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Abstract—Privacy is a human right, yet, people’s behavior on
the web is constantly tracked. Tor, an anonymity network, is an
effective defence against tracking. However, Tor’s multiplexing of
logically independent data streams into a single TCP connection
causes issues. Tor with QUIC has been implemented as an
alternative with better performance but it has not been studied
whether and by how much QUIC increases the vulnerability to
timing-based attacks.

The most threatening attacks are website fingerprinting at-
tacks, which can track a Tor user by only controlling the guard
node, first of the relays that forward traffic in Tor. In this work,
Tor with QUIC is evaluated against website fingerprinting attacks
with various levels of defences active. Without defences, Tor is
vulnerable to website fingerprinting for both TCP and QUIC
but the attacks are more effective on QUIC. On the positive
side, defences against website fingerprinting remain effective for
QUIC in that they decrease the effectiveness of the attack by a
similar fraction as for TCP.

Index Terms—Tor, QUIC, anonymity, privacy, fingerprinting,
machine learning, network traffic analysis, anonymous commu-
nication

I. INTRODUCTION

A. Motivation

For most people regular encryption is sufficient, ensuring
that the content of their messages or business online cannot be
viewed by others. In other words, others cannot see what mes-
sage they are communicating, however others can still see with
whom they are communicating. For most people that is not
an issue, however for example for whistle blowers, oppressed
citizens or journalists, the fact that they are communicating
with non approved parties can have severe consequences. This
is were Tor[1] comes into play, by hiding the communicating
parties as well.

Tor becomes more secure to use when more people use it
- since it becomes harder the trace individuals when there is
more data/noise from other users. More people tend to use
a program when it offers a faster and smoother experience.
One of the current issues causing lag spikes for users is the
head of line blocking problem in the TCP protocol. This can
be resolved by replacing TCP with QUIC. It also promises to
bring some other speed optimizations to the table. However
the introduction of QUIC should not degrade Tor’s ability

to provide anonymity. Thus we should test QUIC for its
capability to maintain the current level of anonymity that Tor
can provide for its users.

B. What is Tor?

Tor aims to provide anonymity to its users by hiding which
parties are communicating. This differs from regular encrypted
internet traffic where only the messages are hidden while the
sender and receiver are known. Tor achieves this anonymity by
using multiple layers of encryption and sending traffic through
a series of nodes. Each node decrypts the outer layer, revealing
the next node and forwards the message to the next node.
Until it arrives at the last node where after decryption a regular
internet message is sent to its final destination. The current Tor
standard uses 3 nodes in between the user and final destination.
This is sufficient to protect the user from deanonymization:
The first node only knows the sender (the user) and the second
node, but the final destination is still encrypted and therefore
incomprehensible. The second node knows the first node and
third, but cannot see the original sender (i.e. the user) as this
information is no longer present or the final destination as it
is still encrypted. The third node knows the second and the
final destination, but cannot know the original sender as this
information was already gone. So none of the three nodes in
between is aware of both the original sender and the final
destination as long as they are not colluding.

Tor uses TCP connections between nodes to deliver data.
The data is divided into fixed size packets, adding padding if
required, which are then encrypted. These encrypted packets
along packets from other connections are stored in a buffer
until they can be sent out to the next node. One of the
properties of TCP is in-order delivery of data. This means
that if a packet is lost, transmission of other packets is halted
until the missing packet has been sent again. Normally this
is a good property to have in a connection. However in the
case of Tor multiple logically independent streams (sometimes
even from different users) are multiplexed into a single TCP
connection. This means that when a packet is lost for a given
datastream and/or user all others are halted and have to wait
even though their own packets are still ordered correctly. This
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causes delays and unnecessarily slows down the Tor network.
This problem is known as Head-of-line blocking[2].

C. What is QUIC?

QUIC (Quick UDP Internet Connections) is a transport
layer network protocol that establishes multiplexed connec-
tions between endpoints over UDP. It aims to have a minimal
handshake to enable low-latency connection establishment. Its
connections are encrypted by default. The protocol is described
in RFC9000[3].

Replacing TCP by QUIC would also introduce more ef-
ficient congestion control and flow control[4]. The most
straightforward approach to replacing TCP by QUIC is to use
it for individual connections in between nodes. However, some
designs for replacement would allow end-to-end control, from
the end user to the exit node across the nodes in between
(i.e. coupling the individual connections in between nodes
to share information regarding congestion and flow control).
Unfortunately, these designs currently have flaws reducing
user anonymity, which need to be fixed before the end-to-end
designs can be used[5].

QUIC was introduced in 2012[6]. The process of becoming
an internet standard was started in June 2015 with the submis-
sion of a draft to the IETF1. A working group was established
in 2016. In May 2021 it was standardized with the release of
the aforementioned RFCs.

D. Contribution

This work focuses on assessing the influence of re-
placing TCP by QUIC in Tor by evaluating and com-
bining it with existing attacks and defences. This con-
trasts to previous work that would only evaluate the per-
formance of QUIC relative to TCP[5] or the impact of in-
dividual attacks[7][8][9][10][11][12][13][14][15][16][17] and
defences[18][19][20][21][22][23][24]. This is the first work to
combine all three components into a single setup. To facilitate
this, effort was undertaken to merge and to instrument the
required codebases while maintaining their individual proper-
ties and abilities. Two different implementations of Tor over
QUIC are considered. The setup is run numerous times for
each required configuration to be able to produce statistically
sound results. Some combinations of Tor over QUIC, attacks
and defences resulted in unstable codebases that would crash,
preventing the gathering of data from completing. In this
occasion a patch was produced to stabilize the codebase
enough to at least make to the end of the data gathering
process. After the data collection had finished the data was
checked for consistency and subsequently processed to provide
insight. During the evaluation an intriguing difference between
TCP and QUIC is discovered and is attempted to be attributed
and/or explained by further investigation, albeit unfortunately
inconclusive.

1https://mailarchive.ietf.org/arch/msg/i-d-announce/
zSk53ClZRO6eSH4s5a7bQ5Jiuns/

II. BACKGROUND

Tor is originally an acronym of The Onion Routing[25]
network. Referring to multiple layers of encryption, each being
peeled off at a node, much like the layers of an onion. It
finds its origin as a US Navy research project but became a
standalone project of an organization called ”Tor Project”[25].

Mixnets and Proxies aim to fulfill a similar goal to that of
Tor, but they have different trade-offs[26].

A. Mixnets

When comparing Tor with mixnets the main difference is
preservation of order. Tor keeps the packets of individual
streams in order during transportation and they are delivered
in order. Concurrency and buffers may result in a couple of
packets of different logical streams being reordered compared
to packets of the other stream, but within their own stream the
order stays fixed. Mixnets on the other hand rely on shuffling
the order of packets to hide their origin and destination. For
example, Bitcoin mixers use this construction to obfuscate
the involved parties of transactions for money laundering
purposes. The use of permutation means that in order to hide
the origin of a particular message several other messages are
required. This potentially causes delays as some time is spent
waiting for enough messages. This property together with the
computationally expensive public-key cryptography operations
means that mixnets are suitable for applications that tolerate
high latency (email for example), but not for applications
requiring low latency (e.g. web browsing). Tor on the other
hand can handle both.

B. Proxies

Proxies aim to protect the identity of a user from becoming
known by the service they intend to use. It relays traffic
thereby replacing the true origin of a request with itself. The
more traffic is sent through a proxy the harder it becomes to
trace back the original origin of requests. Proxies support low
latency applications as there is no need for computationally
expensive public-key cryptography operations. However, as all
traffic is being routed through a single point, it has a single
point of failure. This is a disadvantage from both a reliability
perspective as well as a security perspective. Although, if a
user decides to use a regular direct connection when a proxy is
unavailable instead of waiting for it to come back online, then
reliability becomes security as this user’s identity is now at risk
of being discovered. An honest mistake or other unintentional
failure can result in complete unavailability of the proxy
service. This can also be the result of an intentional targeted
attack (e.g. DDoS[27]) as well. Probably even worse is a
targeted attack where access to the actual machine running the
proxy is gained, this means all information about who is using
the proxy and where they are connecting to is compromised.
Tor is considerably less vulnerable to such failures and attacks
as there is no single point of failure or single entity holding
all routing (or other sensitive) information to attack.
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C. Connections

Tor uses TLS to encrypt the TCP connections between
nodes. A single TCP connection is created between nodes.
Multiple logical independent streams can be transported via
this single connection. The full path of all 3 nodes is called a
circuit and is changed every 10 minutes or at the user’s request.
The first node (aka entry guard) however is maintained for
the duration of the session, since this lowers the chance of an
attacker to perform a successful correlation attack[28].

D. Onion sites

An onion site can be used to protect the identity of the user
and that of the server. This can be seen as starting the process
of creating multiple layers of encryption via nodes from two
different end nodes which then meet in the middle, at the
so called rendezvous point. Websites serving their content in
this way can be recognized by the distinctive .onion TLD and
usually seemingly random alphanumeric domain names of 56
characters (in version 3 onion addresses)[29]. These are the
result of a hash performed over the identifying properties of
the server. Since some fields can be set at will, they can be
used the generate partially human-readable hashes by brute
forcing them until the desired prefix in the hash is found. Two
real world examples, one with subdomain2, and one without3,
can be found in the footnotes.

E. Website Fingerprinting

Website Fingerprinting is the practice of trying to deduce
what website a user is visiting by looking for unique patterns
in the encrypted and anonymized communication. Mostly the
direction and size of packets are used to find these unique
patterns. In the Tor network an adversary running an malicious
entry node would be in the position to mount such an attack.

In evaluating website fingerprinting attacks on Tor there are
two scenario’s for the attacker. In the Closed world scenario a
finite set of websites is fixed beforehand which a victim may
visit. The challenge for the attacker lays in identifying which
website in the set is being visited by the client. As this was
not deemed very representative of how things would work in
the real world the Open world scenario was introduced[30].
Here the victim is allowed to visit all available websites on the
Internet. This naturally makes identifying which website the
client visits much harder for an attacker. However, sometimes
the requirement for the attacker is relaxed to only determining
whether the client is visiting a website out of a fixed finite
set[7]. This simulates a scenario where the client is facing an
entity which is monitoring people for visiting a website on a
list of ”forbidden” websites. In this case, the websites not on
this list are referred to as unmonitored websites.

2https://www.nytimesn7cgmftshazwhfgzm37qxb44r64ytbb2dj3x62d2lljsciiyd.
onion/

3https://duckduckgogg42xjoc72x3sjasowoarfbgcmvfimaftt6twagswzczad.
onion/

III. RELATED WORK

In 2016 AlSabah and Goldberg wrote an overview of
the research on performance and security improvements for
Tor[31]. Besides discussing the various papers, they provided a
classification of research directions with accompanying papers
and how these all relate to each other. Figure 1 shows this.

Performance

Security
PIR-Tor [Mittal et al. 2011]

Torsk [McLachlan et al. 2009]

Transport

Scheduling

BRAIDS [Jansen et al. 2010]

Incentives

EWMA [Tang & Goldberg 2010]

TCP-over-DTLS
[Reardon & Goldberg 2009]

UDP-OR [Viecco 2008]

Fair Queuing [Tschorsch & Scheuermann 2011]

Routing

Selective DoSSelective DoS
[Borisov et al. 2007]

Resource ExaggerationResource Exaggeration
[Bauer et al. 2007]

PathPath

Tunable selectionTunable selection
[Snader & Borisov 2008]

Link-basedLink-based
[Sherr et al. 2009]

Passive

CircuitCircuit

[Øverlier and Syverson 2006]

PB-OR [Kate et al. 2007] 

CL-OR [Catalano et al. 2009]

Throttling
Threshold [Jansen el al. 2012]

Traffic SplittingTraffic Splitting [AlSabah et al. 2013]

Classification [AlSabah et al. 2012]

PCTCPPCTCP
[AlSabah & Goldberg 2013]

Overlay

Congestion Control [AlSabah et al. 2011]

Latency-basedLatency-based
[Akhoondi et al. 2012]

Congestion-awareCongestion-aware
[Wang et al. 2012]

TorchestraTorchestra
[Gopal & Heninger 2012]

Gold Star [Ngan et al. 2010]

Tortoise [Moore et al. 2011]

ntorntor
 [Goldberg et al. 2011]

Side Side 
channel

[Evans et al. 2009]

Latency [Hopper et al. 2007]

Throughput [Mittal et al. 2011]

Sniper [Jansen et al. 2013]

 [Murdoch and Danezis 2005]

[Geddes et al. 2013]
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 [Backes et al. 2012]

KIST [Jansen et al.  2014]

uTor [ Nowlan et al. 2013]

IMUX [ Geddes et al. 2014]

Multipath Routing [Snader  2010]

ShadowWalker [Mittal & Borisov 2009]

Website Fingerprinting

 [Herrmann et al. 2009]

  [Panchenko et al. 2011]
 [Cai et al. 2012]

 [Wang & Goldberg 2014]

 [Wang et al. 2014]

 [Cai et al. 2014]

AS Observer

[Edman & Syverson 2009]

[Murdoch & Zielinski  2007]
Congestion

LIRA [Jansen et al. 2013]LIRA [Jansen et al. 2013]

LIRA [Jansen et al. 2013]TEARS [Jansen et al. 2014]

Scalability

Construction

Traffic 
Management

Selection

[Feamster & Dingledine  2004]

Tor's 
Improvements

Active

E2E
Confirmation

Resource Exaggeration    Cell Counter-based 
[Ling et al. 2009]

Resource ExaggerationProtocol-level 
[Ling et al. 2013]

Resource ExaggerationHidden Service Discovery
[Ling et al. 2013]

 [Kwon et al. 2015]

 RAPTOR [Sun et al. 2015]

Fig. 1: An exact copy of the mind map figure from the AlSabah
and Goldberg survey[31] for reference.

Although QUIC itself was already around before the pub-
lication of the survey, the idea of Tor over QUIC was not. If
Tor over QUIC was to be classified into the topology shown
by figure 1, it would be a leaf under Tor’s Improvements →
Performance → Traffic Management → Transport.

A. Attacks
Website fingerprinting attacks already have a leaf in the

topology from figure 1: Tor’s Improvements → Security →
Passive → Website Fingerprinting. Website fingerprinting at-
tacks are prevalent among the currently most relevant attacks.
As a result, the following enumeration starts off with 5
website fingerprinting attacks. For attacks the best possible
performance is not required for a comparison between TCP
and QUIC, as long as attacks can be applied equally well to
both they will be helpful in the comparison.

1) DeepFingerprinting: The DeepFingerprinting[7] (DF)
attack leverages a Convolutional Neural Network to classify
to which website unique patterns in a captured sequence
belong. It has near flawless performance against Tor without
defences with 98% accuracy. The attack still performs well
when faced with lightweight defences, such as WTF-PAD[19]
and Walkie-Talkie[20]. As threat model DF assumes a local
passive attacker, for example an eavesdropper on the Wi-Fi
network, a local system administrator or the Internet Service
Provider. The traffic is intercepted between the Tor client and
the entry node of the Tor network.
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2) Var-CNN: Although Var-CNN[8] performs better than
DF, this mainly manifests settings where there is little training
data available. This enables attackers to perform this attack
sooner as less time is required for collection data. Also, if for
some reason the attacker is forced to attack with less data than
planned, the chance of still successfully identifying websites
is increased. Since for this work the amount of data collected
can be fully controlled, a low data scenario can be mitigated
by collecting enough data for the performance difference to
become negligible. DF requires data with a lower dimension
(i.e. a lower number of different features) than Var-CNN to
be collected and does not require the manual extraction of
features. These benefits of DF outweigh the slightly inferior
performance (i.e. 1 or 2 percent points on an accuracy of
around 98%)4.

3) SDAE, AWF, k-NN, CUMUL and k-FP: When Stacked
Denoising Autoencoders[9] (SDAE), Automated Website
Fingerprinting[10] (AWF), k-Nearest Neighbors[11] (k-NN),
a Support Vector Machine with feature set based on a cu-
mulative sum[12] (CUMUL) and k-Fingerprinting[13] (K-FP)
are being compared with DF in an open world scenario, DF
still performs best in terms of both True positive rate and False
positive rate regardless of how many unmonitored samples are
provided in the training dataset.

However, when comparing DF amongst the aforementioned
attacks in a closed world scenario when faced with the
following defences; BuFLO[21], Tamaraw[22], WTF-PAD and
Walkie-Talkie, it is outperformed by a couple of percent points
when BuFLO or Tamaraw are active. Unfortunately, these
2 defences have a severe overhead in terms of bandwidth
and latency, respectively 246%, 137% for BuFLO and 328%,
242% for Tamaraw. This impact is so severe that it would
hinder adaption in Tor since it would impact performance for
its users heavily. If we only consider the other 2 remaining
defences; WTF-PAD (Overhead: 64%, 0%) and Walkie-Talkie
(Overhead: 31%, 34%) when evaluating attacks, then DF
clearly emerges as winner when ranking them using their
achieved classification accuracy with the 2 defences active.
For more details on the individual attacks and defences the
reader is referred to Table 3 and figure 6, along with sections
3.1 and 3.2, in the DF paper[7].

The authors of k-fingerprinting performed an systematic
feature selection on the Wang et al. dataset[11]. They con-
cluded that the number of incoming packets is the most
informative feature. Which is not surprising given that this
is probably the reason why deep learning[32][33] techniques
trained only on packet direction sequences perform well.
However, a consequence of this extensive feature selection
procedure is that more work is required to apply this attack.

4) Triplet Fingerprinting: The Triplet Fingerprinting
attack[14] aims to reduce the minimal size of the dataset
required to achieve proper classification accuracy. It does
not improve the state-of-the-art when considering only raw

4Based on the Var-CNN paper, figure 8 (the amount of Monitored Traces
was 2000 for most, although 2 measurements had 1000 traces)

accuracy. Since we control the data gathering process we can
ensure there is enough data, thereby losing the advantage this
attack had. Note that this is the same goal Var-CNN, the
authors acknowledge that they share this goal and that it is
unfortunate that no comparison is present due to its paper
already being written when Var-CNN was presented.

5) Tik-Tok: Tik-Tok[15] is build upon DF. DF uses packet
direction, encoded as a sequence of -1’s and +1’s. Tik-Tok
uses that as well, but adds timing information. The timing
information is represented in a sequence of the same length
and is multiplied with the direction sequence (i.e effectively
scaling each entry). This use of extra timing information
besides packet direction allows for modest improvement in
accuracy. For example, against WTF-PAD in closed world
setting the classification error goes down by 2.5 percent points.
In open world setting against WTF-PAD when tuned for
precision it performs 2 percent point better. However in the
remaining open world settings it performs equally or worse.
So in overall in terms of performance is it quite similar to DF.
The mathematics behind the individual timing features is not
particularly complicated. However, it still an extra step that
needs to be performed when extracting the training sequences
from the raw captured packets. Therefore it is easier to use DF,
since the data processing is easier and the resulting accuracy is
very comparable to the Tik-Tok attack. The Tik-Tok attack is
most relevant in establishing that, when done correctly, timing
information can be used to perform website fingerprinting
quite well and under the right circumstances is not inferior
to using directional information.

6) Flow correlation: Correlation attacks would in figure 1
fall under Tor’s Improvements → Security → Passive → AS
Observer. Flow correlation assumes a more powerful adversary
than required for website fingerprinting. The idea behind this
attacks is to look for traffic flows that show a high correlation,
as with a higher correlation there is a higher probability
that the traffic flows carry the same items. This adversary
is capable of passively listening to Tor traffic at multiple
locations in order to determine if there exists traffic that enters
at a particular point and leaves at another, thereby identifying
the parties communicating.

a) DeepCorr: DeepCorr[16] uses deep learning[32][33]
to predict which network flows are correlated. Attacks from
previous work on flow correlation were deemed not practical
on a large-scale Tor network, due to the use of generic
techniques from statistics. DeepCorr significantly increases the
correlation accuracy leveraging machine learning while using
substantially less observations compared to previous work, it
is capable of achieving 96% accuracy after collecting roughly
900 packets each traffic flow (state-of-the-art using classical
techniques yielded 4% here). Due to the use of machine
learning DeepCorr uses a custom correlation function specific
to Tor and this use case. In contrast to other attacks utilizing
machine learning, such as fingerprinting attacks, DeepCorr
does not need training data of target websites in order to
be able to identify them as this information comes from a
successfully deanonymized Tor connection.

4



Although DeepCorr presents a rather interesting topic for
comparison we did not use it due to time constraints.

b) AttCorr: AttCorr[17] is similar to DeepCorr, however
it is based on a different deep learning model. Unfortunately,
the paper is really scarce in providing details. It contains only
the description of the model and a comparison with DeepCorr.
It yields similar results in terms of accuracy, but computes
slightly faster.

This attack was omitted from comparison due to the
similarity to DeepCorr, but less informative paper and time
constraints.

B. Defences

For defence there exist several options against website
fingerprinting. As the topology in figure 1 does not distinguish
between attacks and defences, but rather focuses on theme, all
defences against website fingerprinting end up together with
their attacks under Tor’s Improvements → Security → Passive
→ Website Fingerprinting.

1) TrafficSliver: TrafficSliver[18] is a defence against web-
site fingerprinting and tries to break the unique patterns found
in the sequence of encrypted packets by splitting the traffic
over multiple entry nodes, each former their own unique path
via other nodes towards the destination. These extra paths are
called subcircuits and form an additional parallel connection
besides the regular path which unmodified Tor would create,
aka the circuit. The latter is now called the main circuit.
Due to this splitting, an individual node is no longer in
the position to view the recognizable patterns since it now
only sees fractions of the original sequence with large gaps
in between. TrafficSliver has several modes for splitting the
traffic, each resulting in different patterns. The modes vary in
their ability to thwart attacks. The main goal of TrafficSliver
is to defend against malicious entry nodes performing Website
Fingerprinting. The TrafficSliver defence results in a slightly
increased latency and a insignificant overhead in terms of extra
bandwidth consumption, thereby exceeding the capabilities of
all existing website fingerprinting defences. It seems therefore
the most likely to be implemented into Tor, hence it deems
most representative as chosen defence for this work.

TrafficSliver has two implementations: one working at the
network layer and another for the application layer. The
network layer version is the more interesting of the two for this
research as it allows for full control over individual packets,
it can achieve better performance and works with all kinds of
traffic. The network layer version requires adjustments to the
Tor source code. Where this is not required for the application
layer version, as it works fully independent. It forms a proxy
between the browser and 3 entry nodes, each connected to
a separate independent circuit. The current implementation
exploits some HTTP-specific features to enhance its splitting
strategy and therefore only works web traffic.

Being a newer phenomenon, TrafficSliver was unknown
when figure 1 was constructed. Categorizing it results in 3
applicable locations. Since it is an defence against website

fingerprinting, as mentioned it can be placed under Tor’s Im-
provements → Security → Passive → Website Fingerprinting.
But it has two more valid locations since the splitting take
places at either the network layer, yielding the Tor’s Improve-
ments → Performance → Traffic Management → Transport,
or the application layer, resulting in Tor’s Improvements →
Performance → Traffic Management → Overlay.

Note: The amount of entry nodes actually used when
defending is either as configured (3 by default) or 1 more.
The latter occurs when the desired extra entry node for the
construction of a new subcircuit is are already used as part of
another circuit and thus cannot be used anymore as an entry
node for a new subcircuit as this would result in using that
node twice. Therefore another new node is chosen as entry
node for the subcircuit.

2) Mockingbird: Machine learning[32][33] can be used as
part of an attack, in that case does it learn recognize the
situation of a succesful attack. However, it can also be used to
learn the situation where another machine learning algorithm
is struggling. This information can then be used to alter the
current situation, to lower the chances of a successful attack
and thereby turning the situation in favour of the defender.
This principle is called adversarial machine learning. Altering
the situation towards favourable conditions for the defender,
means adjusting the input samples that the attacking has to
classify. These adjusted inputs are called adversarial samples.

Mockingbird[23] proposes to use adversarial samples as
defence against website fingerprinting attacks. The new idea is
here to fight machine learning with machine learning instead
of a classical algorithm, as would be the case with Traffic-
Sliver for example. The Mockingbird defence is evaluated
against DF and Var-CNN, the two most potent deep learning
attacks. It halves the accuracy of these state-of-the-art WF
attacks depending on the scenario using a 58% overhead in
bandwidth for full-duplex traffic. For half duplex traffic the
bandwidth overhead is increased to 62% or 70% depending
on how exactly the pool of adversarial samples was filled.
The higher overhead case provides even better results pushing
the accuracy down to 38% for DF and 30% for Var-CNN.
Walkie-Talkie is comparably effective against DF and around
10 percent points worse against Var-CNN. WTF-PAD cannot
defend well against both, leaving DF at 86% and Var-CNN at
90% accuracy.

The Mockingbird defence is also evaluated against some
non-deep machine learning attacks and is really successful.
It reduces the accuracy of CUMUL and k-FP to a third or
better depending on the adversarial pool used. The results on
k-NN are even better reducing its accuracy to a sixth or better.
However, WTF-PAD and Walkie-Talkie are also successful
against these 3 attacks.

The authors also compared Mockingbird with WTF-PAD
and Walkie-Talkie in a Top-2 scenario (is the correct website
amongst the 2 most probable sites according to the classi-
fier/attack) against DF and Var-CNN. Interestingly, in this case
WTF-PAD and Walkie-Talkie lose their ability to defend as
the accuracy shoots up to at least 92%. Mockingbird performs
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much better here with accuracy rising to around 50% except
for one particular scenario (again related to how the adversarial
sample pool is filled) where it rises to around 70%.

To deploy Mockingbird in a real-world setting a couple of
issues would need to be addressed:

• Like Walkie-Talkie, Mockingbird requires the mainte-
nance of a database with relatively recent burst sequences
to fill its adversarial sample pool.

• In order to be able to use padding on bursts, they need
to be identified. Doing this reliably in a live setting can
be a tricky problem.

• Like the deep learning attacks it tries to defend against,
Mockingbird itself also requires a powerful GPU to
be able to execute it in a reasonable amount of time.
This would increase the computational requirements for
running Tor significantly. However, luckily running ML
models on low-end hardware is an active research field
and the results look promising. The authors did not pursue
to implement techniques from this direction themselves.

Mockingbird looked promising to also use in our com-
parison of Tor over QUIC versus vanilla Tor, unfortunately
due to time constraints it is not present. Mockingbird was
not chosen as defence in favour of TrafficSliver as it has
a larger overhead in terms of bandwidth and requires more
computational power to run. The latter is a direct result of
Mockingbird’s design, since it uses machine learning which is
much heavier compared to the, even for a classical algorithm,
lightweight TrafficSliver. On top of that, TrafficSliver also
performs better when defending against DF.

3) BiMorphing: The BiMorphing[24] defence is not evalu-
ated against the most potent attacks, namely DF and Var-CNN.
The two attacks we can compare it with to TrafficSliver are
CUMUL and k-NN. In a closed world setting BiMorphing
reduces the accuracy of the attack to 19.64% for CUMUL
and 12.93% for k-NN, while TrafficSliver manages 4.63%
for CUMUL and 3.15%. In open world setting only CUMUL
is available for both defences. BiMorphing supplies a single
point with a true positive rate of 86.91% and false positive
rate of 19.64%, while TrafficSliver provides a full ROC curve.
Plotting the single point of BiMorphing on the ROC graph,
it still lays far away from the performance of TrafficSliver
(which makes CUMUL perform marginally better than random
guessing).

Clearly TrafficSliver is superior in terms of defensive ca-
pabilities to BiMorphing and therefore we do not include the
BiMorphing defence in our comparison. Also BiMorphing did
not come with a reference to its codebase, while TrafficSliver
did.

C. UDP-OR

UDP-OR is located in the topology from figure 1 under
Tor’s Improvements → Performance → Traffic Management
→ Transport. UDP-OR[34] in 2008 was the first work to
introduce the idea of Tor over UDP. It shows that fairness was
improved and latency did not change significantly. The authors
acknowledge that they still need to address several issues and

mention that they did leave many open questions regarding
anonymity of its users. So security is not tested in any way.
Note that website fingerprinting attacks were not even around
as they first appeared in this paper[35] from 2009.

D. uTor

Like UDP-OR, uTor is also located in the topology from
figure 1 under Tor’s Improvements → Performance → Traf-
fic Management → Transport. To resolve the head-of-line
blocking problem in Tor the authors of uTor[36] proposed
to replace TCP and TLS by their unordered counterparts,
respectively uTCP and uTLS. Full backwards compatibility,
modular applicability and no weakening of the privacy and
anonymity of users were its design requirements. Full back-
wards compatibility would ensure Tor’s user base adapting
easily. The modular applicability would help with a gradual
adaption, as some links could use it while older links would
still work. This also ensures the change would be transparent
to the user client. The authors remark that uTLS does not
introduce security loss over TLS, however that they left a
formal and thorough security analysis to future work. Since
uTCP and uTLS are wire compatible with TCP and TLS,
minimal changes to the codebase are required (95 extra lines
of code, an increment of 0.001%). A simple version number
check suffices to distinguish between regular Tor and uTor. In
a test setup a significant reduction of latency is shown when
using uTor compared to regular Tor.

E. Torchestra

Staying in the same location in figure 1 for Torchestra: Tor’s
Improvements → Performance → Traffic Management →
Transport. The main idea behind Torchestra is splitting heavy
and lightweight traffic between parallel TCP connections. The
focus of this work lays on creating performance improvements.
The concept might recall TrafficSliver to mind. The difference
is that TrafficSliver is using the splitting of traffic as a defen-
sive measure, while Torchestra is using it to gain speed by
eliminating delays. Thus Torchestra is focused on performance
while TrafficSliver aims for security, consequently they are
found on two completely different branches in the topology
from figure 1.

IV. IMPLEMENTATIONS OF TOR OVER QUIC

Two implementations of Tor over QUIC were found. One
developed by a fellow student at the TU Delft and one
developed by researchers at Qatar University. The TU Delft
version was eventually chosen because it was based on a newer
Tor version and it had good support options since the original
author could easily be contacted.

A. Developed by a fellow TU student

This implementation uses the Quiche[37] library developed
by CloudFlare to provide QUIC support. This is an open-
source implementation of the QUIC and HTTP/3 protocols
written in Rust. The core code of Tor is augmented with
an implementation of a Tor channel over QUIC. It touches
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relatively little existing code and is mostly coded parallel to
their TCP counterparts. In the cases where existing Tor source
code needs to be altered, a simple boolean switch is used to
pick between a classical channel using TCP or the new option
with a channel over QUIC. A few extra commands needed
to be introduced to the Tor protocol. The source code reveals
that a few shortcuts had to be taken because the author was
running out of time5. Thus the code contains some potential
security flaws, which could easily be studied and exploited
by an adversary as this implementation is open-source. It
had some memory leaks which prevented it from running for
extended periods of time. To fix this, a patch was submitted
to the original author to mitigate some of them, but a few are
still remaining.

This implementation comes with documentation in the
form of a MSc Thesis[38] and is based on Tor ver-
sion 0.4.5, commit: https://github.com/torproject/tor/commit/
fe49a2474d54ea9443e71bd738b189b0de8cd58e

B. Developed by a Qatar University group

This implementation uses the simple-quic library, which
came in a .zip file, for QUIC support. This in turn leverages
the boringssl library developed by Google. However as stated
in the README.md there is no intention for general use even
though it is open-source and that it may exhibibit braking
changes without any notice. This is probably why the received
.zip file also contained a fixed copy of boringssl. Unfortu-
nately this setup is tougher to work with and required more
time to get to a compiling state than the other implementation.
Getting to this state even took using old Ubuntu distributions
(16.04.7) as it would only compile on there. Porting it to more
up-to-date releases yielded varying success and this meant that
continuing with this implementation was not possible as the
other tools required for the complete setup of this research run
on more modern Ubuntu distributions.

However, it is running on older releases and it success-
fully completes chutney network tests. It’s based on Tor ver-
sion 0.3.3, commit: https://github.com/torproject/tor/commit/
72e1f19249abae96530aa78a1a1441242c9b2239

V. EXPERIMENTAL SETUP / METHODOLOGY

To assess what influence the QUIC proposals have on
existing defences and attacks, their codebases are merged one-
by-one. The goal is to create a table where the accuracy of
each combination of an attack and a defence can be looked
up for the different QUIC implementations. From this table
the influence of the QUIC implementations on the success of
attacks and defences can be determined.

Merging the codebases proved of varying difficulty. It was
of real help that TrafficSliver was developed as a Tor module,
so much of its code could coexist with the rest without
merge conflicts. The option to preemptively create circuits
under TrafficSliver needed to be disabled to prevent it from
interfering with measurements. For the Qatar implementation

5See, e.g.: src/feature/relay/relay_handshake.c:187

the merging process meant going through the codebase to
update API calls to a newer version. Unfortunately, this im-
plementation proved to be not compatible with the other tools
required and was therefore abandoned. For the student imple-
mentation the process was smoother and required fixing the
version of a build dependency (i.e. cmake = "=0.1.45").
Additionally, a small edit to the codebase in order for it to
expose the port numbers used for building Tor circuits was
needed, so the data gathering process could listen to the correct
ports. After running this implementation for a longer period
of time, it turned out that it was severely leaking memory. To
remediate this, a patch was developed together with running it
with a periodic restart it was stable enough. It can be useful to
disable to info level logging for Tor as this prevents large log
files from collecting on the computer under long and frequent
use.

After the codebase of the used defence is merged with
the codebase of the QUIC implementation, the resulting Tor
version is compiled into a binary. This binary in combination
with a bash script is used to collect traces of the top 100
used websites (based on the Alexa top 2019[39], as this
provides a representative list of websites users would visit in
the real world)6. cURL[40] is used to collect the traces using
a SOCKS5 proxy that is exposed by Tor. The Tor network is
run locally using chutney[41] since this allows for Tor versions
with breaking modifications (i.e. changes that are incompatible
with the existing tor network or protocol) to be run as well7.
To collect the traces tcpdump[42] is used to capture the traffic
between the client and the guard node(s). This emulates a
scenario where a malicious entry node would try to identify the
website/service a client is visiting. Since not all combinations
of codebases run equally stable for an extended period of time,
after a round of traces is collected, that is all 100 sites once,
the local Tor network is torn down and a new one is built up
for the next round. As the problems causing the instability rise
only after running the network for longer periods, the traces
are not influenced when the network is run for a short time and
rebuild before the instability issues have a chance to manifest
themselves.

After running a sufficient amount of rounds to have gathered
enough, the data is filtered. Sufficient is defined by at least as
much data points as were used by the authors of the original
paper. The filtering checks ports, number of connections made
and that it is a connection between the client and an entry
node. It also performs some logical checks to ensure internal
consistency:

• the amount of rounds is as expected,
• for each round we have correctly identified which ports

were used,
• cURL returned status code 0,
• no timeout occurred,

6See appendix A for the complete list
7NetMirage was also considered for this. However, because https://crysp.

uwaterloo.ca/software/netmirage warns that ”It is not quite ready for produc-
tion use yet.”, chutney was preferred.

7

https://github.com/torproject/tor/commit/fe49a2474d54ea9443e71bd738b189b0de8cd58e
https://github.com/torproject/tor/commit/fe49a2474d54ea9443e71bd738b189b0de8cd58e
https://github.com/torproject/tor/commit/72e1f19249abae96530aa78a1a1441242c9b2239
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https://crysp.uwaterloo.ca/software/netmirage
https://crysp.uwaterloo.ca/software/netmirage


accuracy DeepFingerprinting attack closed world scenario 100 sites
No defence TrafficSliver (3RR)* TrafficSliver (5RR) TrafficSliver (5BWR)

QUIC 0.8415 (0.0030) 0.6957 (0.0022) 0.7079 (0.0024) 0.3020 (0.0084)
TCP 0.6307 (0.0010) 0.5627 (0.0031) 0.2145 (0.0103)

TABLE I: RR = Round Robin, BWR = Batched Weighted Random, * = default configuration of TrafficSliver, # = number
of parallel circuits — All values in the table are the average of 10 samples. The sample standard deviation is given between
brackets. All numbers are rounded to 4 decimals. Since TrafficSliver for 5RR performs very similar to 3RR for QUIC, the
TCP results were omitted to save time.

• the number of connections detected is consistent with the
configuration of the active defence.

The filtered data is then written to a python pickle file in the
form of a sequence of 1’s and -1’s indicating the direction of
the packets.

These sequences are the input data for the attacks. The
sequences are loaded and formatted as expected by the specific
attack (padded to a fixed length for example) and the attack
is run. Since state-of-the-art attacks are all machine learning
based, this means splitting the sequences in a training set, test
set and validation set[32][33]. The machine learning model is
trained and tested to establish the accuracy of the attack for
the given defence and used transport protocol.

The crawling does not require specifically powerful ma-
chines and was performed on a desktop with an i7-4770
(max 3.90GHz) and an old laptop with an i3-M330 (max
2.13GHz), both running Ubuntu 18.04.6 LTS. Since all eval-
uated attacks leverage machine learning a powerful ma-
chine was used with a i9-12900KF (max 6.70GHz) with a
NVIDIA GeForce RTX 3090 running Ubuntu 20.04.4 LTS
with NVIDIA drivers 510.73.05 and CUDA version 11.6
installed. To ease the use of installation of the required
software packages for machine learning the tensorflow docker
image (tensorflow/tensorflow:latest-gpu) was
used, with the following alias added to easily start it:

alias dgpu=’sudo docker run -u $(id -u):\
$(id -g) -v /home/user/:/home/user/ \
--gpus all -it --rm tensorflow/tensor\
flow:latest-gpu bash’

VI. EVALUATION

To be able to select which defences and attacks are
active, the following options are available: To switch
QUIC on and off: Use QUIC 0 / QUIC 1 in the Tor
configuration file, which are located here when using
Chutney: chutney/torrc_templates/common.i. To
switch TrafficSliver on (default when merged) and off run the
configuration script of Tor:

./configure --disable-asciidoc \
--disable-module-split

The script is located in the main directory of Tor: tor/, after
running the configuration script, Tor needs to be rebuild (and
reinstalled if required) in order for the changes to become
active. To select which mode is used to defend by TrafficSliver

the following options are available in the Tor configuration file:
To select the amount of entry nodes to be used for splitting:
SplitSubcircuits 4 To select the splitting algorithm:
SplitStrategy BATCHED_WEIGHTED_RANDOM

Despite the python random seed being fixed to 0 (with
random.seed(0)) and being ran on the same input data,
the DeepFingerprinting attack exhibits some non-deterministic
behaviour. To mitigate this effect it was ran 10 times in all
configurations and the average was taken to fill out the values
in table I.

Recall that TrafficSliver can be configured to use various
algorithms for splitting packets across circuits. Using more
parallel circuits or using a stronger algorithm results in a
stronger defence. In table I the number of parallel circuits
in use by the TrafficSliver defence is denoted by the number
preceding the letters. The letters come from abbreviating the
names of the splitting algorithm used: RR = Round Robin and
BWR = Batched Weight Random. See the original paper[18]
for more details.

Looking at table I, it shows that the current QUIC im-
plementation is somewhat more vulnerable to the DeepFin-
gerprinting attack in comparison with the regular vanilla Tor
over TCP. However, the same pattern of reduction in accuracy
when faced with increasingly stronger defence configurations8

can be seen for QUIC as with TCP, suggesting that the
TrafficSliver defence might be equally applicable to QUIC
as to TCP. Since QUIC is more vulnerable without defence
this suggests that if this baseline can be lowered, there is a
possibility that when done so, it will achieve similar results
when defended with TrafficSliver.

(QUIC - TCP) / TCP
NoDef 3RR 5BWR
0.3343 0.2364 0.4080

TABLE II: Different transport protocol, same defence config-
uration, this delta is an indicator for how well TrafficSliver
under QUIC is able to match the performance of TrafficSliver
under TCP.

To access what impact the different transport protocols
have on the ability of TrafficSliver to defend, the change
in accuracy of the DeepFingerprinting attack is calculated as
shown in table II. Reviewing these numbers shows that this
QUIC implementation performs between 24% and 41% worse

8Thus going from left to right in table I
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than the regular Tor over TCP. The most inferior performance
occurs under the 5BWR defence configuration.

QUIC TCP
(3RR - NoDef) / NoDef -0.1733 -0.1078
(5BWR - 3RR) / 3RR -0.5659 -0.6188

TABLE III: Same transport, different defence config, if this
yields the same delta, it indicates that TrafficSliver is equally
effective for both transport protocols.

To evaluate what impact the different defence configurations
have on the ability of TrafficSliver to protect, the change in
accuracy of the DeepFingerprinting attacks is calculated as
shown in table III. Given that DeepFingerprinting achieves
about the same relative accuracy when faced with different de-
fence setups, it shows that the different defence configurations
retain their relative strength compared to each other under both
transport protocols. Thus the strongest defence setup for TCP
is also the strongest one for QUIC. Furthermore, ordering the
defence configurations by strength yields to same outcome for
both QUIC and TCP.

When looking at the the relative changes in table II, it can
be noted that 5BWR yields inferior performance under QUIC.
This called for a more in-depth look in order to find out
what causes this. It is especially interesting since TrafficSliver
only uses direction and order of packets as input information.
Which raises the question: how come there is a difference
between QUIC and TCP? Both should relay the same data in
the setting in which this experiment is run. The use of cURL
ensures that only a single resources is fetched at a time, so
there are no concurrent streams fetching other resources that
could interfere. It also rules out race conditions in buffers and
the like. Preemptive circuits are disabled, the only information
relayed internally by the Tor network brought up by chutney
is exchanged before the measurements are started. Note that
this all provides the attack with the best chance of identifying
the visited website correctly. A possible explanation that could
not be ruled out by the environment created for this setup, is a
difference coming from non-data packets. These could be i.e.
control packets or other overhead specific to the used transport
protocol.

To allow for more insight into the origin of the discovered
difference, plots of the sequence lengths (figures 2, 6 and 10),
number of packets per direction (figures 3, 7 and 11) and the
Levenshtein distance between sequences (figures 4, 8, 12, 5, 9
and 13) were created. These 4 plots were made for 3 defence
configurations: no defence, 3RR and 5BWR.

A. No defence configuration

Starting off with no defence this gives the following plots
as shown in figures 2, 3, 4 and 5.

When looking at figure 2, where the number of times a
sequence of a certain length is encountered under both QUIC
and TCP is plotted, one may note that QUIC uses longer
sequences of packets to transfer the same information than
TCP uses. Additionally, one could observe that for sequences

Fig. 2: Distribution of sequence lengths with no defence. Note
the logarithmic scale used for the vertical axis.

of equal length, except the shortest sequences, QUIC uses
more sequences to exchange the same data.

Fig. 3: Distribution of number of packets per direction with
no defence. Note the logarithmic scale used for the vertical
axis.

To see if these extra packets QUIC is sending are going in
a specific direction the plot in figure 3 was created. As can be
seen the effect is predominantly present in packets going from
the webserver to the client. In the other direction it cannot be
seen and if anything might be the opposite case. One could
argue that under TCP more than 130 packets going from the
client to the webserver occurred more often than under QUIC.

Since we are looking for an indication as to why Traf-
ficSliver in the 5BWR configuration is performing relatively
subpar and DeepFingerprinting is performing well when using
QUIC, we need to compare the sequences that are being sent
under QUIC and TCP for similarity. Recall that the sequences
only consist of 1’s and -1’s, encoding the direction of packets
and that there is no other information as all packets are
encrypted and of equal size (there is timing information, but
that is not used by the DeepFingerprinting attack). This makes
it possible to use the Levenshtein distance as a similarity
metric. To analyse the similarity of the sequences 3 aspects
are investigated: the internal similarity of QUIC sequences, the
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Fig. 4: Distribution of internal Levenshtein distances with no
defence. Note the logarithmic scale used for the vertical axis.

internal similairity of TCP sequences and the cross similarity,
see figure 4.

Fig. 5: Distribution of internal normalized Levenshtein dis-
tances with no defence. Normalized means that the Leven-
shtein distance is divided by the combined length of sequences,
this ensures all inputs are mapped to [0,1]. Note the logarith-
mic scale used for the vertical axis.

Using the Levenshtein distance directly allows for 2 se-
quences to be compared, however we would like to be able
to also use the distances to be able to say something about
how distances relate to each other. Take for example a pair of
sequences of length 20 of which 5 differ and another pair of
length 100 of which 10 differ. This would give a distance of
5 for the shorter pair and 10 for the longer pair, however the
longer sequences are more similar since 90% of the sequences
is equal as opposed to 75% for the shorter ones. To be
able to compare differences in distances for short and long
sequences fairly they need to be normalized, this is achieved
by dividing the Levenshtein distance by the combined length
of the sequences. This ensures that all distances are mapped
to the [0,1] interval and can be compared fairly, see figure 5.

B. 3RR configuration
Moving on to the default TrafficSliver defence configura-

tion, 3 subcircuits and using Round Robin to distribute the

packets among them. This configuration gives these plots as
shown in figures 6, 7, 8 and 9.

Fig. 6: Distribution of sequence lengths under the 3RR defence
configuration. Note the logarithmic scale used for the vertical
axis.

When the 3RR defence is introduced note that the sequences
become a lot shorter. This is to be expected as each node now
only encounters one-third of the packets. Were the horizontal
axis of figure 2 extends beyond lengths of 1200 packets, the
axis of figure 6 maxes out below 700 packets and almost all
sequences are actually shorter than 550 packets. This holds
for both QUIC and TCP sequences, although overall TCP
sequences are shorter than QUIC sequences. It is difficult to
say whether the introduction of the 3RR defence enlarged this
difference between sequence lengths under QUIC and TCP.

Fig. 7: Distribution of number of packets per direction under
the 3RR defence configuration. Note the logarithmic scale used
for the vertical axis.

With the 3RR defence active we still clearly see in figure
7 that there are much more packets from the webserver to
the client under QUIC than under TCP. However the small
effect in the opposite direction is no longer present as the
distributions of packets going from the client to the webserver
under QUIC and TCP are almost identical.

When comparing distances between no defence and 3RR
it stands out that overall distances are a lot smaller after the
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Fig. 8: Distribution of internal Levenshtein distances under the
3RR defence configuration. Note the logarithmic scale used for
the vertical axis.

introduction of 3RR. This makes sense as sequence lengths
also went down going from no defence to 3RR. They roughly
halved as can be seen when comparing figures 2 and 6. This
translates nicely into distances also roughly halving going
from figure 4 to figure 8. Note that overall TCP has smaller
distances than QUIC, this was already noticeable in figure 4,
but in figure 8 one can observe that under TCP the number
of occurrences of distances steeply decreases around 300 and
remains significantly lower above that. This drop under TCP
was not visible with no defence present.

Fig. 9: Distribution of internal normalized Levenshtein dis-
tances under the 3RR defence configuration. Normalized
means that the Levenshtein distance is divided by the com-
bined length of sequences, this ensures all inputs are mapped
to [0,1]. Note the logarithmic scale used for the vertical axis.

Looking back at figure 5. After adjusting for differences
in sequence length by normalizing them, QUIC and TCP
have very similar distributions. TCP has more occurrences of
normalized distances closer to 1 and some peaks of around 1
order of magnitude larger here and there. Moving on to cross
distances. Near 0 the number of occurrences is relatively low,
so QUIC and TCP sequences do not really resemble each other
in terms of packet order. However a local peak in between 0.2

and 0.5 is visible. Distances near 1 are more frequent again.
Introducing the 3RR defence results in figure 9. In between

0.1 and 0.9 both TCP and QUIC went up in the number
of absolute occurrences, which is to be expected as splitting
sequences in three parts creates more sequences. Both went up
equally so they still have similar distributions. Note that the
effect of TCP having more occurrences closer to 1 is more
explicit, also because QUIC drops off quicker than under the
no defence configuration. TCP is no longer showing peaks,
except for one smaller peak around 0.5.

C. 5BWR configuration

And lastly the strongest TrafficSliver defence configuration,
using 5 subcircuits and the Batched Weighted Random strategy
to decide which subcircuit packets should travel on. This
configuration results in following plots.

Fig. 10: Distribution of sequence lengths under the 5BWR
defence configuration. Note the logarithmic scale used for the
vertical axis.

One aspect that immediately stands out when looking at
figure 10 is the triangular shape under both QUIC and TCP.
Also, under QUIC the base of this triangle seems to be twice
as wide as under TCP. Looking back at figure 6 under 3RR
there also is a hint of QUIC having the same shape as TCP
but with a twice as wide base, however looking back at no
defence in figure 2 this effect cannot be seen.

Going from no defence in figure 2 to 3RR in figure 6
sequences became a lot shorter. Going from 3RR to 5BWR this
cannot be seen. This is counter-intuitive as packets are now
distributed over 5 nodes instead of 3 (3RR) or 1 (no defence).
As given by the shape of the triangles, TCP sequences are still
overall shorter than QUIC sequences. This observation was
also the case under the 3RR configuration. Note that given
the geometric nature of the distributions in figure 10, one can
estimate the difference to be QUIC using twice the amount of
packets TCP needs to convey the same information.

In figure 11 there is practically always the same number of
packets going from the client to the webserver under QUIC
and TCP, just like was visible under 3RR in figure 7. In the
opposite direction the two distinct triangle shapes from figure
10 can be seen again, from which can be concluded that the
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Fig. 11: Distribution of number of packets per direction under
the 5BWR defence configuration. Note the logarithmic scale
used for the vertical axis.

factor 2 in width of their base is fully caused by packets going
in that direction, that is from the webserver to the client. Note
that more packets in this direction being sent by QUIC was
also the case under the 3RR configuration as can be seen in
figure 7.

Fig. 12: Distribution of internal Levenshtein distances under
the 5BWR defence configuration. Note the logarithmic scale
used for the vertical axis.

When comparing distances between 3RR in figure 8 and
5BWR in figure 12 one can observe that under TCP distances
follow roughly the same distribution. This is consistent with
the observation that sequence lengths did not go down either
when going from 3RR to 5BWR, so it makes sense that their
distances did not change much.

Overall TCP remains to have smaller distances than QUIC,
like was the case under 3RR. One could argue that this
aspect is even more profound under 5BWR. The two triangular
shapes are distinguishable here once again, although QUIC has
two isolated peaks next to the main triangular shape.

Note that the horizontal axis of figure 12 is considerably
longer than in figure 8. For QUIC the distribution remains
similar to 3RR as well, although this only applies to distances
up to 700. This raises the question where these extra distances

beyond 700 come from under QUIC. Looking back at figures
7 and 11 with attention to the domain of their horizontal axes
it can be noted that under both QUIC and TCP there are more
packets coming from the webserver to the client when using
the 5BWR configuration than when using 3RR. The other
direction does not show much difference. This would explain
the extra larger distances since longer sequences are being
sent under QUIC. However these larger sequences can also be
observed under TCP when looking at figures 7 and 11 while
they do not translate into additional peaks of larger distances
in figure 12.

Fig. 13: Distribution of internal normalized Levenshtein dis-
tances under the 5BWR defence configuration. Normalized
means that the Levenshtein distance is divided by the com-
bined length of sequences, this ensures all inputs are mapped
to [0,1]. Note the logarithmic scale used for the vertical axis.

In figure 13 TCP and QUIC have very similar distributions,
although under QUIC distances larger than 0.5 occur con-
sistently more often than under TCP. The largest difference
occurs around 0.8, being almost 1 order of magnitude in size.
Since TCP and QUIC have such resembling distributions it
follows logically that the cross distribution also mostly takes
their shape.

An interesting observation is that there is no longer a peak
visible in the distribution of distances near 1 under TCP, which
was the case with no defence and 3RR active.

D. Hypothesis

Note that in the figures above the distribution under QUIC
is similar in shape to TCP but it is twice as broad at the base.
This implies that QUIC uses longer sequences than TCP to
relay the same information. This observation is also backed
up by looking at the average sequence lengths: 678 packets
for QUIC vs 251 for TCP (no defence), 245 QUIC vs 116 TCP
(3RR) and 158 QUIC vs 107 TCP (5BWR). Note that these
averages are from the 10 websites9 with the largest averages
sequence length instead of the full list of 100 websites.

The difference was deemed by the authors too large to
be explained by sending some extra control packets only.

9In descending order of average size with indices 88, 18, 52, 7, 1, 27, 67,
34, 61, 16 as listed in appendix A.
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To ensure that the difference was not caused by different
congestion control algorithms used by the transport protocols
it was verified that they both used the ”cubic” congestion
control protocol. For TCP using the following command
sysctl net.ipv4.tcp_congestion_control10.
And for QUIC it was verified using the source code, specifi-
cally line 425 of file src/core/or/channelquic.c11.

Based on the observation a hypothesis was formulated that
the difference could be explained by the fact that the maximum
number of data bytes (MTU[43]) that a single TCP packet
(1460) can transport is larger than that of a QUIC packet
(1350). Regardless of the used transport protocol the exit
node forms a TCP connection with the webserver. Thus large
returning TCP packets would need to be split into 2 QUIC
packets in order to be able to be transported across the Tor
network. This would result in longer sequences for QUIC
compared to TCP and up to a factor 2 higher number of
packets going from the webserver to the client.

In order to test this hypothesis an experiment was
set up where the network traffic between the exit node
and the webserver was forced through a link with a
significantly reduced MTU (632 bytes). This was ac-
complished by using 2 virtual machines which had
(sudo ip link set enp3s8 mtu 632) set on their
network interface cards (NIC) connection to the internal
network. One could verify that the MTU of the link is
indeed reduced by pinging the other side with a large
packet with the Don’t Fragment bit set in its IP header
(ping 1.1.1.1 -M do -s 1300). One VM was acting
as the connection to the outside world by having an additional
NIC (Bridged Adapter) to be able to connect to the websites
and IP forwarding enabled (

sysctl net.ipv4.ip_forward = 1 & sudo \
iptables -t nat -A POSTROUTING -o \
enp0s3 -j MASQUERADE

). The second VM, running the Tor network and collecting
the data, used the aforementioned VM as its gateway and
thereby all its internet traffic was forced through the reduced
MTU link. This should eliminate the difference in sequences
as packets have to be split for both transport protocols or for
neither.

The following figures will show a comparison between
base conditions and the setup described above with a reduced
MTU. The figures showing base conditions use the same data
collected for the main experiment filtered on the 10 selected
websites. Over 20 runs were performed with 50 rounds each
times 10 websites gives at least 10000 samples. In case of
the reduced MTU setup, a single run was performed with
20 rounds for 10 websites resulting in 200 samples. This is
substantially lower than for the base conditions. This means
that there exists a large difference in scale on the vertical axis
between figures of base conditions and those with a reduced

10Returning net.ipv4.tcp_congestion_control = cubic.
11Line 425: quiche_config_set_cc_algorithm(config,

QUICHE_CC_CUBIC);

(a) Base conditions

(b) Reduced MTU

Fig. 14: Distribution of sequence lengths for 10 largest web-
sites with no defence.

MTU. However, to test the hypothesis it is sufficient to see
if the shape of the figures change when going from base
conditions to a reduced MTU setup. Collecting fewer samples
means the required time is reduced significantly, while the 10
largest websites will show the biggest change.

1) No defence configuration: Comparing figure 14a with
base conditions and figure 14b with the reduced MTU setup
active one can note the following: TCP shows a peak near 0
under base conditions, however with a reduced MTU it dis-
appeared. The range of sequence lengths under TCP remains
roughly the same, from a little under 200 to about 600 packets.
The range of length under QUIC spreads out a bit when faced
with a reduced MTU, going from 3 regions 0-50, 500-950 and
1100-1200 under base conditions to 0-50 and 300-1500 with
a couple individual peaks up to 2100.

Splitting the sequences up in packets per direction results in
figure 15a for base conditions and figure 15b with a reduced
MTU. Under base conditions TCP shows peaks near 0 of
nearly identical height in both directions, about twice as large
as the second largest peak. This indicates a lot of very short
sequences being send between the client and server with an
equal amount of packets in both directions. These sequences of
packets are probably carrying very little payload (as one would
expect longer sequences and of asymmetrical proportions in
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(a) Base conditions

(b) Reduced MTU

Fig. 15: Distribution of number of packets per direction for
10 largest websites with no defence.

that case). Besides the peaks near 0, with TCP the number of
packets in the client-to-server direction ranges from 50 to a bit
over 200. Going from server-to-client it varies from 100 to a bit
over 400 packets. Under QUIC in client-to-server direction the
number of packets ranges from 0 to 200, with a peak centered
around 100. In the opposite direction QUIC shows a very low
number of packets, i.e. the single peak near 0, or a number
of packets ranging from 250 to 850, or a little over a 1000
packets.

In figure 15b the single peak at 0 for TCP again completely
disappeared under a reduced MTU, coherent with the obser-
vation made above on sequence lengths in figures 14a and
14b. The number of packets in client-to-server direction with
TCP ranges from a bit under 50 to 200. In opposite direction
it varies from 100 to a bit over 400. For QUIC in client-to-
server direction it ranges from 0 to 1000, although there is a
peak around 100, numbers above 200 become less frequent and
numbers above 600 are sparse. In opposite direction QUIC has
either very little packets, the single peak near 0, or the number
of packets ranges from 300 to over 1000 packets.

Measuring the Levenshtein distance in base conditions pro-
vides figure 16a and in case of a reduced MTU figure 16b.
TCP has distances ranging from 0 to a little over 600 under
base conditions. QUIC shows a much broader spectrum of

(a) Base conditions

(b) Reduced MTU

Fig. 16: Distribution of internal Levenshtein distances for 10
largest websites with no defence.

distances going from 0 to 1200, however it has a large peak
a little under 100, while the rest is not even 10% the height
of this peak.

When reducing the MTU, figure 16b, the distances under
TCP range from 0 to under 200, a significant reduction from
base conditions. The range of distances under QUIC is not
severely altered, a few of the observed distances are now large
than the maximum 1200 under base conditions. However, the
large peak around 100 has collapsed, although still being there
it is now only a little over twice as large as the remaining
distances outside of this peak.

Interestingly, both QUIC and TCP are altered due to a
reduced MTU, but in a completely different dimension: TCP
is altered in range, while QUIC is altered in height.

Normalizing the Levenshtein distance results in figure 17a
for base conditions and figure 17b with a reduced MTU. In
base conditions both TCP and QUIC have a peak between 0
and 0.2 and a few distances outside of that range. TCP has very
close to 1 a smaller peak, which is absent under QUIC. Cross
distances show a peak at 1 meaning that there are differences
between QUIC and TCP packet sequences that are complete
opposites (so they do not contain repetitive substrings and
cannot easily be shifted to resemble to others) or, perhaps more
likely, long sequences in either one and very short sequences
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(a) Base conditions

(b) Reduced MTU

Fig. 17: Distribution of internal normalized Levenshtein dis-
tances for 10 largest websites with no defence. Normalized
means that the Levenshtein distance is divided by the com-
bined length of sequences, this ensures all inputs are mapped
to [0,1].

in the other.
After introducing a reduced MTU, figure 17b, under TCP

the peak between 0 and 0.2 reoccurs. However, the smaller
peak very close to 1 no longer exists. In fact, the former peak
is now the only data in the whole TCP distribution. When
looking at QUIC one can note that its peak between 0 and
0.2 is reduced in height and spread around from 0 to a little
over 0.3. The rest of QUIC’s distribution remained roughly
intact when faced with a reduced MTU. The cross distribution
also remained similar except for the peak at 1, which has
completely vanished when reducing the MTU.

2) 3RR configuration: With the 3RR defence configuration
active, sequence lengths under base conditions in figure 18a
are compared with figure 18b with a reduced MTU. Like with
no defence, TCP has a peak near 0 under base conditions.
Unlike no defence, the peak near 0 remains when reducing
the MTU. QUIC does not show this peak in both cases.

The range of sequence lengths under TCP is very similar
under both conditions, ranging from 0 to a little under 300.
Also, both show a little dip in number of occurrences of
sequence lengths around 50 (base conditions show a few

(a) Base conditions

(b) Reduced MTU

Fig. 18: Distributions of sequence lengths for 10 largest
websites under the 3RR defence configuration.

longer sequences, however so little that in the graph these
have a height of a single pixel). The range of sequence lengths
under QUIC goes from 0 to a bit over 500 with a gap around
100. It remains the same when faced with a reduced MTU
(base conditions show a few longer sequences here as well,
also having a height of one pixel in the graph).

Figure 19a shows the number of packets per direction under
base conditions, while figure 19b shows it with a reduced
MTU. Regarding base conditions, TCP shows, similar to no
defence, peaks near 0 again of nearly identical height in both
directions, also about twice as large as second largest peak. In
the direction client-to-server the number of packets for TCP
ranges from 0 to a bit over 100. In the other direction it varies
from 0 to a bit under 200. For QUIC in the client-to-server
direction the number of packets ranges from 0 to a bit over
100 with a few larger numbers of up to 250. The number of
packets in opposite direction varies from 0 to 400 with gaps
from 50 to 150 and from 300 to 350. A few larger numbers
are seen here as well, going up to 550.

In case of a reduced MTU, figure 19b, and unlike with no
defence the peak near 0 under TCP does not disappear with the
3RR defence configuration. However, it decreased in height,
being now roughly equal to the other larger peaks. The number
of packets for TCP in the client-to-server direction ranges from
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(a) Base conditions

(b) Reduced MTU

Fig. 19: Distribution of number of packets per direction for
10 largest websites under the 3RR defence configuration.

0 to a bit over 100. In the server-to-client direction TCP varies
from 0 to 175 with a gap from 25 to 50. The number of packets
for QUIC ranges from 0 to 225 in the client-to-server direction.
In opposite direction it ranges from 0 to under 400, whit a gap
from under 50 to over 100. The overall shapes of distributions
under QUIC and TCP are similar to their counterparts under
base conditions.

The internal Levenshtein distance under the 3RR defence
configuration is shown in figure 20a for base conditions and
in figure 20b with a reduced MTU. In base conditions the
distances under TCP range from 0 to a bit under 300. This
corresponds to the range of no defence distances from figure
16a divided by 3, as would be expected since traffic is split
over 3 paths and therefore sequences are 3 times shorter. It
shows a peak a little under 50, being almost 4 times as high as
the second largest peak. QUIC shows distances ranging from
0 to 500, a bit larger than its range with no defence divided
by 3. However, distances between 400 and 500 occur much
less than shorter distances. QUIC has a peak a little over 50,
also being almost 5 times larger than its second largest peak.
There are two valleys in QUIC’s distribution: one in between
100 and 200 and the other around 375.

When introducing a reduced MTU, figure 20b, the range of
TCP is not altered at all and stays from 0 to a bit under 300.

(a) Base conditions

(b) Reduced MTU

Fig. 20: Distribution of internal Levenshtein distances for 10
largest websites under the 3RR defence configuration.

Also, its peak a little under 50 is still there, although relative
to the now second largest peak it has grown and it is at least
6 times as high. Under QUIC the range of distances stayed
from 0 to 500. It still has a peak a little over 50, while with
distances from 175 and upwards occurrences are very low,
with no other peaks visible.

Without defence TCP was altered by reducing the MTU in
range, which not visible under the 3RR defence configuration,
and QUIC in height, which happens under 3RR as well.

After normalizing the internal Levenshtein distance figure
21a is obtained for base conditions and figure 21b with a
reduced MTU. Under base conditions both QUIC and TCP
have a peak between 0 and 0.2, like they had with no defence.
However, unlike with no defence both now also show distances
between 0.6 and 1. TCP has a second peak just below 1 of
nearly equal height as the one between 0 and 0.2. QUIC on the
other hand shows almost no distances of just below 1. Cross
distances show a broader distribution of distances under the
3RR defence configuration than without defence. The peak
just under 1 is still present, however, it lost its factor 2 in
height compared to other peaks as they have all grown to a
similar height.

After enabling the reduced MTU, figure 21b, the peak in
between 0 and 0.2 under QUIC is reduced in height and
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(a) Base conditions

(b) Reduced MTU

Fig. 21: Distribution of internal normalized Levenshtein dis-
tances for 10 largest websites under the 3RR defence con-
figuration. Normalized means that the Levenshtein distance is
divided by the combined length of sequences, this ensures all
inputs are mapped to [0,1].

widened at the base. Under TCP the peak in between 0 and
0.2 is not significantly altered. For both TCP and QUIC the
number of occurrences of distances in between 0.6 and 1
has been greatly reduced. This includes TCP’s second peak
just below 1. Cross distances have a similar shape to base
conditions, except that its peak just below 0.4 has grown, while
the rest outside of this peak has all been reduced in number
of occurrences. Unlike with no defence the cross distribution
did not lose its peak just below 1 when faced with a reduced
MTU under the 3RR defence.

3) 5BWR configuration: Sequence lengths under the 5BWR
defence configuration for base conditions in figure 22a are
compared with a reduced MTU in figure 22b. Unlike under
the 3RR configuration and with no defence, TCP does not
show a peak at 0 in both base conditions and when faced with
a reduced MTU.

For TCP the range of sequence lengths under base condi-
tions is 0 to 400, with some outliers up to lengths of 500. The
majority of the sequences has a length between 0 and 200.
When reducing the MTU the distribution of sequence lengths
under TCP does not change significantly.

(a) Base conditions

(b) Reduced MTU

Fig. 22: Distributions of sequence lengths for 10 largest
websites under the 5BWR defence configuration.

QUIC’s range of sequence lengths spans from 0 to 900,
however, it has a really long small tail. Like TCP the bulk of
the sequences are shorter than 200 packets. QUIC’s drop off
in number of occurrences for larger sequences is less severe
than under TCP. QUIC’s distribution of sequence lengths also
does not change significantly when reducing the MTU.

Splitting up the sequences in packets per direction results in
figure 23a for base conditions and figure 23b with a reduced
MTU. Under base conditions TCP shows in the client-to-server
direction numbers of packets ranging from 0 to 150. Going to
opposite way the numbers range from 0 to a bit over 300 for
TCP. Under QUIC in the client-to-server direction the number
of packets ranges from 0 to a bit under 150. In the other
direction it ranges from 0 to a but over 800. Here QUIC
displays a very long small tail in the graph, much longer
than its TCP counterpart. TCP had the bulk of the server-
to-client packets below 100 packets. QUIC has less server-to-
client packets in that range and starts to have more occurrences
above 100 packets.

The situation with a reduced MTU in figure 23b is very
similar to base conditions. TCP has a range of 0 to 150 for
the number of packets in client-to-server direction. In server-
to-client direction TCP ranges from 0 to 300 packets, with a
few outliers up to 350 packets. QUIC in the client-to-server
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(a) Base conditions

(b) Reduced MTU

Fig. 23: Distribution of number of packets per direction for
10 largest websites under the 5BWR defence configuration.

direction has a range of 0 to 150 packets, with a few outliers up
to 250 packets. In the server-to-client direction QUIC ranges
from 0 to 800, with the same long tail as under base conditions.
It becomes quite sparse above 500 packets. For server-to-client
packets the crossover point lies again around 100 packets, with
TCP having more packets below and QUIC more above that.
The fact that this crossover point is not disappearing or at least
moving is an indicator that hypothesis should be rejected.

Measuring the Levenshtein distance in base conditions re-
sults in figure 24a and in case of reduced MTU in figure 24b.
TCP has distances ranging from 0 to a bit over 400. This is
not a shorter range than under the 3RR defence configuration.
The shape of the distribution is different as well, under the
5BWR defence configuration it takes a shape reminiscent of a
Poisson distribution. QUIC has a wider range than TCP, going
from 0 to over 800. QUIC’s distribution follows that of TCP
in shape, except that its peak is lower and its right tail goes
down slower and is therefore longer.

With a reduced MTU the range of TCP is not altered, it still
going from 0 to a bit over 400. The shape of the distribution is
the same as under base conditions with some small variations
in height. For QUIC this holds as well, it has the same range,
0 to 800, and shape, also with some small variations.

Normalizing the Levenshtein distance results in figure 25a

(a) Base conditions

(b) Reduced MTU

Fig. 24: Distribution of internal Levenshtein distances for 10
largest websites under the 5BWR defence configuration.

for base conditions and figure 25b with a reduced MTU. Under
base conditions with the 5BWR defence configuration active,
the plot looks very different from their counterparts under the
3RR defence configuration and with no defence. A single solid
body across the full width of possible distances is visible in
figure 25a instead of isolated peaks with gaps in between them
like in figures 17a and 21a. TCP still has a peak around 0.2.
QUIC, on the other hand, does not show any peaks, except a
small one near 0 with a height below half of the main body’s
height. The cross distribution shows a peak around 0.2.

Like with figure 24b the introduction of a reduced MTU
does not alter the distribution in figure 25b in a significant
way, as was to be expected since they are based on the same
underlying data.

4) Concluding: The overall goal of was to test the hy-
pothesis that large TCP packets coming from the webserver
would be split up into two QUIC packets in order to be able
to be transported across the tor network, causing significant
longer sequences when QUIC was used as transport protocol
as opposed to TCP. Evidence to support that would come in
the form of figures with a reduced MTU no longer showing a
double amount of packets for QUIC compared to TCP.

With no defence or 3RR defence configuration active, when
looking at the sequence length a few smaller differences are
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(a) Base conditions

(b) Reduced MTU

Fig. 25: Distribution of internal normalized Levenshtein dis-
tances for 10 largest websites under the 5BWR defence
configuration. Normalized means that the Levenshtein distance
is divided by the combined length of sequences, this ensures
all inputs are mapped to [0,1].

visible after introducing the reduced MTU, these are however
not what one would expect to see if the hypothesis was
true. Turning to number of packets per direction the situation
remains the same, a few differences but mostly uninfluenced,
while here one would expect to see that in the server-to-
client direction there would be a difference under QUIC, as
there the results of no longer splitting packets would manifest
themselves most clearly.

Focusing on the 5BWR defence configuration, were the
QUIC doubling effect was most profound. Sequences having
a length of around 150 packets occur twice as frequent
under QUIC than under TCP in figure 10 and the longer
the sequences get the more extreme the difference in occur-
rence becomes. Or formulated from another perspective: for
sequences that occur around 10 times or less those under QUIC
are at least twice as long as those under TCP. When looking at
5BWR within the reduced MTU setup, figure 22b, the numbers
are shifted a bit but the story remains similar. Sequences
having a length of around 250 packets occur twice as frequent
under QUIC than under TCP and for longer sequences the
difference is even greater. Focusing on sequences that occur

equally often but are twice as long under QUIC as they are
under TCP, that happens only for sequence lengths occurring
4 times or less.

So evidence to reject the hypothesis is present across
all defence configurations, therefore it is quite obvious that
reducing the MTU does not have a significant impact on
how the difference in packet sequences under QUIC and
TCP looks like. This is furthermore supported by the fact
that with a reduced MTU the average sequence lengths still
show a discrepancy: 839 packets for QUIC vs 362 for TCP
(no defence), 304 QUIC vs 143 TCP (3RR) and 187 QUIC
vs 118 TCP (5BWR)12. Consequently, we cannot conclude
that difference in MTU between QUIC and TCP is solely
responsible for observed differences in the sequences (and also
not for the difference in performance of TrafficSliver between
QUIC and TCP).

An interesting side note, when using the reduced MTU link,
it seemed that the experiment ran much smoother than before,
that is the cURL connection did not time out and the weird
behaviour where sometimes cURL would hang for multiples
of 20 seconds before starting to transfer any data was no longer
observed.

VII. CONCLUSION

Tor becomes more secure to use when more people use it.
Replacing TCP by QUIC in Tor aims to improve the user
experience and thereby making Tor more attractive to use.
However, the main selling point for Tor is the anonymity it
provides to its users. Performance improvements should never
compromise Tor’s ability to provide anonymity. Arriving at
the main question this work intends to answer: What is the
impact of replacing TCP by QUIC in Tor on its resistance
to website fingerprinting attacks? Various attacks, defences
and two implementations for Tor over QUIC were considered
and evaluated. Ultimately, a single implementation of Tor
over QUIC was picked to be combined with the TrafficSliver
defence to shield it from the state-of-the-art and very potent
DeepFingerprinting attack. It turns out that for TrafficSliver
5BWR is the best performing defence configuration under
both QUIC and TCP. Although overall, the performance of
TrafficSliver under TCP cannot be matched by QUIC, showing
a consistent disadvantage for QUIC.

With the instances of Tor over TCP and Tor over QUIC used
in this research, QUIC is characterized by having a sizeable
overhead when longer sequences of packets are transported,
up to a factor 2 in extreme cases. It was proven that this
difference cannot be solely attributed to the difference in MTU
between QUIC and TCP. Nonetheless, this overhead remains
remarkable given that QUIC is designed to be efficient. It
can also be seen as an indication that this particular instance
of Tor over QUIC still needs fine-tuning. This lack leaves
room for an potential improvement of its resistance to the
DeepFingerprinting attack. This potential can only be properly

12Note that all averages have gone up after reducing the MTU compared
to base conditions, showing that a lower MTU does indeed cause packets to
be split for transport over tor.
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investigated after significant time and effort is invested in
polishing Tor over QUIC as much as its TCP counterpart
already has received. Until then, it remains a bit of an uphill
battle for QUIC.

So, in its current state Tor over QUIC is not quite ready
to compete with Tor over TCP. However, given that QUIC
is rapidly evolving and Tor over QUIC is far from being as
well scrutinized as its TCP counterpart, it has potential to
close the gap in performance between TCP and QUIC for
TrafficSliver. Therefore, Tor over QUIC is definitely worth
looking into again once its codebase is a bit more mature.
This presents an opportunity for future work to investigate
in which areas precisely QUIC is lacking and to determine
whether these elements are just due to the program not being
optimized or that it is inherent to the QUIC protocol.

More on opportunities for future work: The original plan
of this research was to evaluate a broad spectrum of attacks
and defences. However, the scope had to be narrowed, leaving
ample room for future work to expand this work to its
original intended scope. For example, the attacks and defences
discussed in the related work section of this paper that were
omitted due to time constraints but would be interesting to
apply should be considered. Another approach angle could be
the fact that, although, for the class of the evaluated attack, i.e.
website fingerprinting, it appears there are no insurmountable
obstacles stemming from replacing TCP by QUIC, there could
be other classes of attacks were using QUIC instead of TCP
poses a major issue.

For this research cURL was used to download websites
instead of a full browser, which results in a smaller footprint
for each website as the returned file is not interpreted and sub-
sequently resources for, for example, rendering the webpage,
interactive links or other links are not loaded. Using a full
browser would result in larger and perhaps more distinctive
sequences, which could influence the success rate of certain
attacks or defences. Firefox supports SOCKS5 proxies for
example. But this would come with its own challenges, as
this likely means losing a major benefit of command line tools,
being fully compatible with scripts.

All the setup files, patches, run scripts and data processing
scripts used for this research, along with all the gathered data
are available. Thus future work can extend and build upon
this research if desired, to bring a more secure QUIC over Tor
implementation closer to reality.
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APPENDIX

The urls of the 100 websites (based on the Alexa top 2019)
used in this research.

0) google.com
1) youtube.com
2) facebook.com
3) baidu.com
4) wikipedia.org
5) qq.com
6) taobao.com
7) yahoo.com
8) tmall.com
9) amazon.com

10) twitter.com
11) sohu.com
12) live.com
13) jd.com
14) vk.com
15) instagram.com
16) sina.com.cn
17) weibo.com
18) reddit.com
19) login.tmall.com
20) 360.cn
21) yandex.ru
22) linkedin.com
23) blogspot.com
24) netflix.com
25) twitch.tv
26) whatsapp.com
27) pornhub.com
28) yahoo.co.jp
29) csdn.net
30) alipay.com
31) naver.com
32) pages.tmall.com
33) microsoft.com
34) livejasmin.com
35) aliexpress.com
36) bing.com
37) ebay.com
38) github.com
39) tribunnews.com
40) google.com.hk
41) amazon.co.jp
42) stackoverflow.com
43) mail.ru
44) okezone.com
45) google.co.in
46) office.com
47) xvideos.com
48) msn.com
49) paypal.com
50) bilibili.com
51) hao123.com

52) imdb.com
53) t.co
54) fandom.com
55) imgur.com
56) xhamster.com
57) wordpress.com
58) apple.com
59) soso.com
60) google.com.br
61) booking.com
62) xinhuanet.com
63) adobe.com
64) pinterest.com
65) amazon.de
66) amazon.in
67) dropbox.com
68) bongacams.com
69) google.co.jp
70) babytree.com
71) detail.tmall.com
72) tumblr.com
73) google.ru
74) google.fr
75) google.de
76) so.com
77) cnblogs.com
78) quora.com
79) amazon.co.uk
80) detik.com
81) google.cn
82) bbc.com
83) force.com
84) deloplen.com
85) salesforce.com
86) pixnet.net
87) ettoday.net
88) cnn.com
89) onlinesbi.com
90) roblox.com
91) aparat.com
92) thestartmagazine.com
93) bbc.co.uk
94) google.es
95) amazonaws.com
96) google.it
97) tianya.cn
98) xnxx.com
99) rakuten.co.jp
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