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This paper investigates the closed-loop dynamics of the Tapping Mode Atomic Force Microscopy

using a new mathematical model based on the averaging method in Cartesian coordinates.

Experimental and numerical observations show that the emergence of chaos in conventional tap-

ping mode AFM strictly limits the imaging speed. We show that, if the controller of AFM is tuned

to be faster than a certain threshold, the closed-loop system exhibits a chaotic behavior. The pres-

ence of chaos in the closed-loop dynamics is confirmed via bifurcation diagrams, Poincar�e sections,

and Lyapunov exponents. Unlike the previously detected chaos due to attractive forces in the

AFM, which can be circumvented via simple changes in operation parameters, this newly identified

chaos is seemingly inevitable and imposes an upper limit for the closed-loop bandwidth of the

AFM. Published by AIP Publishing. https://doi.org/10.1063/1.5000130

I. INTRODUCTION

The Atomic Force Microscope (AFM) is a versatile

instrument for the topography measurement of samples with

nanometer resolution. As shown in Fig. 1, the functioning of

the AFM is based on measuring the effects of the interactions

between a sample surface and a probe. The probe consists of

a microcantilever beam and an atomically sharp tip. One of

the most popular operation modes is the Tapping Mode

AFM (TM-AFM), also known as the amplitude modulation

AFM. In this mode, the probe is excited around its funda-

mental resonance frequency such that its amplitude is set to

a so-called free air amplitude. The motion of the cantilever is

measured (typically) using an Optical Beam Deflection

(OBD) system, and its amplitude is calculated using a Lock-

in Amplifier (LIA) circuit and a Digital Signal Processing

unit (DSP). A set point of the amplitude is reached by bring-

ing the cantilever close to the sample surface. The distance

between the cantilever and the sample is adjusted using a

feedback controlled piezoelectric actuator so that the ampli-

tude of the vibration remains constant. While scanning the

sample in in-plane directions (x-y, hereafter) and keeping the

amplitude constant, the control signal is interpreted as the

topography of the sample. Moreover, the phase delay of the

cantilever provides another image, which is usually inter-

preted as an indication of surface damping.

In general, a major issue with scanning probe micros-

copy techniques is their limited imaging speed, and TM-

AFM is not an exception in this respect. Yet, many of the

industrial applications, such as inspection and metrology in

semiconductor production lines, demand a high throughput.

In fact, different components in the AFM architecture includ-

ing cantilever, actuators, controller, and the electronic com-

ponents all have a certain speed limit. Therefore, increasing

the imaging speed necessitates increasing the bandwidth of

every single component as well as optimization of the cou-

pled system.20 To enhance the speed of the AFM, many

researchers have studied, designed, and characterized a high-

bandwidth apparatus,2,7,10,19,20,24,29 which has led to the

improvement of high speed AFMs. Thanks to the advances

in precision engineering and fabrication technologies, the

high speed AFMs are fast enough, for example, to capture

video-rate information from biological processes.2 However,

further increase of the imaging speed, for example, to cover

larger areas and capture faster processes requires substantial

improvements of the bandwidth of the cantilever and stabil-

ity of the closed loop system. To meet these requirements,

researchers have suggested to use low-quality factor cantile-

vers in high-speed AFMs, which has the disadvantage of

increasing the Tip-Sample Interaction (TSI) forces.1,28 In

this research, we aim to understand the main phenomena that

are limiting a high-speed AFM from a cantilever-controller

coupling point of view.

The requirements for the AFM as a topography mea-

surement tool are twofold: 1) performing a precise and fast

raster scanning in the x-y direction, 2) accurate and fast mea-

surement of the local height (h) of the sample in the Z direc-

tion. The latter also determines the maximum speed allowed

for the raster scanning i.e., scanning too fast without per-

forming an accurate Z measurement can cause crash or sur-

face loss.6,14,21 Fortunately, linear (or weakly nonlinear)

parts such as actuators, sensors, filters, and the Proportional-

Integral (PI) controller do have a cut-off frequency or relaxa-

tion time which determines their speed. However, for the

strongly nonlinear dynamics of the cantilever interacting

with the surface, determining such a limit-frequency is an

elusive problem. For example, it is well known that imaging

with excessively high scanning speeds can cause imaging

artifacts, parachuting effect, surface loss,6 and damage.14

Yet, the speed limit for which the coupled cantilever-a)Electronic mail: hamed.sadeghianmarnani@tno.nl
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controller combination can precisely follow the surface pro-

file is not well understood.

Another major concern in the AFM which is not extra-

neous to the speed limit is its closed-loop stability. Due to

the coexistence of strongly nonlinear attractive and repulsive

Tip-Sample Interaction (TSI) forces, the AFM cantilever

exhibits a complex behavior which includes bi-stability and

chaos.25 In this context, Garcia and San Paulo have presented

a comprehensive study which demonstrates the coexistence

of two stable regimes at the same time using basin of attrac-

tors and experimental results.8 Also, researchers have

reported the presence of chaos in the AFM as a result of

attractive nonlinear van der Waals forces,5,12 or excessive

adhesion.13 This bistability or chaotic behavior indeed

causes some artifacts and imaging problems, but it can be

eliminated by minimizing the relative effects of the attractive

or adhesive forces. One can use stiffer cantilevers, higher

material1 or environmental damping,28 or set a higher free

air amplitude (the amplitude of the cantilever far from the

sample surface) so that the elastic and repulsive part of the

forces become more dominant than the attractive parts. It is

also possible to increase the stiffness and damping ratio vir-

tually using a so-called Q-control technique so that the cha-

otic behavior is eliminated. For example, Ashhab et al.3

analyzed the dynamics of the cantilever using Melnikov’s

method to detect the presence of weak chaos and suggested

to use a feedback loop to change the damping ratio. It should

be noted that in previous studies,5,12,13 the presence of chaos

was realized by studying solely the dynamics of the cantile-

ver without addressing the coupled controller-cantilever

dynamics. However, we will demonstrate that even if there

is no chaotic behavior triggered by the cantilever per se, the

controller itself can make the system chaotic, if high gains

are applied to achieve fast scanning.

From a control engineering perspective, the cantilever is

a part of the Z-stage control unit which ultimately performs

a local distance measurement. In steady state situations, and

when the repulsive forces are more dominant, the vibration

amplitude of the cantilever is approximately equal to the dis-

tance between the cantilever and the surface of the sample.

Thus, the approximate distance is directly measured via the

amplitude signal, if the OBD is calibrated. To retain a

constant distance between the cantilever and the surface, a

control engineer would intuitively increase the controller

gains to force the AFM head to follow the surface faster.

However, in practice, this is not possible. From experimental

observations, it is well known that there exists an upper

bound for the control gains of the system. For higher gains,

the amplitude, phase, and the height signals vaguely fluctuate

and never reach a steady state response. Consequently, it

becomes impossible to capture a relevant image of the sam-

ple surface.

In this paper, we investigate the nature of the aforemen-

tioned upper bound via a new mathematical model based on

an averaging method. The use of the averaging method was

essential to incorporate multiple time scales of the AFM

dynamics, and also to make the averaged TSI force differen-

tiable for the stability analysis. The results show that the

vague fluctuations of the amplitude that appear in the experi-

ments are a result of deterministic chaos. The fact that high-

speed (high-gain) controllers induce chaos confirms that the

imaging speed of the AFM with the conventional architec-

ture is strictly limited. The presence of chaos in the closed-

loop system has been confirmed via the bifurcation diagram,

Poincar�e sections, and Lyapunov exponents.

II. EXPERIMENTAL OBSERVATIONS

All the experiments in this section have been performed

with a commercial Bruker FastScan AFM with a relatively

low-frequency but relatively stiff cantilever (resonance fre-

quency 60 kHz, Q factor 300 and a spring constant of

1 N/m). All other components of the AFM system are much

faster than the cantilever, and consequently, their dynamics

can be ignored. To avoid possible chaotic behavior due to

attractive or adhesive TSI forces, their relative effects are

minimized by choosing a relatively high vibration amplitude,

besides having a stiff cantilever (free air amplitude of

150 nm and amplitude ratio 70%).

To demonstrate the effect of control gains, the following

two experiments were conducted. First, the cantilever was

approached to the surface with integral gain ki¼ 1, and pro-

portional gain kp¼ 5. In the second experiment, the integral

gain was increased to 5 times its previous value, without

changing the x-y position or any other setting. Moreover, the

FIG. 1. Schematic view of an AFM,

showing the process of imaging the

sample.
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scan size in both the experiments was set to zero so that only

a single point on the sample surface is involved. Figure 2

compares the two cases. For the low control gain, [Figs. 2(a)

and 2(c)] the probe is engaged with the surface and is vibrat-

ing harmonically. However, for the high control gain, [Figs.

2(b) and 2(d)] the amplitude of the vibration is fluctuating in

a non-periodic manner.

To show the effect of integral gain on the imaging per-

formance, Fig. 3 depicts the height image of a silicon dioxide

on silicon grating captured with the low and high integral

gains.

It can be observed that the image obtained with the

higher control gain is unstable due to the aperiodic motion

seen in Fig. 2(b). Hence, one can conclude that increasing

the measurement bandwidth in the Z direction by increasing

the control gains is not feasible. The nature of this aperiodic

motion will be determined in Secs. IV and V.

III. MATHEMATICAL MODELLING

In this section, we try to understand the chaotic behavior

of the closed-loop AFM system. Therefore, the controller

and the cantilever have to be modeled as a coupled system.

The coupled system, however, involves two different time

scales: A fast time scale for tracking the motion of the

cantilever and the tip-sample interactions, and a slow time

scale associated with the controller, the amplitude, and the

phase signals. In TM-AFM, the cantilever vibrates with a fre-

quency closed to its resonance frequency, and experiences

the fast time scale TSI forces. However, within that time

scale, no noticeable change in the state of the controller hap-

pens. That is, the controller is not affected by the instanta-

neous motion of the cantilever, but only by the envelope of

the motion of the cantilever, which by definition is order(s)

of magnitude slower than the cantilever itself. In practice,

the Lock-In Amplifier (LIA) separates these two time scales

by demodulating the motion signal to its amplitude and

phase.18 The details of the LIA are not within the scope of

this paper; however, it is important to note that there does

not exist any transfer function or any linear approximation

for the LIA. Hence, to incorporate the functionality of LIA in

the closed-loop model, one should either solve the nonlinear

equations in time domain, or alternatively, derive a demodu-

lated model. The extreme nonlinearity of the LIA also makes

it impossible to conduct a frequency domain stability analy-

sis, such as those based on Nyquist or Nichols diagrams.

Although it is theoretically possible to model the AFM

system without the separation of time scales, and including all

the nonlinearities and vibration modes of the cantilever,4,26

such a model would be complex and computationally

FIG. 2. Measured motion of the cantilever while engaged with the sample surface. (a) Stable with low control gains, (b) aperiodic with high control gains. (c)

and (d) show a zoomed version of (a) and (b), respectively.

FIG. 3. AFM imaging results of a sili-

con dioxide on silicon grating sample

in two situations: (a) stable with low

control gains and (b) unstable with

high control gains.
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inefficient. Considering that the LIA only measures the ampli-

tude and phase of a single harmonic component of the signal,

the higher modes of the cantilever are not visible to the LIA,

and consequently, do not affect the closed-loop dynamics.

Alternatively, we use a single degree-of-freedom (DOF)

model of the AFM cantilever and derive a demodulated model

for the closed-loop system which already incorporates the

functionality of the LIA. Also, since the chaotic behavior stud-

ied in this paper is independent of the attractive or adhesive

forces, we limit the TSI force model to the Hertzian contact

force. Similar multiple time scale problems have been solved

with different techniques in the literature;15,23 however, in

AFM research, the slow dynamic models are limited to virial

theory,22 and the periodic averaging method.11 The periodic

averaging method eliminates the short time scale from the

dynamics of the system by applying a Fourier operator to the

governing differential equation. However, in previously

reported models,11,22 the second-order derivatives of the

amplitude and phase have been ignored which degrades the

accuracy of the transient analysis.

A non-dimensional single-DOF model of the cantilever

can be formulated as

€z þ n _z þ z ¼ Fd cosðxtÞ þ Fts; (1a)

Fts ¼ �bðz� hÞ3=2
H0
; (1b)

where z denotes the nondimensional deflection of the cantile-

ver and h is the nondimensional distance between the tip and

the sample at the zero deflection configuration; both are nor-

malized with respect to the free air amplitude. In Eq. (1a),

the dot denotes differentiation with respect to dimensionless

time which is defined by normalizing the time with respect

to the inverse of the eigenfrequency of the resonator. In addi-

tion, n is the damping ratio, and x is the normalized excita-

tion frequency, which is also normalized with respect to the

resonance frequency of the cantilever (x � 1 for TM-AFM).

Fd is the dimensionless force equivalent to the acoustic exci-

tation from the dither piezoelectric actuator, and b represents

the Hertzian stiffness of the contact area between the tip and

the sample. The subscript H0 represents a Heaviside function

used to model the discontinuity due to indentation.

Equation (1) can be cast into the state space representa-

tion as follows:

_q1

_q2

� �
¼ �nq1�q2�bðq2�hÞ3=2

H0
þFd cosðxtÞ

q1

( )
; (2)

where q1 ¼ _z and q2 ¼ z . To separate the short and long

time scales and incorporate the functionality of the LIA, we

assume that the state variables in Eq. (2) are amplitude mod-

ulated harmonic signals as

q1 ¼ <ð�q1ejxtÞ ¼ <ððx1 þ jx2ÞejxtÞ; (3a)

q2 ¼ <ð�q2ejxtÞ ¼ <ððx3 þ jx4ÞejxtÞ; (3b)

in which the �qi (i¼ 1, 2) represents the amplitude and phase

of qi in polar coordinates and xk (k ¼ 1;…; 4) are the

Cartesian representations of �qi; < is the real operator and

j2 ¼ �1.

Substituting Eq. (3) in (2), taking the derivatives and

rearranging for _q yields

_q1

_q2

� �
ejxt ¼ �jx�q1ejxt � n�q1ejxt � �q2ejxt � bð�q2ejxt � hÞ3=2

H0
þ Fd cosðxtÞ

�jx�q2ejxt þ �q1ejxt

( )
: (4)

Applying the periodic averaging method to Eq. (4),

which is, multiplying by e�jxt and integrating over a period

(h…i ¼
Ð t0þ2p

x
t0

:::e�jxtdt), gives the demodulated governing

differential equations for the cantilever as

_q1

_q2

� �
¼ �jx�q1 � n�q1 � �q2 þ hFtsi þ Fd

�jx�q2 þ �q1

� �
; (5)

in which the hFtsi ¼ �
Ð t0þ2p

x
t0

bð�q2ejxt � hÞ3=2
H0

e�jxtdt, is the

first Fourier component of the TSI force that can be calcu-

lated as

hFtsi ¼ b
ffiffiffi
A
p

I
h

A

� �
�q2; (6)

where

IðfÞ ¼
ð2p

0

ðcosðsÞ � fÞ3=2
H0 cosðsÞds: (7)

A ¼ j�q2j ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2

3 þ x2
4

p
is the amplitude of the cantilever, and

f and s are dummy variables. The integral function IðfÞ can

be calculated separately which eliminates the need for track-

ing the short time scale. In this manner, instead of the TSI

force which had to be tracked in the short time scale, only

the periodic average (i.e., the first Fourier component) of the

TSI force is considered, that instead varies slowly in time.

In this model, it is assumed that every other component

of the AFM, such as actuators and electronics are infinitely

faster than the cantilever. Thus, here, we only couple an ideal

PI controller to the modulated model of the cantilever given

by Eq. (5). As such, an additional state variable is introduced

which relates the amplitude error ðAset � AÞ; to the height sig-

nal h, with the integral and proportional actions as follows:

_x5 ¼ kiðAset � AÞ; (8a)

h ¼ x5 þ kpðAset � AÞ; (8b)

where Aset is the set-point amplitude. In Eq. (8), the integra-

tor accumulates the error in the internal state of the controller

(x5) and the output of the controller is a weighted sum of the

instantaneous error (with proportional gain kp) and the

224306-4 Keyvani et al. J. Appl. Phys. 122, 224306 (2017)



accumulated error (with the integral gain ki). Expanding the

real and imaginary parts of Eq. (4), the closed-loop model of

the AFM can be written as

_x1 ¼ �nx1 þ xx2 � x3

� b
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2

3 þ x2
4

4

q
I1

 
kPðAset �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2

3 þ x2
4

p
Þ þ x5ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x2
3 þ x2

4

p
!

x3 þ f d;

_x2 ¼ �x1x� nx2 � x4

� b
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2

3 þ x2
4

4

q
I1

 
kPðAset �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2

3 þ x2
4

p
Þ þ x5ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x2
3 þ x2

4

p
!

x4;

_x3 ¼ x1 þ xx4;

_x4 ¼ x2 � xx3;

_x5 ¼ kiðAset �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2

3 þ x2
4

q
Þ_ (9)

Equation (9) shows a dynamic relationship between the

amplitude, phase, and height signals in frames of the

Cartesian coordinates, which evolve with the slow time

scale. In Sec. IV, we shall use this model to simulate differ-

ent TM-AFM scenarios and detect the nonperiodic behavior

observed experimentally in Sec. II.

IV. CLOSED-LOOP RESPONSE OF AFM

Many parameters ranging from deflection sensitivity of

the cantilever to linearity and static gain of voltage amplifiers

play a role in the total performance of the system. However, it

is outside the scope of this paper to quantitatively determine

the maximum stable PI gains. Thus, we limit ourselves to a

qualitative demonstration of the chaos in the coupled system,

and ignore the dynamics of actuators and also dismiss the

static gains and sensitivities of the system.

Figure 4 shows the amplitude and height signals during

an approach scenario for three different integral gain set-

tings. In this scenario, the dither piezo actuator and the con-

troller turn on at time zero. For all three cases, the

proportional gain is set to kp ¼ 0:01, the initial distance

between the probe and the sample is 5 times the free air

amplitude and the set-point amplitude is 0.5 times the free

air amplitude. All numerical results refer to a cantilever with

quality factor 100, which is excited at its resonance fre-

quency (x¼ 1), and is engaged to a sample with a non-

dimensional Hertzian modulus of b¼ 2000. These parame-

ters roughly correspond to the realistic imaging conditions.

For all three cases, initially, the amplitude is less than

the set-point, and the height signal increases to above 5 units.

Then, as soon as the amplitude reaches its set point value,

the controller starts to reduce the height. The height reduc-

tion continues until the amplitude has decreased to its set-

point. In Fig. 4(b), the integral gain has been increased to

ki ¼ 0:01. In this case, the cantilever reaches the surface

faster than in Fig. 4(a), and thus, the surface loss effects,

such as the parachuting effect,6 have been reduced.

However, the amplitude and height signals fluctuate for a

longer time. Figure 4(c) shows the same scenario with an

even higher controller gain (ki ¼ 0:1). Figure 5 shows an

experimental counterpart of Fig. 4(c), measured using a com-

mercially available AFM (Bruker FastScan) and a standard

tapping mode cantilever (MPP 22120). The spring constant,

resonance frequency, and the Quality factor of the cantilever

were measured using the thermal calibration technique as

0:65 n=m, 49:01 kHz, and 180, respectively. The excitation

frequency was chosen such that the free air amplitude is 5%

less than the maximum amplitude (default for AFM). The

free air amplitude was set at 80 nm and the setpoint ampli-

tude was set at 50 nm. An AFM training sample (Fused

FIG. 4. Simulated approach process

with three different integral gains.
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Silica) was used as the substrate, and the scanning range was

set at zero to avoid any sample related deterioration as much

as possible. As it can be seen, both the numerical and experi-

mental results suggest that for high control gains, the ampli-

tude and height signals drop and increase in a nonpredictable

manner which potentially could be due to chaos.

V. CHAOS

In this section, the nonlinear dynamics of the system

described by Eq. (9) will be examined to confirm that the

unusual response observed experimentally is indeed deter-

ministic chaos. In order to identify the peculiar characteris-

tics of chaos, first, a bifurcation diagram of the system is

obtained to study the effect of the integral gain on the behav-

ior of the system. Next, the response of the system in the

phase space will be studied which shows the attractors of the

system corresponding to the different regions of the bifurca-

tion diagram. As another indication of chaos, the non-

periodicity of the response is studied using frequency spec-

trum and Poincar�e sections. Finally, the sensitivity to initial

conditions is demonstrated via time histories and Lyapunov

exponents.

As mentioned earlier, many parameters can affect the

response of the system; yet, here, we restrict ourselves to the

effects of the integral gain of the controller because of its

direct relation to the bandwidth of the closed-loop system.

Figure 6 shows the bifurcations of the amplitude in the

engaged configuration when the integral gain is increased.

For small integral gains, there exists only one amplitude

value (equal to the set-point amplitude) to which the system

will eventually settle. Increasing the integral gain further,

there is a region (ki ¼ 0:018� 0:02) where two values for

the amplitude coexist. This part of the bifurcation diagram

implies a periodic fluctuation of the amplitude between the

two values. In practice, this area is still moderately tolera-

ble for imaging applications. This is because the two ampli-

tudes are close to one another, and thus, the fluctuation

between the two does not induce a considerable error signal

for the controller. However, increasing the integral gain

further, clouds of points are seen in the bifurcation diagram

(ki > 0:024) representing a chaotic motion.

To experimentally determine the upper limit of the inte-

gral gain, and verify the presence of bifurcation and chaos

presented in Fig. 6, we repeated the same experiment as used

FIG. 5. Measured amplitude and phase

of the TM-AFM with high control gain

(Ki¼ 10).

FIG. 6. Bifurcation diagram of the

TM-AFM, the steady state amplitude

versus the integral gain.
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for Fig. 5, but with control gains ranging between 1 and 25.

For all of the experiments, the proportional gain was 1. To

plot the bifurcation diagram in Fig. 7, the amplitude values

were measured on a hypersurface in state space on which the

phase value is equal to its steady-state value (where ki¼ 1).

As it can be seen, for intermediate integral gains

(ki ¼ 2:5� 6:5), two values for the amplitude signal coexist,

whereas, for higher control gains, a cluster of randomly

distributed points were measured, which indicates ki ¼ 6:5
as the upper limit of the control gain. Note that this limit is

measured for the specific cantilever and experimental condi-

tions, and does not provide a universal value by any means.

Since different physical parameters of the system affect its

stability (not only the integral gain), a more thorough investi-

gation should be conducted to identify the chaotic and non-

chaotic set of parameters.

FIG. 7. Experimental bifurcation dia-

gram of the TM-AFM, the amplitude

versus integral gain.

FIG. 8. A projection of the attractors of the TM-AFM on the amplitude, phase, and height space. (a) Stable focus, (b) stable limit cycle, and (c) and (d) strange

attractor. All the values are normalized with respect to the free air amplitude.
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Here, it should be noted that the theoretical results in

Sec. IV are achieved with a completely deterministic model,

even though the cluster of points in Fig. 6 indicate a random-

like response. In order to show the deterministic nature of

the irregular fluctuations in Figs. 4(c), and 6, the geometry of

the attractors of the system has to be studied in the phase

space. Figure 8 shows the projection of the attractors onto

the x3; x4; x5 space for three different integral gains within

each of the sections of Fig. 6. As it can be seen in Fig. 8(a),

when the integral gain is small (e.g., ki ¼ 0:015), the steady-

state response of the system approaches a stable focus [the

orange point in Fig. 8(a)], which has the amplitude equal to

the set-point amplitude and corresponding phase and height.

For the second case (ki ¼ 0:02), as the effects of the initial

conditions vanish, the states of the system gradually

approach a limit cycle, shown in orange in Fig. 8(b), and

remain on that closed-loop. However, for a slightly higher

value of the integral gain (ki ¼ 0:022), the limit cycle is non-

existent, and the system never repeats itself. This non-

existence of a steady-state response in Fig. 8(c) and d is asso-

ciated with the strange attractor, which is an indication of

chaos. Figure 9 shows the experimental counterpart of Fig.

8, in which similar behavior for all the four regimes is

visible.

To further investigate the behavior of the system in the

chaotic regime, we present a Poincar�e section of the state

space considering two different Poincar�e surfaces. Figure

10(a) shows the Poincar�e section of the system on a

constant-height surface, and it shows the amplitude and the

phase with which the cantilever leaves the surface every

time that it disengages. Figure 10(b) shows the amplitude

and height while the phase reaches its expected value for the

steady state case. The cluster of individual points in Figs.

10(a) and 10(b) denotes the complexity of the strange

attractors.

The complexity of the chaotic motion in the frequency

domain translates to a wide spectrum of frequency compo-

nents that resemble the frequency spectrum of noise. Figure

11 shows the Discrete Fourier Transform (DFT) of all five

state variables of the system. As it can be seen, the attractor

of the system contains a wide band of frequency compo-

nents. The absence of clearly distinct peaks in the DFT (Fig.

11) indicates that the signal is not periodic.

Perhaps the most important characteristic of a chaotic

system is its sensitivity to initial conditions. The long-term

response of a chaotic system is extremely sensitive to the

changes in initial conditions, meaning that two trajectories

with very similar initial conditions might end up in very

different final configurations.16 One simple test of initial

condition dependency for TM-AFM is shown in Fig. 12.

The same approach curve in Fig. 4(c) is simulated with

two different but close initial heights [hð0Þ ¼ 5:0000 and

<hð0Þ ¼ 5:0001]. As it can be seen in Fig. 12, the two tra-

jectories are almost identical at the beginning. However,

FIG. 9. Measured projection of the attractors of the TM-AFM on the amplitude, phase, and height space: (a) stable focus, (b) stable limit cycle, and (c) and (d)

strange attractors.
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after about 300 vibration cycles, they start to deviate from

each other.

A very important and solid indicator of sensitivity to ini-

tial conditions in dynamics systems is the Lyapunov expo-

nents of the attractor of the system.17,27 Lyapunov exponents

of dynamic systems show the average rate of exponential

divergence of any two trajectories along their attractors. To

determine the Lyapunov exponents for the closed-loop TM-

AFM system, we adopt the method of QR decomposition

presented by Geist et al.9 Figure 13 demonstrates these

FIG. 10. Poincar�e sections of the

closed-loop TM-AFM on the hyper-

surfaces perpendicular to (a) constant

height and (b) constant phase.

FIG. 11. Fourier transform of the states

of closed-loop AFM in chaotic

situations.

FIG. 12. Simulated approach process

with high controller gains for two dif-

ferent but similar initial conditions: (a)

amplitude and (b) height.
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Lyapunov exponents for two different cases of low and high

integral gains. As it can be seen in Fig. 13(a), for the case of

low control gains, all the Lyapunov exponents of the system

converge to a negative value which refers to the asymptoti-

cally stable attractor (the set-point). However, for the case

with high control gains [Fig. 13(b)], the largest Lyapunov

exponent is positive, which shows that any small deviation

from the attractor will exponentially grow in the state space.

The summation and all the other Lyapunov exponents

(except the highest one) are negative which show that the

system does not experience hyper-chaos or a global

instability.

VI. CONCLUSIONS

Experimental results with the tapping mode AFM show

that it is not possible to image with control gains higher than

a certain amount. Such a limit in the control gains restricts

the imaging speed of the AFM. To investigate the origin of

this limit, a new nonlinear dynamics model for the AFM was

presented using an averaging method in the Cartesian coordi-

nates. The model incorporates the coupled dynamics of the

cantilever and the controller, and demonstrates that the tap-

ping mode AFM will exhibit a chaotic behavior with high

controller gains. The corresponding attractors, Poincar�e sec-

tions, and Lyapunov exponents formally confirmed the pres-

ence of chaos in TM-AFM. Unlike the previously presented

routes to chaos in the AFM, the presented route of chaos

does not depend on the attractive or adhesive tip-sample

forces and limits the speed of TM-AFM, even when the con-

troller and the actuators are selected ideally in terms of the

bandwidth. This phenomenon should be taken into account

in the design of high-speed AFM and to avoid it, either the

cantilever dynamics or the architecture of the closed-loop

system should be modified.
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