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Abstract

Numerical modelling in Geo-Engineering is used to solve complex problems by simulating, analysing, or
predicting soil behaviour under certain loading and boundary conditions. The soil behaviour is simulated
by constitutive models that describe the relationship between stresses and strains through a mathematical
formulation. Model parameters are used to calibrate model behaviour to physical soil behaviour measured
during in-situ testing (e.g. CPT) or laboratory testing (e.g. triaxial testing). The selection of model
parameters is challenging as it needs to cope with aspects as, constitutive model limitations, laboratory
test limitations, sample disturbance, soil heterogeneity and many other. This study shows how these
model parameters can be determined, optimised and selected by using over 3000 triaxial test results
performed on dutch soils (stored in text files) and machine learning tools.

The soil properties (γ, w, γd, e0 and n) of the samples used for these tests were comparable with
the literature, as were the soil parameters c′ and ϕ′. The model parameters, for the constitutive model
Hardening Soil with small-strain stiffness (HS small), were determined by expanding upon the soil pa-
rameters and using common correlations and default values from the literature (the traditional method).
This study developed a procedure to calibrate/optimise these model parameters by matching the en-
tire stress-strain path of the triaxial test simulation to that of the stress-strain path from the text file.
The simulation is performed in the SoilTest facility from the PLAXIS software, this facility allows for
simulating laboratory tests based on a single point algorithm using constitutive models. A significant
improvement was observed when comparing the evaluation metric r2 of the stress-strain paths before and
after optimising the model parameters. This method proved to be particular effective for the softer soil
types like clay and peat in comparison to sand and silt.

The established database consisting of soil properties (which is used as input), soil parameters and
optimised model parameters (which are used as output) was investigated with several data analysis
techniques. This involved obtaining an overview of (new) statistics that often corresponded to some
extent with existing literature. Very high correlations were found between the soil properties, the soil
parameter ϕ′ and the optimised stiffness parameters (Eref

50 , Eref
oed , E

ref
ur and Gref

0 ). For these parameters,
a linear and exponential regression analysis between two individual parameters resulted in a fit with a
score of r2 > 0.4. A lot of scatter in the graphs was observed which is why more advanced machine
learning models were deployed to further improve the score.

The machine learning models: Artificial Neural Network, Gradient Boosting and Kernel Ridge Re-
gression seemed to have the most potential based on an initial analysis on the data set, and a literature
study (in which similar models were used). The x values were scaled by means of the Quantile Trans-
former, the hyperparameters were tuned with a grid search, and the results were evaluated using (group)
k-fold, with project numbers as groups. The models were able to predict the same 5 parameters as the
linear/exponential regression, but the r2 showed a significant improvement, in the range of 0.05-0.28 with
an average of 0.20. Furthermore, providing the machine learning models with more input parameters (soil
properties), generally resulted in an increase of r2. Especially when adding the unit weight and water
content an increase in performance was observed, only slight increases or even decreases were observed
when adding the dry unit weight and the initial void ratio.

This study aims to provide guidance in the determination, selection and optimisation of model pa-
rameters for the HS small model, specifically for Dutch soils. It is important to note that these methods,
results and conclusions are based on the triaxial test and have not been validated for other tests and
engineering practices.

Keywords: triaxial test, parameter determination, constitutive models, machine learning
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Chapter 1

Introduction

Numerical methods, like the finite element method (FEM), have gained popularity and an increasing
importance in Geo-engineering. They are widely accepted and are now considered a standard design
tool due to advances in hardware and software in recent decades. Numerical modelling has proven to be
a powerful tool for solving complex problems by simulating, analysing, or predicting the soil behaviour
under certain loading and boundary conditions. This is firstly because the (commercial) software has
been developed to the point where it is easy to operate and secondly because of the constitutive models
that describe the mechanical behaviour of soils in a continuum framework (Schweiger et al. 2019). These
constitutive models describe the relationship between stresses and strains, by means of a mathematical
formulation, and there are models available ranging from very simple to very advanced. Model parameters
are required to quantify certain features of the soil behaviour. In general, simple models require less
input parameters than more advanced models, but they may therefore lack some essential features of
soil behaviour (Brinkgreve et al. 2010). Nevertheless, the right selection of model parameters is always
important to make good predictions when using FEM, regardless of the model chosen.

1.1 Problem statement

Today, there is no single constitutive model that is applicable in every situation. The applicability of a
model depends on the soil type, application, type of loading (Bentley 2022) and available soil parameters.
In the preliminary phase of a project, relatively little soil investigation has been done and therefore
one tends to opt for a more simplistic model, such as the Linear Elastic Perfect Plastic (LEPP) Mohr-
Coulomb (MC) model, which requires only a limited number of parameters. This is a clear first-order
approximation model and is well known for its simple stress-strain relationship (Ti et al. 2009), it can
describe the (drained) failure behaviour quite well (Goldscheider 1984) and is suitable for many practical
applications. However, there are limitations as this model lacks essential features of the complex soil
behaviour. More advanced models, such as Hardening Soil with small-strain stiffness (HS small) or Soft
Soil Creep (SSC) can be chosen for a more representative description of soil behaviour, depending on
the application. The problem is that, as mentioned earlier, this usually involves an increasing number of
parameters to be obtained.

There are several methods to determine or derive these model parameters. In situ tests perfectly mimic
on-site stress conditions and the soil is virtually undisturbed, but control over the boundary conditions
is lacking (Wroth 1984). Some examples of these in situ techniques are the cone penetration test (CPT)
(Robertson 1986), the standard penetration test (SPT) and the flat plate dilatometer (DMT) (Marchetti
2015). Sampling tests, on the other hand, do control the boundary conditions, but work with disturbed
samples. Some examples are the triaxial test and the oedometer test. In addition, many correlations,
rules of thumb and tables have been created to provide guidance when selecting parameters. Parameter
determination is a heavily debated and researched topic in the field of Geo-Engineering, due to the
complexity of these heterogeneous, natural building materials and the amount of engineering judgement
required. van Berkom 2020, for example, aimed to elaborate a transparent and adaptable parameter
determination framework that will increase the reliability of parameters derived from in situ tests by
using a graph-based approach.
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1.2 Solution orientation

The triaxial test is perhaps one of the most well-known laboratory tests among Geo-Engineers, to measure
the mechanical properties of the soil. Traditionally, these tests are used to determine soil parameters such
as the cohesion (c′), internal friction angle (ϕ′) and stiffness (E), but in doing so, a lot of information of
the soil behaviour is lost in the process.

In fact, the triaxial data can also be used to optimise the parameters of a constitutive model by
matching the measurements simulated by a model to the actual laboratory measurements. This way, the
parameters are adjusted so that the constitutive model best mimics the soil behaviour measured during
the laboratory tests. By analysing a large number of tests, (new) statistics and correlations can be
discovered. Correlations are a powerful tool to determine relationships between different parameters and
can provide guidance when selecting model parameters, especially when little soil investigation has been
performed. Many correlations have been established in recent decades, which often consist of correlating
two parameters with each other by means of (non-)linear regression techniques. When increasing the
number of parameters to be correlated, simplistic regression methods, like linear regression, are less
suitable. Perhaps that more advanced methods, such as machine learning tools, might be able to make
better predictions of the optimised model parameters.

Today, artificial intelligence (AI) is at the heart of many technologies. Broadly speaking, AI encom-
passes the field of developing computers and robots capable of behaving in ways that both mimic and
exceed human capabilities. Machine learning (ML), a subcategory that grew out of the field of artificial
intelligence, allows machines to acquire human like intelligence without explicit programming (Das et al.
2015). This subcategory of AI uses algorithms to automatically learn insights and recognize patterns
from data and apply that learning to make ever-improving decisions. These techniques can provide a
more advanced approach to recognize patterns and correlations between multiple parameters.

Cone Penetration Testing (CPT) is an important (in situ) soil investigation technique, where the
resistance (qc), sleeve friction (fs) and optionally pore water pressures (u) are measured by pushing a
cone into the soil. The technique is widely used because it is relatively fast, cost-effective and gives a
good first impression of the subsoil, as is the determination of soil properties such as: unit weight (γ),
water content (w) and void ratio (e0). It would be advantageous to correlate these relatively easy to
obtain parameters/properties to the harder to obtain soil/model parameters.

1.2.1 Hypothesis

The 3073 triaxial tests available provide an interesting and unique opportunity to carry out a compre-
hensive analysis.

It is expected that the stress-strain paths measured during these tests, which describe the mechanical
behaviour of the soil, could be used to optimise advanced constitutive model parameters.

After processing and optimising the data, a fully formed database consisting of soil properties, soil
parameters, constitutive model parameters and CPT parameters is established. When using advanced
data analysis techniques, (new) statistics and correlations might be discovered.

Machine learning models will be used to predict the soil and optimised constitutive model parameters
using soil properties as input. Furthermore, it is expected that an increasing number of input parameters
will improve the performance of the models.

1.3 Research questions

This study is conducted with the aim of answering the following research question:

How can a database of triaxial tests contribute to the parameter determination, optimisation and
selection for advanced constitutive models?

To support answering the main research questions, some sub-questions are formulated:

• Which types of (advanced) data analysis techniques can be used to extract the most value out of
the database?

• What would be an appropriate strategy for optimising advanced constitutive model parameters
using the measured stress-strain path from the laboratory?
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• Which different aspects of soil behaviour can be defined/grouped and which groups can be extracted
from the database?

• What (new) statistics and correlations between soil properties, soil parameters, constitutive model
parameters and CPT parameters can be obtained by using (advanced) data analysis techniques?

1.4 Research method

A large set of triaxial and CPT data used for this research, which was conducted across the Netherlands,
has been made available for this study by Fugro. All processing and manipulating of data will be done
using the programming language Python (Van Rossum and Drake 2009) in combination with the SoilTest
facility from the PLAXIS software. This facility offers the possibility to simulate laboratory tests using
constitutive models.

The triaxial tests were performed according to NEN-EN-ISO 2018a and NEN-EN-ISO 2018b or one of
its predecessors. Each test is stored in a separate text file and the format of this file has changed over the
years. Before this data can be used for further analysis, it must first be compiled into a well-structured
database, this is done using the Python Pandas package (McKinney et al. 2010). In addition to the data
collected during the test itself, information of the soil sample is also available in the text file, such as the
project number, classification, depth it was taken from, specifications of the sample (e.g., mass (m) and
volume (V )) etc.

The soil properties and soil parameters are determined from the triaxial tests and constitutive model
parameters are optimised by fitting the triaxial measurements generated by the constitutive model to
that of the measurements from the laboratory with an optimisation algorithm. Sample locations are
traced back to the borehole from which they were taken and are linked to nearby CPTs. In the process,
CPT parameters corresponding to the soil layer of which the sample was taken from are obtained. At
this stage, a fully formed database with all required parameters is available for further analysis.

Different types of aspects of soil behaviour are defined/grouped for which parameters sets with as-
sociated statistics are established. Correlations between these different types of parameters are made
with methods such as linear regression, exponential regression, and more advanced machine learning
techniques. Because of the large number of parameters and existing correlations with more simplistic
regression methods, such as linear regression, the focus of this study will be on the more advanced
machine-learning techniques. Well-known Python packages like Numpy (Oliphant et al. 2006), SciPy
(Virtanen et al. 2020) and Scikit-learn (Pedregosa et al. 2011) are used for these analyses.

1.5 Scope of work

This research includes the following:

• A review of literature on topics such as triaxial tests, constitutive models, parameter determination,
data analysis techniques, machine learning, etc.

• Preprocessing of the available data into a well-structured database.

• Parameter determination, derivation, calculation, and optimisation using Python and the PLAXIS
SoilTest facility.

• Obtaining (new) statistics and correlations by using advanced data analysis techniques such as
machine learning.

This research will not include:

• Other laboratory tests than the triaxial test.

• Constitutive models other than HS small.

• An in-depth study on the mathematical background and formulation of machine learning models.
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Chapter 2

Review of literature

This chapter provides an overview of existing literature on topics like: the triaxial test, constitutive
models and machine learning tools. A short summary is provided in the end which also elaborates on
how this will will be applied in this research.

2.1 Triaxial test

The triaxial test is a laboratory tests which is used in Geo-Engineering to measure the mechanical
properties of the soil, a schematic diagram of a typical triaxial apparatus is shown in Figure 2.1. The
cylindrical soil specimen generally has a length to diameter ratio of 2 and is enclosed by a rubber
membrane. The top and bottom of this membrane are connected to circular plates enclosed by o-
rings to secure a water tight connection. Several devices are connected to measure, regulate or apply;
cell pressure (σc), pore water pressure (u) and deviatoric stress (q). The cell is filled with water and is
therefore applying pressure to the sample from all directions, hence a pressure equal to the cell pressure is
generated in the specimen (Verruijt and Van Baars 2007). The test should involve the loading of a sample
at several different cell pressures. Further steps are dependent upon the type of test that is chosen. This
section elaborates on the different test types and how parameters are derived.

Figure 2.1: Triaxial apparatus NEN-EN-ISO 2018b
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2.1.1 Consolidated

The consolidated test type allows the specimen to drain and let excess pore water pressure dissipate
during the applying of the cell pressure. The valve is open and sufficient time is taken such that the
excess pore pressure is reduced to zero. The back pressure is used to ensure that the sample is fully
saturated. However, checks need to be performed prior to both the consolidation phase and the shearing
phase. The degree of saturation can be expressed in terms of Skempton’s pore pressure parameter (B)
Skempton 1954. B is calculated according to Equation 2.1 and has to be ideally one for full saturation
although above 0.95 is generally accepted as well.

B =
∆u

∆σ3
(2.1)

After saturation and consolidation the final phase starts, the shearing phase. This can be done either
undrained or drained. In undrained situation the valve is closed and excess pore pressure is allowed to
build up (CU).

When performing drained shearing, the valve is opened to allow excess pore pressure to dissipate
(CD). Do note that excess pore pressures can still develop when the loading goes fast with respect to
the consolidation time of the sample. Such a test usually takes a rather long time and it is important
to determine an appropriate strain rate upfront. An elaboration on the parameters and method of
determination is given in the following paragraphs.

Cohesion and friction angle

The cohesion and internal fiction angle are strength parameters, which can also be described as the
resistance against failure. In engineering practices they are commonly determined at either 2%, 5% axial
strain (εax) or at failure. The NEN-EN-ISO 2018b offers two ways of determining these parameters from
the triaxial test results, see Figure 2.2.

(a) Mohr-Coulomb diagram (b) Stress path diagram (s-t)

Figure 2.2: Cohesion and internal friction angle NEN-EN-ISO 2018b

The Mohr-Coulomb diagram, Figure 2.2a, can determine the parameters directly by fitting a line
through the circles, these circles can be determined for different strain levels.

Figure 2.2b shows and alternative method to present the stress path based on Mohr’s circle, also
known as the s-t stress space. Where s and t (Equation 2.2 and 2.3) are the centre and radius of the
Mohr’s circle, respectively, and represent the mean stress and maximum shear stress, respectively. This
method was developed by Professor T. W. Lambe of the Massachusetts Institute of Technology (Lambe
1967). Unlike the Mohr-Coulomb diagram, the parameters k and α′, first need to be converted in order
to obtain c′ and ϕ′. This is shown in Equations 2.4 and 2.5.

s =
σ1 + σ3

2
; s′ =

σ′
1 + σ′

3

2
(2.2)

t =
σ1 − σ3

2
=
σ′
1 − σ′

3

2
(2.3)

sinϕ′ = tanα′ (2.4)
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c′ =
k

cosϕ′
(2.5)

An alternative representation would be to use the mean of the three principal effective stresses instead
of the mean of the major and minor principal stresses. This representation is known as the Cambridge
stress path or the p-q stress space (Roscoe et al. 1958) and is illustrated in Figure 2.3. The mean effective
stress (p′) and deviatoric stress (q) can be expressed as is shown in Equation 2.6 and 2.7, the parameters
ϕ′ and c′ are calculated with Equation 2.8 and 2.9 respectively.

Figure 2.3: Stress path diagram (p’-q) Obrzud et al. 2018

p =
σ1 + 2σ3

3
; p′ =

σ′
1 + 2σ′

3

3
(2.6)

q = |σ′
1 − σ′

3| = |σ1 − σ3| (2.7)

ϕ′ = sin−1

(
3 ∗M∗

6 +M∗

)
(2.8)

c′ = c∗
3− sinϕ′

6 cosϕ′
(2.9)

A comparison between the two methods is presented in Figure 2.4, for both the Total Stress Path
(TSP) and Effective Stress Path (ESP).

Figure 2.4: Stress path comparison

Stiffness and power for stress dependency of stiffness

Whereas strength parameters say something about resistance against failure, stiffness says something
about the resistance to deformations. The stiffness (E) of sand is generally higher than that of clay,
furthermore, the stiffness of sand shows less stress dependency (m). The stiffness can be determined
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from a standard triaxial test by drawing a secant line in the stress-strain graph (Figure 2.5), and can be
calculated with Equation 2.10. In engineering practices it is common to determine the stiffness at 50%
of the peak deviatoric stress. The rate of stress dependency of stiffness can be calculated with Equation
2.11, note that at least two triaxial tests at different confining pressures are required.

Figure 2.5: Stiffness for different confining pressures

E =
q

εax
(2.10)

m =
ln(E

(1)
50 /E

(2)
50 )

ln(σ
(1)
3 /σ

(2)
3 )

(2.11)

2.1.2 Unconsolidated

Another possibility is to never allow drainage at all, but to perform it at in-situ stress conditions, meaning,
the sample is directly axially loaded. This test is denoted as Unconsolidated Undrained (UU). If a UU
test is done at a higher cell pressure, the difference with the first test will be that the pore pressures
are higher, the effective stresses will be practically the same. This results in the same effective Mohr
circles but different Mohr circles for total stresses, see also Figure 2.6. It is therefore not possible to
determine effective strength parameters with this test, only the undrained shear strength (su) and it is
calculated according to Equation 2.12. The reason that this test is conducted is because it is relatively
fast in comparison to the other tests since there is no consolidation time required.

Figure 2.6: Unconsolidated Undrained triaxial test Verruijt and Van Baars 2007

su =
σ1 − σ3

2
(2.12)
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2.2 Constitutive models

Constitutive models define the mechanical behaviour of materials with a stress-strain relationship. One of
the practical applications is in a continuum framework where they are used to simulate, analyse or predict
the behaviour of materials under certain loading and boundary conditions using numerical methods. This
section discusses three constitutive models in order to select a model for which the parameters will be
optimised.

2.2.1 Linear Elastic Perfectly Plastic (LEPP) Mohr-Coulomb (MC) model

The Mohr-Coulomb model is a clear first order approach model and is known for its simple linear elastic
perfectly plastic stress-strain relationship. This model is used as a first approximation of soil behaviour
and can give a good representation of (drained) failure. The fact that the number of parameters is limited
and a feature like dilatancy can be included makes it suitable for many practical applications. However,
the limited amount of parameters is a limitation as well, because it therefore lacks a lot of essential soil
features such as: stress-dependent stiffness, distinction between primary loading and unloading/reloading
etc. These reasons not only make the model inaccurate but can also make it dangerous to use, due to all
of its limitations and simplifications.

The linear elastic part is based upon Hooke’s law of isotropic elasticity and the perfectly plastic part
is based on the MC failure criterion, formulated in a non-associated plasticity framework (Smith et al.
2013). Irreversible strains are developed due to plasticity and the evaluation of when plasticity occurs
is done by a so called yield function (f). This is a function of stresses and strains, and plastic yielding
corresponds with the condition f = 0, the condition can be presented as a fixed surface in the principal
stress space. The full MC yield condition consists of six yield functions in terms of principal stresses and
is defined by the two parameters c′ and ϕ′, a visual representation is shown in Figure 2.7. The direction
of the plastic strain is defined by the plastic potential function (g). For non-associated plasticity, f and
g are different, otherwise it will give too large plastic volumetric strains.

The model requires a total of five parameters which can be found in Table 2.1. Two elastic parameters
and three plastic parameters.

Figure 2.7: Yield contour of the Mohr-Coulomb model in the principal stress space Brinkgreve 2005
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Parameter Definition Unit

E Young’s modulus kN/m2

ν Poisson’s ratio -
c′ Cohesion kN/m2

ϕ′ Friction angle ◦

ψ Dilatancy angle ◦

Table 2.1: LEPP MC parameters

2.2.2 Hardening Soil model with small-strain stiffness (HS small)

The Hardening soil model is a true second order model for soils in general, for any type of application
(Brinkgreve 2005). In contrast to the LEPP Mohr Coulomb model, the yield surfaces of a hardening
plasticity model are not fixed in the principal stress space, but they can expand due to plastic straining.
Furthermore, it has a better non-linear formulation of soil behaviour (for both soft soils and harder
types of soil), makes a distinction between primary loading and unloading/reloading, accounts for stress
dependency of stiffness etc. Do note that the model still lacks features such as creep and anisotropy and
that the model is unsuitable for very soft soils.

The original Hardening Soil (HS) model was based on the hyperbolic stress-strain relationship in
drained triaxial loading, also know as the Duncan-Chang model (Duncan and Chang 1970). The HS
model is based on hardening plasticity in contrast to the Hyperbolic model which is entirely based on
elasticity theory. The HS model consists of two types of hardening, one being shear hardening, which is
used to model irreversible strains due to primary deviatoric loading. While compaction hardening is used
to model irreversible strains due to primary compression. Figure 2.8 visualises the Cone (shear hardening
contour) and the Cap (compaction hardening) in the three dimensional stress space. The formulation
and verification of this model can be found in Schanz et al. 1999.

Figure 2.8: Yield contour of the Hardening Soil model in the principal stress space Brinkgreve 2005

An upgraded version for the HS model is called the Hardening soil model with small-strain stiffness
(HS small) (Benz 2006). This additional feature is not based on plasticity theory, but is included in the
elastic formulation as an overlay function. So now not only stress-dependency of stiffness is included,
but also strain dependency of stiffness. Soil tends to behave very stiff at small strains and the stiffness
decreases with the strain level. This can best be visualised in the modulus reduction curve where the
secant shear modulus (Gs) is plotted as a function of shear strain (γ) on a log scale (Figure 2.9a).
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(a) Modulus reduction curve (b) Hysteretic behaviour

Figure 2.9: Small-strain stiffness Brinkgreve et al. 2007

The small band can best be described with the hyperbolic Equation 2.13. This equation involves
two additional parameters with respect to the HS model, the small-strain shear modulus (G0) and the
shear strain at which the secant shear modulus has been reduced to approximately 70% of G0 (γ0.7).
Relating stresses to strains, requires a tangent stiffness formulation (Gt), which can be done by taking
the derivative and is given in Equation 2.14. The lower bound of Gt is given in Equation 2.15.

Gs =
G0

1 + 0.385γ/γ0.7
(2.13)

Gt =
G0

(1 + 0.385γ/γ0.7)2
≥ Gur (2.14)

Gur =
Eur

2(1 + νur)
(2.15)

An important element in the HS small model is that upon full strain reversal, the stiffness restarts
at the small-strain stiffness (G0), hence, the model allows for hysteresis. Hysteresis is a phenomena
which occurs under cyclic loading and is visualised in Figure 2.9b. The enclosed area represents the
energy dissipation and depends upon the magnitude of the shear strain. In dynamic calculations, such
as vibrations, the hysteresis and associated energy dissipation leads to damping. A complete overview of
the parameters is given in Table 2.2.

Parameter Definition Unit

Eref
50 Secant stiffness in standard drained triaxial test kN/m2

Eref
oed Tangent stiffness for primary oedometer loading kN/m2

Eref
ur Unloading / reloading stiffness kN/m2

Gref
0 Reference shear modulus at very small strains (ε < 10−6) kN/m2

γ0.7 Threshold shear strain at which Gs = 0.722G0 -
m Power for stress-level dependency of stiffness -
pref Reference stress for stiffnesses kN/m2

νur Poisson’s ratio for unloading/reloading -
c′ Cohesion kN/m2

ϕ′ Friction angle ◦

ψ Dilatancy angle ◦

Rf Failure ratio qf/qa -
Knc

0 K0-value for normal consolidation -

Table 2.2: HS small parameters
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2.2.3 Soft Soil model

The Soft Soil model is between the MC model en the HS small model in terms of how advanced it is.
This model is used for near-normally consolidated (NC) fine grained types of soil (clay’s, clayey silts and
peat), which generally have a high degree of compressibility. It shares a lot of (dis)advantages to that of
the HS small model, but it is the soft soils where this model is chosen over the more advanced HS small
model. This model is not suitable for: other types of soil, highly sensitive fine grained soils like quick
clay or over-consolidated (OC) soils.

The total yield contour is presented in Figure 2.10 and the cap can be pushed out just like the HS
model resulting in plastic straining, but the failure surface is fixed. The parameters for the Soft Soil
model are given in Table 2.3

Figure 2.10: Yield contour of the Soft Soil model in the principal stress space

Parameter Definition Unit

λ∗ Modified compression index -
κ∗ Modified swelling index -
νur Poisson’s ratio for unloading / reloading -
c′ Cohesion kN/m2

ϕ′ Friction angle ◦

ψ Dilatancy angle ◦

Knc
0 K0-value for normal consolidation -

Table 2.3: SS parameters

2.3 Machine learning tools

Artificial intelligence (AI) plays a central role in numerous technologies today. It encompasses the de-
velopment of computers and robots that can imitate and surpass human capabilities. Within the field
of AI, machine learning (ML) has emerged as a sub field that enables machines to develop their own
algorithms/models without being explicitly programmed (Das et al. 2015). ML employs algorithms
to automatically extract insights, identify patterns, and continuously enhance decision-making through
learning by leveraging statistical and mathematical principles. These techniques offer an advanced ap-
proach to recognizing patterns and establish correlations among multiple parameters. They are used in
several fields like healthcare to predict decease diagnosis, banking for fraud prevention etc. ML algorithms
are organised into taxonomy, based on the desired outcome of the algorithm, some common algorithm
types are listed down below (Ayodele 2010) and summarised with their associated subcategories in Figure
2.11.
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• Supervised learning: where the algorithm generates a function that maps inputs to labelled outputs.

• Unsupervised learning: models a set of inputs of which no labelled outputs are available, attempts
to find similarities, patterns and differences.

• Semi-supervised learning: uses both labelled and unlabelled data to generate an appropriate func-
tion or classifier.

• Reinforcement learning: this works on a feedback-based process in which an AI agent gets rewarded
for each good action and penalties for each bad action.

Figure 2.11: Machine learning types with subcategories (Sarker 2021)

The most relevant category for this research is supervised learning, some of the most popular methods
will be further elaborated. It is a fundamental technique that enables computers to learn from labelled
training data and make predictions on unlabelled data Cord and Cunningham 2008. The reason it is called
supervised is because the model needs a ”supervisor” to provide it with the correct target answers. The
goal is to learn the relationship between input parameters and labelled output parameters. Supervised
learning involves two primary techniques: regression and classification. Regression techniques predict a
continuous numerical output variable. For example, predicting housing prices based on features like area,
number of bedrooms, and location. Classification problems involve predicting a discrete output variable
that falls into predefined classes or categories. For example, classifying emails as spam or non-spam based
on their content.

2.3.1 Single regression techniques

The most common and easy to use technique is the linear regression method, it fits the most optimal
straight line through the data which is illustrated in Figure 2.12a. A linear regression model expands
upon the idea of linear correlation and formalizes a statistical relation between the two variables such
that y is linearly related to x (Eberly 2007). The best fit is created by minimising the sum of the
squared error, which therefore also minimises the root mean squared error, this is referred to as the least
squares approach. Linear regression results come in the form of a function (Equation 2.16) in which two
coefficients are determined, a and b (and the error e). The equation is fitted to the measured data and
it is now possible to make predictions on the dependent variable y with independent x inputs.

y = ax+ b+ (e) (2.16)
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(a) Linear regression (b) Non-linear regression

Figure 2.12: Single regression techniques

Note that it does not always make sense to fit a straight line through the data. When looking at
Figure 2.12b. It would make more sense to fit a non-linear line through this data set. There are multiple
non-linear fitting techniques, like increasing the order of the polynomial to be fitted (linear regression is a
first order polynomial). It makes sense that the fit would be better using a higher order since it now has
three parameters which can be fitted instead of two. Alternatively one can use an exponential function
which is presented in Equation 2.17.

y = beax + (e) (2.17)

2.3.2 Multiple linear regression

The two regression techniques discussed above both compare two parameters with each other, one depen-
dent and one independent. Often several independent variables affect one continuous dependent variable
and it is of interest to describe the combined associations of these inputs on the output. This is where
a technique such as multiple linear regression can be used, which is basically an extension of the simple
linear regression model (Eberly 2007). It formalises a simultaneous statistical relation between the single
continuous outcome y and the predictor variables xk(k = 1, 2, ..., p− 1) which is given in Equation 2.18.

y = a1x1 + a2x2 + ...+ ap−1xp−1 + b+ (e) (2.18)

2.3.3 Tree-based methods

Decision trees are simple and understandable models that predict outcomes by repeatedly dividing the
input space based on different features. A decision tree structure consists out of nodes and edges, the top
node is called the root node which represents the entire data set. From this root node branches or edges
extent to subsequent nodes (internal nodes), representing the decisions based on feature values. The final
nodes are called the leaf nodes and these contain the predicted output. At each internal node a decision
is made on how to split the data on a specific feature and a threshold value, the algorithm aims to reduce
the error by gaining this additional information due to splitting the data set. This process stops when
one of the following criteria is met: maximum depth of the tree is reached, having a minimum number of
samples in the nodes or when further splits do not result in improving the model’s performance. After
the tree is built, predictions can be made by giving the tree a new data point, it then follows the path
from root node to leaf.
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Figure 2.13: Decision tree (Charbuty and Abdulazeez 2021)

Using a single decision tree often results in relatively poor results, a powerful extension is the so-called
random forest (Breiman 2001), which basically consists of multiple decision trees (Figure 2.14a). It aims
to improve predictive accuracy and reduce over-fitting. Each decision tree in the random forest is trained
on a random subset of the training data and a random subset of the available features, this randomness
introduces diversity among trees. The original process of a random forest is parallel, while boosting
methods such as Gradient Boosting built decision trees sequentially. In doing so, the algorithm focuses
on correcting mistakes made by previous trees (Figure 2.14b). A newer version called eXtreme Gradient
Boosting (XGBoost) (Chen and Guestrin 2016) excels in model performance and computational speed in
comparison to the standard version, this algorithm has become one of the most popular algorithms in the
ML branch. Note that these models are more advanced and become harder to understand in comparison
to the decision tree.

(a) Random forest (b) Gradient Boosting

Figure 2.14: Tree based algorithms (Lev 2022)

2.3.4 Artificial Neural Network

An Artificial Neural Network (ANN) is an algorithm with a completely different methodology than
the previous discussed tree based methods. The ANN is inspired by the structure and functioning of the
human brain. The development of this algorithm has a rich history, McCulloch and Pitts 1943 introduced
the first model of an artificial neuron in 1943 which laid the foundation for further developments. At the
core of a neural network are artificial neurons (also called nodes). These neurons are connected to each
other and are organised in layers, the input layer, a specified amount of hidden layers and the output
layer (Figure 2.15a).
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(a) Structure (Bre et al. 2018) (b) Neuron (Conza 2020)

Figure 2.15: Artificial Neural Network

Figure 2.15b zooms in on a single neuron from the structure. The connection between neurons is
associated with weights, representing the importance of that connection with respect to the other inputs.
Subsequently, the node applies an activation function to the weighted sum of the inputs which transforms
the analysis from linear to non-linear. The activation function basically decides whether a neuron should
be activated or not, meaning, it checks if the contribution is important to the network. There are several
activation functions available of which some of them are shown in Figure 2.16. The output is passed
onto the next layers and a similar procedure is applied till the output layer. This process is called
feedforward propagation and it generates predictions based on the learned parameters of the network.
Subsequently, the neural network learns from training data through a process called back-propagation.
Instead of starting at input layer, the algorithm starts at the output layer and compares the predicted
value to the actual value and quantifying the error in the process. The training process of this model
is done by iteratively adjusting the weights to minimise the error. Backward propagation calculates the
gradient of the loss function with respect to the weights, allowing for weight adjustments to improve the
performance of the neural network.

Figure 2.16: Common activation functions (Conza 2020)

2.3.5 (Kernel) Ridge Regression

Regular Ridge Regression (RRR) is a linear technique that solves the problem by introducing a penalty
term to the loss function, it aims to minimise the sum of the squared error and regularization is given by
the l2-norm. RRR works well when the data consists out of linear relationships and has a large number
of features compared to the sample size. On top of that, it is computationally fairly efficient. However,
it cannot capture the more complex non-linear behaviour.

The Kernel Ridge Regression (KRR) combines Ridge Regression with the kernel trick. This kernel
enables the algorithm to operate in a high-dimensional feature space without explicitly computing the
coordinates of the data in this new space. The choice of the kernel function, like Sigmoid or polynomial,
enables for non-linear relationships to be captured. This does however make the algorithm computation-
ally more expensive. The KRR is actually very similar to the Support Vector Regressor (SVR) which
also makes use of the kernel trick, they differ in the type of loss functions which are used. The fitting
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time of the KRR is typically faster for medium-sized data sets (Figure 2.17). The SVR on the other hand
is faster with its predictions times since the learned model is non-sparse.

Figure 2.17: KRR vs SVR execution time (Metzen 2023)

2.3.6 Evaluation metrics

Regression is a fundamental concept in machine learning, and statistical modelling in general that involves
predicting continuous numerical values based on the relationships between variables. Once a regression
model is trained and applied to make predictions, it is crucial to interpret and evaluate its performance.
Several different metrics are evaluated to maintain transparency over the regression results and asses the
goodness of the fit/match.

The Mean Absolute Error (MAE), which is calculated as the sum of the absolute errors divided by
the sample size, is shown in Equation 2.19. In which |ei| is denoted as yi − ŷi, yi being the measured
value and ŷi being the fitted value. A somewhat similar method is the Root Mean Squared Error method
which is calculated in Equation 2.20. Both these techniques calculate the error/residual between the
actual data and the predicted data. The results can vary from 0 to infinite and are negatively orientated,
meaning the lower the score, the better the fit. There is a lot of discussion on which of the two should
be chosen when validating a model. Willmott and Matsuura 2005 argues that the RSME is not a good
indicator of the average model performance and thus the MAE would be a better metric, while Chai and
Draxler 2014 states that the RSME is more appropriate than the MAE when the error distribution is
expected to be Gaussian (normal distribution).

MAE =
1

n

n∑
i=1

|ei| (2.19)

RMSE =

√√√√ 1

n

n∑
i=1

e2i (2.20)

The coefficient of determination (r2), also known as the squared multiple correlation coefficient, is
another use-full index to evaluate regression results (Equation 2.21). A perfect fit would result in an r2

of 1, this can easily be evaluated, when the actual data is the same as the predicted data, the numerator
will be 0. So in comparison to the previous methods, this one does not give a score of the residual, but
rather the goodness of the fit itself. Counter-intuitive, this method can give negative results as well. This
may occur in case of linear regression without an intercept (Barten 1987), or when a non-linear function
is fitted (Cameron and Windmeijer 1997). Latuni 2019 presented an indicative guide for the qualitative
expression of the coefficient of determination which is given in Table 2.4.
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r2 = 1− SSres

SStot
=

∑n
i=1 ei∑n

i=1(yi − yi)
(2.21)

Range Correlation

< 0.04 Very low
0.05 - 0.16 Low
0.17 - 0.49 Medium
0.50 - 0.81 Strong
> 0.82 Very Strong

Table 2.4: Coefficient of determination guidelines Latuni 2019

One of the problems with the methods described above is that the y values need to be given on the
same x values. If this is not the case, interpolation techniques would need to be used in order to obtain y
values which can be compared. Alternatively, one might use the Robust and interpolation-free technique
(RIFT), which prevents interpolation errors and was introduced by Lin et al. 2015. RIFT considers the
deviations between two data sets or two curves in terms of the area enclosed by these two curves and
bounds of interest, as illustrated by Figure 2.18. For every point in the first data set a triangle is formed
by using two other points from the second data set. The area of these triangles can be calculated using
the coordinates, by summing all the triangles an indication of the total area between the data sets can
be given.

Figure 2.18: RIFT method Lin et al. 2015

2.3.7 Machine learning in Geotechnical engineering

Soil is a non-linear, inhomogeneous and complex material to work with and modeling the behaviour of such
a material has proven to be complicated. Machine learning methods have gained increasing popularity in
the past decade due to their predictive capabilities. Which is why in the past decade, multiple studies on
Geo-engineering related topics in combination with machine learning have been conducted. For example,
Yu 2022, attempted to use CPT parameters to predict the undrained shear strength. Duffy 2019 did
something similar but instead aimed to predict oedometer test results. Both came to similar conclusions,
that machine learning has great potential in predicting parameters. However, both faced the same
problem, namely insufficient data to train the models. The more unpredictable the material is, the more
data is required to make use of machine learning models. The heterogeneity of soil, results in requiring
large sums of data to be able to train it.
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2.4 Summary

This chapter serves as a comprehensive literature review, playing a crucial role in providing fundamental
background information for this research. Broadly speaking, three main topics have been discussed: the
triaxial test, constitutive models, and machine learning tools.

Section 2.1 presents a description of the triaxial apparatus, test procedure, post processing of the
data, and the parameter determination. These techniques are used later on to derive the parameters
from all of the available triaxial test data.

The LEPP MC model, HS small model and SS model have been elaborated in Section 2.2 by describ-
ing the model, their applicability, pros and cons, and required parameters. This was done to select a
constitutive model for which the parameters will be optimised, HS small will be used.

Today, there are a variety of machine learning models available. Ranging from the simple regression
techniques to the more advanced random forests and neural networks. Section 2.3 provides background
information on some of these machine learning tools which was required to perform the advanced data
analysis.
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Chapter 3

Methodology

3.1 Database description

3.1.1 General

Over the past decades lots of triaxial tests on soil samples from across the Netherlands have been con-
ducted by Fugro according to the NEN-EN-ISO 2018a and NEN-EN-ISO 2018b standards, or one of its
predecessors. This available data offers an interesting opportunity to perform an extensive analysis on
and research (new) statistics and correlations. Before any analysis is possible, the data first needs to
be collected and processed into a well-structured database. On top of that a clear understanding of the
database is required as well, since the size and complexity make it rather difficult to asses how the data
can be put to good use.

All triaxial text files were extracted from the Fugro SharePoint and collected in a single folder. The
total amount being 20831, generally speaking, three text files are required for one complete triaxial test.
Some key features which can be found in the text files are presented in Table 3.1 and an example text
file can be found in Appendix A.

Database name Description Unit

Project Fugro’s internal project number -
Borehole Borehole number -
Sample Sample number -
Stage Stage number -
Test depth Depth from which the sample was taken m
Test type The type of triaxial test -
Sample type Method of preparation of the sample -
Classification code Visual description of the sample -
Particle density Often assumed g/cm3

Mass Initial, final and dry mass g
Volume Initial, after consolidation and final volume ml
Date and time Measured during testing yyyy-mm-dd hh:mm:ss
Def. Deformation measured during testing mm
Force Force measured during testing kN
Pore pr. Pore water pressure measured during testing kPa
Cell pr Cell pressure measured during testing kPa

Table 3.1: Key features in text files

The format of these files have changed over the years, although most of the time ever so slightly, a
Python script has been developed to read all the files and structure them into one single database using
the Pandas package. This database is considered the starting point and is stored in a feather file format,
which is basically a more efficient and faster way of storage than the more well-known Comma-Separated
Values (CSV) format. A summary of all the features from the entire database is given in Appendix B.
The three most interesting features, the type of triaxial test, the type of soil and the test date are given
in Figure 3.1. It shows that the Consolidated Isotropic Undrained Multi-Stage (CIUMS) test is most

20



commonly executed on clay samples. Also note that there are not many tests available between 2005 and
2010. This is not necessarily because they were not executed, but more likely because they were stored
in a binary format. This could not be read without modifying internal software, which was not feasible
within the time window of this research.

CIUMS
CIUSS

CIDMS
CIDSS

CAUSS UU
UUMS

CADSS

CADMS
CAUMS
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Figure 3.1: Key features from the database

3.1.2 Locations

The triaxial tests come from varies places in the Netherlands, as mentioned above. Although the text
files in itself did not include the coordinates of where the samples came from, it did contain the project-
and borehole number. This made it possible to link files to the corresponding borehole coordinates by
using the borehole archive. The reason not all coordinates could be traced back is due to the fact that not
all samples were collected by Fugro, it is quite common that soil samples are delivered to the laboratory
for research by clients.

The elevations were measured relative to the Amsterdam Ordnance Datum (NAP). Most of the
coordinates are given in the Dutch RD (Rijks-Driehoek) coordinate system except for a few cases which
are in the Belgium Lambert 72 system. The locations of the boreholes, after conversion to WGS84
coordinates, can be found in Figure 3.2. In some cases multiple samples are taken from a single borehole.
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Figure 3.2: Borehole locations

3.2 Soil properties

Each text file contains a lot of information regarding the soil sample like the initial weight, dry weight,
volumes etc. With this information, some initial index parameters can be determined, which already tells
a lot about the sample and its properties, these results can later on be used to make correlations with
other types of parameters. Table 3.2 gives an overview of the parameters and how they were obtained.
Note that the particle density given in the file was almost always an estimation and was only measured
in a few cases, it could not be established which cases. Generally, a value of 2.65 was assumed by a lab
technician for clay and sand, and a value of 1.4 for organic material. Equation 3.1 - 3.6 further elaborate
on how the calculations were performed.
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Parameter Symbol Unit Obtained

Gravitational constant g m/s2 Assumed: 9.81
Density of water ρw g/cm3 Assumed: 1
Degree of saturation Sr − Assumed: 1
Water content w − Calculated
Unit weight γ kN/m3 Calculated
Dry unit weight γd kN/m3 Calculated
Particle density ρs g/cm3 Given
Specific gravity Gs − Calculated
Initial void ratio e0 − Calculated
Initial porosity n0 − Calculated

Table 3.2: Initial parameters

γ =
mtg

V
(3.1)

w =
mw

ms
(3.2)

γd =
γ

1 + w
(3.3)

Gs =
ρs
ρw

(3.4)

e0 =
wGs

Sr
(3.5)

n0 =
e0

1 + e0
(3.6)

3.3 Soil parameters

This section describes how the raw data from the triaxial test is converted and the methods used to
determine the soil parameters, additional background information can be found in Section 2.1.

3.3.1 Calibrating and correcting

Before determining the soil parameters, the data first had to be calibrated and corrected. It was often
provided in an Analog/Dialog (A/D) format for which calibration factors were included, after applying
them, physical units were obtained. This is the raw data and it needs to be corrected which is done
according to the NEN-EN-ISO 2018b. Do note that some of the tests date back up till 1997, even though
the NEN-EN-ISO 2018b did not exist at the time, it is still used.

The cross sectional area of the specimen will vary during the test, it is important to take this into
account since a changing area will result in a difference in vertical stresses. Equation 3.7 corrects the
specimen area by taking the difference in volume (∆V ) with respect to the initial volume (Vi) over the
difference in height (∆H) with respect to the initial height (Hi). Note that this Equation is strictly
speaking not valid after the formation of shear planes.

Acor =
Vi −∆V

Hi −∆H
(3.7)

Corrections for the vertical stresses (∆σv)m imposed by the elastic membranes are determined ac-
cording to Equation 3.8 and for horizontal stresses (∆σh)m according to Equation 3.9. In which tm,
Em and Dm are the initial thickness of the membrane, elastic modulus and the initial internal diameter
respectively. These equations assume no slippage between the membrane and specimen meaning that the
membrane deforms as the specimen, this is strictly speaking not valid after the formation of shear planes.

(∆σv)m =
4tmEm

Dm

[
(εax)m

(εvol)m
3

]
(3.8)
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(∆σh)m =
4tmEm

Dm

(εvol)m
3

(3.9)

The correction for the type of filter paper (∆σv)fp which is used depends upon the strain levels. The
correction for the vertical total stress during the first 2% strain is determined according to Equation 3.10
and after that with Equation 3.11. There is no correction required for the horizontal stresses.

(∆σv)fp =
εaxKfpPfp

0.005Dc
(3.10)

(∆σv)fp =
KfpPfp

0.25Dc
(3.11)

With all the corrections being calculated and applied, the results can be computed with Equation
3.12 till 3.16, an example of the visualised end product is presented in Appendix C.

q =
P

Acorr
− (∆σv)m − (∆σv)fp (3.12)

σ3 = σc − (∆σh)m; σ′
3 = σ3 − u (3.13)

σ1 = q + σ3; σ
′
1 = σ1 − u (3.14)

εax =
∆H

Hi
(3.15)

εvol =
∆V

Vi
(3.16)

3.3.2 Determination: Stiffness and power for stress dependency of stiffness

The stress-strain graph can be used to determine the stiffness parameter E50, which is the slope of the
secant line drawn at 50% of the peak deviatoric stress (q50), as is shown in Figure 3.3. Note that the
exact value of q50 is not always available, since it is a high frequency measurement and not continuous
measurment, the value closest is selected as starting point. An additional point is selected which centres
q50 between the two, subsequently linear interpolation is used to overcome some of the deviation. Strictly
speaking, E50 cannot be determined for the first two stages in a multi stage test, since these do not show
peak strength. The first two stages tend to overestimate the stiffness which is why the E50 from the last
stage will be used from here on.
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Figure 3.3: Determination of the E50
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It is important to make a distinction between drained stiffness (E50) and undrained stiffness (Eu
50).

The HS small model takes effective parameters as input, meaning that all the undrained tests need to
be converted. A first estimation is done with the assumption: E50 = 1

2E
u
50. This can be optimised and

back-calculated by fitting the simulation to the actual laboratory test.
The calculation for the power for stress-level dependency of stiffness (m) is presented in Equation

2.11. This requires two E50’s at two different confining pressures, however, a triaxial test usually involves
three stages. All three tests were taken into account by calculating all three possible combinations as
shown in Equation 3.17 over which the average was taken with Equation 3.18.
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3 /σ
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(3.17)

0.3 ≤ mavg =
m1 +m2 +m3

3
≤ 1 (3.18)

3.3.3 Determination: Cohesion and friction angle

The cohesion and friction angle have to be determined on a certain strain level, which is often 2%, 5%
or at failure and they can be determined in either the p-q stress space or the s-t stress space. Just
like determining the E50, the required values are not always exactly present, hence, linear interpolation
will be used once more to overcome this slight deviation. Before continuing, it is important to make
some comments on the multi stage tests. Multi stage tests are performed on a single soil sample and
the first two stages are loaded till near failure, hence, no actual failure is reached. This would result
in more conservative results when determining the parameters at failure, since the maximum deviatoric
stress might not have been reached. This can actually be seen in Figure 3.3, stage 1 and stage 2 are still
increasing before the loading stopped. The last stage is loaded till failure which can also be seen when
looking at the large strain level. Single stage tests on the are hand, are loaded till failure in each stage,
meaning each stage requires a new sample. Although the soil samples might slightly differentiate, results
are generally more representative since actual failure is reached. The more common method used to be
the multi stage since this test is executed on the exact same sample and it is relatively faster, although
in recent years the single stage is used more and more due to the fact that actual failure is reached. This
research works with the isotropic multi stage tests since this database is significantly larger.

Two features will be calculated, the cohesion and friction angle at 2% strain and at failure according
to both the s-t stress space and the p-q stress space. The index of the 2% strain level is obtained and is
used to select the stress points, since neither the p-q nor the s-t stress space contain strain levels. When
using the failure strain level, the maximum strain level for each stage is determined and out of those 3
levels the lowest is selected. This is done so that the parameters can be determined at the same strain
levels. A fit is made through the three obtained points by using the linear regression. The interception
with the y-axis and the slope of the fit can be extracted and are converted into the soil parameters as
described in Section 2.1.1. All scenarios described above are visualised in an example in Figure 3.4. Note
that it can clearly be seen that the failure line is on the conservative side due to the previously described
comments on the multi stage tests.
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Figure 3.4: Parameter determination: cohesion and internal friction angle

The friction angle at failure is also determined when assuming zero cohesion (p-q space only), since
it is preferred to work with low (to none) cohesion in constitutive models. This is done by forcing a
zero-intercept with the y-axis (Figure 3.5). Since only a single additional point is required to make a fit,
the maximum deviatoric stress of the final stage is chosen. Since this stage actually reaches failure it
would be more representative, which would therefore result in less conservative values.
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Figure 3.5: Parameter determination: internal friction angle with zero cohesion

3.4 Model parameters

This section describes how the model parameters for the HS small model were determined, estimated
and optimised. The HS small model was chosen since it is a true second order model, widely used, with
a variety of different applications and suitability for many soil types. The theoretical background of the
HS small model and some other models for comparison is given in Section 2.2.

3.4.1 Initial

The soil parameters determined from the triaxial test were the: E50, m, c′ and ϕ′. Note that the E50

in the first 2 stages is often overestimated as described in paragraph 3.3.2, which is why the third stage
is chosen as input. The next step is to further expand these into model parameters for the HS small
model as an initial parameter set, which can later be used to further optimise. This is done by using
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some common relationships between parameters, such as, Eref
ur ≈ (3to5)Eref

50 , Gref
0 ≈ (2.5to10)Gref

ur and
Jaky’s equation (Jaky 1948). Also with defaults values, such as, Rf = 0.9 and γ0.7 ≈ (1to2) · 10−4 for
sands, although clay tend to have higher values. The optimisation algorithm which will be explained
later on also uses parameter boundaries as input in order to prevent it from coming up with unrealistic
values. The initial parameter set and its boundaries are presented in Table 3.3.

Parameter Determined Boundaries Unit

∗E50 triaxial 100 ≤∗ E50 ≤ 80000 kN/m2

Eref
50 Eref

50 = E50

(
pref

σc

)m

0.25Eref
oed ≤ Eref

50 ≤ 2.5Eref
oed kN/m2

Eref
oed ( 12 )E

ref
50 0.25Eref

50 ≤ Eref
oed ≤ 2.5Eref

50 kN/m2

Eref
ur 3Eref

50 3Eref
50 ≤ Eref

ur ≤ 5Eref
50 kN/m2

∗Gref
ur

Eref
ur

2(1+νur)
− kN/m2

Gref
0 6Gref

ur 3Gref
ur ≤ Gref

0 ≤ 9Gref
ur kN/m2

γ0.7 1.5 · 10−4 1 · 10−4 ≤ γ0.7 ≤ 2 · 10−4 −

m triaxial 0.5 ≤ m ≤ 1 −

pref 100 − kN/m2

νur 0.2 0.15 ≤ νur ≤ 0.25 −

c′ triaxial (c=0) 0 ≤ c′ ≤ 10 kN/m2

ϕ′ triaxial 15 ≤ ϕ′ ≤ 50 ◦

ψ 0 −3 ≤ ψ′ ≤ 5 ◦

Rf 0.9 0.1 ≤ Rf ≤ 1 −

Knc
0 1− sinϕ′ − −

∗ Not a direct input parameter

Table 3.3: Initial parameter set

3.4.2 Sensitivity analysis

Sensitivity analysis is the science of quantifying the impact of variations in the values of the inputs on the
output. When referring to the degree of which an input parameter effects the model the most, terms such
as, ’important’ and ’sensitive’ are often used interchangeably Hamby 1994. The distinction made by Crick
and Hill 1987 will be used, which refers to ’important’ parameters as those whose uncertainty contributes
substantially to the uncertainty in in the assessment of the results. While ’sensitive’ parameters are
defined as those which have a significant influence on the assessment of the results itself. Several types
of methods of sensitivity analyses have been developed, which can fall under local or global methods.

When one is interested in performing the analysis around a point of interest, it would be called a
local sensitivity analysis. Changes in the output are studied for specific values of the input. The simplest
methods in this category would be the so-called one-at-a-time (OAT) methods and the procedure is rather
straight forward (Borgonovo and Plischke 2016). A base case is a assigned and a sensitivity case to the
model inputs, which basically comes down to changing a single parameter and measure the magnitude of
the rate of change compared to the base case (Equation 3.19). A nice way to visualise the results is by
a Tornado diagram, it represents the measured sensitivity on a horizontal bar chart, sorted from largest
to smallest and was introduced by Howard 1988.∣∣∣∣ ∂Y∂Xi

∣∣∣∣ ≈ ∣∣∣∣∂Y (x+ εi)− Y (x)

ε

∣∣∣∣ (3.19)

The HS small model consists of a total of 13 parameters which is quite overwhelming. A local
sensitivity analysis is done to obtain a better understanding of the model and what the influence of each
individual parameter is. Two fictive soil samples were created, one sand sample and one clay sample
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(Table 3.4). These initial simulations are the so called base cases. The simulation is executed for 10%
strain in isotropic compression with a 100 simulation steps, drained for the sand sample and undrained
for the clay sample.

Parameter Sand Clay Unit

Eref
50 20000 5000 kN/m2

Eref
oed 20000 2500 kN/m2

Eref
ur 80000 20000 kN/m2

Gref
0 200000 50000 kN/m2

γ0.7 1.5 · 10−4 3 · 10−4 -
m 0.5 1.0 -
pref 100 100 kN/m2

νur 0.2 0.2 -
c′ 0 0 kN/m2

ϕ′ 35 27.5 ◦

ψ 0 0 ◦

Rf 0.9 0.9 -
Knc

0 0.426 0.5 -

Table 3.4: Base case for sensitivity analysis

From this point onward each parameter individually is either increased or decreased by 10% except
the reference stress for stiffness (pref ) which is considered a constant. Changing this would also influence
the meaning of all the stiffness parameters. The newly acquired stress-strain relationship is compared to
the stress-strain results of the base case by determining the coefficient of determination between the two,
the rate of change is than defined as 1 − r2 and the results are presented in Figure 3.6. Do note that
the Gref

0 and γ0.7 are mostly of influence in the low strain levels, which is why they would score lower
in general with this type of analysis. Furthermore, the Knc

0 is a parameter that has mainly influence on
the oedometer test rather than the triaxial test, it influences the (plastic) volumetric strain. A complete
overview of the effect of each parameter is given in Appendix D.
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Figure 3.6: Sensitivity analysis

What immediately stands out is the difference of the amount of influence between drained and
undrained tests. However, is was to be expected that undrained tests would be more sensitive due
to the significant influence of the pore water pressure development. The ϕ′ and Eref

50 seem to have to
biggest influence which is no real surprise. What is interesting to see is that the parameter Rf is of
major influence, especially in the top half of the stress-strain curve, even though it is considered a minor
parameter with a default value of 0.9.
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3.4.3 Optimisation

The next step is to actually optimise the model parameters. The SoilTest facility from the PLAXIS
software offers the possibility to simulate laboratory tests on the basis of a single point algorithm using
constitutive models and there calculation methods. This facility allows for evaluating parameters and
soil behaviour by checking if it matches existing measurements and expectations. Since it is a single
point, it does not account for deformations of the soil sample during the test. However, this is taken into
account in the actual laboratory test, meaning, when fitting the simulation to the laboratory test the
deformations are reflected onto the simulation. The remote scripting sever is used to communicate with
the PLAXIS SoilTest facility in order to provide input, run the simulation, and extract the output using
a Python script. This makes it possible to run a large amount of simulations automatically. The idea
is to fit the stress-strain path of the simulation to that of the one measured in the laboratory with an
optimisation algorithm. The last stage of the multi stage triaxial test is used to make the fit since this
stage reaches actual failure and the fit is made for the entire length of the stress-strain curve measured
in the laboratory.

The goodness of the fit will be quantified using the coefficient of determination (r2) and the aim is
to reach a value as close to 1 as possible. The initial parameter set which is presented in Table 3.3 is
used as a starting point. By varying the parameters of the HS small model an optimum is found and the
general idea behind the algorithm is presented in Figure 3.7.

An example of an undrained triaxial test before and after optimisation is given in Figure 3.8. Already
note one of the limitations of the HS small model in this example, it is not able to model softening
behaviour (it is arguably possible with a negative dilation angle). The algorithm attempts to compensate
for this by fitting a line through the middle of the top part of the stress-strain curve.

First simulation in 
PLAXIS SoilTest

Determine r2 between 
simulation and laboratory 

measurements

Decrease/increase 
respective parameter

Decrease 
has positive 
effect on r2

Increase has 
positive 

effect on r2

No positive 
effect on r2

Break

Yes Yes

NoNo

Decrease Increase

Initial 
parameter set 
+ boundaries

Laboratory 
measurements

Figure 3.7: Schematic overview of the algorithm
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Figure 3.8: Fitting the stress-strain curve

The optimum r2 found is a local optimum, it attempts to find the closest maximum r2, meaning
that on a global scale there might be an even better fit. This is highly dependent on the starting point
which is largely based on general assumptions and default values, Figure 3.9 illustrates this. The same
optimisation algorithm is used, nearly the same r2 is obtained and the fit looks very similar, the only
difference between this optimisation and the previous one is that a ratio of Eref

oed = Eref
50 is chosen rather

than the original Eref
oed = 1

2E
ref
50 . At first glance it looks like the initial parameter set does not have a

significant influence, but Table 3.5 proves quite the contrary. The stiffness parameters are in the order
of 2 to 3 times bigger, while the friction angle is only slightly smaller.
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Parameter Original Adjusted Unit

Eref
50 2751 5201 kN/m2

Eref
oed 1425 5601 kN/m2

Eref
ur 8852 16804 kN/m2

Gref
0 21380 43760 kN/m2

γ0.7 1.7 · 10−4 1.1 · 10−4 -
m 0.64 0.74 -
pref 100 100 kN/m2

νur 0.23 0.19 -
c′ 0 0 kN/m2

ϕ′ 28.9 27.8 ◦

ψ 0 0 ◦

Rf 0.9 0.85 -
Knc

0 0.52 0.53 -

Table 3.5: Optimisation results comparison

A possible solution to overcome this singularity (multiple solutions) would be by starting with a
global optimisation algorithm, such as a particle swarm, which searches for global highs/lows. However,
when looking at the minor difference in r2 between the two optimisations and the significant difference in
parameter outcomes, one might wonder if such a global search for the highest r2 would be the solution.
The r2 is a nice way to quantify the goodness of the fit but it is not the main target, the aim is to model
the soil behaviour as good as possible.

Alternatively, an additional feature measured during the triaxial test could be used to match the data.
The pore pressure development in the undrained tests is of significant importance to properly describe the
soil behaviour and is highly influenced by the stiffness and strength parameters. This does not apply to
drained triaxial tests, but in this case the volumetric strain could be used as an additional fit to prevent
a singularity from occurring. This theory is used to further develop the algorithm which attempts to
properly describe the soil behaviour, starting of with the initial estimation as presented in Algorithm 1.

Algorithm 1 Base case

1: Obtain initial model parameters and test conditions
2: Run PLAXIS SoilTest
3: Obtain laboratory q-εax paths (y and x values respectively) ▷ Fit 1
4: if Test type is drained then
5: Obtain laboratory εvol-εax paths ▷ Fit 2
6: else if Test type is undrained then
7: Obtain laboratory uexcess-εax paths ▷ Fit 2
8: end if
9: Perform interpolation on laboratory data to obtain y-values at the same x-values as the simulation

10: Determine the r20 between the two y-values for both fit 1 and 2
11: Assign weights to both fits
12: Determine the average weighted r20

The sensitivity analysis in Section 3.4.2 showed that ϕ and Eref
50 are the two most sensitive parameters

in the HS small model, when developing an order for the optimisation algorithm it would make sense
to prioritize these. However, it is also important to note the parameters that are perhaps a bit less
sensitive but are solely based on general assumptions such as the Eref

oed and Rf . Table 3.6 presents the
order of the optimisation algorithm in a nutshell. Two optimisation runs are performed, the first run is
different depending on the drainage conditions. It attempts fit two graphs at the same time to prevent a
singularity from occurring and making it less sensitive from the chosen initial parameter set. The second
run is the same for both and only the stress-strain curve is fitted. The parameters in the drained tests
are overall less sensitive although the dilatancy angle turned out to play an important role due to the
significant effect on the volumetric strains. The weight ratio’s are defined as the weight assigned to each
of the fit, such that a weighted r2 is obtained, see Equation 3.20. These weights were determined by
running a large number of simulations and checking if desired outcomes were obtained, meaning, getting
the same results independent of the initial Eref

50 /Eref
oed ratio and obtaining the best r2.
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r2weighted =
w1r

2
Fit1 + w2r

2
Fit2

w1 + w2
(3.20)

Type Drained Undrained

Fit 1 q-εax q-εax

Fit 2 εvol-εax uexcess-εax

Optimisation run 1

Fit weight ratio 1:1 4:1

Sequence ϕ, ψ, Eref
50 ϕ, Eref

oed , E
ref
ur , Eref

50 , Rf , c
′

Optimisation run 2

Fit weight ratio 1:0

Same sequence ϕ, Eref
oed , E

ref
ur , Gref

0 , Eref
50 , Rf , m, ψ, c′, γ0.7, νur

Table 3.6: Optimisation sequence

One could argue that it is perhaps more suitable to use the p-q stress space as the second fit for the
undrained tests. However, the algorithm requires at least one ascending axis in order to compare the
fits and this is not the case for the p-q plot. It makes sense to use the uexcess-εax graph since the εax is
always ascending and also because the uexcess is being reflected onto the p-q stress space.

Furthermore, it is questionable if the parameter m should be optimised since it is determined directly
from the triaxial test and has an influence on the stress dependency when the initial effective cell pressure
is different than a 100 kPa. The parameter m is determined based on at least two E50′s at two different
confining pressures. Section 3.3.2 elaborates that the first two stages of a Multi Stage do not actually
show peak strength since no actual failure is reached, therefore E50 and m can strictly speaking not be
determined. That is the reason it was decided to still optimise parameter m, although relatively late in
the sequence.

Algorithm 2 determines if parameter should be increased or decreased by evaluating if the r2 increases
as a result of the applied changes. This function is called upon by Algorithm 3 which performs the actual
optimisation.

Algorithm 2 Determine direction of the optimisation

1: Increase/Decrease the respective parameter
2: Run simulation and determine r2− and r2+ ▷ Plus and Minus representing increasing and decreasing

the parameter respectively
3: Select maximum r2max out of the three: r20, r

2
− and r2+

4: if r2max == r20 then
5: break ▷ No further action required, parameter was already optimal
6: else if r2max == r2− then
7: Direction is negative ▷ Parameter should be decreased to optimise
8: else if r2max == r2+ then
9: Direction is positive ▷ Parameter should be increased to optimise

10: end if

Algorithm 3 Parameter optimisation

1: Apply Algorithm 2 to determine the direction of the optimisation
2: while r2[i+ 1] > r2[i] do
3: parameter +/- direction
4: Run simulation
5: Determine weighted r2

6: end while
7: Return maximum r2 and associated optimised parameter
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3.5 Parameter boundaries

With such a large data set it is to be expected that there will be some invalid and/or unrealistic results.
All data outside of the boundaries given in Table 3.7 has been deleted to prevent it from having an
influence on the rest of the data and its statistical analysis later on. The boundaries were inspired by the
well-known table 2b from the NEN 2017 (Eurocode 7) although more conservative values were selected.
Note that this is only done for the index parameters (soil properties) and the soil parameters, but not
for HS small model parameters. This is because the optimisation algorithm was already given a set op
boundaries which can be found in Table 3.3.

Parameter Boundary Unit

Unit weight 0 ≤ γ ≤ 25 kN/m3

Water content 0 ≤ w ≤ 10 −
Dry unit weight 0 ≤ γd ≤ 25 kN/m3

Specific gravity 0.4 ≤ Gs ≤ 2.7 −
Initial void ratio 0 ≤ e0 ≤ 30 −
Initial porosity 0 ≤ n ≤ 1 −
Cohesion 0 ≤ c′ ≤ 30 −
Internal friction angle 10 ≤ ϕ ≤ 75 −

Table 3.7: Parameter boundaries

3.6 Single regression analysis

Regression analysis is a statistical tool to investigate the relation between an independent variable and
one or more dependent variables. By fitting a regression model to a data set, one can estimate the
dependent variable with independent variables where no actual data is available. These techniques are
widely used in different fields, such as engineering, finance and machine learning to uncover patterns and
make predictions based on those patterns. Note that these regression techniques are already considered
machine learning techniques.

This study will perform the two kinds of single regression techniques: simple linear regression and non-
linear regression using the exponential fit. The single (non-)linear regression will be performed between
every parameter, additional background information on these techniques is provided in Section 2.3.1.

3.6.1 Outliers

Such a large database will undoubtedly contain outliers, values which deviate from the typical expected
pattern in the data set. When observations are inconsistent with the majority of the set it could indicate
errors and/or anomalies, these outliers can occur due to various reasons like measurement errors, rare
events etc. Even though they only are a small part of the data set, it can still have quite the influence
on regression techniques. Therefore, before using the above mentioned regression techniques, outliers
will be removed using Density-Based Spatial Clustering of Applications with Noise (DBSCAN) (Ester
et al. 1996). This is an unsupervised machine learning clustering algorithm provided in the Scikit-learn
package. The algorithm groups together data points and requires two input parameters, epsilon which is
the radius of the core object and the minimal amount of points required within the radius. The algorithm
is visualised in Figure 3.10. Do note that one has to be careful to let DBSCAN determine the outliers,
because it also depends on the accuracy parameter eps. In this simple regression analysis a visualisation
could be made to check whether or not it has the desired outcome, but this is rather difficult in the more
advanced machine learning techniques, especially with multiple input parameters. That’s why only in
this relatively easy regression analysis the DBSCAN is used to boost the r2 scores of the fits, the score
without removing of the outliers will also be presented.
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Figure 3.10: Visualisation of the DBSCAN algorithm (Tran et al. 2013)

Before this is possible, the data first needs to be normalised such that the scale of both parameters is
equalised. This is done with the MinMaxScaler from the prepossessing module of Scikit− learn which
returns the data set in values between 0 and 1. Figure 3.11 is an example of how the algorithm would
like in action including a linear and exponential fit (although exponential is the obvious choice in this
case).
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Figure 3.11: Outlier detection example with DBSCAN, (epsilon = 0.05 and samples = 5)

3.7 Machine learning analysis

Scikit-learn has made using machine learning models very accessible for the public. It has a wide variety
of different models and tools to facilitate an extensive and advanced analysis, the background on some
of these more commonly used models is elaborated in Section 2.3. With that being said, it’s essential to
exercise caution and consider certain factors. Let’s expand a bit on how a model can be properly used
and evaluated. A supervised machine learning analysis in it’s simplest form looks something Figure 3.12.
There are independent x values and dependent labelled y values. These are presented to the machine
learning model and it attempts to find patterns, similarities, differences etc. (this depends on the type of
algorithm). Now that the model is trained, new x values can be presented to which the model predicts
the y values.
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Figure 3.12: Simplest form of machine learning

3.7.1 Preprocessing the data

One of the things to take into account is that some of the independent x variables are presented on a very
different scale, these scales can influence the behaviour and performance of ML models. It is therefore of
importance, for certain models, to preprocess the data by scaling the x values. The combination of the
ML model and prescaled data is also called the pipeline. There are quite a few methods available in the
sklearn library, the most basic one being the StandardScalar. However, this one behaves quite poorly
when the distribution is not more or less Gaussian (normal). This research has tested a variety of different
scaling techniques like: MinMaxScaler, PowerTransformer, Normalizer, QuantileTransformer and
MaxAbsScaler. The QuantileTransformer seemed to have most potential and was used for the rest of
the research.

The complete input parameter set consist of the: γ, w, γd, e0 and the soil type. The idea is that by
providing more information on the soil sample to the ML model, that better predictions can be made
which reduces the bandwidth of the outcomes. Different variations will be attempted, because sometimes
an additional feature will introduce more uncertainty in the model. Meaning that simply inserting all
of them does not necessarily mean a higher score. One additional preprocessing step which needs to be
performed is changing the soil type from categorical data (e.g. Clay, Sand, Peat or Silt) to numerical
values (e.g. [0,0,1,0]). One-hot encoding involves representing a vector wherein all elements are set to 0,
except for a single element with a value of 1. This special ”1” denotes the presence of a specific category
for the element, expressed as a Boolean value. Without doing this, the ML model is not able to interpret
the data, this is done using the OneHotEncoder.

3.7.2 Validating

Scaling and preprocessing the data is already a significant improvement, but how doe one evaluate such a
model. It would make sense to simply present the model with an x, let it predict y and compare it to the
actual y. The problem with this is, if the presented x and y values were also used to train the model, it has
a certain bias and tends to overestimate the performance of the model. One of the most commonly used
methods to overcome this, is a Cross-Validation (CV) strategy called k-fold (Figure 3.13a). The data set
is split into k number of folds. Each k fold is used as a test set for validation once, while each k − 1 fold
is used as a training set. The r2 is determined for each fold and the average for all folds combined is used
as the evaluation of the model. The number of folds is usually chosen to be 5 or 10, although there is no
formal rule. The group k-fold is a strategy that ensures that the same group is not represented in both the
training and the testing data set (Figure 3.13b). This approach closely replicates real-world scenarios in
which the model is evaluated using entirely unseen data. To put it simple, k-Fold can be regarded as an
ideal CV strategy and is widely used in a ML context since the training and testing data share the same
distribution. This means in essence that the simulated scenario tends to be milder and therefore lead
to relatively good results. In contrast, the group k-fold simulates a more complex scenario in which the
testing distribution can be very different from the training distribution. This brings a harder challenge to
the ML algorithm, which leads to relatively poor results if the groups are of significant influence. When
implementing both, one conservative and one radical evaluation is done.
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(a) K-fold (b) Group K-Fold

Figure 3.13: Cross validation Pedregosa et al. 2011

3.7.3 Hyperparameter tuning

It is possible to further optimise the model by tuning the hyperparameters. This is an essential aspect of
machine learning and a crucial part of model development. Hyperparameters are external settings which
cannot be directly learned from the data. A suboptimal hyperparameter set leads to over- or underfitting,
resulting in a poor model performance. The tuning process involves the systematically exploring of the
hyperparameter space to find the combinations which results in the highest performance. A grid search
is a powerful tool to explore this hyperparameter space (Figure 3.14a). The GridSearchCV function
is used to explore the hyperparameter space and obtain the best combination. For each combination
it implements a (group) k-fold cross validation, note that the GridSearchCV is computationally an
expensive method. An alternative solution, RandomizedSearchCV , was explored (Figure 3.14b). In
contrast to the grid search, not all unique parameters combinations are simulated, rather a fixed number
of settings is sampled from the distributions. It has been demonstrated that it can discover models of
comparable or superior quality using only a fraction of the computation time, Bergstra and Bengio 2012
argued that random grid search CV especially performs better when using artificial neural networks. It
is however decided to still choose the regular grid search since it is the more popular option, and time
and computing power were not an issue.

(a) Grid search (b) Random grid search

Figure 3.14: Hyperparameter tuning Bergstra and Bengio 2012

Combining all of the above results into a fully formed ML model which is optimised and can evaluate
its performance. When looking at Figure 3.15 note the features which are involved when comparing it to
the basic model in Figure 3.12.
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Figure 3.15: A more advanced approach on machine learning

3.7.4 Input/output of data

So now that there is a general understanding of what such a machine learning model looks like, let’s
proceed on what data will be used as input, and what data is used as output. At this stage a database
consisting of soil properties, soil parameters, and optimised constitutive model parameters for the HS
small model is established. The idea is to use these relatively easy to obtain soil properties to try and
predict the soil parameters and optimised model parameters. Additionally, it is expected that by including
more soil properties as input, that the performance of the models increases and the bandwidth of the
predictions will become narrower. More parameters does not necessarily increase the performance, since
additional inputs might introduce additional uncertainty. The idea will be tested by formulating multiple
input parameter sets with an increasing number of soil properties, this is presented in Table 3.8, the soil
type is the description which was given in the laboratory. The output parameters will first be predicted
independently, and afterwards the complete array of either soil parameters or model parameters will be
predicted. It makes sense to also attempt to predict the entire array since the model parameters affect
each other.

Type Combination Parameters

Input 1 Soil type
2 Soil type, γ
3 Soil type, γ, w
4 Soil type, γ, w, γd
5 Soil type, γ, w, γd, e0

Output 1 Every parameter individually
2 Array of soil parameters
3 Array of optimised model parameters

Table 3.8: Parameter sets

3.7.5 Model selection

The wide selection of machine learning models in the Scikit-learn library is quite staggering. These
models have different methods and applicability’s and can therefore perform very different from one
another depending on the type of data. Duffy 2019 for example made use of methods such as (eXtreme)
Gradient Boosting and Artificial Neural Networks, in the end Gradient Boosting seemed to perform the
best. Yu 2022 used theses techniques as well and expanded by using Support Vector Machines and the
Gaussian Process Regressor. The eXtreme Gradient Boosting came out on top and the second best
performing model was the Gaussian Process Regressor, this ML model quantifies uncertainty as well.
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Besides existing literature Scikit-learn also provide guidance in selecting the right model by means of
a map, which suggested (Kernel) Ridge Regression. The multiple linear regression was selected as a
baseline as it is considered machine learning in it’s simplest form. All of the above named techniques are
summed up in the following list:

• Multiple Linear Regression (MLR)

• Tree-based

– Random Forest Regressor (RFR)

– Gradient Boosting Regressor (GBR)

– eXtreme Gradient Boosting (XGB)

• Artificial Neural Network (ANN)

• Gaussian Process Regressor (GPR)

• Support Vector Regressor (SVR)

• Regular Ridge Regressor (RRR)

• Kernel Ridge Regressor (KRR)

This is quite an extensive list of different models, and performing an full analysis on all of them would
be abundant. A quick scan will be performed to see which top three models show the most potential,
these will be used for further research purposes. The quick scan is done by using combination 5 from the
input parameter sets in Table 3.8 and predicting individual output parameters. The snippet down below
provides a general overview of how the code is structured, in this example the ANN was used. To maintain
transparency code snippets of the pipe and hyperparameter grids have been added in Appendix E. Note
that in case of tree-based methods no feature scaling is required. The split feature is not influenced by
other features which is why they are invariant to the scale of the feature.

1 # Random state parameter which allows for reproducible results

2 rs = 1

3

4 # Creating the pipeline

5 pipe = Pipeline ([

6 ("scale", QuantileTransformer(random_state=rs)),

7 ("model", MLPRegressor(random_state=rs, max_iter =2000, activation=’relu’))

8 ])

9

10 # Setting up a hyperparameter grid for the grid search

11 paramgrid = {’model__hidden_layer_sizes ’: [(100 ,), (15 ,50 ,15), (16, 16)],

12 ’model__alpha ’: [0.0001 , 0.05, 0.01],

13 ’model__solver ’: [’lbfgs’,’adam’]}

14

15 # Specifiying the type of Cross Valiation , either k-fold or group k-fold

16 if crossval == ’k-fold’:

17 cv = KFold(shuffle=True , n_splits=5, random_state=rs)

18 elif crossval == ’group_k -fold’:

19 cv = list(GroupKFold(n_splits =5).split(x,y,groups))

20

21 # Setting up the model

22 model = GridSearchCV(estimator=pipe , param_grid=paramgrid , cv=cv, scoring=’r2’)

23

24 # Fitting the model

25 model.fit(x, y)

26

27 # Extracting results

28 resultsCV = pd.DataFrame(model.cv_results_)

Listing 3.1: Artificial Neural Network code snippet

3.8 Exploratory data analysis

A this stage, a large database of a variety of different properties and parameters is obtained. This section
will elaborate on different types of methods to describe and visualise the results in order to extract the
most amount of information from the database.
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3.8.1 Exploratory data analysis: Statistics

The classical method to describe important features of a data set is to give several numerical features, such
as the sample mean (µ) which is easily calculated with Equation 3.21. The standard deviation (σsd) is a
measure of how dispersed the data is in relation to the mean and is calculated with Equation 3.22, a high
standard deviation indicates that the data is more spread out. These two can be used to determine the
probability density function of a normal distribution (Equation 3.23), which is a mathematical function
that defines the likelihood of different outcomes or values of a variable. Figure 3.16 illustrates the effects of
µ and σsd on the normal distribution. There are several types of distributions but the normal distribution
is most commonly used and plays a central role in probability theory and statistics (Dekking et al. 2005).

µ =
x1 + x2 + ...+ xn

n
(3.21)

σsd =

∑
|x− µ|
n

(3.22)

f(x) =
1

σ
√
2π
e−

1
2 (

x−µ
σ )2 for −∞ < x <∞ (3.23)

Figure 3.16: Normal distribution and the influence of µ and σsd

The normal distribution does not necessarily always fits the data well, alternatively one might use
the Kernel Density Estimate (KDE), a technique that creates a smooth curve from a set of data. This
might be useful when trying to visualise the shape of the data in a continuous form rather than a discrete
discrete histogram. The kernel estimator is given by Parzen 1962 and is presented in Equation 3.24,
where K is the kernel. An important parameter of the KDE is the bandwidth (h) which describes how
smooth the line is, the higher the number, the smoother the curve. The bandwidth selection in this
research is done by Scott’s rule Scott 2015.

f(x) =
1

nh

n∑
i=1

K
x− xi
h

(3.24)

Continuing on the idea of how to describe a data set, the mean is the natural analogy for a data set
of what the expectation is for a probability distribution. However, it is very prone to outliers, outliers
are observations in the data that deviate a lot from the bulk data. Another way to identity the centre
of the data set is by means of the sample median also known as the 50th percentile. A percentile (pth)
divides the data set in two at a certain percentage and specifies a portion pth which is less than that
number and a portion which is larger than this number (1 − pth). The median is defined as the middle
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element in a data set when it is put in ascending order, in case the data set is even, the average of the
middle two elements is taken. The median is more robust in the sense that it is less affected by outliers.
Tukey et al. 1977 suggested to provide a five-number summary instead of only identifying the median,
which helps to give a more complete overview of the data set. This five-number summary can nicely be
visualised by a so-called box-and-whisker plot, which makes it possible to get a general understanding of
the data set in an instant (Figure 3.17). The distance between the upper quartile and the lower quartile
is also known as the interquartile range (IQR) and specifies the range of the middle half of the data set.

• Minimum

• Lower quartile: 25th percentile

• Median: 50th percentile

• Upper quartile: 75th percentile

• Maximum

Figure 3.17: Visualisation of the five-number summary, box-and-whisker plot (Dekking et al. 2005)

The probability distribution can be visualised with the KDE as a continuous function and the five-
number summary can be visualised with the box-and-whisker plot. These two provide a lot of information
regarding the database and can be combined in a so-called violin plot. A summary of the features in such
a plot is presented in Figure 3.18.
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Figure 3.18: Violin plot explanation (labxchange 2021)

3.8.2 Exploratory data analysis: Correlation

It is common in statistical analysis to explore and summarize the strength of association between two
continuously measured features, for which there are a numerous of different methods available. The
Pearson product-moment correlation coefficient (rp) is arguably one of the most frequently used, it is
a dimensionless index which is invariant to linear transformations of either variable (Pearson 1896).
Equation 3.25 demonstrates how to calculate the coefficient and the range of outcomes lies between -1
and + 1. A value of -1 meaning a perfect negative correlation and a value of +1 a perfect positive
correlation.

Alternatively, the Spearman rank order correlation coefficient (rs) could be used (Spearman 1987).
The calculation is equivalent to that of Pearson, but is performed after both x and y have been rank
transformed to values between 1 and N. When calculating rs fractional ranking is used, which means
that the rank is assigned in case of ties (De Winter et al. 2016). For example, the two smallest values of
x are the same, then they will both be ranked 1.5.

rp =

∑N
i=1(xi − x)(yi − y)√

(
∑N

i=1(xi − x)2
∑N

i=1(yi − y)2)
(3.25)

Both these coefficients describe the correlation between two parameters, but measure different types
of association. Pearson’s coefficient only measures linear association whereas the Spearman coefficient
measures a broader class of association. A high absolute value of this coefficient indicates that there is a
monotonic, but not necessarily linear relationship between two variables (Puth et al. 2015). This research
uses the Spearman’s coefficient since soil behaviour is highly non-linear, making Pearson’s coefficient less
suitable. The visualisation of correlating parameters against one another can be done by means of a heat
map.
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3.9 Summary

This chapter, the methodology, provides a structured overview of how the research was conducted and
which steps and procedures were taken in order to obtain the results. Section 3.1 started of with an
overview of the database, this was required to see how this data can be best put to use. Additionally, the
project number and borehole number were traced back to make a map of where the samples came from.

The soil properties are calculated in Section 3.2, the idea is to link these properties to other types of
parameters using different types of machine learning tools. Classic correlations compare one independent
parameter to a dependent parameter, this often comes with a lot of scatter and spread. It is excepted
that the spread of predictions can be reduced by including multiple of these independent soil properties.

Section 3.3 explains how the classic parameters c′, ϕ′, E50 (and m) were determined from the triaxial
test. Before deriving the parameters, the data was first calibrated and corrected according to the NEN-
EN-ISO 2018a and NEN-EN-ISO 2018b.

The model parameters for the HS small model are determined in Section 3.4, starting of with the
initial estimation of the parameters. A sensitivity analysis was performed to see how the different pa-
rameters affect the soil behaviour in a triaxial test. This was used as input to create an optimisation
algorithm which matches the triaxial simulation to the laboratory measurements. Section 3.5 provides
some boundaries for which tests are considered invalid.

Section 3.6 performs the single regression analysis: linear and exponential. While Section 3.7 provides
the analysis of the more advanced machine learning tools among which: multiple linear regression, tree
based methods and artificial neural networks.

At this stage all the data has been processed, parameters are determined and optimised, and a machine
learning analysis is conducted. The trick is now to properly visualise and present the obtained results,
Section 3.8: exploratory data analysis, provides the methods which were used to do so.
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Chapter 4

Results and discussion

This chapter gives an overview of the obtained statistics, correlations, regressions and machine learning
results while elaborating on them. The remaining database, after scraping invalid results and test types
like the UU or anisotropic tests, consisted out of 3073 CIUMS and CIDMS which can be subdivided in
soil type categories:

• Clay: 1707

• Sand: 718

• Peat: 374

• Silt: 274

4.1 Statistics

This section elaborates and discusses the statistics found in the database, background information re-
garding the presentation format of the results can be found in Section 3.8.1.

4.1.1 Soil properties

The summary of the soil properties is given in Figure 4.1 and additional information regarding the
calculations of these properties can be found in Section 3.2. The violinplot function from the Python
package Seaborn was used to make the visualisation. This was chosen since it can present both the
distribution of the data using the KDE and present the five-number summary using the box-and-whisker
plot. The KDE normalised the data such that the total area under the continuous function fitted through
the bins is equal to 1 which describes the likelihood of different outcomes, somewhat similar to a normal
distribution. It is important to note that the soil label given does not mean that it only consists out
of this specific soil. Descriptions in the text file are often quite long (and subjective), E.g. ”CLAY=
slightly silty= slightly organic grey”. In this example, the sample is labelled as clay since this is the
main component, this also explains the relatively wide spread in the graphs. Remarkably, the unit weight
of some peat samples is lower than that of water, which seems unlikely. A possible explanation is the
presence of organic matter with a specific gravity lower than water, or gasses that cause an overall unit
weight lower than water. The corresponding numerical values of the five-number summary can be found
in Appendix F. The graphs in general show results which were to be expected, like fairly low (dry) unit
weights for peat and relatively high for sands which corresponds with existing literature. Similarly for
the initial void ratio and porosity, especially note the amount of spread on the peat samples, which highly
depends on the amount of organic content. The void ratio graph is rather hard to read due to this large
spread, which is why a re-scaled version with peat in a separate graph can be found in Appendix G.
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Figure 4.1: Soil properties violin plot

4.1.2 Soil parameters

Similar to the previous Section, violin plots have been made for the soil parameters which are presented
in Figure 4.2. The parameters were determined at 2% strain with the p-q stress space which is common
in engineering practices, additional information regarding the determination of the parameters can be
found in Section 3.3.3. As expected, soils of which the main component is sand have the highest friction
angle and peat the lowest, furthermore, they are in the same order of magnitude as table 2b from the
NEN 2017. As discussed earlier, the wide spread can be explained due to the classification of the samples.
It also explains why even though sand has the lowest mean cohesion, it isn’t zero, since it can contain
other soil types like clay as well. The KDE gives the impression that the cohesion can be lower than zero
which is not the case and this can be seen when taking a close look at the box-and-whisker plot part of
the graph. The entire numerical five-number summary of the box-and-whisker plot be found in Appendix
F.

44



Clay Sand Peat Silt

10

20

30

40

50
Ef

fe
ct

iv
e 

fri
ct

io
n 

an
gl

e 
′  [

°]

Clay Sand Peat Silt
5

0

5

10

15

20

25

30

35

 E
ffe

ct
iv

e 
co

he
sio

n 
c′

 [k
Pa

]
Figure 4.2: Violin plot: c′ and ϕ′

The large spread in these graphs is partly due to the type of classification, the large number of samples,
and the complex heterogeneous material itself. When including an additional objective feature, like the
initial void ratio or unit weight, the spread in the graph is expected to be reduced. Clay has a particular
large spread which is why it was selected as an example. The data is split up in three bins based on the
initial void ratio, the first bin consists of all the data in the lower percentile (25th), the second bin of
everything above the upper percentile (75th) and the third bin is everything in between (IQR). The same
has been done for the unit weight and the results are presented in Figure 4.3, the black line is the KDE
containing all the clay samples. It’s interesting to see that besides the decreasing spread, that indeed
samples with a lower void ratio show an overall higher friction angle and vice verse. While this is the
exact opposite when looking at the unit weight, meaning, that the friction angle is positively correlated
with the unit weight and negatively correlated with the initial void ratio. This is a simple example of
how an extra feature can reduce the spread and increase the accuracy of predicting the friction angle,
and this is also the reason why later on advanced machine learning techniques will be explored. What
if instead of just one additional feature, multiple features can be provided as input, the idea is to even
further reduce the spread and improving predictive capability’s.
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Figure 4.3: Including additional features to subdivide ϕ′

Figure 4.4 presents the violin plot of the Eref
50 at a reference stiffness of 100 kPa. This parameter is

officially considered a model parameter, but comparing the E50 determined from the triaxial test would be
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unsuitable since stiffness is stress dependent. Both the drained and undrained tests are presented in the
plot, although the undrained stiffness was first converted to a drained stiffness by a general assumption
as explained in Section 3.3.2. As expected, peat has the lowest stiffness, followed by clay, silt and sand,
although the wide spread of the sand samples is quite remarkable. This is possibly due to the significant
influence of the amount of clay in the samples. A highly clayey sand sample is expected to have a lower
stiffness than a coarse grained, densely packed sand. The entire numerical five-number summary can be
found in Appendix F.
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Figure 4.4: Violin plot: Eref
50

4.1.3 Model parameters

The model parameters were first estimated using results from the triaxial test, general assumptions
and correlations. Subsequently, these model parameters were optimised using the algorithm which is
elaborated in Section 3.4.3. The goodness of the match is measured with the r2 and it attempts to find
a better match with every iteration by adjusting the model parameters. An example of this iterative
process is presented in the convergence curve in Figure 4.5. The algorithm explores the direction it needs
to take in order to increase r2 which is why it also decreases sometimes, ideally it eventually converges
to 1. This process is actually similar to the Kallman filter (Welch 2020), it describe the process and
estimations of the past in a way that minimizes the mean of the squared error (although the coefficient
of determination is used in this case).
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Figure 4.5: Convergence curve of r2
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This is done for every triaxial test and the results are presented in Figure 4.6, the left graph shows the
initial guess an the right graph shows the optimised r2. The box-and-whisker plot was chosen here rather
than the violin plot, since the KDE gives the impression that values higher than 1 can be achieved, which
is not possible for the r2. It can be seen that overall every initial guess was quite poor at mimicking
the laboratory results and that after optimisation it performs quite a lot better. Especially interesting
how well it seems to model the softer soils like clay and peat, while having a relatively bad score for
silt. Sand is somewhere in between in terms of how well the match is, this can be explained due to some
of the limitations of the HS small model. Sand sometimes shows a high peak strength and low residual
strength, it is exactly that softening behaviour which cannot be captured by the HS small model (it is
arguably possible with a negative dilation angle). The five-number summary in Appendix F present the
accompanying numerical values.
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Figure 4.6: Initial r2 vs optimised r2

The violin plot of the optimised model parameters is presented in Figure 4.7 and the entire numerical
five-number summary can be found in Appendix F. To prevent confusion, c′ and ϕ′ are the soil parameters
determined at 2% strain with the p-q stress space and ∗c′ and ∗ϕ′ are the optimised model parameters for
the HS small model. A couple of interesting things can be noted when looking at the graphs below. One
being that all the stiffness related parameters are somewhat as expected with sand having the highest
values and peat the lowest values. The stiffness parameter graphs are rather hard to read due to the
large spread of the sand samples, which is why a re-scaled version with sand in a separate graph can be
found in Appendix G.

The internal friction angle on the other hand seems quite contradictory with sand being on the lower
end of the spectrum. This is probably because it is influenced by the long residual strength branch in
the stress strain curve, and the fact that the HS small model cannot account for softening behaviour.
The optimisation algorithm attempts to find a compromise between the peak strength and the residual
strength (critical state) which is illustrated in Figure 4.8 with the dashed orange line. This is where
the question arises of what one is trying model, this research made the match for the entire stress-strain
curve measured in the laboratory, however, perhaps only the first 3% strain is of interest. Alternatively,
a distinction can be made between Serviceability Limit State (SLS) or Ultimate Limit State (ULS)
parameters. For which the SLS should be matched more on the peak strength and the ULS on the
residual strength, by e.g. applying weights to different parts of the curve. Another remarkable feature is
the high friction angles of peat, literature such as the NEN 2017 often suggests friction angles of ≈ 15◦

while undrained triaxial tests on peat samples result in significantly higher values. Do keep in mind that
this is not the traditional ϕ′ but one that is optimised for the HS small model using the triaxial laboratory
results.

The dilatancy angle for sand on the other hand is more realistic, when recalling the compromise
between peak and residual strength, but it does not correspond to the commonly used rule of ψ = ϕ′−30
(Bolton 1987). Dilatancy occurs due to volumetric straining which theoretically cannot occur in undrained
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tests. There are a handful of clay, peat and silt samples which show some dilatancy, this probably
manifested due to phenomena like anisotropy and pore water pressure development.

There are also a couple of parameters which show no real clear pattern when you look at the spread
of the results, such as the power for stress dependency m or the Poisson ratio for unloading/reloading
νur.
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Figure 4.7: Model parameters violin plot

Figure 4.8: Explanation of lower friction angles for sand (Cui et al. 2021)
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4.2 Correlations

Correlations describe the strength of association between continuously measured parameters. There
are multiple different methods of quantifying this association although this research makes use of the
Spearman 1987 method, additional information is provided in Section 3.8.2. Each parameter obtained
during this research is compared to each other and is visualised using a heat map which is presented
in Figure 4.9. Starting in the bottom left corner of the x-axis with 5 soil properties, followed by 2 soil
parameters and 12 optimised model parameters, the same list can be found on the y-axis. The dashed
black lines indicate the different parameter groups.

A score of 1 means a perfect positive correlation, this is relatively easy to see when looking at the
diagonal where a parameter is compared to itself. A score of -1 means a perfect negative correlation
which can be seen when comparing the optimised ∗ϕ′ against knc0 since the relationship between the two
was kept constant (Knc

0 = 1−∗ ϕ′) and is negatively orientated.
What can be seen straight away is that the soil properties among themselves have a very strong corre-

lation with each other, this was to be expected since some of them were used to calculate one another, but
this was not really the point of interest. What is interesting to see however, is the strength of association
between soil properties and the soil parameter ϕ′, and the optimised stiffness model parameters. For
example, soils with a large unit weight γ were expected to have a higher Eref

50 which is reflected in the
high positive correlation. Furthermore, when increasing the water content, the stiffness tends to decrease
which is shown with a strong negative correlation.

w d e0 n c'  ′ Eref
50 Eref

oed Eref
ur ur m Gref

0 0.7 *c′  * ′ knc
0 Rf

w
d

e 0
n

c'
 

′
Ere

f
50

Ere
f

oe
d

Ere
f

ur
ur

m
G

re
f

0
0.

7
*c

′
 *

′
knc 0

R f

1.0 -0.8 0.9 -0.8 -0.8 -0.1 0.6 0.7 0.6 0.5 0.0 0.2 0.6 0.1 0.2 0.2 -0.2 -0.2 -0.3

-0.8 1.0 -0.9 1.0 1.0 0.2 -0.7 -0.8 -0.8 -0.8 0.1 -0.2 -0.8 0.1 -0.0 0.0 0.0 -0.0 0.1

0.9 -0.9 1.0 -0.9 -0.9 -0.1 0.7 0.8 0.8 0.7 -0.1 0.2 0.8 -0.0 0.1 0.1 -0.1 -0.1 -0.2

-0.8 1.0 -0.9 1.0 1.0 0.1 -0.7 -0.8 -0.8 -0.8 0.1 -0.2 -0.8 0.1 -0.0 0.0 0.0 -0.0 0.1

-0.8 1.0 -0.9 1.0 1.0 0.1 -0.7 -0.8 -0.8 -0.8 0.1 -0.2 -0.8 0.1 -0.0 0.0 0.0 -0.0 0.1

-0.1 0.2 -0.1 0.1 0.1 1.0 -0.3 -0.2 -0.2 -0.2 0.1 -0.3 -0.2 -0.0 0.1 0.1 -0.1 -0.1 -0.1

0.6 -0.7 0.7 -0.7 -0.7 -0.3 1.0 0.8 0.7 0.7 -0.1 0.2 0.8 -0.1 0.1 0.3 -0.0 -0.3 -0.2

0.7 -0.8 0.8 -0.8 -0.8 -0.2 0.8 1.0 1.0 0.9 -0.2 0.3 1.0 -0.2 -0.0 -0.0 0.1 0.0 -0.0

0.6 -0.8 0.8 -0.8 -0.8 -0.2 0.7 1.0 1.0 0.9 -0.2 0.3 0.9 -0.2 -0.1 -0.1 0.1 0.1 0.1

0.5 -0.8 0.7 -0.8 -0.8 -0.2 0.7 0.9 0.9 1.0 -0.2 0.3 1.0 -0.3 -0.1 -0.2 0.1 0.2 0.1

0.0 0.1 -0.1 0.1 0.1 0.1 -0.1 -0.2 -0.2 -0.2 1.0 -0.1 -0.2 0.1 0.1 0.1 -0.2 -0.1 -0.2

0.2 -0.2 0.2 -0.2 -0.2 -0.3 0.2 0.3 0.3 0.3 -0.1 1.0 0.3 -0.0 0.0 -0.2 0.0 0.2 0.0

0.6 -0.8 0.8 -0.8 -0.8 -0.2 0.8 1.0 0.9 1.0 -0.2 0.3 1.0 -0.2 -0.0 -0.1 0.0 0.1 0.0

0.1 0.1 -0.0 0.1 0.1 -0.0 -0.1 -0.2 -0.2 -0.3 0.1 -0.0 -0.2 1.0 0.3 0.2 -0.2 -0.2 -0.4

0.2 -0.0 0.1 -0.0 -0.0 0.1 0.1 -0.0 -0.1 -0.1 0.1 0.0 -0.0 0.3 1.0 0.2 -0.3 -0.2 -0.3

0.2 0.0 0.1 0.0 0.0 0.1 0.3 -0.0 -0.1 -0.2 0.1 -0.2 -0.1 0.2 0.2 1.0 -0.1 -1.0 -0.4

-0.2 0.0 -0.1 0.0 0.0 -0.1 -0.0 0.1 0.1 0.1 -0.2 0.0 0.0 -0.2 -0.3 -0.1 1.0 0.1 0.3

-0.2 -0.0 -0.1 -0.0 -0.0 -0.1 -0.3 0.0 0.1 0.2 -0.1 0.2 0.1 -0.2 -0.2 -1.0 0.1 1.0 0.4

-0.3 0.1 -0.2 0.1 0.1 -0.1 -0.2 -0.0 0.1 0.1 -0.2 0.0 0.0 -0.4 -0.3 -0.4 0.3 0.4 1.0
1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

Figure 4.9: Correlation heat map of all collected parameters
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4.3 Single regression

The previous section showed the amount of correlation between different parameters and the parameters
seemed to have some form of association to one another in different degrees of strength. Although this
is a nice piece of information, it can’t really be used in more practical applications. Which is why in
addition two different single regression analysis have been performed: simple linear regression and non-
linear exponential regression, additional information regarding these techniques is provided in Section
3.6. The relevant results between parameters from different groups with r2 ≥ 0.4, are presented in Table
4.1. The best found fit was between the soil property γd and the soil parameter ϕ′, Figure 4.10 presents
how such a fit would look like. The outliers were nicely removed by the DBSCAN algorithm to increase
the accuracy of the fit although a lot of scatter is still visible, as expected. The r2ref has been added to
the table which is the score of the (non)-linear regression without outlier removal. This can be considered
the true baseline since the r2 was already slightly boosted by the more advanced clustering algorithm
DBSCAN, the slight increase is in the range of 0.01-0.04. This is one of the motives why this research
will look into more advanced machine learning techniques, to attempt obtaining even better scores.

Independent Dependent Linear: y = ax+ b Exponential: y = beax

x y Coefficients r2 r2ref Coefficients r2 r2ref
a b [-] [-] a b [-] [-]

γ ϕ′ 1.81 -2.34 0.48 0.46 0.076 7.48 0.44 0.42
w ϕ′ -3.65 30.29 0.36 0.33 -0.16 29.78 0.40 0.37
γd ϕ′ 1.23 13.15 0.59 0.55 0.05 14.53 0.57 0.54
e0 ϕ′ -2.74 31.87 0.44 0.41 -0.12 31.78 0.48 0.45
n ϕ′ -26.43 40.74 0.53 0.51 -1.08 45.16 0.49 0.47

n Eref
50 -77349 56934 0.42 0.41 -4.51 86407 0.43 0.41

n Eref
oed -43684 33431 0.42 0.41 -4.18 52143 0.45 0.43

n Eref
ur -200272 149831 0.45 0.44 -3.95 193664 0.46 0.44

n Gref
0 -452334 335518 0.49 0.47 -4.29 500447 0.53 0.51

Table 4.1: Relevant linear and non-linear exponential regression results
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Figure 4.10: Best found r2, γd vs ϕ′

The above analysis compared correlations between two separate parameters, it is expected that when
multiple input parameters are used, the predictions improve. The soil properties were selected for the
multiple linear analysis as is shown in Equation 4.1 and the results are presented in Table 4.2. It was able
to make reasonable predictions for the same parameters as the simple linear- and exponential regression
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methods. Which also matches which the expectation upfront, when looking at the correlation heat map,
this showed strong correlations between these parameters. No outliers were removed for this analysis, so
they need to be compared to the r2ref from the previous analysis. Including more parameters shows an
increase in the range of 0.01-0.09, which is not a significant improvement.

y = a1γ + a2w + a3γd + a4e0 + b (4.1)

Dependent Multiple linear regression r2

y a1 a2 a3 a4 b [-]

ϕ′ -0.63 0.15 1.55 -0.17 20.06 0.56

Eref
50 -11800 -808 10591 3063 85042 0.46

Eref
oed -7145 -1094 6040 1578 57220 0.47

Eref
ur -35660 -6527 29287 8866 286430 0.53

Gref
0 -77806 -9104 65504 17584 607851 0.56

Table 4.2: Relevant multiple linear regression results

The r2 scores are in the range of 0.5, which is still considered a strong correlation according to Table
2.4, although using linear techniques on such a non-linear material seems inappropriate. To further
elaborate the relatively small increase, another multiple linear regression is performed using only the γd
and e0 as input, and ϕ′ as output. This way, the results can be visualised in a 3d plot as is done in
Figure 4.11. The red plane is the result of the multiple linear regression as is Equation 4.2. A negligible
small improvement in r2 was obtained compared to using only γd as input, most likely due to the strong
correlation between γd and e0 which seems to be exponential.

(a) Side view (b) Top view

Figure 4.11: Double parameter input

ϕ′ = 1.189γd − 0.047e0 + 13.74, r2 = 0.55 (4.2)

4.4 Machine learning

This section presents the results and discussion of the machine learning analysis, additional information
regarding how the analysis was performed can be found in Section 3.7.
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4.4.1 Quick scan

Before the actual analysis was conducted, a quick and rough scan on the different machine learning models
was performed by using parameter input combination 5, meaning all the soil properties were used as input
(the different parameter input and output combinations are presented in Table 3.8). Subsequently all of
the individual output parameters were predicted (output set 1) and every output parameter with a score
r2 ≥ 0.4 has been selected. Not surprisingly, the same parameters which showed a strong correlation in
the heat map, and were found in the single regression analysis were found here as well, see Figure 4.12.
The Multiple Linear Regression is used as a baseline and is plotted as the dashed black line, the other
ML models have been normalised against the r2 score of the MLR. The Support Vector Machine was
dropped from the graph due to poor performance, besides that, most of the other models tend to have
an overall higher r2 score which was to be expected.

It is quite interesting to see the Artificial Neural Network (ANN) perform so well when recalling it
did relatively poor in the studies form Duffy 2019 (286 data entries) and Yu 2022 (526 data entries). The
most likely cause for this is that this study had considerably more data available (3073 data entries),
large amounts of data are required to properly train this type of model. The Kernel Ridge Regressor
(KRR) seemed to have the best performance and the Gradient Boosting Regressor (GBR) scored the
best out of the tree-based algorithms. These three models are selected for further research purposes in
combination with the baseline Multiple Linear Regressor (MLR).
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Figure 4.12: Comparison between models, in legend order; Multiple Linear Regression, Random Forest
Regressor, Gradient Boosting Regressor, eXteme Gradient Boosting, Artificial Neural Network, Gaussian
Process Regressor, Regular Ridge Regressor, Kernel Ridge Regressor

4.4.2 Single output predictions

Part of the hypothesis was that if multiple input parameters are provided, the machine learning models
would start to perform better, since they posses more information regarding the soil samples used to
obtain the output results. Figure 4.3 showed, as a first check, to see if the bandwidth would become
narrower when looking at the range of friction angles for samples which were classified as clay. When
including the features like the initial void ratio or the unit weight, the bandwidth of the outcome indeed
became narrower and corresponded with initial expectations, e.g. lower void ratio resulted in higher
friction angles. This was the incentive for exploring machine learning models, to attempt and make better
predictions of the soil parameters and optimised model parameters by including more soil properties as
input. This was done by varying the input parameter sets which were presented to the model by adding
an additional parameter each consecutive input combination.

The first output set consisted out of predicting each soil parameter and optimised model parameter
individually, the parameters with a score of r2 ≥ 0.4 are presented in Figure 4.13. The different input
parameters sets are displayed on the y-axis, the machine learning models on the x-axis and the coefficient
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of determination on the z-axis. The letter s on the y-axis represents the soil type as classified in the
laboratory and the best score has been displayed in red. The first thing which can be noticed is that
overall the KRR produces the best results with ANN and GBR not far behind. MLR preforms the
poorest which was to be expected as it is the most simplistic model, besides, it was used as a baseline
to compare/evaluate the performance of the more advanced models. A clear trend upwards can be seen
when increasing the number of input parameters, especially adding the unit weight and water content
causes significant increases in the performance of the model. In general, parameter input combination
4 seems to obtain the best score which is classified in the range of strong correlation when looking at
Table 2.4. Combination 5, which adds the initial void ratio, might be introducing some uncertainty to
the model which decreased the performance ever so slightly.

Figure 4.13: 3D plots of output parameter set 1 using k-fold cross validation
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This analysis was done using the Quantile Transormer to scale the data, grid search CV to tune the
hyperparameters (see the code snippets in Appendix E) and the k-fold for the actual Cross Validation
(CV) part rather than the group k-fold. The k-fold strategy is used most commonly, but a big downside
can be that the training data can come from the same place/group which is used to test the data,
making the predictions potentially more favourable. The group k-fold ensures that the same group is not
included in both training and testing data. The groups in the group k-fold are supposed to match how
the predictions would be applied in practice. For example, when data is available from multiple wells,
and the practical application is for the ML model to make predictions on a new well, than the wells
would be the groups in this case. Since both training and testing on the same well would generally result
in better CV scores. The groups in this research are not as obvious as the previous example which was
given, since each measurement was performed on a different sample. If there are no clear groups, it is
also possible to include a spatial component. Not all samples contained coordinates, but each sample did
contain a project number. The project numbers could be used as the groups in this situation since these
are typically linked to the same location or at least fairly close to each other. Furthermore, it makes
sense to choose the project number, since the practical application for these models would be to make
predictions for new projects.

Before performing an additional analysis using the group k-fold, first an analysis was done on the
variability of the outcomes from the regular k-fold CV. K-fold splits the data into k number of folds for
which each k fold is used as a testing set and k−1 is used as training data (see also Section 3.7.2). These
splits, when turning on the snuffle, are different every time. The random state parameter can be used to
make the results reproducible. The variability of the outcomes depending on the way the data is split by
using several random seeds can be mapped, and therefore also the overall sensitivity of the model. This
validation is done by running a 100 simulations with different seeds, while predicting Eref

50 in combination
with input parameter set 4 and KRR, the results are presented in Figure 4.14.
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Figure 4.14: Validation of the variability of the model and the influence of k-fold

At first glance it looks like there is quite a spread on the outcome of r2, but when looking at the
scale of the x-axis and the standard deviation in the legend it becomes clear that the shuffle has no real
influence on the performance of the model, which is a favourable attribute. To further investigate the
performance and reliability of the models, the group k-fold analysis is performed. As mentioned above,
the project numbers will be used as the groups, since that is where the model can be used for in practice,
attempting to predict the parameters for a new project. The results are presented in Figure 4.15 and
it can be seen that results are very similar to the regular k-fold strategy, arguably slightly lower. This
means that these models could be used to make predictions on an entire new project without gathering
data upfront.
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Figure 4.15: 3D plots of output parameter set 1 using group k-fold cross valudation

4.4.3 Multi output predictions

The analysis above was to predict individual output parameters (output set 1), now the entire array of
soil parameters (output set 2) and the entire array of optimised model parameters (output set 3) will be
used. Predicting multiple outputs was done by using the MultiOutputRegressor, which is basically a
wrap around the machine learning model. Only regular k-fold cross validation was performed since the
previous analysis showed that group k-fold obtained similar results.

Figure 4.16a present the results of the soil parameter array which consisted out of the cohesion and
internal friction angle. The best results are obtained using the KRR in combination with all of the soil
properties as input. Note that most of the performance increase came from introducing the unit weight
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and every additional parameter only resulted in small increments. On top of that, the MLR actually
performs quite well when comparing it to the more advanced models. The best r2 score is 0.33 which
still shows medium correlation, while ϕ′ individually scored an r2 of 0.60 when looking back at Figure
4.13. This drop is most likely due to the low correlation between the cohesion and the input parameters.
This was also seen in the heat map and this is also why there was no individual graph for the cohesion
presented in the first place.

Figure 4.16b present the results of the optimised model parameter array which consisted out all of the
HS small model parameters. Note that the ANN is not present, this is due to extremely poor performance
which made the graph unreadable. The best result r2 = 0.35 was obtained with the KRR and all of the
soil properties as input, this is quite significantly lower than some of the model parameters which were
predicted individually. The build up to this score was more gradually than with the soil parameters when
including additional parameters.

(a) Soil parameters (b) Optimised model parameters

Figure 4.16: 3D plots of output parameter set 2 and 3

There are quite a view parameters in the array of optimised model parameters which showed little to
no correlation. By excluding some parameters with very low correlation and/or a low sensitivity, a higher
score might be obtained. For example when looking at the heat map in Figure 4.9 and the sensitivity anal-
ysis in Figure 3.6, it would make sens to drop some parameters like: νur, γ0.7 and knc0 which was kept con-
stant relative to ∗ϕ′ anyways. Therefore a new output array has been created with the parameters which
showed either a lot of correlation or were very sensitive/important: [Eref

50 , Eref
oed , E

ref
ur , G

ref
0 ,∗ c′,∗ ϕ′, Rf ].

The results are presented in Figure 4.17 and removing some of parameters did indeed result in an increase
in performance.

Figure 4.17: Optimised model parameters, adjusted output array
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4.4.4 General discussion

A common trend which can be seen in basically all of the graphs is that increasing the number of
parameters does indeed increase the performance of the models. With that being said, most of the
increase occurred when introducing the unit weight and the water content. It was to be expected that
adding the dry volumetric weight would not result in a large increase since the model already has the
information required to calculate it. A significant improvement was however expected upon introducing
the initial void ratio, but this was not the case. Either small increments appeared and it sometimes
even slightly decreased in terms of performance. At this point one might wonder if adding even more
parameters could be beneficial, or that this is a ceiling through which it cannot further improve. It’s
important to remember that inaccuracy’s, measurement errors and sample disturbances take place in the
laboratory as well.

4.5 Automated Parameter Determination

Selecting constitutive model parameters have proven to remain a challenge which was both the reason
for this research and why another ongoing research project aims to create an Automated Parameter
Determination (APD) system. This system derives the model parameters for the HS small model from
in situ tests (CPT) and is based on graph theory, which makes the parameter determination transparent
and adaptable, it was introduced by van Berkom 2020. Some follow up papers have been published as
a part of the ongoing research project such as, Marzouk et al. 2023 which aimed on adding the DMT
to the framework and Brinkgreve and Brasile 2022 which applied the framework in a practical example.
This research will not perform an entire study on the graph based method, for that, the above papers
are referenced. What will be done is a comparison between the model parameters, which were found in
this research, and the parameters determined by the graph based method.

The framework requires CPT parameters which first had to be obtained in order to determine the
model parameters. The locations of the soil samples used in the triaxial test were already traced back to
the borehole location they came from (see Figure 3.2) and all nearby CPT’s, within a radius of 3 meters,
were added to the database. Out of the original 3073 triaxial tests, 105 samples could be linked to a
nearby CPT. The significant reduction in database is also the reason that no machine learning models
could be trained to find patterns between the CPT parameters and the optimised model parameters
which were determined in this research.

Two CPT’s were selected and can be found in Appendix H, the yellow bar shows where the samples
were obtained, these will be referred to as DKM5 and DKM32. The optimised model parameters (Opt.)
determined in this study and the parameters determined by the APD are presented in Table 4.3. The
APD is more conservative when looking at the stiffness parameters and the friction angle, the friction
was already expected to be on the lower end. Furthermore, the APD makes used of a negative dilatancy
angle to simulate the ’softening’ behaviour.

Parameter DKM5 DKM32 Unit
Opt. APD Opt. APD

Eref
50 5939 3472 4778 3985 kN/m2

Eref
oed 3563 2083 3584 2391 kN/m2

Eref
ur 24052 14089 19353 15346 kN/m2

Gref
0 40384 46563 32493 39070 kN/m2

γ0.7 1.2 · 10−4 2.55 · 10−4 1.1 · 10−4 2.14 · 10−4 -
m 0.92 1.0 0.95 1.0 -
pref 100 100 100 100 kN/m2

νur 0.16 0.2 0.19 0.2 -
c′ 0 0 0 0 kN/m2

ϕ′ 30.8 25.6 27.3 26.8 ◦

ψ 0 -5.2 0.1 -5.4 ◦

Rf 0.65 0.9 0.8 0.9 -
Knc

0 0.49 0.54 0.54 0.52 -

Table 4.3: Comparison with the APD system

Figure 4.18 shows the simulations of the triaxial test using these parameter sets and the actual
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measurements from the laboratory, the r2 score for each simulation is added to the legend. This graph
confirms that the strength in particular is modelled more conservatively with the APD than the optimised
model parameters from this study. This is also related to the fact that performing the triaxial test on
softer soils often results in (too) high friction angles, raising the question of whether these high friction
angles are real. These high friction angles are often not used in engineering practices, in that regard the
parameters from the APD are more focused on what is commonly used in practice. The APD system
scored lower on the r2, but keep in mind that the parameters determined in this research could make use
of the actual laboratory test, while the APD system only saw a nearby CPT. When looking at DKM5
it can be seen that the softening in the top part of the curve is actually modelled quite well by the
APD system, by using this negative dilatancy. This research tried to make as little use as possible of
negative dilatancy, the parameter Rf first appeared in the optimisation algorithm, which often made a
compromise between peak- and residual strength. This left little room for optimising the dilatancy angle.
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Figure 4.18: Triaxial test simulation comparison with the APD system
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Chapter 5

Conclusions

The incentive for this study was to provide guidance in the parameter determination for constitutive
models. This stemmed from the 3073 Consolidated Isotropic Drained/Undrained multi stage triaxial test
results (stored in text files) which were made available by Fugro for this study. A three-part hypothesis was
formulated. Firstly, it was expected that the entire measured stress-strain path from the text files could
be used to optimise constitutive model parameters, compared to using soil parameters, basic correlations
and default values from the literature (the traditional method). Secondly, the database consisting out of
several different types of parameters could be used to discover (new) statistics and correlations. Thirdly,
it was presumed that advanced machine learning models could be used to predict soil parameters and
optimised model parameters using soil properties as input. Furthermore, it is expected that an increasing
number of input parameters will improve the performance of the machine learning models. Several
sub-questions were formulated to assist answering the following main research question:

How can a database of triaxial tests contribute to the parameter determination, optimisation and
selection for advanced constitutive models?

• The Hardening Soil with small-strain stiffness (HS small) was selected as constitutive model to de-
scribe the stress-strain relationship, which requires 13 model parameters. An initial parameters set
was derived by expanding upon the soil parameters, using common correlations and default values
from the literature (the traditional method). These soil parameters, c′ and ϕ′, were determined at
2% strain using the stress paths from the text files (NEN-EN-ISO 2018b). A simulation of the tri-
axial test was performed using the SoilTest facility in the PLAXIS software package in combination
with the HS Small model and this initial parameter set. The stress-strain path of the simulation
was compared to the one in the text file using the r2 evaluation metric, this resulted in a relatively
low median r2 of -0.61 for all of the text files. The initial parameter set can be determined by
expanding upon the soil parameters as described in this research, also referred to as the traditional
method, and could be used as a first estimation.

• An algorithm was developed which attempted to match the simulated/calculated stress-strain path
of the triaxial test to the stress-strain path available in the text files by varying the HS small
model parameters in a predetermined sequence. The predetermined sequence was based on the
impact of a change of an HS Small parameter on the calculated/simulated triaxial test result. Only
matching the stress-strain curve from the triaxial test resulted in a singularity, the optimised model
parameters could be very differently depending on the initial parameter set. To overcome this
problem, an additional feature was matched simultaneously, for drained triaxial tests the εvol-εax
and for undrained triaxial tests the uexcess-εax. The algorithm was deployed for all the text files and
a significant improvement in r2 was observed, the median r2 increased from -0.61 to 0.81. It was
quite remarkable that the softer soil types clay and peat scored overall higher on the r2 than sand
and silt. This was investigated for a number of results and it is most likely due to the fact that HS
small cannot account for softening behaviour. The algorithm tried to find a compromise between the
peak strength and residual strength, this is also why sandy soils had an overall lower friction angle
compared to softer soil types, due to the influence of the long residual tail in the stress-strain curve.
The developed algorithm is capable of optimising the HS small parameters, which were initially
determined using the traditional method, by matching the simulated/calculated stress-strain path
to the entire stress-strain path from the text files.
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• The soil properties (γ, w, γd, e0 and n) showed a strong correlation with 5 parameters, the soil

parameter ϕ′ and the optimised model parameters Eref
50 , Eref

oed , E
ref
ur and Gref

0 . The single linear/-
exponential regression managed to find a fit with an r2 > 0.4 for these parameters. Still, a lot
of scatter in the graphs was noticed which is why more advanced machine learning methods were
explored. The machine learning models: Artificial Neural Network, Gradient Boosting and Kernel
Ridge Regression were selected based on an initial analysis on the data set, and a literature study
(in which similar models were used). Different input sets were presented to the machine learning
model, input set 1 only consisted out of the soil type as classified in the laboratory, every successive
input set added a soil property in the same order as motioned above. The soil parameters and
optimised model parameters are the output. After training, the machine learning models were able
to make significant better predictions for the same 5 parameters, with an increase of r2 in the
range of 0.05-0.27 (average of 0.2), compared to the single linear/exponential regression methods.
Providing the machine learning models with more soil properties generally resulted in an increase
in performance, especially when adding the unit weight and water content. Introducing the dry
unit weight and initial void ratio only resulted in changes of r2 < 0.01, probably due to the strong
correlations between the input parameters themselves. All the results were evaluated using regular
k-fold and group k-fold, with project numbers as groups. The trained machine learning models,
which are made available with this study, could be used to select the soil parameter ϕ′ and the op-
timised HS small model parameters Eref

50 , Eref
oed , E

ref
ur and Gref

0 with an r2 in the range of 0.6-0.74
by using 1 to 5 input parameters (soil properties). The linear/exponential regression results come
in the form of equations that can also be used, and they may even be easier to apply, but these
score significantly lower, with an r2 in the range of 0.41-0.56.

At the end of each bullet point above, a recommendation is given on how this research could be applied.
It is however important to note that these methods, results and conclusions are based on the triaxial test
and have not been validated for other tests and engineering practices.
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Chapter 6

Recommendations

The conclusion already included recommendations on how the results of this research could be used. This
chapter aims to provide recommendations for future research based on the outcomes and findings of this
study.

After the data was collected into a well-structured database, some initial key features could be visu-
alised. Features like the test type, soil type and test date are given in Figure 3.1. When looking at the
test date plot, it appears that during the period of 2005-2010 little to no tests have been conducted, but
this is actually not the case. Most files in this period were stored in a binary format that could not be read
without modifying internal software, which was not feasible within the time window of this research. In
machine learning, the more training data available, the better the model becomes. It would be beneficial
to be able to read the data from that period as well and increase the size of the database. Moreover, this
study only used data from the Netherlands, while data from other countries are also available.

Continuing on the features of the database, this research only made use of the CIUMS and CIDMS
tests, when in fact other test types are available as well. It would be interesting to extract even more from
the current database by looking at the other test types. The single stage tests for example, reach failure
in every stage in comparison to the multi stage tests. Even though different samples are required and will
therefore slightly differentiate, results are generally more representative. The reason multi stage testing
was chosen in this study is that this used to be the common method and therefore a significantly larger
database is available. In addition, UU tests and anisotropic tests are available as well. Especially the
anisotropic tests in combination with constitutive models which can account for anisotropy like (Creep)
S-Clay1S or PM4Sand would be interesting to further investigate.

This research aimed to properly describe the soil behaviour by using triaxial test measurements
from the laboratory to optimise the model parameters for the HS small model. Several laboratory tests
are available, such as the Oedometer or the Direct Simple Shear (DSS) test, which measure different
characteristics of soil behaviour. The soil behaviour can be described even better by including more than
one type of laboratory test. Besides looking at different laboratory tests, different constitutive models
can also be explored. One of the problems encountered during this study was that HS small cannot
account for softening behaviour. Models such as Soft Soil (Creep) and Modified Cam-Clay do take this
into account, and when the Oedometer is included, the creep feature can also be modelled.

The current optimisation algorithm made the match for the entire stress-strain curve measured in
the laboratory, which sometimes included a long residual tail which had a lot of influence. The part of
the curve which is attempted to be matched can be adjusted for practical applications. For example, a
distinction could be made between Ultimate Limit State and Serviceability Limit State calculations. For
which the ULS should be matched with the residual strength and the SLS with the peak strength, by
e.g. applying weights for different parts of the curve.

It was shown that in general, more input parameters resulted in better performance of the machine
learning models. Especially when including the unit weight and water content, including more features
either resulted in very small increases or sometimes even slight decreases, most likely because additional
uncertainty was introduced or due to correlations between soil properties. However, just like adding tests
such as the DSS or Oedometer to improve the description of the soil behaviour, one could use additional
index tests as input to try and increase the performance of the machine learning model. Tests like the
Particle Size Distribution (PSD) or the consistency limits provide a lot of information on the soil samples,
which could potentially help to make better predictions.
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Dekking, F. M., Kraaikamp, C., Lopuhaä, H. P. and Meester, L. E. 2005, A Modern Introduction to
Probability and Statistics: Understanding why and how, Vol. 488, Springer.

Duffy, K. 2019, ‘Assessment of a soil compressibility index using cone penetration testing and machine
learning tools’, MSc thesis, University College Dublin .

Duncan, J. M. and Chang, C.-Y. 1970, ‘Nonlinear analysis of stress and strain in soils’, Journal of the
soil mechanics and foundations division 96(5), 1629–1653.

Eberly, L. E. 2007, ‘Multiple linear regression’, Topics in Biostatistics pp. 165–187.

Ester, M., Kriegel, H.-P., Sander, J., Xu, X. et al. 1996, A density-based algorithm for discovering clusters
in large spatial databases with noise., in ‘kdd’, Vol. 96, pp. 226–231.

Goldscheider, M. 1984, True triaxial tests on dense sand, in ‘International workshop on constitutive
relations for soils’, Balkema, Rotterdam, pp. 11–54.

Hamby, D. M. 1994, ‘A review of techniques for parameter sensitivity analysis of environmental models’,
Environmental monitoring and assessment 32, 135–154.

Howard, R. A. 1988, Uncertainty about probability: A decision analysis perspective, in ‘Risk Analysis’,
Vol. 8, Wiley Online Library, pp. 91–98.

Jaky, J. 1948, Pressure in silos, in ‘Proc. 2nd International Conference on Soil Mechanics and Foundation
Engineering’, Vol. 1, Rotterdam, pp. 103–107.

labxchange 2021, ‘How to interpret violin plots’.
URL: https: // www. labxchange. org/ library/ items/ lb: LabXchange: 46f64d7a: html: 1

Lambe, W. T. 1967, Stress path method, in ‘Journal of the soil mechanics and foundations division’,
Vol. 93, American Society of Civil Engineers, pp. 309–331.

Latuni, F. 2019, ‘Development of road and bridge infrastructure to enhance economic growth in the
coastal communities of tuminting district in manado city’, International Journal of Multicultural and
Multireligious Understanding 6(5), 780–791.

Lev, A. 2022, ‘Xgboost versus random forest’.
URL: https: // www. qwak. com/ post/ xgboost-versus-random-forest

Lin, H.-D., Dang, P. H. and Hsieh, Y.-M. 2015, ‘Rift: Robust and interpolation-free technique for objective
functions in geotechnical inverse analysis’, Computers and Geotechnics 64, 96–104.

Marchetti, S. 2015, Some 2015 updates to the tc16 dmt report 2001, in ‘The 3rd International Conference
on the Flat Dilatometer’, pp. 43–65.

Marzouk, I., Tschuchnigg, F. and Brinkgreve, R. 2023, Expansion of an automated system for determining
soil parameters using in-situ tests, in ‘NUMGE 2023’, European Conference on Numerical Methods in
Geotechnical Engineering (NUMGE), p. 70.

63

https://www.labxchange.org/library/items/lb:LabXchange:46f64d7a:html:1
https://www.qwak.com/post/xgboost-versus-random-forest


McCulloch, W. S. and Pitts, W. 1943, ‘A logical calculus of the ideas immanent in nervous activity’, The
bulletin of mathematical biophysics 5, 115–133.

McKinney, W. et al. 2010, Data structures for statistical computing in python, in ‘Proceedings of the 9th
Python in Science Conference’, Vol. 445, Austin, TX, pp. 51–56.

Metzen, J. H. 2023, ‘Comparison of kernel ridge regression and svr’.
URL: https: // scikit-learn. org/ stable/ auto_ examples/ miscellaneous/ plot_ kernel_

ridge_ regression. html

NEN 2017, ‘NEN 9997-1 +C2 17892-8:2018: Geotechnical design of structures - part 1: General rules’.

NEN-EN-ISO 2018a, ‘NEN-EN-ISO 17892-8:2018: Geotechnical investigation and testing - laboratory
testing of soil - part 8: Unconsolidated undrained triaxial test’.

NEN-EN-ISO 2018b, ‘NEN-EN-ISO 17892-9:2018: Geotechnical investigation and testing - laboratory
testing of soil - part 9: Consolidated triaxial compression tests on water saturated soils’.

Obrzud, R., Truty, A., Podles, K., Commend, S. and Zimmermann, T. 2018, ‘Z soil. pc 120201 report
revised 8.04. 2018’.

Oliphant, T. E. et al. 2006, A guide to NumPy, Vol. 1, Trelgol Publishing USA.

Parzen, E. 1962, ‘On estimation of a probability density function and mode’, The annals of mathematical
statistics 33(3), 1065–1076.

Pearson, K. 1896, ‘Vii. mathematical contributions to the theory of evolution.—iii. regression, heredity,
and panmixia’, Philosophical Transactions of the Royal Society of London. Series A, containing papers
of a mathematical or physical character 1(187), 253–318.

Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Pretten-
hofer, P., Weiss, R., Dubourg, V. et al. 2011, ‘Scikit-learn: Machine learning in python’, the Journal
of machine Learning research 12, 2825–2830.
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Appendix A

Example text file

Figure A.1: Example text file

67



Appendix B

Database summary
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Figure B.1: Bar charts
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Figure B.2: Histograms
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Appendix C

Visualisation of triaxial results
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Figure C.1: Example of how to present triaxial results

70



Appendix D

Sensitivity analysis
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Figure D.1: Eref
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Figure D.2: Eref
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Figure D.3: Eref
ur
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Figure D.4: νur
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Figure D.5: Gref
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Figure D.6: γ0.7
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Figure D.7: ϕ′
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Figure D.9: Rf
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Figure D.10: Eref
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Figure D.11: Eref
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Figure D.12: Eref
ur
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Figure D.13: νur
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Figure D.14: Gref
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Figure D.15: γ0.7
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Figure D.16: ϕ′
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Figure D.18: Rf
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Appendix E

Code snippets

1 pipe = Pipeline ([

2 ("model", RandomForestRegressor(random_state=rs))

3 ])

4

5 paramgrid =[{’model__n_estimators ’: [100, 500],

6 ’model__min_samples_split ’: [1, 2, 5],

7 ’model__min_samples_leaf ’: [1, 3],

8 }]

Listing E.1: Random Forest Regressor

1 pipe = Pipeline ([

2 ("model", GradientBoostingRegressor(random_state=rs))

3 ])

4

5 paramgrid =[{’model__n_estimators ’: [100, 500],

6 ’model__min_samples_split ’: [1, 2, 5],

7 ’model__min_samples_leaf ’: [1, 3],

8 }]

Listing E.2: Gradient Boosting Regressor

1 pipe = Pipeline ([

2 ("model", XGBRegressor(random_state=rs))

3 ])

4

5 paramgrid =[{’model__n_estimators ’: [10, 100],

6 ’model__max_depth ’: [6, 10],

7 ’model__num_parallel_tree ’: [1, 3],

8 ’model__booster ’: [’gbtree ’, ’gblinear ’,’dart’]

9 }]

Listing E.3: eXtreme Gradient Boosting

1 pipe = Pipeline ([

2 ("scale", QuantileTransformer(random_state=rs)),

3 ("model", MLPRegressor(random_state=rs, max_iter =2000, activation=’relu’))

4 ])

5

6 paramgrid = {’model__hidden_layer_sizes ’: [(100 ,), (15 ,50 ,15), (16, 16)],

7 ’model__alpha ’: [0.0001 , 0.05, 0.01],

8 ’model__solver ’: [’lbfgs’,’adam’]}

Listing E.4: Artificial Neural Network

1 pipe = Pipeline ([

2 ("scale", QuantileTransformer(random_state=rs)),

3 ("model", GaussianProcessRegressor(random_state=rs))

4 ])

5

6 paramgrid =[{’model__kernel ’: [None],

7 ’model__alpha ’: [1e-10, 1e-5]}]

Listing E.5: Gaussian Process Regressor
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1 pipe = Pipeline ([

2 ("scale", QuantileTransformer(random_state=rs)),

3 ("model", SVR())

4 ])

5

6 paramgrid =[{’model__kernel ’: [’rbf’, ’poly’],

7 ’model__degree ’: [3,5],

8 ’model__gamma ’:[’scale ’, ’auto’],

9 ’model__epsilon ’:[0.1, 0.5]}]

Listing E.6: Support Vector Regressor

1 pipe = Pipeline ([

2 ("scale", QuantileTransformer(random_state=rs)),

3 ("model", Ridge(random_state=rs))

4 ])

5

6 paramgrid =[{’model__alpha ’: [0.5, 1, 2],

7 }]

Listing E.7: Regular Ridge Regressor

1 pipe = Pipeline ([

2 ("scale", QuantileTransformer(random_state=rs)),

3 ("model", KernelRidge ())

4 ])

5

6 paramgrid =[{’model__alpha ’: [0.5, 1, 2],

7 ’model__kernel ’:[’poly’],

8 ’model__degree ’: [3,4,5,6],

9 ’model__coef0 ’:[0,1,2]

10 }]

Listing E.8: Kernel Ridge Regressor
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Appendix F

The five-number summary

Soil Size µ σ Min. Lower quartile Median Upper quartile Max.

Clay 1707 16.4 2.2 10.4 14.9 16.4 17.9 22.7
Sand 718 17.6 1.6 12.4 16.6 17.5 18.7 22.4
Peat 374 11.0 1.6 8.6 10.0 10.6 11.6 18.8
Silt 274 19.6 1.7 12.9 18.9 19.9 20.8 22.4

Table F.1: Soil property: γ

Soil Size µ σ Min. Lower quartile Median Upper quartile Max.

Clay 1707 0.6 0.4 0.1 0.4 0.5 0.8 4.8
Sand 718 0.1 0.1 0.0 0.1 0.1 0.1 1.1
Peat 374 3.8 2.1 0.1 2.1 3.7 5.1 9.9
Silt 274 0.3 0.2 0.0 0.2 0.2 0.3 1.3

Table F.2: Soil property: w

Soil Size µ σ Min. Lower quartile Median Upper quartile Max.

Clay 1707 10.8 3.3 1.8 8.4 10.9 13.3 20.2
Sand 718 15.5 1.7 6.4 14.7 15.7 16.6 19.8
Peat 374 3.1 2.3 0.9 1.6 2.2 3.7 16.9
Silt 274 15.9 2.5 5.6 15.0 16.3 17.6 20.1

Table F.3: Soil property: γd

Soil Size µ σ Min. Lower quartile Median Upper quartile Max.

Clay 1707 1.7 1.1 0.2 0.9 1.3 2.1 12.8
Sand 718 0.4 0.3 0.0 0.3 0.3 0.3 2.8
Peat 374 5.3 2.9 0.1 3.0 5.2 7.2 13.9
Silt 274 0.7 0.4 0.0 0.5 0.6 0.7 3.6

Table F.4: Soil property: e0

Soil Size µ σ Min. Lower quartile Median Upper quartile Max.

Clay 1707 0.6 0.1 0.1 0.5 0.6 0.7 0.9
Sand 718 0.3 0.1 0.0 0.2 0.2 0.2 0.7
Peat 374 0.8 0.1 0.1 0.7 0.8 0.9 0.9
Silt 274 0.4 0.1 0.0 0.3 0.4 0.4 0.8

Table F.5: Soil property: n0
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Soil Size µ σ Min. Lower quartile Median Upper quartile Max.

Clay 1707 26.0 6.4 10.3 21.0 26.3 30.9 47.8
Sand 718 33.9 5.1 15.2 31.3 34.3 37.3 46.6
Peat 374 17.2 5.0 10.0 13.8 16.3 19.9 35.6
Silt 274 31.5 4.4 13.3 29.0 31.7 34.3 43.4

Table F.6: Soil parameter: ϕ′

Soil Size µ σ Min. Lower quartile Median Upper quartile Max.

Clay 1707 6.2 5.7 0.0 1.9 5.0 8.9 29.9
Sand 718 4.7 6.3 0.0 0.0 2.5 6.9 29.8
Peat 374 8.6 7.5 0.0 3.1 5.8 12.4 29.7
Silt 274 5.7 6.4 0.0 0.0 3.8 8.6 29.3

Table F.7: Soil parameter: c′

Soil Size µ σ Min. Lower quartile Median Upper quartile Max.

Clay 1707 6519 4526 100 4020 5597 7738 59689
Sand 718 44531 24349 340 24805 43396 66273 80000
Peat 374 2570 5324 531 1434 1955 2668 80000
Silt 274 9880 5077 432 6477 8857 12306 34397

Table F.8: Soil parameter: Eref
50 not optimised

Soil Size µ σ Min. Lower quartile Median Upper quartile Max.

Clay 1707 -1.96 3.42 -23.11 -3.22 -0.51 0.47 1.0
Sand 718 -0.84 2.97 -19.81 -1.12 0.36 0.75 0.98
Peat 374 -0.09 1.85 -16.71 -0.24 0.55 0.85 0.99
Silt 274 -5.54 4.53 -22.45 -8.08 -5.39 -1.92 0.95

Table F.9: Initial r2

Soil Size µ σ Min. Lower quartile Median Upper quartile Max.

Clay 1707 0.52 1.3 -13.99 0.78 0.92 0.97 1.0
Sand 718 0.16 2.01 -16.37 0.45 0.71 0.88 1.0
Peat 374 0.94 0.23 -1.75 0.97 0.99 0.99 1.0
Silt 274 -1.23 2.76 -11.66 -2.88 0.09 0.9 0.99

Table F.10: Optimised r2

Soil Size µ σ Min. Lower quartile Median Upper quartile Max.

Clay 1707 7595 5685 114 4231 6396 9193 72796
Sand 718 52267 34743 252 22044 45130 79972 120000
Peat 374 2741 6007 531 1463 2018 2759 96000
Silt 274 13685 7565 540 8320 12105 17267 42996

Table F.11: Optimised model parameter: Eref
50
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Soil Size µ σ Min. Lower quartile Median Upper quartile Max.

Clay 1707 5993 4440 52 3235 5088 7478 59689
Sand 718 29511 20269 135 13632 25449 41300 126201
Peat 374 1759 3110 398 1002 1292 1780 56000
Silt 274 10224 5549 318 6332 9159 12923 32042

Table F.12: Optimised model parameter: Eref
oed

Soil Size µ σ Min. Lower quartile Median Upper quartile Max.

Clay 1707 21824 14177 312 14099 19120 25667 188020
Sand 718 139342 77137 1142 74643 137065 209562 296000
Peat 374 8994 16437 2151 5281 7106 9496 252000
Silt 274 30063 15584 1296 19856 26883 36918 107490

Table F.13: Optimised model parameter: Eref
ur

Soil Size µ σ Min. Lower quartile Median Upper quartile Max.

Clay 1707 0.21 0.02 0.16 0.2 0.2 0.22 0.24
Sand 718 0.19 0.02 0.16 0.16 0.19 0.2 0.24
Peat 374 0.2 0.02 0.16 0.19 0.2 0.21 0.24
Silt 274 0.21 0.02 0.16 0.2 0.2 0.21 0.24

Table F.14: Optimised model parameter: ’νur

Soil Size µ σ Min. Lower quartile Median Upper quartile Max.

Clay 1707 0.7 0.2 0.5 0.5 0.7 0.9 1.0
Sand 718 0.8 0.2 0.5 0.6 0.8 1.0 1.0
Peat 374 0.6 0.1 0.5 0.5 0.6 0.7 1.0
Silt 274 0.8 0.2 0.5 0.5 0.8 1.0 1.0

Table F.15: Optimised model parameter: m

Soil Size µ σ Min. Lower quartile Median Upper quartile Max.

Clay 1707 47257 31860 838 28791 40977 56709 384993
Sand 718 311676 166983 2789 180593 306046 450249 684000
Peat 374 19100 36780 4036 10956 14885 20086 516000
Silt 274 78276 42487 3239 47871 68011 95297 240778

Table F.16: Optimised model parameter: Gref
0

Soil Size µ σ Min. Lower quartile Median Upper quartile Max.

Clay 1707 0.00014 3e-05 0.00011 0.00011 0.00011 0.00015 0.0002
Sand 718 0.00013 3e-05 0.00011 0.00011 0.00011 0.00014 0.0002
Peat 374 0.00016 3e-05 0.00011 0.00014 0.00015 0.00018 0.0002
Silt 274 0.00016 4e-05 0.00011 0.00011 0.00017 0.0002 0.0002

Table F.17: Optimised model parameter: γ0.7
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Soil Size µ σ Min. Lower quartile Median Upper quartile Max.

Clay 1707 2.6 3.2 0.0 0.0 1.5 3.5 10.0
Sand 718 1.6 2.3 0.0 0.0 0.0 3.5 10.0
Peat 374 2.6 3.2 0.0 0.0 1.0 3.5 10.0
Silt 274 5.1 4.1 0.0 0.5 3.5 10.0 10.0

Table F.18: Optimised model parameter: ∗c′

Soil Size µ σ Min. Lower quartile Median Upper quartile Max.

Clay 1707 36.4 8.8 15.3 29.4 37.5 42.9 50.0
Sand 718 33.9 5.8 15.1 31.8 34.3 36.4 50.0
Peat 374 39.9 7.5 19.9 33.8 40.0 47.0 50.0
Silt 274 39.9 6.8 19.3 37.1 39.5 44.4 50.0

Table F.19: Optimised model parameter: ∗ϕ′

Soil Size µ σ Min. Lower quartile Median Upper quartile Max.

Clay 1707 0.0 0.2 -0.7 0.0 0.0 0.0 1.2
Sand 718 0.4 0.6 -1.2 -0.1 0.0 1.1 1.2
Peat 374 0.1 0.3 -0.7 0.0 0.0 0.1 1.2
Silt 274 0.0 0.3 -0.7 -0.1 -0.1 0.0 0.7

Table F.20: Optimised model parameter: ψ

Soil Size µ σ Min. Lower quartile Median Upper quartile Max.

Clay 1707 0.41 0.12 0.23 0.32 0.39 0.51 0.74
Sand 718 0.44 0.08 0.23 0.41 0.44 0.47 0.74
Peat 374 0.36 0.1 0.23 0.27 0.36 0.44 0.66
Silt 274 0.36 0.09 0.23 0.3 0.36 0.4 0.67

Table F.21: Optimised model parameter: knc0

Soil Size µ σ Min. Lower quartile Median Upper quartile Max.

Clay 1707 0.6 0.3 0.1 0.2 0.7 0.9 1.0
Sand 718 0.8 0.2 0.1 0.7 0.8 0.9 1.0
Peat 374 0.6 0.2 0.1 0.5 0.6 0.8 1.0
Silt 274 0.3 0.3 0.1 0.1 0.1 0.3 1.0

Table F.22: Optimised model parameter: Rf
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Appendix G

Additional violin plots
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Figure G.1: Initial void ratio e0
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Appendix H

CPT
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Figure H.1: DKM5
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Figure H.2: DKM32
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