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Abstract

Hyperspectral techniques have found application for the investigation of objects and samples
in many scientific fields. Data evaluation approaches commonly either process them as stacks
of randomly ordered spectra or as flat images. This thesis aims at combining both, lateral
and spectral, aspects of hyperspectral data during data evaluation. Different approaches,
such as lateral distance and neighbor pixel augmentation, will be explored with modern
factorization techniques, such as t-stochastic neighbor embedding and self-organizing maps,
and supported by artificial neural networks. The routines developed are applied on selected
X-ray fluorescence data (XRF) sets from the field of materials science and cultural heritage.

The altered augmented data set concept consists in augmenting the spectrum of a central
pixel with the mean spectrum of its eight neighboring pixels. This new method is applied
to the data set of a bi-modal Ti-6Al-6V-2Sn alloy. Clustering the optimized augmented data
set with t-SNE reveals the existence of four components: phase with strong titanium signal,
phase with strong vanadium signal, the first phase on top of the second phase and the second
phase on top of the first phase. The later was not identified by clustering with t-SNE the
data set augmented with all the spectra of its eight neighboring pixels.

Clustering the XRF data set of a 13th century B.C. Egyptian mural painting with Self Or-
ganising Map (SOM) indicates areas with different thicknesses of copper and iron containing
pigments. Clustering with Fast interpolation-based t-SNE (FIt-SNE) also reveals information
about the painting sequence and the composition of a mixture of pigments. The pigments
are not separable with a simple observation of the XRF elemental distribution images. More-
over, FIt-SNE dramatically accelerates t-SNE and can provide well-separated clusters. These
properties are especially useful for large data sets, containing mixture of pigments.

Finally, I introduce an optimised Artificial Neural Network (ANN) for training the photo-
graph of a painting with the elemental distribution images, obtained by its XRF data set.
The elemental distribution images are upscaled with Laplacian Pyramid Super-Resolution
Network. In this way, we can identify with more accuracy the exact location of the damages
and retouches on a 17th century A.C. easel painting (portrait of Hortense Manchini), since
the result image is of high resolution.
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“I sometimes found myself writing letters to that girl containing nothing but lines
of crosses, one after another. One of those letters later fell into the hands of some
people who had an interest in penetrating the mystery, but they could never find
fault with such a devout cipher.”

— Hortense Manchini, Memoirs





Chapter 1

Introduction

1-1 The importance of machine learning in cultural heritage data
processing

Machine and deep learning are powerful tools that influence dramatically the advances of many
sectors, from medicine to cultural heritage. Its value would not be equally appreciated without
the scientific examination of paintings, archaeological treasures and other objects of historical
value. ML algorithms coupled with experimental data unravel the richness of cultural heritage
all around the world. The elemental mapping of a painting reveal its mysteries, from its origin
and authenticity to its process of creation. Image processing has versatile functions, since it
can classify the paintings or it can constitute a guide for restoration.

Especially during the cultural heritage campaigns, more and more data of a certain category
of artistic creations and other cultural heritage objects are extracted. How can all these
data transformed into information? ML algorithms have long proven to provide the ability of
processing of data from the cultural heritage field. On one hand, the methods of ML applied
to cultural heritage data follow the general ML advances and hence the reproducibility of
these algorithms are of crucial importance [1].

On the other hand, in a smaller degree the special demands and evolution of the cultural
heritage scientific research define the kind of ML algorithm compatible for analysing the rele-
vant data. Unsupervised machine learning algorithms, such as Principal Component Analysis
(PCA), are very efficient for the investigation of spectral data. However, supervised learning
with methods such as artificial neural networks can be the key for the processing of big data.
The main problem of supervised ML in the field of interest is the lack of suitable learning
data for algorithm’s training. In the future, the increasing number of data from the cultural
heritage field will create groups of similar data set, suitable for training. Therefore, supervised
ML seem as a promising answer to the demands of cultural heritage data interpretation and
presentation.
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2 Introduction

1-2 The fundamentals of machine learning

Machine learning is a field of study, where the computers are not explicitly programmed
but they learn a task from experience. The algorithms, provided by machine learning, are
employed to solve a broad set of problems in pattern recognition. Image classification is an
area in which machine learning is of importance.

Initially, an example of supervised machine learning task is presented, a simple case of image
classification. Fig. 1-1 (a)-(b) presents two images, each having a distinct area. Fig. 1-1 (a)
presents an area, which belongs to class A and Fig. 1-1 (b) presents an area, which belongs
to class B. We also have available a set of images, that we know belong to class A or class B.
Initially, we need to identify the measurable quantities, that distinct the two regions. Fig. 1-1
(c) assumes that these measurable quantities are the mean value and the standard deviation.
Therefore, after estimating the mean values and standard deviations from the available data
set with images, we plot the mean value of the intensity in each region of interest versus the
corresponding standard deviation around this mean. Each point corresponds to a different
image from the available database. The straight line is considered an option for separating the
two classes. The measurements used for the classification, the mean value and the standard
deviation in this case,are known as features.

(a) Class A (b) Class B (c) Plot of features

Figure 1-1: (a) Image region corresponding to class A, (b) Image region corresponding to class
B and (c) Plot of the mean value versus the standard deviation for a number of different images
originating from class A (circle) and class B (plus). A straight line separates the two classes [2].

Generally, l features xi = 1, 2, ..., l form the feature vector

x = [x1, x2, ..., xl].

Each of the feature vectors identifies uniquely a single pattern object. The straight line in
Fig. 1-1(c) is known as the decision line, and it constitutes the classifier, whose role is to
divide the feature space into regions that correspond to either class A or class B. If a feature
vector x, corresponding to an unknown pattern, falls in the class A region, it is classified
as class A, otherwise as class B. If the decision is not correct, then missclassification has
occurred. The patterns (feature vectors), whose true class is known and which are used for
the design of the classifier, are known as training feature vectors, constituting the labeled data.
The classifier, performing slightly better than the random guessing, is called weak learner and
the one, achieving high efficiency, is called strong learner.

Faidra Amargianou Master of Science Thesis



1-2 The fundamentals of machine learning 3

The issues, required to be handled in a classification task, are the below:

• The feature generation stage concerns the selection of features, according to the given
classification task.

• The feature selection stage concerns the number l of features.

• The classifier design stage includes the type of required classifier and the design of
classifier, based on an optimality criterion. The linear classifier does not always have the
best performance and the type of the non-linearity of the classifier should be identified.

• Finally, the system evaluation stage undertakes the task of the performance assesement
of the classifier, through estimation of the classification error rate.

In the previous example of image classification, we assumed that a set of training data were
available, and the classifier was designed by exploiting this a priori known information. This
is known as supervised learning.

(a) Underfitting (b) Overfitting

Figure 1-2: A simplified example for the bias and variance error in prediction models, leading to
overfitting and underfitting.

As any prediction model, supervised machine learning algorithms have prediction errors (bias
and variance). Bias is the difference between the average prediction of our model and the
actual prediction. Examples of high bias ML algorithms are Linear Regression, Linear Dis-
criminant Analysis and Logistic Regression, since they cannot capture the characteristics of
all the training data, but capture a simplified relation between the features. Low bias algo-
rithms are Decision Trees, k-Nearest Neighbors and Support Vector Machines. Variance is
the variability of model prediction for a given data point or a value. Even if high variance
algorithms perform very well on training data set, this may lead to bad predictions as far as
test data are concerned. Non linear algorithms and decision trees have high variance.

In Fig. 1-2, a simplified example of high bias and variance is presented. High bias and low
variance algorithms can lead to underfitting. This problem arises with limited training data
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4 Introduction

and the use of linear algorithms to describe non linear data. On the other hand, low bias and
high variance can lead to overfitting. In this case, we may capture the noisy data set together
with the underlying pattern in the data. Therefore, a trade-off between bias and variance is
necessary.

In high dimensional data, the training data are usually linearly separable. Then, we can select
two parallel hyperplanes that separate the two classes of data, so that the distance between
them is as large as possible. The region bounded by these two hyperplanes is called the
margin, and the maximum-margin hyperplane is the hyperplane that lies halfway between
them. This hyperplane defines the maximum margin classifier or else hard classifier. In
overlapping data, some data are allowed inside the margin, so that the best fit is achieved.
In this case, the classifiers are called soft margin classifiers.

However, training data are not always available, and there is another type of machine learning
tasks for which training data, of known class labels, are not available. In these cases, we are
given a set of feature vectors x and the goal is to unravel the underlying similarities and
cluster (group) similar vectors together. This is part of the unsupervised learning and is
called clustering.

In this introduction, we will focus on presenting the kind of data, usually found on the in-
vestigation of paintings, the hyperspectral data, as well as defining clustering and matrix
factorisation. Fig. 1-3 (a) shows an hyperspectral cube, where each pixel of the image has a
spectrum, characteristic of the elemental character of the material in this pixel. Hyperspec-
tral imaging is defined as simultaneous acquisition of spatially coregistered images, in many
spectrally contiguous bands. Therefore, it measures continuous spectral bands, as opposed
to multispectral imaging which measures spaced spectral bands. Fig. 1-3 (b) presents the full
spectrum of four pixels. The first contains high concentration of mercury, the second iron,
the third cobalt and the last one titanium.

(a) Hyperspectral cube (b) Spectra of selected pixels

Figure 1-3: (a) A painting of unknown artist mapped with X-ray fluorescence (XRF). Each of
the 389 × 290 pixels with 2048 channels has a characteristic spectrum. (b) A plot of the XRF
spectra of four pixels that contain high concentration of an important element (mercury, iron,
cobalt, titanium).
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1-3 Aim and structure of the thesis 5

In terms of matrices, the data matrix D, containing n columns (pixels) and d rows (spectral
channels) can be decomposed into the matrices W and H. The basis vectors W (loads, end-
members, archetypes) contain the spectral information in a matrix of k bases by d channels,
where k<d. The coefficients in H (scores) are represented by a k bases by n pixels, containing
the lateral information that corresponds to the k bases. The selection of the remaining data is
related with the goal of the data processing, but generally its minimization is recommended.
According to the Factor Analysis, the residues are represented by a matrix d by n:

Rdxn = Ddxn − W dxkHkxn (1-1)

The complexity of the data set is reduced (k < d), in order to increase the computational
performance and mainly to evaluate the data through a representation, understandable by
humans. According to the way of determining the matrices W and H, different approaches
for matrix factorization can be applied, with the most popular one in the cultural heritage
field being the Principal Component Analysis (PCA). PCA, as well as other dimensionality
reduction techniques, are also used for clustering.

A clustering algorithm can be employed to reveal the groups in which feature vectors are
clustered in the l-dimensional feature space or the reduced space. For instance, the groups
are formed based on the chemical character of the pigments or the compositional similarities
in a painting.

Two issues of unsupervised machine learning are the choice of an appropriate way to measure
’similarity’ between feature vectors and of the proper algorithm or algorithmic combination
based on the similarity measure.

Semi-supervised learning can be used either for classification or clustering tasks. In the case
of classification tasks, set of patterns of unknown class origin (unlabeled data), in addition
to the training patterns (labeled data),whose true class is known. If we have limited labeled
data at hand, it is important to recover additional information from the unlabeled samples,
related to the general structure of the data. In the case of clustering tasks, labeled data are
used as constraints. The clustering task is constrained to assign certain points in the same
cluster or to exclude certain points of being assigned in the same cluster.

1-3 Aim and structure of the thesis

This thesis aims to develop and optimize methods for combining spectral and spatial infor-
mation during the investigation of hyperspectral data from the field of material science and
cultural heritage. The current studies on spectroscopic images are based only on the explo-
ration of the spectral contribution of the data set and ignore the spatial information. With
the goal of exploring more challenging and complex XRF data sets, the spectral information
is combined with the spatial information, which is presented either in the form of photograph
or in the form of the neighboring pixels of the XRF data sets.

Chapter 1 presents the importance of machine learning during the evaluation of data from
the field of cultural heritage and introduces some basic information about machine learning
methods. Chapter 2 is a literature review of conventional methods, applied in this thesis and
of spectral/spatial data fusion approaches, found in the current bibliography. Conventional
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6 Introduction

methods for hyperspectral data processing with supervised machine learning, such as typical
artificial neural networks and convolutional neural networks, are presented. The dimensional-
ity reduction and clustering methods, performed in this thesis, are briefly explained together
with the relevant bibliography. Chapter 3 presents the four examined data sets and describes
the developed methods for combining spectral and lateral information for the examination of
the titanium alloy’s and paintings XRF data sets. Chapter 4 contains the results of applying
the advanced methods to the above data sets. Some of these results are compared with the
results obtained by classical methods or by simulated data sets. The presentation of the re-
sults is followed by their interpretation and discussion. Finally, in Chapter 5 the conclusions
and suggestions for future research are presented.
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Chapter 2

Literature review

2-1 Conventional methods for hyperspectral data processing with
supervised machine learning

2-1-1 Artificial Neural Networks

At the core of artificial neural networks, we can find the neurons, or else nodes or units. Each
neuron receives the inputs, multiplies each input by a parameter, called weight, sums the
values of the weighted inputs and inserts the value into an activation function. As shown in
Figure 2-1 [3], neural networks have an input layer with n nodes, such as an observation with
n features, and an output layer with nodes representing the classes. Between the input and
the output layer, we have the hidden layers that transform the features values from the input
layer to something that, one processed by the output layer, it resembles the target class.

The weights of artificial neural networks are initialized to small random numbers. In forward
propagation, the initial observations propagate through the hidden layers and give output
value or values, which are compared with the true values of the observations through a
loss function. The process of backpropagation refers to the propagation of an algorithm
backwards to identify the degree that each parameter contributed to the error between the
true and predicted values. The weights are adjusted according to an optimisation algorithm,
called gradient descent. Epoch is the process of one forward and backward propagation. The
training consists of multiple epoques. Obviously, the input observations are training data,
since in order to train the algorithm to classify correctly an unlabelled observation, we need
to optimise its parameters based on known observations. Therefore, we create a structure
that successfully labels unknown data.

2-1-2 Convolutional Neural Networks

A convolutional neural network is a special type of deep learning network, designed to be
used on spatial data and consists of three types of hidden layers: the convolutional layers,
the pooling layers and the fully connected layers.
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8 Literature review

Figure 2-1: Illustration of a digit-classification model. The original input (input layer) is a
number that needs to be recognised by the system. The model has three hidden layers, which are
representations of the original input. The output layer consists of 10 neurons, that correspond to
the numbers from 0 to 9.

Convolutional kernels are the filters, contained in the convolutional layers, that when applied
to the input layer (usually image), they produce the output feature map. Filter is a matrix
of integer numbers applied to a subset of the input image. Each pixel of the subset area of
the input image is multiplied by the corresponding integer number of this matrix, that is the
convolutional kernel. Then the values of all pixels of the subset image are summed up, giving
a single value to this subarea. The filter is then moved to another subset area of the input
image and repeats the same process until the whole input image is filtered. Stride is called
the magnitude of the glide of the filter between the different areas of the input images. In
this way, the output feature map is created.

The advantage of convolutional kernels is that they capture the spatial and temporal depen-
dencies in an image, since they do not simply transform the image into an one column feature
vector. The integer values of the matrix of the filter constitute the weights, which with proper
training capture properly the spatial information. Figure 2-2 (a) presents the valid padding,
where a kernel filters an area of the input image with the same size. The convoluted matrix
will be reduced. On the contrary, same padding refers to the filtering of an augmented initial
image with kernel such that the convoluted matrix has the same dimensions as the input
image. Furthermore, the convolutional layers can be more than one. The first convolutional
layer captures the low level features of the image, such as the edges and the color, while
additional levels capture high level features, creating a more detailed representation of the
input image. However, the increase of layers is translated to higher computational cost.

Max pooling (Figure 2-2(b)) returns the maximum value from the portion of the image covered
by the Kernel, while average pooling returns the average equivalent. The benefits of pooling is
the reduction of the spatial size of the convolved features and subsequently the decrease of the
computational power required for data processing. Even if the dimensionality is reduced, the
effective training of the model is maintained. The extracted dominant features are rotational
and positional invariant. This effect is important because when we manipulate the data
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2-1 Conventional methods for hyperspectral data processing with supervised machine learning 9

structure to include spatial information, it is not straightforward to ensure that the features
are rotational and positional invariant.

Finally, the fully connected layer (Figure 2-2(c)) is the same as in the artificial neural networks.
The neurons are fully connected to all the the activations from the previous layers. Specifically,
the representation of the input image after padding and pooling is flattened into a column
vector. The flattened output is fed to a feed-forward neural network and backpropagation
applied to every iteration of training.

The most recent and critical applications of convolutional neural networks (convets), related
to the focus of this literature review, will be presented. Specifically, the presented papers are
about convets for the processing of spectral data and convets for the examination of paintings.

The recent advances in hyperspectral image proccessing with convets focus on hyperspectral
image classification. The usual case is the use of spectral images and not raw spectral data.
This approach has the disadvantage of loss of spectral information, since different spectra may
produce similar images of different objects and create a false similarity of spectral features
between these different objects. The weaknesses of traditional methods, such as random
forests and SVMs, compared to convets are the difficulty in spatial-spectral feature extraction
for big data and the superficial feature extraction of hyperspectral images.

Han et al. [4] presents the most advanced effort so far for joint spatial-spectral hyperspectral
image classification, based on convets. The main challenge, associated with convets for hyper-
spectral image classification, is the absence of a commonly-used methodology for correlation
between the spectral and spatial information, as well as the lack of the training samples.
Both these obstacle are being addressed in the paper. As can be seen from the Figure 2-3,
a two-stream convolutional network is designed to learn the spatial-spectral features of the
different-scale spatial pixel blocks around the center pixel. By selecting the blocks with sizes
of 3x3 and 5x5 around the center pixel containing all the hyperspectral bands, more spatial
information is included. The problem of limited data is addressed by a spatial enhance-
ment method. This mode of data augmentation entails the insertion of spatially rotated and
row-column transformed hyperspectral data into a two-stream convolutional network.

Deep neural network technology has been applied to datasets from electron energy loss spec-
troscopy (EELS), scanning probe microscopy [5] and Fourier-transform infrared spectroscopy
(FTIR) [6].

Chatzidakis et al. [7] use electron energy-loss raw spectra of Mn2+, Mn3+ and Mn4+ to test
and train a convolution neural network to recognise the existence of manganese and their
different oxides in samples. The extension of this study can be beneficial for the examination
of pigments in paintings. The accurate identification of different oxides can discriminate
between retouches and original paint. The advantage of CNNs is that they are automated
feature extractors and compared to texture descriptors for feature extraction entail less human
bias. The novelty of this paper lies on the achievement of translation invariance. This is an
important feature, since a practical classifier would be one trained from one data set acquired
from one spectrometer but potentially tested on another instrument with different calibration.

Oviedo et al. [8] propose a fast and interpretable classification of small X-ray diffraction
datasets using data augmentation and deep neural networks. The paper presents a method-
ology of data augmentation of raw XRD data in the frame of convets.

Master of Science Thesis Faidra Amargianou



10 Literature review

(a) Padding. (b) Pooling. (c) Fully connected.

(d) Demonstration of a convolutional neural network for the classification

of digits.

Figure 2-2: An illustration of the three main stages of a convolutional neural network. (a)
During valid padding or no padding, a kernel 3x3 is applied to a 3x3 subarea of a 6x6 input
image, generating a 4x4 output feature map. (b) During max pooling, the 6x6 matrix is reduced
to a 3x3 output feature map by considering the maximum value of each of the 6 subareas with
4 pixels. (c) After valid padding and pooling, we have a layer whose neurons are fully connected
with all the activations from the previous layers. The fully connected layer functions as the
layers of an artificial neural network. (d) Demonstration of a convolutional neural network for
the classification of digits with two convolutional and two pooling layers. In this example, an
activation function ReLU (rectified linear unit) is applied to the values of the previous layers to
provide non negative input data for the fully connected layer, by zeroing the negative values [4].
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2-2 Conventional methods for hyperspectral data processing with unsupervised machine learning 11

Figure 2-3: The overall structure of the method for hyperspectral image classification with
convolutional neural networks. Spatial information is included by selecting blocks with sizes of
3x3 and 5x5 around the center pixel containing all the hyperspectral bands. Data augmentation
is achieved with insertion of spatially rotated and row-column transformed hyperspectral data [4].

Finally, the paper of Zenf et al. [9] is a recent example of a convolutional neural network for
pixel-wise reconstruction of paintings. Specifically, the article investigates the reconstruction
of degraded drawings of Van Gogh. Reproductions are used as reference information for the
original appearance of drawings. The advantage of convets over traditional methods, such as
k-nearest neighbours, is their better performance in learning colour information and the use
of only some of the pixels in training dataset.

2-2 Conventional methods for hyperspectral data processing with

unsupervised machine learning

After reporting the literature review for the supervised classification, now the unsupervised
case is examined.

Dimensionality reduction deals with the inability of processing effectively data, due to the big
size on the feature space. The dimensionality reduction algorithms project high-dimensional
data to a low-dimensional space, retaining as much of the salient information as possible,
while removing redundant information. As a result, more patterns are identified effectively
because noise has been reduced. Clustering compares how similar the data for one observation
is to data for other observations and groups.

In this chapter, the most important dimensionality reduction techniques, Principal Compo-
nent Analysis (PCA), Indepedent Component Analysis (ICA), Non-negative matrix factori-
sation (NMF) and Simplex Volume Maximisation (SiVM), are presented. Additionally, the
most popular and promising clustering algorithms, Hierarchical Clustering Analysis (HCA),
hard clustering, t-distributed stochastic neighbor embedding (t-SNE) and self organising maps
(SOM), are introduced with the relevant literature review.

For a better explanation of clustering and dimensionality reduction techniques, we use the
XRF or RIS experimental data of two paintings. The main data used for the examination of
the painting of Figure 2-4 (left image) [10] were extracted by its XRF signal. This elemental
analysis determines the age of the painting between late 17th to early 18th century. Knowledge
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Figure 2-4: Both images are photographs of paintings. The left one is a 17th to early 18th
century AC easel painting of unknown artist. The right one is a 13th century BC mural in the
tomb of Nakhtamun, showing the deceased (left) negotiating with three gods for his passage into
the netherworld [10].

of the historical context allows the identification of the painting as a portrait of Hortense
Mancini, Duchesse de Mazarin. The absence of underdrawing fits the claim that the examined
painting is probably a copy of another portrait. However, a more detailed experimental and
data analysis work can reveal the particularities of the pigments and painting methods of the
artist.

The second painting, Figure 2-4 (right image), is a mural in a Ramesside tomb (13th century
BC) of the Theban Necropolis in Egypt. Both RIS and XRF data were acquired and t-SNE
offered an effective way of presenting interprentable data.
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Figure 2-5: Scatter plot of t-SNE representation with manually selected clusters to the left and
the corresponding cluster image to the right [10].

2-2-1 Clustering algorithms

t-SNE

t-distributed stochastic neighbor embedding (t-SNE) is a technique that visualises high di-
mensional data by creating a single map of datapoints, that reveal the structure at multiple
scales. Van der Maarten and Hindon show that the visual performance of t-SNE is higher
than many other visualisation techniques [11]. t-SNE, as a dimensionality reduction tech-
nique, uses repulsive and attractive forces between datapoints to preserve the original high
dimensional clusters.

Visualising datapoints with t-SNE is based on three important concepts: the perplexity pa-
rameter, the matrix of similarity scores and the student’s t-distribution function.

Initially, the similarity between all datapoints of the same cluster is calculated by project-
ing the datapoints into the low dimensional space through the t-distribution. Since the
t-distribution will be wider for different clusters, the similarities should be properly scaled.
The density or scarcity of the datapoints in an area is portrayed by the perplexity param-
eter, which reflects the effective number of neighbours around a datapoint. The use of the
t-distribution deals with the issue of outliers or remote clusters. The benefit of t-SNE over
SNE is that at the same time considers the effect of outliers and the effect of distances be-
tween datapoints in the low dimendional space. Dissimilar points with small pairwise distance
strongly repel each other, but not infinitely.

Based on this article [11], many efforts to optimise, mainly the computational complexity of
O(n2) with n the number of datapoints, have been undertaken. Van der Maarten accelerated
t-SNE by using the variant of the Barnes-Hut algorithm to approximate some features of t-
SNE (BH t-SNE), requiring Nlog(N) computations [12]. Altered formulation of t-SNE, such
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as Hierarchical Stochastic Neighbor Embedding (HSNE) for visual analysis of mass cytometry
[13], are implemented to satisfy the demands of different fields. Linderman et al. [14] present
the fastest implementation of t-SNE, called Fast interpolation-based t-SNE (FIt-SNE), with
computation time reduced by at least ten times compared to BH t-SNE.

The benefits of data visualisation with t-SNE have been exploited by Alfeld et al. [10], applied
to RIS and XRF fused data. Specifically, the XRF image with the most dominant elemental
peaks was used as a reference image for the data fusion. A feature detection algorithm, the
scale-invariant feature transform (SIFT), was used for the fusion of the reference image and
the RIS image and a subsequent fusion of data. t-SNE, applied to fused data, provides a
data representation, which contains the visualisation of information from different techniques
without the need of image alignment.

Figure 2-5 [10] is a t-SNE representation with manually selected clusters of fused data. This
representation highlights Egyptian painting techniques. Three stages can be identified: (a)
Fe- containing pigments are used for the skin and the yellow background is created, then (b)
white paint, probably, calcite is applied to the background, covering part of the dark (cluster
9) and of the yellow paint (cluster 6) and (c) Fe- based lines (dark red) are painted.

Another technique that presents promising characteristics for the analysis of fused data is
the Self Organising Maps (SOMs), discussed later in this Chapter. In a future work, the
performance of SOMs and t-SNE to fused data can be analysed and compared.

Self organising maps

The self-organising maps are competitive-cooperative learning algorithms. The main concept
of SOMs is the below:

• SOMs consist of nodes, each of which is represented by the vector of weights and its
position in the map space.

• Initially, the values of the vectors are assigned randomly.

• The neuron map is trained through an iterative process from the input data. Specifically,
at each step, a single spectrum is taken from the input data and the distance between
the input datapoint and all the neurons is calculated.

• The overall Best Matching Unit (BMU)- the node with the smallest distance from all
calculated ones- is the winning neuron and adjusts its weight according to the input
data. At the same time the matrix is adjusted by altering accordingly the weights of
the neighbours of the BMU.

• This whole process is repeated for as many times as the representative subset of spectra.
Representations as many as the spectra are created and therefore all spectra are mapped
to the trained SOM.

These depictions are related with elemental representations since in certain wavelengths,
specific elemental peaks dominate. The corresponding representation reveals the place (nodes)
of a selected element. Additionally, a cumulative trained SOM indicates the nodes that
describe the majority of spectra.
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The SOMs were introduced by Kohonen in the 1980s [15]. The analysis of LIBS data with
SOMs is common in geochemistry. In 2015, Pagnotta et al. [16] compare two brass alloys
with SOM representations based on LIBS data.

SOMs are applied to paintings and archaeological objects some decades later than their inven-
tion [17, 18]. Based on the quantity of silver attained with XRF from an Etruscan Gold Coin
Collection, the coins were classified in groups with the self-organsising mapping method [17].
Pagnotta et al. chooses the SOM elemental representations of thousands of LIBS data, due to
the rapid aquisition of the elemental results [18]. The same year chemical mapping of various
geological samples is also successful with SOM [19]. Archaeology and geochemistry research
seem to provide each other with information for LIBS and SOM algorithms.

Recently, increasing interest was shown for the application of SOMs in paintings and manuscripts.
SOM can reduce the dimensionality of the XRF data set, by creating clusters that share the
similar spectra. XRF spectra of a peruvian watercolour painting from the Getty Research In-
stitute collection are investigated with SOM clustering ([20]). Observing the mean spectrum
per cluster gives information about the materials of each cluster. Although X-ray images are
two-dimensional representations of three-dimensional objects, this information can indicate
layers and substrates. These indications are later confirmed with Raman spectroscopy in
selected areas of the painting.

2-2-2 Dimensionality reduction algorithms

Principal Component Analysis

Principal Component Analysis (PCA) is the most popular and frequenly applied chemometric
method, especially to the experimental data of paintings. In PCA, the scores are orthonormal
and the loads orthogonal.

In Figure 2-6 (d), we can see the five representation given by the five first principal components
covering 0.958 of the cumulative explained variance. This means that most features can be
represented by the first four PCAs. However, high variance does not always coincide with
high degree of information, since PCA can disregard in its first components the information
of an area corresponding to only few pixels.

According to Figure 2-6 (e), the first principal component (PCA 1, Figure 2-6 (a)) has the
rising edge of iron and lead is in the negative part of the representation. PCA 2 (Figure 2-6
(b)) has calcium in the positive part and lead with iron peaks in the negative one. PCA 3
(Figure 2-6 (c)) has among others vermillion, titanium and zinc in positive part and calcium
in the negative part. This is in line with the Figure 2-6 (c), where we can observe dark blue
spots on the forehead and certain areas of the dress.

There is a free software, PyMCA, that provides the elemental maps extracted from the ex-
perimental data, as presented in Figure 2-7.

The elements identified are sulphur, chlorine, arsenic, potassium, calcium, titanium, chromium,
manganese, iron, cobalt, copper, zinc, arsenic, rhodium, tin, mercury and lead. The most
amazing optical illusion in the painting is the color of the dress. It appears light green, even
if there is not a single green pigment identified. It is actually a shadow of yellow, created by
lead tin yellow type I (Pb2SnO4) on the top of black carbon (CaPO4). The elements can
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(a) PCA 1 (b) PCA2 (c) PCA3

(d) Quality of description (e) Loads

Figure 2-6: Representation of the XRF data by PCA. (a),(b),(c) The bases are shown as images
and (d) the cumulative explained variances as a function of the first fifteen PCAs. (e) Plot of the
corresponding loads.
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be associated with certain pigments, based on the current bibliography (Table 2-1 and Table
2-2). The use of lead tin yellow for the dress and black carbon, containg calcium for the
shadows of the dress, is well captured by PCA 3, as mentioned before. For the coloring of
the cheeks and the lips, vermilion red (HgS) is chosen, an information also contained in PCA
3. The existence of potassium in the hair may suggest the presence of prussian blue, even if
this is not highly probable.

Cerulean blue (CoO · nSnO2), titanium white (TiO2) and zinc white (ZnO), shown in Figure
2-7, are colors of the 19th century, used as restoration pigments. There is also a possibility
that gypsum (CaSO42H2O) is used locally for restoration purposes, due to the abundance of
sulfur in the white upper lace of the dress near the chest. Sulfur is barely visible in the lips,
due to the presence of vermilion (HgS).

Conclusively, XRF and microscopic analysis detects cerulean blue, titanium white, chromium
pigment and zinc white, which are pigments of the 19th century. However, all of them are
used for retouches. Gypsum, earth pigments, lead tin yellow, lead white, vermilion, azurite,
calcite(chalk white) and bone black are pigments connected with the history of painting and
constitute the main palette of the painting. Therefore, the examined painting is a portrait of
Hortense Mancini, dated between late 17th to early 18th century. XRF and other analytical
techniques allowed the identification of pigments- already used before the 18th century- as
the initial (principal) pigments.

Independent Component Analysis

PCA creates features mutually uncorrelated to avoid information redundancies. For cer-
tain application, Independent Component Analysis (ICA) is superior. ICA assumes a linear
combination of the base vectors and demands statistical independence and not simply uncor-
relatedness of output data. With this demand more information can be exploited.

This independence may have some similarity with the physical function of neural outputs.
The higher performance is only relevant for non-Gaussian random variables. Otherwise, there
is no unique solution, as imposed by PCA through the orthogonality. Even if it responds to
this physical reality, the base vectors as linear combination do not respond to the reality of
the hyperspectral data in the VIS and NIR region.

In the case of the representations of Figure 2-8 (a), (b) and (c), new information about the
painting is not revealed with ICA. Hence, we are presenting the loads for the 13th century
BC mural.

From Figure 2-8 (g), we can make the below observations. ICA 1 (Figure 2-8 (d)) includes
predominantly the information of iron in hematite (Fe2O3) and is very similar with the
image of the elemental distribution of iron. ICA 2 (Figure 2-8 (e)) has copper, contained
in CaCuSi4Si4O10, in the positive part and calcium green (CaCuSi4Si4O10 + Si4O2), also
in the positive part, but with very low intensity. This difference of peak height create a
contrast in the depiction of copper and green calcite. Finally, ICA 3 (Figure 2-8 (f)) contains
the three dominant peaks of the XRF signal for the mural, calcium, iron and copper. This
concentration of dominant peaks in one component does not help the better understanding
of data.
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Table 2-1: Chemical compounds (second column) with the associated name of white, yellow and
red pigments (first column) [21].

Faidra Amargianou Master of Science Thesis



2-2 Conventional methods for hyperspectral data processing with unsupervised machine learning 19

Table 2-2: Chemical compounds (second column) with the associated name of green, blue and
black pigments (first column) [21].
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Figure 2-7: Elemental maps for the portrait of Hortense Manchini (unknown artist). Next to
the photography of the painting, there is an elemental map of vermillion (red), iron (green) and
titanium (blue). The rest of the images are the elemental distributions of lead, iron, mercury,
copper, tin, cobalt, potassium, sulfur, titanium and zinc, respectively.
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(a) ICA 1 (b) ICA 2 (c) ICA 3

(d) ICA 1 (e) ICA 2 (f) ICA 3

(g) Loads

Figure 2-8: Representation of XRF data sets by Independent Component Analysis (ICA). (a),
(b) and (c) Bases are shown as images for the portrait of Hortense Mancini and (d), (e) and (f)
for the mural. (g) Plot of the corresponding loads for the mural.
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The popularity of ICA has considerably increased in the cultural heritage field since the pub-
lication of the article concerning the digital image analysis to uncover the underwritten text
in the Archimedes palimpsest by Salerno et al. [22]. However, a comparative article between
blind Source separation algorithms reveals that the orthogonalization algorithm uncovers the
hidden text in a painting [23]. The research around hidden details in ancient manuscripts and
paintings is still in its original phase. The review of Tonazzini et al. [24] proposes, besides
PCA and ICA, Fisher linear discriminant analysis (LDA), self-organizing maps (SOMs) and
spectral angle mapping (SAM) for analysis of data from various experimental techniques.
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Non-negative Matrix factorisation

Non-negative Matrix factorisation (NMF) guarantees the nonnegativity of the elements of the
resulting matrix factors, more close to the physical reality of the reflectance spectra [25]. The
computational cost increases significantly and the number of bases is not straightforward. As
was with ICA, NMF has the advantage of the blind source separation [26] and as a result
the K-M method can also be applied here. As far as face recognition is concerned, NMF has
superior performance compared to PCA and ICA.

In the case of the representations of Figure 2-9 (a), (b) and (c), new information about the
painting is not revealed with ICA. Hence, we are presenting the loads for the 13th century
mural.

In this case, NMF analysis is superior compared to PCA and NMF, mainly due to two
factors. The first one is the extraction of spectral information due to the preservation of the
non-negative character of the data. The second one is that in this case, we get an efficient
separation of pigments.

Qualitatively, we can say that the three NMFs (Figure 2-9 (h)) achieve a separation of the
peaks describes in ICA 3 (Figure 2-9 (g)) . NMF1 has the calcium peak, NMF 2 the iron
peak and NMF 3 the copper peak. NMF 4 has the arsenic peak.

NMF is a fast and robust unsupervised technique, which can give insights in semi-known
systems by supporting the interpretation of XRF imaging data. Alfeld et al. [27] used NMF to
understand more in depth the transformation kinetics during continuous heating of a double
phased titanium alloy. Finally, the manuscript, known as the Salterium, was illuminated
by the data from the XRF and Raman spectroscopy. NMF highlighted hidden texts [28].
NMF analysis of Real-time MA-XRF imaging spectroscopy of the Virgin with the Child by
Antonello de Saliba directed its future restoration [29].
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(a) NMF 1 (b) NMF 2 (c) NMF 3

(d) NMF 1 (e) NMF 2 (f) NMF 3

(g) Loads

Figure 2-9: Representation of the XRF data by Negative Matrix Factorisation (NMF). (a), (b)
and (c) Bases are shown as images for the portrait of Hortense Mancini and (d), (e) and (f) for
the mural. (g) Plot of the corresponding loads for the mural.

Faidra Amargianou Master of Science Thesis



2-3 Data fusion 25

2-3 Data fusion

Multi-modal imaging and data fusion treats the case of more than one data set. The terms
multi-modal imaging and data fusion are used under different contexts.

Multi-modal imaging may refer to the parallel acquisition of different spectroscopic techniques.
This technique offers fast acquisition of data. However, it presents one major drawback. The
use of one instrument for many experimental tasks at the same time yield inferior results.
Instruments that specialize in a specific spectroscopic task have higher performance.

Another more common practice is the acquisition of data separately evaluated but jointly
interpreted. It does not refer to the combination of the raw data but the combination of the
results in order to derive the final interpretation and conclusion. The fusion of algorithmic
methods for the analysis of data tries to exploit with one algorithm the benefits of the standard
algorithmic techniques.

The data fusion or else the pixel by pixel fusion refers to the separate acquisition but combined
evaluation of fused data. When the datasets are from a different object-area by the same
technique, the data fusion is called horizontal data fusion. When the datasets are from the
same area with different techniques the data fusion is called vertical data fusion. The vertical
data fusion is a field that is constantly developing and is highly promising. By fusion of the
raw data, the acquisition of results is faster and the synergy effects of both spectroscopic
techniques are exploited. However, there are two main disadvantages. The first one is the
difficulty in aligning with a single pixel precision and derive an accurate representation of
data. The other issue is the determination of weights on the spectral features of interest. The
SIFT descriptors can occasionally present a reliable solution, but cannot be part of a common
method in data fusion.

Another issue for discussion is the benefits of the fusion of the image information (intensity
of pixels) and spectral information. Obviously, the feature vectors contain the spectral infor-
mation, but the spatial information at least directly is not included in the feature vectors.
Data augmentation can also refer to different types of data treatment. One possible data
augmentation is the one where each feature vector is expanded in dimensions to include the
spatial information. The former can take the form of pixel intensity or of neighbouring pixel’s
spectrum.

Combination of spectral and spatial data It was mentioned that t-SNE and SOM can
capture some spatial information. In the previous Section, I presented a CNN for joint
spatial-spectral hyperspectral image classification.

Instead of using another technique for capturing more information, neighbouring pixel data
augmentation is a simple way of fusing spectral and spatial information [30] (Method I ).
As shown in Fig 2-10 [30], in neighbouring pixel augmentation, the spectral data of the
neighbouring pixels are added to the spectral data of the central pixel. The benefits of this
technique are the decrease of the signal to noise ratio and the revelation of more fine structures
of the examined object. Therefore, instead of varying the ML techniques, we can alter the
data structure and achieve better results.

Finally, there is another promising way to create augmented data sets, which include both
spatial and spectral information. One way is to include the spatial information by exploiting

Master of Science Thesis Faidra Amargianou



26 Literature review

Figure 2-10: The spectrum of a pixel is usually represented by one cube. In the pixel data
augmentation, each pixel is corresponded with nine spectra, since the spectra of the eight nearest
neighbours of each pixel are considered.

the Wavelet transform algorithm (SWT). This algorithm uses low and high pass filters. For
each elemental distribution image, four images of wavelet details are obtained: approximation,
horizontal, vertical and diagonal coefficients. Spatial and spectral information is combined
by creating an augmented data set with the original elemental distribution images followed
by the images with the wavelet details [31].
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Chapter 3

Material and methods

3-1 Data sets description

Four data sets are presented: a test data set, a X-ray fluorescence data set of a titanium alloy
and two X-ray fluorescence data sets of oil paintings.

3-1-1 Test data set

The nine dimensional test data set with 60 × 60 pixels includes three main elements: a small
rectangle, a big rectangle and a background (Figure 3-1). For instance, the first image consists
of two areas with no information and a background with data from the normal distribution.
This oversimplified data set serves the initial evaluation of the developed methods. The
methods with interesting results for this data set are applied to real data sets, such as the
XRF data set of the titanium alloy.

3-1-2 XRF data set of a titanium alloy

The Ti-6Al-6V-2Sn alloy with thickness 10mm and area 4 mm × 4 mm is heated with 5 ◦C
min−1 and is quenched with helium at 530 ◦C. The concentration of minor components in the
bulk material was given by the manufacturer as Al 6 wt%, V 6 wt%, Sn 2 wt%, Cu 0.75 wt%
and Fe 0.35-1 wt%. The sample was investigated by micro-XRF at the microprobe end-station
of beamline P06 at Deutsches Elektronen-Synchrotron (DESY) in Hamburg, Germany. The
primary beam was 11.5 keV and the Vortex EM detector had active area of 50mm2. Areas of
10µm × 10µm were scanned with 0.5µm step size and a dwell time of 0.2 s per pixel. Details
on XRF imaging for this sample can be found in previous study ([10]) of the titanium alloy’s
XRF data set with Non-Negative Matrix Factorisation and Monte Carlo simulation.

In Figure 3-2 a), elemental distribution image of the sample for iron (Fe-K) for an area of
201 × 205 pixels is shown and the region of interest (36 × 40 pixels) is outlined. The sample
presents a matrix of β phase, rich in vanadium, and α phase, rich in titanium. The two phases
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Figure 3-1: The test data set consists of images with 60 × 60 pixels. The main elements are
one small square, one bigger square and a standard normal distribution.
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are obvious in the Figure 3-2 b). The areas of high intensity Fe-K (light areas) are mainly
attributed to β phase and the dark areas to α phase. The noisy appearance of the Ti-K
is caused by variations of the intensity of the primary beam (Figure 3-2 c)). Theoretically,
iron, vanadium (Figure 3-2 d)), nickel and copper (Figure 3-2 e)) are stabilisers of β phase,
while titanium and tin are stabilisers of α phase. After normalizing each distribution image
to the square root of its mean value (dividing each feature vector by Frobenius norm), the
dimensions of the elemental distribution images are reduced to typical coefficient images
obtained by NMF. Figure 3-2 g) and h) can be attributed to β and α phase, respectively.
The interpretation of the other component (Figure 3-2 f)) is not straightforward.

The region of interest for the titanium alloy is simulated with Monte Carlo. The simulated
data set, analyzed with NMF (Figure 3-3), confirms the nature of the first typical coefficient
component (Figure 3-2 f)) as the presence of α above β phase. In summary, Base 0 represents
the superposition of α on the β phase, Base 1 the α phase and Base 2 the β phase. The
differences between real and artificial data set is the abundance of iron in the α phase and
Base 0 also contributes strongly to the area, where β phase is found. Even if there are
quantitative differences, the simulation confirms the presence of α phase on top of β phase.

3-1-3 XRF data set of an easel painting

After creating an oversimplified test data set and selecting a simple region of interest from a
titanium alloy’s data set, the conventional techniques and new methods are applied to XRF
data sets from the field of cultural heritage. The XRF data set of the oil painting, the portrait
of Hortense Mancini, consists of 389 pixels in height and 290 pixels in width. After fitting
the data, 26 elemental images are created and the most important between them are shown
in Figure 3-4. As mentioned in Chapter 2, the elemental distribution images do not reveal
any hidden drawing or any hidden artistic composition. The restoration pigments are easily
identified and contain cobalt, zinc, titanium and manganese to restore the damage all over
the painting. The interpretation of the elemental image is straightforward. Hence, additional
information can be extracted if the information of the high resolution image and the elemental
distribution images is combined.

3-1-4 XRF data set of a mural panting

The last data set is an XRF data set of a mural’s segment in a Ramesside tomb (13th century
B.C.) of the Theban Necropolis in Egypt. The photograph of the mural painting shows the
deceased on his way to the afterlife facing three gods [10]. The XRF data set is obtained
by a XRF instrument with a Pd anode. It operated at 30 kV and 50 µA and a silicon drift
detector with an active area of 25 mm2 and a nominal thickness of 500 µm. The pixel size
was 0.5 × 1.0 mm (h × v), a dwell time of 200 ms/pixel in 106 minutes and a size of the
primary beam of about 1.1 mm. The details of the instrument [32] and the acquisition mode
[10] are described in detail in the referenced articles.

The methods of this thesis project are applied only to a certain segment of the mural painting.
The purpose of using the advanced methods for segments of this painting is not the overall
examination of the painting. The main aim is to reveal hidden information or optimize
the quality of information, obtained by segment of the painting, due to the application of
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Figure 3-2: Elemental distribution image of 10 mm × 10 mm with a step size of 0.5 mm and
a dwell time of 0.2 s of a titanium alloy sample (a) for the iron element. (b), (c), (d) and (e)
Elemental distribution images of two primary grains for iron (Fe-K), titanium (Ti-K), vanadium
(V-Kα) and copper (Cu-Kα). (f), (g) and (h) Typical coefficient images obtained by NMF from
the data set of this sample.
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Figure 3-3: Top: Typical coefficient images from the artificial data set, based on the results of
the Monte Carlo simulation. Bottom: Intensities of the spectra from the artificial data set [10].
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Figure 3-4: The first image is a photograph (h3880 × w3740 pixels and 60 × 73.2 cm) of the
oil painting, followed by elemental distribution images (h389 × w290 pixels) for authentic pig-
ments, including lead, mercury, copper, calcium, tin and iron. The last row images are elemental
distribution images for restoration pigments, including cobalt, zinc, titanium and manganese.
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Figure 3-5: Photograph of the investigated segment of the 13th century B.C. Egyptian mural
painting together with the elemental distribution images for authentic and restoration pigments.

Master of Science Thesis Faidra Amargianou



34 Material and methods

advanced methods. The selection of this XRF data set is suitable for enhancing the amount
of the information, obtained by SOM and t-SNE clustering. The painting contains iron- and
copper- based pigments, not easily separable simply by the elemental distribution images.

Figure 3-5 shows the photograph of 13th century B.C. mural’s segment and its XRF distribu-
tion images. The site of data acquisition is the Theban Necropolis in Egypt from the tomb
of Nakhtamun. The region of interest is investigated by XRF and RIS elsewhere [10]. In this
thesis, three main issues of the mural painting are addressed:

• different pigments, which are not separable with a simple observation of elemental dis-
tribution images with XRF. This is explained by the fact that only some elements are
detectable by the XRF instrument.

• the degree of damage in several parts of the investigated small area and restoration
areas.

• painting techniques, based on the substrates and mixture of pigments, indicated by
XRF.

X-ray attenuation is related to the atomic number and the physical thickness of the in-
vestigated area. The challenge is a three-dimensional interpretation of a two-dimensional
representation, provided by XRF data. The goal is the investigation of aforementioned is-
sues, by means of SOM and t-SNE- based clustering of only XRF data set. This approach
is useful for a preliminary study of the mural painting and it can direct the future study,
since it identifies specific regions of interest (ROIs) and it facilitates the further selection of
experimental destructive or not techniques.

The information obtained for the authentic pigments by a simple observation of elemental
distribution images (Figure 3-5) are the below:

• iron-based pigments are used for the skin.

• copper-based pigments are used for the collar.

• arsenic, contained in yellow orpiment (As2S3) or realgar (AsS4), is used for the yellow
background of the hieroglyphic text.

• calcium, contained in many white paints such as calcite (CaCO3), is used for the white
background.

The information obtained for the authentic pigments by a simple observation of elemental
distribution images (Figure 3-5) is the use of calcium combined with sulfur, probably gypsum,
for repairs on the white background. The elemental distribution image for titanium shows
that this element is not contained in white paints in this mural painting. Titanium seems to
be present in iron- containing areas.

The relevant bibliography, the XRF elememental distribution images and a previous study of
the investigated area with RIS data set [10] suggest the below:
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• a mixture of goethite (α − FeO(OH)) and hematite (Fe2O3) is a common egyptian
paint. Goethite is a yellow ochre. Once heated, a red pigment is produced. Natro-
jarosite (KFe3(OH)6(SO4)2) can also be added to produce different hues, but the not
significant contribution of potassium suggests the use of Fe-containing pigments other
than natrojarosite [33].

• a mixture of goethite and ilmenite (FeT i03) is also present in egyptian paintings. This
can explain the presence of titanium in iron-containing areas.

• hematite is commonly present in Egyptian red inks [33].

• copper-based pigments can be found on different thicknesses and concentration in the
area of the collar. A thin layer of Egyptian blue (CaCuSi4O10) is suggested below
thicker bands of Egyptian blue. The RIS data also suggest the existence of bands of
Egyptian green (CaCuSi4O10 + SiO2), altering with bands of Egyptian blue in the
original composition. Despite the apparent thicker Egyptian blue bands, only some
traces of Egyptian green. is proposed by the study of RIS data set [10].

• darkening of the Egyptian blue can be explained by three phenomena. A rough surface
can entrap dirt. As expected, a finer layer or pigment tends to have less surface dirt.
Other causes are the formation of black copper oxide (tenorite, CuO) and gypsum crusts,
discolored by dirt. The degradation of Egyptian blue can lead to green areas [34].

The investigation of the small area of the mural painting aims to reveal additional information
only with clustering of the XRF data set. The results are discussed and compared with the
relevant bibliography and the results from the RIS data set.

3-2 Data augmentation methods

The data augmentation methods are mainly inspired by the article of neighbouring pixel
data augmentation, described in Chapter 2 (Method I ). In this section, three additional data
augmentation methods are presented. Figure 3-6 is an illustration of the Method II. Each pixel
is described by one feature vector: the spectrum of this pixel, followed by the mean spectrum
of its eight neighbouring pixels. The augmented data set is normalized by Frobenius norm
(the square root of the sum of the absolute squares of the matrix elements).

This method aims to combine two benefits: include the spatial information by augmenting
the spectrum of data pixel with the spectrum of the neighbourhood and decrease the noise
of the augmented data set by including the average of the spectra of the neighbouring pixels.
The Appendix A-1-1 presents the code.

Method III includes the following steps:

• The neighbouring pixels of each pixel are indexed.

• The euclidean spectral distances between the central pixels are estimated. The eu-
clidean spectral distances between the neighbouring pixels of one central pixel with the
neighbouring pixels of all the other central pixels are also estimated.
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Figure 3-6: The spectrum of a pixel is represented by one cube. In the pixel data augmentation,
each pixel is corresponded with two spectra, since the spectrum of the central pixel and the mean
spectrum of the eight nearest neighbours of each pixel are considered.

• The sum of the eight minimum euclidean spectral distances between the neighbourhoods
is calculated.

• Finally, the data points of this distance matrix are clustered with t-SNE with precom-
puted metric.

The Appendix A-1-2 includes the code.

3-3 Stationary wavelet transform algorithm

Wavelet transform algorithm, as part of a spectral and spatial data fusion approach, has
been performed to an artificial data set, as mention in Chapter 2. In this thesis project, a
two-dimensional stationary wavelet transform algorithm is applied to the XRF data of the
titanium alloy. The steps of this method (labeled as Method IV ) followed are the below:

• The original data cube is analysed with the simple Haar wavelet transform algorithm.
Each elemental distribution image produces four images of wavelet coefficients for the
first level decomposition.

• Spectra and wavelet coefficients have different properties. The wavelet coefficients are
auto-scaled.

• Both spectral and coefficient images are normalised by Frobenius norm.
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3-4 Optimization of t-SNE

In Section 2-2-1, Fast interpolation-based t-SNE (FIt-SNE) [14], an implementation of t-SNE
with computation time reduced by at least ten times compared to BH t-SNE, is presented.
As a result, FIt-SNE allows to process entire data sets of paintings without downsampling.

Another modification to t-SNE is late exaggeration [35]. The goal is to separate the clusters in
t-SNE and allow their easier identification without user’s intervention or a priori knowledge.
This modification can be useful for the data sets of paintings. They often contain mixture
of pigments and t-SNE with late exaggeration can perform a better separation of clusters.
Conventional t-SNE uses the early exaggeration to deal with the problem of convergence rate
getting slower for bigger data sets. The attraction term between similar data points during
t-SNE is multiplied with a constant a > 1 during the first 250 iterations. This leads to tighter
clusters, moving faster and avoiding getting trapped in local minima. Later exaggeration
refers to enforcing exaggeration during the last hundreds iterations. As a result, the clusters
contract and can be interpreted more easily.

3-5 Self Organising maps with different neighborhoods

There are at least two ways of clustering the data set with SOM. For simple data sets, such
as the XRF data set of the titanium alloy, clustering with the use of a U-map can yield useful
results. As mentioned in 2-2-1, the neuron map, describing the input data set, consists of
neurons, each of which is described by the vector of weights. Each node of U-matrix is the
average distance between neuron’s vector and that of its four or eight neurons. In this thesis,
it seems that the selection of proper neighborhood plays a crucial role in the identification of
clusters in the data set of the titanium alloy.

The complex XRF data sets, such as the ones corresponding to segments of the oil painting,
are clustered in a simpler way. The number of neurons, specified by the user, equals the
number of clusters, since the pixels with the same neuron are clustered together. The number
of clusters is determined by the user and as a result the selection is biased.

The aim of applying SOM clustering to a complex XRF data set is the identification of clusters
that contain the same combination of elements but different relative strength. This might
lead to separation of original from restoration pigments, which include the same elements.

3-6 Artificial neural network for paintings

A simple artificial neural network (code found on Appendix A-2) is used to combine the
information contained in the photograph of the painting and the equivalent XRF data. The
photographs of the paintings are of higher resolution than the equivalent XRF data sets.
Instead of reducing the resolution of the photograph, we can upscale the elemental distribution
images. This is achieved by upscaling each image with super resolution based on deep learning
methods. The performed convolutional neural network for high-quality reconstruction of an
image is the Laplacian Pyramid Super-Resolution Network (LapSRN) ([36]). This model
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is slower than Efficient Sub-Pixel Convolutional Neural Network (ESPCN) and Fast Super-
Resolution Convolutional Neural Network (FSRCNN), and the accuracy is worse than the
one of Enhanced Deep Residual Networks (EDSR). However, LapSRN can perform 8x super-
resolution, which is preferable because the resolution of the photograph is much higher than
the resolution of the XRF data sets.
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Chapter 4

Results and Discussion

4-1 Results

4-1-1 Methods with augmented data set

Method I and II

Test data set The data pixel augmentation methods are applied to the test data set. The
test data consists of 60 × 60 pixels with a n = 9 dimensional feature vector for each pixel,
as presented in Chapter 3. Figure 4-1 (a) presents the result for the test data set, clustered
with t-SNE. As expected, three clusters are formed, belonging to the upper rectangle, the
lower rectangle and the background. Figure 4-1 (b) presents the result for the test data set
augmented with Method II, clustered with t-SNE. The augmented test data consists of 60 ×

60 pixels with a (1 + 1) × n = 18 dimensional feature vector for each pixel. Each augmented
pixel is described by the feature vector of the central pixel and the mean value of the feature
vectors of its 8 neighboring pixels. The clustered augmented data set presents seven clusters,
describing the upper and lower rectangles, the background and the borders of the rectangles.
The clusters outline the rectangles isotropically. Figure 4-1 (c) presents the result for the
test data set augmented with Method I, clustered with t-SNE. The augmented test data
consists of 60 × 60 pixels with a (1 + 8) × n = 18 dimensional feature vector for each pixel.
Each augmented pixel is described by the feature vector of the central pixel and the feature
vectors of its 8 neighboring pixels. The clustered augmented data set presents seven clusters,
describing the upper and lower rectangles, the background and the borders of the rectangles.
The clusters outline separately all faces of the rectangle.

Data set of the titanium alloy Figure 4-2 (first row) presents the result for the data set
with 36 × 40 pixels and 6 useful elemental signals of the titanium alloy, clustered with t-SNE.
The three identified components are:

• α phase (blue color) with high intensity of the Ti − K signal.
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Figure 4-1: Clustered images of t-SNE representation for the a) test data set, b) test data set
augmented with Method II and c) test data set augmented with Method I. The second column
shows the corresponding scatter plots of the data points. Pixels and data points, belonging to
the same cluster, have the same color.
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• β phase (red color) with high intensity of the V − K, Fe − K, Ni − K and Cu − Kα

signals.

• α/β phase (yellow color) with intensity of signals between the one of phase α and β.

Figure 4-2 (second row) presents the result for data set augmented with the Method II of the
titanium alloy, clustered with t-SNE. The data set augmented with this approach concept
consists in augmenting the spectrum of a central pixel with the mean spectrum of its eight
neighboring pixels. It consists of (36-2) × (40-2) pixels and (1 + 1) × 6 = 12 elemental peaks.
After normalizing each image before and after augmentation by the square root of its mean
value, this method of neighboring pixel data augmentation reveal the below information:

• the superposition of α on β phase (yellow area) with intensity of signals between the
one of phase α and β. The signal intensity of V − Kα is stronger for α/β than β/α
component.

• superposition of β on α phase (orange area) with intensity of signals between the one of
phase α and β. The signal intensity of V −Kβ is stronger for β/α than α/β component.

Figure 4-2 (third row) presents the result for the augmented data set with Method I of the
titanium alloy, clustered with t-SNE. This augmented data set concept consists in augmenting
the spectrum of a central pixel with the spectra of its eight neighboring pixels.The data set
augmented with Method I consists of (36-2) × (40-2) pixels and (1 + 8) × 6 = 54 elemental
peaks. Besides performing the same normalization process, the data points of the data set
augmented with Method I do not form obvious clusters. Therefore, the clusters, as formed
by Method II, are projected on the data points of the data pixel augmentation method with
nine spectra per pixel. It does not seem likely to separate α/β phase from β/α phase with
this method.

The identification of 4 components is also possible in different areas (Figure 4-3 (a)) of the
same titanium alloy sample (see Appendix A-3). This is possible with a priori knowledge of
the NMF results. To achieve better separation of clusters, the clustering of aforementioned
XRF data set is performed with FIt-SNE.

In Figure 4-3 (a), NMF 1 and NMF 2 represent primary α and β phase, respectively. The
overlap of two phases is represented by NMF 3. All methods are capable of separating the
α phase (blue color area) from the β phase (red color area) and the overlapping phases (rest
of the areas) (Figure 4-3 (b), (c) and (d)). However, they are not efficient in separating α/β
component from β/α component, as expected with Method II (Figure 4-3 (c)).

Method III: Interaction between neighborhoods

Another neighboring pixel data augmentation method is the one, considering the similarities
between the neighborhoods of the central pixels (Method III). This method seems as efficient
as Method II for the data set of the titanium alloy. This method is also able to separate
all four components (Figure 4-4). The identification of four clusters is not straightforward
and the a priori knowledge of the existence of four components, based on the Monte Carlo
simulation, played an important role in selecting the clusters.
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Figure 4-2: The first column shows clustered images of t-SNE representation for the data set
of the titanium alloy (first row), data set augmented with Method II (second row) and data set
augmented with Method I (third row). The second column shows the corresponding scatter plots
of the data points and the third column the mean fitted spectra per cluster. Pixels and data
points, belonging to the same cluster, have the same color.
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Figure 4-3: (a) Elemental distribution image for the Fe − K line, whose yellow outline includes
the region of interest, along with three typical coefficient images obtained by NMF from the above
data set. Clustered images, scatter plots and fitted spectra of FIt-SNE representation for (b) the
data set, (c) data set augmented with Method II and (d) data set augmented with Method I for
part of the titanium alloy.
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Figure 4-4: Clustered image of t-SNE represention for the titanium data set with Method III,
scatter plot and mean fitted spectra per cluster.

Figure 4-5: (a) Clustered image of t-SNE represention for the titanium XRF data set augmented
with Method II, (b) mean fitted spectra per cluster and (c) the scattered plots for all presented
methods. The data points of the scattered plots are colored based on the clustering of data set
with Method II.

Method IV: Wavelet transform algorithm

Wavelet transform algorithm does not offer any additional information for the data set ac-
quired from a sample of a bi-modal Ti-6Al-6V-2Sn alloy. This method seems to have similar
performance as Method I, for the data set of the titanium alloy. It offers an approximation
and enhances horizontal, vertical and diagonal details. When the number of elemental images
is limited, simpler methods and noise reduction methods present higher performance. Figure
4-5 includes the results of clustering with t-SNE the data sets with all the pixel augmentation
methods.

Faidra Amargianou Master of Science Thesis



4-1 Results 45

4-1-2 Self Organising Maps

Data set of titanium alloy

SOM clustering with U-map has the benefit of unbiased identification of the number of clusters
and unbiased selection of pixels belonging to a certain cluster. On the other hand, U-map
is not a sophisticated way of creating a clustered image. SOM clustering identifies three
components with unbiased way compared to t-SNE clustering, since the user selects the
neurons and not the clusters. According to clustering with U-map, at least three components
are identified (Figure 4-6 first row). Qualitatively, the yellow area of the U-map corresponds
to the α phase, the green area to the β phase and the red area to the α/β. However, the
neurons, functioning as separators, form the clusters, but they do not offer any significant
information in the clustered image. After this first observation, a more detailed examination
is required.

Figure 4-6 (second row) presents an image of the titanium alloy’s data set, automatically
clustered with SOM of three neurons. This neural network identifies successfully the existence
of at least three components. Figure 4-6 (third row) is the optimal visualisation with SOM
of the titanium alloy’s data set, clustered with SOM of four neurons. The interpretation of
this last representation is the following:

• α phase (blue color) with high intensity of the Ti − K signal.

• β phase (red color) with high intensity of the V − K, Fe − K, Ni − K and Cu − Kα

signals.

• overlapping phases (yellow color) with intensity of signals between the one of phase α
and β.

• SOM clustering offers an automatic clustering, but it is unable to separate between α/β
and β/α phase.
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Figure 4-6: SOM with 40 × 40 neurons and clustering with U-map identifies three components
with unbiased way (first row). Clustered image with SOM of 3 (second row) and 4 neurons (third
row) along with their mean fitted spectra per cluster.
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Data set of mural painting

Figures 4-7 and 4-8 present the results of SOM clustering for different parameters. Figure 4-7
(Top) presents the results of SOM clustering for 6 neurons and contains the below information:

• Cluster 1 mainly represents the white pigments of the mural painting.

• Cluster 2 and 3 mainly represent the copper-based pigments. The green-colored clus-
tered area presents higher intensity lines, compared to the blue-colored one for all ele-
ments, except for sulfur.

• Cluster 4 with a strong arsenic line describes part of the yellow background, probably
painted with orpiment.

• Cluster 5 and 6 represent the Fe-based pigments of the mural painting. The dark
brown area has higher iron concentration than the beige area. A comparison with the
photograph indicates that the lower iron concentration areas (Cluster 5) coincide with
some apparent damaged areas. This suggests that these clusters do not reveal different
Fe-based pigments, but difference in thickness.

The neccessity of more focused investigation of Fe-based pigments for the skin tone led to
SOM clustering of 6 neurons for the segment of the face (Figure 4-7 Bottom). The later figure
contains the below information:

• Cluster 1 mainly represents the white background of the mural painting.

• Cluster 2 presents strong arsenic and calcium lines. These signals can be explained by
a mixture of calcite and orpiment.

• Cluster 3 presents strong calcium and iron lines. These signals can be explained by a
mixture of Fe-containing pigments and calcite.

• Cluster 4 (beige), 5 (light brown) and 6 (dark brown) represent the main Fe-based
pigments of the mural painting. They contain increasing concentration in iron and
titanium and decreasing in calcium, contained in calcite. This suggests that these
clusters do not reveal difference in thickness of Fe-containing pigments due to damages.

The comparison of spectra of Cluster 3 with Cluster 4 and 5 suggests that Cluster 3 functions
as a dark red outline of the face.

SOM clustering with 6 neurons does not capture some essential information, as revealed by
the elemental distribution images, such as the restoration pigments. Therefore, the number of
neurons is increased with the aim of finding additional information about the mural painting.
Figure 4-8 presents the results of SOM clustering for 12 neurons and contains the below
information:

• Cluster 1 (dark red) presents strong calcium and iron lines. These signals can be
explained by a mixture of Fe-containing pigments and calcite. The damaged areas
are used as a guideline to align the clustered image with the photograph. The dark red
outline seems to extend outside the outline of the face in the photograph. This suggests
the existence of calcite (white background) on top of a Fe-containing pigments.
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Figure 4-7: Clustered image with SOM of 6 neurons and its mean fitted spectra per cluster for
the mural painting (Top) and a segment of the face (Bottom).
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• Cluster 2 mainly describes copper-based pigments.

• Cluster 4 presents strong calcium signal, indicating the use of calcite for the white
background. Cluster 6 even higher calcium signal. This difference cannot be attribute
to different thickness of the calcium, since Cluster 6 (cyan area) is located on small
areas. Therefore, the cyan area is probably painted with gypsum, used as a restoration
paint.

• Cluster 6 and 7 represent the Fe-based pigments of the mural painting. The dark
brown area has higher iron concentration than the beige area. A comparison with the
photograph indicates that the lower iron concentration areas (Cluster 6) coincide with
some apparent damaged areas. This suggests that these clusters do not reveal different
Fe-based pigments, but difference in thickness.

• Cluster 3 and the rest of clusters describe the yellow background of the hieroglyphic text.
This area mainly consists of orpiment, but also of Fe-based pigments. The interpretation
of these clusters is not straightforward.

Comparison of SOM with FIt-SNE The results of SOM clustering for the mural painting
are compared with those of t-SNE and FIt-SNE for the same area. The goal is double: confirm
or contradict the preliminary study of mural painting with SOM clustering and present the
benefits of clustering XRF data sets of paintings with FIt-SNE. The methodology is the
selection of apparent clusters without a priori knowledge of elemental distribution images
and RIS data set. Figure 4-9 (Top) presents the results for clustering with t-SNE the XRF
data set for mural painting.

• Cluster 1 and 2 describes copper-based pigments. The two blue colored bands in the
collar have stronger copper signal than the green colored area, but weaker sulfur con-
tribution.

• Cluster 3 describes the Fe-containing areas, without capturing the difference in thickness
of these pigments.

• Cluster 4 (dark red) presents strong calcium and iron lines. These signals can be
explained by a mixture of Fe-containing pigments and calcite. In the yellow area of
the hieroglyphic text, there is also one at least vertical lines described by this cluster.

• Cluster 5 describes the gypsum, used for repairing the white background.

• The area of Cluster 6 is separates from Cluster 7. The main difference in the mean
spectra per cluster is the increased sulfur in Cluster 6. The paint in Cluster 6 functions
as restoration pigment, whereas the paint in Cluster 6 is an original pigment.

• Cluster 8 features a strong arsenic signal. It describes the yellow background, mainly
painted with orpiment.

The computational cost is decreased dramatically with FIt-SNE clustering. A better separa-
tion of clusters by modifying exaggeration offers a better visualisation and reveals additional
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Figure 4-8: Clustered image with SOM of 12 neurons and its mean fitted spectra per cluster for
the mural painting. The clustered image is aligned with the relevant photograph, based on the
damaged areas.
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Figure 4-9: Clustered image with t-SNE (Top) and FIt-SNE (Bottom), scatter plot and mean
fitted spectra per cluster for the mural painting.

information about the mural painting. Specifically, the difference in thickness of the iron-
based pigments is captured in Cluster 8 and 12 of Figure 4-9 (Bottom (b) and (c)) with
Cluster 8 assumed to be the higher thickness area. Moreover, the bands of copper-based
pigments are more discernible and agree with the photograph Figure 4-9 (Bottom (a)). Once
again more sulfur is observed in the green colored areas than the blue ones. Finally, the
restoration pigments are visualized with more detail.
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4-1-3 Artificial Neural Network for the easel painting

A simple artificial neural network can offer a visualization, concentrating most of the valuable
information of the elemental distribution images in only one image. The spatial information
of the photograph is combined with the spectral information, obtained by XRF technique.
This is achieved by training a random number of photograph’s pixels with a random number
of pixels from the elemental distribution images. The result image is the prediction of this
training for all the pixels of the photograph. However, the elemental distribution images are
of lower resolution than the photograph. This inconsistency in resolution can be overcome
by reducing the resolution of the photograph, as shown in Figure 4-10 (middle image of first
row). The elements included in the data set, used as training set, are calcium, iron, copper,
cobalt, tin and lead.

Another way to achieve higher resolution and capture more details in the result image is to
upscale the elemental distribution images. The convolutional neural network for high-quality
reconstruction of an image (LapSRN) has been evaluated as accurate for various photographs.
However, it has not been applied for upscaling elemental distribution images. Nevertheless,
the result image of ANN with upscaled elemental distribution images (Figure 4-10 last image
of first row) has undeniably higher resolution than the result image of a conventional ANN.
The bottom images of Figure 4-10 compare the two methods by presenting at pixel level two
enlarged areas of interest. In this case, higher resolution increases the amount of information,
obtained by the result image, without revealing any additional hidden information.
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Figure 4-10: Photograph with 3704 × 4536 (w × h) of the oil painting, probably portrait of
Hortense Manchini, followed by the result image with 290×389 (w × h) from the artificial neural
network with training answer the photograph of the painting and training set the spectral data.
The third image of the first row is the result image 2320 × 3109 (w × h) from the same artificial
neural network, but with upscaled spectral data. The second row compares at pixel level the
result image of the simple ANN and the one of the ANN with upscaled spectral data.
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4-2 Discussion

Proper normalization of XRF data set augmented with Method II for the titanium alloy
together with the relevant NMF results for this area facilitate the selection of four clusters:

• a cluster with pixels, whose mean spectrum has strong Ti − K signal (α phase).

• a cluster with pixels, whose mean spectrum has strong V − K, Fe − K, Ni − K and
Cu − Kα signals (β phase).

• a cluster with pixels, whose mean spectrum has strong V −Kα signal (α/β component).

• a cluster with pixels, whose mean spectrum has strong V −Kβ signal (β/α component).

The results are aligned with the Monte Carlo simulation. The divergences of the results of
the simulated data from those of the augmented data set is attributed to the overestimation
of iron in α phase and other negligible quantitative differences. The reason that only one
method of data pixel augmentation identifies all four components can be explained by three
factors. Firstly, the superposition of β on α phase is less pronounced than of α on β phase.
The V − Kα line (4.952 keV) is below the Ti-K edge (4.966 keV) and the V − Kβ line (5.427
keV) is above it. As a result, the V −Kβ line is much stronger attenuated. Secondly, the noisy
appearance of the Ti-K and the overall noise of the limited in number elemental distribution
images can be improved with mean filtering or the mean spectrum of the neighboring pixels.
Thirdly, vanadium is the only element, which differentiates the superposition of β on α phase
from the superposition of α on β phase. All the useful signals are related more intensely
with β phase, except for the Ti-K signal. The lines of tin, which is a dominant element of
the α phase, were weakly excited and strongly absorbed by the medium between sample and
detector.

Separating the clusters with FIt-SNE without the a priori knowledge of NMF results reveals
the presence of three bases: α, β and overlapping phases. It can’t separate sufficiently the
α/β from the β/α component.

SOM (40×40 neurons) clustering with U-map identifies without the selection of the user three
components, but the clustered image offers only limited qualitative results. SOM clustering
(3×3 neurons and 4×4 neurons), whose number of neurons is the number of clusters, offers a
better visualisation and again reveal three components. These results are aligned with those
of t-SNE for the same area.

Clustering the XRF data set of a 13th century B.C. Egyptian mural painting with Self Or-
ganising Map (SOM) confirms and adds to the results, obtained by RIS data. Damaged areas
are identified with SOM and used properly to align the clustered with SOM image with the
photograph of the mural. The outline, a mixture of calcite and iron containing pigments, of
the face (Cluster 1 of Figure 4-8) extends beyond the outline of the face, as specified by the
photograph. This result is aligned with a previous study [10] with RIS data set, where the
below sequence is suggested. Initially, Fe-based pigments are used for the skin among others.
After that, white background, probably calcite, is created. Finally, the dark red outline is
painted. As a result part of the Fe- based pigments for the skin are overpainted with white
paint. This leads to an inconsistency between the outline of the face as described by SOM
clustering and the outline as observed in the photogrpah.
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The modification of t-SNE with later exaggeration offers a more detailed clustered image. The
damaged areas are visualized with more detail, the different thicknesses between pigments is
captured and the Egyptian blue and probably Egyptian green areas are identified.

Finally, ANN for the investigation of complicated painting presents two main benefits: (a)
a single result image, fusing the information of photograph and XRF data, and (b) a vi-
sualization, revealing the inconsistency between certain outlines of the photograph and the
elemental distribution images. Therefore, ANN offer fast initial results, revealing issues for
further exploration. Before performing the ANN, the photograph of the painting and the
elemental distribution images with different resolution are processed accordingly. The idea of
upscaling the elemental distribution images serves the purpose of exploiting the higher reso-
lution of the photograph, when fusing spatial and spectral information with ANN. However,
the convolutional neural network (CNN), used for upscaling the images, does not consider the
special properties of XRF images. More advanced results require either the development of a
CNN for upscaling images, which considers the XRF properties or the use of XRF detector
with higher resolution.
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Chapter 5

Conclusion and Future direction

5-1 Conclusion

In this study, an altered neighboring pixel data augmentation concept, SOM clustering and
optimized artificial neural network framework are introduced as ways to combine spectral
and spatial information. The results of these methods are presented and discussed for X-ray
fluorescence data set of a bi-modal α + β Ti-6Al-6V-2Sn alloy, of an easel painting of 17th

century A.C., identified as portrait of Hortense Manchini and of 13th century B.C. Egyptian
mural painting.

The augmented data set concept consists in augmenting the spectrum of a central pixel with
the spectra of its eight neighboring pixels. This method is generalized for all pixels. The
altered augmented data set concept consists in augmenting the spectrum of a central pixel
with the mean spectrum of its eight neighboring pixels. This new method, performed to part
of the data set of the titanium alloy, reveals the existence of four components: α phase, β
phase, α on top of β phase and β on top of α phase. The real data also reveal that the V −Kα

signal is stronger in α/β, compared to β/α phase, and the opposite holds for the V − Kβ

signal. In previous studies, β on top of α phase was not separately identified. Therefore,
I conclude that proper normalization of the data set and clustering with t-SNE lead to the
retrieval of new information that corresponds to the less pronounced superposition of β on
top of α phase.

SOM clustering is performed to a simple data set of the titanium alloy and to the mural
painting. I concluded that SOM clustering with U-map is useful for identifying without the
requirement of cluster selection by the user α, β and α on top of β. However, U-map is not
useful for the complicated XRF data set of a painting.

A simpler method of clustering the data sets with SOM is the below. The number of clusters
is determined by the number of neurons, selected by the user, since the pixels belonging to
the same neuron are considered part of the same cluster. Clustering the XRF data set of
a 13th century B.C. Egyptian mural painting with Self Organising Map (SOM) and Fast
interpolation-based t-SNE (FIt-SNE) indicate areas with different thicknesses of copper- and
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iron- containing pigments and also reveal information about the painting sequence and the
composition of a mixture of pigments. Moreover, FIt-SNE dramatically accelerates t-SNE
and a modification in t-SNE, called later exaggeration, can provide well-separated clusters.
Therefore, I conclude that more tedious preliminary work and advanced clustering techniques
applied to the XRF data set of this painting lead to results, aligned with the results from
the RIS data set. Additionally, altering bands of copper-based pigments with varying sulfur
concentration and thicknesses are visualized with greater detail. A better visualization and
spectral information is also achieved for the restoration areas.

Finally, an optimized artificial neural network for training the photograph of a painting with
the elemental distribution images was introduced. The elemental distribution images are
upscaled with Laplacian Pyramid Super-Resolution Network, which performs 8 × super-
resolution. In that way, we can exploit the high resolution of the photograph of the painting.
As a result, we can identify with more accuracy the exact location of the damages and
retouches on the portrait of Hortense Manchini, since the result image is of high resolution.

5-2 Future direction

A deeper interpretation of a spectroscopic imaging data set with high noise level may be
assisted by data pixel augmentation methods. The exact effect of these methods on the
noise level of the data sets can be examined and quantified. Additionally, the data pixel
augmentation methods can be applied to data sets from the field of cultural heritage with
several thousands of spectra. Therefore, the efficiency of the methods in noisy data sets with
several spectra and not only a few fitted data can be investigated.

After showing that SOM clustering reveals information about the painting sequence and sub-
strate by identifying clusters with the same elemental mixture but different signal intensities,
this method can be applied to more complex data sets of paintings. Moreover, combining
SOM with other ANN to achieve more detailed clustering is a promising idea. We can per-
form clustering of a data set with SOM as a typical layer in a neural network. Furthermore,
we can add a convolutional neural network in front of the SOM layer, aiming at improving
the clustering and reducing the dimensionality of the data.

Finally, the algorithms for combining spectral and spatial information with ANN during
the evaluation of the hyperspectral data can be optimized. Specifically, we can create a
convolutional neural network for creating super-high resolution images, modified to include
the properties of hyperspectral data.
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Appendix A

Developed Codes

A-1 Codes for data pixel augmentation

A-1-1 Data pixel augmentation: Method I and II

1 neigh_size=3
2 if np . mod ( neigh_size , 2 ) == 0 :
3 print ( ’neigh_size needs to be uneven’ )
4 neigh_radius=np . int32 ( np . ceil ( ( neigh_size −1) / 2 . ) )
5 dataw=data_unfold

6

7 #indexes for finding neighbouring points

8 z=(data . shape [ 1 ] ) ∗neigh_radius+1
9 fc =[]

10 for i in range ( neigh_size ) :
11 for j in range ( neigh_size ) :
12 if not ( i == neigh_radius and j == neigh_radius ) :
13 fc . append ( np . ravel_multi_index ( ( i , 0 ) , data . shape [ : 2 ] )+j )
14

15

16 data_neigh=np . zeros ( ( ( data . shape [0] − neigh_radius ∗2) ∗( data . shape [1] −

neigh_radius ∗2) ,8∗ data . shape [ 2 ] ) )
17 data_central=np . zeros ( ( ( data . shape [0] − neigh_radius ∗2) ∗( data . shape [1] −

neigh_radius ∗2) , data . shape [ 2 ] ) )
18 data_augm=np . zeros ( ( ( data . shape [0] − neigh_radius ∗2) ∗( data . shape [1] −

neigh_radius ∗2) ,8∗ data . shape [ 2 ] ) )
19 data_neigh_av=np . zeros ( ( ( data . shape [0] − neigh_radius ∗2) ∗( data . shape [1] −

neigh_radius ∗2) , data . shape [ 2 ] ) )
20 data_augm_av=np . zeros ( ( ( data . shape [0] − neigh_radius ∗2) ∗( data . shape [1] −

neigh_radius ∗2) ,2∗ data . shape [ 2 ] ) )
21 #for i in range (data_augm . shape [ 0 ] ) :
22 k=0
23
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24 for i in range ( data_neigh . shape [ 0 ] ) :
25 x=i+(neigh_size −1)∗np . int32 ( i /( data . shape [1 ] −( neigh_size −1) ) )
26 print ( "x" , x )
27 for l in range (8 ) :
28 for j in range ( data . shape [ 2 ] ) :
29 data_central [ i , j ]=dataw [ z+x , j ]
30 data_neigh [ i , j+l∗data . shape [ 2 ] ] = dataw [ fc [ l ]+x , j ]
31 data_neigh_av [ i , j ]=dataw [ fc [ : ] + x , j ] . mean ( )
32

33 #augmented data s e t for Method I
34 data_augm = np . hstack ( [ data_central , data_neigh ] )
35 #augmented data s e t for Method I I
36 data_augm_av = np . hstack ( [ data_central , data_neigh_av ] )

A-1-2 Data pixel augmentation: Method III

1 def calc_disMA_flex_new ( data , neigh_size=3) :
2 if np . mod ( neigh_size , 2 ) == 0 :
3 print ( ’neigh_size needs to be uneven’ )
4 return

5 neigh_radius=np . int32 ( np . ceil ( ( neigh_size −1) / 2 . ) )
6 dataw=data . reshape ( np . prod ( data . shape [ : 2 ] ) , data . shape [ 2 ] )
7 dis=np . zeros ( ( dataw . shape [ 0 ] , dataw . shape [ 0 ] ) )
8 for i in range ( dataw . shape [ 0 ] ) :
9 dis [ i , : ] = ( ( dataw−dataw [ i , : , None ] . T ) ∗∗2) . sum (1 ) ∗∗.5#Simple

euclidean distance

10 if neigh_size ==1:
11 return dis , dis , dis , dis

12

13 disa=np . zeros ( ( ( data . shape [0] − neigh_radius ∗2) ∗( data . shape [1] −

neigh_radius ∗2) , ( data . shape [0] − neigh_radius ∗2) ∗( data . shape [1] −

neigh_radius ∗2) ) )
14 disb=disa+0.
15 disc=disa+0.
16

17 #lateral distance

18 x_r , y_r=np . meshgrid ( range ( data . shape [1] − neigh_radius ∗2) , range ( data .
shape [0] − neigh_radius ∗2) )

19 x_r=x_r . reshape ( np . prod ( x_r . shape ) )
20 y_r=y_r . reshape ( np . prod ( y_r . shape ) )
21 for x in range ( disa . shape [ 0 ] ) :
22 disc [ : , x ]=(x_r−x_r [ x ] ) ∗∗2+(y_r−y_r [ x ] ) ∗∗2
23 disc=disc ∗∗ . 5
24

25

26 #indexes for finding neighbouring points

27 z=(data . shape [ 1 ] ) ∗neigh_radius+1
28 fc =[]
29 for i in range ( neigh_size ) :
30 for j in range ( neigh_size ) :
31 if not ( i == neigh_radius and j == neigh_radius ) :
32 fc . append ( np . ravel_multi_index ( ( i , 0 ) , data . shape [ : 2 ] )+j )
33
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34

35

36 st0=time ( )
37 st1=time ( )
38 for x in range ( disa . shape [ 0 ] ) :
39 ft=time ( )
40 print ( ( ’{0} of {1} lines in {2:5.2f},{3:5.3f}’ . format (x , disa .

shape [ 0 ] , ft−st0 , ft−st1 ) ) )
41 st1=time ( )
42 for y in range ( disa . shape [ 0 ] ) :
43 if x < y :
44 xo=x+(neigh_size −1)∗np . int32 ( x /( data . shape [1 ] −( neigh_size

−1) ) )#For every line there are additional steps to

keep it synced

45 yo=y+(neigh_size −1)∗np . int32 ( y /( data . shape [1 ] −( neigh_size

−1) ) )
46 disa [ x , y ]=dis [ z+xo , z+yo ]
47 fca=dis [ np . meshgrid ( fc+xo , fc+yo ) ]
48 while len ( fca ) > 1 :
49 disb [ x , y]+=fca . min ( )
50 wo=np . s_ [ np . unravel_index ( fca . argmin ( ) , fca . shape ) ]
51 fca=np . delete ( fca , wo [ 0 ] , 0 )
52 fca=np . delete ( fca , wo [ 1 ] , 1 )
53 disb [ x , y]+=fca . min ( )
54 #These are : dis2 : combined central and neighbourhood

55 # disa : Only the center

56 # disb : neighbour and central (1/ neigh_size ∗∗2)
57 # disc : geometric distance

58 dim=dism

59 return disa+disa . T , disb+disb . T , disc , dis , dim

A-2 Code for artificial neural network

Each elemental distribution X-ray image can be upscaled with LapSRN as follows:

1 importcv2

2 from cv2 import dnn_superres

3 sr = dnn_superres . DnnSuperResImpl_create ( )
4 image = cv2 . imread ( ’...low_resolution_image.png’ )
5 #The LapSRN model can be downloaded here ( https : // github . com/fannymonori/

TF−LapSRN/tree/master/export ) .
6 path = " . . . / LapSRN_x8 . pb "
7 sr . readModel ( path )
8 sr . setModel ( " lapsrn " , 8)
9 # Upscale the image

10 result = sr . upsample ( image )
11 #process repeated for all elemental distribution images

All these X-ray images are compiled to create a set of elemental distribution images, repre-
senting the spectral information. This new data set is used as training data set and the RGB
image (photograph) of the painting as the training answer.
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1 from tensorflow . keras . models import Sequential

2 import random

3 rand_ind=random . choices ( range ( np . prod ( data . shape [ : 2 ] ) ) , k=50000)
4

5 #unfolded XRF data set as the trainng set

6 train_set=unfold ( data ) [ rand_ind , : ]
7 #unfolded picture ( photography ) of the painting as the training answer

8 train_answer=unfold ( pic ) [ rand_ind , : ]
9

10 model =tf . keras . Sequential ( )
11 model . add ( Dense (30 , input_dim=data . shape [ 2 ] , activation=’sigmoid’ ) )
12 model . add ( Dense ( train_answer . shape [ 1 ] , activation=’sigmoid’ ) )
13 sgd = SGD ( lr =0.05 , decay=1e−6, momentum =0.9 , nesterov=True )
14

15

16

17 model . compile ( loss=loss , optimizer=sgd , metrics=[’accuracy’ ] )
18 model . fit ( train_set , train_answer , epochs=200)
19

20 vali=unfold ( data )
21 ppre=model . predict ( vali )
22

23

24 res=normin ( refold ( ppre , pic2 . shape ) )
25 reso=res+0.
26 plt . imshow ( reso [ : , : , : ] )

A-3 t-SNE representation for titanium alloy
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Figure A-1: (a) Elemental distribution image for the Fe − K line, whose yellow outline includes
the region of interest, along with three typical coefficient images obtained by NMF from the
above data set. Clustered images, scatter plot and mean fitted spectra per cluster of t-SNE
representation for (b) the data set, (c) the dataset augmented with Method II and (d) data set
augmented with Method I for part of the titanium alloy.
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