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Integrators' global networks: A topology analysis with insights into the effect 
of the COVID-19 pandemic 
Alessandro Bombelli 
Air Transport and Operations, Faculty of Aerospace Engineering, Building 62 Kluyverweg 1 2629 HS Delft, Delft University of Technology, the Netherlands  

A B S T R A C T   

In this paper we propose, to the best of our knowledge, the first analysis of the global networks of integrators FedEx, UPS, and DHL using network science. While 
noticing that all three networks rely on a “hub-and-spoke” structure, the network configuration of DHL leans towards a multi-“hub-and-spoke” structure that reflects 
the different business strategy of the integrator. We also analyzed the robustness of the networks, identified the most critical airports per integrator, and assessed that 
the network of DHL is the most robust according to our definition of robustness. Finally, given the unprecedented historical time that the airline industry is facing at 
the moment of writing, we provided some insights into how the COVID-19 pandemic affected the global capacity of integrators and other cargo airlines. Our results 
suggest that full-cargo airlines and, much more dramatically, combination airlines were impacted by the pandemic. On the other hand, apart from fluctuations in 
offered capacity due to travel bans that were quickly recovered thanks to the resilience of their networks, integrators seem to have escaped the early months of the 
pandemic unscathed.  

1. Introduction 

Air cargo transportation plays a role of paramount importance in 
the global economy, especially when time and safety are crucial factors. 
In fact, while roughly 1% of the overall cargo volume worldwide is 
transported via air, the percentage spikes to 35% if value is used as a 
measure (IATA website, 2020). As example, transport of high-value, 
perishable, or emergency-related products is generally carried out via 
air, because it is the only mode that guarantees shipping times con-
sistent with the user's requirements and needs. At the time of writing, 
this factor is even more crucial because of the COVID-19 pandemic. 
Transport of lifesaving medical devices (e.g., ventilators) and masks to 
help people worldwide contrast the disease has been possible only with 
air transport (Aviation Business website, 2020). 

Air cargo transport can be carried out in two ways: (i) in the belly 
space of passenger aircraft, and (ii) using dedicated full freighter air-
craft. The first option offers more flexibility in terms of frequencies and 
destinations, but a limited cargo capacity per aircraft. This cargo ca-
pacity can also suffer from unexpected variations, because it depends 
on how much luggage passengers check in for a specific flight (Morrell 
and Klein, 2018; Delgado et al., 2020). Given the aforementioned two 
transport strategies, three different air cargo service providers can be 
identified: (i) passenger airlines offering cargo services (also known as 
combination airlines), (ii) full-cargo airlines, and (iii) integrators. Dif-
ferently from (i) and (ii), that only offer air transport services between 
airports and rely on freight forwarders and ground handlers for the 
landside logistics, integrators offer a door-to-door service to customers. 

The American FedEx and UPS, and the European DHL are the “three- 
headed” kings of the integrator business worldwide. TNT, another im-
portant integrator in the past, was acquired by FedEx in 2016. On the 
other hand, Amazon has recently invested into the creation of its own 
aircraft fleet, i.e., Amazon Air, hence paving the way to become de facto 
a fourth major integrator. While, until now, all its fleet was leased from 
other cargo airlines, by 2021 Amazon Air will own more than 70 full 
freighters (The Motley Fool website, 2020). 

Similarly to other transportation modes, network science can be 
used to study characteristics, similarities and differences between the 
networks of the different players in the air cargo world, and specifically 
of integrators. This approach can provide useful insights into expansion 
opportunities or network re-structure strategies in such a competitive 
business. As example, the analysis of which airport connection, if added 
to the current network structure, might be more beneficial for the 
overall connectivity, can be of interest for stakeholders, as well as the 
effect of a temporary (or permanent) closure of an airport. While the 
literature is relatively rich of works addressing the network structure of 
airlines using a passenger perspective (Guimera et al., 2005; Malighetti 
et al., 2008; Paleari et al., 2010; Lordan et al., 2014), the cargo coun-
terpart is still a fairly unexplored territory, especially when it comes to 
integrators. To the best of our knowledge, academic papers only fo-
cused on basic properties of integrators' networks (Bowen, 2012;  
Bombelli et al., 2020), or were spatially and temporally limited to 
subsets of the global networks (Malighetti et al., 2019a; Malighetti 
et al., 2019b). This factor is consistent with the difficulty to find reliable 
and complete data on air cargo operations, where confidentiality and 
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competition are crucial factors. This applies both to passenger airlines 
offering cargo services and, even more strongly, to integrators 
(Malighetti et al., 2019a; Lakew, 2014). 

Our first contribution fills in this gap. Using publicly available data 
from global aviation data services over a period of eight months, we 
built global networks for integrators FedEx, UPS, and DHL, and pro-
vided a thorough analysis and comparison of such networks. The 
second contribution contextualizes the peculiar historical period that 
coincides with the preparation of this paper. While the COVID-19 
pandemic inflicted an unprecedented blow on passenger airlines (City 
AM website, 2020), the effect on the cargo industry was evident 
(Accenture website, 2020), yet not so dramatic. As mentioned before, 
global transport of goods was needed ever more during the pandemic, 
and lockdown flight restrictions and bans on passengers did not apply 
with the same severity to cargo schedules. Given that the dataset we 
collected refers to a time-span that covers a pre- and a pandemic period, 
we analyzed how network characteristics and connectivity evolved with 
time for the three integrators and, to have a more thorough analysis, for 
three other airlines relevant from a cargo perspective. 

The rest of the paper is organized as follows. In Section 2, a lit-
erature review on network science applied to the cargo industry, and 
specifically to integrators is provided. Section 3 describes the char-
acteristics, assumptions, and limitations of the collected dataset. In  
Section 4, a network analysis in terms of topology and robustness is 
shown for integrators FedEx, UPS, and DHL. Section 5 describes the 
effect of the COVID-19 pandemic on the network characteristics of 
different cargo carriers, while Section 6 states conclusions and re-
commendations for future work. 

2. Literature review 

The existing literature pertaining integrators mainly addresses two 
aspects: (i) their business and cost models, and (ii) their network con-
figuration and characteristics. Although our work belongs to the second 
category, we argue that the two categories are strongly intertwined, and 
hence provide a comprehensive literature review addressing both. 

As it concerns business and cost models, in (Kiesling and Hansen, 
1993) the cost structure of FedEx between the late 80s and early 90s 
was analyzed, and considerable economies of densities were high-
lighted. It should also be noted that each of the integrators considered 
in this work has undergone massive changes, acquisitions, and network 
re-designs in the last thirty years, due to the soaring of the Internet and 
the e-commerce, as highlighted in (Morrell and Klein, 2018) and 
(Lakew, 2014). In addition, in (Lakew, 2014) the cost structure of 
FedEx and UPS was assessed using quarterly data on domestic opera-
tions and costs for the years 2003–2011. It was shown that (i) ac-
counting for carrier-specific differences in cost structure and network 
size, FedEx is more cost efficient than UPS, and (ii) both integrators 
display economies of size. The latter result was also confirmed by 
(Onghena et al., 2014). 

Before analyzing the relevant literature on the network configura-
tion and characteristics of integrators, we provide a general framing of 
complex network theory. The term complex network refers to those 
networks whose topological characteristics are non-trivial, with pat-
terns and relationships between nodes that would generally not occur in 
a randomly generated network (Barabási and Albert, 1999, Barabási, 
2009, Strogatz, 2001). Many systems where hierarchical and commu-
nity-like structures between elements are present can be modeled as 
complex networks. Systems of this kind are, as example, the Internet 
(Cohen et al., 2000), epidemic spreading models (Stegehuis et al., 
2016), and transport networks such as air transport networks (Guimera 
et al., 2005). Our work belongs to this last category. 

Focusing on papers addressing the network configuration of in-
tegrators from a quantitative perspective, (Kuby and Gray, 1993) ana-
lyzed the FedEx network. In contrast to the general research on hub- 
and-spoke systems, where it is assumed every node has a direct 

connection to the hub, it was shown that in the FedEx network most 
routes to the main hub make one or more stopovers. The paper explores 
the trade-offs and savings involved with stopovers and feeders, and 
evaluates the optimality of the FedEx network using a mixed integer 
linear programming formulation. More recently, (Bowen, 2012) pro-
vided a comparison of the network structures of FedEx and UPS with 
the network structure of American Airlines and Southwest using com-
plex network theory indicators. Although this work is the first one, to 
the best of our knowledge, to provide such analysis, we believe the 
comparison between passenger airlines and integrators' networks might 
not be totally appropriate. In fact, while in the former demand is gen-
erally symmetric, in the latter there is a high imbalance in demand and 
many routes are unidirectional (and sometimes dubbed as “trian-
gular”). As such, modeling integrators' networks with undirected edges 
and, as a consequence, using network indicators that do not consider 
directionality of connections (as the γ index in the paper) might lead to 
biased results. This issue was addressed in (Malighetti et al., 2019a;  
Malighetti et al., 2019b) and (Bombelli et al., 2020), where the analysis 
of integrators' networks was carried out considering the directionality 
of connections. In (Malighetti et al., 2019a) and (Malighetti et al., 
2019b) the authors focused, respectively, on the European and Asian 
network structure of FedEx, UPS, DHL, and TNT (the analysis covers a 
time-period prior to the FedEx acquisition), which are based on a lim-
ited temporal dataset of one week. In both works, the different strate-
gies of the main integrators were highlighted, with DHL focusing more 
on efficiency and exhibiting the highest centralization and the lowest 
density, and FedEx and UPS showing a higher density and transitivity 
and a lower centralization. In (Bombelli et al., 2020), the authors relied 
on a temporally larger dataset and focused on the global networks of 
FedEx, UPS, and DHL. After some preliminary considerations on the 
different networks, that confirmed the different characteristics of the 
networks at the global scale, most of the complex network analysis 
addressed the global air cargo transport network that also includes 
passenger airlines. Since all the different networks were merged, in-
tegrator-specific insights were not traceable any longer. Hence, in 
comparison to the existing literature on integrators, the contribution of 
this paper is twofold as already anticipated in Section 1. First, we 
provide a topological analysis of integrators' networks that is both 
spatially and temporally more complete. Second, we add a robustness 
analysis that, after addressing the general structure of the networks, 
focuses on time-dependent variations due to the COVID-19 pandemic. 

3. Dataset 

In this section, we provide a thorough description of the dataset 
used in the paper. As highlighted in other works (Malighetti et al., 
2019a; Malighetti et al., 2019b), data on integrators' schedules is scarce 
and difficult to retrieve as a stand-alone product. To circumvent this 
issue, we have been collecting integrator-specific data from public 
sources for a time period of eight months. In particular, we retrieved 
data from global aviation data services Flightaware1 and Flightradar24,2 

which report for all airports in their database departures of the previous 
14 days and 7 days, respectively. We used Flightaware as the main data 
source, and used data from Flightradar24 to enrich our dataset by 
adding flights that might not have been included in the Flightaware 
database. Since the process was carried out either via the dedicated API, 
with a limited set of requests (Flightaware), or manually (both data 
services), we pre-selected a set of 336 airports deemed relevant from a 
cargo perspective (i.e., with an annual cargo throughput in 2014 
greater or equal to 5000 t (Meijs, 2017)) to limit the data retrieval 
process effort. All the main and second-tier hubs of the three integrators 
were considered, as well as other airports with a non-negligible yearly 

1 www.flightaware.com 
2 www.flightradar24.com 
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cargo throughput. As will be highlighted later in this work, this airport 
filtering step can have the undesired effect of ruling out some lower-tier 
airports used by the integrators. Notwithstanding, we believe our ap-
proach to provide a good trade-off between computational effort and 
faithful network representation. We also acknowledge that, while the 
dataset could be more extensive, cargo operations generally rely on a 
smaller set of involved airports when compared to the passenger 
counterpart. Because of the extensive freight ground transportation 
network, the catchment area for cargo transport can increase up to 10 
times with respect to the catchment area for passengers (Boonekamp 
and Burghouwt, 2017). The list of the considered airports is available as 
part of our online dataset (https://data.4tu.nl/repository/ 
uuid:2e9b04dd-70fe-4f16-abd4-873be4b2c4b1), while their geo-
graphical location is depicted in Fig. 1. In the rest of the paper, we will 
generally refer to specific airports using their IATA code unless, for sake 
of clarity, the full name is preferable. 

We collected data on dates November 20th 2019, December 3rd 
2019, December 16th 2019, December 30th 2019, January 13th 2020, 
January 27th 2020, February 14th 2020, March 2nd 2020, April 6th 
2020, April 27th 2020, May 11th 2020, May 26th 2020, June 18th 
2020 and will name each of these thirteen data retrieval blocks an 
observation for the rest of the paper. We additionally retrieved data from 
Flightradar24 seven days prior to each observation, so that two con-
secutive data retrieval processes from this data source would match the 
time-span of each observation from Flightaware. Given our notation, 
each observation's retrieval date refers to the end of the time-period 
that observation covers. As example, an observation with date April 
27th, 2020 refers to the time-period April 13th-April 27th, 2020. The 
first six observations cover consecutive 14-day periods. Apart from 
negligible temporal holes, due to the fact we did not always start the 
data retrieval process at the same time, this means that roughly half of 
our dataset covers 84 consecutive days. This is important to ensure that 
triangular routes that were flown infrequently are considered. Since the 
process was carried out manually and each data retrieval is generally 
lengthy, the other seven observations were retrieved with time-inter-
vals ranging from 17 to 25 days. Nothwithstanding the presence of 

more pronounced temporal holes in this case, the addition of these 
observations is important to account, at least partially, for seasonality 
effects. In fact, our dataset contains the peak season (November and 
December) and another above average month (March), below average 
months (January, February, and April), and average months (May and 
June). While we acknowledge that seasonality effects can only be fully 
accounted for with a complete year of data, we believe our dataset to be 
sufficient, especially when compared to the existing literature, to pro-
vide useful insights into integrators' global networks. All thirteen ob-
servations were used both to build the networks described in Section 4, 
and to create time-series in Section 5 to analyze the effect of COVID-19 
on cargo capacity and network indices. Overall, our dataset covers 
182 days between the second half of 2019 and the first half of 2020. For 
each observation, we created 336 distinct (airport,date) tuples, each 
containing departures from a specific airport in the 14-day period 
culminating in the date specified in the tuple. An extract from the data 
associated with the (Hong Kong International airport (HKG), April 27th, 
2020) tuple is reported in Table 1. Each entry is characterized by a 
flight code, an aircraft code, a destination airport, a departure time, and 
an Estimated Time of Arrival (ETA). 

Each observation was then split into specific Origin-Destination 
(OD) airport pairs. Having 336 airports and thirteen observations, a 
maximum number of 13 ⋅ 336 ⋅ 335 = 1,463,280 distinct tuples 
characterized by a unique (OD airport pair,date) was generated. For 
each tuple, flights specific to FedEx, UPS, and DHL were searched using 
a list of integrator-specific airlines and aircraft types. We focused on the 
flight code column of each tuple to identify integrator-specific flights, 
and looked for airline codes as follows:  

• FedEx: - FDX (FedEx Airlines)  
• UPS: - UPS (UPS Airlines), − SRR (Star Air, if the origin or the 

destination of the associated flight corresponded to a UPS hub)  
• DHL: - AHK (Air Hong Kong), − ABR (ASL Airlines Ireland, for 

Airbus A300-600F, Airbus A330-200F, and Airbus A330-300F air-
craft types), − BCS (European Air Transport), − BDA (Blue Dart 
Aviation), − BOX (AeroLogic, for weekday flights), − DAE (DHL 

Fig. 1. Initial set of airports to build the FedEx, UPS, and DHL networks.  

Table 1 
Extract from (HKG, April 27th 2020) tuple data.       

Flight code Aircraft type Destination airport Departure ETA  

FDX5391 B77L Kansai Int'l (KIX / RJBB) Mon 23:26 HKT Tue 03:15 JST 
CLX7211 B744 Luxembourg Int'l (LUX / ELLX) Mon 23:05 HKT Tue 06:05 CEST 
CPA23 B748 Sydney (SYD / YSSY) Mon 22:30 HKT Tue 08:35 AEST 
THY71 B77W Istanbul Airport (IST / LTFM) Mon 22:28 HKT Tue 04:48 + 03 
SOO276 B77L Cincinnati/Northern Kentucky International Airport (KCVG) Mon 22:25 HKT Tue 00:53 EDT 
CLX8591 B748 Anchorage Intl (PANC) Mon 22:20 HKT Mon 15:20 AKDT 
CAL928 A333 Taiwan Taoyuan Int'l (TPE / RCTP) Mon 22:16 HKT Mon 23:28 CST 
CPA41 B744 Chennai Int'l (MAA / VOMM) Mon 22:10 HKT Tue 00:30 IST 
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Aero Expreso), − DHK (DHL Air UK), − DHX (DHL International 
Aviation ME), − PAC (Polar Air Cargo), − SOO (Southern Air, for 
Boeing 737-400SF and Boeing 777F aircraft types). 

The aforementioned list highlights a different business strategy be-
tween DHL and the other two integrators. In fact, while FedEx and UPS 
mainly rely on their own fleet, DHL relies on a vast set of partner air-
lines that are owned/co-owned and generally fly under the DHL livery, 
as shown in Fig. 2. While most of the listed airlines operate solely for 
DHL, other airlines might be offering part of their capacity to other 
freight forwarders. As example, while DHL severely relies on Polar Air 
Cargo services, especially for U.S.-Asian routes, this airline might offer 
part of its cargo capacity to other forwarding companies such as DB 
Schenker or Kuehne Nagel. As a consequence, we might overestimate 
the overall capacity for the DHL network. We tried to mitigate this 
effect as much as we could, for example choosing only aircraft type, tail 
number (when available), and OD airport pairs combinations we knew 
had a high chance to be uniquely flown for DHL. FedEx and UPS rely on 
other airlines as well, but to a much lesser extent or for contingency 
reasons that cannot be easily traced and recognized in our dataset. 
FedEx relies on a fleet of ASL Airlines Ireland ATR 42-300F and ATR 72- 
200F turboprobs for local cargo transport, as example within Canada. 
UPS has an agreement with Western Global Airlines to sub-contract five 
McDonnell Douglas MD-11F aircraft for up to 30 days a year for tem-
porary volume spikes. 

For each integrator, we focused on the aircraft types listed as either 
belonging to their own fleet, or to subsidiary airlines. We considered all 
narrow-body and wide-body full freighters, and did not consider tur-
boprops, because they contribute less significantly to the overall ca-
pacity and generally only operate in a point-to-point manner between 
local airports. In Appendix A, the full list of aircraft is provided, with 
model, aircraft code, and maximum transportable payload (in tonnes). 
The maximum payload, as Section 4 will reveal, is a crucial measure in 
this work, because it is used to compute the theoretical maximum cargo 
capacity between OD airport pairs. We also want to highlight two 
characteristics of the air cargo network that are strongly related to our 
modeling choice: 

1. full freighters seldom flight at full weight capacity. Lacking data 
on average load factors per OD airport pair, we believe that using the 
maximum theoretical weight capacity is a good indicator of the re-
levance of an OD airport pair connection 

2. some flights might be volume-bounded (Malighetti et al., 
2019b) rather than weight-bounded, which means that their maximum 
volume capacity is reached before their weight capacity (i.e., they are 
“low density” flights in jargon). This might be especially true for high- 
tech commodities such as TVs. Notwithstanding, we decided to focus on 
weight capacity because we believe it to be easier to quantify. 

We conclude the dataset analysis by describing how the maximum 

transportable tonnage per OD airport pair connection and integrator 
was computed. Given, for each OD airport pair, the subset of (OD air-
port pair,date) tuples containing recorded flights for that connection 
and a specific integrator, we summed the transportable payloads of all 
aircraft involved to determine the maximum weight capacity. As ex-
ample, if the analysis of the thirteen (A-B,date) tuples provided as cu-
mulative outcome for a specific integrator 50 Boeing B747-400F and 75 
Boeing B747-800F, then the weight capacity of the A-B connection for 
that integrator was computed as 50 times the payload of a B747-400F 
plus 75 times the payload of a B747-800F. For sake of clarity, we want 
to highlight that in the paper we will be using interchangeably the 
terms OD airport pair and route to represent the direct connection 
between two airports. As such, and not having data on preferred cargo 
itineraries between airport pairs, weight capacity represents the max-
imum estimated payload that can be transported along the direct route 
OD, where O might not be the initial origin and D might not be the final 
destination for some cargo. 

4. Integrators' network analysis 

We begin this section with an overview of the methods that will be 
used to model and compare integrators' networks in Section 4.1. Then, 
in Section 4.2 we provide a thorough overview of the topological 
properties of the FedEx, UPS, and DHL networks, and conclude with a 
robustness analysis in Section 4.3. 

4.1. Methods 

We modeled each integrator's network as a directed graph 
G N= ( , ), where N is the set of nodes (airports), and ℰ is the set of 
directed edges (connections between OD airport pairs). In a graph, 
edges can be unweighted or weighted. In the first case, they are all 
assigned a unitary value. In the second case, the weight of each edge 
should be representative of the relevance of such edge within the graph. 
In this work the weight of each edge is the maximum transportable 
tonnage capacity, as underlined in Section 3. An unweighted directed 
graph can be represented in compact form with an adjacency matrix 
AN N× , where aij=1 if a directed edge connects nodes i and j. All the 
nodes j that are directly reachable from node i, i.e., aij=1, are its 
neighbors. If the graph is weighted, A is replaced with the weight 
matrix W , where wij represents the weight of the directed edge con-
necting i and j. 

The indegree of node i is N= =k ai
in

j ji1 and represents the number of 
nodes directly connected to node i (i.e., it is the inflow of node i). The 
outdegree of node i is N= =k ai

out
j ij1 and represents the number of nodes 

reachable from node i (i.e., it is the outflow of node i). The summation 
of the two defines the degree of node i, i.e., ki. For an airport, the degree 
represents the number of OD airport pairs for which the current airport 

Fig. 2. Examples of airlines flying under the DHL livery. Source of images: http://www.airliners.net/photo/Air-Hong-Kong/Airbus-A300F4-605R/1931759/L/ (left) 
and https://www.flickr.com/photos/40563877@N00/8213198478 (right). 
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is either the destination (indegree) or the origin (outdegree). If we 
define n k( ) the number of nodes in the network with a degree equal to 
k , the cumulative degree distribution 

N
= =P k

n t
( )

( )t k

(1) 

expresses the ratio of nodes in the network with a degree greater or 
equal to k . The strength si of node i is defined as 

N N= += =s a w a wi k k i ki ki k k i ik ik1, 1, , i.e., it is the summation of the 
weights of all edges departing from/arriving to node i. Using available 
capacity as the weight, the strength of an airports provides an estimate 
of its potential cargo throughput. The normalized local clustering coef-
ficient Ci (Fagiolo, 2007) of node i in a directed graph is defined as 

A A= +C
k k k

( )
2[ ( 1) 2 ]i

T
ii

i i i

3

(2) 

where A=ki ii
2 is the number of neighbors of node i for which i is a 

neighbor. In a fully-connected graph, Ci=1 Ni . The nor-
malized betweenness centrality (Freeman, 1977) gi of node i is defined as 

N N
=g 1

(| | 1)(| | 2)i
i j k

jk
i

jk (3) 

where σjk is the number of shortest paths between nodes j and k, and σjk
i 

is the number of those paths passing through node i. The normalization 
term in Eq. (3) accounts for the fact that paths starting or ending in i are 
not considered. This index correlates the relevance of a node in a net-
work with the frequency the node appears in shortest paths that neither 
start nor end in i. If an airport is characterized by a high betweenness 
centrality, it means it is an important transshipment hub for cargo. 

Focusing on network-specific indices, some of them are averages of 
node-specific indices. As example, the average degree is 

N

N= =k ki i
1

1 , while the average clustering coefficient, also known 
as global clustering coefficient (Watts and Strogatz, 1998; Fagiolo, 2007;  
Opsahl and Panzarasa, 2009) is 

N

N= =C Ci i
1

1 . Note that we use 

the notation a to indicate the arithmetic mean of vector a . We define 
the characteristic path length of a network as 

N N

N N

=
= =

L d1
(| | 1) i j

j i

ij
1 1

(4) 

where dij i the number of steps from node i to node j. Note that, given 
Eq. (4), we assume an unweighted formulation. We define the diameter 
D =  max (dij) as the longest shortest path in the graph. The component 
of a graph is a subset of the graph where does exist a path between each 
pair of nodes belonging to the component. The giant componentGc is the 
component with the highest number of nodes. If a path exists between 
every node pair in the graph, the graph itself is the giant component. 

4.2. Topology of the FedEx, UPS, and DHL networks 

We begin our topology analysis highlighting the basic character-
istics of the three networks, as summarized in Table 2. For each in-
tegrator, the number of nodes is equivalent to the cardinality of the 
subset of the 336 airports that appeared in at least one (OD airport 
pair,date) tuple. The same concept was applied to determine the 
number of edges. Similarly to (Malighetti et al., 2019a), we defined the 
maximum transportable tonnage per edge Available Freight Tonnes 
(AFT), and the product of each AFT and the geodesic distance of the 
associated OD airport pair Available Freight Tonnes Kilometer (AFTK). 
The three networks are graphically visualized in Fig. 3. Note that, for 
sake of visual clarity, we plotted edges as undirected. As such, the 
thickness of each edge is proportional to the cumulative AFT char-
acterizing the OD airport pair connection in both directions. 

The DHL network is the most developed in terms of number of nodes 

and edges, probably due to the set of auxiliary airlines that operate 
under its livery. This more extensive network does not translate into a 
higher cargo capacity, as the overall AFT and AFTK testify. In terms of 
overall capacity, FedEx outperforms both UPS and DHL. DHL performs 
better than UPS in terms of AFTK because of the considerable higher 
number of connections. Analyzing the density, i.e., the ratio between 
the edges and the potential number of edges of a network (that is, 
N N 1 for a directed graph), FedEx and UPS are characterized by 
a comparable value, with DHL being a sparser and more concentrated 
network. All three values of reciprocity, i.e., the ratio between the 
number of node pairs connected in both directions and the number of 
node pairs connected in at least one direction, are low. This justifies the 
modeling assumption of relying on a directed graph to model demand 
and flow imbalances in the cargo network. 

The global clustering coefficient of FedEx is higher than the ones 
characterizing UPS and DHL, meaning that airports in the FedEx net-
work are clustered more closely. The three global clustering coeffi-
cients, paired with the small values of 〈L〉, ensure that the three net-
works are small world networks. This means that most airports are not 
neighbors of one another, but at least a subset of the neighbors of any 
given airports are likely to be neighbors of each other. In addition, most 
airports can be reached from every other airport by a small number of 
hops, generally using hubs as pivot nodes. In terms of diameter, FedEx 
still emerges as a more compact network. 

Note that both 〈L〉 and D were computed with respect to the giant 
component of each network, to avoid numerical errors. As Table 2 
shows, for all three networks the giant component Gc does not coincide 
with the full network. We investigated this behavior, and found for each 
integrator a small number of airports with a unitary degree. Being the 
graph directed, this means that those airports behave only as sinks 
(unitary indegree) or sources (unitary outdegree). Having collected 
enough data, temporally-wise, to cover possible seasonal or infrequent 
routes, we attributed this fact to our initial set of airports. Most likely, 
some lower-tier airports that appear in the same circular routes as the 
unitary degree airports were omitted. A refinement of the initial set of 
airports is one of the first directions to pursue as part of our future 
work. 

To provide more tangible insights into the role of airports and OD 
airport pair connections, for each integrator we list the top-five airports 
according to degree, strength, and betweenness centrality. We com-
puted betweenness using two approaches, unweighted betweenness g 
and weighted betweenness gw. In the unweighted formulation, every 
edge is treated equally and assigned a unitary cost. For the weighted 
formulation, we used a heuristic approach to translate each AFT into a 
proper cost. For each integrator, we identified the minimum and 
maximum AFT (resp. am and aM) over the whole network, and asso-
ciated with the two values a maximum and minimum cost (resp. cm and 
cM). We wanted costs to decrease for increasing values of AFT to re-
present the easiness of use of high-capacity routes over low-capacity 
routes. We used a linear function in the form = +c c a a( )i m

c c
a a i m

M m
M m

, 
where ci is the cost of an edge whose AFT is ai. Note that given our 

Table 2 
Comparison of the FedEx, UPS, and DHL networks.       

FedEx UPS DHL  

Nodes 129 115 204 
Edges 903 700 1,326 
Density 0.055 0.053 0.032 
Reciprocity 0.56 0.53 0.46 
〈k〉 13.8 12.2 13.0 
〈C〉 0.55 0.48 0.47 
Gc 113 105 188 
〈L〉 2.55 2.77 2.84 
D 5 8 7 
Overall AFT 4,746,117 4,024,924 3,998,264 
Overall AFTK 13,143,808,955 11,242,319,058 12,757,305,598 
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definition of costs, the slope of the aforementioned formula is negative, 
correctly modeling a decrease in cost for increasing values of AFT. For 
all three networks, we set cm=5 and cM=1. Consistently with previous 
considerations, the two betweenness centrality measures were com-
puted using the giant component of each network. The top-five airports 
for FedEx, UPS, and DHL are reported in Table 3. 

The analysis of Table 3 reveals, not surprisingly, that the main hubs 
of each integrator are generally at the top of the table regardless of the 
index chosen. For FedEx, their global hub Memphis International air-
port (MEM), for UPS, their Worldport worldwide hub Louisville Inter-
national airport (SDF), for DHL, their European hub Leipzig/Halle 
airport (LEJ) and American hub Cincinnati/Northern Kentucky Inter-
national airport (CVG). For each integrator other major hubs appear at 
different positions, depending on the index, in the table. As example, 

Charles de Gaulle airport (CDG), Cologne Bonn airport (CGN), Kansai 
International airport (KIX) for FedEx, CGN, Hong Kong International 
airport (HKG), Miami International airport (MIA), Ontario International 
airport (ONT), Philadelphia International airport (PHL) for UPS, Bah-
rain International airport (BAH) for DHL. Intuitively, American in-
tegrators FedEx and UPS pair their main domestic hub (MEM and SDF, 
respectively) with a European hub (CDG and CGN, respectively) to 
cover their second biggest market. European integrator DHL relies on a 
similar strategy, with the main hub LEJ paired with the American hub 
CVG. Note that all European hubs are located inside or in close proxi-
mity to the so called “blue banana” industrialized region, that offers a 
catchment area rich of industries and retailers. On the other hand, all 
American hubs belong to the Midwest, which offers a strategic geo-
graphical position especially for domestic connections. 

Fig. 3. FedEx, UPS, and DHL networks.  
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A tangible difference between integrators FedEx, UPS and integrator 
DHL can be appreciated if strength and betweenness are analyzed. For 
FedEx and UPS, the gap between their main hub (resp. MEM and SDF) 
and the next airports is quite significant both in terms of strength and 
betweenness (gw in particular). The strength of their top airport is more 
than one order of magnitude greater than the strength of the next air-
port, while roughly 60% of all shortest paths pass through their main 
hubs, with the percentage dropping to 40% for the second airport. This 
behavior is consistent with a network characterized by a single “top- 
hub”. On the other hand, DHL seems to be a hybrid version of a hub- 
and-spoke network, as already highlighted in (Malighetti et al., 2019a;  
Bombelli et al., 2020), where LEJ, CVG, and to a slightly lesser extent 
HKG share the control of the network. Both strength and weighted 
betweenness confirm this hybrid system for the DHL network, where no 
top airport clearly outperforms the others, resulting in more balanced 
cargo capacities between geographical regions. Fig. 3 provides hints in 
this sense as well, with very imbalanced flows for FedEx and UPS (to-
wards/from MEM and SDF), and more balanced flows in the DHL net-
work. A similar conclusion can be inferred analyzing Table 4, where the 
five OD airport pairs characterized by the highest AFT are listed per 
integrator. Both for FedEx and UPS, all five connections either start or 
end in the main hub, while for DHL hubs LEJ, CVG, and HKG all appear. 
Focusing on FedEx and UPS, every connection is domestic. As (Bowen, 
2012) pointed out, despite the integrators' internationalization, the 
routes with the highest capacity in both networks remain over-
whelmingly domestic. This consideration also fosters a more metho-
dologically-oriented question. FedEx, UPS, and DHL are obviously in-
ternational in nature, yet characterized by a different market share 
depending on the region of interest. Hence, are we comparing 

companies serving the same markets, but with a different network 
structure, or are discrepancies in the network structure caused by the 
different market shares? To answer this (very relevant) question, we 
would need to dive more into business models and economic factors 
that go beyond the scope of this paper. In addition, given the door-to- 
door nature of integrators, we might need to combine the air transport 
network with the ground transport one to get a better picture. This is 
another research direction this paper does not aim to address. 

We conclude the discussion on hubs and cargo flows with Fig. 4. 
Here, we reported the AFT between the first eight airports to appear in 
the sorted list of busiest OD airport pair connections of each integrator. 
We represented such AFT using chord diagrams. Outgoing capacities of 
each airport are plotted radially, and occupy a portion of the cir-
cumference that is proportional to their value. Every capacity flow 
between airports is represented by an arc, whose thickness is also 
proportional to its value. Since each airport is mapped with a different 
color, the color of each arc is the color of the airport characterized by 
the positive imbalance of the flow. As example, in Fig. 4(a), the arc 
between MEM and LAX is purple because the LAX-MEM route has a 
higher AFT than the MEM-LAX connection. To corroborate our previous 
findings, in Fig. 4(a) and Fig. 4(b) the flows are dominated by a single 
airport, which in both cases accounts for roughly one third of the 
overall AFT exchanged between the airports. In the DHL case 
(Fig. 4(c)), there is a stronger balance between airports. 

Before providing some insights into robustness, we analyzed more 
into details the degree distribution of the three networks using histo-
grams and plotted the resulting cumulative degree distribution of each 
network in Fig. 5. In the histograms (Fig. 5(a), (b), and (c)), we also 
highlight the IATA code of the three airports characterized by the three 
highest values of degree. All three histograms are strongly right- 
skewed, with the frequency of nodes with a degree equal to k steeply 
decreasing as k increases. This behavior is consistent with a hub-and- 
spoke system that all three integrators rely on, even with different 
nuances. We want to highlight the fact that the three histograms, 
without additional information, are extremely similar and might lead to 
the (wrong) conclusion that the networks of FedEx, UPS, and DHL are 
extremely similar as well. Together with the number and distribution of 
connections, their strength and the likeliness of a node to appear in 
shortest paths (betweenness centrality) need to be investigated to fully 
reveal the features of a network. Without these additional indices, as 
example, the multi-hub nature of the DHL network might have been 
harder to spot. 

In Fig. 5(d), the cumulative degree distribution P k( ) of the FedEx, 
UPS, and DHL networks is reported. Notwithstanding the aforemen-
tioned differences between the three networks, the trend of P k( ) is 
very similar, and follows a truncated power law consistently with other 
air transportation networks (Guimera et al., 2005; Lordan et al., 2014) 
that confirms scale free properties. In a scale free network, the cumu-
lative degree distribution follows a (truncated) power law. This means 
that the number of nodes with an extremely high degree is generally 
higher than what would be expected from a normal distribution. On the 
other hand, well-connected (i.e., where k ≃ 〈k〉) nodes are much more 
common in networks whose degree distribution follows a normal dis-
tribution rather than a power law. The presence of nodes with an 

Table 3 
Top-five airports according to degree k, strength s, unweighted betweenness 
centrality g, and weighted betweenness centrality gw for FedEx, UPS, and DHL 
networks.           

rank k s [tonnes⋅1e6] g gw 

airport value airport value airport value airport value  

FedEx 
1 MEM 120 MEM 2.47 MEM 0.36 MEM 0.57 
2 CDG 82 IND 0.65 CDG 0.30 CDG 0.37 
3 IND 77 OAK 0.39 CGN 0.10 KIX 0.06 
4 LAX 51 ANC 0.34 IND 0.10 CGN 0.06 
5 EWR 47 CDG 0.32 KIX 0.08 DXB 0.04  

UPS 
1 SDF 102 SDF 1.98 CGN 0.42 SDF 0.63 
2 CGN 71 ANC 0.51 SDF 0.39 CGN 0.41 
3 DFW 58 ONT 0.44 MIA 0.20 MIA 0.19 
4 PHL 56 CGN 0.40 PHL 0.10 ANC 0.14 
5 ONT 55 DFW 0.33 ANC 0.09 HKG 0.05  

DHL 
1 LEJ 133 LEJ 0.76 LEJ 0.28 LEJ 0.40 
2 CVG 90 CVG 0.65 CVG 0.17 CVG 0.28 
3 MIA 87 HKG 0.55 HKG 0.16 HKG 0.22 
4 HKG 77 ANC 0.50 MIA 0.16 MIA 0.16 
5 ANC 56 MIA 0.35 BAH 0.12 ANC 0.12 

Table 4 
Top-five OD airport pair connections according to AFT for FedEx, UPS, and DHL networks.         

rank FedEx UPS DHL 

OD capacity [tonnes⋅1e3] OD capacity [tonnes⋅1e3] OD capacity [tonnes⋅1e3]  

1 LAX-MEM 80.0 ANC-SDF 132.1 HKG-ANC 69.7 
2 MEM-ANC 63.2 SDF-ANC 80.4 ANC-CVG 66.6 
3 MEM-LAX 56.5 DFW-SDF 72.8 ICN-HKG 56.1 
4 MEM-OAK 55.5 ONT-SDF 70.7 EMA-LEJ 49.7 
5 MEM-EWR 55.0 SDF-DFW 57.5 LEJ-EMA 40.6 
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extremely high degree, i.e., the hubs, is a distinctive feature of air cargo 
networks. As such, Fig. 5(d) confirms, using a network science per-
spective, one of the underlying operational rules of integrators. 

4.3. Robustness of the FedEx, UPS, and DHL networks 

In this section, we took a step further and performed a robustness 
analysis of the three integrators' networks. In fact, all the analyses of  
Section 4.2 rely on a static network, where all nodes and edges are 
fixed. Here, although the definition of network robustness is not uni-
vocal, we adopted the same strategy as in (Guimera et al., 2005) and 
(Lordan et al., 2014), and simulated an ad-hoc disruption by an intruder 
with knowledge of the characteristics of the network. In particular, the 
intruder focuses on a specific index, and sequentially attacks (which, 
from a network perspective, reads as “removes”) the airport whose 
selected index is the maximum, i.e., the airport whose removal should 
be, in principle, most catastrophic. Note that this is a dynamic ap-
proach, since the removal of each airport, together with all the in-
coming and outgoing edges, modifies the topology of the reduced net-
work. Referring back to Table 3, an intruder attacking the FedEx 
network and focusing on degree, would choose MEM as the first airport 

to eliminate. Given the reduced network that does not contain MEM, 
CDG might not be the new airport with the highest degree because of 
the modified topology. In this context, we first eliminate a node (i.e., an 
airport), and as a consequence all the edges entering or exiting such 
node. In real applications, the two steps might be reversed and still lead 
to the same outcome. As example, during the COVID-19 pandemic some 
airports were entirely closed by governments in order to better control 
air transport (direct elimination of a node). For other airports, the set of 
connections might have been dramatically reduced, or even completely 
eliminated, as an indirect consequence of the closure of the afore-
mentioned airports (indirect elimination of a node). This approach will 
be shown more into details in Section 5 when analyzing time-dependent 
network characteristics for the different airlines. 

To compute the disruption severity after each airport removal, we 
monitored the normalized size of the giant component, defined as 

G G=S q q( ) ( ) /c c , where q is the ratio between removed airports and 
initially available airports, and Gc is the initial giant component of the 
network. Consistently with Section 4.2, we focused on the following 
four node-specific indices as removal strategies: - degree k, - strength s, - 
betweenness centrality g, and - weighted betweenness centrality gw. For 
each of the three networks, we used as starting network the giant 

Fig. 4. Chord diagrams representing cargo capacities between top airports.  
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component of the associated integrator (that did not coincide with the 
overall network) in order to have an initial S(q) equal to 1. In Fig. 6 we 
report results in a vertical manner, i.e., per integrator, while in Fig. 7 
we report results in a horizontal manner, i.e., per removal strategy. In 
all figures, we also provide an inset plot that highlights the S(q) curve 
for the first fifteen airports removed, to better highlight how the dif-
ferent networks react when the first (most important) airports are at-
tacked. 

Results in Fig. 6 display a high level of consistency across in-
tegrators. Attacks targeting betweenness centrality and, in particular, 
weighted betweenness centrality disintegrate the network more 
abruptly than attacks focusing on other indices. This is due to the 
transshipment nature of airports characterized by a high betweenness 
centrality. Although they might not be connected to many other air-
ports, they play the crucial role of connecting bridges between airport 
communities. The best example in this sense is Ted Stevens Anchorage 
International airport (ANC), which plays a key connecting role for cargo 
flows between Asia and North America. Focusing on Fig. 7, the effec-
tiveness of attack strategies based on g and gw is confirmed. In fact, 
these are the two strategies that cause S(q) to drop more steeply. On the 
other hand, s seems to be the least effective index to target, as the less 
concave shape of all three curves in Fig. 7(b) suggests. Note that this is 
also a natural consequence of the indicator we chose to assess the se-
verity of the disruption. We are basing our results on a connectivity 
measure (i.e., the size of the giant component), rather than an estimate 

of the overall cargo capacity capabilities of the remaining network. In 
the latter case, attacks based on degree or strength would be much more 
effective because the system would be deprived of the main processing 
centers. 

Analyzing the different integrators, UPS has the least robust net-
work for low values of q across all indices. In particular, when s is 
considered and q≃ 0.07, the size of the giant component for UPS is only 
the 30% of the original size, while the value increases to at least 60% 
for the other two integrators. We believe the reason lies in the fact that, 
for UPS, high-capacity airports are also crucial transshipment nodes, 
and hence disruptions focusing on strength implicitly disintegrate the 
network as well. On the other hand, at least for small values of q, DHL 
seems to have most robust network. 

To summarize the outcome of Fig. 6 and Fig. 7, in Table 5 the first 
six removed airports per removal strategy and per integrator are listed, 
together with the normalized size of the giant component after their 
removal. We highlighted in bold the airports whose removal produced a 
percentile reduction of the giant component greater than 10%. Only for 
UPS such drops occurred, for CGN (main European hub), ANC, and MIA 
(north American hub). Both for FedEx and DHL, no such cases occurred. 
Analyzing the inset plots, the degradation of S(q) is more regular, which 
might be a desirable effect against network attacks. DHL is confirmed to 
be the most robust network, if the size of the giant component is used as 
measure. In fact, after the removal of the first six airports, DHL con-
stantly ranks best, with the size of the giant component 10% and 30% 

Fig. 5. Histograms depicting the degree distribution and cumulative probability distribution P k( ) for the FedEx, UPS, and DHL networks (log-log scale).  
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larger, respectively, than FedEx and UPS. 

5. Analysis of the COVID-19 pandemic effect on cargo networks 

At the time of writing, the COVID-19 pandemic has caused more 
than 14.3 million confirmed cases, with about 602,800 deaths (Johns 
Hopkins Coronavirus Resource Center website, 2020). More than one 
third of the global population has been, or still is under a partial or total 
form of lockdown. The ensuing economic crisis is believed to become 
the most severe crisis in the last decades. 

Among the most affected industries, transportation is one of the 
businesses that took the hardest blow. While the COVID-19 pandemic 
brought many passenger airlines to the brink of failure, the cargo in-
dustry suffered a blow that, although indisputable (Accenture website, 
2020), is more difficult to quantify. Combination airlines lost most of 
their belly cargo capacity and are experiencing a slow recovery process. 
Full-cargo airlines and integrators should have been affected to a much 
lesser extent, if not for the unclarity of travel bans. As example, when 
United States President Donald Trump announced the travel ban from 
Europe on March 11th, 2020, he initially stated that prohibitions would 
also affect trade and cargo, only to tweet shortly later that the “re-
striction stops people not goods” (Forbes website, 2020). 

Relying on a dataset that covers both a pre- and a pandemic phase, 
in this section we shed some light upon the effect of the COVID-19 
pandemic and the ensuing bans on integrators' capacity. In particular, 
in Section 5.1 we analyzed AFT time-series for the three integrators and 

three other major airlines. We used this analysis to detect temporal 
variations in air cargo capacity due, most likely, to disruptions caused 
by COVID-19 and as a first assessment of how the pandemic re-shaped 
cargo flows. Then, in Section 5.2 we used a complex network theory 
approach, and computed for the same set of airlines time-varying net-
work characteristics to assess how the connectivity of cargo networks 
was affected. 

5.1. AFT time-series analysis for major OD airport pairs 

Although the focus of this paper is on integrators, we decided to 
consider cargo airlines of different kinds for the analyses presented in 
this section, to offer readers a more comprehensive study. In particular, 
we selected the three additional cargo operators:  

• Cargolux, a full-cargo airline from Luxembourg  
• Cathay Pacific Cargo, the cargo subsidiary of Cathay Pacific, the flag 

carrier of Hong Kong  
• Koninklijke Luchtvaart Maatschappij N.V. (KLM), the flag carrier of 

the Netherlands. 

We motivate the choice as follows. Cargolux constantly ranks in the 
top-ten of cargo airlines for freight tonne-kilometres, as well as Cathay 
Pacific Cargo. Although Cathay Pacific, being a passenger airline, can 
rely on belly space as well, we decided to focus only on its cargo sub-
sidiary. On the other hand, KLM is a top-European combination airline 

Fig. 6. Normalized size of the giant component S as a function of the ratio of removed airports q per integrator.  
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in terms of cargo throughput and heavily relies on its belly space. 
Hence, for KLM we considered both passenger aircraft and full freigh-
ters. For full freighters, we considered both its own fleet, and those 
operated by Martinair Holland N.V. (MP). It should be noted that, as far 
as cargo transport is concerned, KLM has a partnership with Air France 
(AF) and MP, and cargo operations are carried out in synergy as testi-
fied by the name of the joint cargo department AFKLMP, that is a 
portmanteau of the three acronyms. While we considered the con-
tribution of MP due to its full freighter-oriented nature, we omitted AF 
to have a more unbiased focus on a single combination airline. As such, 
we will be using the acronym KLMP to represent the combined network 
of KLM and MP. For the three additional airlines, we initially computed 
their network structure as shown in Section 4. Details regarding the 
networks structures are given in Appendix B. Note that, since our initial 
choice of airports focused on airports deemed relevant from a cargo 
perspective, the generated KLMP network is missing several airports 
that are only relevant from a passenger perspective (i.e., airports ser-
ving vacation-oriented regions, remote islands, etc). Given the nature of 
this work, this shortcoming was considered negligible. 

To better characterize the time-series, we also selected five dates 
that we considered relevant. They are in chronological order: 1) 
December 31st, 2019 - Chinese Health officials inform the World Health 
Organization about a cluster of 41 patients with a mysterious pneu-
monia. Most are connected to Huanan Seafood Wholesale Market, 2) 
January 11th, 2020 - The first death caused by COVID-19 is recorded in 
China, 3) January 31st, 2020 - United States President Donald Trump 

bans foreign nationals from entering the United States if they were in 
China within the prior two weeks, 4) March 11th, 2020 - United States 
President Donald Trump bans all travel from 26 European countries, 
and 5) May 11th, 2020 - Several countries (such as Spain, Iran, and 
Italy) begin to ease their lockdown restrictions. 

For the three integrator, we focused on cargo capacities along major 
connections and generated time-series using the AFT associated to each 
observation. In Fig. 8, 9, and 10 AFT time-series for FedEx, UPS, and 
DHL are respectively reported. 

All three integrators display a spike between mid and late December 
that is consistent with the well-known peak season. If we analyze the 
trend in February, a substantial difference exists between FedEx and the 
other two integrators. In fact, while AFT of FedEx remained roughly 
leveled for all OD airport pairs, consistent drops occurred for UPS and 
DHL. For UPS, the ANC-SDF line experienced a 30% decrease in AFT. 
For DHL, the HKG-ANC and ANC-CVG lines, i.e., the two major legs of 
the Asian export line to their American hub, experienced a strikingly 
similar 80% decrease. These drops in capacity correspond to the ob-
servation that was retrieved on February 14th, 2020, right after the 
travel ban to the United States for foreign nationals who were in China 
in the previous two weeks. 

We believe that the initial uncertainty regarding the ban (e.g., 
whether a pilot of a full freighter scheduled to fly from China to the 
United States would be exempted or not), caused the aforementioned 
drop. Interestingly, after mid February AFT for all OD airport pairs, on 
average, either stabilized around the pre-pandemic level or grew to 

Fig. 7. Normalized size of the giant component S as a function of the ratio of removed airports q per removal strategy.  
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even surpass the December's peaks. A striking example is the steady 
growth of the ANC-SDF line for UPS. 

We also performed a network-wide analysis of the three integrators. 
For each of them, we constructed three networks, each network being 
generated following the same routine describe in Section 3, but using 
only a single observation as input. In particular, the three observations 
we used were January 27th 2020, February 14th 2020, March 2nd 
2020, i.e., the three observations associated with the drop in AFT. Al-
though we previously claimed that a 14-day time-span might not be 
sufficient to characterize an integrator network, our focus here was 

mainly on major connections (e.g., flows from Asia to the United States) 
that are flown regularly. Hence, comparing networks built using a 14- 
day time-span was deemed reasonable. 

For each integrator, we plotted the percentile difference between 
the AFT of an observation and the previous one for all OD airport pairs 
characterized by a cargo flow in both observations. The color of each 
connection is proportional to the percentile difference, with blue colors 
identifying a strong increase and red colors a strong decrease in ATF, 
respectively. For OD airport pairs served in both directions, for plotting 
purposes we used the average between the two percentile differences as 
the value representative of the connection. In each colorbar, we limited 
the upper bound to an increase of 320% and the lower bound to a 
decrease of −100% to have a clear transition between shades. In  
Fig. 11 and 12 we report the changes in AFT between early February 
and late January 2020, and between late and early February 2020, 
respectively, for FedEx. The same output is shown for UPS in Fig. 13 
and 14, and DHL in Fig. 15 and 16. Tables 6 and 7 report, respectively, 
the five OD airport pairs characterized by the highest decrease and 
increase in AFT between observations; only OD airport pairs with a 
maximum value of 800 t or more (between the two observations) are 
reported in the tables. 

Consistently with Figs. 8, 9, and 10, the comparison between early 
February and late January highlights a strong decrease in AFT from 
North East Asia (NEA) airports towards the United States, which seem 
too abrupt to be only a seasonal effect. The effect seems to be most 
severe for UPS and DHL rather than for FedEx. In most of the top entries 
of Table 6, NEA airports appear as the origin or destination of the af-
fected cargo flow. The transshipment role of ANC for flows from NEA to 
mainland United States (and vice versa) is also highlighted by its pre-
sence in eight out of fifteen OD airport pairs. The majority of connec-
tions with increased AFT is represented by intra-continental and intra- 
national routes, mostly between hubs of the associated integrator. Ex-
amples in this sense are PVG-KIX (FedEx) and MIA-SDF (UPS). 

Moving to the comparison between late and early February, the 
MIA-BOG connection appeared for all three integrators as one of the 
connections with the highest percentile decrease. We believe this de-
crease to be due to Valentine's Day flower export from Colombia (Air 
Cargo News website, 2020) rather than an effect of COVID-19. More in 

Table 5 
First six removed airports according to degree k, strength s, unweighted be-
tweenness centrality g, and weighted betweenness centrality gw for FedEx, UPS, 
and DHL networks.           

rank k s g gw 

airport S(q) airport S(q) airport S(q) airport S(q)  

FedEx 
1 MEM 0.93 MEM 0.93 MEM 0.93 MEM 0.93 
2 IND 0.90 IND 0.90 CDG 0.85 IND 0.90 
3 CDG 0.82 OAK 0.89 IND 0.82 CDG 0.82 
4 LAX 0.80 CDG 0.81 CGN 0.76 CGN 0.76 
5 CGN 0.73 KIX 0.79 LGG 0.73 LGG 0.73 
6 OAK 0.72 ANC 0.76 ANC 0.70 ANC 0.70  

UPS 
1 SDF 0.95 SDF 0.95 CGN 0.77 SDF 0.95 
2 CGN 0.72 CGN 0.72 SDF 0.72 CGN 0.72 
3 DFW 0.71 ONT 0.69 ANC 0.56 ONT 0.69 
4 ONT 0.67 ANC 0.53 PHL 0.50 PHL 0.63 
5 PHL 0.61 PHL 0.48 ONT 0.48 DFW 0.61 
6 RFD 0.58 DFW 0.46 MIA 0.34 RFD 0.58  

DHL 
1 LEJ 0.98 LEJ 0.98 LEJ 0.98 LEJ 0.98 
2 CVG 0.97 CVG 0.97 HKG 0.94 CVG 0.97 
3 MIA 0.93 HKG 0.93 CVG 0.93 HKG 0.93 
4 HKG 0.89 ANC 0.89 MIA 0.89 MIA 0.89 
5 CDG 0.86 MIA 0.86 FRA 0.88 FRA 0.88 
6 ANC 0.82 BAH 0.79 BAH 0.82 BAH 0.81 

Fig. 8. Time-series depicting AFT along major routes for FedEx.  
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general, the situation depicted in Table 7 is specular with respect to 
what is shown in Table 6. AFT between NEA and United States in-
creased by several orders of magnitude, such as TPE-ANC for FedEx 
(+133%), SZX-ANC for UPS (+1000%), and ORD-ANC for DHL 
(+978%).The crucial role of ANC is highlighted by its inclusion in 
twelve out of fifteen OD airport pairs. Temporal differences in AFT of 
OD airport pairs relying on ANC can also be appreciated comparing  
Figs. 11–12 (FedEx), Figs. 13–14 (UPS), and Figs. 15–16 (DHL), with 
the color of such connections transitioning from a dark red shade 

(strong decrease) to a dark blue shade (strong increase). 
We then focused on the three other airlines. We provide results, 

limited to the time-series format, in Fig. 17, Fig. 18, and Fig. 19 re-
spectively. Notwithstanding differences in average AFT and number of 
OD airport pairs served, the similarity with the trends noticed for UPS 
and DHL is striking. For Cathay Pacific Cargo, the connection between 
ANC and HKG suffered a decrease of 30% in both directions. For Car-
golux, the HKG-ANC connection suffered an even more substantial drop 
of 85%, while the connection between Novosibirsk Tolmachevo airport 

Fig. 9. Time-series depicting AFT along major routes for UPS.  

Fig. 10. Time-series depicting AFT along major routes for DHL.  
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(OVB) and their main hub Luxembourg airport (LUX) experienced an 
AFT decrease of 50%. Interestingly, two new routes appeared from mid 
February onwards. The first route is LUX-OVB, that in the last ob-
servations is the one with the highest AFT. An explanation for the new 
prominence of OVB is likely related to cargo carriers preferring resting 
stops for trans-Eurasian route in Russia rather than China, to avoid the 
risk of being stranded for unexpected travel bans (The Loadstar website, 
2020). The second route connects the second European hub Milano 
Malpensa airport (MXP) with their main hub. For KLMP, we noticed 
how AFT decrease relatively later, i.e., between late March and early 
April (see as example the MIA-AMS and AMS-VCP route in Fig. 19). 
Differently from the other airlines, the passenger (and more European) 

oriented nature of KLMP resulted in reduced capacities once European 
airports closed most of their intra- and inter-European passenger con-
nections. On a similar note, the same capacities regained values com-
parable (yet still considerably lower) to the pre-pandemic phases once 
lockdown restrictions were relaxed (line 5 in Fig. 19). 

5.2. Networks' connectivity time-series analysis 

The analyses carried out in Section 5.1 highlighted geographically- 
specific variations in network capacity and the resilience of cargo net-
works to recover from drops in available capacity. On the other hand, 
information on how the pandemic affected the connectivity of the 

Fig. 11. AFT percentile difference between early February and late January 2020 for FedEx.  

Fig. 12. AFT percentile difference between late and early February 2020 for FedEx.  

Fig. 13. AFT percentile difference between early February and late January 2020 for UPS.  

Fig. 14. AFT percentile difference between late and early February 2020 for UPS.  
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different networks could be guessed, but not explicitly quantified. To 
this avail, in this section we provide a complex network theory analysis 
mapping the temporal evolution of connectivity indices for the three 
integrators and the three other airlines. 

In particular, in Section 4 we generated the cargo networks con-
sidering the entire set of thirteen observations to mitigate seasonal ef-
fects. Following a different approach, in this section we will generate a 

cargo network for each observation, using the same procedure shown in  
Section 4, in order to highlight unusual seasonal effects. We want to 
stress the relevance of the word unusual, since we expect to highlight 
some seasonal effects, such as a spike in available capacity and served 
connections during the holiday season. What we are looking for are 
unforeseen outliers that are most likely imputable to the pandemic. 

For the three integrators and the three other airlines, the temporal 

Fig. 15. AFT percentile difference between early February and late January 2020 for DHL.  

Fig. 16. AFT percentile difference between late and early February 2020 for DHL.  

Table 6 
OD connections with the highest percentile decrease/increase for FedEx, UPS, and DHL between the first half of February 2020 and the second half of January.              

FedEx UPS DHL 

OD [%] Late Jan. [AFT] Early Feb. [AFT] OD [%] Late Jan. [AFT] Early Feb. [AFT] OD [%] Late Jan. [AFT] Early Feb. [AFT]  

ANC-PVG −55.6 938.9 417.3 SZX-ANC −91.2 1586.4 139.6 LAX-NRT −90.9 1232.0 112.0 
TPE-ANC −47.9 870.8 453.5 TPE-ANC −65.4 1212.0 418.8 ANC-LAX −80.2 2079.0 411.0 
CDG-DXB −32.7 957.0 644.7 ICN-CGN −57.1 821.8 352.2 ANC-JFK −78.8 1488.0 316.0 
KIX-MEM −30.0 2086.5 1460.6 ANC-HKG −47.9 1607.5 837.6 HKG-PVG −76.2 1156.5 275.5 
CGN-CDG −24.2 1292.0 979.0 PVG-ANC −39.8 1167.6 703.3 HKG-ANC −74.5 4972.0 1269.0 
ELP-MEM 35.2 1229.0 1661.9 CDG-CGN 70.0 600.3 1020.5 DXB-LEJ 85.7 714.0 1326.0 
MSP-IND 46.0 571.5 834.6 MIA-SDF 73.1 1356.7 2348.3 BSL-LEJ 91.5 523.0 1001.6 
PVG-KIX 50.2 665.3 999.4 CGN-CDG 100.0 600.3 1200.6 MXP-LEJ 98.6 516.0 1024.6 
TPE-KIX 65.8 870.7 1443.9 DXB-CGN 116.5 900.8 1949.9 LEJ-ICN 116.7 612.0 1326.0 
MIA-BOG 91.7 653.2 1251.9 CGN-EMA 122.4 660.3 1468.5 LEJ-NRT 350.0 204 918.0 

Table 7 
OD connections with the highest percentile decrease/increase for FedEx, UPS, and DHL between the second and first half of February 2020.              

FedEx UPS DHL 

OD [%] Early Feb. [AFT] Late Feb. [AFT] OD [%] Early Feb. [AFT] Late Feb. [AFT] OD [%] Early Feb. [AFT] Late Feb. [AFT]  

MIA-BOG −56.5 1251.9 544.3 MIA-BOG −49.2 1655.1 840.4 BAH-LEJ −47.0 1256.0 666.0 
CAN-SIN −56.4 926.1 403.6 BOG-MIA −40.4 2214.3 1320.7 MIA-BOG −41.7 3102.0 1808.0 
CAN-KIX −50.5 2014.8 997.9 DXB-CGN −34.4 1949.9 1279.5 BOG-MIA −39.8 3102.0 1866.0 
TPE-KIX −45.3 1443.9 789.1 MIA-SDF −32.3 2348.3 1590.3 ICN-NGO −22.2 1008.0 784.0 
CAN-NRT −41.9 1351.5 784.7 HNL-ONT −26.1 1272.1 940.6 MAD-LEJ −21.0 807.8 638.4 
ICN-ANC 43.0 675.5 965.8 EMA-CGN 30.8 1019.5 1333.8 ANC-ORD 160.0 1120.0 2912.0 
ANC-NRT 54.6 997.8 1542.2 PVG-ANC 39.9 703.3 983.6 ANC-ICN 195.4 911.0 2691.0 
KIX-MEM 57.1 1460.6 2295.2 ANC-HKG 66.7 837.6 1396.0 ANC-LAX 202.9 411.0 1245.0 
ANC-PVG 100.0 417.3 834.6 TPE-ANC 190.0 418.8 1212.0 ORD-ANC 800.0 112.0 1008.0 
TPE-ANC 133.0 453.5 1056.7 SZX-ANC 1000.0 139.6 1535.6 ICN-PVG 978.4 102.0 1100.0 
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evolution of five indices is presented: network-wide AFT, - number of 
edges ∣ℰ∣, - size of the giant component Gc, - average degree 〈k〉, and 
characteristic path length 〈L〉. 

In Fig. 20 the network-wide AFT for FedEx, UPS, DHL, Cathay Pa-
cific Cargo, Cargolux, and KLMP are presented. For this specific plot, we 
report the time-series of both KLM and MP, together with their cumu-
lative time-series representing KLMP, to better understand how the two 
sub-networks performed during the pandemic in terms of available 
capacity. For the three integrators, an expected spike in available ca-
pacity is detected between mid and late December. The spike is 

particularly pronounced for FedEx and UPS. On the other hand, the 
strong decrease in available capacity from/to NEA in early February 
that was shown in Section 5.1, seems to have caused a tangible effect at 
the network-wide level only to DHL and, with a more pronounced note, 
to Cathay Pacific Cargo and Cargolux. For KLMP, a considerable drop in 
available capacity occurs in mid March, where lockdown restrictions in 
many European countries severely affected airports' operations. Note 
that the drop is caused by the sudden unavailability of passenger air-
craft, and hence is caused by the KLM network, while operations for the 
MP network remain roughly constant throughout the time-horizon. 

Fig. 17. Time-series depicting AFT along major routes for Cathay Pacific Cargo.  

Fig. 18. Time-series depicting AFT along major routes for Cargolux.  
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Given the different order of magnitude in AFT between integrators and 
KLMP, an inset plot focused solely on KLMP is also provided in Fig. 20. 
Analyzing the inset plot, a reduction greater than 50% in available AFT 
for the KLM network is evident. 

A similar trend can be observed in Fig. 21, where the number of 
edges ∣ℰ∣ is reported. All integrators are characterized by an increase in 
available connections during the peak season, with little to none de-
crease effect in February. On the contrary, both Cathay Pacific Cargo 

and Cargolux experienced a 10–15% decrease in available connections 
in the same time-frame. As it concerns KLMP, a 50% decrease was ex-
perienced in March, similarly to what shown for AFT. This is clearly due 
to the partial or total closure of airports worldwide for passenger traffic. 

Fig. 22 shows the temporal evolution of the giant component for 
each network. Instead of the actual size of the giant component per 
observation Gc , we report the percentile normalized value G

Gmax(| |)
c

c
, 

where with Gmax(| |)c we define the size of the giant component of each 

Fig. 19. Time-series depicting AFT along major routes for KLMP.  

Fig. 20. AFT temporal evolution for the six airlines.  
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full network (generated using all thirteen observations) as described in  
Section 4. As such, for all networks the reported values will range be-
tween 0% and 100% to provide a result that is easier to compare and 
interpret. Analyzing Fig. 22, it can be appreciated how the three in-
tegrators' networks proved to be more robust in tackling the pandemic, 
with G

Gmax(| |)
c

c
remaining constant or increasing. Both Cathay Pacific 

Cargo and Cargolux experienced a drop in the size of the giant com-
ponent, with the former being quicker in recovering. The most inter-
esting trend is the one of KLMP, with a sudden drop from 90% to 45% 
due to the unavailability of belly space. An upward trend is also visible 
due to countries easing their lockdown restrictions and slowly re-
opening airports. It should also be noted that we did not set a minimum 
capacity threshold and artificially removed airports whose strength 
(i.e., AFT level) was lower than the threshold. The dramatic reduction 

in the size of the giant component is solely due to the lack of passenger 
connections airports were subject to during the lockdown. 

We conclude our discussion with the analysis of Fig. 23 and Fig. 24, 
where the average degree 〈k〉 and the characteristic path length 〈L〉 are 
respectively reported. Consistently with the previous plots, integrators 
are characterized by a higher connectivity during the peak period, 
while 〈k〉 fluctuates around a constant value otherwise. The average 
degree is roughly constant for Cathay Pacific Cargo and Cargolux as 
well, apart from a decrease in mid February that might have been 
caused by the reduction in capacity from/to NEA airports. For KLMP, a 
decrease of roughly 50%, consistently with the other indices, was ex-
perienced. The decrease in average connections per airport resulted in a 
spike in 〈L〉 for KLMP (Fig. 24): some direct connections were lost and 
more transshipment stops were needed as a consequence. For the other 

Fig. 21. ∣ℰ∣ temporal evolution for the six airlines.  

Fig. 22. G

G
c

cmax(| |)
temporal evolution for the six airlines.  
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carriers, a decrease in 〈L〉 for Cargolux is evident, that is consistent with 
the increase of 〈k〉 due to the adoption of pandemic-induced new routes 
as shown in Section 5.1. For FedEx, UPS, DHL, and Cathay Pacific 
Cargo, the effects of the pandemic on 〈L〉 seem negligible. 

Although the network analysis presented in this section focused on 
the short-term effects of the COVID-19 pandemic on cargo networks, 
some general conclusions can be drawn. Given the different trends we 
highlighted for network indices such as global strength (network-wide 
AFT), number and quality of connections, and connectivity (size of the 
giant component), we argue that:  

1. integrators might be the great winners in this unforeseen set of 
circumstances (Suau-Sanchez et al., 2020). COVID-19 is potentially 
re-orienting some airports towards cargo as part of the growing 
importance of e-commerce, that during the pandemic saw a surge in 

usage rate. The forced quarantine led to unprecedented increases in 
purchases of the following categories: medical (+500%), baby 
products (+390%), food & beverage (+150%) (Big Commerce 
website, 2020), just to cite a few examples. Integrators were the only 
cargo airlines that, apart from capacity fluctuations during the most 
uncertain period of the pandemic, maintained a capacity level 
comparable, if not even higher, than the pre-pandemic level. In-
tegrators' networks proved to be both robust and resilient. The ro-
bustness is confirmed by the fact that network indices such as net-
work-wide AFT, number of connections ∣ℰ∣, and size of the giant 
component Gc were marginally affected (Section 5.2). Their resi-
lience is evident given their capability, thanks to flexible schedules 
for full freighters, to quickly rebound from momentarily losses in 
available capacity among major OD airport pairs (Section 5.1)  

2. on the other hand, passenger airlines heavily relying on belly space 

Fig. 23. 〈k〉 temporal evolution for the six airlines.  

Fig. 24. 〈L〉 temporal evolution for the six airlines.  
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for cargo services might be the great losers. While we focused on a 
single combination airline in the paper, and hence our results might 
not be universally valid, the KLMP network proved to be somehow 
resilient (see recovery trend for all network indices), but not robust. 
The drop in network-wide AFT and Gc as a result of lockdown 
measures was extremely dramatic. Notwithstanding the fact that the 
air cargo business is generally of secondary relevance for combi-
nation airlines, they might be reconsidering the recent shift towards 
belly space utilization (potentially phasing-out full freighter air-
craft). The trend, motivated by the extensive passenger network, 
proved to be a double-edged sword. While some airlines, including 
KLM, temporarily reconverted some of their passenger aircraft to 
“cargo-in-cabin” aircraft (KLM website, 2020), this is clearly not a 
long-term solution. As the passenger air network is much less robust 
to pandemic-induced disruptions than the cargo counterpart, com-
bination airlines might have second thoughts before phasing-out full 
freighters (given their crucial role in case of a new pandemic wave, 
or of other unforeseen disruptions affecting the passenger network), 
if they plan to remain competitive in the air cargo business. 

6. Conclusions 

In this paper, we provided a thorough analysis of the network 
structure of integrators FedEx, UPS, and DHL, using historical data from 
public sources and estimated cargo weight capacity between airports to 
model each network. We considered networks as directed to model the 
strong flow imbalances and triangular routes that characterize cargo 
networks. 

Our results show that FedEx owns the most developed network in 
terms of overall capacity, but DHL is more developed in terms of air-
ports and connections. This factor can also be attributed to the different 
business strategy of DHL, which heavily relies on a set of airlines op-
erating under its livery, differently from FedEx and UPS. In addition, 
while FedEx and UPS, although they do rely on a vast set of secondary 
hubs, seem to be based on networks designed following the classic 
“hub-and-spoke” paradigma, the structure of the network of DHL is 
more hybrid and steers towards a “multi-hub” system. Related to the 
previous point, we analyzed the robustness of the three networks under 
different node attack strategies, and used the size of the giant compo-
nent (i.e., the cardinality of the set of nodes of the network that are all 
connected to each other) as a measure of robustness. We found out that 
the DHL network is more robust, with no node removal (among the first 
six removals) that reduces the size of the giant component more than 
10% and a resulting final percentile size of the giant component greater 
than FedEx or UPS. We also want to highlight that our definition of 
robustness is based on a specific quality measure that focuses more on 
connectivity properties rather than the strength, measured as remaining 
overall capacity, of the network. Hence, it cannot be claimed that the 
DHL network is the most robust from a universal perspective. 

Given that, at the time of writing, the COVID-19 pandemic is still 
affecting supply chains worldwide, we also performed a time-series 
analysis to assess how capacity along some major OD connections was 
affected, and how network-specific indices changed at different stages 
of the pandemic. In order to have a more comprehensive perspective, 
we also included three other relevant airlines: two full-cargo airlines 

and a major combination airline. We noticed a steep decrease in 
available capacity for integrators and full-cargo airlines between North 
East Asia and the United States and Europe in early February, i.e., right 
after the United States issued their travel ban from China. In early 
March the situation reversed and capacities recovered and even sur-
passed their nominal values especially for integrators. This factor tes-
tifies how integrators' networks are resilient and capable of quickly 
adapting to disruptions. We also proved that integrators' networks are 
robust, since network-wide indices did not show major changes during 
the pandemic. The same cannot be argued for the combination airline 
we considered. Although signs of a slower-paced resilience are irrefu-
table, its network is not robust and connectivity properties were se-
verely affected during the pandemic. We used this result to argue that 
the inclination of some combination airlines towards belly space, rather 
than full freighters, might be re-evaluated considering the likelihood of 
a new pandemic wave and the relevance of cargo services for those 
airlines. 

Although we believe this work to be a solid first step towards a 
better understanding of (i) the global network structure of integrators, 
and (ii) the effect of COVID-19 on cargo flows, we are also aware that it 
can be improved and extended in several ways by exploring some ad-
ditional research directions. 

As example, provided the availability of a broader dataset in terms 
of airports (or a way to quickly gather data), the lower-tier airports that 
were omitted in this work could be included to better model low-ca-
pacity routes. 

Another interesting addition is the analysis of the network structure 
of Amazon Air. At the time of writing, the fleet of Amazon Air is still 
under development, and hence we deemed its inclusion in this work to 
be premature, but in one year from now time should be ripe. Although 
the business model of Amazon Air is slightly different than the other 
integrators (in the sense that, on top of being an integrator, it also di-
rectly sells the goods that are being transported and delivered), airport 
slot capacity and competition issues might influence the network 
strategy and configuration of the other integrators as well. As example, 
the main hub of Amazon Air will be Cincinnati/Northern Kentucky 
International airport that, coincidentally, is the main American hub for 
DHL. We do believe the introduction in the cargo game of such a huge 
player is worth a more extensive analysis. 

The last research direction is related to the COVID-19 pandemic. In 
this paper, our analysis focused on short-term changes in network ca-
pacity and connectivity indices due to the pandemic. Similarly to the 
aforementioned point made for Amazon Air, it would be interesting to 
follow the evolution of airline networks over time and assess whether 
COVID-19 caused more permanent changes (e.g., creation of new 
routes, re-structuring of the connections to/from hubs) in their net-
work. 
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Appendix A. Aircraft fleet of FedEx, UPS, and DHL 

For FedEx, UPS, and DHL we report in Table 8 the list of aircraft we considered, with full name, code, and maximum payload. Maximum payload 
values were obtained either from the integrator's webpage, or from the manufacturer's webpage. Since different cargo airlines generally have 
different Unit Load Device (ULD) configurations, maximum payload values for the same aircraft used by different integrators might differ. 
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Table 8 
List of aircraft used for the FedEx, UPS, and DHL networks.     

Aircraft model Aircraft code Payload [tonnes]  

FedEx 
Airbus A300-600F A306 47.6 
Airbus A310-300F A310 39.0 
Boeing B737-400F B734 20.5 
Boeing B747-400F B744 113.0 
Boeing B757-200F B752 27.2 
Boeing B767-300F B763 54.4 
Boeing 777F B77L 104.3 
Boeing MD-10-30F DC10 77.1 
Boeing MD-11F MD11 81.6  

UPS 
Airbus A300-600F A306 55.3 
Boeing B747-400F B744 117.4 
Boeing B747-800F B748 139.6 
Boeing B757-200F B752 39.5 
Boeing B767-200F B762 44.9 
Boeing B767-300F B763 60.0 
Boeing MD-11F MD11 94.1  

DHL 
Airbus A330-300F 33Y 65.0 
Airbus A300-600F A306 54.0 
Airbus A300 B4-200F A30B 45.0 
Airbus A300-200F A332 70.0 
Boeing B737-300F B733 14.8 
Boeing B737-400F B734 20.0 
Boeing B737-800F B738 23.0 
Boeing B747-300F B743 106.0 
Boeing B747-400F B744 112.0 
Boeing B747-800F B748 137.0 
Boeing B757-200F B752 30.7 
Boeing B767-200F B762 42.0 
Boieng B767-300F B763 58.0 
Boieng B767-700F B767 42.0 
Boieng B777-200F B772 103.0 
Boeing 777F B77L 102.0 
Boeing 747-400LCF BLCF 113.4  

Appendix B. Network characteristics of Cathay Pacific Cargo, Cargolux, and KLMP 

For Cathay Pacific Cargo, Cargolux, and KLMP we report the main characteristics of their networks in Table 9, their network visualization in  
Fig. 25, the five OD airport pair connections with the highest AFT in Table 10, and a chord diagram depicting major cargo flows between airports in  
Fig. 26. 

Table 9 
Cathay Pacific Cargo, Cargolux, and KLMP network characteristics.       

Cathay Pacific Cargo Cargolux KLMP  

Nodes 90 103 136 
Edges 190 480 323 
Density 0.024 0.046 0.018 
Reciprocity 0.41 0.29 0.65 
〈k〉 4.2 9.3 4.8 
〈C〉 0.36 0.50 0.36 
Gc 55 90 126 
〈L〉 2.56 2.50 2.20 
D 5 6 4 
Overall AFT 901,228 1,150,903 385,031 
Overall AFTK 3,993,583,835 5,665,919,727 2,057,843,628 
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Fig. 25. Cathay Pacific Cargo, Cargolux, and KLMP networks.  

Table 10 
Top-five OD airport pair connections according to AFT.         

rank Cathay Pacific Cargo Cargolux KLMP 

OD capacity [tonnes⋅1e3] OD capacity [tonnes⋅1e3] OD capacity [tonnes⋅1e3]  

1 HKG-ANC 107.7 HKG-ANC 49.0 MIA-AMS 18.7 
2 ANC-HKG 101.7 OVB-LUX 45.1 UIO-MIA 10.3 
3 ANC-LAX 25.6 ORD-LUX 36.2 NBO-AMS 9.4 
4 ORD-ANC 23.9 ANC-ORD 32.0 AMS-VCP 8.8 
5 ANC-JFK 20.0 LUX-OVB 31.3 AMS-MIA 8.3 
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Fig. 26. Chord diagrams representing cargo capacities between top airports.   
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