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A Human Factors Approach to Validating Driver Models for

Interaction-aware Automated Vehicles

OLGER SIEBINGA, ARKADY ZGONNIKOV, and DAVID ABBINK,

Delft University of Technology

A major challenge for autonomous vehicles is interacting with other traffic participants safely and smoothly.

A promising approach to handle such traffic interactions is equipping autonomous vehicles with interaction-

aware controllers (IACs). These controllers predict how surrounding human drivers will respond to the au-

tonomous vehicle’s actions, based on a driver model. However, the predictive validity of driver models used

in IACs is rarely validated, which can limit the interactive capabilities of IACs outside the simple simulated

environments in which they are demonstrated. In this article, we argue that besides evaluating the interactive

capabilities of IACs, their underlying driver models should be validated on natural human driving behavior.

We propose a workflow for this validation that includes scenario-based data extraction and a two-stage (tac-

tical/operational) evaluation procedure based on human factors literature. We demonstrate this workflow in

a case study on an inverse-reinforcement-learning-based driver model replicated from an existing IAC. This

model only showed the correct tactical behavior in 40% of the predictions. The model’s operational behavior

was inconsistent with observed human behavior. The case study illustrates that a principled evaluation work-

flow is useful and needed. We believe that our workflow will support the development of appropriate driver

models for future automated vehicles.

CCS Concepts: • General and reference → Validation; Validation; • Human-centered computing →
Interaction design;

Additional Key Words and Phrases: Driver model validation, interaction-aware controllers, inverse reinforce-

ment learning driver model, automated driving
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1 INTRODUCTION

One of the great technological and societal promises of the 21st century is the autonomous ve-

hicle (AV) [4, 10, 30]. This technology has been under development in laboratories and under
controlled conditions for decades and is now transitioning to the real-world. However, a major
challenge for real-world implementation of AV technologies is enabling AVs to handle complex
interactions with human road users. AV controllers have recently been proposed that aim at ad-
dressing this challenge through interaction-aware controllers (IACs) [5–7, 9, 13, 14, 19, 21, 23,
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Fig. 1. A high-level diagram of a typical IAC for AVs. Such a controller operates in situations where the states

and actions of a human-driven vehicle (superscript h) and an AV (superscript av) influence each other, e.g.,

the merging situation depicted in the left panel. Future states and actions are denoted with subscript t + 1,

all other states and actions are at time t . An IAC determines the optimal action a for the AV based on the

current state s of both the AV and the human. To find this optimal action, IACs make use of at least two

prediction models: a dynamic model to predict future states (s∗t+1) based on current states (s∗t ) and actions

(a∗t )(the superscript ∗ denotes it can either be used for the AV or the human), and a human driver model to

predict the actions surrounding human drivers will take in response to the AV’s action. Both the dynamic

and human behavior predictions are evaluated to find the optimal action for the AV, this is usually done

with a reward function that incorporates aspects like safety and comfort. The validation of the human driver

model is the focus of this work.

34, 36, 42, 45–47]. IACs incorporate a model of human driver behavior in the controller, to pre-
dict how another driver is likely to respond to the AV’s behavior. Based on this prediction and
its own reward function (e.g., incorporating safety, comfort), the IAC finds the optimal action for
the AV (Figure 1). However, up to now the interactive capabilities of these controllers have only
been demonstrated in simplified simulated environments (e.g., top-down view computer simula-
tions). Whether the state-of-the-art IACs are capable of predicting naturalistic driver behavior and
interacting with humans in real traffic remains an open question.

Although demonstrating a proposed controller in a simulated traffic environment is a necessary
first step to show its potential, it does not provide sufficient evidence on how well the controller
will generalize to real-world environments. In this work, we take the position that before imple-
menting an IAC in vehicles to validate its behavior in the real-world, its underlying driver model
should be validated on natural human driving behavior. If the model fails to predict real-world be-
havior accurately, the controller will act on false predictions which can lead to annoying or even
unsafe situations. Such driver model validation can therefore provide an early indication of the
IAC validity without much of the cost associated with implementing and testing it in real traffic
interactions. However, driver model validation is currently not a part of the mainstream approach
to IAC validation (see e.g., [34, 36, 45]), and a principled framework for such validation is missing
from the literature.

The contribution of our work lies in proposing and demonstrating a human-factors-based
evaluation workflow, in order to help IAC designers in the process of selecting appropriate dri-
ver models. The proposed workflow validates driver models using empirical data obtained from
naturalistic (real-world) traffic interactions, acknowledging two levels of driving behavior [24]:
tactical choices and operational safety margins. Tactical behavior refers to which maneuvers are
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A Human Factors Approach to Validating Driver Models 47:3

executed (e.g., a lane change or car following) and operational behavior describes how they are
executed (e.g., in terms of safety margins). To demonstrate the potential of this workflow, we
perform a case study that shows that an inverse-reinforcement-learning-based model, replicated
from a model used in a previously developed IAC [34], does not generalize to real-world data.
Even though we do not quantify the implications of these results for any specific IAC, they still
underline the importance of using validated driver models in AV controllers.

2 VALIDATING DRIVER MODELS FOR INTERACTION-AWARE CONTROLLERS

2.1 Why Validate?

Part of the reason why model validation is necessary is that the simulated environments in which
IACs are evaluated are not sufficient to assume safe generalization to the real-world. A particular
aspect of the evaluation is the human response to the AV’s actions. Two approaches to generate
this response are used. Some studies [6, 7, 9, 14, 19, 21, 23, 36, 42, 45, 47] simulate human driver
responses using driver models. However, many of the driver models used for this purpose are also
not validated on natural human driving behavior, which could indicate a discrepancy between
the simulation and natural behavior. Other studies [5, 13, 34, 46] use real-time responses of a
human test subject in an abstract top-down view computer simulation, much like a video game.
The gap between such abstract test environments and real-world driving is large, e.g., due to the
absence of risk perception [31], motion cues, and visual looming [18]. So, again we can expect
the participants’ responses to differ from driver responses in real-world traffic. This means that
both approaches can only provide very limited evidence for the generalization of the demonstrated
interactive capabilities of the IAC to the real-world.

To show that the IAC’s behavior does generalize to the real-world, one could propose to imple-
ment the IAC in a real vehicle and demonstrate its workings in a natural environment. However,
deploying a proof-of-concept IAC in the real-world might result in unsafe situations even under
highly controlled conditions. This raises ethical concerns about such real-world testing. Another
possibility would be to use real-time human responses and minimize the mismatch between the
simulation environment and the real-world, e.g., by using a high-fidelity driving simulator. How-
ever, such experiments are expensive and time-consuming, and human behavior even in realistic
driving simulators can still differ from behavior in real traffic [8, 31]. For this reason, we advocate a
complementary approach: validating the driver model on naturalistic traffic data before implement-
ing it in an IAC. The combination of the model validation on real-world data and demonstrating
the IAC’s interactive capabilities in a (simplified) simulated environment provides a firm ground
for the further implementation and testing of the IAC in real vehicles.

To the best of our knowledge, validation on naturalistic driving data for use in IACs has not been
performed for two of the most commonly used driver models proposed for IACs. These models are
the intelligent driver model IDM [43] (used in [6, 13, 45] to predict driver behavior and in [5, 14,
47] to simulate other drivers’ responses) and the expected-utility-maximizing model (used e.g.,
in [34, 36] to predict other drivers’ behavior) that uses a reward function learned from human
demonstrations with inverse reinforcement learning (IRL). Although the reward function in
this model is learned from naturalistic driving data, none of the studies which proposed IACs based
on an IRL-based model have validated the resulting model with respect to its ability to capture
human behavior.

2.2 How to Validate?

We propose a three-step evaluation workflow (Figure 2) that incorporates important aspects of
driver model validation: evaluation against naturalistic data on both the tactical and operational
levels.

ACM Transactions on Human-Robot Interaction, Vol. 11, No. 4, Article 47. Publication date: September 2022.



47:4 O. Siebinga et al.

Fig. 2. The proposed driver model validation workflow for interaction-aware autonomous vehicle controllers.

The workflow consists of three steps. In the first step, a suitable dataset is selected to perform the validation

of the driver model on. From this selected dataset, specific situations are automatically extracted. The actual

validation of the model takes place in the last two steps. A distinction is made based on the level of behavior.

First, the tactical behavior is validated in step 2. This step reveals to what extent the driver model shows

tactical behavior that is consistent with human behavior in the dataset. Behavior inconsistent with human

data, e.g., collisions, is not regarded in the final step. The third step evaluates the operational behavior of

the model based on human-factors literature. This is done for every tactical behavior separately. The final

conclusion of the validation should be based on the combined results of steps 2 and 3.

Step 1: Select Naturalistic Data. When validating a driver model for an IAC, we propose that
the model is compared against human behavior data recorded in a natural environment, i.e., a
naturalistic driving dataset. There are increasingly many naturalistic datasets available, but which
dataset should one choose? And once the dataset is chosen, should all the data in the dataset be
used uniformly for model validation?

When selecting a naturalistic dataset, one should be aware of whether the data recording was
done with obtrusive or unobtrusive methods. Obtrusive methods are methods where the driver is
aware their behavior is being recorded (e.g., the SHRP2 dataset [2]). As a result, the driver might
have changed their behavior e.g., to conform to the expectations of the researchers. Other datasets
are gathered without the drivers knowing that their behavior is being recorded, typically with
drones and cameras (several open-access datasets are available e.g., [3, 17, 44]). Because of the pos-
sibility of adapted behavior in obtrusive naturalistic datasets, unobtrusive datasets are preferable
for model validation.

When a suitable dataset is chosen, specific parts of the data need to be selected to perform
the validation on. Data recorded in the real-world often contains many different scenarios, e.g.,
different locations, vehicle types, and maneuvers. Using all this data to validate a driver model
would be intractable because humans behave differently in different scenarios. Instead, comparable
scenarios can be selected from the dataset to be evaluated together. These scenarios should fit the
intended environment of the IAC. At the same time, one should avoid hand-picking scenarios, or
selecting them on low-level characteristics (e.g., only include vehicles that reach a certain velocity)
because this will reduce the variability in the data and thus negate the purpose of the validation,
to show that the model generalizes to real-world behaviors. Instead, scenarios should be selected
on higher-level similarities, e.g., including all lane changes or all unprotected left turns. Open-
source software is available that includes examples of how to extract such scenarios automatically
e.g., [39].

Behavior Validation. After selecting relevant scenarios, the model can be trained and validated.
Validation of models of human behavior is often difficult because there are many aspects that
determine if the model’s behavior resembles human behavior. In most cases, the difference cannot
be captured by a single metric. For example: when validating a driver model in a lane-changing
scenario, it could be tempting to use a distance-based error-metric to describe the goodness-of-fit.
However, an event like a collision with a vehicle in an adjacent lane can, in some cases, be described
by a small lateral distance error with respect to a human-driven trajectory. If only this distance
error would be examined when validating the model, it would seem to perform well, but in reality,
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the model predicts that a human would collide with another vehicle. The collision is missed in the
single-metric validation procedure, and the (wrong) conclusion would be that the model describes
human behavior with only a small error margin.

This example illustrates that a distinction should be made between what behavior is executed
(e.g., car following, crashing, or lane changing) and how it is executed (i.e., specific trajectories and
safety margins with respect to lane boundaries and traffic participants). This bears resemblance
to the common distinction in driving behavior [24] of tactical and operational behavior (note that
strategic behavior, e.g., route selection, is not covered by the models in IACs). In this distinction,
the maneuvers executed by the driver, like a lane change, are tactical behavior. The manner in
which they are executed, e.g., expressed in accelerations or dynamics of the gaps with respect to
other vehicles, is called operational behavior. Making this distinction in driver model validation
is especially relevant for driver models used in IACs because these models are mostly designed to
incorporate multiple tactical behaviors. This is in contrast to traditional driver models that were
more often designed to only represent one specific tactical behavior.

For many tactical behaviors, the corresponding operational behavior has been studied in human-
factors experiments (e.g., for car following [11, 15, 16, 25, 29, 35]). These studies provide the impor-
tant metrics of human operational behavior, given a specific tactical behavior. Making the same
distinction during the validation allows one to leverage the existing human-factors literature, en-
abling researchers without in-depth human-factors expertise to validate their models.

Determining what tactical behavior is executed by the model and if it matches human behavior
is something that can be done without any expert knowledge. For instance, it is straightforward to
specify if a lane change is made and to compare if the model performs a lane change in the same
situation where a human does. Once the tactical behavior is determined, the metrics specifying
the operational behavior can be defined based on the relevant human-factors literature. This will
require obtaining some knowledge on the subject, but with a properly specified tactical behavior, a
brief, non-exhaustive driver-behavior literature survey would be enough for a researcher to make
a motivated choice of the metrics characterizing the corresponding operational behavior.

Because making a distinction between tactical and operational behavior is relevant for IACs
and makes the validation process easier, we propose a sequential two-stage validation process.
The first stage (step 2 in the workflow of Figure 2) is to validate the model’s behavior on a tactical
level, providing a quick and straightforward distinction between behavior that clearly resembles
or does not resemble the observed human driving behavior in the same circumstances. The second
stage (step 3 in Figure 2) examines the tactical behaviors separately on the operational level.

Step 2: Tactical Validation. The purpose of the tactical validation step is two-fold. First, it serves
to determine which of the model’s responses are consistent with human behavior and which are
not. A valid driver model does not predict tactical responses inconsistent with human behavior,
therefore we will refer to such responses as undesirable tactical behavior. Desirable behaviors,
on the other hand, are all tactical responses that can be observed in naturalistic human driving
data. Second, this step will categorize the model’s responses so its desirable behaviors can be
validated in the operational validation step according to the right criteria. Undesirable behavior
can be disregarded during the operational validation step because it does not matter how the model
performs a behavior that is undesirable in the first place.

To achieve this, a mutually exclusive set of possible tactical behaviors exhibited by the model
should be defined. The distinction between these tactical behaviors should be based on simple rules
(or inclusion and exclusion criteria) such that all exhibited model behavior falls in one and only
one tactical category. Which and how many of these categories to include depends on the outcome
of the literature survey discussed earlier. All behaviors in one category should be validated on
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47:6 O. Siebinga et al.

the same operational characteristics, which should be taken into account when determining the
categories.

Step 3: Operational Validation. For the operational validation step, human-factors literature pro-
vides signals and metrics that best describe human behavior for specific tactical behavior. This op-
erational validation step can compare individual trajectories or averaged metrics between human
and model behavior as long as the metrics and signals are chosen appropriately and the tactical
behaviors are regarded separately. Examples of such metrics are metrics that relate to the dynam-
ics of the behavior, e.g., the gap between vehicles, or to the properties of the maneuver, e.g., the
duration of a lane change. Human-factors literature can also provide methods on how to compare
the signals and metrics. For example, in [35] figures are presented that relate phase diagrams in
car following to responsive actions of human drivers, such plotting methods can also be used for
model validation.

The Validation Conclusion. The final conclusion of the validation procedure should be based
on both the tactical and operational behavior displayed by the model. The model should display
desirable tactical behavior in a way that resembles how humans perform the same behavior on an
operational level. But because the eventual goal is to incorporate the driver model in an IAC, the
controller’s ability to safely operate while using the model’s predictions can be seen as the most
important factor in the final conclusion.

When a driver model shows behavior that deviates from human behavior to a large extent, but
the controller that implements the model can still safely operate with these errors, it can still be
concluded that the model is “good enough” for use in the IAC. To draw such a conclusion, the
maximal acceptable difference between the model’s output and human behavior has to be defined.
This should be done for every IAC separately due to differences in IACs, scenarios, and regarded
tactical behaviors. The maximal acceptable difference can for example be based on an evaluation
that shows that the controller can still reliably execute safe and acceptable interactive behavior
when confronted with predictions that have this maximal deviation from future human behavior.

However, even if an IAC is robust to inaccurate predictions of the driver model, we argue that
it is still important to validate the model and report the magnitude of the deviation from human
behavior. This improves the re-usability of the proposed model for other IACs and provides a basis
for a re-evaluation of the model when extending or improving the IAC.

3 CASE STUDY: METHODS

To demonstrate the proposed workflow we use it to validate an inverse reinforcement learning

(IRL) based model replicated from a study that proposed one of the first IACs for autonomous ve-
hicles [34]. The choice to validate an IRL-based model was made because this increasingly popular
type of model describes dynamic human behavior in multiple scenarios and has not been validated
previously. The two IACs with IRL-based driver models discussed earlier [34, 36] use similar imple-
mentations of such a model. However, only the work by Sadigh et al. [34] provides enough detail,
in the form of mathematical description and open-source code, to replicate the used IRL-based
model. For that reason, the model used by Sadigh et al. is used as a reference for this case study.

3.1 Model Implementation

IRL-based driver models assume that human behavior is “driven” by an underlying reward function.
A parameterized reward function is assumed and inverse reinforcement learning is used to infer
the parameters directly from human demonstrations (see [1, 28, 49]). This reward function with the
learned parameters can be used in an agent to generate individual predictions of human behavior.
Driver models based on IRL use a utility-maximizing rational agent for this purpose. Throughout
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this article, we refer to this method of generating predictions combined with a specific assumed
reward function as the model. We refer to instances of the model with a specific set of parameters
as an agent. In IRL-based driver models, the used reward function consists of a linear combination
of features, each with its own weight:

Rh (s,a) =
∑

θh
i ϕi (s,a). (1)

In this formula, Rh denotes the reward of a specific human, s is the state (at time t ) and a is the
action sequence the human will take. This action sequence is subject to a finite planning horizon.
ϕi denotes the ith feature and θi represents the corresponding weight, which is learned by IRL
from demonstrations produced by a human driver h. Note that the features ϕi in Equation (1) are
designed beforehand and do not vary over humans, demonstrations, or situations. The weights θi

are learned from the demonstrations and vary over humans. These weights are learned by max-
imizing the log-likelihood of an observed demonstration with respect to the weights, given the
assumed features.

3.2 Assumed Reward Function

The reward function Rh used for the IRL-based model in this work was replicated from [34] and
consists of four features for maintaining a preferred velocity, lane-keeping, staying on the road,
and collision avoidance. The collision avoidance feature is modeled by a two-dimensional Gaussian
function, based on distances between the centers of vehicles. Because the human demonstrations
we use for the case study were recorded on highways, the heading angles of the vehicles take very
low values and are therefore neglected for collision avoidance. They are assumed to be equal to the
road heading (this is a deviation from the model used in [34]). The lane-keeping and road boundary
features are both Gaussian functions of the lateral road axis, they are constant over the longitudinal
axis of the road. The velocity feature is the squared error with respect to the desired velocity. Since
the exact desired velocity is not known for the human drivers that provide the demonstrations, and
the legal speed limits that could be used for this purpose are not always provided with the data, the
maximum recorded velocity of a vehicle is taken as the driver’s desired velocity. The full reward
function is given in Equation (2).

Rh (x ,y,vx ) = θh
velϕvel (vx ) + θh

laneϕlane (y) + θh
boundsϕbounds (y) + θh

collisionϕcollision (x ,y), (2)

where

ϕvel (vx ) = (vx −vd )2,

ϕlane (y) = e−c (ylc−y )2

,

ϕbounds (y) = e−c (yr b−y )2

,

ϕcollision (x ,y) =
1

σx

√
2π

e−(1/2)((x−xo )2/σ 2
x ) 1

σy

√
2π

e−(1/2)((y−yo )2/σ 2
y ).

In these formulae, x and y denote the longitudinal and lateral position as defined in Figure 4,
lc and rb denote the lane center and road boundaries respectively, where the road boundaries are
defined at half a lane width outside the outermost marking. v represents velocity and subscript
o denotes the other vehicle. The constants c , σx , and σy are used to shape the features. A visual
representation of the reward function, excluding the velocity feature, can be found in Figure 3.

The constants that shape these features were determined with a grid search on the first
15 demonstrations of the used dataset. Initial guesses of the parameters were based on a visual
comparison of the heat map to the road image. Variations around these initial guesses were esti-
mated based on the dimensions of the lanes. (For example, min(σy ) = 1.4 m, thus 95.4% of the
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47:8 O. Siebinga et al.

Fig. 3. A heat map of the reward function (Equation (2)) is used for the IRL-based driver model where the

black block indicates the ego vehicle. Warmer colors indicate low reward, cooler colors indicate high reward.

The feature for velocity is not shown here because it does not depend on the position. The dimensions and

positions of the features displayed here are assumed to be constant over different humans. The weights,

represented here by the colors, differ between humans and are learned from demonstrations.

lateral influence on collision prevention lies within a 2.8m distance between vehicle centers. With
a lane width of 4 m and a 2 m wide vehicle, this means the lane marking has to be crossed before
the collision prevention starts contributing to the reward. Thus, the lower bounds of our param-
eter grid are close to the smallest plausible parameter values.) We used the following sets in the
grid search: c = {0.14, 0.18, 0.22},σx = {5.0, 10.0, 15.0, 20.0},σy = {1.4, 1.8, 2.2}, where the bold

value the selected value. Each parameter combination in the grid was evaluated based on the re-
sulting number of desired tactical behaviors by the agent (see Section 2.2, Step 2 for the definition
of desired behavior). The parameter sets c,σx ,σy = 0.14, 15.0, 1.4 and c,σx ,σy = 0.14, 20.0, 1.4
had the maximum number of desired tactical behaviors in this grid search, we chose to select the
combination containing our initial guess.

3.3 Using the Proposed Workflow

Here we will discuss the use of the proposed workflow (Figure 2) to validate the IRL-based model
with the reward function as shown in Equation (2) step by step.

3.3.1 Step 1: Select Data. The first step of the proposed workflow is to select a naturalistic
dataset. Among multiple naturalistic driving datasets that are openly available, in this case study
we considered three datasets: the NGSIM dataset [44], the pNEUMA dataset [3], and the HighD
dataset [17]. Of these three the NGSIM data have larger uncertainties in the trajectories because
it was recorded with fixed-base cameras instead of drones. The pNEUMA dataset was recorded
in an urban environment, this does not match the environment of the regarded IAC [34] which
focuses on multi-lane scenarios (e.g., a highway) with human behavior that mostly consists of
actions to prevent collisions, like lane changing. The HighD dataset contains high-precision data
recorded in a multi-lane environment. It also contains dynamic behavior such as lane changes
to prevent collisions. For these reasons, we will use the HighD dataset. This dataset consists of
60 separate recordings, recorded in six different locations in Germany. All recordings were made
on highways using drones equipped with cameras; from these recordings, trajectory data was
automatically extracted [17]. Every recording is of a fixed stretch of highway, the average length
of these recorded stretches is 416m, and the average duration of a single-vehicle track is 14.34 s .

To visualize the data and the resulting agent behavior we used TraViA [39], an open-source visu-
alization and annotation tool for trajectory datasets. TraViA can visualize all mentioned datasets
and we extended it to train and visualize the IRL-based model. The extension code is available
online [38]. An example frame of the HighD dataset visualization can be found in Figure 4.

From this dataset, we automatically select suitable scenarios for training and validating the
model. These scenarios should fit the intended use of the IAC [34]: in our case study, we assume
the goal of the IAC is to interact with human drivers who perform lane changes. This means
we could consider two distinct behaviors in the HighD dataset: lane changing and merging. A
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A Human Factors Approach to Validating Driver Models 47:9

Fig. 4. An example frame of the HighD dataset [17] as visualized using TraViA [39]. The frame includes a

stretch of a highway in Germany, where vehicles drive on the right side of the road and where, in some of

the cases, there are no legal speed limits. The orange shapes represent regular cars, the green shapes are

trucks. All vehicles have a vehicle-ID shown in white. The white arrows display the coordinate frame and

the yellow marking shows a visualization of the gap between two vehicles as used in the metrics for step 3

of the validation workflow.

merging lane is only present in 3 of the 60 HighD recordings. For this reason, we will use human
lane-changing maneuvers for validation. For consistency, the three recordings with a merging lane
were not considered.

As mentioned before, the features in the reward function consider collision avoidance, lane-
keeping, staying on the road, and maintaining a preferred velocity. This means that not all lane
changes can be explained with this model. Lane changes to the right are not covered because they
are “driven” by a need to adhere to (socially acceptable) traffic rules that are not incorporated in
the reward function (In Germany, it is obligatory to drive in the rightmost lane if it is free. So a
lane change to the right is most often performed simply because that lane is free, not to avoid a
collision. It can therefore not be explained by the used reward function). Therefore, only single
lane changes to a left lane are considered for training and validation. The highD dataset includes
the number of lane changes for every trajectory (based on lane crossings) and the current lane
number at every frame. We automatically extracted all used trajectories based on these metrics.

3.3.2 Step 2: Tactical Validation. The next step is to define a set of tactical behavior categories.
There are only a limited number of possible tactical behaviors on a highway without an exit lane,
we will consider four possibilities: car following, lane changing, colliding, and crossing the road
boundaries. Lane-keeping is not regarded as a separate behavior since all vehicles on a highway
essentially follow another vehicle. In this set car following and lane changing are regarded as
desirable behaviors, and colliding and going off-road are considered undesirable.

Besides defining the behavior categories, we established a procedure to place the trajectories
produced by the agent in one of these categories based on a hierarchy in tactical behaviors. First,
if an agent collided with another vehicle, this is labeled as a “collision”. If the agent did not collide,
a check is done to see if the center of the vehicle stayed within the outer road boundaries; if not, the
tactical behavior is labeled “off-road”. Agents that did not fall in one of the two categories above
are checked for lane changes; if there is one, the tactical behavior is labeled “lane change”. And
finally, agents that showed none of these three behaviors are placed in the “car following” category.
All of these checks are implemented in the software and are performed automatically for all agents
by checking for overlap with other vehicles and evaluating the vehicle’s center position for every
time step.

The used hierarchy is based on the idea that a predicted collision has the highest impact on IACs.
If a model predicts a collision, an IAC will act to avoid this, independent of the fact that the model
predicts a lane change first. Vehicles leaving the road will also have a big impact on IAC behavior
because it reduces the number of vehicles to consider and thus changes the scene. However, the IAC
will not take drastic actions to avoid this, therefore it comes second in the hierarchy. Only if none
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of these undesirable behaviors are executed by the model, lane changes are relevant. Finally, all
other behaviors within a single lane are grouped as car following. A more fine-grained distinction
could have been made here by including behaviors such as nudging or aborted lane changes. But
before considering those more sophisticated behaviors, we chose to evaluate if and how the model
displays car following in general.

To evaluate if the model’s tactical performance is adequate for use in an IAC, a maximum ac-
ceptable deviation from human behavior needs to be specified. Because no IAC implementation is
used in this case study, we cannot specify such a threshold here.

3.3.3 Step 3: Operational Validation. The last step is to determine how to evaluate the model’s
operational behavior for the cases where the tactical behavior falls in one of the desirable cate-
gories. We have defined two desirable categories: lane changes and car following. Earlier studies
investigated human car-following behavior and risk perception using inverse time-to-collision vs.
time gap plots [16, 26], these metrics were also used to evaluate human lane changes before [33].

Time-to-collision is defined as the time it will take until a vehicle collides with the preceding
vehicle given that they both continue at their current velocity,

TTC =
xgap

vrel
. (3)

The time gap is the time it will take a vehicle to close the current gap with the preceding vehicle,
given its current velocity,

tgap =
xgap

vagent
. (4)

In these equations, TTC is time-to-collision, vrel is the relative velocity of the agent and the
preceding vehicles, andxgap is the distance gap between the vehicles. This distance gap is visualized
in Figure 4. Finally, vagent is the longitudinal velocity of the agent vehicle.

Both TTC and time gap are available in the HighD dataset for human behavior; for the agent
behavior, the metrics are calculated using the Equations (3) and (4).

Again, quantifying an acceptable error margin can only be done for a specific controller. Because
we do not demonstrate a controller, we can only show the difference between the model and human
behavior, but in this case study, we cannot quantify if this is acceptable for any specific IAC.

3.4 Model Training

The optimization procedure to find the weights that fit a human demonstration best is the same
as used by Sadigh et al. [34]. The negated log-likelihood function as proposed by Levine and
Koltun [20] is minimized with respect to the weights. To keep this tractable, the human demon-
stration is divided into sections with the same number of frames as the control horizon used in
the agent (N = 5). All data frames are used, so the time step is 1

25 s and the planning horizon is
1
5 s . The log-likelihood functions of the parts of the demonstration are summed and the summed
negated log-likelihood is minimized. We assume that every lane-change trajectory in the dataset
comes from a different human, an agent is trained separately for every trajectory, this resulted in
3, 279 trained agents. Demonstrations on which the optimization procedure fails (i.e., no minimum
of the negated log-likelihood function could be found) were discarded (2,302 demonstrations, 41%.
For a discussion on why this number is so high, see Section 4).

Because highway data is used, the velocities of the vehicles are high (mean = 29.7m/s) and
heading angles are small. The heading angles of the vehicles are ignored in the dataset. For this
reason, the dynamics of the vehicles are modeled as point masses. Because the trajectories are
extracted from videos, no direct acceleration data was recorded. Acceleration data is available
from the HighD dataset, but this has been reconstructed from velocity data. For this reason, the
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humans in the demonstrations are assumed to have direct control over the longitudinal and lateral
velocities. Making the state and action vectors both 2-dimensional containing respectively an x ,
y-position, and -velocity. This assumption is justified because the goal of the model is to learn the
reward function, not the dynamics of human control.

3.5 Validation of Agent Behavior

To validate the agent’s behavior, we evaluate the response of every agent individually in the same
scenario that was used to train the agent. A dedicated test-set is not required contrary to most
machine-learning approaches because the log-likelihood optimization proposed by Levine and
Koltun accounts for sub-optimal demonstrations by humans. This means that the learned reward
function does not need to be fully optimized in the human-driven demonstration, but the agent
will fully optimize the reward function. So the agent might display different behavior than the
human in the same situation and thus this situation can be re-used for validation.

For evaluation, the agent will be placed in the same initial position and its behavior is recorded
for the same duration as the demonstration trajectory. Because the agent learned its reward func-
tion from this exact situation, this is a best-case scenario for the model. This approach also has the
advantage that we can directly compare the agent’s behavior to the human demonstration it was
trained on.

As for the IRL training, heading angles are neglected and the dynamics of the vehicle are as-
sumed to be point mass dynamics. To approximate the states and actions of real drivers, the
agents are assumed to have direct control over the linear accelerations of the vehicle. This re-
sults in a 4-dimensional state vector per vehicle, containing both x ,y-position and -velocity, and a
2-dimensional action vector containing the x ,y- accelerations. The agent is a utility-maximizing
rational agent, so it will select an action a in state s , that maximizes its summed reward function
R over a time horizon N = 5. Again, the times-step is equal to the frame rate of the HighD dataset
( 1

25 s). The agent has full knowledge about the future trajectories of all adjacent vehicles. As for
the choice of situation, this can be regarded as a best-case scenario for the agent, since it has a
perfect prediction system to predict other human behavior.

The direct control over lateral accelerations, combined with the point mass dynamics, can re-
sult in trajectories that are not subject to normal vehicle dynamic constraints. To approximate
normal vehicle dynamics, the agent’s actions (x ,y- accelerations) are constrained to the maximal
values of these accelerations found in the HighD dataset. The x-acceleration is constrained be-
tween (−6.63, 20.06) m/s2 and the y-acceleration between (−1.63, 1.63) m/s2.

4 CASE STUDY: RESULTS

From the first 57 recordings in the HighD dataset, all 5,581 single lane changes to the left lane
were automatically detected. These lane changes served as human demonstrations for the IRL-
based driver model. Out of these 5,581 demonstrations, 3,279 resulted in a set of weights after the
inverse reinforcement learning procedure. For the other 2, 302 demonstrations, the IRL procedure
failed to converge.

In practice, the failure of the IRL procedure means that the likelihood function adopted from [20]
becomes intractable. This function contains the logarithm of the determinant of the Hessian matrix
(loд | − H|). When this determinant becomes negative, the optimization fails. We found that this
can happen when the optimization algorithm assigns a positive value to θh

vel
(i.e., when deviating

from the desired velocity is rewarded instead of punished). Note that weights are not restricted to
be either positive or negative by the IRL procedure. IRL learns if a feature represents a reward or
penalty for the human demonstration.

To examine if this was the cause of the high rate of failures in our training procedure, we esti-
mated the Jacobian used in the optimization procedure for the initial values of θ . For 97% of the
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Table 1. Tactical Behavior as Shown by the IRL Agents and in the Human-driven

Demonstrations the Agents were Trained on

number of agents percentage of agents percentage of human demonstrations

Lane-change 1,318 40.2% 100.0%
Collision 875 26.7% 0.0%

Car following 593 18.1% 0.0%
Off-road 493 15.0% 0.0%

Total 3,279 100% 100%

demonstrations where IRL failed, the Jacobian value for θh
vel

was negative and had a magnitude at
least 10 times larger than all other Jacobian values. This did not happen in demonstrations where
IRL succeeded (0 out of 100 randomly selected cases). Which indicates that the optimization al-
gorithm attempted to use positive weights for θh

vel
as they have a high likelihood to explain the

demonstration in the failed cases.
This could mean that features in the reward function that are based on the deviation from a

maximum observed (or allowed) velocity are not suitable for use on real-world traffic conditions.
On the other hand, the IRL procedure might not have failed in these cases if θh

vel
was restricted

to always be negative (or more generally, if weights are restricted to represent either rewards or

penalties). Further investigation to answer these questions is left for future work. We discarded the
demonstrations where training failed and continued the attempt to validate the IRL-based driver
model using the training data for which the model converged.

The 3,279 agents that trained successfully were placed in the same scenario they were trained on
to examine to what extent they show human-like behavior on a tactical and operational level. We
would like to remind the reader that, combined with the fact that all agents had access to perfect
predictions of all surrounding vehicles, this constituted a “best-case scenario” for the model.

Tactical Behavior. On a tactical level, we have defined four possible behaviors to categorize the
resulting agent behavior: car following, lane changing, colliding, and crossing the road boundaries.
Only in 40.2% of the cases, the model showed the same tactical behavior as the human demonstra-
tion, a lane change (Table 1). In more than 41% of the cases, the model either collided or went on
an off-road adventure. This behavior was not present in the chosen subset of the human data, so
we conclude that model behavior is inconsistent with human behavior.

Operational Behavior. We then compared the operational behavior of the model to the opera-
tional behavior in the human demonstrations using the inverse time to collision vs. time gap plots
(Figure 5). Trajectories with multiple preceding vehicles show jumps in these plots due to suddenly
changing values, for that reason those trajectories were omitted. Agents and humans that perform
a lane change when the preceding vehicle is out of sight are also omitted since no inverse TTC
and time gap data can be calculated for them for the final frames. All car-following trajectories are
cropped to the point where the preceding vehicle gets out of sight.

The plots on the left side of Figure 5 (a) and (c) show human operational driving behavior. In the
case of lane changing Figure 5(a), the inverse TTC increases while the time gap decreases, until
the point where the center lane-marking is crossed, depicted with an orange circle. In the case of
car-following Figure 5(c), humans oscillate around a preferred equilibrium point.

The model’s behavior for the same maneuvers can be seen on the right side of Figure 5.
The model’s lane-changing behavior (Figure 5(b)) has human-like dynamics in general (as in
Figure 5(a)); however, the model makes lane changes at substantially higher inverse TTC (lower
TTC) compared to humans. Also, the time gap at the moment of the lane change is on average
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Fig. 5. Inverse TTC vs. time gap plots of human demonstrations (panels a and c) and IRL agent behavior

(panels b and d) in lane changes and car following. Panel a shows human behavior in the used demonstra-

tions. Since these demonstrations do not contain any car following, panel c shows 55 illustrative examples

of car-following behavior selected from other trajectories in the dataset, three are highlighted for clarity.

Black diamonds indicate the initial position, this is the first frame in which a vehicle appears in the HighD

dataset. In panels a and b, orange dots indicate a lane change, corresponding to the frame in which the

center of a vehicle crosses the center-line between lanes. From panels a and b we conclude that the model’s

lane change behavior has human-like dynamics in general, however, the model makes lane changes at sub-

stantially higher inverse-TTC (lower TTC) compared to humans. From panels c and d we conclude that the

model’s car-following behavior does not resemble human car-following behavior.

smaller than for the human demonstrations. To further illustrate the differences in the lane change
dynamics, we investigated the distributions of inverse TTC and time gap at the moment of lane
change (Figure 6). This shows substantial differences between the estimated distributions. We per-
formed a paired t-test to check for significant differences. Both the inverse TTC (t (1, 075) = −7.61,
p = 6.1e−14 < 0.001, Cohen d = 0.302) and time gap (t (1, 075) = 13.49, p = 2.0e−38 < 0.001,
Cohen d =0.234) values at the moment of lane change differ significantly between the model and
human demonstrations. So for lane-changing behavior, we conclude that the IRL-based model does
not resemble human behavior on an operational level.

When comparing the agent’s car-following behavior (Figure 5(d)) with the human’s car-
following behavior (Figure 5(c)), there are no oscillations around an equilibrium point for most
agents. The general shape resembles that of a human lane-changing maneuver (Figure 5(a)) with-
out crossing the center lane-marking. From this, we conclude that if the model shows car-following
behavior, it does not do that in a way that resembles human oscillatory car-following behavior, but
instead it tailgates the preceding vehicle.
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Fig. 6. Estimated distributions of inverse time to collision and time gap at the moment of the lane change.

The orange distributions represent the model’s behavior and the blue distributions represent the human

demonstrations. The mean values for inverse TTC are 0.19 s−1 for human lane changes and 0.47 s−1 for the

model. The mean values for time gap are 1.05 s for the human behavior and 0.85 s for the model behavior.

Reason for the Agents’ Behavior. Why do the IRL-based agents show behavior that is so differ-
ent from human behavior, even though their reward function was learned from human demon-
strations? We randomly selected several agent trajectories for manual examination using the
TraViA [39] traffic visualization tool to answer this question. Examples of these trajectories can
also be found as videos in the supplementary materials. From these manual evaluations, two main
causes were identified that explain why the behavior of the agents does not represent human be-
havior: the model’s assumptions and the IRL fitting procedure.

To start with the cases where the model’s assumptions cannot explain the desired behavior.
Consider a demonstration where a human is merging in a slow-moving and crowded left lane
to overtake a truck farther ahead in the right lane. This might be beneficial in the long run be-
cause the truck can be overtaken, but such behavior is unlikely to be beneficial within the short
planning horizon of the model, especially because the distance-based collision features promote
staying away from other vehicles. This issue is similar to the previously identified problem that
lane changes to a right lane cannot be explained by the currently assumed reward function. In
both of these cases, no matter the learned weights, the assumed reward function will not lead to
the desired behavior within the planning horizon.

In other cases, the approach of learning the weights from a demonstration using an assumed
reward function can be identified as the cause of the problem. Many agents that collided learned
their weights from a demonstration where the human moves into the area influenced by the colli-
sion feature (see Figure 7 for an example). Because the dimensions of this collision feature are fixed
and only the weights are learned in the IRL procedure, the resulting collision weight will be low,
i.e., a low collision weight is the only way to explain the human moving into this area. When this
low collision weight is used in the agent to generate behavior, the agent will not perform a lane
change, because moving into the collision-feature area will always decrease the reward. Instead,
the agent will stay in its lane. When it approaches the preceding vehicle, it will collide, because of
the low collision-prevention weight.

The underlying problem here is that the assumed reward function cannot describe the human’s
demonstrated behavior properly. Suppose using such a flawed reward function with hand-picked
weights. In that case, one would expect prediction errors on the operational level, because the tim-
ing of the lane change is determined by the distance-based collision feature. In this case, however,
the IRL procedure exaggerates the effects of the flawed reward function by learning weights that
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Fig. 7. An example of a demonstration where the assumed anti-collision feature does not describe the hu-

man’s demonstrated behavior. In this figure, the black shape represents the position of the human-driven

demonstration vehicle during a lane change maneuver, the white arrow indicates its direction of motion.

Only the collision feature is visualized with warmer colors indicating a higher cost. In this example, the

demonstrating vehicle is moving from a low-cost area (right lane) to a high-cost area (left lane). The only

way to explain this behavior with the assumed features is to assign a low weight to the collision feature.

Apparently, the demonstrating human does not care so much about moving into the higher cost area in the

left lane, other features must be more important. When these learned weights are then used in a utility-

maximizing agent in the same situation, it will not make the demonstrated lane change. Instead, it will stay

in the right lane with a lower penalty and finally collide with the preceding vehicle (969), because collision

prevention has a low weight.

result in more collisions. So even though the problem lies in the flawed reward function and not
the IRL procedure itself, the combination of the IRL-procedure and rewards function might not
only limit the performance of the model, it can actively make it worse.

5 DISCUSSION

In this work, we have proposed a validation workflow for driver models in interaction-aware AV
controllers. We illustrated its utility through a case study of validating an inverse reinforcement
learning-based driver model replicated from the literature [34] using naturalistic highway driving
data extracted from the HighD dataset [17]. Our validation workflow (Figure 2) incorporates the
automatic extraction of comparable lane-change scenarios (5,581) on which the IRL model was
trained (step 1). The validation of the model was then performed in two related stages. First, we
examined the tactical behavior of the model (step 2). Even though no collisions or off-road driving
were present in the training data, the model produced such behavior in more than 41% of the cases
(Table 1). Second, we analyzed the operational behavior of the model in the 59% remaining trajec-
tories (step 3). This analysis revealed that even though the dynamics of the model’s lane changes
are similar to humans (Figure 5(a) and (b)), the model performed the lane changes with signifi-
cantly smaller safety margins (Figure 6). Furthermore, the dynamics of the model’s car following
behavior were largely inconsistent with human behavior (Figure 5(c) and (d)).

In conclusion, despite training the IRL-based model on data of real-world driving behavior, our
3-step evaluation workflow exposed how the model is not able to produce realistic behavior in the
same scenarios. This case study illustrated that despite promising results in simple IAC demonstra-
tions, the models used for human behavior prediction in IACs can deviate substantially from actual
human behavior, which can have serious ramifications for generalization of IACs to real-world
environments. Our results highlight the importance of validating the models used in interaction-
aware motion planning for autonomous vehicles and suggest an easy-to-use framework to aid
researchers in doing so.

Practical Applicability of the Validation Workflow. The case study of validating an IRL-based
driver model illustrated the practical applicability of the proposed validation workflow (Figure 2).
In the first step of the workflow, the case study showed the feasibility of automatically extracting
data from an open-access naturalistic dataset. Even after narrowing down the extracted data to
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select specific scenarios (in our case, lane changes), the data were sufficiently rich to serve as
training data for the IRL model. Note that multiple other datasets were available for consideration
(e.g., NGSim [44] and PNeuma [3]) to further enlarge the data and/or use scenarios other than lane
changes.

The second and third steps of the workflow propose a two-stage evaluation approach, sepa-
rated into tactical and operational driver behavior. The case study illustrated why this two-stage
validation is useful and necessary. On the tactical level, the large number of collisions and off-road
driving would have been hard to identify in a one-stage metric-based validation (e.g., mean square-
root error in [37]). On the operational level, the evaluation illustrated that the differences between
car following and lane changing in human behavior were not reflected in the model’s behavior.
This would have been impossible to identify without first examining the tactical behavior.

The results of the case study also underline the importance of validating driver models for IACs
in general. The discrepancy between the driver model and human behavior suggests that an IAC
using this model might not safely generalize to real-world scenarios. The case study shows that
models that do not actually capture human behavior are not just a hypothetical issue, but a practical
concern for IACs developed for autonomous vehicles.

Implications for Interaction-aware Controllers. The results of the IRL-based model validation
have implications for IACs that would use this model to predict other drivers’ responses. Wrong
predictions on the tactical level can lead to dangerous situations. If an AV decides to accelerate
based on an inaccurate prediction that a vehicle in an adjacent lane will stay there, a dangerous
situation might occur when the other vehicle moves in front of the AV. The same holds for inac-
curate predictions on an operational level. For example, the model will close the gaps to a (very)
high inverse TTC (low TTC) compared to human drivers. This can lead to over-conservative AV
behavior because the controller over-estimates the aggressiveness of the human. The full extent
of these implications needs to be further examined in future work.

Related Work and Generalizability. To the best of our knowledge, our work is the first attempt to
validate a driver model used in interaction-aware controllers on both the tactical and operational
levels. The work on which this model was based [34] does not use naturalistic data and reports
no validation attempt of the behavior model. Another related study [36] does use naturalistic data
(NGSim) to train the IRL-based model, but also does not report any validation of the trained model.
In the supplementary material (available at [37]) Schwarting et al. do report the mean squared er-
rors of their model for merging scenarios. However, given the complexity of human behavior in
traffic interactions, such one-dimensional averaged error-metrics provide only rudimentary infor-
mation on how well the model captures human behavior.

Driver model validation using naturalistic data has been performed for other use cases than
IACs. In [48] five car-following models are validated for use in microscopic traffic simulations
on naturalistic data collected in Shanghai. Their validation method could also be useful when
designing IACs, and our validation method could as well be used to validate models developed for
applications other than IACs. However, we argue that because our method includes the tactical and
operational validation steps, it is more suitable to validate models displaying multiple higher-level
behaviors.

Besides the IAC literature, there have been other driver modeling attempts using IRL. However,
IRL-based models can differ substantially from each other in terms of the used reward function.
Naumann et al. studied the suitability of different cost functions for different driving scenarios [27]
and showed that there are substantial differences. The other modeling attempts that use IRL differ
from our work precisely in the sense that they target another scenario (e.g., [32] who regards
curve negotiation) or use different reward function features (e.g., [12] who use velocity-based
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features for risk perception). That means that the results of those works should be regarded as
validations of different models, despite the fact that they are also based on IRL. This observation
leads to two conclusions. First, other models that use different features should be validated as
new models even when they also use IRL. Second, the choice of features for the reward function
impacts the performance of the model, which might provide an opportunity to improve models
that underperform.

The reasons why the IRL-based models perform poorly in our case study will most likely gen-
eralize to other IRL-based models that use similar distance-based collision features in the reward
function. The results show that such distance-based features do not capture the essence of human
driving behavior. Only changing the shape or dimension of a position-based feature will not solve
this. Instead, we advocate that the metrics used in the reward function features should be based
on human factors literature for the targeted tactical behaviors, as was done in the operational val-
idation of the model; e.g., the distance-based collision feature could be replaced with a TTC-based
feature (similar to the previously mentioned model in [12]).

Other validation attempts of human driver models that do not specifically target IACs and do
not use IRL also exist, one especially related to our work is [40]. In that work, Srinivasan et al.
compare the trajectories generated with a deep-learning-based model to naturalistic driving data.
As in our work, the comparison is based on an in-depth analysis of the resulting trajectories instead
of one-dimensional metrics. They show that, also for deep-learning-based driver models, validation
should be grounded on a low-level comparison of trajectories, not just high-level metrics. They do
however not provide a generalized framework for performing such validations as we do with our
proposed workflow.

Limitations and Recommendations. This work has three main limitations. First, we used only a
single demonstration of a lane change to train the IRL, which might explain part of the discrepancy
between human and model behavior in the results. However, providing the system with more
training data might only slightly improve the model’s performance. In the case study, we identified
the causes of the observed problems to be the features of the reward function, not the weights.
Adding more training data could result in weights that better fit a specific driver. But it will not
negate the problem with the features used in the reward function.

Second, it should be noted that the planning horizon of the model is very short due to the com-
bination of a low number of frames and a high frame rate (N = 5 at 25 Hz). The number of frames
within the planning horizon was chosen based on the previous work [34] and to keep the IRL pro-
cedure tractable. The frame rate was directly adopted from the HighD dataset for simplicity, both
for reproduction purposes and to not introduce any extra assumptions when down-sampling the
data. Increasing the planning horizon and examining the model’s behavior under those conditions
is left for future work.

Finally, our case study only attempts to validate the model, it does not quantify the implications
of the outcome for use of the model in an IAC. Therefore, we are unable to say which aspects
of the model’s behavior would be tolerable when used in an IAC or which aspects have major
consequences. Quantifying the implications of the mismatch between the model’s, and naturalis-
tic human behavior is left for future work. Answering such a question is an interesting topic of
research on its own, a perspective on how to approach such an evaluation can be found in [22].

Future work should also focus on validating more driver models for use in AV controllers, e.g.,
the Intelligent Driver Model [43] mentioned in the introduction is used in many simulations and
demonstrations to model individual human behavior for IACs and should be validated for such
use. Future work on IRL-based driver models could focus on redesigning the used reward function
such that it better captures similarities between human drivers by using human-factors literature

ACM Transactions on Human-Robot Interaction, Vol. 11, No. 4, Article 47. Publication date: September 2022.



47:18 O. Siebinga et al.

as a starting point. Besides that, the IRL-based model used here could be extended to take the
uncertainty in human behavior into account. Either the uncertainty over the learned rewards could
be targeted by learning multiple reward functions (as is done in [27, 41]) instead of only single
parameters and selecting the best fit, or stochasticity could be added when selecting the actions
to relax the assumption of humans being utility maximizers (also done in [41]). However, such
changes to the model could complicate the implementation in an IAC.

6 CONCLUSIONS

In this article, we argued for validation of the driver models used in interaction-aware controllers.
We proposed an evaluation workflow for such validation, illustrated through a concrete case study.
Based on the findings in our article, we conclude the following:

—The proposed workflow allowed for a detailed evaluation of a driver model replicated from
literature, based on an open-source dataset from which 3,279 human-driven lane changes in
moderately heavy highway traffic could be extracted. After training the model on each lane
change, it did not reproduce adequate behavior when exposed to the same conditions. It gen-
erated crashes and road departures in 41.7% of the cases (inadequate tactical behavior). For
the remaining cases, unrealistic safety margins were observed (inadequate operational be-
havior). These unrealistic predictions show that models that do not capture realistic human
behavior are a practical concern for implementing IACs in future autonomous vehicles.

—During the case study, the proposed workflow proved to be practically applicable, providing
a structured basis for model validation in two stages:
–First, validating the tactical behavior illustrated to what extent high-level choices are cor-

rectly predicted (e.g., that a lane change occurs, rather than staying behind the lead vehicle
see Table 1).

–Second, correct tactical behaviors produced by a model should be validated in additional
detail, by evaluating to what extent the behavior is executed in a way that resembles the
timing and spatio-temporal safety margins acceptable to human drivers (see Figure 5).

–In these two stages, different tactical behaviors should be evaluated based on different
operational criteria because differences in human operational behavior were observed for
different tactical behaviors (see Figure 5).
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