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Abstract

In this thesis we try to capture the dependence structure of the publications of a scholar and
the citations of those publications via copulas. To do so, we will use a sample of Quebec re-
searchers for who their publication amount as well as their citation amounts are known. We are
provided with multiple variables concerning citation. We study the dependence structure be-
tween these variables, with the aim of fitting copulas to this structure, by calculating correlation
scores and visualising the structure. Copulas are functions that ”join together” one-dimensional
distribution functions with a dependence structure, in order to represent joint distributions.
The correlation scores are calculated across various ranges of the variables to provide us with a
deeper understanding of the dependence structure between the variables.
Using Sklar’s theorem and some helpful functions in various packages in the software program
R, parametric copulas fit the dependence structures of the various pairs of variables. Based
on a Goodness-of-fit test, certain parametric copula models are rejected at a 5% significance
level. Unsurprisingly, there are also dependence structures that can be well captured with a
parametric copula.
Parametric copula families are not only used for fitting the data, but also for prediction. Since a
good fitting model does not necessarily imply a good predictive model, we have also performed
a validation analysis. The parametric copula models that are not rejected by the test at a 5%
significance level are validated via k-fold cross validation. Part of the data have been used to
fit the model and the remaining has been validated using a k-fold cross validation. It turns out
that the best fitting copula model does not always perform well in term of prediction. That is,
these copulas do not always perform best during the cross-validation.
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1 Introduction

The literary idea of a copula arose in the 19th century. This was based on the multivariate
cases of non-normality. In 1959 Abe Sklar first employed the word copula in a mathematical or
statistical sense in the theorem which now bears his name. The theorem describes how the joint
distribution can be specified in terms of the marginal distribution and the copula function, as
we will see in the next chapter. The notion of copulas became increasingly popular at the end
of the nineties. At this time, researchers in the applied field of finance discovered the notion of
the copula. This lead to a wealth of investigations about copulas, especially the applications of
the copulas.

1.1 Copulas in finance and insurance

In the financial world, financial risk management is currently a hot topic. When practicing
financial risk management risks are measured and managed across a diverse range of activities
used in, e.g., banking, securities and insurance sectors. The dependencies between random vari-
ables, such as risks, credit scores, etc., play an important role here.
The correlation coefficient is a popular and often used dependence measure within Financial Risk
Management. This is a good measure when the random variables are multivariate normally dis-
tributed. It is a reasonable measure when the random variables are elliptically distributed.
However, in practice most of the data, thus the variables, are not multivariate normally dis-
tributed, nor elliptically distributed.
In order to obtain an optimal portfolio selection, the Capital Asset Pricing Model (CAPM)
and the Arbitrage Pricing Theory (APT), Embrechts(1999), employ an elegant theory which
is essentially founded on the assumption of normally distributed returns. The assumption is
applied in many risk management applications, because this distribution is easy to implement.
However, research has shown that the distribution does not account for the thickness of the tails
of the marginals and their dependence structure. These assumptions are more problematic in
insurance because of the typically skewness and heavy-tailedness of insurance claim data.
As a solution to this problem copulas are used. Copulas have become an appropriate dependence
measure when the random variables are not multivariate normally distributed nor elliptically
distributed. The copula manoeuvres around the pitfalls of correlation. This has resulted in it’s
popularity in Financial Risk Management to model dependencies between risks. Some of the
areas of applications are credit risk modelling, portfolio Value at Risk calculations, default and
credit risk dependence, and tail dependence.
A copula accurately describes the dependence relationship only if the right copula is applied.
During the late 1990’s the CDOs appeared on the financial market. This was a new financial
derivative called Collateralized Debt Obligations. Banks were allowed to form securities out of
different types of debts, e.g. mortgages, via these derivatives. The correlation between defaults
needed to be modelled in order to price these securities. David X. Li’s Gaussian copula approach
was used to model just that. The Gaussian copula, which will be introduced in paragraph 2.3,
is a helpful tool and relatively easy to fit. However, the Gaussian copula does not capture tail
dependencies. Risks in the tail are underestimated, but cases where the risks are simultaneously
in the tails of each distribution, are seen as highly improbable. In 2008 the crisis hit Wall street
and the CDO market collapsed. Li’s Gaussian copula model has been accused of increasing the
severity of the financial crisis (Felix Salmon, 2009).
The flaws of the Gaussian copula, as well as many other copula models, are documented, see for
example Salmon (2009), Forsland (2012) and Embrechts (2009). The successes and failures in
the financial field on copulas are of great help in other fields where an increasing effort is made
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in accurately depicting the overall dependencies, as well as tail dependencies. Some examples
include Hydrology, Medicine, Biology and Epidemiology.

1.2 Citation Analysis

Part of the evaluation of researchers consists of quantifying the research output, by the size,
impact and quality of their research output, as well as the citation impact of the research out-
put. Academic institutions use publications counts as well as the subjective opinions of peers in
order to evaluate researchers. Committees for hiring, promoting or evaluating tenure trackers
also rely on citation analysis to obtain a more objective assessment of a researchers work.
Current citation analysis is most often used to couple a quantitative indicator to an evaluation
of research performance. Most of the current research in citation analysis assumes a linear re-
lationship between bibliometric indicators. Indicators reflect number of publications, citations,
international collaboration, etc. But citation patterns vary greatly between disciplines, publica-
tion types, authors, etc.
The current models are regression-based models. Methods used so far include ordinary least
squares linear regression, logistic regression, a distribution-free regression method, multinomial
logistic regression and negative binomial regression, see Thelwall. In absence of alternatives,
citation counts have been investigated with negative binomial regression. Just as in the finan-
cial field, the variables in citation analysis are highly skewed. The distribution of citations, for
example, is highly skewed, Thelwall. So tests based on the normal distribution, that is ordinary
least squares regression are not appropriate. The negative binomial regression can cope with
the skewed data, but as said before this selection is based in the absence of alternatives.

1.3 Goal of the Research

The focus in this thesis lies in modelling the dependence structure between the publications of a
researcher and the citations of those publications. We will attempt to capture this dependence
structure with the help of parametric copulas. Our data, as can be seen in chapter 4, is highly
skewed. Copulas have been used in the financial field to cope with highly skewed data, as men-
tioned before. Therefore, the copula seemed like a promising tool to capture the dependence
structure. This leads to the main question throughout this thesis, which is:

’How well do parametric copulas capture the dependence structure between the publications of a
researcher and the citations of those publications?’.

We try to obtain the answer to this question by answering the following sub questions: What
is a copula function and what are its properties? Are copulas a better representation of the
dependence structure in citation analysis? And how well do these copula models perform in
terms of prediction?

1.4 Outline of the Thesis

To answer the questions mentioned in the previous paragraph, we will need to take appropriate
steps. First, we will discuss some well known dependence measures, such as correlation. Precise
definitions are given and some useful theorems are noted. Followed by the notion of the copula.
Subsequently, definitions are given and useful properties and theorems are discussed. We end
chapter 2 with a list of non-parametric and parametric copulas.
In chapter 3 we introduce our dataset. The variables used in this thesis are defined and some
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background information on the data set is given.
In chapter 4 we analyse our variables by looking at various descriptive statistics and various
plots concerning the structure of the variables, like density- and boxplots. The rank correlation
values between all the pairs of variables are calculated. This is also done for the various fields in
our data set. To create a deeper analysis, the data is split into bins and rank correlation values
for the bins are calculated as well.
Chapter 5 discusses the copula fitting. The software model used to fit parametric copula families
is discussed followed by an analysis on the outcome of the fitting. The fitted copulas are tested
with a Goodness of fit test, more on this in paragraph 5.1. The results of the fitting and the
test are then analysed. The copulas that are rejected by the test, at a 5% significance level, are
compared with the empirical copula, which is why we end this chapter by evaluating some of
these empirical copulas.
In chapter 6 the copula models that seem to capture the dependence structure between the
variables rather nicely, according to the test, are validated via a k-fold cross validation. This
chapter will also elaborate on the notion of model validation.
Lastly, we consider our results and discuss the fitting and performance of copulas. In the
Appendices a table with the main descriptive values of the data set can be found. Furthermore,
it includes the output of the copula fitting when the ties in our data set are unaccounted for
and the R codes used during the fitting.
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2 Dependence measures

An important aspect of many statistical investigations is the stochastic dependence between
random measurements. Why? Firstly, suppose (Xi, Yi), i = 1, · · · , n is a random sample from
a bivariate population with joint distribution function F (X,Y ) and marginal distribution func-
tions F1, F2. Let X1 ≤ · · · ≤ Xn. The first motivation behind the construction of the dependence
measure is to ascertain the degree of conformity of this ascending order with respect to variable
Y . These measures are insensitive to monotone transformations of X and Y and non-parametric.
Most of these measures are used as test statistics for testing the hypothesis of independence.
The second motivation behind dependence measures is prediction. Dependence measures are
used to predict one variable from another. The thought and desire behind this is that if X is
closer to a function of Y, then the measure should be higher. In this chapter, we will discuss
several dependence measures.
Correlation is by far the best known dependence measure. In fact, in financial theory the notion
of correlation is central. Take modern portfolio theory for example. Correlation coefficients are
used as a measure between the returns of different assets. The assets that are less likely to
lose value at the same time are selected. Thus, we begin by discussing correlation. Here we
distinguish between linear correlation and rank correlation. Before introducing the copula, an
alternative, more recent and less well known way to describe dependence compared to correla-
tion, it is sensible to discuss some basic notions, such as the definition of a distribution function
and the quasi-inverse of a function. These play a fundamental role when working with copulas.
Followed by the notion of 2-increasing function, which is needed to define the copula. Then
the copula is defined and some useful theorems concerning the copula are given. The proofs of
the theorems in this chapter can be found in Schweizer and Sklar (1983), Nelson (2006) and
Joe (2015). Almost all of our definitions, properties and theorems, especially the ones directly
referring to copulas, consider two dimensions. This is because we confine ourselves to the two-
dimensional copulas in this thesis. Evidently, all definitions, properties and theorems in this
chapter can be extended to n dimensions, see Nelson (2006). Finally, a list of copula families is
given, which serves as an aid in copula selection.

2.1 Correlation

Linear correlation, also known as Pearson’s correlation, is most frequently used in practice as a
measure of dependence. There are several reasons behind the popularity of linear correlation.
Firstly, linear correlation is often straightforward to calculate. Especially compared to for ex-
ample the calculation of comonotonicity and rank correlation. A second motivation behind the
use of linear correlation is the fact that it is easy to manipulate under linear operations. This
fact is commonly exploited in portfolio theory. Another reason is that linear correlation is a
natural measure of dependence in multivariate normal distributions, since the correlation coef-
ficient completely defines the dependence structure of said distribution. However, correlation
has some shortcomings. We repeat two of the several mentioned fallacies by Embrechts et al.
(2002), according to Joe (2014), concerning linear correlation.
Fallacy 1. Marginal distributions and correlation determine the joint distribution.
Fallacy 2. Given marginal distributions F1 and F2 for X1 and X2 respectively, all linear corre-
lations between -1 and 1 can be attained through suitable specification of the joint distribution.
Furthermore, linear correlation is not preserved by copulas. Which means that two pairs of
correlated variables with the same copula can have different correlation coefficients.
Kendall’s τ and Spearman’s ρ are the two most common measures of association, when working
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with copulas. The reason rank correlation is chosen over linear correlation is because they are
invariant under monotonic transformations and it captures monotonic rather than linear depen-
dence.
In this paragraph we define Spearman’s rank correlation and Kendall’s rank correlation. We
close this paragraph with the definition of the coefficient of tail dependence, which is also an
important notion when working with copulas.

Recall that a random variable is a function from a sample space to the real numbers. The
number produced by the function is random because the outcome of the experiment with said
sample space is random. For example, we call X random variable where X defines the total num-
ber of heads observed during a sequence of coin tosses. Consider a pair of real-valued random
variables (X,Y ) with finite variances, which are not constant.

Definition 2.1.1. Pearson’s linear correlation coefficient between X and Y is

ρ(X,Y ) =
Cov[X,Y ]√
σ2[X]σ2[Y ]

,

where Cov[X,Y] is the covariance between X and Y and σ2[X], σ2[Y ] denote the variances of
X and Y .

Definition 2.1.2. Let X and Y be random variables with distribution functions F and G and a
joint distribution function H. Spearman’s rank correlation is given by

ρS(X,Y ) = ρ(F (X), G(Y ))

where ρ is Pearson’s linear correlation.

Definition 2.1.3. Let (xi, yi) and (xj , yj) denote two oberservations from a vector (X,Y ) of
continuous random variables. We say that (xi, yi) and (xj , yj), i, j = 1, . . . , n, are concordant
if xi < xj and yi < yj or if xi > xj and yi > yj.

Similarly we say that (xi, yi) and (xj , yj) are discordant if xi < xj and yi > yj or if xi > xj
and yi < yj .

Definition 2.1.4. Assume (X,Y ) are continuous random variable with a joint distribution H.
Let (X1, Y1) and (X2, Y2) be two independent pairs of random variables from joint distribution
function H, then Kendall’s rank correlation is given by

ρτ (X,Y ) = P[(X1 −X2)(Y1 − Y2) > 0]− P[(X1 −X2)(Y1 − Y2) < 0].

Definition 2.1.5. Let X and Y be random variables with distribution functions F and G. The
coefficient of upper tail dependence of (X,Y ) is

lim
α→1

P[Y > G−1(α)|X > F−1(α)] = λ

provided a limit λ ∈ [0, 1] exists. If λ ∈ (0, 1] X and Y are said to be asymptotically dependent
(in the upper tail). If λ = 0 they are asymptotically independent. Similarly, the coefficient of
lower tail dependence of X and Y is

lim
α→0

P[Y < G−1(α)|X < F−1(α)] = λ.
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2.2 Basic notions

As said before, distribution functions and the quasi-inverse of a function plays a fundamental
role when working with copulas, as will be seen in paragraph 2.4. Therefore, it seems sensible
to begin by introducing the definition of a distribution function.
But before citing the first definition, we introduce some notation. These notations are the same
notations Nelsen (2006) used in ”An introduction to copulas”. Just like Nelsen, we let R denote
the ordinary real line (−∞,∞). R̄ denotes the extended real line [−∞,∞]. So R̄2 denotes the
extended real plane R̄× R̄. A rectangle in R̄2 is the Cartesian product A of two closed intervals:
A = [x1, x2]× [y1, y2]. The vertices of a rectangle A are the points (x1, y1), (x1, y2), (x2, y1) and
(x2, y2). The unit square I2 is the product I× I where I = [0, 1]. A 2-place real function H is a
function whose domain, denoted as Dom H, is a subset of R̄2 and whose range, denoted as Ran
H, is a subset of R.

Definition 2.2.1. We say that F is the cumulative distribution function of the random
variable X when for all x ∈ R̄: F (x) = P[X ≤ x].

Note that some properties of the cumulative distribution function are.

1. F is nondecreasing, i.e. F (a) ≤ F (b) for all a ≤ b where a, b ∈ R,

2. F (−∞) = 0 and F (∞) = 1

The notation X ∼ F mean that the random variable X has distribution function F .

Theorem 2.2.1. Let X be a random variable with distribution function F . Let F−1 be the quasi
inverse function of F , i.e.

F−1(α) = inf{x|F (x) ≥ α},

α ∈ (0, 1). Then

1. For any for any uniformly distributed random variable U ∼ U [0, 1], we have that F−1(U)
has distribution function F . This gives a simple method for simulating random variates
with distribution function F .

2. If F is continuous, then F (X) ∼ U [0, 1].

2.3 Preliminaries

A 2-increasing function is a two-dimensional analog of a nondecreasing function of one variable.
Naturally, a precise definition is desired. The definition builds on the definition of the H-volume
of a rectangle.

Definition 2.3.1. Let S1 and S2 be nonempty subsets of R̄, and let H be a two-place real
function such that Dom H = S1 × S2. Let A = [x1, x2] × [y1, y2] be a rectangle all of whose
vertices are in Dom H. Then the H-volume of A is given by

VH(A) = H(x2, y2)−H(x2, y1)−H(x1, y2) +H(x1, y1).

Definition 2.3.2. A 2-place real function H is 2-increasing if VH(A) ≥ 0 for all rectangles A
whose vertices lie in Dom H.

Next to the definition of a 2-increasing function, the definition of a grounded function is also
needed before the copula can be defined. Furthermore, 2-increasing and grounded functions also
help us define joint distribution functions, which is what a 2-dimensional copula is.
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Definition 2.3.3. Suppose that S1 has a least element a1 and that S2 has a least element a2.
We say that a function H from S1 × S2 into R is grounded if

H(x, a2) = 0 = H(a1, y) for all (x, y) ∈ S1 × S2.

Hence, we have

Definition 2.3.4. A joint distribution function is a function H with domain R̄2 such that

1. H is 2-increasing

2. H(x,−∞) = H(−∞, y) = 0 and H(∞,∞) = 1

Thus H is grounded. Because Dom H = R̄2, H has margins F and G given by F (x) =
H(x,∞) and G(y) = H(∞, y).

2.4 Copulas

Definition 2.4.1. An two-dimensional copula (or 2-copula) is a function C whose domain
is I2 with the following properties:

• C is grounded and 2-increasing

• For every (u, v) ∈ I2,
C(u, 1) = u and C(1, v) = v.

Now that we’ve defined the copula, we’ll go through some useful properties.

Theorem 2.4.1. Let C be a copula. Then for every (u1, u2), (v1, v2)) in Dom C:

|C(u2, v2)− C(u1, v1)| ≤ |u2 − u1||v2 − v1|

Hence C is uniformly continuous on its domain.

Theorem 2.4.2. Let X and Y be continuous random variables. Then X and Y are independent
if and only if CXY = Π.

Here Π denotes the product copula Π(u, v) = uv.

Theorem 2.4.3. Let X and Y be random variables with continuous distribution functions F
and G, joint distribution function H and copula C. Then the following are true:

1. ρS(X,Y ) = ρS(Y,X), ρτ (X,Y ) = ρτ (Y,X)

2. If X and Y are independent then ρS(X,Y ) = ρτ (X,Y ) = 0

3. −1 ≤ ρS(X,Y ), ρτ (X,Y ) ≤ 1

4. ρS(X,Y ) = 12
∫ 1

0

∫ 1
0 {C(x, y)− xy}dxdy

5. ρτ (X,Y ) = 4
∫ 1

0

∫ 1
0 C(u, v)dC(u, v)− 1

6. For T : R −→ R strictly monotonic on the range of X, both ρS and ρτ satisfy property 4

7. ρS(X,Y ) = ρτ (X,Y ) = 1⇔ C = Cu ⇔ Y = T (X) a.s. with T increasing

8. ρS(X,Y ) = ρτ (X,Y ) = −1⇔ C = Cl ⇔ Y = T (X) a.s. with T decreasing
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Sklar’s theorem seems like a sensible follow up. This is perhaps the most important result
regarding copulas. The theorem is used in essentially all applications of copulas.

Theorem 2.4.4. Sklar’s theorem Let H be a joint distribution function of the random variables
X and Y with margins F and G. Then there exists a copula C such that for all x, y in R̄,

H(x, y) = C(F (x), G(y)). (1)

The copula C is uniquely defined on Ran F× Ran G and is therefore unique if all the marginals
are continuous. Conversely, if C is a copula and F and G are joint distribution functions, then
the function H defined through equation (1) is a joint distribution function with margins F and
G.

Corollary 2.4.1. Let H be a joint distribution function with continuous margins F and G and
let C be a copula. Let F (−1) and G(−1) be quasi-inverses of F and G, respectively. Then for any
(u, v) ∈ I2:

C(u, v) = H(F (−1)(u), G(−1)(v)).

Without the continuity assumption, care has to be taken; see Nelsen (1999).

Example 2.3.1 Let H be a joint distribution function:

H(x, y) =


(x+1)(ey−1)
x+2ey−1 , (x, y) ∈ [−1, 1]× [0,∞],

1− ey, (x, y) ∈ (1,∞]× [0,∞],

0 elsewhere.

With margins F and G given by

F (x) =


0, x < −1
(x+1

2 , x ∈ [−1, 1],

1, x > 1

G(y) =

{
0, y < 0

1− e−y, y ≥ 0

The quasi-inverses of F and G are given by F (−1)(u) = 2u − 1 and G(−1)(v) = −ln(1 − v)
for (u, v) ∈ I. Via corollary 2.4.1 we obtain the copula C given by

C(u, v) =
uv

u+ v − uv
.

There are many parametric copula families that describe the dependence between random
variables. Some important families will be included in the next paragraph. We end this para-
graph with another useful copula property, the The Fréchet-Hoeffding Bounds.

Theorem 2.4.5. The Fréchet-Hoeffding Bounds Let C be a copula. Then for every (u, v) ∈
I2:

W (u, v) = max(u+ v − 1, 0) ≤ C(u, v) ≤ min(u, v) = M(u, v).

We refer to M as the Fréchet-Hoeffding upper bound and W als the Fréchet-Hoeffding
lower bound.

These bounds help with the compution of the copula, as can be seen in Sempi (2011, p86).
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2.5 Non-parametric copulas and parametric copula families

In this chapter we create a list of the most common bivariate parametric copula families. We
include useful properties of parametric copula families which serve as an aid in model selection.

Name Generator function Parameter range Kendall’s τ Tail dependence (lower, upper)

Gaussian ρ ∈ (−1, 1) 2
π arcsin(ρ) 0

Student-t ρ ∈ (−1, 1), ν > 2 2
π arcsin(ρ) 2tν+1(−

√
ν + 1

√
1−ρ
1+ρ)

Clayton 1
θ (t−θ − 1) θ > 0 θ

θ+2 (2−
1
θ , 0)

Gumbel (− log t)θ θ ≥ 1 1− 1
θ (0, 2− 2

1
θ )

Frank − log[ e
−tθ−1
e−θ−1

] θ ∈ R \{0} 1− 4
θ + 4

∫ θ
0

c/θ
ex−1

dx

θ (0, 0)

Joe − log[1− (1− t)θ] θ > 1 1 + 4
θ2

∫ 1
0 t log(t)(1− t)2(1−θ)/θdt (0, 2− 2

1
θ )

BB1 (t−θ − 1)δ θ > 0, δ ≥ 1 1− 2
δ(θ+2) (2−

1
θδ , 2− 2

1
δ )

BB6 (− log[1− (1− t)θ])δ θ ≥ 1, δ ≥ 1 1 + 4
δθ

∫ 1
0 (− log(1− (1− t)θ) (0, 2− 2

1
δθ )

×(1− t)(1− (1− t)−θ))dt
BB7 (1− (1− t)θ)−δ − 1 θ ≥ 1, δ > 0 1 + 4

δθ

∫ 1
0 (−(1− (1− t)θ)δ+1 (2−

1
δ , 2− 2

1
θ )

× (1−(1−t)θ)−δ−1
(1−t)θ−1 )dt

BB8 − log[1−(1−tδ)θ
1−(1−δ)θ ] θ ≥ 1, δ ∈ (0, 1] 1 + 4

δθ

∫ 1
0 (− log( (1−tδ)θ−1

(1−δ)θ−1
) (0, 0)

×(1− tδ)(1− (1− tδ)−θ))dt

Table 1: List and properties of most common bivariate copula families.

Let Φ denote the standard univariate normal distribution function and let Φn
R denote the

standard multivariate normal distribution function with linear correlation matrix R. Then

C(u1, · · · , un) = Φn
R(Φ−1(u1), · · · ,Φ−1(un))

is the Gaussian or normal n-copula.

Similarly, let t denote t the student t distribution function and let tν,Σ denote the multivariate
student t distribution function with Σ the covariance matrix and ν the degrees of freedom. Then

Ctν,Σ(u1, · · · , un) = tν,Σ(t−1
ν,Σ(u1), · · · , t−1

ν,Σ(un))

is the student-t n-copula.
The remaining copulas in table one can take the following form,

C(u1, · · · , un|θ) = ψ−1(ψ(u1|θ) + · · ·+ ψ(un|θ))

where ψ(u|θ) is called the generator function and θ represents the parameters of the copula.
Copulas with this form are called Archimedean Copulas. Note that these copulas usually cover
the bivariate cases. When working with more than two variables, the Gaussian or Student t
copulas are most frequently used.
Another useful copula is the Tawn copula. In 1988, Tawn added two additional parameters to
the Gumbel Copula. This was the solution to the not so reasonable assumption of symmetry.
In some applications the Gumbel Copula did not satisfy C(u1, u2) = C(u2, u1). So random
variables, say X1 and X2, modelled by C were not exchangeable. Tawn copulas belong to the
extreme values copulas.

13



Definition 2.5.1. Let A : [0, 1]→ [1
2 , 1] be a convex function satisfying max(w, 1−w) ≤ A(w) ≤

1 for all w ∈ [0, 1]. The extreme value copula due to Pickands (1981) is defined by

C(u1, u2) = exp

[
log(u1u2)A(

log u2

log(u1u2)
)

]
.

Independence corresponds to A(w) = 1 for all w ∈ [0, 1]. Complete dependence corresponds to
A(w) = max(w, 1− w).

The Tawn Copula, also known as the asymmetric logistic model, is generated by

A(w) = 1− (θ + φ)w + θw2 + φw3

where w ∈ [0, 1], 0 ≤ φ1, φ2 ≤ 1 and θ ∈ [0,∞]. This is also known als the Tawn Type 1 Copula.
The Tawn Type 2 Copula is generated by

A(w) = (1− φ1)(1− w) + (1− φ2)w + [(φ1w)
1
θ + (φ2(1− w))

1
θ ]θ

where w ∈ [0, 1], 0 ≤ φ1, φ2 ≤ 1 and θ ∈ [0,∞]. More on the Tawn Copula, it’s properties and
extreme-value copulas can be found in (Eschenburg, 2013).
In addition to these families, rotated versions of the last 8 copulas exist. The survival copulas
refure to the copulas rotated by 180 degrees.

Definition 2.5.2. We define the survival copula as a function Ĉ : I2 −→ I defined by

Ĉ(u, v) = u+ v − 1 + C(1− u, 1− v) = P[U1 > u1, U2 > u2]

for all (u, v) ∈ I2.

We can also rotate the copulas by 90 and 270 degrees. The distribution functions of the
rotated copulas are given as follows:

C90(u1, u2) = u2 − C(1− u1, u2),

C270(u1, u2) = u1 − C(u1, 1− u2).

Figure 1: Samples from Clayton copulas rotated by 0, 90, 180 and 270 degrees with param-
eters corresponding to Kendall’s τ values of 0.5 for positive dependence and -0.5 for negative
dependence.
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We end this paragraph with the empirical copula.

Definition 2.5.3. Let {(xk, yk)}mk=1 denote a sample of size m from a continuous bivariate
distribution. The empirical copula is a function ECm give by

ECm(
i

m
,
j

m
) =

#{(x, y)|x ≤ x(i), y ≤ y(j)}
m

where the pair (x, y) counted are from the sample and where x(i) and y(j) for 1 ≤ i, j ≤ m denote
order statistics from the sample.

The empirical copula is a non-parametric copula. The definition is a special case of the
definition of an empirical distribution function. They should not be mistaken for a distribu-
tion function, as they represent a dependency structure and are only defined on I. We rely on
empirical copulas when parametric copulas fail to fit the data well enough. It is an important
building block of the Goodness-of-fit test for copulas, which will be explained in chapter 5.

A comparison of the shape of some copulas can be found in figure 2.

(a) Structure of some parametric copulas. Left: Bivariate Gaus-
sian copula with ρ = 0.5. Right: Bivariate Student t copula with
ρ = 0.5 and df = 1.

(b) Structure of an independent cop-
ula.

Figure 2: Source: David Gold. (2017). An introduction to Copulas. Water programming:
A collaborative Research Blog. Retrieved from https://waterprogramming.wordpress.com/2017/11/11/

an-introduction-to-copulas/.
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3 Data set

In this thesis we use a data set that is part of a larger data set. The original data set is considered
one of the largest data about bibliometric information of researchers. This original data set has
been used in other studies, e.g. Gingras et al., 2008; Larivière et al., 2001; Costas et al., 2015.
The data set is composed by 13626 scholars from Quebec. Each professor has published at least
one article between 1980-2012.
As mentioned before, in this thesis we use part of the above mentioned data set. Our data set
consists of 3574 of the 13626 researchers from Quebec. These researchers obtained a PhD after
1980. Thus we can assume that the first publication of each researcher in our set, was published
between 1980 and 2012 on the Web of Science. All the citation data comes from the Web of
Science. Our data set provides us the following variables:

• p: The total number of publications of a researcher published between 1980 and 2012

• mcs: Mean citations of all p publications

• mncs: The nomalized mean of all citations of all p publications

• pp top prop: The percentage of p publications which are in the top 10% most cited papers
in their field per publication year

• pp int collab: The percentage of p publications which were international collaborations

Table 2 summarises some main descriptive values of the data set.

p mcs mncs pp top prop pp int collab

N 3574 3574 3574 3574 3574
Mean 26.989 17.537 1.351 0.135 0.295
Std. Deviation 36.890 35.129 1.678 0.160 0.267
Minimum 1 0 0 0 0
Maximum 777 1550.5 47.333 1 1

Table 2: Main descriptive values of the data set.

N corresponds with the amount of observations. The table also shows the mean, standard de-
viation, minimum and maximum per variable.
Each researcher belongs to a certain division. A division is one of nine disciplinary fields of
activity of the scholar, which is based on the 2000 revision of the U.S. Classification of Instruc-
tional Programs (CIP) developed by the U.S. Department of Education’s National Center for
Education Statistics (NCES). A table with the main descriptive values per division can be found
in Appendix A. In the next chapter, we’ll analyse these values and more.
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4 Publication & Citation Analysis

Before copulas are selected and fitted, it is important to analyse the data. Descriptive statistics
and plots help with the interpretation of the data. Furthermore, it helps us to evaluate the
output of a model selection with a critical eye.
In this chapter, a visual analysis of each variable is given. We will be confronted with some
outliers as a result of the visual analysis. To create a deeper understanding with regard to the
outliers, we will use extra bibliometric indicators to analyse these outliers. Next to the biblio-
metric indicators introduced in chapter 3, we will also analyse the birth year of the researchers
who are regarded as outliers, the amount of publications the researcher published in the first
year of his/her first publication, the year when the researcher published for the first time and
the average number of authors of all publications for the researcher.
Furthermore, we analyse the correlation between each pair of variables. For a deeper analysis,
the correlation coefficients are also computed by binning our data. We create bins based on the
quartiles, the 90th percentile and the 95th percentile of the data. The correlation coefficients
of the bins are calculated. This should provide more information about the tails of the joint
distribution. Finally, the correlation coefficients are computed per division.

4.1 Visual analysis

We will visually inspect the variables p, mcs, mncs, pp top prop and pp int collab. This visual
analysis will give us an insight on possible outliers and the characteristics of the distribution of
the variables.

Figure 3: Visualising the variable p via a histogram, non-parametric density estimate, QQplot
and boxplot.
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Publications

By visually inspecting the variable p, we can conclude that the distribution of the variable is
positively skewed. This follows from the histogram and the non-parametric density estimate,
since it has a long tail on the right. From the same figures we can conclude that the distribution
has one mode. Furthermore, we see a high peak in both figures around the zero. This suggests
that most of the researchers have a very low number of publications. In fact, 7% of researchers
have 1 publication and 25.9% of researchers have at most 5 publications.
The QQplot compares the quantiles of the empirical distribution based on data with the quantile
function of the normal distribution. The quantile- comparison plot in figure 3 tells us that we
can speak of non-normality with respect to the distribution. There are a lot of data points
outside of the CI, especially in the right tail. Most of the data points huddle together between
the 1 and 287, but there are also about 5 outliers. A short summary on the outliers is presented
in table 3.

p Birthyear Phd year pfy fpy Division authors mcs mncs pp top prop pp int collab

351 1962 1987 1 1990 Eng 3.69 7.84 1.25 0.14 0.39
392 1960 1990 1 1988 BMS 9.88 84.37 3.22 0.35 0.42
392 1960 1990 1 1988 HS 9.88 84.37 3.22 0.35 0.42
404 1974 2002 1 1999 Sc 1869.88 17.34 3.34 0.24 0.99
777 1968 1998 6 1993 Sc 1214.5 21.51 2.65 0.24 0.99

Table 3: Summary on the outliers of variable p.

Here, pfy denotes how many publications the researcher published in the first year of his/her
first publication. fpy denotes the year when the researcher published for the first time. authors
denotes the average number of authors of all publications for the researcher. The abbreviations
used for the divisions are BMS for Basic Medical Sciences, Eng for Engineering, HS for Health
Sciences and Sc for Sciences.
Note that the second and third outlier are identical. This can be interpreted as a typo. However,
after evaluating the complete dataset, this overlap between these two divisions is not uncom-
mon. Which leads to believe that this isn’t due to some typo. A more logical explanation would
be that the researcher is active in both disciplinary fields. Especially since the division Health
Sciences and Basic Medical Sciences have overlapsing branches.
Furthermore, note that the last two outliers both concern the division Sciences and nearly all
publications were international collaborations. The average number of authors of all publica-
tions is higher than that of the other three outliers. The last author published 6 times in the
year of his first publication. These numbers do not necessarily imply anything. The second and
third researcher published almost as much as the fourth, and have a lower pp int collab value.
The mncs values of these three researchers are around the same value, where the last researcher
has a lower mncs value. The high publication value in the year of his first publication might
imply a high publication value on a yearly basis, which in turn might explain the high value for p.

Mean citations of all publications

The distribution of the variable mcs, see figure 4, is positively skewed. This follows from the
histogram and the non-parametric density estimate, since it has a long tail on the right. From
the same figures we can conclude that the distribution has one mode. Again, we see a high peak
in both figures around the zero. This suggests that most of the researchers have an averaged
citation score around zero. In fact, 3.2% of researchers have an averaged citation score equal
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to zero. 12.7% of researchers have an averaged citation score in the range of [0,1]. 27% of
researchers have an averaged citation score which at most equals 5.
The quantile-comparison plot tells us that we can speak of non-normality with respect to the
distribution. There is a lot of data outside of the CI, more so in the right tail then in the left
tail. There are also about 4 outliers. A short summary on the outliers is presented in table 4.

mcs Birthyear Phd year pfy fpy Division authors p mncs pp top prop pp int collab

402.86 1962 1990 1 1991 Eng 3.21 14 22.85 0.57 0.57
402.86 1962 1990 1 1991 Sc 3.21 14 22.85 0.57 0.57
562.2 1966 1991 1 1998 BMS 32.33 5 24.69 0.8 0.6

1550.5 1961 1992 1 1993 Sc 156.92 8 47.33 0.5 0.75

Table 4: Summary on the outliers of variable mcs.

As with the outliers of the variable p, here the first two outliers are identical. They belong
to different divisions, which again leads to the conclusion that there are a lot of researchers who
are active in multiple disciplinary fields.
Again the division Sciences pops up between the outliers and contributes the highest outlier.
However, with three variables left to analyse, lets refrain from concluding anything yet.
Notice how these high averaged citation scores do not relate to high p scores. However the
pp top prop and pp int collab scores are very high. This might be related to the high mcs
scores.

Figure 4: Visualising the variable mcs via a histogram, non-parametric density estimate, QQplot
and boxplot.
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Normalized mean citations of all publications

Just as with the previous two variables, we can conclude that the distribution of the variable
mncs is positively skewed. The histogram and the non-parametric density estimate show us a
long tail on the right. From the same figures we can conclude that the distribution has one
mode. Unlike with the variables p and mcs, we see a high peak in both figures around the three,
not around the zero. Which would imply that most researchers have a normalized mean citation
score around the 3. In fact, 2.9% of researchers have a normalized averaged citation score equal
to 0. 48% of researchers have a normalized averaged citation score in the range of [0,1]. Which
implies that the peak in figure 5 represents a normalized mean citation score around the 0.5
rather than 3. 75% of researchers have a normalized averaged citation score in the range of
[0,1.62].

Figure 5: Visualising the variable mncs via a histogram, non-parametric density estimate, QQ-
plot and boxplot.

The quantile- comparison plot tells us that we can speak of non-normality with respect to
the distribution. There is a lot of data outside of the CI, more so than with the averaged mean
citation scores. Again, most of these data points are in the right tail.
There are two gaps between the huddles of data points. The data points after these gaps are
mainly huddled together, except for one.

mncs Birthyear Phd year pfy fpy Division authors p mcs pp top prop pp int collab

47.33 1961 1992 1 1993 Sc 156.92 8 1550.5 0.5 0.75

Table 5: Summary on the outlier of variable mncs.

As we can see in table 5, the outlier in this devision is the same is the last outlier in the
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last division. This is not very surprising, since the normalized averaged mean citation score is
calculated based on the averaged mean citation score. In this case, the noticeably high averaged
mean citation score causes the outlier in mncs.

Percentage of publications which are in the top 10% most cited papers in their field

By visually inspecting the variable pp top prop, we can conclude that the distribution of the
variable is positively skewed. This follows from the histogram and the non-parametric density
estimate, since it has a long tail on the right. From the same figures we can conclude that the
distribution has one mode. Though there is only one mode, we see two peaks in the histogram.
The first peak is the most obvious peak at the zero. The second peak is a much smaller peak,
but compared to all the data points a peak, around the 0.1. In fact, 27.8% of researchers have
0 publications which are in the top 10% most cited papers in their field in the publication year.
47.4% of researchers have at most 20% of their publications belonging to the top 10% most cited
papers in their field. Furthermore, about 24 researchers have publications which are all in the
top 10% most cited papers in their field. However, 19 of these researchers have only published
once. 3 researchers published twice, one published thrice and one researcher published four
times. Most researchers belong to the division Humanities. All publications were published
after 2000.

Figure 6: Visualising the variable pp top prop via a histogram, non-parametric density estimate,
QQplot and boxplot.

The quantile- comparison plot tells us that we can definitely speak of non-normality with
respect to the distribution. There is a lot of data outside of the CI, more so in the right tail
than in the left tail. The amount of data in the left tail is however very noticeable, especially
compared to previous variables. We see that there are a lot of outliers. A lot of the outliers are
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at the zero. The boxplot shows us that the mean of this variable is around the 0.1, but there
are still a lot of data points between the 0.5 and 1.

Percentage of publications which were international collaborations

Figure 7: Visualising the variable pp int collab via a histogram, non-parametric density estimate,
QQplot and boxplot.

Our final variable is also positively skewed, though much less skewed than the previous distribu-
tion. The histogram and the non-parametric density estimate of pp int collab show a long tail
on the right. Like all the previous variables, the distribution has one mode. Though there is
only one mode, we see quite a few peaks in the histogram. The first peak is again at the zero.
We have five other peaks, all about the same height but much smaller than the first peak. We
see these small peaks at the 0.2, 0.3, 0.5 and 1.0. In fact,
The quantile- comparison plot tells us that we can speak of non-normality with respect to the
distribution. There are a lot of data outside of the CI. Mostly at the zero and around the 1.
About 102 researchers have publications which were all international collaborations. Again all
of these publications were published after 2000. In figure 8 we see that most of these publica-
tions are published by researchers active in the field Business & Management, with the division
Sciences following suite. The value of p for these publications has a rather wide range. Most
researchers have only published once or twice. But there is also a researcher who has published
281 times and collaborated internationally for every publication.
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(a) Barplot divisions.

(b) Barplot p.

Figure 8: Barplots of the variables p and division which correspond with a pp int collab score
equal to 1.

The high peaks around the zero, this can also be seen in the histograms, and the data points
outside of the confidence intervals in the QQ-plots, suggest the possibility of outliers. However,
after some evaluation, none of the researchers are excluded. All of the scholars published at least
once. Deleting scholars who are not cited, would not give us a realistic representation of the
publication world. To confirm this, two restrictions were applied. The first restriction required
the scholars to have at least four publications and at mean normalised citation score of 0.85.
This excluded 368 scholars. The correlation scores of each pair of variables decreased, which is
not what we desired. The second restriction excluded scholars with less than four publications
and a mean normalised citation score equal to zero. This excluded 100 scholars. Again the
correlation scores dropped. Both restrictions had the opposite effect of what we desired. Which
led to the conclusion that no scholars should be excluded.
Now let’s see how these variables are correlated. Are the correlation coefficients higher in the
tails because of the positively skewed distributions? In the next paragraph, we will compute
the correlation coefficients of the variables pairwise. Furthermore, we will compute the correla-
tion scores per quantile and compute the correlation score of the 90th percentile and the 95th
percentile. This should give us more information about the tail dependency. Which will be a
tremendous help with the fitting of the copulas.
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4.2 Correlation

Chapter 2 clarifies why rank correlation is favoured over ordinary correlation with our data set.
To compute Spearman’s rank correlation and Kendall’s rank correlation, R is used. Since the
data set consists of a lot of ties, it is sensible to evaluate how the software handles these ties.
R uses a variation of the Kendall correlation coefficient in order to deal with the tied ranks. This
variation is known as Kendall’s tau-b coefficient. The Kendall’s tau-b coefficient is defined
as

τB =
P - Q√
N1 ×

√
N2

where P = number of concordant pairs

Q = number of discordant pairs

N1 = number of data pairs not tied in the first variable

N2 = number of data pairs not tied in the second variable

R uses the same formula for Spearman’s correlation as described by definition 2.4.3 in paragraph
2.4. R fails in the computation of the correlation coefficient when the rank of one of the variables
or both has a standard deviation equal to zero. This can be the case when, for example, the
correlation between the first ten researchers are computed with regard to the ranked variables
pp top prop and mcs. The value of pp top prop for these ten scholars equal zero. So the standard
deviation equals zero.
Though the bins created by splitting the data set according to their quartiles contain ties, the
standard deviation of these ranked bins do not equal zero. So Spearman’s rank correlation is
computed without difficulty. Kendall’s correlation coefficient is in fact Kendall’s tau-b coefficient.
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p mcs S 0.5 016 0.17 0.14 0.20 0.25 0.19
K 0.36 0.12 0.12 0.1 0.14 0.17 0.13

p mncs S 0.31 0.13 0.09 0.10 0.15 0.28 0.16
K 0.22 0.1 0.06 0.07 0.1 0.19 0.11

p pp top prop S 0.38 0.19 0.08 0.11 0.13 0.28 0.15
K 0.27 0.15 0.05 0.07 0.09 0.19 0.1

p pp int collab S 0.33 0.22 0.05 0.04 0.06 0.16 0.17
K 0.23 0.18 0.03 0.02 0.04 0.11 0.12

mcs mncs S 0.71 0.53 0.22 0.24 0.58 0.59 0.67
K 0.55 0.39 0.15 0.16 0.42 0.43 0.49

mcs pp top prop S 0.65 0.29 0.15 0.19 0.44 0.34 0.24
K 0.49 0.22 0.11 0.13 0.3 0.23 0.16

mcs pp int collab S 0.36 0.33 0.11 0.02 0.19 0.14 0.16
K 0.26 0.24 0.08 0.01 0.13 0.1 0.11

mncs pp top prop S 0.87 0.42 0.43 0.47 0.60 0.44 0.19
K 0.72 0.33 0.31 0.33 0.43 0.31 0.13

mncs pp int collab S 0.3 0.29 0.08 0.05 0.09 0.06 -0.06
K 0.21 0.2 0.05 0.03 0.06 0.04 -0.04

pp top prop pp int collab S 0.29 0.23 0.11 0.11 -0.02 -0.26 -0.41
K 0.22 0.21 0.07 0.08 -0.01 -0.19 -0.33

Table 6: Correlation coefficients.
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Table 6 reports the correlation coefficients of the data set. The S and K listed under method
denote Spearman and Kendall respectively. This notation applies for the rest of this thesis.
Now going back to table 6, the correlation coefficients are quite dispersed. Notice how all the
Kendal correlation coefficients are lower than the Spearman correlation coefficients. Where
Kendal is based on the concordance and discordance of data pairs, Spearman is based on de-
viations. This leads to smaller correlation coefficients when Kendall’s method is used. This
is also why Kendall’s method is usually preferred over Spearman’s method in Statistics. It is
said that Kendall’s tau is less sensitive to outliers and the p-values, calculated when testing
the null hypothesis that Kendall’s tau equals 0, are more accurate with smaller sample sizes,
where Spearman’s rho is more sensitive to outliers and discrepancies in data. However, in most
situations, the interpretations of Kendall’s tau and Spearman’s rank correlation coefficient lead
to the same inferences because they are very similar.
The correlation coefficients of the bins help with the copula selection. Take the pair mcs, mncs
as an example. Spearman’s rank correlation coefficient for this pair equals 0.71. Furthermore,
the tails have higher correlation coefficient than the middle. In general, the random correlations
show a weak dependence in the middle of the data. An observation that could not have been
made with merely the correlation score of 0.71, nor with the scatterplot below. The pair mncs,
pp top prop has a completely different structure. The pair has higher correlation coefficients
than the previous pair, but they are not similar in structure at all. The correlation coefficient in
the first three bins are quite similar. The last bin has a higher correlation coefficient. However,
looking at the bins on the right side of the 90th percentile and the 95th percentile, does not
suggest a thicker tail. The correlation coefficient in the tail is rather light.
Now let’s look at a pair with a low correlation score. Take the pair p,pp int collab. Though
the correlation coefficients of this pair is very low, we can still say a lot about the dependence
structure because of the correlation coefficients of the bins. It is clear that this pair is much
thicker in the tails than in the middle.
In this paragraph, we have seen that just looking at one correlation coefficient can put us on
the wrong path when it comes to copula selection. A high correlation coefficient can give us
just as much information on the dependence structure as a low correlation coefficient, if the
analysis runs deeper. Just as looking at one correlation coefficient is not enough, looking at the
complete data set can be a pitfall as well. Furthermore, in the beginning of this paragraph we
saw that the first few outliers were often linked to the division Sciences. We also saw that a
high international collaboration score is linked to the divisions Business & Management and
Sciences. This implies that every division has a different publication and citation behaviour.
These are the reasons why in the next paragraph the data set is split by its divisions.
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Scatterplots of the different pairs of variables. The first three red lines denote Q1,Q2
and Q3 respectively. The blue line denotes the 90th percentile and the green line
denotes the 95th percentile.
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4.3 Data by division

Every division has its own specific publication and citation behaviour. For example, it is well
known that papers are regularly published in the field of medicine. More so than in other
fields. That is probably why this is the division with the largest averaged publication score,
see Appendix A. According to current assumptions, that might mean that the division Basic
Medical Sciences publishes more than the other divisions. Assume that the citation values do
not increase with this higher publication rate. This leads to a dependence structure which
differs from the dependence structure between the same variables in different divisions. The
dependence structures analysed in the previous paragraph will also differ from the dependence
structures of the division Basic Medical Sciences. Which leads to different copula parameters
and maybe even a completely different copula.

Division Amount of observations

Basic Medical Sciences 711
Business & Management 238

Education 47
Engineering 512

Health Sciences 288
Humanities 324

Non-Health Professionals 108
Sciences 824

Social Sciences 500

Table 7: Amount of observations per division.

Figure 9 gives us a quick overview of the diverse distributions of the different divisions. Ap-
plying the same copula for each division would result in an unrealistic model. So let’s analyse
our data per division. In table 7 we see that the divisions Basic Medical Sciences and Sciences
provide the most observations. Which means that most of our researchers are active in these dis-
ciplinary fields. Appendix A summarizes some main descriptive values per division per variable.
As said before, the researchers active in the divisions Basic Medical Sciences publishes the most.
This can be concluded from the highest average publication score. The division Humanities has
the lowest averaged amount of publications. Notice that the mean scores for the variable p in
Appendix A differ a lot from the mean score for the same variable of the complete data set. This
actually goes for all the mean values of the variables. The division Basic Medical Sciences also
has the highest mean value for the variables mcs and mncs. Thus, the researchers in active in
this field publish publications which are cited more often than in other fields. However, Business
& Management and Sciences are the divisions with the highest mean values for pp top prop and
pp int collab. So the researchers in these fields tend to collaborate more internationally for their
publications and have 10% of their publications as highly cited. The divisions Education and
Non-Health Professional have the lowest mean values for the variable mncs. Humanities has
the lowest mean value for mcs, but has a high mncs mean value. This division also has the
lowest pp int collab mean value. Finally, the divisions Education and Non-Health Professional
also have the lowest mean value for the variable pp top prop.
In the next part of the thesis, the same analysis method as in the previous paragraph is ap-
plied. Some tables contain a ’-’ instead of a correlation coefficient. These correlation coefficients
could not be computed due to very low number of observations. For Spearman, this results in
a standard deviation equal to zero. For Kendall this means that all the data points are tied.
So according to the Kendall tau-b coefficient formula, the correlation coefficient can not be
computed.
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(a) Boxplot variable publications

(b) Boxplot variable MCS

(c) Boxplot variable MNCS (d) Boxplot variable pp top prop (e) Boxplot variable International
Collaboration

Figure 9: Boxplot of each variable. The divisions are compared with each other and with the
distribution of the complete data set.
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Basic Medical Sciences

The complete data set consists of information about 3570 scholars. 711 of these scholars belong
to the division Basic Medical Sciences. Table 8 reports the correlation coefficients of the division
Basic Medical Sciences. Just as with the complete data set, the Kendall correlation coefficients
are lower than the Spearman correlation coefficients. Compared to the correlation coefficients
of the complete data set, most correlation coefficients have decreased. Furthermore, most pairs
in this division have a dependence structure where the middle has a light density and the tails
have a high(er) density. The tails are not strongly correlated. The density in the tails is higher
than the density in the middle. The data points in the middle are completely scattered. This
causes the light density. This differs highly from the structures given by table 6.
Also notice the negative correlation coefficients. Especially in the 95th percentile. The negative
correlation coefficients imply that an increase in variable 1 is associated with a decrease in
variable 2. For the pair (p,pp int collab) the structure between Q1 and Q2 is rather monotonic.
This is implied by the correlation coefficients for this pair, which is 0 (spearman) and -0.04
(kendall). The pair (pp top prop,pp int collab) has higher negative correlation coefficients in
area above the 95th percentile. In this case, this means that researchers active in the field Basic
Medical Sciences with at least 40.8% of their publications in the top 10% most cited papers in
said field, tend to internationally collaborate less. This means that the pp int collab score for
these researchers was mostly below 0.4
The pairs (mcs, mncs),(mcs, pp top prop) and (mncs,pp top prop) have increased correlation
coefficients and a different structure. The first pair has a dense middle with strongly correlated
tails. The second pair has a similar structure, but without the strongly correlated tails. The
tails are denser than the middle. Finally, the last pair has a strongly correlated left tail.
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p mcs S 0.5 0.31 0.21 0.01 0.03 0.16 0.08 0.04
K 0.36 0.22 0.15 0.005 0.02 0.11 0.06 0.03

p mncs S 0.31 0.31 0.28 0 0.07 0.23 0.18 0.06
K 0.22 0.22 0.20 -0.004 0.05 0.16 0.12 0.06

p pp top prop S 0.38 0.31 0.35 0.02 0.03 0.21 0.19 0.02
K 0.27 0.22 0.25 0.01 0.01 0.15 0.12 0.03

p pp int collab S 0.33 0.27 0.37 -0.08 0.12 0.11 0.23 0.09
K 0.23 0.19 0.26 -0.06 0.08 0.07 0.17 0.07

mcs mncs S 0.71 0.84 0.63 0.39 0.32 0.61 0.75 0.68
K 0.55 0.66 0.47 0.27 0.21 0.45 0.57 0.52

mcs pp top prop S 0.65 0.75 0.45 0.26 0.27 0.36 0.34 0.33
K 0.49 0.56 0.34 0.18 0.18 0.25 0.24 0.22

mcs pp int collab S 0.36 0.31 0.18 0.01 -0.01 0.20 0.24 0.09
K 0.26 0.22 0.12 0.01 -0.01 0.14 0.16 0.07

mncs pp top prop S 0.87 0.89 0.64 0.48 0.50 0.44 0.27 -0.05
K 0.72 0.72 0.49 0.33 0.35 0.31 0.18 -0.05

mncs pp int collab S 0.3 0.35 0.31 0.08 0.08 0.18 0.23 0.32
K 0.21 0.25 0.22 0.05 0.05 0.12 0.16 0.22

pp top prop pp int collab S 0.29 0.33 0.22 0.09 0.12 0.04 -0.05 -0.29
K 0.22 0.24 0.17 0.07 0.08 0.03 -0.03 -0.22

Table 8: Correlation coefficients Basic Medical Sciences.
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Business & Management

Table 9 computes the correlation coefficients of 238 scholars. Notice how the correlation coeffi-
cients of the last six pairs have increased compared to the correlation coefficients of the complete
data set. A noticeable amount of bins are negatively correlated in this division. For some pairs,
this negative correlation coefficient represents only one bin. However some pairs have negative
correlation coefficients for multiple bins. Let’s take a look at the first pair. The tails of this
pair are negatively correlation. Which means that researchers with a very low amount of pub-
lications, and researchers with a very high amount of publications tend to be cited less in this
field. In other words, say that a researcher in this field publishes once, according to the nega-
tive correlation coefficient chances are that the publication does not get cited. For a researcher
with let say 83 publications, in this field, chances are that the averaged amount of citations of
all publications is lower than 83. This reasoning also holds for researchers with a publication
amount in Q2-Q3. This kind of structure applies to the first four pairs. The other distribution
functions in this division have a denser middle and light to no tails. The pair (mcs,mncs) is an
exception to this, which holds the same structure as discussed for the previous division. The pair
(mncs,pp int collab) has a negative correlated tail. So researchers with a very high normalized
averaged mean citation score tend to collaborate less on an international basis.
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p mcs S 0.5 0.19 -0.19 0.33 -0.11 0.03 -0.12 -0.14
K 0.36 0.13 -0.14 0.26 -0.08 0.02 -0.09 -0.11

p mncs S 0.31 0.26 -0.10 0.25 -0.11 0.11 0.03 -0.27
K 0.22 0.18 -0.08 0.19 -0.08 0.07 0.03 -0.16

p pp top prop S 0.38 0.3 -0.11 0.27 -0.15 0.17 0.04 -0.08
K 0.27 0.22 -0.10 0.22 -0.12 0.11 0.03 -0.05

p pp int collab S 0.33 0.07 -0.14 0.35 -0.10 -0.03 -0.06 -0.31
K 0.23 0.04 -0.13 0.29 -0.09 -0.03 -0.05 -0.21

mcs mncs S 0.71 0.92 0.69 0.58 0.36 0.76 0.71 0.34
K 0.55 0.75 0.51 0.41 0.24 0.57 0.51 0.23

mcs pp top prop S 0.65 0.8 0.18 0.44 0.23 0.58 0.43 0.12
K 0.49 0.63 0.15 0.33 0.17 0.43 0.34 0.06

mcs pp int collab S 0.36 0.45 -0.06 0.39 0.03 0.23 -0.17 0.33
K 0.26 0.33 -0.05 0.27 0.02 0.15 -0.12 0.23

mncs pp top prop S 0.87 0.89 0.06 0.35 0.64 0.73 0.32 0.01
K 0.72 0.75 0.05 0.26 0.46 0.56 0.26 0.06

mncs pp int collab S 0.3 0.39 0.13 0.15 -0.09 0 -0.09 -0.30
K 0.21 0.28 0.11 0.11 -0.06 0.002 -0.04 -0.13

pp top prop pp int collab S 0.29 0.36 - 0.05 0.15 0.09 0.02 0.5
K 0.22 0.28 - 0.04 0.11 0.06 0.01 0.41

Table 9: Correlation coefficients Business & Management.

Education

Education is the smallest division in our data set. With only 47 observations, the correlation
coefficients and the dependence structures differ a lot from the other divisions and the complete
dataset. For one, the ranked variables are quickly tied below Q1 because the dataset is so small.
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For the last pair of variables, this goes for the bin up until Q1 and the bin between Q1 and
the median. Furthermore, the data points are very dispersed for such a small data set. The
division Non-Health Professional has 108 observations, which is a little more over twice as many
observations as the current division, but has a completely different structure. The data points
in the division Non-Health Professional have a similar structure compared to for example the
divisions Basic Medical Sciences and Social Sciences.

(a) Education. (b) Non-Health Professional.

(c) Basic Medical Sciences. (d) Social Sciences.

Figure 10: Scatterplots pp top prop vs pp int collab of different divisions. The first three red
lines denote Q1,Q2 and Q3 respectively. The blue line denotes the 90th percentile and the green
line denotes the 95th percentile.

As figure 10 shows, the data points of the divisions Non-Health Professional, Basic Medical
Sciences and Social Sciences mainly huddle together. The structure of figure 10(a) is completely
different.
Three correlation coefficients increased compared to the correlation coefficients of the complete
data set. The most important observation, when inspecting table 10, are the (strong) upper
tails. Compared to the lower tail and the middle, the upper tail continuously stands out in
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this division. Especially for the pairs (mcs, pp top prop) and (mcs,pp int collab), where the
area above the 95th percentile tends to be perfectly positively correlated. This implies that
researchers with a high averaged mean citation score, in this field that means around the 30,
have published publications which practically all are in the top 10% most cited papers in their
field and were practically all international collaborations.
As with the previous two divisions, the pair (mcs,mncs) has a strong upper and lower tail
with a dense middle. Unlike the previous division, there aren’t that many negative correla-
tion coefficients. Notice that the pair (mcs, pp int collab) is negatively correlated throughout
the first half of the structure. This implies that researchers with low averaged mean citation
scores publish less publications which were international collaborations. Furthermore, notice
how again, (mncs,pp int collab) is negatively correlated in the upper tail. Coincidently, the
pair (p,pp int collab) has a negatively correlated upper tail as well. So researchers with a high
amount of publications, in this field that means about 40 publications, tend to collaborate less
on an international basis.
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p mcs S 0.5 0.44 - 0.09 -0.06 0.60 0.43 0.5
K 0.36 0.35 - 0.05 -0.02 0.5 0.33 0.33

p mncs S 0.31 0.26 - -0.22 -0.10 0.38 0.43 0.5
K 0.22 0.21 - -0.19 -0.02 0.29 0.33 0.33

p pp top prop S 0.38 0.52 - 0.03 0.18 0.45 0.43 0.5
K 0.27 0.40 - 0.05 0.15 0.37 0.33 0.33

p pp int collab S 0.33 0.31 - 0.13 0.35 0.65 0.03 -0.5
K 0.23 0.23 - 0.1 0.24 0.47 0.07 -0.33

mcs mncs S 0.71 0.81 0.68 0.63 0.35 0.80 0.26 0.5
K 0.55 0.68 0.52 0.5 0.29 0.61 0.2 0.33

mcs pp top prop S 0.65 0.58 0.04 0.31 0.47 0.30 0.23 1
K 0.49 0.47 0.04 0.27 0.34 0.23 0.14 1

mcs pp int collab S 0.36 0.23 -0.25 -0.33 -0.06 0.27 0.35 1
K 0.26 0.17 -0.24 -0.28 0.02 0.22 0.28 1

mncs pp top prop S 0.87 0.69 - 0.39 0.52 0.63 0.87 0.5
K 0.72 0.59 - 0.35 0.38 0.45 0.69 0.33

mncs pp int collab S 0.3 0.16 0.12 0.22 0.10 -0.14 0.33 -0.5
K 0.21 0.13 0.1 0.16 0.06 -0.1 0.3 -0.33

pp top prop pp int collab S 0.29 0.48 - - 0.32 0.12 0.17 0.5
K 0.22 0.41 - - 0.21 0.09 0.14 0.33

Table 10: Correlation coefficients Education.

Engineering

The correlation coefficients are based on 512 observations. The output is similar to that of
the division Basic Medical Sciences. The dependence structure between most pairs consist of a
light density middle and a high(er) density tail. All pairs have decreased correlation coefficients
with respect to the complete data set, except for the pairs (mcs, mncs),(mcs, pp top prop) and
(mncs,pp top prop). The first pair has a dense middle with strongly correlated tails. The sec-
ond pair has a constant structure according to the correlation coefficients. The last pair has a
structure similar to the first pair. Notice how the last pair in table 11 has a dense(r) upper tail.
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Finally, notice how there are only a few negative correlation coefficients in this division. All of
these coefficients are so low, that they rather imply a monotonic structure than a decreasing
structure.
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p mcs S 0.5 0.39 0.10 -0.01 0.14 0.04 0.11 0.33
K 0.36 0.27 0.06 -0.01 0.1 0.03 0.06 0.16

p mncs S 0.31 0.34 0.16 0.01 0.10 0.10 0.09 0.08
K 0.22 0.23 0.1 0.01 0.07 0.08 0.05 0.02

p pp top prop S 0.38 0.31 0.24 0.05 0.07 0.05 0.12 0.16
K 0.27 0.22 0.17 0.03 0.04 0.04 0.08 0.1

p pp int collab S 0.33 0.25 0.12 -0.03 0.09 0.02 0.25 -0.06
K 0.23 0.18 0.07 -0.03 0.05 0.01 0.16 -0.07

mcs mncs S 0.71 0.8 0.66 0.47 0.27 0.56 0.51 0.42
K 0.55 0.62 0.48 0.33 0.18 0.4 0.36 0.26

mcs pp top prop S 0.65 0.72 0.49 0.42 0.19 0.54 0.50 0.24
K 0.49 0.54 0.37 0.28 0.13 0.38 0.37 0.15

mcs pp int collab S 0.36 0.16 0.08 0 0.05 -0.03 -0.01 0.10
K 0.26 0.11 0.07 0.003 0.04 -0.02 -0.01 0.08

mncs pp top prop S 0.87 0.9 0.66 0.39 0.37 0.69 0.33 0.44
K 0.72 0.74 0.52 0.28 0.26 0.51 0.24 0.35

mncs pp int collab S 0.3 0.23 0.03 0.19 -0.03 0.04 0.29 0.09
K 0.21 0.16 0.02 0.14 -0.02 0.02 0.2 0.07

pp top prop pp int collab S 0.29 0.22 0.07 0.05 0.06 0.07 0.33 0.15
K 0.22 0.16 0.06 0.03 0.04 0.12 0.22 0.11

Table 11: Correlation coefficients Engineering.

Health Sciences

The correlation coefficients of the division Health Sciences are very similar to those of the com-
plete data set. Six pairs have an increased correlation coefficient with respect to the complete
data set. 288 scholars belong to this division. The first three pairs and pair seven and nine seem
to have a joint distribution function with a denser upper tail. Pair four, six and ten seem to
have a denser lower tail. Pair eight has a rather constant structure according to its correlation
coefficients. There are few negative correlation coefficients. Notice how the last pair is nega-
tively correlated throughout most of the structure and has a rather strong negative correlation
coefficient in the upper tail. This means that a lot of the researchers active in the field Health
Sciences with at least 37.2% of their publications in the top 10% most cited papers in said
field, tend to internationally collaborate less. This means that the pp int collab score for these
researchers was mostly below 0.37.
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p mcs S 0.5 0.43 0.26 -0.04 0.06 0.37 0.21 0.33
K 0.36 0.3 0.19 -0.03 0.04 0.25 0.15 0.23

p mncs S 0.31 0.35 0.09 0.09 0.18 0.31 0.23 0.26
K 0.22 0.25 0.08 0.06 0.13 0.21 0.16 0.23

p pp top prop S 0.38 0.35 0.15 0.17 0.10 0.27 0.19 0.21
K 0.27 0.25 0.12 0.11 0.07 0.19 0.13 0.13

p pp int collab S 0.33 0.34 0.27 0.07 0.16 0.19 0.36 0.14
K 0.23 0.25 0.19 0.04 0.11 0.13 0.28 0.13

mcs mncs S 0.71 0.75 0.52 0.35 0.31 0.75 0.86 0.85
K 0.55 0.58 0.38 0.24 0.22 0.57 0.7 0.7

mcs pp top prop S 0.65 0.68 0.42 0.32 0.18 0.47 0.42 0.26
K 0.49 0.52 0.31 0.21 0.13 0.33 0.32 0.17

mcs pp int collab S 0.36 0.28 0.27 -0.05 -0.08 0.12 -0.08 0.33
K 0.26 0.2 0.19 -0.03 -0.05 0.08 -0.05 0.25

mncs pp top prop S 0.87 0.9 0.65 0.43 0.52 0.56 0.02 0.44
K 0.72 0.74 0.5 0.32 0.37 0.41 0.01 0.29

mncs pp int collab S 0.3 0.25 0.22 0.13 0.01 0 0.11 0.47
K 0.21 0.18 0.16 0.08 0.01 0.003 0.07 0.31

pp top prop pp int collab S 0.29 0.33 0.16 -0.06 0.003 -0.13 -0.03 -0.57
K 0.22 0.16 0.13 -0.09 -0.0004 -0.08 0.02 -0.46

Table 12: Correlation coefficients Health Sciences.

Humanities

The lack of correlation coefficients in table 13 is not a result of a small number of observations.
In the division Education, there were only 47 very dispersed observations to work with. However,
this division provides 324 observations. It is however very common in this division to publish
once, as can be deducted from figure 11 as well. This causes ties in certain parts of the ranked
variables. Which explains the lack of correlation coefficients in table 13.
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p mcs S 0.5 0.16 - 0.05 0.01 0.14 0.31 0.46
K 0.36 0.12 - 0.05 0.01 0.1 0.23 0.34

p mncs S 0.31 0.06 - 0.09 -0.09 0.02 0.18 0.39
K 0.22 0.05 - 0.07 -0.07 0.02 0.15 0.33

p pp top prop S 0.38 0.23 - 0.17 -0.03 0.17 0.22 0.34
K 0.27 0.18 - 0.16 -0.02 0.13 0.18 0.32

p pp int collab S 0.33 0.23 - 0.02 0.09 0.38 0.31 0.48
K 0.23 0.19 - 0.02 0.08 0.31 0.24 0.38

mcs mncs S 0.71 0.8 0.99 0.32 0.20 0.14 0.36 0.20
K 0.55 0.63 0.95 0.24 0.16 0.09 0.23 0.1

mcs pp top prop S 0.65 0.5 0.37 -0.08 0.26 0.17 0.29 0.20
K 0.49 0.39 0.34 -0.07 0.21 0.12 0.2 0.16

mcs pp int collab S 0.36 0.33 0.14 -0.03 -0.01 0.33 0.44 0.33
K 0.26 0.27 0.14 -0.03 -0.01 0.26 0.32 0.23

mncs pp top prop S 0.87 0.73 -0.07 0.33 0.36 0.69 0.31 0.25
K 0.72 0.6 -0.07 0.26 0.26 0.51 0.22 0.18

mncs pp int collab S 0.3 0.14 0.12 0.08 0.03 0.09 0.17 0.47
K 0.21 0.11 0.12 0.06 0.03 0.07 0.14 0.38

pp top prop pp int collab S 0.29 0.04 - - 0.28 -0.13 -0.05 0.02
K 0.22 0.04 - - 0.23 -0.1 -0.04 0.02

Table 13: Correlation coefficients Humanities.

Notice how all the correlation coefficients have decreased except for the correlation coefficients
of the pair (mcs,mncs). A lot of the correlation coefficients have dropped significantly, for
example the correlation coefficient of the pair (p,mcs) dropped from 0.5 to 0.16. Figure 11 sheds
more light on these decreases. The data in this division is quite dispersed, more so than in the
complete data set. According to table 13, most of joint distributions have a dense upper tail.
The exceptions in this division concern the joint distribution functions of the pairs (mcs,mncs)
and (pp top prop,pp int collab). The last pair has a denser middle and no tails.
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Figure 11: Scatterplots of the different pairs of variables in the division Humanities. The first
three red lines denote Q1,Q2 and Q3 respectively. The blue line denotes the 90th percentile and
the green line denotes the 95th percentile.

Non-Health Professional

The second smallest division with 108 observations. Most of the correlation coefficients below
the first quartile are negative. As in all previous division the pair (mcs, mncs) is the exception.
The joint distribution of the pairs (mcs,pp top prop) and (mncs,pp top prop) seem to have a
dense upper tail. The pair (mncs,pp int collab) seems to have a dense lower tail. The other
pairs seem to have a denser middle and light to no tails. The middle might be denser, but is not
strongly correlated. Notice how almost all pairs have a negatively correlated lower tail. Except
for the pair (mncs,pp int collab), which again has a negatively correlated upper tail, just like in
the divisions Education and Business & Management. The last pair is also negatively correlated
in the upper tail, just like in the division Health Sciences.
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p mcs S 0.5 0.45 -0.24 0.16 0.02 0.02 0.09 -0.23
K 0.36 0.33 -0.21 0.14 -0.01 0.02 0.03 -0.28

p mncs S 0.31 0.48 -0.24 0.24 0.01 -0.14 -0.11 0
K 0.22 0.34 -0.21 0.18 0.01 -0.12 -0.09 0

p pp top prop S 0.38 0.54 -0.06 0.26 -0.06 -0.19 -0.11 0.12
K 0.27 0.39 -0.05 0.24 -0.07 -0.17 -0.09 0.14

p pp int collab S 0.33 0.43 -0.08 0.21 0.22 0.06 0.04 0
K 0.23 0.31 -0.08 0.19 0.17 0.04 0 0

mcs mncs S 0.71 0.74 0.90 0.15 0.42 0.27 0.55 0.83
K 0.55 0.58 0.8 0.13 0.3 0.2 0.42 0.73

mcs pp top prop S 0.65 0.54 -0.20 0.20 0.20 0.15 0.40 0.64
K 0.49 0.42 -0.18 0.17 0.14 0.11 0.3 0.55

mcs pp int collab S 0.36 0.33 0.39 0.14 0.10 0.29 0.05 0.26
K 0.26 0.25 0.37 0.13 0.06 0.23 0.09 0.21

mncs pp top prop S 0.87 0.76 -0.20 0.30 0.51 0.67 0.41 0.33
K 0.72 0.63 -0.17 0.24 0.38 0.48 0.31 0.3

mncs pp int collab S 0.3 0.3 0.42 0.24 0.45 -0.01 -0.41 -0.20
K 0.21 0.22 0.36 0.19 0.32 -0.02 -0.29 -0.14

pp top prop pp int collab S 0.29 0.32 - - 0.57 -0.13 -0.07 -0.25
K 0.22 0.27 - - 0.44 -0.1 -0.03 -0.23

Table 14: Correlation coefficients Non-Health Professional.

Sciences

This is the biggest division in the data set. It contains 824 observations. Notice how the first
four pairs and ( (mcs, pp int collab)) contain a denser upper tail. Whilst the last two pairs have
a denser middle and basically no tails. (mcs,mncs) and (mncs,pp top prop) have a dense middle
with strongly correlated tails. (mcs,pp top prop) has a dense lower tail. Finally, the last pair is
negatively correlated in the upper tail. Which means that researchers active in this field who
have most of their publications in the top 10% of the most cited publications in their field tend
to collaborate less on an international basis.
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p mcs S 0.5 0.4 0.14 0.04 0.10 0.01 0.37 0.35
K 0.36 0.28 0.1 0.03 0.07 0.01 0.25 0.23

p mncs S 0.31 0.27 0.09 0 0.03 -0.03 0.35 0.40
K 0.22 0.19 0.06 -0.002 0.02 -0.02 0.25 0.28

p pp top prop S 0.38 0.27 0.10 0.05 0.02 -0.05 0.33 0.30
K 0.27 0.19 0.07 0.04 0.01 -0.03 0.22 0.19

p pp int collab S 0.33 0.02 0.10 0 0.04 -0.02 0.12 0.31
K 0.23 0.01 0.07 -0.01 0.03 -0.02 0.08 0.19

mcs mncs S 0.71 0.77 0.66 0.16 0.25 0.65 0.61 0.69
K 0.55 0.59 0.48 0.11 0.17 0.49 0.47 0.52

mcs pp top prop S 0.65 0.69 0.53 0.14 0.21 0.44 0.29 0.13
K 0.49 0.51 0.39 0.1 0.14 0.32 0.19 0.09

mcs pp int collab S 0.36 0.05 -0.06 0.04 0.04 0.18 0.19 0.15
K 0.26 0.03 -0.04 0.03 0.03 0.12 0.13 0.1

mncs pp top prop S 0.87 0.91 0.54 0.56 0.46 0.62 0.42 0.16
K 0.72 0.76 0.42 0.39 0.33 0.45 0.3 0.1

mncs pp int collab S 0.3 0.19 -0.02 0.08 0.10 0.11 -0.02 0.07
K 0.21 0.13 -0.01 0.05 0.07 0.07 -0.01 0.04

pp top prop pp int collab S 0.29 0.18 0.1 0.05 0.19 0.1 -0.06 -0.24
K 0.22 0.13 0.07 0.03 0.12 0.07 -0.03 -0.16

Table 15: Correlation coefficients Sciences.

Social Sciences

The last division contains 500 scholars. The correlation coefficients are close to that of the
complete data set. The dependence structures in these divisions are very divergent. The pair
(mcs, mncs) has the same structure as in the previous divisions. Where the pair (p,pp top prop)
has a slight lower tail and a negatively correlated upper tail, (mncs,pp prop top) has a dense
upper tail. Notice how quite a few pairs have a negatively correlated upper tail. The first four
and last two pairs have light lower tail, the middle is quite dispersed and the tails are negatively
correlated. For these pairs it holds that high values for variable 1 go hand in hand with lower
values for variable 2. The negative correlation coefficients aren’t very high, so this implies a
rather slight decrease. Pair six and eight have dense upper tails with a light lower tail and a
denser middle than the other pairs. Finally, pair seven has light tails and a dispersed middle.
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p mcs S 0.5 0.49 0.17 0.11 0 0.22 0.17 -0.31
K 0.36 0.35 0.13 0.08 0.002 0.15 0.12 -0.21

p mncs S 0.31 0.3 0.22 0.08 -0.05 0.08 0.02 -0.34
K 0.22 0.21 0.17 0.05 -0.04 0.05 0.01 -0.23

p pp top prop S 0.38 0.39 0.23 0.06 -0.01 0.11 0.05 -0.32
K 0.27 0.28 0.2 0.04 -0.02 0.07 0.02 -0.22

p pp int collab S 0.33 0.3 0.32 0.10 0.10 0.07 -0.14 -0.02
K 0.23 0.21 0.26 0.07 0.06 0.05 -0.09 0.01

mcs mncs S 0.71 0.77 0.59 0.27 0.47 0.55 0.69 0.58
K 0.55 0.6 0.44 0.19 0.33 0.4 0.51 0.43

mcs pp top prop S 0.65 0.71 0.21 0.18 0.37 0.49 0.56 0.29
K 0.49 0.54 0.17 0.13 0.26 0.34 0.41 0.22

mcs pp int collab S 0.36 0.37 0.37 -0.04 0.13 0.20 0.25 0.24
K 0.26 0.26 0.28 -0.02 0.1 0.14 0.19 0.14

mncs pp top prop S 0.87 0.84 0.30 0.39 0.48 0.71 0.52 0.55
K 0.72 0.7 0.24 0.28 0.34 0.54 0.38 0.44

mncs pp int collab S 0.3 0.36 0.34 0.02 0.09 0.13 -0.04 -0.33
K 0.21 0.26 0.23 0.02 0.07 0.08 -0.04 -0.25

pp top prop pp int collab S 0.29 0.33 - 0.18 0.12 0.14 -0.19 -0.12
K 0.22 0.25 - 0.13 0.08 0.11 -0.13 -0.07

Table 16: Correlation coefficients Social Sciences.
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5 Fitting copulas

We aim to find the parametric copula families that fit the data best. In this chapther we analyse
the selection of the copula. Since the copulas are selected with the help of R, we start of by
discussing the model used by R. Followed by some comments on the ties. Then the selected
copulas are analysed using the Goodness-of-Fit test (GOF test) for copulas. The test compares
the empirical copula with a given parametric copula derived under the null hypothesis. This
leads to the rejection of some of the selected copulas. These rejected copulas are replaced by the
empirical copula, since this should be a bitter fit according to the output the GOF test. Finally,
we will analyse a few of these empirical copulas.

5.1 Model

The bivariate copulas are selected via the function BiCopSelect in R. This function can be
found in the package VineCopula. The function selects the best fitting bivariate copula family
for given pseudo-observations according to the AIC. The pseudo-observations are computed
via the function pobs, which can also be found in the VineCopula package in R. The function
transforms a random variable into normalized ranked data.
BiCopSelect uses pseudo-observations rather than the original dataset, due to Sklar’s theorem,
which states that the copula is a function of uniform margins. Therefore, the variables need to
be transformed into normalized ranked data points.
The function selects the copula in a few steps. First, it fits all available parametric families
of copulas. In R, more than 35 have been implemented. The corresponding parameters are
obtained by pseudo-maximum likelihood estimation. That is, the margins are replaced by their
empirical cumulative distribution functions (cdfs). Then the empirical cdfs are plugged into the
copula density to calculate the estimate via

l(θ) =
n∑
i=1

log[cθ(F̂1(xi,1), F̂2(xi,2)|θ)],

where F̂ denotes the marginal empirical cdf. l(θ) is then maximised, which leads to the desired
parameter. The parameters for each available copula are computed. The available copulas are
the copulas mentioned in paragraph 2.5, this includes the rotated versions of these copulas. Then
Akaike Information Criteria, AIC, is computed for each copula as well as the rotated versions
of these copulas.

Definition 5.1.1. For observations ui,j , i = 1, · · · , N, j = 1, 2, the AIC of a bivariate copula
family C with parameter(s) θ is defined as

AIC := −2
N∑
i=1

l(θ) + 2k,

where k = 1 for one parameter copulas and k = 2 for two parameter copulas.

The copula with the lowest AIC-value is chosen as the best fitting bivariate copula.
Note that the function chooses a parametric copula from the available parametric families. The
empirical copula is not considered in the fitting. The Goodness-Of-Fit Tests for Copulas, via
the function gofCopula in the package Copula, accounts for the empirical copula. The tests are
based on the empirical process

Cn(u) =
√
n(Cn(u)− Cθ̂(u)), (u) ∈ [0, 1]2.
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where Cθ̂ is an estimator of C under the hypothesis that H0 : C ∈ {Cθ} holds and Cn denotes
the empirical copula which R defines as

Cn(u) =
1

n

n∑
i=1

1(Ui ≤ u), (u) ∈ [0, 1]2.

where Ui denote the the pseudo-observations for i = 1, · · · , n and sample size n. The test
compares the empirical copula with a given parametric copula derived under the null hypothesis.
This because the empirical copula process converges uniformly to the true copula.

5.2 Ties: To account or not to account for?

The Goodness-Of-Fit tests were derived under the assumption of continuous marginals. In other
words, the assumption made is that ties occur with probability zero. In the previous chapter, we
saw that in our data set this probability does not equal zero. For some divisions, in some ranges,
the correlation values could not be computed because of these ties as mentioned in the previous
chapter. In our data set, there is a non-negligible number of ties in every division between a lot
of the variables, as can be seen quite clearly in figure 12.

(a) Division: Social Sciences. (b) Division: Basic Medical Sci-
ences.

(c) Division: Engineering

Figure 12: Ties in different divisions for different pairs of variables. Figure (a): pp top prop
versus pp int collab. Figure (b): p versus pp top prop. Figure (c): mncs versus pp top prop.

Appendix B summarises the output of the copula fitting and the Goodness of Fit (GOF) test
when the ties are unaccounted for. Lets look at the summary for the division Education
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p mcs Tawn T2 2.76 0.51 0.38 -17.01 0.014 0.9688

p mncs Survival
Tawn T1

5.27 0.25 0.23 -13.72 0.015 0.8854

p pp top prop Clayton 1.71 - 0.46 -17.1 0.054 0.8854

p pp int collab Survival Joe 2.13 - 0.38 -10.18 0.0312 0.9688

mcs mncs Survival
Tawn T1

4.78 0.86 0.7 -77.74 0.014 0.6354

mcs pp top prop Gumbel 1.88 - 0.47 -19.49 0.035 0.8438

mcs pp int collab Student t 0.3 2.04 0.29 -1.79 0.034 0.8021

mncs pp top prop Tawn T1 3.3 0.74 0.55 -38.75 0.025 0.8438

mncs pp int collab Student t 0.26 2 0.17 -1.98 0.027 0.8646

pp top prop pp int collab Survival
Tawn T1

5.01 0.68 0.57 -41.84 0.017 0.9896

Output Copula selection via R for the division Education.

Notice how most of the p-values are abnormally high. The presence of the ties in the
data substantially affects the approximate p-values for all divisions. Luckily, this is a known
problem. Kojadinovic and Yan (2010) suggest a way of dealing with these ties. According
to them, the pseudo-observations should be constructed by randomly breaking the ties. The
randomization does not change the results qualitatively, that is the parameter estimate is not
effected by the randomization. They stress that ignoring the ties int the computation of the
pseudo-observations, by using the default ranking method ”average”, leads to the rejection of a
lot of well fitting copulas. This is caused by the assumption of continuous margins. The proof
can be found in Kojadinovic and Yan (2010).

Figure 13: Not accounting for the ties (top) versus randomizing the ties (bottom) and thus
accounting for the ties. Pseudo-observations of pp top prop versus pp int collab.
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5.3 Copula Analysis

Now that the ties are accounted for, the p-values seem plausible. So let’s look at the fitting. We
will not evaluate every fitting of every bivariate copula. Instead, we will discuss main results of
the fitting given that a lot of the results are similar to each other. We set the significance level
at 5%. The output of the copula selection is summarized in tables 17-25. These tables can be
found at the end of this paragraph.
Firstly, an important note on the values for Kendalls τ . After evaluating the values in tables
17-25 and comparing these with the values in 8-16 in paragraph 4.3., we can conclude that in
most of the divisions these values are practically the same. There are a few exception. Most of
these exceptions concern the division Education. Lets summarize these differences.

Variable 1 Variable 2 Kendalls τ data Kendalls τ copula Kendall τ copula
ties randomized ties averaged

p mcs 0.35 0.36 0.38
p mncs 0.21 0.19 0.23
p pp top prop 0.40 0.22 0.46
p pp int collab 0.23 0.18 0.38
mcs mncs 0.68 0.67 0.7
mcs pp top prop 0.47 0.34 0.47
mcs pp int collab 0.17 0.2 0.29
mncs pp top prop 0.59 0.42 0.55
mncs pp int collab 0.13 0.12 0.17
pp top prop pp int collab 0.41 0.37 0.57

Different Kendall τ values for the division Education.

The third column represents the Kendall τ correlation coefficients which can also be found
in paragraph 4.3. The fourth column represents the Kendall τ of the copulas when the ties
are randomized. The fifth column represents the Kendall τ of the copulas when the ties are
averaged, thus unaccounted for. Recall that the division Education has the smallest amount of
observations. So randomizing the ties might have had a notable effect in this division, which
leads to bigger differences between the values for Kendalls τ . However, not accounting for the
ties created bigger differences between more variables, as we can see in the last column.
On that note, not accounting for the ties created (notable) differences between some of the
Kendall’s τ correlation coefficients in all the divisions. When the ties were randomized, all
these differences decreased significantly.
There are three more notable differences in the Kentall τ values. One of these can be found
in the division Business & Management between the variables p and pp int collab. Where we
calculated a value of 0.04 in paragraph 4.3, it now is 0.15, see table 18. Two more can be fond
in the division Humanities regarding the pairs (mcs,pp top prop) and (mcs,pp int collab). In
paragraph 4.3, we computed 0.39 and 0.27 respectively for these pairs. For the copulas these
values are 0.27 and 0.17, see table 22. However, the copulas of these pairs are all rejected at the
5% significance level.
To continue our analysis, a visual aid is created. To create a visual aid, the pseudo-observations
are be plotted. Via the rCopula function in the package Copula, pseudo-observations can be
simulated for a given copula and coefficients. By plotting the pseudo-observations and the
simulations in one figure, we obtain an insight into the structure of the selected copulas and
simultaneously compare it to the structure of the pseudo-observations.
Unsurprisingly, some copulas are not rejected at the 5% significance level. In figure 14 such
copulas are shown. The first is the BB8 copula with coefficients 4.34 and 0.91 and p-value equal
to 0.07671. The second copula is the Student-t copula with a parameter value equal to 0.86 and
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4 degrees of freedom. The p-value equals 0.2286. The last copula is the Tawn Type 2 copula
with coefficients 3.35 and 0.78 and a p-value equal to 0.3471.

(a) Division: Business & Manage-
ment.

(b) Division: Basic Medical Sci-
ences.

(c) Division: Humanities.

Figure 14: Copulas where the pseudo-observations and simulation match. Figure (a): mcs
versus pp top prop. Figure (b): mcs versus mncs. Figure (c): mcs versus mncs.

Figure 14 suggests that the pseudo-observations of the variables match the simulated pseudo-
observations quite well. Note that the variables of the pseudo-observations were highly correlated
according to the findings in the previous chapter. Let us compare the Kendall tau correlation
coefficients between the pseudo-observations and the simulated observations. The Kendall tau
correlation coefficients of the pseudo-observations were 0.63, 0.66 and 0.63 respectively. For the
simulated observations these are 0.57, 0.66 and 0.6 respectively. So the Kendall tau correlation
coefficients for both sets of observations are quite similar, as mentioned before.
More importantly, in the previous chapter we analysed the correlation coefficients and thus
the dependence structure between variates via bins. This gave us a better understanding of the
structure of the two variates. The question is, are these structures preserved? According to table
9, figure 14(a) should have a dispersed lower tail due to a low correlation coefficient, followed
by a denser structure till the middle. A quarter of the structure after the middle was supposed
to have more dispersed structure followed by yet again a denser quarter with a somewhat light
upper tail. The copula does a nice job at capturing this structure, though the dense structure
up until the middle isn’t as dense as it should be. This could be a result of the randomness of
the simulation. With every simulation, the data points change. The over al structure however,
is quite what we want it to be. This definitely holds for figure 14(b) and 14(c).
Though the visual aids are quite informative, some copulas and structures are rather chaotic, as
it can be seen in figure 15, that the p-value is the only indication as to wether the copula fits the
data well or not. Note that the copulas in figure 15 have low correlation coefficients, 0.2, 0.35,
0.27 respectively for Kendall’s tau. Which are related to the dispersed structure. The correlation
coefficients are actually quite low in every bin, as seen in the previous chapter. Especially the
middle of the structures are characterised in the previous chapter either by negative or positive
correlation coefficients which are very close to zero.
Though the correlation coefficients are low, a parametric copula can still capture the dependence
structure. Traditionally, these values are excluded from the model. But with the copula, even low
correlated variates can be included. In citation analysis this is very helpful, since the publication
variable is weakly correlated to every other variable. Naturally, not every low correlated pair of
variables can be modelled with the help of a parametric copula. The copula in figure 15(c) is
rejected with a 5% significance level.
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(a) Division: Health Sciences. (b) Division: Basic Medical Sci-
ences.

(c) Division: Humanities.

Figure 15: Copulas and pseudo-observations with a very dispersed structure. Figure (a): mcs
versus pp int collab. Figure (b): p versus mcs. Figure (c): mcs versus pp int collab.

Furthermore, there are those copulas which obviously do not fit data well, figure 16(a) , and
those which seem to fit the data well, but using hypothesis testing lead to the conclusion that
the copula did not fit the data well. Figure 16(b) is a good example of this last situation. This
is the Frank copula with coefficient 6.83. Only using the visual aid might lead to the conclusion
that the copula is a good fit. However, the p-value of 0.000249 contradicts this conclusion.
Now taking a closer look at the simulated observations and the pseudo-observations, see figure
16(c) and 16(d), it is clear that the tails are captured by the copula, but the middle of the
pseudo-observations has a different structure all together.

(a) Division: Engineering. (b) Division: Basic Medical Sci-
ences.

(c) Pseudo-observations of (b). (d) Simulated observations of (b).

Figure 16: Copulas rejected at the 5% significance level. Figure (a): p versus pp int collab.
Figure (b), (c) and (d): mcsversuspp top prop.

Notice how in almost every division, except for the divisions Education and Non-Health
Professional, the fitted parametric copulas for the pairs (p,pp top prop) and (p,pp int collab)
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are rejected at the 5% significance level. According to the analysis in the previous chapter, the
structures of these pairs differ per division. These pairs of variables are weakly correlated in
every division. However, we’ve seen that the structure of weakly correlated variates can still
be captured via a copula. Figure 17 sheds some light on the rejection of the copulas. Clearly,
the variables in the divisions have a similar sort of structure, despite the different correlation
coefficients. The differences in correlation coefficients is most likely created by the different
amount of observations per division and by the slight differences in the structures. All with all,
the overall structure of the variates is quite similar in every division. Which explains why the
selected copulas are rejected at the 5% significance level in almost every division. It appears
that the kind of structure we see in figure 17 is hard to capture with a parametric copula.

(a) Division: Engineering. (b) Division: Business & Manage-
ment.

(c) Division: Sciences.

(d) Division: Basic Medical Sci-
ences.

(e) Division: Health Sciences. (f) Division: Social Sciences.

Figure 17: Copulas rejected at the 5% significance level for p versus pp top prop (a,b,c) and p
versus pp int collab (d,e,f).

When zooming into the divisions, we see that Education and Non-Health Professional, the
divisions with the lowest amount of observations, have only one copula rejected at the 5%
significance level. From figure 18 and figure 19 no logical explanation can be given to explain
the rejection of the Joe copula and the Survival BB8 copula when comparing it with the copulas
which were not rejected at the 5% significance level. A possible drawback from the selected
copulas in these divisions is that due to limited size of data, the selected copula can be unreliable.
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(a) Survival Tawn Type 1 copula
(1.98, 0.26;0.2491).

(b) Gumbel copula (1.25;0.5365). (c) Joe copula (2.34;0.04873).

Figure 18: Scatterplots of the pseudo- and simulated observations of the division Education for
p versus pp int collab (a), mcs versus pp int collab (b) and mncs versus pp top prop (c). The
numbers between the parentheses denote the parameters and the p-values.

(a) Survival Tawn Type 1 copula
(2.16, 0.46;0.553).

(b) Survival BB8 copula (3.06,
0.68;0.06472).

(c) Survival BB8 copula (3.34,
0.7;0.0002499).

Figure 19: Scatterplots of the pseudo- and simulated observations of the division Non-Health
Professional for p versus mcs (a), pp top prop versus pp int collab (b) and p versus pp int collab
(c). The numbers between the parentheses denote the parameters and the p-values.

Sciences and Social Sciences have the most copulas rejected at the 5% significance level, 6
and 7 copulas respectively. Inspecting the dependence structure of these divisions, figure 20 and
figure 21, give us more insight on this phenomenon. From figure 20, we can derive that most of
the dependence structures between the variates with a rejected copula are rather hard to capture.
The first three structures in figure 20 show a sort of exponential decrease in the first half of the
structure. Followed by a very dispersed structure. It is therefore understandable that the fitted
parametric copulas are rejected by the GOF test. Just like with the copula in figure 16(a). The
last three structures however, seem very dense. A quick glance at the structures might imply
that a parametric copula should be able to capture this structure. However, the selected copulas
are rejected at the 5% significance level via the GOF test. So why is that? A glance at table
15, see the previous chapter, tell us that the middle part of the copulas are weakly correlated.
The last structure has a negatively correlated weak lower tail and a weak upper tail with a weak
correlated middle. However, figure 20(f) shows us quite a dense structure. So the low correlation
coefficients might be a result of the data points constantly jumping from high correlated points
to lower correlated points. It seems that the parametric copulas can not capture these kinds of
structures. The same difficult structures can be seen in figure 21 for the division Social Sciences.
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(a) Survival Tawn Type 1 copula
(1.71, 0.47;0.0002249).

(b) Survival BB8 copula (1.57,
0.97;0.0002249).

(c) Student t copula
(0.01;0.0002499).

(d) BB7 copula (2.34, 1.75;0.01324).(e) Student t copula (0.69;0.01174). (f) Frank copula (14.05;0.01774).

Figure 20: Scatterplots of the pseudo-observations of the division Sciences for p versus mcs (a), p
versus pp top prop (b), p versus pp int collab (c), mcs versus mncs (d), mcs versus pp top prop
(e) and mncs versus pp top prop (f). The selected copula is denoted underneath each structure.
The numbers between the parenthesis denote the parameters and the p-values.
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(a) Survival Tawn Type 1 copula
(1.88,0.55;0.07221).

(b) Survival BB8 copula
(2.71,0.73;0.0002499).

(c) Survival BB8 copula (1.75,
0.95;0.0002499).

(d) BB8 copula (5.21,
0.72;0.002249).

(e) BB8 copula (5.37,
0.92;0.003748).

(f) Frank copula (2.15;0.01074).

Figure 21: Scatterplots of the pseudo-observations of the division Social Sciences for p versus
pp top prop (a), p versus pp int collab (b), mcs versus pp top prop (c), mcs versus pp int collab
(d), mncs versus pp top prop (e) and pp top prop versus pp int collab (f). The selected copula is
denoted underneath each structure. The numbers between the parenthesis denote the parameters
and the p-values.
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p mcs Survival
Tawn T1

1.74 0.4 0.23 -126.1522 0.016911 0.576

p mncs Survival
Tawn T1

1.88 0.39 0.24 -155.046 0.026466 0.1767

p pp top prop Survival
Tawn T1

1.87 0.42 0.25 -164.6077 0.10963 0.0002499

p pp int collab Survival Joe 1.5 - 0.22 -148.0063 0.090333 0.0002499

mcs mncs Student t 0.86 4.23 0.66 -990.2998 0.018266 0.2286

mcs pp top prop Frank 6.83 - 0.55 -564.8477 0.038988 0.004748

mcs pp int collab Student t 0.33 4.86 0.21 -93.67568 0.047312 0.003248

mncs pp top prop Frank 12.14 - 0.72 -1070.007 0.021769 0.05022

mncs pp int collab Student t 0.37 5.29 0.24 -116.7953 0.024184 0.1977

pp top prop pp int collab Student t 0.37 3.56 0.24 -128.1458 0.027469 0.1277

Table 17: Output Copula selection via R for the division Basic Medical Sciences when ties are
randomized.
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p mcs Survival
Tawn T1

1.75 0.25 0.16 -21.41723 0.045643 0.03673

p mncs Survival
Tawn T1

1.76 0.28 0.17 -26.08477 0.031067 0.1487

p pp top prop Survival BB8 2.17 0.75 0.2 -17.94222 0.063986 0.0002499

p pp int collab Survival
Tawn T1

1.64 0.25 0.15 -17.02133 0.13419 0.0002499

mcs mncs Gaussian 0.93 - 0.75 -453.9142 0.0081444 0.7599

mcs pp top prop BB8 4.34 0.91 0.57 -225.8427 0.024564 0.07671

mcs pp int collab Frank 3.36 - 0.34 -58.73813 0.017671 0.485

mncs pp top prop BB8 6 0.94 0.69 -369.587 0.036092 0.003248

mncs pp int collab Survival
Gumbel

1.37 - 0.27 -44.32918 0.019068 0.4515

pp top prop pp int collab Student t 0.4 5.6 0.26 -38.07874 0.029902 0.08171

Table 18: Output Copula selection via R for the division Business & Mangement when ties are
randomized.

V
a
ri
a
b
le

1

V
a
ri
a
b
le

2

C
o
p
u
la

P
a
ra
m
et
er

1

P
a
ra
m
et
er

2
(o
r
d
f)

K
en

d
a
ll
s
T
a
u

A
IC

S
a
ti
st
ic

p
-v
a
lu
e

p mcs Tawn T2 2.76 0.48 0.36 -16.18246 0.017919 0.4775

p mncs Survival
Tawn T1

5.23 0.21 0.19 -9.769757 0.024359 0.456

p pp top prop Tawn T2 3.26 0.25 0.22 -8.400577 0.032008 0.2631

p pp int collab Survival
Tawn T1

1.98 0.26 0.18 -2.221652 0.021185 0.2491

mcs mncs Survival
Tawn T1

4.19 0.86 0.67 -69.1505 0.01774 0.2701

mcs pp top prop Joe 1.92 - 0.34 -13.32335 0.02868 0.3696

mcs pp int collab Gumbel 1.24 - 0.2 -2.445932 0.020686 0.5365

mncs pp top prop Joe 2.34 - 0.42 -24.49909 0.052711 0.04873

mncs pp int collab Student t 0.18 2 0.12 -5.891713 0.021053 0.539

pp top prop pp int collab Frank 3.73 - 0.37 -12.20947 0.030446 0.2791

Table 19: Output Copula selection via R for the division Education when ties are randomized.
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p mcs Survival
Tawn T1

1.81 0.39 0.23 -99.81123 0.040872 0.02174

p mncs Survival
Tawn T1

1.78 0.35 0.21 -88.73386 0.021432 0.3611

p pp top prop Survival BB8 1.74 0.94 0.24 -84.02995 0.10569 0.0002499

p pp int collab Survival
Tawn T1

1.65 0.37 0.2 -69.00649 0.06236 0.002249

mcs mncs BB1 0.96 1.79 0.62 -628.7733 0.0072446 0.9758

mcs pp top prop BB1 0.14 1.89 0.5 -374.6893 0.036506 0.01024

mcs pp int collab Student t 0.16 6.12 0.1 -14.70836 0.027136 0.1147

mncs pp top prop BB8 6 0.92 0.67 -801.8934 0.089092 0.0002499

mncs pp int collab Student t 0.23 5.59 0.15 -30.8334 0.020154 0.3731

pp top prop pp int collab Student t 0.25 4.04 0.16 -46.86273 0.02062 0.3481

Table 20: Output Copula selection via R for the division Engineering when ties are randomized.
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p mcs Survival
Tawn T1

1.88 0.5 0.29 -78.03466 0.012726 0.8223

p mncs Survival
Tawn T1

2.18 0.37 0.26 -78.13603 0.010354 0.9583

p pp top prop Survival
Tawn T1

1.79 0.45 0.25 -59.00139 0.045102 0.01574

p pp int collab Survival
Tawn T1

1.84 0.44 0.26 -61.6409 0.041164 0.02874

mcs mncs Tawn T2 3.35 0.78 0.58 -335.7209 0.016658 0.3471

mcs pp top prop Student t 0.7 3.59 0.49 -191.64 0.028969 0.07721

mcs pp int collab Student t 0.3 6.08 0.19 -24.42149 0.020347 0.3751

mncs pp top prop Frank 12.62 - 0.72 -447.7892 0.020366 0.7771

mncs pp int collab Student t 0.25 4.82 0.16 -20.37149 0.019847 0.4125

pp top prop pp int collab Student t 0.24 3.2 0.16 -23.18173 0.020395 0.403

Table 21: Output Copula selection via R for the division Health Sciences when ties are random-
ized.
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p mcs Tawn T2 1.38 0.28 0.12 -17.76798 0.037807 0.1047

p mncs Clayton 0.19 - 0.09 -6.82957 0.10636 0.0002499

p pp top prop Frank 0.95 - 0.11 -6743335 0.093069 0.0002499

p pp int collab Tawn T2 1.42 0.3 0.14 -17.9313 0.024802 0.2211

mcs mncs Survival BB8 5.56 0.84 0.6 -357.2335 0.045178 0.006747

mcs pp top prop Tawn T1 2.23 0.38 0.27 -95.75013 0.065881 0.005247

mcs pp int collab Joe 1.37 - 0.17 -39.44886 0.018035 0.6034

mncs pp top prop BB8 3.13 0.99 0.52 -305.8094 0.0778 0.0002499

mncs pp int collab Survival
Tawn T2

1.37 0.26 0.11 -11.76515 0.014817 0.7794

pp top prop pp int collab Indep 0 - 0 0 - -

Table 22: Output Copula selection via R for the division Humanities when ties are randomized.
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p mcs Survival
Tawn T1

2.16 0.46 0.31 -28.78789 0.017547 0.553

p mncs Survival
Tawn T1

2.04 0.54 0.33 -32.22176 0.020281 0.407

p pp top prop Survival BB8 6 0.44 0.31 -21.74635 0.025323 0.2201

p pp int collab Survival BB8 3.34 0.7 0.32 -22.7634 0.070271 0.0002499

mcs mncs Survival Joe 3.62 - 0.58 -123.1726 0.015383 0.4645

mcs pp top prop Frank 3.66 - 0.36 -20.96846 0.023719 0.2251

mcs pp int collab Frank 1.93 - 0.21 -8.26 0.018818 0.4655

mncs pp top prop Joe 2.93 - 0.51 -91.62874 0.038625 0.1027

mncs pp int collab Frank 1.77 - 0.19 -6.66 0.027042 0.1477

pp top prop pp int collab Survival BB8 3.06 0.68 0.27 - 16.2187 0.026859 0.06472

Table 23: Output Copula selection via R for the division Non-Health Professional when ties are
randomized.
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p mcs Survival
Tawn T1

1.71 0.47 0.25 -173.5842 0.052475 0.0002249

p mncs Survival
Tawn T1

1.7 0.32 0.19 -118.3297 0.033738 0.06622

p pp top prop Survival BB8 1.57 0.97 0.21 -115.5426 0.12114 0.0002499

p pp int collab Student t 0.01 3.29 0.01 -55.29731 0.12149 0.0002499

mcs mncs BB7 2.34 1.75 0.59 -960.8376 0.035963 0.01324

mcs pp top prop Student t 0.69 12.09 0.49 -524.7775 0.036798 0.01174

mcs pp int collab Survival
Tawn T1

1.42 0.1 0.06 -13.91832 0.033245 0.1172

mncs pp top prop Frank 14.05 - 0.75 -1422.191 0.024147 0.01774

mncs pp int collab Student t 0.21 5.41 0.13 -52.29152 0.03157 0.05522

pp top prop pp int collab Student t 0.19 4.56 0.12 -53.36074 0.017931 0.5015

Table 24: Output Copula selection via R for the division Sciences when ties are randomized.
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p mcs Survival
Tawn T1

1.88 0.55 0.31 -160.94 0.031601 0.07221

p mncs Survival
Tawn T1

1.75 0.4 0.23 -92.46801 0.024877 0.2076

p pp top prop Survival BB8 2.71 0.73 0.26 -79.58566 0.11406 0.0002499

p pp int collab Survival BB8 1.75 0.95 0.24 -87.28426 0.14966 0.0002499

mcs mncs Survival
Tawn T1

3.36 0.8 0.59 -609.3139 0.017337 0.2786

mcs pp top prop BB8 5.21 0.72 0.49 -306.9911 0.038543 0.002249

mcs pp int collab Survival BB8 2.01 0.88 0.25 -81.57794 0.035704 0.004248

mncs pp top prop BB8 5.37 0.92 0.65 -648.6196 0.037727 0.003748

mncs pp int collab Survival BB8 2.29 0.81 0.25 -77.27636 0.029159 0.03573

pp top prop pp int collab Frank 2.15 - 0.23 -54.33529 0.042072 0.01074

Table 25: Output Copula selection via R for the division Social Sciences when ties are random-
ized.
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5.4 The empirical copula

Since more than half of the selected parametric copulas are rejected at the 5% significance level,
it might be interesting evaluate the empirical copula of these variables. As said before, the
empirical copula converges to the true copula. In other words, the empirical copula converges
to the real underlying dependence structure.
In the previous paragraph we evaluated the Survival Tawn T1 copula with coefficients 1.65 and
0.37. This copula captured the dependence structure between variables publication and inter-
national collaboration of the division Engineering. The Frank copula with coefficient 6.83 was
also evaluated. This captured the dependence structure between variables mcs and pp top prop
of the division Basic Medical Sciences. Both copulas are rejected at the 5% significance level. It
seems that no parametric copula in the package fits the data well enough. That is why we rely
on the empirical copulas.

(a) Variates: p and pp int collab. Division: Engi-
neering.

(b) Variates: mcs and pp top prop. Division: Basic
Medical Sciences.

Figure 22: 3D-plot of the empirical copulas.

In figure 15(a) we saw a certain decrease in the first part of the figure. Low publication
amounts had high collaboration scores. As the publication amount increased, the collaboration
scores decreased. This structure is captured by the empirical copula in figure 22(a). The dark
blue color is higher for low x values and high y values and lower for high x values and low y
values. Figure 15(b) had a more dense structure, with some linear decreases in the middle of the
structure. According to the correlation coefficients, the tails are slightly more correlated. This
can also be seen in figure 22(b), where the red area at the top is bigger than in figure 22(a).
Let’s also plot the empirical copula for two copulas in the division Social Sciences, since this
was one of the divisions with the most rejected copulas.
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(a) Variates: p and pp top prop. Division: Social
Sciences.

(b) Variates: mcs and pp int collab. Division: So-
cial Sciences.

Figure 23: 3D-plot of the empirical copulas.

Figure 23(a) emphasises this quite nice with the bigger blue-green color. The decrease Engi-
neering show in the first half of the structure in figure 15(a), Social Sciences shows in the middle
of the structure in figure 23(a). Again the empirical copula captures this quite nicely.
With these results, it seems sensible to evaluate the dependence structure in the division Edu-
cation and Non-Health Professional. Figure 24, shows us that the dependence structure for two
pairs of variables in the division Education is also nicely captured. The negative correlation in
the lower tail is nicely captured as we can see in figure 24(b). Furthermore, stronger correlation
in the middle and upper tail is emphasised in figure 24(a).

(a) Variates: mncs and pp top prop. Division: Ed-
ucation.

(b) Variates: MCS and pp int collab. Division:
Education.

Figure 24: 3D-plot of the empirical copulas.
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6 Cross-validation

In chapter 5 we have created various copula models. Since it is not possible to collect new
data with which we can asses these models, we use model validation, specifically k-fold cross-
validation. Model validation is a general strategy which is used to evaluate the accuracy of the
fitted models. Model validation uses part of the data, called the training subsample, to specify a
statistical model. The statistical model is then evaluated using the remaining part of the data,
called the validation subsample. Cross-validation is an application of this simple idea. The idea
might be simple, but it is very powerful. In cross-validation the roles of training and validation
subsamples are rotated.
We consider two variants on cross-validation. Suppose that model M is one of the models under
consideration. Suppose that we have n observations. The data set is shuffled randomly. Leave-
one-out cross-validation fits the model n times, omitting the ith observation at step i. The
resulting fitted model is then used to obtain a predicted value for the omitted observation.
k-fold cross validation partitions the original data into k equal sized subsamples. One subsample
is now the validation subsample and the remaining k-1 subsamples are considered the training
sample. The validation process is now repeated k times. For example, a 5-fold cross validation
partitions the data into 5 equally sized subsamples and uses 1 for validation and 4 for training.
We therefore use 80% of the data for training and 20% of data for validation. This is the
standard approach for validation. The validation and training subsamples are rotated 5 times,
such that the validation process is repeated 5 times.
To summarize the skill of a model, the Cross-Validation Copula Information Criterion (CIC) is
used. In R, the CIC is computed with the help of the function xvCopula in the package Copula.
The function computes the cross-validation criterion for a given parametric copula family, which
serves as the model, and a given data set. The criterion is a crossvalidated log likelihood which
is denoted as

xvn = n−1
n∑
i=1

log fα̂(i)(Xi),

where α̂(i) is the maximum likelihood estimate based on the sample without the ith observation,
or without the validation subsample in case of the k-fold cross-validation. A parametric copula
model is selected when said CIC value is higher for that parametric copula model compared to
other parametric copula models.
We applied k-fold cross validation to the selected copula models in chapter 5, which were not
rejected at a 5% significance level. We evaluate about 14 parametric copula families to see if
the selected copulas in chapter 5 performs better than the other 14 parametric copulas with
respect to cross-validation. The 14 parametric copula families are selected based on the results
in chapter 5. These are the copulas that were selected as the best fitting copulas in chapter 5.
We apply the leave-one-out cross-validation, the 5-fold cross-validation and the 10-fold cross-
validation. By evaluating the results of the three different methods, we try to decrease the bias
and variability in the output. A lower value for k tends to be produce more biased outputs. A
higher value of k tends to be less biased, but suffers from large variability. We discuss the main
results of the validation.

Table 26 summarizes the CIC values for the division Basic Medical Sciences. The left table
summarizes the CIC values of the copulas based on the pair (p,mcs). In chapter 5 we concluded
that the Survival Tawn Type 1 copula captures the dependence structure of the data best. In
table 26, this copula has the highest CIC value. Therefore the best fitting copula is also the best
performing copula in terms of prediction. The same can be said for the right table. Here the
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pair (mncs, pp top prop) is used. In chapter 5, we concluded that the Frank copula captured the
dependence structure of the data best. The CIC values in table 26 lead to the same conclusion.
This pair had a lower p-value compared to the first pair. However, we see that this has no
influence on the output of the validation.

Copula k=NULL k=5 k=10

Joe 11.46857 11.54671 10.5126
Gumbel 24.68732 23.33006 25.18468
Frank 36.07373 35.73548 35.9391
Gaussian 35.51154 36.50794 35.65344
Student t 39.05237 40.3817 39.17311
BB1 46.42834 47.25591 47.5371
BB7 46.33887 47.58433 45.92197
BB8 33.99079 34.56649 34.46198
Tawn T1 11.20764 12.45613 9.89789
Tawn T2 37.28916 37.22415 37.3777
Survival
Tawn T1

62.72214 62.04656 61.07137

Survival
Tawn T2

24.39661 25.12961 24.50947

Survival Joe 45.64724 45.75801 45.55043
Survival BB8 46.51687 43.6569 46.48376

Copula k=NULL k=5 k=10

Joe 342.0062 342.137 341.9459
Gumbel 422.9221 423.0179 424.0997
Frank 519.7074 520.1073 518.7188
Gaussian 443.1522 441.774 443.0874
Student t 448.9554 448.9692 448.4317
BB1 428.5745 425.2616 428.8958
BB7 371.8547 376.4652 370.3673
BB8 476.6065 477.5237 476.0359
Tawn T1 432.6156 434.9178 434.8342
Tawn T2 404.112 407.8196 407.7448
Survival
Tawn T1

392.5516 392.3746 391.1691

Survival
Tawn T2

409.2426 410.5376 406.9165

Survival Joe 303.0652 298.306 301.5701
Survival BB8 452.363 451.3884 452.5869

Table 26: Cross validation copula information criterion (CIC) for the division Basic Medical
Sciences. Left, the parametric copula family of the pair p,mcs is tested. Right, the parametric
copula family of the pair mncs,pp prop top is tested. k=NULL corresponds to leave-one-out
cross-validation.

Basic Medical Sciences provides us with the second highest amount of observations. Could
the fact that the division Basic Medical Sciences has a lot of observations, influence the outcome
of the validation? Let’s look at a division with a lower amount of observations. The division
Health Sciences has a lower amount of observations and coincidently has very high p-values
compared to the other divisions. After testing the selected copula with the highest p-value, the
copula of the pair (p,mncs), the CIC values in table 27 concludes that the Survival Tawn Type
1 copula performs best by far. However, the copula of the pair (mcs,pp top prop) also has a
high p-value. In table 21 we see that the Student t copula was selected based on a AIC value of
-191.64 and a p-value of 0.771. However, the CIC values in table 27 implies that Frank copula
performs better. The Frank copula with parameter value 6.01, τ = 0.51 and AIC = -184.09
performs better according to cross-validation. So apparently, the best fitting copula does not
always perform the best during validation.
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Copula k=NULL k=5 k=10

Joe 8.694232 10.72067 7.616167
Gumbel 15.34071 14.85883 15.38766
Frank 18.54779 17.6464 18.22014
Gaussian 19.50865 20.78941 18.73398
Student t 21.62299 21.21289 21.29085
BB1 23.63973 23.49915 24.17109
BB7 23.13344 22.63188 24.03625
BB8 17.57571 18.01827 17.93214
Tawn T1 7.721054 8.845138 8.336312
Tawn T2 21.47128 20.85684 20.38332
Survival
Tawn T1

38.42674 39.12844 38.808

Survival
Tawn T2

11.3148 11.884 11.43523

Survival Joe 22.56224 20.89371 22.50804
Survival BB8 23.56824 21.88846 23.38785

Copula k=NULL k=5 k=10

Joe 62.99776 63.61573 65.00216
Gumbel 76.8275 73.9176 77.82877
Frank 86.67132 83.18489 88.30059
Gaussian 65.17572 69.62349 68.23418
Student t 84.03488 84.27122 86.63768
BB1 78.31184 79.43975 76.03016
BB7 70.2493 72.49398 72.09928
BB8 86.99812 86.3268 87.52485
Tawn T1 63.04824 61.47155 62.66749
Tawn T2 82.56082 82.54906 82.39562
Survival
Tawn T1

69.28454 68.33479 69.5405

Survival
Tawn T2

62.17672 60.73671 61.31719

Survival Joe 49.45072 48.00337 49.4406
Survival BB8 82.09392 82.47017 81.8114

Table 27: Cross validation copula information criterion (CIC) for the division Health Sciences.
Left, the parametric copula family of the pair p,mncs is tested. Right, the parametric copula
family of the pair mcs,pp top prop is tested. k=NULL corresponds to leave-one-out cross-
validation.

Now another interesting division to discuss is the division Education. The smallest division
with regard to the amount of observations. Also the division with the highest amount of para-
metric copulas which were not rejected at a 5% significance level. The same conclusion can be
drawn for this division as for the division Health Sciences. We took the pair of variables for
which the selected copula had the highest p-value, and a random pair with a lower p-value (but
which was not rejected by the 5% significance level). The left table summarizes the CIC values
of the pair of which the copula had the highest significance level and of course the highest AIC
value. The copula selected in chapter 5 was the Student t copula with an AIC value of -5.89.
However, table 28 suggests that the Survival Tawn Type 1 copula performs better according
to its CIC value of 0.17. The Survival Tawn Type 1 copula with parameters 1.63 and 0.33,
τ = 0.18 and AIC = -0.13 performs better. Significantly better when the compare the CIC
value of the Student t copula with that of the Survival Tawn Type 1 copula. The second pair,
(mncs,pp int collab), has a similar conclusion. Here we selected the Frank copula in chapter 5
with a AIC equal to -12.2. However the CIC values in table 28 suggest that the Tawn Type 2
copula performs better. The Frank copula was selected over the Tawn Type 2 (parameters 2.15
and 0.53, τ = 0.34) copula because the Tawn Type 2 copula has an AIC equal to -11.61. The
results of cross-validation applied to this division lead to the conclusion that the copulas fitted
in chapter 5 for this division are indeed unreliable due to the low amount of observations.
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Copula k=NULL k=5 k=10

Joe -2.780996 -4.093931 -4.299342
Gumbel -2.824813 -0.09783391 -0.8871302
Frank -1.88421 -2.403815 0.06381934
Gaussian -1.584622 -3.323312 -1.014183
Student t 0.03907034 0.6989769 -1.672064
BB1 -1.954051 -0.9108673 -0.9446276
BB7 -2.405286 -3.212366 -1.853746
BB8 -2.934236 -1.466141 -1.216325
Tawn T1 -2.380646 -5.368764 -0.5944863
Tawn T2 -0.6672554 -2.565152 -0.9322962
Survival
Tawn T1

-0.9463774 1.649495 0.1702685

Survival
Tawn T2

-1.034189 -1.411548 -1.885412

Survival BB8 -1.099357 -0.260566 -0.412445

Copula k=NULL k=5 k=10

Joe 2.270717 1.417477 3.99659
Gumbel 5.809938 7.382876 7.410219
Frank 7.550381 7.960839 8.258357
Gaussian 6.466112 6.358307 6.455025
Student t 5.417686 4.980025 4.686118
BB1 5.915197 4.85575 4.852217
BB7 2.492363 0.748625 7.05661
BB8 6.857144 7.324729 5.66423
Tawn T1 1.815204 2.95713 3.043191
Tawn T2 9.486488 9.482405 9.002856
Survival
Tawn T1

7.355279 8.232456 7.995707

Survival
Tawn T2

3.982362 4.652753 3.940191

Survival BB8 8.040412 9.167627 8.285998

Table 28: Cross validation copula information criterion (CIC) for the division Education. Left,
the parametric copula family of the pair mncs,pp int collab. Right, the parametric copula family
of the pair pp top prop,pp int collab is tested. k=NULL corresponds to leave-one-out cross-
validation.

Up until now, the division Basic Medical Sciences is the only division where the outcome of
the CIC values corresponds with the output of chapter 5. Lowering the amount of observations
by testing divisions with lower amounts of observations leads to the conclusion that the best
fitting copulas do not perform the best when cross-validation is applied. Do the amounts of
observations really influence the outcome? To answer this question, let’s discuss the output of
the biggest data set. Sciences is the division with the largest amount of observations. It is
also the set with the highest amount of rejected copulas (at a 5% significance level). Since only
3 parametric copulas seem to fit, let’s evaluate two of these. The left table summarizes the
results when we use the data set of the pair (mcs,pp int collab). Chapter 5 concluded that the
Survival Tawn Type 1 copula with AIC -13.92 captured the dependence structure of the data
best. According to table 29, the Tawn Type 2(parameters 1.44 and 0.07, τ = 0.05 and AIC
-9.35) copula has the highest CIC, followed by the Survival Tawn Type 1 copula. However, the
Student t copula captured the dependence structure of the pair (mncs, pp int collab) best, with
AIC equal to -52.29. The CIC values in table 29 correspond with this.
So the amount of observations plays no role in performance of the fitted copula during cross-
validation. Of course higher amounts of observations are always preferred over low amounts
of observations to create better models and predict more accurately. In this case however, the
conclusion is simply that fitted copula models do not always perform best during cross-validation.
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Copula k=NULL k=5 k=10

Joe -2.47885 -2.564808 -2.601394
Gumbel -2.334628 -3.107021 -2.597303
Frank -0.3889486 0.7480375 -0.008019788
Gaussian -1.341627 -1.270874 -1.531591
Student t 0.8579793 -0.4716252 2.316804
BB1 -1.069603 -2.227069 -0.6496148
BB7 -1.007821 -0.5504916 -0.3457765
BB8 -0.2542654 0.3214533 -1.267824
Tawn T1 0.01317877 -184.4099 -0.001829289
Tawn T2 4.473062 5.603481 3.48789
Survival
Tawn T1

3.018965 3.425729 2.5542

Survival
Tawn T2

-1.016091 0.019811 -0.2631417

Survival Joe 1.501441 2.176645 0.5183629
Survival BB8 1.400032 2.035923 1.487525

Copula k=NULL k=5 k=10

Joe 0.9113788 -0.04247094 2.088985
Gumbel 6.433094 6.481505 6.239449
Frank 15.1116 14.32442 14.36364
Gaussian 9.957936 10.71551 10.69402
Student t 18.40011 19.32587 18.18832
BB1 8.657472 11.04789 8.216903
BB7 6.894428 5.391992 6.318198
BB8 17.25678 17.80591 17.45637
Tawn T1 -1.007846 -2.707016 -1.9213
Tawn T2 11.25452 10.31695 12.38562
Survival
Tawn T1

15.52498 13.84742 15.41771

Survival
Tawn T2

10.06837 9.292335 10.66625

Survival Joe 11.48832 11.57316 11.57578
Survival BB8 14.69565 13.67579 14.45242

Table 29: Cross validation copula information criterion (CIC) for the division Sciences. Left, the
parametric copula family of the pair mcs,pp int collab. Right, the parametric copula family of
the pair mncs,pp int collab is tested. k=NULL corresponds to leave-one-out cross-validation.
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7 Conclusions

In general, the dependence structure between variables cannot be distinguished on the grounds
of correlation coefficients alone. This also holds for the dependence structure between the publi-
cations of a researcher and the citations of those publications. Copulas are a useful tool to model
the dependence between random variables. Especially when coping with highly skewed data.
From the visual analysis and the correlation coefficients of the five variables used in this thesis,
it becomes clear that the variables are highly skewed and contain a lot of ties. We can speak of
non-normality with respect to the distribution. The correlation coefficients between most of the
variables are rather low and do not elaborate on the dependence structures. A deeper analysis is
created by binning the data and calculating the correlation coefficients of each bin. This is done
for each of the nine fields. An image of the dependence structure between the pairs of variables
is created via these correlation coefficients. This serves as a good reference when analysing the
fitted copula models.
Before fitting copulas to the data, it is very important to inspect the data on ties. We saw
that in our data set there were a non-negligible number of ties in every division between a lot
of the variables. Since we assume that ties occur with probability zero, we constructed the
pseudo-observations by randomly breaking these ties. Not breaking the ties leads to either the
rejection of a lot of well fitting copulas or abnormally high p-values as a result of the GOF test.
The fitted copula models have Kendall τ correlation coefficients which are similar the Kendall τ
correlation coefficients of the corresponding variables. The fitted copula models in the division
Education are the only exception to this. There are notable differences between the Kendall
τ correlation coefficients of some of the fitted copula models and the Kendall τ correlation co-
efficients of the corresponding variables. The division Education has the smallest amount of
observations. So randomising the ties might have had a notable effect in this division, which
leads to bigger differences between the values for Kendalls τ . However, not accounting for the
ties created bigger differences between more variables. The last statement holds for all the di-
visions. There are three more notable differences in the Kendall τ values in different divisions.
However, the copulas of these pairs are all rejected at the 5% significance level according to the
GOF test.
Some dependence structures are easily captured via a copula throughout most of the divisions.
The dependence structure between the variables (mcs,mncs) is a good example of this. The de-
pendence structures between the variables (p,pp top prop) and (p,pp int collab) are a lot harder
to capture with a parametric copula model. In fact, the GOF test rejects these models at a 5%
significance level. When zooming in on the divisions, we see that Education and Non-Health
Professional, the divisions with the lowest amount of observations, have only one copula rejected
at the 5% significance level. A possible drawback from the selected copulas in these divisions
is that due to limited size of data, the selected copula can be unreliable. Sciences and Social
Sciences have the most copulas rejected at the 5% significance level, 6 and 7 copulas respectively.
It seems that the parametric copulas can not capture these kinds of structures.
A big advantage of copula models is that they can capture the dependence structure between
variables with low correlation coefficients. Furthermore, dependence structures which seem to
be able to be modelled with a parametric copula, for example models with strong tails and a
dense middle, can be rejected at a 5% significance level after fitting a parametric copula. The
copula models try to capture the overall dependence structure between variables as well as the
specific dependence structure between the data points. This lead to very reliable models, when
working with data sets which contain a large amount of observations.
However, the best fitting copula model does not always perform the best in terms of prediction.
The division with the highest amount of parametric copulas which were not rejected at a 5%
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significance level, Education, depicts this perfectly. We applied leave-one-out, 5-fold and 10-fold
cross-validation on the best fitting parametric copula models. The CIC values of most of these
models turned out to be lower than that of other parametric copula models. The CIC values of
part of the parametric copulas models which were not rejected at a 5% significance level through-
out most the divisions turned out to be lower than that of other parametric copula models. The
division Basic Medical Sciences was the only exception to this. The parametric copulas models
which were not rejected at a 5% significance level in this divisions also had the highest CIC
values. The amount of observations, height of the p-values derived under the GOF-test and
correlation coefficients play no role in performance of the fitted copula during cross- validation.
So our only conclusion is simply that fitted copula models do not always perform best during
cross-validation.
To summarise, except for the division Humanities, parametric copulas are able to capture the
dependence structure between the publications of a researchers and the citations of those pub-
lications. However, when we consider more bibliometric indicators, parametric copulas are not
always able to capture the dependence structure between the various variables. Almost every
division has 5 out of 10 parametric copula models which are not rejected by a 5% significance
level. The divisions Sciences and Social Sciences are the only exceptions to this. These fitted
parametric copula models do not always perform best during cross-validation.
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A Main descriptive values

Division P MCS MNCS pp top prop pp int collab

Basic Medical Sciences

N 711 711 711 711 711
Mean 40.879 31.295 1.507 0.156 0.313
Std. Deviation 44.599 33.405 1.428 0.139 0.218
Minimum 1 0 0 0 0
Maximum 392 562.2 24.692 1 1

Business & Management

P MCS MNCS pp top prop pp int collab
N 238 238 238 238 238
Mean 9.088 17.259 1.496 0.158 0.378
Std. Deviation 8.973 20.621 1.680 0.222 0.342
Minimum 1 0 0 0 0
Maximum 85 116.667 12.009 1 1

Education

P MCS MNCS pp top prop pp int collab
N 47 47 47 47 47
Mean 7.596 9.018 0.979 0.083 0.214
Std. Deviation 10.623 8.112 0.874 0.152 0.323
Minimum 1 0 0 0 0
Maximum 44 32.6 3.775 0.6 1

Engineering

P MCS MNCS pp top prop pp int collab
N 512 512 512 512 512
Mean 31.799 10.055 1.121 0.109 0.263
Std. Deviation 33.134 19.319 1.236 0.109 0.219
Minimum 1 0 0 0 0
Maximum 351 402.857 22.853 0.571 1

Health Sciences

P MCS MNCS pp top prop pp int collab
N 288 288 288 288 288
Mean 36.747 20.561 1.295 0.143 0.263
Std. Deviation 42.622 18.960 0.849 0.149 0.229
Minimum 1 0.833 0.075 0 0
Maximum 392 134.432 5.324 1 1

Humanities

P MCS MNCS pp top prop pp int collab
N 342 342 342 342 342
Mean 3.906 2.730 1.381 0.133 0.086
Std. Deviation 5.459 5.453 2.255 0.242 0.229
Minimum 1 0 0 0 0
Maximum 65 54 24.015 1 1

Non-Health Professional

P MCS MNCS pp top prop pp int collab
N 108 108 108 108 108
Mean 10.278 6.192 0.923 0.070 0.177
Std. Deviation 14.163 6.492 1.251 0.131 0.248
Minimum 1 0 0 0 0
Maximum 70 36.667 10.987 1 1

Sciences

P MCS MNCS pp top prop pp int collab
N 824 824 824 824 824
Mean 34.049 19.946 1.498 0.143 0.384
Std. Deviation 44.019 58.775 2.282 0.142 0.262
Minimum 1 0 0 0 0
Maximum 777 1550.5 47.333 1 1

Social Sciences

P MCS MNCS pp top prop pp int collab
N 500 500 500 500 500
Mean 14.794 13.433 1.194 0.121 0.312
Std. Deviation 15.083 13.069 1.124 0.161 0.287
Minimum 1 0 0 0 0
Maximum 83 88.25 11.302 1 1

Table 30: Statistics per division of the data set. N corresponds with the amount of observations.
The table also shows the mean, standard deviation, minimum and maximum of each division
per variable.
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B Copula selection: average ties
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p mcs Survival
Tawn T1

1.74 0.4 0.23 -127.26 0.017 0.644

p mncs Survival
Tawn T1

1.9 0.39 0.24 -156.94 0.026 0.1833

p pp top prop Survival
Tawn T1

2.03 0.42 0.27 -171.89 0.186 0.0358

p pp int collab Survival Joe 1.58 - 0.24 -155.82 0.123 0.0007

mcs mncs Student t 0.86 4.25 0.66 -989.67 0.018 0.2409

mcs pp top prop Student t 0.76 9.61 0.55 -576.42 0.044 0.3715

mcs pp int collab Student t 0.34 3.95 0.22 -99.54 0.046 0.0625

mncs pp top prop Frank 12.31 - 0.72 -1080.3 0.0262 0.4993

mncs pp int collab Survival
Gumbel

1.35 - 0.26 -121.67 0.036 0.1552

pp top prop pp int collab Student t 0.38 2.35 0.25 -147.67 0.068 0.2704

Table 31: Output Copula selection via R for the division Basic Medical Sciences.
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p mcs Survival
Tawn T1

1.77 0.25 0.16 -21.25 0.049 0.0607

p mncs Survival
Tawn T1

1.87 0.27 0.18 -29.43 0.0303 0.3285

p pp top prop Survival Joe 1.66 - 0.27 -31.76 0.09 0.7092

p pp int collab Survival Joe 1.37 - 0.17 -15.26 0.152 0.1402

mcs mncs Gaussian 0.93 - 0.75 -454.91 0.008 0.818

mcs pp top prop BB8 5.24 0.85 0.59 -234.2 0.024 0.931

mcs pp int collab Frank 3.23 - 0.33 -53.59 0.02 0.8682

mncs pp top prop BB8 6 0.95 0.69 -391.04 0.036 0.8347

mncs pp int collab Student t 0.43 3.41 0.28 -40.67 0.025 0.8891

pp top prop pp int collab BB7 1.9 0.08 0.35 -50.78 0.017 0.9435

Table 32: Output Copula selection via R for the division Business & Management.
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p mcs Tawn T2 2.76 0.51 0.38 -17.01 0.014 0.9688

p mncs Survival
Tawn T1

5.27 0.25 0.23 -13.72 0.015 0.8854

p pp top prop Clayton 1.71 - 0.46 -17.1 0.054 0.8854

p pp int collab Survival Joe 2.13 - 0.38 -10.18 0.0312 0.9688

mcs mncs Survival
Tawn T1

4.78 0.86 0.7 -77.74 0.014 0.6354

mcs pp top prop Gumbel 1.88 - 0.47 -19.49 0.035 0.8438

mcs pp int collab Student t 0.3 2.04 0.29 -1.79 0.034 0.8021

mncs pp top prop Tawn T1 3.3 0.74 0.55 -38.75 0.025 0.8438

mncs pp int collab Student t 0.26 2 0.17 -1.98 0.027 0.8646

pp top prop pp int collab Survival
Tawn T1

5.01 0.68 0.57 -41.84 0.017 0.9896

Table 33: Output Copula selection via R for the division Education.
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p mcs Rotated Tawn
type 1 180 de-
grees

1.8 0.39 0.23 -98.12 0.042 0.03216

p mncs Rotated Tawn
type 1 180 de-
grees

1.82 0.34 0.21 -91.84 0.022 0.3499

p pp top prop Survival Joe 1.6 - 0.25 -98.24 0.122 0.2154

p pp int collab Rotated Tawn
type 1 180 de-
grees

1.87 0.38 0.24 -83.33 0.088 0.0166

mcs mncs BB1 0.99 1.78 0.52 -630.78 0.007 0.9717

mcs pp top prop Student t 0.75 14.33 0.16 -397.01 0.021 0.8021

mcs pp int collab Survival Joe 1.24 - 0.12 -19.78 0.0214 0.7261

mncs pp top prop Frank 13 - 0.73 -811.83 0.04 0.4883

mncs pp int collab Student t 0.24 4.26 0.16 -37.33 0.022 0.6248

pp top prop pp int collab Survival Joe 1.45 - 0.2 -50.56 0.049 0.6248

Table 34: Output Copula selection via R for the division Engineering.
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p mcs Survival
Tawn T1

1.89 0.5 0.29 -79.06 0.012 0.8945

p mncs Survival
Tawn T1

2.17 0.38 0.26 -80.09 0.01 0.974

p pp top prop Survival
Tawn T1

2.08 0.46 0.3 -72.17 0.077 0.1505

p pp int collab Survival
Tawn T1

2.05 0.45 0.29 -71.13 0.064 0.1678

mcs mncs Tawn T2 3.35 0.78 0.58 -335.88 0.0168 0.3097

mcs pp top prop Student t 0.72 3.63 0.51 -198.19 0.017 0.8979

mcs pp int collab Survival BB1 0.001 1.27 0.21 -25.71 0.0216 0.7318

mncs pp top prop Frank 13.11 - 0.73 -460.52 0.022 0.6142

mncs pp int collab Survival
Gumbel

1.23 - 0.19 -22.23 0.018 0.8529

pp top prop pp int collab Student t 0.29 2 0.19 -35.7 0.322 0.9221

Table 35: Output Copula selection via R for the division Health Sciences.
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p mcs Survival BB7 1.32 0.14 0.2 -20.56 0.0626 0.844

p mncs Survival
Tawn T1

2 0.25 0.18 -25.17 0.1761 0.3542

p pp top prop Survival Joe 1.79 - 0.3 -45.99 0.09183 0.949

p pp int collab Clayton 0.91 - 0.31 -30.95 0.065574 0.9956

mcs mncs BB7 1.42 5.11 0.71 -541.53 0.148 0.2551

mcs pp top prop Survival
Tawn T2

5.9 0.33 0.31 -171.63 0.224 0.7303

mcs pp int collab Survival
Tawn T2

9.81 0.21 0.2 -118.43 0.179 0.8761

mncs pp top prop Survival BB7 1.55 2.21 0.56 -322.59 0.053 0.984

mncs pp int collab Survival
Tawn T2

8.85 0.21 0.2 -107.83 0.048 0.981

pp top prop pp int collab Survival Joe 2.26 - 0.41 -60.51 0.0255 0.9373

Table 36: Output Copula selection via R for the division Humanities.
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p mcs BB1 0.92 1 0.31 -21.43 0.039 0.289

p mncs Survival
Tawn T1

2.35 0.43 0.31 -31.14 0.0295 0.4266

p pp top prop Clayton 1.49 - 0.43 -38.54 0.0647 0.8486

p pp int collab Survival Joe 2.2 - 0.4 -34.58 0.0833 0.7477

mcs mncs Survival Joe 4.44 - 0.64 -144.98 0.018 0.5917

mcs pp top prop Frank 4.27 - 0.41 -33.86 0.023 0.922

mcs pp int collab Clayton 0.84 - 0.3 -15.47 0.018 0.9954

mncs pp top prop Gumbel 2.49 - 0.6 -102.16 0.033 0.922

mncs pp int collab Clayton 0.8 - 0.29 -14.15 0.199 0.922

pp top prop pp int collab Survival Joe 2.8 - 0.49 -43.91 0.039 0.9587

Table 37: Output Copula selection via R for the division Non-Health Professional.
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p mcs Survival
Tawn T1

1.7 0.48 0.25 -175.52 0.052 0.005455

p mncs Survival
Tawn T1

1.69 0.33 0.19 -118.56 0.035 0.06485

p pp top prop Survival Joe 1.52 - 0.23 -129.61 0.16083 0.1303

p pp int collab Student t 0.01 2.82 0.01 -57.69 0.14397 0.0006061

mcs mncs BB7 2.34 1.75 0.59 -960.44 0.036147 0.01273

mcs pp top prop Student t 0.71 12.22 0.5 -540.22 0.047 0.5024

mcs pp int collab Survival
Tawn T1

1.34 0.17 0.08 -11.46 0.0598 0.001818

mncs pp top prop Frank 14.28 - 0.75 -1436.55 0.0223 0.6685

mncs pp int collab Student t 0.21 4.6 0.13 -52.81 0.0315 0.1109

pp top prop pp int collab Student t 0.2 3.18 0.13 -63.95 0.023 0.9388

Table 38: Output Copula selection via R for the division Sciences.
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p mcs Survival
Tawn T1

1.93 0.56 0.32 -167.84 0.024 0.3004

p mncs Survival
Tawn T1

1.89 0.38 0.24 -100.34 0.023 0.4162

p pp top prop Clayton 0.93 - 0.32 -110.29 0.1525 0.6198

p pp int collab Survival Joe 1.71 - 0.28 -113.51 0.19263 0.2665

mcs mncs Survival
Tawn T1

3.54 0.79 0.6 -630.52 0.016 0.3822

mcs pp top prop Frank 6.06 - 0.52 -325.88 0.2064 0.9132

mcs pp int collab Clayton 0.7 - 0.26 -84.68 0.041 0.7136

mncs pp top prop Tawn type 1 3.4 0.89 0.65 -671.49 0.052 0.8373

mncs pp int collab Survival
Tawn T2

1.6 0.46 0.22 -78.18 0.052 0.6158

pp top prop pp int collab Survival
Tawn T1

2.05 0.52 0.32 -108.65 0.162 0.9491

Table 39: Output Copula Selection via R for the division Social Sciences.
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C R-code: Correlation calculation

rm( l i s t = l s ( ) ) #c l e a r workspace
setwd (”/ Users / ashnibachas ingh /Documents/BachelorCol loqium/BEP”) #se t workdictory
l i b r a r y ( readx l ) #needed to read e x c e l f i l e without having to t r a n s f e r i n to txt f i l e
Canad ian re sea rche r s data <− r e ad ex c e l (”˜/Documents/BachelorCol loqium/BEP/

Orginal Data/Canad ian re sea rche r s data . x l sx ”)
data . per . d i v i s i on<−Canad ian re sea rche r s data

#turns numeric data r e g i s t e r e d as non numeric i n to numeric data
data . per . d i v i s i on$autho r s pape r<−as . numeric ( data . per . d i v i s i on$au tho r s pape r )
data . per . d i v i s i o n $ i n s t i t u t e s p a p e r<−as . numeric ( data . per . d i v i s i o n $ i n s t i t u t e s p a p e r )
data . per . d i v i s i on$ c oun t r i e s pape r<−as . numeric ( data . per . d i v i s i o n $ c oun t r i e s p ap e r )
data . per . d iv i s i on$page s pape r<−as . numeric ( data . per . d i v i s i on$page s pape r )
data . per . d i v i s i o n $ r e f s p ap e r<−as . numeric ( data . per . d i v i s i o n $ r e f s p a p e r )
data . per . d iv i s i on$p<−as . numeric ( data . per . d i v i s i on$p )
data . per . d iv i s ion$mcs<−as . numeric ( data . per . d iv i s i on$mcs )
data . per . d iv i s ion$mncs<−as . numeric ( data . per . d iv i s ion$mncs )
data . per . d iv i s i on$pp top prop<−as . numeric ( data . per . d i v i s i on$pp top prop )
data . per . d iv i s ion$mjs mcs<−as . numeric ( data . per . d iv i s i on$mjs mcs )
data . per . d iv is ion$mnjs mncs<−as . numeric ( data . per . d iv i s ion$mnjs mncs )
data . per . d iv i s i on$mnjs pp top prop<−as . numeric ( data . per . d iv i s i on$mnj s pp top prop )
data . per . d i v i s i o n$pp co l l a b<−as . numeric ( data . per . d i v i s i o n $pp c o l l a b )
data . per . d i v i s i o n $pp i n t c o l l a b<−as . numeric ( data . per . d i v i s i o n $ pp i n t c o l l a b )
data . per . d i v i s i on<−na . omit ( data . per . d i v i s i o n )

dataset<−r e ad l i n e ( prompt=”Which data/ d i v i s i o n would you l i k e to use ? ”)
data . per . d i v i s i on<−subset ( data . per . d i v i s i on , d i v i s i o n==datase t )

#c o r r e l a t i o n per q u a r t i l e ( and t a i l s )#switch method between kenda l l and spearman
#empty dataframes
Q1 . p<−data . per . d i v i s i o n [ 0 , ]
Q2 . p<−data . per . d i v i s i o n [ 0 , ]
Q3 . p<−data . per . d i v i s i o n [ 0 , ]
Q4 . p<−data . per . d i v i s i o n [ 0 , ]
Q90 . p<−data . per . d i v i s i o n [ 0 , ]
Q95 . p<−data . per . d i v i s i o n [ 0 , ]

Q1 . mcs<−data . per . d i v i s i o n [ 0 , ]
Q2 . mcs<−data . per . d i v i s i o n [ 0 , ]
Q3 . mcs<−data . per . d i v i s i o n [ 0 , ]
Q4 . mcs<−data . per . d i v i s i o n [ 0 , ]
Q90 . mcs<−data . per . d i v i s i o n [ 0 , ]
Q95 . mcs<−data . per . d i v i s i o n [ 0 , ]

Q1 . mncs<−data . per . d i v i s i o n [ 0 , ]
Q2 . mncs<−data . per . d i v i s i o n [ 0 , ]
Q3 . mncs<−data . per . d i v i s i o n [ 0 , ]
Q4 . mncs<−data . per . d i v i s i o n [ 0 , ]
Q90 . mncs<−data . per . d i v i s i o n [ 0 , ]
Q95 . mncs<−data . per . d i v i s i o n [ 0 , ]

Q1 . co l l ab<−data . per . d i v i s i o n [ 0 , ]
Q2 . co l l ab<−data . per . d i v i s i o n [ 0 , ]
Q3 . co l l ab<−data . per . d i v i s i o n [ 0 , ]
Q4 . co l l ab<−data . per . d i v i s i o n [ 0 , ]
Q90 . co l l ab<−data . per . d i v i s i o n [ 0 , ]
Q95 . co l l ab<−data . per . d i v i s i o n [ 0 , ]

Q1 . top<−data . per . d i v i s i o n [ 0 , ]
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Q2. top<−data . per . d i v i s i o n [ 0 , ]
Q3 . top<−data . per . d i v i s i o n [ 0 , ]
Q4 . top<−data . per . d i v i s i o n [ 0 , ]
Q90 . top<−data . per . d i v i s i o n [ 0 , ]
Q95 . top<−data . per . d i v i s i o n [ 0 , ]

s o r t ed . p<−data . per . d i v i s i o n [ order ( data . per . d i v i s i on$p ) , ]
s o r t ed . mcs<−data . per . d i v i s i o n [ order ( data . per . d iv i s i on$mcs ) , ]
s o r t ed . mncs<−data . per . d i v i s i o n [ order ( data . per . d iv i s ion$mncs ) , ]
s o r t ed . co l l ab<−data . per . d i v i s i o n [ order ( data . per . d i v i s i o n $ pp i n t c o l l a b ) , ]
s o r t ed . top<−data . per . d i v i s i o n [ order ( data . per . d i v i s i on$pp top prop ) , ]

e lements<−nrow ( data . per . d i v i s i o n )
f o r ( i in 1 : e lements ){

i f ( i<=round (0 . 25∗ e lements ) ){
Q1. p<−rbind (Q1 . p , so r t ed . p [ i , ] )
Q1 . mcs<−rbind (Q1 .mcs , so r t ed . mcs [ i , ] )
Q1 . mncs<−rbind (Q1 . mncs , s o r t ed . mncs [ i , ] )
Q1 . co l l ab<−rbind (Q1 . co l l ab , so r t ed . c o l l a b [ i , ] )
Q1 . top<−rbind (Q1 . top , so r t ed . top [ i , ] )

}
e l s e i f ( i>round (0 . 25∗ e lements ) & i<=round (0 . 5∗ e lements ) ){

Q2. p<−rbind (Q2 . p , so r t ed . p [ i , ] )
Q2 . mcs<−rbind (Q2 .mcs , so r t ed . mcs [ i , ] )
Q2 . mncs<−rbind (Q2 . mncs , s o r t ed . mncs [ i , ] )
Q2 . co l l ab<−rbind (Q2 . co l l ab , so r t ed . c o l l a b [ i , ] )
Q2 . top<−rbind (Q2 . top , so r t ed . top [ i , ] )

}
e l s e i f ( i>round (0 . 5∗ e lements ) & i<=round (0 . 75∗ e lements ) ){

Q3. p<−rbind (Q3 . p , so r t ed . p [ i , ] )
Q3 . mcs<−rbind (Q3 .mcs , so r t ed . mcs [ i , ] )
Q3 . mncs<−rbind (Q3 . mncs , s o r t ed . mncs [ i , ] )
Q3 . co l l ab<−rbind (Q3 . co l l ab , so r t ed . c o l l a b [ i , ] )
Q3 . top<−rbind (Q3 . top , so r t ed . top [ i , ] )

}
e l s e i f ( i>round (0 . 75∗ e lements ) ){

Q4. p<−rbind (Q4 . p , so r t ed . p [ i , ] )
Q4 . mcs<−rbind (Q4 .mcs , so r t ed . mcs [ i , ] )
Q4 . mncs<−rbind (Q4 . mncs , s o r t ed . mncs [ i , ] )
Q4 . co l l ab<−rbind (Q4 . co l l ab , so r t ed . c o l l a b [ i , ] )
Q4 . top<−rbind (Q4 . top , so r t ed . top [ i , ] )

}
}

#co r r e l a t i o n va lue s 90 th p e r c e n t i l e
f o r ( i in 1 : e lements ){

i f ( i>=round (0 . 90∗ e lements ) ){
Q90 . p<−rbind (Q90 . p , so r t ed . p [ i , ] )
Q90 . mcs<−rbind (Q90 . mcs , so r t ed . mcs [ i , ] )
Q90 . mncs<−rbind (Q90 . mncs , s o r t ed . mncs [ i , ] )
Q90 . co l l ab<−rbind (Q90 . co l l ab , so r t ed . c o l l a b [ i , ] )
Q90 . top<−rbind (Q90 . top , so r t ed . top [ i , ] )

}
}

#co r r e l a t i o n va lue s 95 th p e r c e n t i l e
f o r ( i in 1 : e lements ){

i f ( i>=round (0 . 95∗ e lements ) ){
Q95 . p<−rbind (Q95 . p , so r t ed . p [ i , ] )
Q95 . mcs<−rbind (Q95 . mcs , so r t ed . mcs [ i , ] )
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Q95 . mncs<−rbind (Q95 . mncs , s o r t ed . mncs [ i , ] )
Q95 . co l l ab<−rbind (Q95 . co l l ab , so r t ed . c o l l a b [ i , ] )
Q95 . top<−rbind (Q95 . top , so r t ed . top [ i , ] )

}
}

#co r r e l a t i o n va lue s complete range
cor ( data . per . d iv i s i on$p , data . per . d iv i s ion$mcs , method=”kenda l l ”)
cor ( data . per . d iv i s i on$p , data . per . d iv i s ion$mncs , method=”kenda l l ”)
cor ( data . per . d iv i s i on$p , data . per . d iv i s i on$pp top prop , method=”kenda l l ”)
cor ( data . per . d iv i s i on$p , data . per . d i v i s i o n $pp i n t c o l l a b , method=”kenda l l ”)
cor ( data . per . d iv i s ion$mcs , data . per . d iv i s ion$mncs , method=”kenda l l ”)
cor ( data . per . d iv i s ion$mcs , data . per . d iv i s i on$pp top prop , method=”kenda l l ”)
cor ( data . per . d iv i s ion$mcs , data . per . d i v i s i o n $pp i n t c o l l a b , method=”kenda l l ”)
cor ( data . per . d iv i s ion$mncs , data . per . d iv i s i on$pp top prop , method=”kenda l l ”)
cor ( data . per . d iv i s ion$mncs , data . per . d i v i s i o n $pp i n t c o l l a b , method=”kenda l l ”)
cor ( data . per . d iv i s i on$pp top prop , data . per . d i v i s i o n $pp i n t c o l l a b , method=”kenda l l ”)

#c o r r e l a t i o n va lue s per q u a r t i l e
#c o r r e l a t i o n va lue s Q1
cor (Q1 . p$p ,Q1 . p$mcs , use = ” complete . obs ” ,method=”kenda l l ”)
cor (Q1 . p$p ,Q1 . p$mncs , use = ” complete . obs ” ,method=”kenda l l ”)
cor (Q1 . p$p ,Q1 . p$pp top prop , use = ” complete . obs ” ,method=”kenda l l ”)
cor (Q1 . p$p ,Q1 . p$pp in t co l l ab , use = ” complete . obs ” ,method=”kenda l l ”)
cor (Q1 . mcs$mcs ,Q1 . mcs$mncs , use = ” complete . obs ” ,method=”kenda l l ”)
cor (Q1 . mcs$mcs ,Q1 . mcs$pp top prop , use = ” complete . obs ” ,method=”kenda l l ”)
cor (Q1 . mcs$mcs ,Q1 . mcs$pp int co l l ab , use = ” complete . obs ” ,method=”kenda l l ”)
cor (Q1 . mncs$mncs ,Q1 . mncs$pp top prop , use = ” complete . obs ” ,method=”kenda l l ”)
cor (Q1 . mncs$mncs ,Q1 . mncs$pp int co l lab , use = ” complete . obs ” ,method=”kenda l l ”)
cor (Q1 . top$pp top prop ,Q1 . t op$pp in t co l l ab , use = ” complete . obs ” ,method=”kenda l l ”)
#c o r r e l a t i o n va lue s Q1−Q2
cor (Q2 . p$p ,Q2 . p$mcs , use = ” complete . obs ” ,method=”kenda l l ”)
cor (Q2 . p$p ,Q2 . p$mncs , use = ” complete . obs ” ,method=”kenda l l ”)
cor (Q2 . p$p ,Q2 . p$pp top prop , use = ” complete . obs ” ,method=”kenda l l ”)
cor (Q2 . p$p ,Q2 . p$pp in t co l l ab , use = ” complete . obs ” ,method=”kenda l l ”)
cor (Q2 . mcs$mcs ,Q2 . mcs$mncs , use = ” complete . obs ” ,method=”kenda l l ”)
cor (Q2 . mcs$mcs ,Q2 . mcs$pp top prop , use = ” complete . obs ” ,method=”kenda l l ”)
cor (Q2 . mcs$mcs ,Q2 . mcs$pp int co l l ab , use = ” complete . obs ” ,method=”kenda l l ”)
cor (Q2 . mncs$mncs ,Q2 . mncs$pp top prop , use = ” complete . obs ” ,method=”kenda l l ”)
cor (Q2 . mncs$mncs ,Q2 . mncs$pp int co l lab , use = ” complete . obs ” ,method=”kenda l l ”)
cor (Q2 . top$pp top prop ,Q2 . t op$pp in t co l l ab , use = ” complete . obs ” ,method=”kenda l l ”)
#c o r r e l a t i o n va lue s Q2−Q3
cor (Q3 . p$p ,Q3 . p$mcs , use = ” complete . obs ” ,method=”kenda l l ”)
cor (Q3 . p$p ,Q3 . p$mncs , use = ” complete . obs ” ,method=”kenda l l ”)
cor (Q3 . p$p ,Q3 . p$pp top prop , use = ” complete . obs ” ,method=”kenda l l ”)
cor (Q3 . p$p ,Q3 . p$pp in t co l l ab , use = ” complete . obs ” ,method=”kenda l l ”)
cor (Q3 . mcs$mcs ,Q3 . mcs$mncs , use = ” complete . obs ” ,method=”kenda l l ”)
cor (Q3 . mcs$mcs ,Q3 . mcs$pp top prop , use = ” complete . obs ” ,method=”kenda l l ”)
cor (Q3 . mcs$mcs ,Q3 . mcs$pp int co l l ab , use = ” complete . obs ” ,method=”kenda l l ”)
cor (Q3 . mncs$mncs ,Q3 . mncs$pp top prop , use = ” complete . obs ” ,method=”kenda l l ”)
cor (Q3 . mncs$mncs ,Q3 . mncs$pp int co l lab , use = ” complete . obs ” ,method=”kenda l l ”)
cor (Q3 . top$pp top prop ,Q3 . t op$pp in t co l l ab , use = ” complete . obs ” ,method=”kenda l l ”)
#c o r r e l a t i o n va lue s above Q3
cor (Q4 . p$p ,Q4 . p$mcs , use = ” complete . obs ” ,method=”kenda l l ”)
cor (Q4 . p$p ,Q4 . p$mncs , use = ” complete . obs ” ,method=”kenda l l ”)
cor (Q4 . p$p ,Q4 . p$pp top prop , use = ” complete . obs ” ,method=”kenda l l ”)
cor (Q4 . p$p ,Q4 . p$pp in t co l l ab , use = ” complete . obs ” ,method=”kenda l l ”)
cor (Q4 . mcs$mcs ,Q4 . mcs$mncs , use = ” complete . obs ” ,method=”kenda l l ”)
cor (Q4 . mcs$mcs ,Q4 . mcs$pp top prop , use = ” complete . obs ” ,method=”kenda l l ”)
cor (Q4 . mcs$mcs ,Q4 . mcs$pp int co l l ab , use = ” complete . obs ” ,method=”kenda l l ”)
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cor (Q4 . mncs$mncs ,Q4 . mncs$pp top prop , use = ” complete . obs ” ,method=”kenda l l ”)
cor (Q4 . mncs$mncs ,Q4 . mncs$pp int co l lab , use = ” complete . obs ” ,method=”kenda l l ”)
cor (Q4 . top$pp top prop ,Q4 . t op$pp in t co l l ab , use = ” complete . obs ” ,method=”kenda l l ”)
#c o r r e l a t i o n va lue s in the 90 th p e r c e n t i l e
cor (Q90 . p$p ,Q90 . p$mcs , use = ” complete . obs ” ,method=”kenda l l ”)
cor (Q90 . p$p ,Q90 . p$mncs , use = ” complete . obs ” ,method=”kenda l l ”)
cor (Q90 . p$p ,Q90 . p$pp top prop , use = ” complete . obs ” ,method=”kenda l l ”)
cor (Q90 . p$p ,Q90 . p$pp in t co l l ab , use = ” complete . obs ” ,method=”kenda l l ”)
cor (Q90 . mcs$mcs ,Q90 . mcs$mncs , use = ” complete . obs ” ,method=”kenda l l ”)
cor (Q90 . mcs$mcs ,Q90 . mcs$pp top prop , use = ” complete . obs ” ,method=”kenda l l ”)
cor (Q90 . mcs$mcs ,Q90 . mcs$pp int co l l ab , use = ” complete . obs ” ,method=”kenda l l ”)
cor (Q90 . mncs$mncs ,Q90 . mncs$pp top prop , use = ” complete . obs ” ,method=”kenda l l ”)
cor (Q90 . mncs$mncs ,Q90 . mncs$pp int co l lab , use = ” complete . obs ” ,method=”kenda l l ”)
cor (Q90 . top$pp top prop ,Q90 . t op$pp in t co l l ab , use = ” complete . obs ” ,method=”kenda l l ”)
#c o r r e l a t i o n va lue s in the 95 th p e r c e n t i l e
cor (Q95 . p$p ,Q95 . p$mcs , use = ” complete . obs ” ,method=”kenda l l ”)
cor (Q95 . p$p ,Q95 . p$mncs , use = ” complete . obs ” ,method=”kenda l l ”)
cor (Q95 . p$p ,Q95 . p$pp top prop , use = ” complete . obs ” ,method=”kenda l l ”)
cor (Q95 . p$p ,Q95 . p$pp in t co l l ab , use = ” complete . obs ” ,method=”kenda l l ”)
cor (Q95 . mcs$mcs ,Q95 . mcs$mncs , use = ” complete . obs ” ,method=”kenda l l ”)
cor (Q95 . mcs$mcs ,Q95 . mcs$pp top prop , use = ” complete . obs ” ,method=”kenda l l ”)
cor (Q95 . mcs$mcs ,Q95 . mcs$pp int co l l ab , use = ” complete . obs ” ,method=”kenda l l ”)
cor (Q95 . mncs$mncs ,Q95 . mncs$pp top prop , use = ” complete . obs ” ,method=”kenda l l ”)
cor (Q95 . mncs$mncs ,Q95 . mncs$pp int co l lab , use = ” complete . obs ” ,method=”kenda l l ”)
cor (Q95 . top$pp top prop ,Q95 . t op$pp in t co l l ab , use = ” complete . obs ” ,method=”kenda l l ”)

uniformp<−pobs ( data . per . d i v i s i on$p )
uniformmcs<−pobs ( data . per . d iv i s i on$mcs )
uniformmncs<−pobs ( data . per . d iv i s ion$mncs )
uniformtop<−pobs ( data . per . d i v i s i on$pp top prop )
un i formco l lab<−pobs ( data . per . d i v i s i o n $ pp i n t c o l l a b )

#t a i l dependence c o e f f i c i e n t lambda
#cut−o f f parameter p=0.05
p=0.05
fitLambda ( as . matrix ( data . frame ( uniformp , uniformmcs ) ) , p=p , lower . t a i l=TRUE)
fitLambda ( as . matrix ( data . frame ( uniformp , uniformmcs ) ) , p=p , lower . t a i l=FALSE)
fitLambda ( as . matrix ( data . frame ( uniformp , uniformmncs ) ) , p=p , lower . t a i l=TRUE)
fitLambda ( as . matrix ( data . frame ( uniformp , uniformmncs ) ) , p=p , lower . t a i l=FALSE)
fitLambda ( as . matrix ( data . frame ( uniformp , uniformtop ) ) , p=p , lower . t a i l=TRUE)
fitLambda ( as . matrix ( data . frame ( uniformp , uniformtop ) ) , p=p , lower . t a i l=FALSE)
fitLambda ( as . matrix ( data . frame ( uniformp , un i f o rmco l l ab ) ) , p=p , lower . t a i l=TRUE)
fitLambda ( as . matrix ( data . frame ( uniformp , un i f o rmco l l ab ) ) , p=p , lower . t a i l=FALSE)
fitLambda ( as . matrix ( data . frame ( uniformmcs , uniformmncs ) ) , p=p , lower . t a i l=TRUE)
fitLambda ( as . matrix ( data . frame ( uniformmcs , uniformmncs ) ) , p=p , lower . t a i l=FALSE)
fitLambda ( as . matrix ( data . frame ( uniformmcs , uniformtop ) ) , p=p , lower . t a i l=TRUE)
fitLambda ( as . matrix ( data . frame ( uniformmcs , uniformtop ) ) , p=p , lower . t a i l=FALSE)
fitLambda ( as . matrix ( data . frame ( uniformmcs , un i f o rmco l l ab ) ) , p=p , lower . t a i l=TRUE)
fitLambda ( as . matrix ( data . frame ( uniformmcs , un i f o rmco l l ab ) ) , p=p , lower . t a i l=FALSE)
fitLambda ( as . matrix ( data . frame ( uniformmncs , uniformtop ) ) , p=p , lower . t a i l=TRUE)
fitLambda ( as . matrix ( data . frame ( uniformmncs , uniformtop ) ) , p=p , lower . t a i l=FALSE)
fitLambda ( as . matrix ( data . frame ( uniformmncs , un i f o rmco l l ab ) ) , p=p , lower . t a i l=TRUE)
fitLambda ( as . matrix ( data . frame ( uniformmncs , un i f o rmco l l ab ) ) , p=p , lower . t a i l=FALSE)
fitLambda ( as . matrix ( data . frame ( uniformtop , un i f o rmco l l ab ) ) , p=p , lower . t a i l=TRUE)
fitLambda ( as . matrix ( data . frame ( uniformtop , un i f o rmco l l ab ) ) , p=p , lower . t a i l=FALSE)

#u s e f u l p l o t s to he lp understand the c o r r e l a t i o n va lue s and the b ins
dev . o f f ( )
par (mfrow=c (2 , 3 ) )
h i s t ( data . per . d iv i s i on$p ,100 ,main=”Histogram Pub l i c a t i on s ” , xlab=”Pub l i c a t i on s ”)
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ab l i n e ( v=c ( (max(Q1 . p$p ) ) , (max(Q2 . p$p ) ) , (max(Q3 . p$p ) ) , ( min (Q90 . p$p ) ) , ( min (Q95 . p$p ) ) ) ,
c o l=c (” red ” ,” red ” ,” red ” ,” blue ” ,” green ”) , l t y=c (2 , 3 , 4 , 1 , 1 ) )

h i s t ( data . per . d iv i s ion$mcs , 100 ,main=”Histogram Ci ta t i on s ” , xlab=”MCS”)
ab l i n e ( v=c ( (max(Q1 . mcs$mcs ) ) , (max(Q2 . mcs$mcs ) ) , (max(Q3 . mcs$mcs ) ) , ( min (Q90 . mcs$mcs ) ) ,

(min (Q95 . mcs$mcs ) ) ) , c o l=c (” red ” ,” red ” ,” red ” ,” blue ” ,” green ”) , l t y=c (2 , 3 , 4 , 1 , 1 ) )
h i s t ( data . per . d iv i s ion$mncs , 100 ,main=”Histogram Normalised C i ta t i on Values ” , xlab=”MNCS”)
ab l i n e ( v=c ( (max(Q1 . mncs$mncs ) ) , (max(Q2 . mncs$mncs ) ) , (max(Q3 . mncs$mncs ) ) , ( min (Q90 . mncs$mncs ) ) ,

(min (Q95 . mncs$mncs ) ) ) , c o l=c (” red ” ,” red ” ,” red ” ,” blue ” ,” green ”) , l t y=c (2 , 3 , 4 , 1 , 1 ) )
h i s t ( data . per . d iv i s i on$pp top prop ,100 ,main=”Histogram Percentage o f pub l i c a t i on s

\n which are in the top 10% most \n c i t e d papers in t h e i r f i e l d ” , xlab=”pp top prop ”)
ab l i n e ( v=c ( (max(Q1 . top$pp top prop ) ) , (max(Q2 . top$pp top prop ) ) , (max(Q3 . top$pp top prop ) ) ,

(min (Q90 . top$pp top prop ) ) , ( min (Q95 . top$pp top prop ) ) ) ,
c o l=c (” red ” ,” red ” ,” red ” ,” blue ” ,” green ”) , l t y=c (2 , 3 , 4 , 1 , 1 ) )

h i s t ( data . per . d i v i s i o n $pp i n t c o l l a b , 100 ,main=”Histogram In t e r n a t i o n a l Co l l abora t i on ” ,
xlab=”In t e r n a t i o n a l Co l l abora t i on ”)

ab l i n e ( v=c ( (max(Q1 . c o l l a b $ pp i n t c o l l a b ) ) , (max(Q2 . c o l l a b $ pp i n t c o l l a b ) ) ,
(max(Q3 . c o l l a b $ pp i n t c o l l a b ) ) ,
(min (Q90 . c o l l a b $ pp i n t c o l l a b ) ) , ( min (Q95 . c o l l a b $ pp i n t c o l l a b ) ) ) ,

c o l=c (” red ” ,” red ” ,” red ” ,” blue ” ,” green ”) , l t y=c (2 , 3 , 4 , 1 , 1 ) )
dev . o f f ( )
par (mfrow=c (3 , 4 ) )
p l o t ( data . per . d iv i s i on$p , data . per . d iv i s ion$mcs , main=”Pub l i c a t i on s aga in s t MCS” ,

xlab=”Pub l i c a t i on s ” , ylab=”MCS”)
ab l i n e ( v=c ( (max(Q1 . p$p ) ) , (max(Q2 . p$p ) ) , ( min (Q3 . p$p ) ) , ( min (Q90 . p$p ) ) , ( min (Q95 . p$p ) ) ) ,

c o l=c (” red ” ,” red ” ,” red ” ,” blue ” ,” green ”) , l t y=c (2 , 3 , 4 , 1 , 1 ) )
p l o t ( data . per . d iv i s i on$p , data . per . d iv i s ion$mncs , main=”Pub l i c a t i on s aga in s t MNCS” ,

xlab=”Pub l i c a t i on s ” , ylab=”MNCS”)
ab l i n e ( v=c ( (max(Q1 . p$p ) ) , (max(Q2 . p$p ) ) , (max(Q3 . p$p ) ) , ( min (Q90 . p$p ) ) , ( min (Q95 . p$p ) ) ) ,

c o l=c (” red ” ,” red ” ,” red ” ,” blue ” ,” green ”) , l t y=c (2 , 3 , 4 , 1 , 1 ) )
p l o t ( data . per . d iv i s i on$p , data . per . d iv i s i on$pp top prop ,

main=”Pub l i c a t i on s aga in s t pp top prop ” ,
xlab=”Pub l i c a t i on s ” , ylab=”pp top prop ”)

ab l i n e ( v=c ( (max(Q1 . p$p ) ) , (max(Q2 . p$p ) ) , (max(Q3 . p$p ) ) , ( min (Q90 . p$p ) ) , ( min (Q95 . p$p ) ) ) ,
c o l=c (” red ” ,” red ” ,” red ” ,” blue ” ,” green ”) , l t y=c (2 , 3 , 4 , 1 , 1 ) )

p l o t ( data . per . d iv i s i on$p , data . per . d i v i s i o n $pp i n t c o l l a b ,
main=”Pub l i c a t i on s aga in s t \n In t e r n a t i o n a l Co l l abora t i on ” ,
xlab=”Pub l i c a t i on s ” , ylab=”In t e r n a t i o n a l \n Co l l abora t i on ”)

ab l i n e ( v=c ( (max(Q1 . p$p ) ) , (max(Q2 . p$p ) ) , (max(Q3 . p$p ) ) , ( min (Q90 . p$p ) ) ,
(min (Q95 . p$p ) ) ) ,

c o l=c (” red ” ,” red ” ,” red ” ,” blue ” ,” green ”) , l t y=c (2 , 3 , 4 , 1 , 1 ) )
p l o t ( data . per . d iv i s ion$mcs , data . per . d iv i s ion$mncs , main=”MCS aga in s t MNCS” ,

xlab=”MCS” , ylab=”MNCS”)
ab l i n e ( v=c ( (max(Q1 . mcs$mcs ) ) , (max(Q2 . mcs$mcs ) ) , (max(Q3 . mcs$mcs ) ) ,

(min (Q90 . mcs$mcs ) ) , ( min (Q95 . mcs$mcs ) ) ) ,
c o l=c (” red ” ,” red ” ,” red ” ,” blue ” ,” green ”) , l t y=c (2 , 3 , 4 , 1 , 1 ) )

p l o t ( data . per . d iv i s ion$mcs , data . per . d iv i s i on$pp top prop ,
main=”MCS aga in s t pp top prop ” ,
xlab=”MCS” , ylab=”pp top prop ”)

ab l i n e ( v=c ( (max(Q1 . mcs$mcs ) ) , (max(Q2 . mcs$mcs ) ) , (max(Q3 . mcs$mcs ) ) ,
(min (Q90 . mcs$mcs ) ) , ( min (Q95 . mcs$mcs ) ) ) ,

c o l=c (” red ” ,” red ” ,” red ” ,” blue ” ,” green ”) , l t y=c (2 , 3 , 4 , 1 , 1 ) )
p l o t ( data . per . d iv i s ion$mcs , data . per . d i v i s i o n $pp i n t c o l l a b ,

main=”MCS aga in s t \n In t e r n a t i o n a l Co l l abora t i on ” ,
xlab=”MCS” , ylab=”In t e r n a t i o n a l \n Co l l abora t i on ”)

ab l i n e ( v=c ( (max(Q1 . mcs$mcs ) ) , (max(Q2 . mcs$mcs ) ) , (max(Q3 . mcs$mcs ) ) ,
(min (Q90 . mcs$mcs ) ) , ( min (Q95 . mcs$mcs ) ) ) ,

c o l=c (” red ” ,” red ” ,” red ” ,” blue ” ,” green ”) , l t y=c (2 , 3 , 4 , 1 , 1 ) )
p l o t ( data . per . d iv i s ion$mncs , data . per . d iv i s i on$pp top prop ,

main=”MNCS aga in s t pp top prop ” ,
xlab=”MNCS” , ylab=”pp top prop ”)
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ab l i n e ( v=c ( (max(Q1 . mncs$mncs ) ) , (max(Q2 . mncs$mncs ) ) , (max(Q3 . mncs$mncs ) ) ,
(min (Q90 . mncs$mncs ) ) , ( min (Q95 . mncs$mncs ) ) ) ,

c o l=c (” red ” ,” red ” ,” red ” ,” blue ” ,” green ”) , l t y=c (2 , 3 , 4 , 1 , 1 ) )
p l o t ( data . per . d iv i s ion$mncs , data . per . d i v i s i o n $pp i n t c o l l a b ,

main=”MNCS aga in s t \n In t e r n a t i o n a l Co l l abora t i on ” ,
xlab=”MNCS” , ylab=”In t e r n a t i o n a l \n Co l l abora t i on ”)

ab l i n e ( v=c ( (max(Q1 . mncs$mncs ) ) , (max(Q2 . mncs$mncs ) ) , (max(Q3 . mncs$mncs ) ) ,
(min (Q90 . mncs$mncs ) ) , ( min (Q95 . mncs$mncs ) ) ) ,

c o l=c (” red ” ,” red ” ,” red ” ,” blue ” ,” green ”) , l t y=c (2 , 3 , 4 , 1 , 1 ) )
p l o t ( data . per . d iv i s i on$pp top prop , data . per . d i v i s i o n $pp i n t c o l l a b ,

main=”pp top prop aga in s t \n In t e r n a t i o n a l Co l l abora t i on ” ,
xlab=”pp top prop ” , ylab=”In t e r n a t i o n a l \n Co l l abora t i on ”)

ab l i n e ( v=c ( (max(Q1 . top$pp top prop ) ) , (max(Q2 . top$pp top prop ) ) ,
(max(Q3 . top$pp top prop ) ) , ( min (Q90 . top$pp top prop ) ) ,
(min (Q95 . top$pp top prop ) ) ) , c o l=c (” red ” ,” red ” ,” red ” ,” blue ” ,” green ”) ,

l t y=c (2 , 3 , 4 , 1 , 1 ) )
dev . o f f ( )

D R-code: Copula fitting

rm( l i s t = l s ( ) ) #c l e a r workspace
setwd (”/ Users / ashnibachas ingh /Documents/BachelorCol loqium/BEP”) #se t workdictory
l i b r a r y ( readx l ) #needed to read e x c e l f i l e without having to t r a n s f e r i n to txt f i l e
Canad ian re sea rche r s data <− r e ad ex c e l (”˜/Documents/BachelorCol loqium/BEP/

Orginal Data/Canad ian re sea rche r s data . x l sx ”)
data . per . d i v i s i on<−Canad ian re sea rche r s data #to make sure that o r g i n a l
#data f i l e s tay s in ta c t

#turns numeric data r e g i s t e r e d as non numeric i n to numeric data
data . per . d i v i s i on$autho r s pape r<−as . numeric ( data . per . d i v i s i on$au tho r s pape r )
data . per . d i v i s i o n $ i n s t i t u t e s p a p e r<−as . numeric ( data . per . d i v i s i o n $ i n s t i t u t e s p a p e r )
data . per . d i v i s i on$ c oun t r i e s pape r<−as . numeric ( data . per . d i v i s i o n $ c oun t r i e s p ap e r )
data . per . d iv i s i on$page s pape r<−as . numeric ( data . per . d i v i s i on$page s pape r )
data . per . d i v i s i o n $ r e f s p ap e r<−as . numeric ( data . per . d i v i s i o n $ r e f s p a p e r )
data . per . d iv i s i on$p<−as . numeric ( data . per . d i v i s i on$p )
data . per . d iv i s ion$mcs<−as . numeric ( data . per . d iv i s i on$mcs )
data . per . d iv i s ion$mncs<−as . numeric ( data . per . d iv i s ion$mncs )
data . per . d iv i s i on$pp top prop<−as . numeric ( data . per . d i v i s i on$pp top prop )
data . per . d iv i s ion$mjs mcs<−as . numeric ( data . per . d iv i s i on$mjs mcs )
data . per . d iv is ion$mnjs mncs<−as . numeric ( data . per . d iv i s ion$mnjs mncs )
data . per . d iv i s i on$mnjs pp top prop<−as . numeric ( data . per . d iv i s i on$mnj s pp top prop )
data . per . d i v i s i o n$pp co l l a b<−as . numeric ( data . per . d i v i s i o n $pp c o l l a b )
data . per . d i v i s i o n $pp i n t c o l l a b<−as . numeric ( data . per . d i v i s i o n $ pp i n t c o l l a b )
data . per . d i v i s i on<−na . omit ( data . per . d i v i s i o n )

dataset<−r e ad l i n e ( prompt=”Which data/ d i v i s i o n would you l i k e to use ? ”)
data . per . d i v i s i on<−subset ( data . per . d i v i s i on , d i v i s i o n==datase t )

#conver t s random va r i a t e s to psuedo−obs e rva t i on s
uniformp<−pobs ( data . per . d iv i s i on$p , t i e s . method=”random”)
uniformmcs<−pobs ( data . per . d iv i s ion$mcs , t i e s . method=”random”)
uniformmncs<−pobs ( data . per . d iv i s ion$mncs , t i e s . method=”random”)
uniformtop<−pobs ( data . per . d iv i s i on$pp top prop , t i e s . method=”random”)
uni formco l lab<−pobs ( data . per . d i v i s i o n $pp i n t c o l l a b , t i e s . method=”random”)

#turns pseudo−obse rvat i on vec to r s i n to matrix f o r go f t e s t
a<−as . matrix ( data . frame ( uniformp , uniformmcs ) )
b<−as . matrix ( data . frame ( uniformp , uniformmncs ) )
c<−as . matrix ( data . frame ( uniformp , uniformtop ) )
d<−as . matrix ( data . frame ( uniformp , un i f o rmco l l ab ) )
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e<−as . matrix ( data . frame ( uniformmcs , uniformmncs ) )
f<−as . matrix ( data . frame ( uniformmcs , uniformtop ) )
g<−as . matrix ( data . frame ( uniformmcs , un i f o rmco l l ab ) )
h<−as . matrix ( data . frame ( uniformmncs , uniformtop ) )
i<−as . matrix ( data . frame ( uniformmncs , un i f o rmco l l ab ) )
j<−as . matrix ( data . frame ( uniformtop , un i f o rmco l l ab ) )

#s e l e c t i o n o f copula based on AIC
se lectedCopula<−BiCopSelect ( uniformtop , un i fo rmco l lab , f am i l y s e t=NA) #switch between va r i a t e s
se l e c tedCopu la
selectedCopula$AIC

#goodness o f f i t t e s t
f i t c op<−frankCopula ( 6 . 8 3 ) #f i l l in copula with parameter
gofCopula ( f i t c op , f ,N=2000 , est im . method=”mpl” , s imu la t i on=”mult ”)

random<−rCopula (711 , f i t c o p ) #sample obse rvat i on
cor ( random , method=”spearman ”)
cor ( random , method=”kenda l l ”)

#By p l o t t i n g the pseudo and s imulated obs e rva t i on s we can
#see how the s imu la t i on with the copula matches the pseudo obs e rva t i on s
#PvsMCS
dev . o f f ( )
p l o t ( uniformp , uniformmcs , main=”Pseudo/ s imulated obs e rva t i on s : BLUE/RED” ,

xlab=”Uniform Pub l i c a t i on s ” , ylab=”Uniform MCS” , c o l=”blue ”)
po in t s ( random [ , 1 ] , random [ , 2 ] , c o l=”red ”)

#PvsMNCS
dev . o f f ( )
p l o t ( uniformp , uniformmncs , main=”Pseudo/ s imulated obs e rva t i on s : BLUE/RED” ,

xlab=”Uniform Pub l i c a t i on s ” , ylab=”Uniform MNCS” , c o l=”blue ”)
po in t s ( random [ , 1 ] , random [ , 2 ] , c o l=”red ”)

#PvsTop
dev . o f f ( )
p l o t ( uniformp , uniformtop , main=”Pseudo/ s imulated obs e rva t i on s : BLUE/RED” ,

xlab=”Uniform Pub l i c a t i on s ” , ylab=”Uniform pp top prop ” , c o l=”blue ”)
po in t s ( random [ , 1 ] , random [ , 2 ] , c o l=”red ”)

#PvsCollab
dev . o f f ( )
p l o t ( uniformp , un i formco l lab , main=”Pseudo/ s imulated obs e rva t i on s : BLUE/RED” ,

xlab=”Uniform Pub l i c a t i on s ” , ylab=”Uniform Co l l abora t i on ” , c o l=”blue ”)
po in t s ( random [ , 1 ] , random [ , 2 ] , c o l=”red ”)

#MCSvsMNCS
dev . o f f ( )
p l o t ( uniformmcs , uniformmncs , main=”Pseudo/ s imulated obs e rva t i on s : BLUE/RED” ,

xlab=”Uniform MCS” , ylab=”Uniform MNCS” , c o l=”blue ”)
po in t s ( random [ , 1 ] , random [ , 2 ] , c o l=”red ”)

#MCSvsTop
dev . o f f ( )
p l o t ( uniformmcs , uniformtop , main=”Pseudo/ s imulated obs e rva t i on s : BLUE/RED” ,

xlab=”Uniform MCS” , ylab=”Uniform pp top prop ” , c o l=”blue ”)
p l o t ( random [ , 1 ] , random [ , 2 ] , main=”Pseudo/ s imulated obs e rva t i on s : BLUE/RED” ,

xlab=”Uniform MCS” , ylab=”Uniform pp top prop ” , c o l=”red ”)
po in t s ( random [ , 1 ] , random [ , 2 ] , c o l=”red ”)

79



#MCSvsCollab
dev . o f f ( )
p l o t ( uniformmcs , un i formco l lab , main=”Pseudo/ s imulated obs e rva t i on s : BLUE/RED” ,

xlab=”Uniform MCS” , ylab=”Uniform Co l l abo ra t i on ” , c o l=”blue ”)
po in t s ( random [ , 1 ] , random [ , 2 ] , c o l=”red ”)

#MNCSvsTop
dev . o f f ( )
p l o t ( uniformmncs , uniformtop , main=”Pseudo/ s imulated obs e rva t i on s : BLUE/RED” ,

xlab=”Uniform MNCS” , ylab=”Uniform pp top prop ” , c o l=”blue ”)
po in t s ( random [ , 1 ] , random [ , 2 ] , c o l=”red ”)

#MNCSvsCollab
dev . o f f ( )
p l o t ( uniformmncs , un i formco l lab , main=”Pseudo/ s imulated obs e rva t i on s : BLUE/RED” ,

xlab=”Uniform MNCS” , ylab=”Uniform Co l l abo ra t i on ” , c o l=”blue ”)
po in t s ( random [ , 1 ] , random [ , 2 ] , c o l=”red ”)

#TopvsCollab
dev . o f f ( )
p l o t ( uniformtop , un i formco l lab , main=”Pseudo/ s imulated obs e rva t i on s : BLUE/RED” ,

xlab=”Uniform pp top prop ” , ylab=”Uniform Co l l abora t i on ” , c o l=”blue ”)
po in t s ( random [ , 1 ] , random [ , 2 ] , c o l=”red ”)

#emper i ca l copula
n<−nrow ( data . per . d i v i s i o n )
X <− uniformmcs
Y <− uniformtop
Z <−data . frame ( uniformmcs , uniformtop )
# so r t sample
X. ascending <− s o r t (X)
Y. ascending <− s o r t (Y)
Z . ascending <− cbind (X. ascending , Y. ascending )
# prepare data s t r u c tu r e
Cn <− as . data . frame ( matrix ( nrow = n , nco l = n ) , row . names = paste0 (”X” , 1 : n ) )
colnames (Cn) <− paste0 (”Y” , 1 : n )
# run through the i n d i z e s i ( o f X) and j ( o f Y)
f o r ( i in 1 : n){

f o r ( j in 1 : n){
Cn[ i , j ] <− sum( apply (X=Z , MARGIN = 1 , FUN = func t i on (Z . row , x . sorted , y . s o r t ed )
{ sum(Z . row <= c (x . sorted , y . s o r t ed ) , na . rm = TRUE) >=2 } , X. ascending [ i ] , Y. ascending [ j ] ) ,
na . rm = TRUE)/n

}
}
#3Dplot
dev . o f f ( )
x<−(1:n)/n
y<−x
persp3D (x , y , as . matrix (Cn) ,main=”Emperical copula ”)
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