝑢 and 𝑞𝑛𝑒𝑡. The calibration of these models 

utilizes real-world data, and the BDA workflow facilitates a comprehensive comparative 

assessment. Importantly, the feasibility of applying the BDA workflow has been previously 

established and confirmed in chapter 5. 

6.2 PROCEDURE OF THE REAL CASE ANALYSIS 

The procedure of the real case analysis will be presented in this section. Initially, the 

data is clustered as it is described in section 4. Following, the combinations of functional forms 

and statistical model families are formed, resulting to 15 different statistical models 

(Appendix Table 4). 

The BDA workflow is applied for the above-mentioned models using real data resulting 

to the model comparison and the fittest model. The first outcome of the analyses are the 

posterior distributions 𝜃 based on the paired observations (𝑞𝑛𝑒𝑡, 𝑆𝑢), 𝑝(𝜃|𝑞𝑛𝑒𝑡, 𝑆𝑢). The 

second outcome of the analyses are the posterior predictive distributions of potentially 

observable quantities of 𝑆𝑢, 𝑝(𝑆�̃�|𝑞𝑛𝑒𝑡, 𝑆𝑢). After running the analyses with all models, the 

results of the HBM with the current practice models (pooled, unpooled) of the fittest 

functional form will be compared. This comparison will answer the first research objective 

relatively the performance of the HBM compared with the current practice pooled and 



55 

 

 

 

unpooled models.Lastly, the results of those models will be further used as input for reliability 

analysis of a dike slope (chapter 7) to answer the second research objective. The procedure 

followed in the real case analysis can be seen in Figure 6.1. 

 

Figure 6.1: Workflow of the analysis with real data 

6.3 RESULTS AND DISCUSSION 

6.3.1 Models’ ranking 

Upon running all the statistical models their rankings are formed based on the LOO–CV 

and the LOGO-CV metric. The former ranking ranks first the ln x – ln y unpooled model and 

second with negligible difference the ln x – ln y HBM (Figure 6.2). The next ranking is based 

on the LOGO-CV and the best performing model is the ln x – ln y HBM (Figure 6.3). 
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Figure 6.2: Models ranking based on the LOO – CV for analysis with real data 

 

Figure 6.3: Model ranking based on the LOGO – CV for analysis with real data. 
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The subsequent step is to select the fittest model to make predictions in the known sites 

and for predictions for new sites. Even though the ln x – ln y unpooled model is ranked first 

at the LOO-CV, the ln x – ln y HBM is advised to be selected for describing the data in the 

known sites. The difference in the ranking between them is negligible and it is not believed 

that the sites are completely independent to select the unpooled model (Gelman et al., 2013). 

HBM is flexible and it can tend to either pooled or unpooled model if they appear to be true. 

As far as the case of predicting new group is concerned, the top ranked model is the ln x – ln y 

HBM and it will be chosen as the optimal model for making predictions for new groups. 

6.3.2 Model checking 

Model checking will be performed for the ln x – ln y HBM by plotting the posterior 

predictive check plot (Figure 6.4) that will reveal whether the predictions of the model look 

sensible compared to the observed data. 

The posterior predictive samples enclose the observed values and at most of the points 

of the observed values are very close to the posterior predictive mean. Therefore, the model 

is a good fit for the data. Systematic deviations do not occur which would lead to the re-

assessment of the model. Based on the posterior predictive check, it seems that the model 

adequately captures the general patterns in the data, with no significant discrepancies 

observed. Therefore, it is probable that the model can generate realistic data based on the 

posterior distributions. More specifically, the model has a minimum of zero, like the data and 

it captures well the maximum of the observed data. Additionally, the model reproduces 

accurately the mode and most of the probability mass. Whatsoever, the ln x – ln y HBM 

misses one part of the data. 
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Figure 6.4: Posterior predictive check for the ln x – ln y HBM and real data 

Additionally, the plot of the ln x – ln y HBM for group one with the observations will be 

presented (Figure 6.5). The green shaded region represents the 90% posterior predictive 

interval (PPI), indicating the possible range of the 𝑆𝑢 values with 90% credibility (effect of both 

aleatory and epistemic uncertainty). The blue shaded band around the regression line is the 

90% credible interval (CI), which captures the uncertainty associated with the estimated 

regression coefficients (epistemic or model uncertainty) and it represents the distribution of 

the mean 𝑆𝑢 given the 𝑞𝑛𝑒𝑡. The model seems to capture the general trend of the data, as the 

fitted regression line passes through the central portion of the observed data points. The 

posterior predictive interval provides a measure of uncertainty in the model's predictions, 

with wider intervals indicating higher uncertainty. Using the ln x – ln y models lead to 

increasing PPI with increasing 𝑞𝑛𝑒𝑡. Most of the observed data lies within this interval, 

suggesting that the model's predictions align well with the observed data. 

In Figure 6.6 the plot of the ln 𝑥 − ln 𝑦 Unpooled model is demonstrated for group one. 

The HBM tends to the unpooled model in the LOO-CV rankings (Figure 6.2) and observing the 

Figure 6.5 and Figure 6.6 it is apparent that there are not any significant discrepancies visible 

between the two models. 
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Figure 6.5: Plot of the ln x – ln y HBM along with observed data including the 90% posterior 

predictive interval and credible interval 

 

Figure 6.6: Plot of the ln x – ln y Unpooled along with observed data including the 90% posterior 

predictive interval and credible interval 

6.3.3 Posterior estimations of 𝜽 

The following procedure after selecting the fittest model is to compare the posterior 

distributions of 𝜃 obtained by the selected model and the other models of the same functional 

form in order to assess the uncertainty quantification in the model parameters obtained by 

the HBM compared to the standard practice models (pooled and unpooled). Figure 6.7 
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describes the posterior distributions of slope and intercept while Figure 6.9 describes the 

posterior distributions for statistical models’ standard deviation 𝜎𝑦. 

First, the forest plot of the slope will be discussed (Figure 6.7 left). The pooled model is 

trained simultaneously at the whole dataset by pooling all the grouped data into one group 

(Figure 3.1). Consequently, the slope estimated by the pooled model is the least uncertain by 

having the lowest epistemic uncertainty. 

On the contrary, the 90 % CI of the unpooled model is the largest resulting to high 

epistemic uncertainty of this model because it is trained individually per group. The 90 % CI 

of the HBM is narrower than the one of unpooled model because it is directly trained to the–

specific data but at the same time borrows information from other sites. The lower 

uncertainty of the HBM is more visible at site three and five which have essentially lower 

number of observations. 

The 90% CI of the unpooled model is deviating significantly from the mean value of all 

datasets (pooled model) while the HBM posterior distribution is placed between the pooled 

and the unpooled model. The unpooled model is affected by various uncertainty sources not 

captured by the generated models (Feng, Gao, et al., 2023). 

The HBM posterior mean values of slope are gathered around a common area 

(shrinkage) (Bozorgzadeh et al., 2019); hence, HBM reduces the overall scatter in the point 

estimates. Shrinkage occurs because the site–specific data trains directly the site-specific 𝜃  

and at the same time the data of other sites influences it through the hyperparameters, 𝜉. 

The HBM with pooled intercept has smaller uncertainty than the HBM because the 

intercept is trained directly using the whole dataset. Lastly, the HBM with pooled slope has 

slightly greater uncertainty than the pooled model and its interval tends to the values of the 

unpooled model. 

At the right side of the Figure 6.7, the 90% CI of the intercept posterior distributions are 

demonstrated. Again, the uncertainty of the intercept estimation obtained by the HBM is 

smaller than the unpooled model. Similarly, the posterior means of the HBM are gathered at 

a narrow space between the estimates of the unpooled model except the group four. At 
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groups one, two and three the posterior 90% CI of the intercept falls between the pooled and 

the unpooled model. 

 

Figure 6.7: Combined Forest plots of 90 % CI for posterior distributions of slope and intercept per 

site and for the whole dataset. Results obtained by all the statistical models of the ln x – ln y 

functional form. 

The shrinkage effect of the posterior means between the HBM and the unpooled model 

is shown in Figure 6.8. The point estimates of the slope and the intercept are gathering around 

a common area. Even though the unpooled model has ranked first showing that the groups 

are different among them (high-between group variation), the HBM still affects the site-

specific posterior distributions of 𝜃. The borrowing of information from other sites to make 

site-specific estimations of 𝜃 can reduce the epistemic uncertainty of these parameters. 
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Figure 6.8: Scatter plot of the posterior mean values for the slope and the intercept. The dashed line 

represents the change of the point estimates between the unpooled model and the HBM. 

The forest plots of the 𝜎y provide some useful information as well (Figure 6.9). This 

parameter is the same for all the groups (pooled parameter). The posterior distributions are 

similar for all models except pooled model. This model is trained simultaneously on the entire 

dataset; thus, it has the lowest epistemic uncertainty (Figure 6.7). At the same time, it must 

represent the data of all sites, and this is achieved by having the largest aleatory uncertainty 

through the parameter of 𝜎y (Figure 6.9). On the contrary, unpooled model has the lowest 

𝜎y or the lowest aleatory uncertainty as it is trained individually on the site–specific data. 

Moreover, the models of HBM, HBM with pooled slope and HBM with pooled intercept are 

intermediate between the pooled and unpooled. However, they tend to the prevailing 

unpooled model (Figure 6.2). 
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Figure 6.9: Forest plot of 𝜎y  90% credible interval of posterior distribution. Results obtained by all 

the statistical models of the ln x – ln y functional form. 

6.3.4 Posterior predictive estimations of 𝑺𝒖 

In this section, the comparison between random measurements from all sites and the 

predictions of the statistical models will be presented. The aim of these plots is to examine 

the behavior of the models in approximating the 𝑆𝑢 data. Along with that, the uncertainty of 

each model will be assessed by comparing the CI and the PPI. The predictions obtained by the 

statistical models of the top ranked ln x – ln y functional form per site along with five random 

measurements are presented (Figure 6.10-Figure 6.14). 

In general, the PPI of all models enclose the measured value (outliers have not been 

depicted). The pooled model’s CI is the narrowest one (low epistemic uncertainty) while it has 

the largest PPI (largest aleatory uncertainty) and overall, the largest uncertainty. The 

hierarchical and unpooled models exhibit similar behavior, as the former tends to the latter 

(Figure 6.2).  

The unpooled model has the largest epistemic uncertainty and the largest total 

uncertainty compared to the hierarchical models. The discrepancy in the epistemic 

uncertainty of the unpooled model occurs because the unpooled model is trained accounting 
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for only the site-specific data while the HBM accounts for both the site-specific and the overall 

data. As it is described, the HBM effect reduces the uncertainty of the model parameters 

(shrinkage) by borrowing information from the other sites. 

For low values of 𝑞net the total uncertainty of the models is low, and it increases with 

increasing 𝑞net because in the ln x – ln y models the PPI increases with the 𝑞net. Moreover, 

the uncertainty of the models in sites one and two is generally lower than the uncertainty of 

the models in the remaining sites because sites one and two have larger number of 

observations (Figure 4.2). 

The unpooled and the hierarchical models are predicting more accurately the 

measurements with the unpooled model being the most accurate in most of the cases and at 

the same time the most uncertain (when compared to the hierarchical model). The 

predictions of the hierarchical model lie between the unpooled and the pooled model 

because the information borrowing is small, emerging from the tendency of the HBM towards 

to the unpooled model. 

 

Figure 6.10: Posterior predictive estimation of Su for five random points of site 1. 
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Figure 6.11: Posterior predictive estimation of Su for five random points of site 2. 

 

Figure 6.12: Posterior predictive estimation of Su for five random points of site 3. 
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Figure 6.13: Posterior predictive estimation of Su for five random points of site 4. 

 

Figure 6.14: Posterior predictive estimation of Su for five random points of site 5. 

6.4 CONCLUSIONS 

The analysis with the real data yields some significant results to be highlighted. First, 

the top ranked models (Figure 6.2, Figure 6.3) have the ln x – ln y functional form. On the 

contrary, the current practice is represented by the 𝑁𝑘𝑡 model (section 2.4) which utilizes the 

𝑥 − 𝑦 functional form with zero intercept which are ranked in low position. Hence, the HBM 
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and the application of the BDA can prove the existence of more appropriate functional form 

than that of the 𝑁𝑘𝑡 model. 

HBM is a valuable statistical tool to describe and predict geotechnical data. HBM has 

the second-best predictive power for a new point into a known site after the unpooled model 

as demonstrated by the LOO-CV. The difference with the unpooled however is negligible. 

HBM moves in an envelope between the unpooled and the pooled model. Additionally, the 

HBM can predict with the highest accuracy new points into a new site without available 

measurements as presented by the LOGO-CV. The unpooled model cannot make predictions 

for a new site while the pooled model is ranked at a low position. Besides, Figure 6.2 depicts 

the ln x – ln y unpooled model as the fittest one, but the ln x – ln y HBM is proposed to be 

used because their difference is negligible, and the HBM will tend to either pooled or 

unpooled when needed. Also, it is expected that the sites share some similarities which 

cannot be realised by the unpooled model. Lastly, Gelman et al. (2013) in a similar case 

propose to choose the HBM over the unpooled model. 

The HBM provides an intermediate response between the unpooled and the pooled 

model. The observed shrinkage effect shows that knowledge is gained about the site – specific 

parameters by observing the data of the other sites. HBM slightly reduces the epistemic 

uncertainty as it is trained in two levels; directly from the site specific data and indirectly from 

the other’s site data. It assigns different parameters per group and at the same time reduces 

the uncertainty of them. 

Concerning the geotechnical parameter values prediction, HBM can predict accurately 

the observed values. Its predictive uncertainty is lower than the unpooled model and it is 

significantly lower than the pooled model’s.  
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7. RELIABILITY ANALYSIS 

7.1 INTRODUCTION 

Reliability analysis is performed at a slope stability problem of typical dike found in the 

Netherlands. Figure 7.1 and Figure 7.2 depict the geometry, the materials, the water level, 

and the hydraulic conditions of the dike. The predictions of the 𝑆u obtained from the 

ln x – ln y HBM, pooled and unpooled models will be used as input. The purpose of the 

reliability analysis is to highlight the impact of using different statistical models to describe 

the geotechnical data into the design and to inform about the uncertainty propagation from 

the data description to the design. Additionally, it will propose whether input derived from 

the HBM can achieve safer and more economic design over the standard approach (in terms 

of pooling) pooled and unpooled models. 

The reliability analyses will be performed for all sites with paired 𝑞𝑛𝑒𝑡-𝑆𝑢 measurements 

(known sites) and for a new site without measurements (new site). Three cases are elaborated 

relatively the representative values of 𝑞𝑛𝑒𝑡. The first case refers to a deterministic value of 

the 𝑞𝑛𝑒𝑡 equals to the mean value of the whole dataset. The second case refers to stochastic 

values of 𝑞𝑛𝑒𝑡 following a probability distribution which is derived based on the site-specific 

𝑞𝑛𝑒𝑡 values. Lastly, the final case refers to stochastic values of 𝑞𝑛𝑒𝑡 as the second case and to 

stochastic values of the dike’s material friction angle, 𝜑. 

Additionally, for each case describing the 𝑞𝑛𝑒𝑡, two cases will be elaborated as far as the 

distribution of the 𝑆𝑢 over the subsurface: one case of full averaging of the 𝑆𝑢 and one case 

of no averaging of the 𝑆𝑢 over the subsurface. Lastly, the possible depth trend of the 𝑆𝑢 or 

the 𝑞𝑛𝑒𝑡 have neither been investigated nor considered in the analysis. 
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Figure 7.1: Geometry and materials of the dike 

 

Figure 7.2: Water level next to the dike and hydraulic conditions in the dike 

7.2 RELIABILITY ANALYSIS PROCEDURE 

The focus is on the different 𝑆𝑢 predictions by the statistical models; thus, simplistic 

assumptions for the 𝑞𝑛𝑒𝑡 distribution are made. In the first case of 𝑞𝑛𝑒𝑡 values, the mean 𝑞𝑛𝑒𝑡 

of the dataset is assumed as constant over the subsurface. The second case is like the first 

one but the 𝑞𝑛𝑒𝑡 is considered stochastic. The 𝑞𝑛𝑒𝑡 values per each site have been used by 

fitting LogNormal distribution while in the case of a new site all the values of the dataset have 

been used as presented in Figure 7.3. Lastly, in the third case the values of 𝑞𝑛𝑒𝑡 are the same 
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with the second case but the dike material 𝜑 is stochastic by following a 𝐿𝑜𝑔𝑁𝑜𝑟𝑚𝑎𝑙 

distribution with parameters described in Table 7.1. 

 

Figure 7.3: Each site's and whole dataset's 𝑞𝑛𝑒𝑡 values with fitted distributions 

For each case of 𝑞𝑛𝑒𝑡 distribution, two cases of the 𝑆𝑢 will be analysed: one of full 

averaging and one of no averaging of the 𝑆𝑢 over the subsurface. In the case of full averaging, 

the distribution of the mean 𝑆𝑢 (90% CI) is used as input for the analysis. It is utilised by fitting 

either a Normal distribution for the case of deterministic 𝑞𝑛𝑒𝑡 or a LogNormal distribution for 

the case of stochastic 𝑞𝑛𝑒𝑡. In the case of no averaging the whole spectrum of the 𝑆𝑢 values 

(90% PPI) is used by fitting a LogNormal distribution (Figure 7.4) at the PPI data. 

 

Figure 7.4: CI and PPI for a random deterministic value of 𝑞𝑛𝑒𝑡 

The results of the reliability analysis will be in terms of reliability index, 𝛽. In the first 

and second case of the 𝑞𝑛𝑒𝑡 where the only stochastic parameter is the 𝑆𝑢 of the clay layer, 
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the reliability analysis is performed by evaluating the 𝛽 through the fitted distribution at the 

𝑆𝑢 values. It is calculated that the critical 𝑆𝑢 value, 𝑆𝑢,𝑐𝑟𝑖𝑡 which corresponds to a factor of 

safety equal to one is 18.22 𝑘𝑃𝑎. In the third case where both the 𝑆𝑢 of the clay layer and the 

𝜑 of the dike material are stochastic, the reliability analysis is performed by using F.O.R.M 

(Deltares, 2022). The procedure of the reliability analysis can be seen in Figure 7.5. 

 

Figure 7.5: Flow chart for the reliability analysis procedure for each case of 𝑞𝑛𝑒𝑡 

7.3 SETUP OF THE RELIABILITY ANALYSIS 

In this section, the properties of the slope stability model and the reliability analysis will 

be presented. First, the fitted distributions at the 𝑆𝑢 intervals represent the stochastic 

strength of the clay material. The mechanical properties of the soil material used in the 

analysis can be seen at the table below. Additionally, the selected model for this analysis is 

the Mohr – Coulomb. 

  



72 

 

 

 

Table 7.1: Mechanical properties of the soil materials of the slope stability model 

Material 
Unit weight 

(𝒌𝑵/𝒎𝟑) 
Cohesion (𝒌𝑷𝒂) Friction angle (°) 

Dike’s material 19 0 30 

Dike’s material 

stochastic 
19 0 𝐿𝑜𝑔𝑁𝑜𝑟𝑚𝑎𝑙(33.19, 22) 

Clay 17 
Probability 

Distribution of Su 
0 

Sand 20 0 40 

 The slope stability analysis is done using the Bishop, Brute force analysis method (R. 

van der Meij, 2023). The whole range of the clay material is desired to be mobilized thus the 

tangent area extends at the whole range of the clay layer. The grid of the possible positions 

of the slip plane’s center and the area of the possible positions for the horizontal tangent can 

be seen at Figure 7.6. 

 

Figure 7.6: Search grid for the centre of the slip plane and the tangent are of the possible positions 

of the horizontal tangent of the slip plane. 
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7.4 RESULTS AND DISCUSSION 

7.4.1 Reliability analysis for deterministic 𝒒𝒏𝒆𝒕 

The use of deterministic value of 𝑞𝑛𝑒𝑡 is an artificial intermediate step to allow for the 

comparison between the models. Omitting the possible depth trend affects the results of the 

reliability analysis. One distribution of 𝑆𝑢 per case will be used while if there was fluctuation 

of the 𝑞𝑛𝑒𝑡 more distributions would be utilized. The impact of the 𝑞𝑛𝑒𝑡 at certain depths is 

different among them. In particular, the impact of the 𝑞𝑛𝑒𝑡 at the depth where the circle 

reaches the horizontal tangent line is higher than at an intermediate depth. The different 

impact of the 𝑞𝑛𝑒𝑡 values cannot be captured when a single value is used. 

First, the results of the reliability analysis when no averaging is assumed will be 

presented in Figure 7.7. Reliability analysis using input from the pooled model assigns the 

same values of 𝛽 per site and for a new site equal to 0.97 because it does not distinguish any 

specific attributes per site as identical value of 𝑞𝑛𝑒𝑡 has been used. On the contrary, the 

unpooled model assigns different 𝛽 per known sites only ranging from 1.72 in the second site 

to 0.21 in the fourth site. 

The HBM tends to the unpooled model (Figure 6.2) and its values of 𝛽 range from 1.71 

in the second site to 0.28 in the fourth site. It is worth mentioning that the HBM can propose 

input for a new site resulting to different 𝛽 than that of the pooled model. The 𝛽 for a new 

site is equal to 0.90 while the pooled model proposes 𝛽 equal to 0.97. In general, the HBM 

results lie between the pooled and the unpooled model except site one. 

The HBM predictive accuracy is slightly lower than the unpooled (Figure 6.2) and 

Gelman et al. (2013) suggest that the HBM can be used to describe the data; thus, HBM yields 

reliable predictions. In the case of no averaging, ln x – ln y HBM can propose safer design for 

the sites two, three and five by assigning lower 𝛽 and more economic design for the first and 

fourth sites compared to the unpooled model by assigning larger 𝛽. The pooled model has 

low predictive accuracy for the known sites based on LOO-CV (Figure 6.2) and for the new site 

based on the LOGO-CV (Figure 6.3). Therefore, the reliability analyses using input from the 

pooled model are significantly less reliable than those using input from the unpooled or the 
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HBM. For this reason, the HBM can propose safer design than the pooled model for a new 

site. 

 

Figure 7.7: Reliability index, 𝛽 per site and for a new site without averaging out the soil properties 

over the subsurface 

The next set of reliability analyses is for the case of full averaging, and it is projected in 

Figure 7.8. In general, 𝛽 values are significantly larger than the case of no averaging. The CI is 

essentially narrower than the PPI (Figure 6.10-Figure 6.14). The pooled model has very small 

epistemic uncertainty and its CI is centred around the mean value of the dataset which is 

larger than the 𝑆𝑢,𝑐𝑟𝑖𝑡. The 𝛽 in this case is constant and equal to 19.2. On the contrary, the 

unpooled model has the largest epistemic uncertainty and it fits at each site’s observations 

resulting to the lowest values of 𝛽. The 𝛽 in the case of the unpooled model varies from 13.15 

in second site to 3.04 in the fourth site. HBM similarly to the case of no averaging tends to 

the unpooled model but it lies between the pooled and the unpooled model except site one. 

The values of 𝛽 for the known sites proposed by the HBM range from 13.6 in the second site 

to 3.48 in the fourth site. The HBM assigns a vastly lower 𝛽 than the pooled model resulting 

to safer design at a new site without observations. The 𝛽 in this case is 1.47 while the 𝛽 of the 

pooled model is 19.2. 
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Figure 7.8: Reliability index, 𝛽 per site and for a new site with averaging out the soil properties over 

the subsurface 

The reason that in site one the results of the HBM are not between the pooled and the 

unpooled model must be explained. First, the mean value of the 𝑞𝑛𝑒𝑡 is 424.3 𝑘𝑃𝑎 and the 

median is 358.6 𝑘𝑃𝑎; thus, the 𝑞𝑛𝑒𝑡 = 380 𝑘𝑃𝑎 is at a region where large number of data is 

available and the models are more valid there. Therefore, it would be expected that the HBM 

would be between the pooled and the unpooled model. If the plot of the mean values of the 

models (Figure 7.9) observed in the region of 𝑞𝑛𝑒𝑡 = 380 𝑘𝑃𝑎, it would be noticed that the 

HBM is slightly below the unpooled model which is below the pooled. This possibly happens 

because of the error of the HMC method for evaluating the posterior distributions. The same 

reason applies for the case of no averaging where the HBM is not again between the pooled 

and the unpooled model.  
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Figure 7.9: Comparison of the mean values obtained by the HBM, pooled and unpooled model in the 

region of 𝑞𝑛𝑒𝑡 = 380 𝑘𝑃𝑎 

7.4.2 Reliability analysis with stochastic 𝒒𝒏𝒆𝒕 per site 

The next set of analyses refers to the adoption of stochastic values of 𝑞𝑛𝑒𝑡. In the case 

of no averaging the HBM 𝛽 values lie between pooled and unpooled model. The 𝛽 values of 

the pooled model in the known sites and the new sites are varying as different values of 𝑞𝑛𝑒𝑡 

have been used. They range from 0.13 in the second site to 1.5 in the fifth site. The 𝛽 values 

proposed by the unpooled model range from -0.35 in the fourth site to 1.78 in the fifth site 

while the HBM 𝛽 values fluctuate from -0.34 in the fourth site to 1.73 in the fifth site. 

Considering the model rankings and the validity of the HBM, the latter can propose safer 

design than the unpooled in sites two, three and five (lower 𝛽 values) while more economic 

designs in sites one and four (higher 𝛽 values). The HBM proposes safer design than the 

pooled in the new site. 
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Figure 7.10: Reliability indices per site for the case of no averaging of 𝑆𝑢 over the subsurface with 

stochastic 𝑞𝑛𝑒𝑡 assumed. 

Following, the results of the reliability analysis when full averaging is assumed will be 

elaborated (Figure 7.11). Overall, the reliability indices are larger than the case of no 

averaging and the 𝛽 values derived from the HBM are intermediate of the pooled and the 

unpooled model except the fifth site. Additionally, the reliability indices in this case are 

significantly lower than the case when one constant value of the 𝑞𝑛𝑒𝑡 was used (Figure 7.8). 

The 𝛽 values proposed by the pooled model range from -0.31 in site four to 3.41 in site 

five while the unpooled model assigns in the corresponding sites 𝛽 values of  

-0.33 to 3.55. The HBM yields intermediate response in all sites except site five. The extreme 

values it proposes range from -0.31 in site four to 3.35 in site five. Additionally, in the new 

site the HBM proposes safer design than the pooled model assigning lower 𝛽 value. 

The reason that the HBM 𝛽 value is not between the pooled and the unpooled model 

must be explored. In the fifth site the unpooled model has the largest 𝑆𝑢 values followed by 

the HBM and the pooled given the 𝑞𝑛𝑒𝑡 (Figure 7.12). Additionally, site five has the least 

number of measurements from all sites, leading to high uncertainty of the unpooled model 

and large influence on the HBM of the other sites’ data. Therefore, in this site the HBM tends 

to the pooled more than does in other sites. Additionally, the HBM has significantly wider CI 

than the pooled model leading to lower values of 𝑆𝑢 than the pooled model. Hence, the lower 
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values of 𝑆𝑢 enclosed in the CI lead to lower 𝛽 of the HBM than the pooled model. Lastly, the 

reason that in site one the 𝛽 value proposed by the HBM is lower than the unpooled model 

is the same as described in the case of the constant 𝑞𝑛𝑒𝑡. 

 

Figure 7.11: Reliability indices per site for the case of full averaging of 𝑆𝑢 over the subsurface with 

stochastic 𝑞𝑛𝑒𝑡 assumed. 

 

Figure 7.12: Plot of the ln 𝑥 − ln 𝑦 pooled, partially pooled and unpooled models of group five 

7.4.3 Reliability analysis with stochastic 𝒒𝒏𝒆𝒕 and dike material 𝝋 

The case where both the 𝑆𝑢 of the clay material and the dike material φ are stochastic 

is examined as well. The input for the clay material is identical with that of the section above 

and the dike material 𝜑 follows the distribution as described in Table 7.1. 
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The results of the reliability analysis are identical to that of the case where the 𝑞𝑛𝑒𝑡 is 

stochastic (section 7.4.2) showing that the influence of the dike material uncertainty is 

negligible. The minor influence of the dike material 𝜑 uncertainty occurs because the failure 

plane passes mainly through the clay material and the clay provides most of the resistance 

forces (Figure 7.13). 

 

Figure 7.13:Distribution of calculated shear stresses along the slip plane 

7.5 CONCLUSIONS 

The purpose of the reliability analysis is to highlight the benefits for the engineering 

community when input from the HBM will be used for a reliability analysis of a dike compared 

to the input from the pooled and unpooled models. The input has been derived only from the 

ln 𝑥 − ln 𝑦 functional form. The unpooled model has the highest predictive accuracy in the 

known sites, followed with negligible difference by the HBM while the pooled is ranked at a 

lower position. The HBM can be used as the fittest model and it assigns different 𝛽 values 

than the unpooled; hence, it can lead to safer and more economic design at the known sites 

both for the case of the deterministic mean 𝑞𝑛𝑒𝑡 and stochastic 𝑞𝑛𝑒𝑡. 

As far as the new site is concerned, the HBM is ranked higher than the pooled rendering 

it more reliable for predictions for new sites than the pooled model (Figure 6.3). The HBM 

proposes lower 𝛽 values than the pooled and subsequently it proposes safer design. Lastly, 

when stochastic 𝜑 of the dike material is assumed, its uncertainty does not have any impact 

as the slip plane cuts mainly through the clay material. 
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8. CONCLUSIONS 

In this chapter, reflection on the research objectives will be made by answering the 

research questions (section 1.4). The aim of the thesis was to answer whether the application 

of HBM through BDA can enhance the geotechnical decision making by quantifying more 

accurately the uncertainty of geotechnical parameter values compared to the standard 

practice methods (pooled and unpooled models). Additionally, the second goal of the thesis 

was to assess the impact of using input for a dike slope reliability analysis derived by the HBM 

compared to the current practice models in terms of pooling. 

• The first step was to gather data of paired 𝑞𝑛𝑒𝑡, 𝑆𝑢 measurements along with their 

geographical position and 458 observations were gathered. 

• Following, the HBM was compared with the current practice pooled and unpooled models 

at an artificial example. The purpose of this step was to validate the BDA workflow and to 

ensure that can be applied to the real data. The BDA workflow fulfilled both validation 

criteria; it can identify the “true” model of the artificial data and the “true” parameters 

that generated the artificial data. Consequently, the BDA workflow can be safely applied 

at the analysis with the real data. 

• The research question with the major significance was about the uncertainty 

quantification achieved by the HBM using the dataset of the first question. First, the 

ln x – ln y unpooled was ranked first but the ln x – ln y HBM can be selected as the fittest 

because it is flexible to tend to either pooled or unpooled if they are proven to be true.The 

HBM estimation for the slope fell between the pooled and the unpooled model and the 

same applied for the intercept for most of the groups. The shrinkage effect showed that 

the HBM can borrow information from other sites to make site specific estimations and 

at the same time to reduce the uncertainty compared to the unpooled model. The 

unpooled model has large epistemic uncertainty and the pooled model has large aleatory 

uncertainty while HBM has overall lower uncertainty  than the current practice models. 

HBM predicts accurately with lower uncertainty and holds the significant advantage over 

the unpooled model that it can make predictions for a new site without measurements.  

• The results of the ln x – ln y HBM, ln x – ln y pooled and ln x – ln y unpooled models were 

used in stability reliability analysis of a dike slope. Even though the unpooled model is the 
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fittest for predictions in the known sites, the HBM is reliable as well. The HBM 𝛽 values of 

the reliability analysis are different than those of the unpooled model. Hence, the HBM 

can propose safer design at some sites or more economic at other sites. In the case of the 

reliability analysis in a new site, the HBM is significantly more reliable than the pooled 

model. At all cases, it proposes lower 𝛽 than the pooled; hence, it leads to safer design at 

a new site than the pooled model. 

This thesis aimed to evaluate the application of the HBM through BDA in enhancing the 

geotechnical decision making and whether using HBM derived input for a reliability analysis 

can propose safer and more economic design over the standard practice. The applicability of 

BDA workflow which was verified by the artificial example and the promising results of the 

HBM indicate the HBM can enhance the geotechnical decision making. First, it can move in 

an envelope between the pooled and the unpooled model and if the fittest model is either 

the pooled or unpooled, the HBM can tend towards it and act like these models. Secondly, 

the HBM model exhibited lower overall uncertainty compared to pooled and unpooled 

models. It could borrow information from other sites, reducing uncertainty while making 

plausible predictions for a new site. Hence, the validity of the HBM and its important benefits 

can enhance the geotechnical decision making. 

The HBM’s effectiveness was further demonstrated in the dike slope reliability analysis. 

The HBM derived input yielded different 𝛽 than the current practice models. Concerning the 

validity of the HBM based on validation metrics and the different results than the current 

practice models, it is concluded that it can lead to safer and more economic design over the 

current practice. 

Overall, the HBM holds significant potential for enhancing geotechnical decision-making 

by improving uncertainty quantification and including information from relevant databases. 

These benefits both allow for more accurate description of the data and lead to better design 

of the structures.  
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9. LIMITATIONS AND FURTHER RESEARCH RECOMMENDATIONS 

The present thesis has highlighted the potential of using HBM for predicting the 𝑆u in 

Dutch sites. However, it is important to acknowledge certain limitations that may have 

influenced the interpretation and generalizability of these findings. Based on these 

shortcomings, future research recommendations will be proposed to tackle them. 

1. The heterogeneity and the spatial variability of the soil has not been considered. It is 

assumed that the 𝑞𝑛𝑒𝑡 is measured exactly at the same position with 𝑆𝑢 which is not 

accurate. This deficiency can be improved by considering 𝑞𝑛𝑒𝑡 stochastic. 

2. Only one clustering of the data was examined without evaluating the influence of the 

clustering on the process. Moreover, it was not examined if there is a more representative 

clustering for the data. Consequently, sensitivity analysis on the clustering must be 

performed to identify the proper grouping of the data. 

3. The assumption of the pooled 𝜎y is not utterly representative. The case that the 𝜎𝑦 has 

different distributions per site must be investigated.  

4. It is expected that the HBM will have advantageous impact on a site with small number of 

measurements which is usually the case in the geotechnical engineering. Thus, it is desired 

to perform Bayesian updating at a site with few measurements by creating informative 

prior distributions. 

5. In this thesis, the 𝑆u was evaluated using as input only the 𝑞net. Hence, more covariates 

must be added to make a more representative model. 

6. In the reliability analysis the depth trend of the 𝑞𝑛𝑒𝑡 and 𝑆𝑢 values was not investigated. 

A more representative distribution of the geotechnical parameter values must be used as 

input in the reliability analysis. 

In conclusion, as the thesis has made a substantial step to realize the capabilities of 

using the HBM for predicting the 𝑆𝑢 of clay in Dutch sites, it is essential to acknowledge the 

limitation that have influenced the accuracy and the generalizability of the results. These 

limitations must be investigated by following the further research steps.  
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APPENDIX 

SUMMARY STATISTICS 

Table 1: Summary statistics per site for the 𝑞net 

Site 
Number of 

measurements 
Mean 

Standard 
deviation 

Minimum 
Percentile 

5% 
Percentile 

50% 
Percentile 

95% 
Maximum 

1 159 424.3 268.4 36.1 88.2 358.6 1009.6 1175.7 

2 131 253.0 173.8 5.8 77.6 206.2 668.0 869.7 

3 57 518.9 186.7 242.5 270.2 471.3 841.5 895.3 

4 78 264.5 112.1 50.0 80.0 270.0 441.5 540.0 

5 33 672.0 293.6 260.0 340.0 615.4 1126.0 1665.7 

 

Table 2: Summary statistics per site for the 𝑆u 

Site 
Number of 

measurements 
Mean 

Standard 
deviation 

Minimum 
Percentile 

5% 
Percentile 

50% 
Percentile 

95% 
Maximum 

1 159 29.5 15.5 4.2 9.0 25.0 57.1 72.0 

2 131 29.0 17.3 6.0 8.6 25.8 62.2 107.0 

3 57 36.3 17.7 11.0 15.8 31.2 64.5 77.3 

4 78 16.6 7.3 6.2 7.3 15.6 27.4 51.6 

5 33 45.6 20.8 12.7 18.3 39.3 80.2 102.6 

 

Table 3: Summary statistics per site for the 𝑁𝑘𝑡 

Site 
Number of 

measurements 
Mean 

Standard 
deviation 

Minimum 
Percentile 

5% 
Percentile 

50% 
Percentile 

95% 
Maximum 

1 159 14.5 5.7 3.3 6.9 13.8 22.5 47.8 
2 131 9.7 5.3 0.7 3.5 8.1 20.5 27.3 
3 57 16.0 5.6 8.8 9.7 15.2 26.1 36.3 
4 78 17.0 6.8 3.3 5.9 16.7 28.1 33.8 
5 33 15.7 4.7 8.0 10.4 15.0 23.2 26.8 
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STATISTICAL MODELS 

Table 4: Combinations of functional forms and pooling families to form the statistical models 

Functional form Statistical model family 

𝑥 −  𝑦 

Pooled 

Partially pooled (HBM) 

Unpooled 

Pooled slope – partially pooled intercept 

Pooled intercept – partially pooled slope 

𝑥 – 𝑙𝑛 𝑦 

Pooled 

Partially pooled (HBM) 

Unpooled 

Pooled slope – partially pooled intercept 

Pooled intercept – partially pooled slope 

𝑙𝑛 𝑥 − 𝑙𝑛 𝑦 

Pooled 

Partially pooled (HBM) 

Unpooled 

Pooled slope – partially pooled intercept 

Pooled intercept – partially pooled slope 
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DATASET 

X coordinate (m) Y coordinate (m) 𝒒𝒏𝒆𝒕 (𝒌𝑷𝒂) 𝑺𝒖 (𝒌𝑷𝒂) Site 

85988 444956 170 37 2 

86010.16667 444977.6667 170 22 2 

86032.33333 444999.3333 160 10 2 

86054.5 445021 200 18 2 

86076.66667 445042.6667 270 18 2 

86098.83333 445064.3333 300 23 2 

86121 445086 270 17 2 

131771.4286 490684 450 26.5 4 

131771.4286 490684 260 8.7 4 

131771.4286 490684 260 7.7 4 

131771.4286 490684 280 18.6 4 

131771.4286 490684 270 18.1 4 

131771.4286 490684 230 12.6 4 

131771.4286 490684 260 14 4 

131771.4286 490684 280 8.8 4 

131771.4286 490684 280 11.1 4 

131771.4286 490684 240 13.3 4 

131771.4286 490684 220 15.4 4 

131771.4286 490684 230 12.8 4 

131771.4286 490684 420 21 4 

131771.4286 490684 260 14.5 4 

131771.4286 490684 240 24.8 4 

131771.4286 490684 250 20.2 4 

131771.4286 490684 260 20 4 

131771.4286 490684 270 23.4 4 

131771.4286 490684 280 19.6 4 

131771.4286 490684 280 11.9 4 

131771.4286 490684 410 21.6 4 

131771.4286 490684 290 15.5 4 

131771.4286 490684 310 18.8 4 

131771.4286 490684 340 13.9 4 

131771.4286 490684 330 12.1 4 

131771.4286 490684 330 16.5 4 

131771.4286 490684 330 12.5 4 

131771.4286 490684 400 17.9 4 

131771.4286 490684 410 14.7 4 

131771.4286 490684 440 18.8 4 

131771.4286 490684 450 15.2 4 

131771.4286 490684 390 21.1 4 

131771.4286 490684 340 15.7 4 

131771.4286 490684 340 17.3 4 

131771.4286 490684 330 13.3 4 
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X coordinate (m) Y coordinate (m) 𝒒𝒏𝒆𝒕 (𝒌𝑷𝒂) 𝑺𝒖 (𝒌𝑷𝒂) Site 

131771.4286 490684 330 15.6 4 

131771.4286 490684 390 20.5 4 

131771.4286 490684 400 15.8 4 

131771.4286 490684 400 14.8 4 

131771.4286 490684 400 21.9 4 

131771.4286 490684 250 16.9 4 

131771.4286 490684 290 17.6 4 

131771.4286 490684 340 14.4 4 

133515 492851 90 11.9 4 

133505 492837 100 22.8 4 

133510 492844 100 17.1 4 

133520 492858 120 8.9 4 

133535 492879 50 7.6 4 

133530 492872 130 10.3 4 

133525 492865 80 13.2 4 

133540 492886 60 6.9 4 

151020 474403 70 6.4 4 

151020 474403 80 24.2 4 

151020 474403 190 7.4 4 

151020 474403 180 11 4 

151020 474403 230 10.4 4 

151020 474403 160 27.3 4 

151020 474403 210 9.5 4 

151020 474403 90 21.9 4 

151020 474403 90 6.2 4 

151020 474403 540 29.1 4 

151020 474403 380 35 4 

151020 474403 190 27.9 4 

139848 442667 492.6787475 35.64718735 1 

120275 439325 355.61795 26.15038213 1 

120275 439325 341.07121 34.69367637 1 

120275 439325 400.5017857 42.44107039 1 

120275 439325 349.469985 38.6511529 1 

150626 441666 686.2904857 65.71064108 3 

120275 439325 277.0364775 30.06557682 1 

139848 442667 431.0738375 38.87033437 1 

139848 442667 446.174895 30.72508537 1 

139848 442667 464.6352975 38.1252311 1 

120275 439325 436.980455 46.71312688 1 

150626 441666 686.2904857 77.34526681 3 

130082 442980 358.58896 35.46248218 1 

130082 442980 494.3587725 70.59354005 1 

130082 442980 318.907595 29.90714727 1 

150618 441713 504.6716875 25.04219783 3 
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X coordinate (m) Y coordinate (m) 𝒒𝒏𝒆𝒕 (𝒌𝑷𝒂) 𝑺𝒖 (𝒌𝑷𝒂) Site 

150618 441713 279.982115 24.357844 3 

150618 441713 279.9386775 20.84790807 3 

150618 441713 397.22588 45.03279023 3 

150626 441666 674.9538875 51.81485599 3 

150626 441666 674.9538875 63.75736524 3 

150626 441666 452.161275 37.7404273 3 

150626 441666 452.161275 48.87591395 3 

139848 442667 480.1626686 23.14231452 1 

130082 442980 354.0165457 24.15895692 1 

119023 434675 411.5189368 30.75903787 1 

128046 435243 244.81289 22.1 1 

128046 435243 105.708949 18.2 1 

128046 435243 85.26564 19.5 1 

128300 432718 254.92633 24.6 1 

128300 432718 113.618192 23.4 1 

128046 435243 253.31867 22.4 1 

112385 433141 217.0139482 16.80148983 1 

112390 433138 200.8361589 4.2 1 

118944 434703 67.35636032 8.069607113 1 

118942 434711 475.9638674 17.07781284 1 

130104 443002 252.08413 17.8768614 1 

130104 443002 231.793125 16.87055445 1 

120275 439325 436.980455 29.2583688 1 

130104 443002 159.8512525 16.29096664 1 

139855 442700 192.4673286 22.34099779 1 

130082 442980 368.977085 38.00405374 1 

139848 442667 751.07255 47.98512152 1 

139855 442700 295.20625 29.50145696 1 

139855 442700 295.20625 33.22211115 1 

139855 442700 239.948015 29.22678343 1 

139855 442700 286.2524475 21.89382127 1 

150618 441713 242.5485525 19.86091066 3 

150618 441713 267.4950257 20.879436 3 

150618 441713 279.982115 27.87516016 3 

150618 441713 380.7914375 20.78165723 3 

139855 442700 286.2524475 21.74074444 1 

130082 442980 358.58896 41.3214032 1 

154346.2 427152.85 700.626696 51.27 3 

157597.91 431988.33 859.524572 64.16 3 

157597.91 431988.33 840.978658 73.3 3 

157597.91 431988.33 506.040458 51.39 3 

154326.57 427142.88 512.3511142 27.53 3 

154326.57 427142.88 463.39773 33.49 3 

154346.2 427152.85 739.268356 57.8 3 
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X coordinate (m) Y coordinate (m) 𝒒𝒏𝒆𝒕 (𝒌𝑷𝒂) 𝑺𝒖 (𝒌𝑷𝒂) Site 

178995.94 433504.74 1008.36275 45.84 5 

179003.33 433526.34 1150.677412 102.62 5 

179003.33 433526.34 784.472172 66.67 5 

178995.94 433504.74 615.39921 40.69 5 

179560.35 433495.94 592.253372 39.32 5 

182513 432608.67 475.8193 31.63 5 

182513 432608.67 459.7319 21.3 5 

182530.52 432646.7 435.06077 36.7 5 

189073.48 430903.82 834.450532 59.2 5 

187309.43 430055.62 835.2266 63.45 5 

182530.52 432646.7 400.23717 23.82 5 

182530.52 432646.7 403.78157 38.03 5 

189073.48 430903.82 1109.468932 77.26 5 

147621.8 426762.5 554.4125 51.237 3 

146483.3 426872.6 843.5969 63.60907 3 

146497.9 426895.5 401.5307 26.39317 3 

146497.9 426895.5 525.628 31.18798 3 

149073.275 429470.875 685.5751998 31.55 3 

151648.65 432046.25 395.3654678 16.44 3 

154224.025 434621.625 488.8289114 27.1 3 

156799.4 430222.5 688.042601 44.10135493 3 

156239.65 429661.45 895.32435 55.04 3 

155679.9 429100.4 436.3834398 25.56 3 

155120.15 428539.35 574.753544 58.68 3 

154560.4 427978.3 419.7913444 23.6997682 3 

152055.75 427313.25 762.6723358 49.39 3 

149551.1 426648.2 360.0705 35.26 3 

149440 426568.5 310.3142 16.41369 3 

148584.5 426574.4 342.339 20.23176 3 

147621.8 426762.5 469.441 23.98322 3 

147621.8 426762.5 561.869 45.63985 3 

156799.4 430222.5 638.789172 60.78993417 3 

146483.3 426872.6 594.2244 50.23672 3 

146483.3 426872.6 820.2754 51.34564 3 

154310.57 427146.81 674.5389909 22.89140403 3 

157585 432004 385.54852 16.26881141 3 

154310.57 427146.81 270.8796812 20.61649035 3 

154363.72 427133.11 262.3855272 13.82266782 3 

152091 425181 444.4327632 16.79627057 3 

152091 425181 305.5513158 11.76743034 3 

152064 425201 453.20842 26.52004558 3 

152064 425201 448.8611526 25.02807446 3 

168992.465 435861.833 800 38.58885929 5 

167177.401 435155.536 670 64.99349365 5 
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X coordinate (m) Y coordinate (m) 𝒒𝒏𝒆𝒕 (𝒌𝑷𝒂) 𝑺𝒖 (𝒌𝑷𝒂) Site 

167170.07 435193.38 450 34.71083507 5 

166120.18 435261.68 680 60.13598641 5 

166105.652 435289.907 340 29.6395329 5 

161640.91 434806.55 840 45.40183683 3 

161629.97 434844.68 690 18.9982128 3 

161637.41 434778.24 340 16.3755198 3 

160407.324 434272.656 300 20.14893024 3 

160393.38 434298.23 760 47.8922173 3 

170782.25 435351.06 560 53.11604669 5 

170813.79 435377.79 470 37.02122017 5 

160382.88 434334.62 280 11.03650948 3 

174042.16 435492.06 550 68.50056987 5 

174028.26 435561.42 350 16.74431165 5 

175092.95 435190.94 700 33.75494552 5 

175123.731 435244.97 260 19.41572274 5 

175123.731 435244.97 340 12.66383361 5 

175083.84 435169.28 950 61.55432621 5 

174025.423 435452.467 670 26.90999985 5 

179571 433523 490.1849 27.31261183 5 

182520 432624 742.464732 34.07569085 5 

179571 433523 1665.659092 84.56595129 5 

179009 433542 964.9351 58.9897277 5 

179571 433523 560.43366 45.90190536 5 

179009 433542 856.738927 48.80320057 5 

106183.2 432077 164.7595 9 1 

113494.8 434176.3 38.47 8 1 

115032.2 434833.6 131.259 13 1 

120257.1 430312.2 142.2265 14 1 

105866.6 431793.5 88.493 8 1 

110923.4 432776.3 58.1 9 1 

110922.5 432787 93.555 11 1 

105866.6 431793.5 129.213 11 1 

105866.6 431793.5 78.0505 14 1 

105507.6 432148.7 242.21 13 1 

115030.7 434838.9 175.915 10 1 

105508.6 432154.1 197.285 11 1 

105508.6 432154.1 174.95 8 1 

115030.7 434838.9 152.7975 11 1 

110922.5 432787 559 20 1 

106181.2 432080.5 145.602 12 1 

105507.6 432148.7 220.03 6 1 

105852.3 431792.6 149.91 14 1 

106183.2 432077 110.774 12 1 

113494.8 434176.3 36.146 11 1 
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X coordinate (m) Y coordinate (m) 𝒒𝒏𝒆𝒕 (𝒌𝑷𝒂) 𝑺𝒖 (𝒌𝑷𝒂) Site 

120257.1 430312.2 201.6435 13 1 

106183.2 432077 120.853 10 1 

105852.3 431792.6 151.25 15 1 

113493.1 434179.8 62.597 9 1 

113493.1 434179.8 43.527 7 1 

131301.3 502931.81 266.7327632 18.06306698 4 

131301.3 502931.81 317.8815263 20.4932103 4 

131301.3 502931.81 260.2237105 19.30900541 4 

131301.3 502931.81 307.0438158 17.12296077 4 

81448.5 440951.9 226.00311 12.05962 2 

78938 446498 175.9946513 21.38517535 2 

86214 443067 165.902362 30.1091 2 

91241 446468 127.943512 26.1352 2 

78938 446498 211.2719879 18.46988852 2 

79781 441323 194.5614112 12.4 2 

78952 446456 79.6859068 12.287 2 

78952 446456 340.1634104 23.256 2 

79781 441323 215.147512 9.7 2 

79772 444143 156.4826042 27.65408011 2 

79781 441323 122.025712 17.4 2 

78938 446498 143.7015973 25.38519881 2 

79781 441323 220.1186005 10.90286381 2 

86214 443067 169.353762 31.8611 2 

81399.9 440934.1 106.97416 10.04248 2 

81399.9 440934.1 79.61821 7.72231 2 

91241 446468 220.8374197 23.91714 2 

79781 441323 103.4998225 8.1 2 

78952 446456 75.55486813 29.6860424 2 

91241 446468 164.124512 26.32393 2 

87076 441149 258.2724109 38.572 2 

79779 441338 452.6600003 24.80547225 2 

79769 444160 115.9101308 21.79392579 2 

79781 441323 137.6757646 12.02800211 2 

79511.7 435469.9 342.6247818 68.4 2 

91258 446468 299.7551613 24.64761 2 

79769 444160 151.114931 24.13977388 2 

80474 449174 828.5220987 34.18139916 2 

79772 444143 179.7157924 26.74714936 2 

80474 449174 353.6200213 24.36862966 2 

87076 441149 222.6960104 35.212 2 

79781 441323 131.7904929 19.60421526 2 

79769 444160 102.8414162 18.92407173 2 

78952 446456 106.3312368 26.83899476 2 

79769 444160 79.61833373 7.8221 2 
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X coordinate (m) Y coordinate (m) 𝒒𝒏𝒆𝒕 (𝒌𝑷𝒂) 𝑺𝒖 (𝒌𝑷𝒂) Site 

86214 443067 311.4924494 42.146 2 

87517 449523 206.1970104 12.67183 2 

86168 443111 158.6481104 7.65413 2 

79781 441323 218.8578089 17.74910247 2 

86214 443067 179.8304006 52.5741 2 

78952 446456 64.90461192 34.9 2 

78952 446456 57.76521184 19.9 2 

81399.9 440934.1 256.43985 26.79769 2 

78952 446456 59.252712 31.1 2 

78952 446456 63.042912 19.2 2 

78952 446456 152.797812 19.2 2 

86168 443111 178.2452689 10.29389 2 

81448.5 440951.9 447.8781 16.43363 2 

86168 443111 194.3351104 12.85012 2 

87517 449523 174.4401714 12.18518 2 

81399.9 440934.1 186.297981 9.66478 2 

86214 443067 174.4192315 38.893 2 

91258 446468 697.516808 32.78947 2 

79769 444160 172.2163115 46 2 

79769 444160 71.23453373 5.9685 2 

81399.9 440934.1 102.01068 7.6615 2 

79781 441323 133.1421752 15.01343691 2 

91258 446468 645.642608 31.91388 2 

86214 443067 206.4924104 38.9881 2 

79511.7 435469.9 367.4961018 61.97945 2 

81448.5 440951.9 178.19122 16.74 2 

79769 444160 90.17963373 9.1544 2 

79511.7 435469.9 323.5198376 48.81199 2 

81399.9 440934.1 213.21522 25.81988 2 

81448.5 440951.9 155.66187 21.8 2 

87517 449523 261.0918103 26.74260434 2 

79772 444143 183.3368287 25.26566108 2 

79779 441338 379.6588385 31.33785901 2 

79511.7 435469.9 328.0766418 67.23051 2 

79511.7 435469.9 409.323343 52.41272 2 

79511.7 435469.9 338.8687412 49.15904 2 

87817 450516 217.6043604 30.69643 2 

80463 449168 848.3227891 50.46449031 2 

87838 450490 269.2729604 22.7 2 

87517 449523 114.3836104 25.80905 2 

80463 449168 743.5137225 55.43563287 2 

87076 441149 265.9949615 33.4 2 

87083 441146 241.1950603 26.94752 2 

79772 444143 472.5369569 62.338 2 
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X coordinate (m) Y coordinate (m) 𝒒𝒏𝒆𝒕 (𝒌𝑷𝒂) 𝑺𝒖 (𝒌𝑷𝒂) Site 

80474 449174 869.7322213 39.22768713 2 

87517 449523 93.3600604 25.7648 2 

87461 449486 210.6503616 23.50464 2 

87817 450516 185.2828604 30.18997 2 

87461 449486 121.1807104 19.52137 2 

87461 449486 134.3227108 20.52591 2 

91258 446468 141.8666104 9.77597 2 

87083 441146 102.1899128 21.8206 2 

87838 450490 633.5317091 107 2 

87083 441146 119.6431604 20.28882 2 

87517 449523 193.842462 23.95195 2 

87083 441146 120.2489104 17.75368 2 

78952 446456 103.0867104 16 2 

91241 446468 5.7808024 7.98123 2 

91258 446468 153.2059604 9.15637 2 

87076 441149 329.2430602 47.97 2 

87517 449523 247.862012 28.11646 2 

87083 441146 295.6552601 33.07874 2 

78938 446498 307.8580103 33.821 2 

87517 449523 147.4636604 10.14164 2 

87517 449523 411.7609604 38.91766 2 

91258 446468 242.0151102 21.45095 2 

79779 441338 266.0935776 33.03349 2 

79779 441338 345.6368286 23.24903192 2 

87079 435433 608.7636198 75.19816 2 

87076 441149 235.008547 36.8861 2 

87838 450490 184.0819603 34.6 2 

87838 450490 264.1722603 57.8 2 

78952 446456 101.5474121 25.81811928 2 

80463 449168 239.6502248 30.31631672 2 

87079 435433 474.592573 89.78831 2 

87461 449486 362.8538108 43.59869 2 

79779 441338 416.143063 42.86970106 2 

87838 450490 797.2821836 31.3 2 

87083 441146 332.5738102 31.91943 2 

87817 450516 221.8897421 32.51228 2 

87838 450490 690.4128596 61.8 2 

87076 441149 242.4153104 32.395 2 

79772 444143 546.7896569 36.035 2 

78938 446498 287.4282104 29.9 2 

87461 449486 157.9945862 23.06959 2 

87461 449486 166.4078118 29.29588 2 

87079 435433 362.735862 78.90895 2 

87517 449523 197.999262 27.5842 2 
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X coordinate (m) Y coordinate (m) 𝒒𝒏𝒆𝒕 (𝒌𝑷𝒂) 𝑺𝒖 (𝒌𝑷𝒂) Site 

79772 444143 351.1729569 43.111 2 

126583 501599 454.7658158 51.61837437 4 

126583 501599 310.7086842 22.33591159 4 

126609 501645 288.0160526 23.46019053 4 

127971.12 503307.29 238.0596053 13.61 4 

127963.98 503312.79 290.6978684 24.98 4 

127984.64 503299.11 143.9006111 8.77 4 

127963.98 503312.79 308.1008611 21.2 4 

127971.12 503307.29 224.0140526 11.8 4 

127984.64 503299.11 83.18652632 7.49 4 

127971.12 503307.29 143.4984211 9.51 4 

127984.64 503299.11 91.41810526 6.89 4 

127642 426695 310.9035933 15.73235389 1 

127642 426695 258.735274 23.18232939 1 

127642 426695 364.2172414 20.21879478 1 

137178 425613 742.5181 34.237453 1 

144092 425778 471.2744776 37.87913761 3 

137178 425613 596.34535 35.82076734 1 

137178 425613 659.42235 71.97240931 1 

127642 426695 249.4994869 13.53992413 1 

127642 426695 312.7648531 15.2217546 1 

134675.98 426928.09 228.4165105 14.5 1 

137252 425662.35 263.4038097 24 1 

137252 425662.35 376.3336803 22 1 

137252 425662.35 297.5198373 22.5 1 

134675.98 426928.09 318.3033031 23 1 

134675.98 426928.09 235.1797211 19 1 

130504.98 426183.16 194.7611 21.5 1 

127640.38 426649.114 644.8197 60.58 1 

129942.706 426070.959 303.3857364 17.5 1 

129942.706 426070.959 394.7286 25.02 1 

130504.98 426183.16 264.82415 14.5 1 

129951 426040 799.1650557 57.05 1 

130504.98 426183.16 367.84885 28.82 1 

131182.081 426192.331 382.442 26.3 1 

131182.081 426192.331 277.6643182 15.62 1 

131182.081 426192.331 178.85825 17.07 1 

129951 426040 668.7075109 45.45 1 

123465 456795 242.5485525 19.86091066 1 

123456 456789 436.980455 29.2583688 1 

123456 456789 436.980455 46.71312688 1 

123456 456789 349.469985 38.6511529 1 

123456 456789 400.5017857 42.44107039 1 

123456 456789 341.07121 34.69367637 1 
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X coordinate (m) Y coordinate (m) 𝒒𝒏𝒆𝒕 (𝒌𝑷𝒂) 𝑺𝒖 (𝒌𝑷𝒂) Site 

123456 456789 355.61795 26.15038213 1 

123465 456795 252.08413 17.8768614 1 

123456 456789 358.58896 41.3214032 1 

123465 456795 279.982115 24.357844 1 

123465 456795 279.982115 27.87516016 1 

123465 456795 267.4950257 20.879436 1 

123465 456795 279.9386775 20.84790807 1 

123456 456789 358.58896 35.46248218 1 

103491.8108 440093.4595 1153 50 1 

103491.8108 440093.4595 1175 45 1 

103491.8108 440093.4595 795 53 1 

103491.8108 440093.4595 796 50 1 

103491.8108 440093.4595 704 40.5 1 

103491.8108 440093.4595 725 39.5 1 

103491.8108 440093.4595 458.9 21 1 

103491.8108 440093.4595 431 29 1 

103491.8108 440093.4595 319.6 22 1 

103491.8108 440093.4595 453.4 23 1 

103491.8108 440093.4595 315.3 17 1 

103491.8108 440093.4595 241.7 13 1 

103491.8108 440093.4595 365.5 22.61 1 

103491.8108 440093.4595 286.9 22 1 

103491.8108 440093.4595 751.67 60.78 1 

103491.8108 440093.4595 424.57 20.54 1 

103491.8108 440093.4595 412.5 28 1 

103491.8108 440093.4595 427 27 1 

103491.8108 440093.4595 332.19 19.94 1 

103491.8108 440093.4595 243.7 13 1 

103491.8108 440093.4595 410.8 23 1 

103491.8108 440093.4595 365.5 18 1 

103491.8108 440093.4595 366 18 1 

103491.8108 440093.4595 351 23 1 

103491.8108 440093.4595 1050 50.2 1 

103491.8108 440093.4595 234 17 1 

103491.8108 440093.4595 1055 55.2 1 

103491.8108 440093.4595 785.7 35 1 

103491.8108 440093.4595 890 65 1 

103491.8108 440093.4595 1051.39985 50.3 1 

103491.8108 440093.4595 891.5513 65 1 

103491.8108 440093.4595 702.4475 44 1 

103491.8108 440093.4595 944.6749 58 1 

103491.8108 440093.4595 711.5939 53 1 

103491.8108 440093.4595 1055.09385 55.4 1 

103491.8108 440093.4595 1152.85255 50 1 
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X coordinate (m) Y coordinate (m) 𝒒𝒏𝒆𝒕 (𝒌𝑷𝒂) 𝑺𝒖 (𝒌𝑷𝒂) Site 

103491.8108 440093.4595 704.8009 40.5 1 

103491.8108 440093.4595 664.9568 36 1 

103491.8108 440093.4595 1175.71655 44.9 1 

103491.8108 440093.4595 573.04105 54 1 

103491.8108 440093.4595 690.48285 44.2 1 

103491.8108 440093.4595 794.8535 53 1 

103491.8108 440093.4595 796.3725 50 1 

103491.8108 440093.4595 726.732 39.5 1 

103491.8108 440093.4595 468.9706 40 1 

103491.8108 440093.4595 507.73805 33.5 1 

103491.8108 440093.4595 688.5497 44 1 

103491.8108 440093.4595 467 40 1 

103491.8108 440093.4595 572 54 1 

103491.8108 440093.4595 709 52.6 1 

103491.8108 440093.4595 507 33.5 1 

103491.8108 440093.4595 662 36 1 

103491.8108 440093.4595 700 44.2 1 

103491.8108 440093.4595 687 44.2 1 

103491.8108 440093.4595 944 58 1 

103491.8108 440093.4595 1005.16 46 1 

 


