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ABSTRACT

Graphs have well-documented merits for modeling complex
systems, including financial, biological, and social networks.
Network nodes can also include attributes such as age or gen-
der of users in a social network. However, the size of real-
world networks can be massive, and nodal attributes can be
unavailable. Moreover, new nodes may emerge over time,
and their attributes must be inferred in real time. In this con-
text, the present paper deals with scalable learning of nodal
attributes by estimating a nodal function based on noisy ob-
servations at a subset of nodes. A multikernel-based approach
is developed which is scalable to large-size networks. The
novel method is capable of providing real-time evaluation of
the function values on newly-joining nodes without resorting
to a batch solver. In addition, the novel scheme only relies
on an encrypted version of each node’s connectivity, which
promotes privacy. Experiments on real datasets corroborate
the effectiveness of the proposed methods.

1. INTRODUCTION

Graphs and networks emerge in various areas, such as social,
brain, and power networks. Functions of nodes can represent
certain attributes or classes of these nodes. In Facebook for
instance, each node represents a person, and the presence of
an edge indicates that two persons are friends, while nodal
attributes can be age, gender or movie ratings of each person.

However, there are often unknown nodal function val-
ues, due to, e.g., privacy issues. Hence, a topic of great
practical importance is to interpolate missing nodal values
(class, ranking or function), based on the function values at
a subset of observed nodes. Function estimation over graphs
based on partial observations has been investigated extensively,
[1, 2, 3, 4, 5, 6, 7]. It has also been studied recently as signal
reconstruction over graphs, see e.g., [8, 9, 10, 11, 12], where
signal values on unobserved nodes can be estimated by prop-
erly introducing a graph-aware prior. Kernel-based methods
for learning over graphs offer a unifying framework that in-
cludes linear and nonlinear function estimators [10, 13, 14].
The nonlinear methods outperform the linear ones but suffer
from the curse of dimensionality [15], rendering them less
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attractive for large-scale networks. To alleviate this limitation,
a scalable kernel-based approach will be introduced in the
present paper, which leverages the random feature (RF) ap-
proximation to ensure scalability while also allowing real-time
evaluation of the functions over large-scale dynamic networks.

In certain applications, new nodes may join the network
over time, which requires real-time evaluation of the nodal
function values. Existing rigorous approaches are in general
less efficient in accounting for newly-joining nodes, and need
to solve the problem over all nodes in the network, every time
new nodes join the network. To this end, this paper develops a
scalable online graph-adaptive algorithm that can efficiently
infer nodal functions even on newly-joining nodes ‘on the fly.’

Besides scalability and adaptivity, nodes may have high
privacy requirements, therefore may not be willing to reveal
their connectivities. Most graph-based learning methods how-
ever, require knowing the entire network adjacency, and thus
cannot meet the privacy requirements. Our novel RF-based
approach on the other hand, only requires an encrypted version
of each node’s connectivity pattern, which makes it appealing
for networks with stringent privacy constraints.

2. KERNEL-BASED LEARNING OVER GRAPHS

Consider a graph G(V, E) of N nodes, whose topology is cap-
tured by a known adjacency matrix A ∈ RN×N . Let ann′ ∈ R
denote the (n, n′) entry of A, which is nonzero only if an edge
is present from node n′ to n. A real-valued function (or sig-
nal) on a graph is a mapping f : V → R, where V is the set
of vertices. The value f(v) = xv represents an attribute of
v ∈ V , e.g., in a social network, xvn could denote the age
of the nth person. Suppose that a collection of noisy sam-
ples {ym = xvnm

+ em}Mm=1 is available, where em models
noise, and M ≤ N represents the number of measurements.
Given {ym}Mm=1, and with the graph topology known, the goal
is to estimate f(v), and thus reconstruct the graph signal at
unobserved vertices. Letting y := [y1, . . . , yM ]>, the observa-
tion vector obeys y = Ψx + e, where x := [xv1 , . . . , xvN ]>,
e := [e1, . . . , eM ]>, and Ψ ∈ {0, 1}M×N is a sampling ma-
trix with binary entries [Ψ]m,nm = 1, and 0, elsewhere.

Given Ψ, y, and A, the goal is to estimate x over the entire
network. Consider function f belonging to a reproducing
kernel Hilbert space (RKHS) defined as [13, 10] H := {f :

83978-1-7281-0708-0/19/$31.00 ©2019 IEEE DSW 2019

Authorized licensed use limited to: TU Delft Library. Downloaded on August 31,2021 at 06:47:21 UTC from IEEE Xplore.  Restrictions apply. 



f(v) =
∑N
n=1 αnκ(v, vn), αn ∈ R}, where κ : V×V → R is

a pre-selected kernel function. Hereafter, we will let nm = m
for notational convenience, and without loss of generality
(wlog). Given y, the RKHS-based estimate is formed as

f̂ = arg min
f∈H

1

M

M∑
m=1

C(f(vm), ym) + µΩ
(
‖f‖2H

)
(1)

where the cost C(·, ·) can be selected depending on the learning
task, e.g., the least-squares (LS) for regression, or the logistic
loss for classification; ‖f‖2H :=

∑
n

∑
n′ αnαn′κ(vn, vn′) is

the RKHS norm; Ω(·) is an increasing function; and, µ > 0 is
a regularization parameter that copes with overfitting.

According to the representer theorem, the optimal so-
lution of (1) admits the finite-dimensional form given by
f̂(v) =

∑M
m=1 αmκ(v, vm) := α>k(v) [13, 10], where α :=

[α1 . . . αM ]> and k(v) := [κ(v, v1) . . . κ(v, vM )]>. This im-
plies that the function over the graph can be estimated by
optimizing over the M × 1 vector α [cf. (1)]

min
α∈RN

1

M

M∑
m=1

C(α>k(vm), ym) + µΩ
(
α>Kα

)
(2)

where K := Ψ>K̄Ψ, and the N × N kernel matrix K̄ has
entries [K̄]n,n′ := κ(vn, vn′). Graph-kernel based approaches
were developed in [10, 13], where given the normalized Lapla-
cian matrix L := I − D−1/2AD−1/2 := UΛU>, with
D := diag(A1), the family of graphical kernels is

K̄ := r†(L) := Ur†(Λ)U> (3)

with r(.) a non-decreasing scalar function of the eigenval-
ues. By selecting r(.), different graph properties can be ac-
counted for, including smoothness, band-limitedness, the ran-
dom walk [13], and diffusion [2].

It can be observed from (3) that formulating K̄ generally
requires eigenvalue decomposition of L, which incurs com-
plexityO(N3) that can be prohibitive for large-scale networks.
Moreover, the graph-kernel-based scheme requires knowledge
of the topology, meaning A, in order to estimate the nodal
function of each node. In response to these challenges, an
online scalable kernel-based method will be developed in the
present paper to deal with sequentially obtained data samples,
over generally dynamic networks.

3. GRAPH-ADAPTIVE LEARNING OVER GRAPHS

3.1. RF-based learning over graphs

Instead of resorting to a graph kernel that requires an eigen-
value decomposition of L in (3), the present section advocates
treating the connectivity pattern of each node as its feature
vector, which can be the nth column a

(c)
n and possibly the

nth row (a
(r)
n )> of the adjacency. We will henceforth term

this connectivity pattern of vn, and denote it as an, for brevity.

Given an, we will interpolate unavailable nodal function val-
ues f̂(vn) using a nonparametric approach, that is different and
scalable relative to [13] and [10]. The kernel matrix is now
[K̄]n,n′ = κ(vn, vn′) = κ(an,an′). Again, with M nodes
sampled, the representer theorem asserts that the sought func-
tion estimator has the form [15]

f̂(vn) = f̂(an) =

M∑
m=1

αmκ(am,an) := α>k(an) (4)

where k(an) := [κ(an,a1) . . . κ(an,aM )]>.
To bypass the growing complexity due to the computation

of the kernel matrix, we will resort to the so-called random
feature approximation [16] in order to reduce the original func-
tional learning task in (2) to a finite space with the number
of unknown parameters not growing with M . We first ap-
proximate κ using random features (RFs) [16, 17, 18] that are
obtained from a shift-invariant kernel satisfying κ(an,an′) =
κ(an − an′). For κ(an − an′) absolutely integrable, its
Fourier transform πκ(v) exists and represents the power spec-
tral density, which upon normalizing to ensure κ(0) = 1, can
also be viewed as a probability density function (pdf); hence,
κ(an − an′) =

∫
πκ(v)ejv

>(an−an′ )dv := Ev

[
ejv

>(an−an′ )
]
,

where the last equality is due to the definition of the expected
value. Drawing D independent and identically distributed
samples {vi}Di=1 from πκ(v), the ensemble mean can be ap-
proximated by the sample average

κ̂(an,an′) = z>V(an)zV(an′) (5)

where V := [v1, . . . ,vD]> ∈ RD×N , and zV denotes the
2D × 1 real-valued RF vector

zV(a) = D−
1
2 (6)

×
[
sin(v>1 a), . . . , sin(v>Da), cos(v>1 a), . . . , cos(v>Da)

]>
.

Hence, the nonlinear function that is optimal in the sense of
(1) can be approximated by a linear one in the 2D-dimensional
RF space (cf. (4) and (5))

f̂RF(a) =

M∑
m=1

αmz>V(am)zV(a) := θ>zV(a) (7)

where θ> :=
∑M
m=1 αmz>V(am). While f̂ is the superposi-

tion of nonlinear functions κ, its RF approximant f̂RF in (7) is
a linear function of zV(a). Note that the dimension of variable
θ is 2D, which does not depend on M .

Given a network of N nodes, letting vt denote the node
sampled at the tth time slot, and having available {at, yt} at
vt, the inference task over T snapshots can be written as [c.f.
(2),(7)]

min
θ∈R2D

T∑
t=1

L
(
θ>zV(at), yt

)
(8)

L
(
θ>zV(at), yt

)
:= C

(
θ>zV(at), yt

)
+ µΩ

(
‖θ‖2

)
where ‖θ‖2 :=

∑
t

∑
τ αtατz

>
V(at)zV(aτ ) := ‖f‖2H.

84

Authorized licensed use limited to: TU Delft Library. Downloaded on August 31,2021 at 06:47:21 UTC from IEEE Xplore.  Restrictions apply. 



3.2. Online RF-based learning over graphs

In the present section, we will leverage RF-based learning over
graphs to enable real-time learning of signals evolving over
possibly dynamic networks. A scalable online algorithm will
be introduced, which can sequentially sample nodal features
and update the sought function estimates.
Training sequentially. In the training phase, we are given a
network of N nodes, and the nodal function is sampled in a
sequential fashion. Letting vt denote the node sampled at the
tth time slot, and having available {at, yt} at vt, the RF of its
connectivity pattern zV(at) is formed as in (6), and θt+1 is
updated ‘on the fly,’ as

θt+1 = θt − ηt∇L(θ>t zV(at), yt) (9)

where {ηt} is the sequence of stepsizes that can tune learn-
ing rates. In this paper, we will adopt ηt = η for simplicity.
Iteration (9) provides a functional update since f̂RF

t (a) =
θ>t zV(a). Clearly, the per iteration complexity does not in-
crease with the number of nodes N , hence it is scalable with
the network size.
Newly-joining nodes. When new nodes join the network,
batch graph-kernel based approaches must expand K̄ in (3) by
one row and one column, and re-solve (2) in order to form sig-
nal estimates for the newly-joining nodes. Hence, each newly
joining node will incur complexity O(N3). The novel online
RF method on the other hand, can simply estimate the signal
on the newly coming node via f̂(vnew) = θ̂zV(anew), where
anew denotes the connectivity pattern of the new node with
the existing nodes in the network. This leads to a complexity
of O(ND) per new node.
Remark 1 (Privacy). The update in (9) does not require
access to at directly. Instead, the only information each
node needs to reveal is zV(at) for each at, which involves
{sin(a>t vj), cos(a>t vj)}Dj=1. These co-sinusoids can be
viewed as an encryption of the nodal connectivity pattern.

4. ONLINE GRAPH-ADAPTIVE MKL

In the present section, we develop an online graph-adaptive
learning approach that relies on random features, and lever-
ages multi-kernel approximation to estimate the f based on
sequentially obtained nodal samples over the graph. The pro-
posed method is henceforth abbreviated as Gradraker.

Note that the choice of κ is critical for the performance
of single kernel based learning over graphs, since different
kernels capture different properties of the graph, and thus lead
to function estimates of variable accuracy. To deal with this,
we will assume that the sought function is of the form f(v) =

f(a) :=
∑P
p=1 w̄pfp(a), where f := f̄/

∑P
p=1 wp, and the

normalized weights {w̄p := wp/
∑P
p=1 wp}Pp=1 satisfy w̄p ≥

0, and
∑P
p=1 w̄p = 1.

Given the connectivity pattern at of the tth sampled
node vt, an RF vector zp(at) is generated per p from the

pdf πκp(v) via (6), where zp(at) := zVp(at) for notational
brevity. Hence, per kernel κp and node sample t, we have
f̂RF
p,t (at) = θ>p,tzp(at), and as in (9), θp,t is updated via

θp,t+1 = θp,t − η∇L(θ>p,tzp(at), yt) (10)

with η ∈ (0, 1) chosen constant to effect the adaptation, and
Lt(f̂RF

p (at)) := L
(
θ>zVp

(at), yt
)
. As far as w̄p,t is con-

cerned, since it resides on the probability simplex, a multiplica-
tive update is well motivated as discussed also in, e.g., [19, 20,
21]. For the un-normalized weights, this update is available in
closed form as

wp,t+1 = wp,t exp
(
−ηLt

(
f̂RF
p,t (at)

))
. (11)

Having found {wp,t} as in (11), the normalized weights
are obtained as w̄p,t := wp,t/

∑P
p=1 wp,t, and the func-

tion estimate can henceforth be obtained by f̂RF
t+1(at+1) =∑P

p=1 w̄p,t+1f̂
RF
p,t+1(at+1) . Note from (11) that when f̂RF

p,t

has a larger loss relative to other f̂RF
p′,t with p′ 6= p for the

tth sampled node, the corresponding wp,t+1 decreases more
than the other weights. In other words, a more accurate
approximant tends to play a more important role in predicting
the ensuing sampled node.

4.1. Performance analysis

In order to quantify the performance of Gradraker, we resort to
the static regret metric, which quantifies the difference between
the aggregate loss of an OCO algorithm, and that of the best
fixed function approximant in hindsight, see also e.g., [22,
19]. We establish the regret of our Gradraker approach in the
following lemma.

Lemma 1 With f̂∗p (·) ∈ arg minf∈F̂p

∑T
t=1 Lt(f(at)), and

F̂p := {f̂p|f̂p(a) = θ>zp(a), ∀θ ∈ R2D}, for any p, the
sequences {f̂p,t} and {w̄p,t} generated by Gradraker satisfy
the following bound

T∑
t=1

Lt
( P∑
p=1

w̄p,tf̂p,t(at)

)
−

T∑
t=1

Lt(f̂∗p (at))

≤ lnP

η
+
‖θ∗p‖2

2η
+
ηL2T

2
+ ηT (12)

where θ∗p is associated with the best RF function approximant

f̂∗p (a) =
(
θ∗p
)>

zp(a).

5. EXPERIMENTS

In this section, Gradraker is tested on three real datasets to
corroborate its effectiveness. Due to space limitations, only
regression tests are included. In each experiment, the over-
all network contains Na nodes, M of which are selected at
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Fig. 1. NMSE performance: a) Temperature; b) Cora; and, c) E-mail.
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Fig. 2. Normalized runtime comparison.

random, and are treated as a given initial graph with N = M
nodes, while the remainingNa−N nodes are treated as newly-
joining nodes.The latter have function values and connectivity
unknown at the training phase. The runtime for estimating the
function values on the newly-joining nodes, as well as the gen-
eralization NMSE := ‖ŷSc − ySc‖22/‖ySc‖22 performance
is evaluated, where Sc denotes the index set of new nodes.
The Gradraker is compared with: a) the diffusion graph kernel
(D-GK) based method using diffusion kernels with different
bandwidths, or band-limited graph kernels (B-GK) with dif-
ferent bandwidths; b) kernel based learning (KL) without RF
approximation; c) DeepWalk; and d) Node2vec. Results are
averaged over 100 independent runs. The parameters for all
algorithms are selected via cross validation. The test results
are averaged over 30 independent runs with randomly sampled
nodes.
Datasets. Temperature dataset comprises 24 time series cor-
responding to the average temperature per month measured by
89 stations in Switzerland [23]. The graph is constructed based
on historical temperature data. Each station is represented by a
node, and the temperature at each station is the graph function
to be estimated. Cora dataset contains 2, 708 scientific pub-
lications. Each node here corresponds to a publication, and

each of the 5, 429 links connects node i to node j, if paper i
cites paper j [5]. The goal is to infer the category each paper
belongs to. Email dataset consists of N = 1, 005 nodes, and
25, 571 edges. Each node represents a person, and an edge
(i, j) is present if person i sent person j at least one email [24].
The nodal value is the label of the department a person belongs
to.
Performance Gradraker adopts a dictionary consisting of 3
Gaussian kernels with parameters σ2 = 1, 5, 10. It relies on
D = 100 random features for the temperature dataset, and
D = 20 for the E-mail and Cora datasets.

Fig. 1 compares the performance of Gradraker with those
of the competing alternatives. It can be readily observed that
Gradraker outperforms batch single kernel based approaches
with a large margin in terms of NMSE in all three datasets.
While Gradraker’s NMSE is slightly higher in the E-mail
dataset, it is comparable with DeepWalk and NodeVec in the
Temperature and Cora datasets. Figure 2 shows the perfor-
mance of the normalized CPU runtime when new nodes join
the network of competitive algorithms. It can be observed that
Gradraker is significantly faster than competing alternatives.

6. CONCLUSIONS

The present paper dealt with inference of functions defined
over graphs using function values over a subset of nodes. An
online MKL-based algorithm was developed, which is capa-
ble of tracking nodal functions even when samples are col-
lected sequentially. The novel scheme is highly scalable, and
can estimate the unknown function values on newly joining
nodes. Moreover, it only relies on encrypted nodal connectiv-
ity information. This work opens up a number of interesting
directions for future research, including: a) distributed imple-
mentations that are well motivated in large-scale networks; b)
graph-adaptive learning when multiple sets of nodal features
are also available; and c) development of adaptive sampling
strategies for Gradraker.

86

Authorized licensed use limited to: TU Delft Library. Downloaded on August 31,2021 at 06:47:21 UTC from IEEE Xplore.  Restrictions apply. 



7. REFERENCES

[1] E. D. Kolaczyk, Statistical Analysis of Network Data:
Methods and Models. Springer, 2009.

[2] R. I. Kondor and J. Lafferty, “Diffusion kernels on graphs
and other discrete structures,” in Proc. Intl. Conf. on
Machine Learning, Sydney, Australia, Jul. 2002, pp. 315–
322.

[3] M. Belkin, P. Niyogi, and V. Sindhwani, “Manifold reg-
ularization: A geometric framework for learning from
labeled and unlabeled examples,” J. of Mach. Learn. Res.,
vol. 7, pp. 2399–2434, Nov. 2006.

[4] L. Wasserman and J. D. Lafferty, “Statistical analysis of
semi-supervised regression,” in Advances in Neural In-
formation Processing Systems, Vancouver, Canada, 2008,
pp. 801–808.

[5] Q. Lu and L. Getoor, “Link-based classification,” in Proc.
of Intl. Conf. on Machine Learning, Washington DC,
USA, 2003, pp. 496–503.

[6] G. B. Giannakis, Y. Shen, and G. V. Karanikolas, “Topol-
ogy identification and learning over graphs: Accounting
for nonlinearities and dynamics,” Proc. of the IEEE, vol.
106, no. 5, pp. 787–807, May 2018.

[7] E. Isufi, A. Loukas, A. Simonetto, and G. Leus, “Autore-
gressive moving average graph filtering,” IEEE Transac-
tions on Signal Processing, vol. 65, no. 2, pp. 274–288,
Jan. 2017.

[8] S. K. Narang, A. Gadde, and A. Ortega, “Signal process-
ing techniques for interpolation in graph structured data,”
in Proc IEEE Intl. Conf. Acoust. Speech Signal Process.,
Vancouver, Canada, 2013, pp. 5445–5449.

[9] X. Wang, P. Liu, and Y. Gu, “Local-set-based graph sig-
nal reconstruction,” IEEE Trans. Signal Process., vol. 63,
no. 9, pp. 2432–2444, May 2015.

[10] D. Romero, M. Ma, and G. B. Giannakis, “Kernel-based
reconstruction of graph signals,” IEEE Trans. on Sig.
Process., vol. 65, no. 3, pp. 764–778, Feb. 2017.

[11] A. G. Marques, S. Segarra, G. Leus, and A. Ribeiro,
“Sampling of graph signals with successive local aggrega-
tions,” IEEE Transactions on Signal Processing, vol. 64,
no. 7, pp. 1832–1843, April 2016.

[12] D. I. Shuman, S. K. Narang, P. Frossard, A. Ortega, and
P. Vandergheynst, “The emerging field of signal process-
ing on graphs: Extending high-dimensional data analysis
to networks and other irregular domains,” IEEE Sig. Pro-
cess. Mag., vol. 30, no. 3, pp. 83–98, 2013.

[13] A. J. Smola and R. I. Kondor, “Kernels and regularization
on graphs,” in Learning Theory and Kernel Machines.
Springer, 2003, pp. 144–158.

[14] V. N. Ioannidis, Y. Shen, and G. B. Giannakis, “Semi-
blind inference of topologies and dynamical processes
over dynamic graphs,” IEEE Trans. Signal Process.,
vol. 67, no. 9, pp. 2263–2274, 2019.

[15] G. Wahba, Spline Models for Observational Data.
Philadelphia, PA: SIAM, 1990.

[16] A. Rahimi and B. Recht, “Random features for large-
scale kernel machines,” in Proc. Advances in Neural
Info. Process. Syst., Vancouver, Canada, Dec. 2007, pp.
1177–1184.

[17] Y. Shen, T. Chen, and G. B. Giannakis, “Online ensem-
ble multi-kernel learning adaptive to non-stationary and
adversarial environments,” in Proc. of Intl. Conf. on Ar-
tificial Intelligence and Statistics, Lanzarote, Canary Is-
lands, Apr. 2018.

[18] Y. Shen, G. Leus, and G. B. Giannakis, “Online graph-
adaptive learning with scalability and privacy,” IEEE
Trans. Signal Processing, vol. 67, no. 9, pp. 2471–2483,
May 2019.

[19] E. Hazan, “Introduction to online convex optimization,”
Found. and Trends in Mach. Learn., vol. 2, no. 3-4, pp.
157–325, 2016.

[20] Y. Shen, T. Chen, and G. B. Giannakis, “Random feature-
based online multi-kernel learning in environments with
unknown dynamics,” The Journal of Machine Learning
Research, vol. 20, no. 1, pp. 773–808, 2019.

[21] D. Sahoo, S. C. Hoi, and B. Li, “Online multiple kernel
regression,” in Proc. Intl. Conf. Knowledge Discovery
and Data Mining, New York, NY, Aug. 2014, pp. 293–
302.

[22] S. Shalev-Shwartz, “Online learning and online convex
optimization,” Found. and Trends in Mach. Learn., vol. 4,
no. 2, pp. 107–194, 2011.

[23] “Meteorology and climatology meteoswiss.”
[Online]. Available: http://www.meteoswiss.
admin.ch/home/climate/past/climate-normals/
climate-diagrams-and-normal-values-per-station.html

[24] J. Leskovec, J. Kleinberg, and C. Faloutsos, “Graph evo-
lution: Densification and shrinking diameters,” ACM
Transactions on Knowledge Discovery from Data, vol. 1,
no. 1, Mar. 2007.

87

Authorized licensed use limited to: TU Delft Library. Downloaded on August 31,2021 at 06:47:21 UTC from IEEE Xplore.  Restrictions apply. 


