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Abstract
Model-based evolutionary algorithms (MBEAs) are praised for their broad applicability to black-box
optimization problems. In practical applications however, they are mostly used to repeatedly optimize
different instances of a single problem class, a setting in which specialized algorithms generally per-
form better. In this paper, we introduce the concept of a new type of MBEA that can automatically
specialize its behavior to a given problem class using tabula rasa self-learning. For this, reinforcement
learning (RL) is a naturally fitting paradigm. A proof-of-principle framework, called SL-ENDA, based
on estimation of normal distribution algorithms in combination with reinforcement learning is defined.
SL-ENDA uses an RL-agent to decide upon the next population mean while approaching the rest of
the algorithm as the environment. A comparison of SL-ENDA to AMaLGaM and CMA-ES on uni-
modal noiseless functions shows mostly comparable performance and scalability to the broadly used
and carefully manually crafted algorithms. This result, in combination with the inherent potential of
self-learning model-based evolutionary algorithms with regard to specialization, opens the door to a new
research direction with great potential impact on the field of model-based evolutionary algorithms.
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1
Introduction

In optimization, knowledge about the structure of a problem is often exploited to develop algorithms
with high performance. This can, for example, be observed by the extensive use of the gradient in
continuous optimization [8]. However, for some problems the structure is not a priori known and
cannot directly be obtained. Examples of such problems include optimization of proprietary computa-
tional models and numerically approximated mathematical models with high complexity [8]. To enable
optimization of these kinds of problems, the field of black-box optimization studies methods to (ap-
proximately) solve optimization problems where the objective and/or constraint functions are given
by so-called black boxes. A black box, in this context, is any process that, when provided with an
input, returns an output, but the inner workings of the process are not analytically available [2]. In
mathematical optimization these objects are sometimes called oracles.

Though the structure of a black box in itself is unknown, practical applications frequently require
repeatedly optimizing different problem instances that share some underlying structure, we will call
such sets of problems problem classes. For example, when optimizing over a proprietary computational
model, the settings of the model might change from instance to instance, but the model itself is static
throughout all instances. It stands to reason that the construction of more specialized algorithms
for such an application, rather than using a general purpose black-box optimization algorithm, can
(significantly) improve performance. The development of specialized algorithms however is a laborious
and expensive endeavor that requires expertise of both the algorithms and the application itself. A
method to automatically generate specialized versions of algorithms for specific applications, without
the need for application-specific expertise, could therefore be very promising.

To limit the scope of this thesis we will only consider global continuous black-box optimization, which
is also referred to as derivative free optimization [8]. In particular, we will consider a setting where we
are handed a black box objective function, also called the fitness function, f : Rd → R, and we are
tasked with finding x∗ ∈ Rd such that

f(x∗) ≈ sup
x∈Rd

f(x), (1.1)

where we will assume that the supremum is finite. Note that we are not looking to exactly solve a
maximization problem, but only to find a “good” solution with a high fitness value. We will throughout
the thesis however often use the word “solve” in reference to finding such a good solution.

The literature on continuous black-box optimization can roughly be subdivided into three subfields:
direct-search methods, model-based search methods and evolutionary algorithms. Direct-search meth-
ods sample the objective function at a finite number of points at every iteration, and, according to a
predefined strategy, decide which actions to take next solely based on those function values [8]. Gen-
erally, direct-search methods are computationally inexpensive, however since the next action is based
solely on the current iteration, the methods have a low sample efficiency. That makes direct-search
methods especially suitable for problems with cheap objective function evaluations. Model-based search
methods, on the other hand, maintain a surrogate model of the objective function to guide the choice of
trail solutions. That is done by iteratively optimizing over the surrogate model, evaluating the objective
value of the resulting solution, and updating the surrogate model based on the newly obtained infor-
mation [20]. Due to the computational overhead of updating and optimizing over the surrogate model,
model-based search methods generally have a high sample efficiency but also a high computational com-
plexity. Hence these methods work best for problems with expensive objective function evaluations.
Evolutionary algorithms are algorithms that maintain and iteratively update a set of solutions, called a
population, in order to construct a population of solutions with high fitness values [28]. The population
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is updated by selecting promising solutions in the population, and, based on the selected solutions,
sample new solutions which are added to the population. Due to their stochastic and population-based
nature, evolutionary algorithms are generally robust against noisy and multi-modal objective functions
[28]. Due to their robustness and broad applicability to real-world problems, and to limit the scope of
this work, this thesis will only consider to evolutionary algorithms.

In this thesis we particularly focus on the class of model-based evolutionary algorithms (MBEAs),
a subclass of evolutionary algorithms. MBEAs explicitly build a model that is intended to bias the
generation of new solutions to regions of above average fitness (as compared to the current population)
[6]. The model is based on the information about the objective function gained from earlier populations.
MBEAs lend themselves exceptionally well to an automated specialization approach since the algorithms
already contain an explicit model, which allows us to specialize the algorithm by adapting the operator
that governs how this model is constructed.

Traditionally, specialization of existing MBEAs to a specific application is pursued using parameter
tuning [27]. This approach uses optimization techniques to find appropriate values for algorithm pa-
rameters, such as population size, threshold values and smoothing factors, to achieve better performance
on a given problem class. Although parameter tuning can lead to better performing parameters, the
parameters themselves can often only influence the optimization on a global level, such as managing
robustness to local optima and premature convergence. They however cannot exploit local geomet-
ric structures specific to the problem class. To exploit such geometric structures, the behavior of the
algorithm itself has to be optimized for the problem class.

One way to automate the optimization of algorithm behavior is to use machine learning techniques.
Both Andrychowicz et al. [1] and Li et al. [16] showed promising results by applying supervised learning
and reinforcement learning, respectively, to gradient descent to improve performance on specific (non-
black-box) problem classes. In their paper Chen et al. [5] propose an idea similar to Andrychowicz et
al. for point-based black-box optimization problems. They do however need the gradient information
of the objective function in order to train their algorithm, which makes it incompatible with black-box
scenarios. In this thesis, we address the question of whether a machine learning approach could be used
to automate the design of MBEAs to achieve improved performance as well.

Concretely, we will address the following research questions.

Research Q1. Is it possible to develop a self-learning model-based evolutionary algorithm, in the sense
that the algorithm can improve its ability to optimize different instances of a problem
class, based on data collected during optimization of instances of that class, without the
need for a priori problem expertise or manually-engineered and heuristic-driven update
rules of the model?

(a) Which machine learning techniques can be used to develop a self-learning model-
based evolutionary algorithm?

(b) How can these techniques be applied to develop a self-learning model-based evolu-
tionary algorithm?

Research Q2. How does the performance of a self-learning model-based evolutionary algorithm compare
to the performance of existing manually-engineered model-based evolutionary algorithms?

In Chapter 2 we properly define the concepts of black-box optimization and give an introduction to
evolutionary-, model-based evolutionary-, and estimation of normal distribution algorithms. In Chap-
ter 3 we review the three paradigms of machine learning and their applicability to MBEAs. Chapter
4 contains an introduction in the fundamentals of continuous reinforcement learning and will continue
by introducing the Proximal Policy Optimization algorithm. Chapter 5 uses the findings of the pre-
ceding three chapters to introduce a self-learning estimation of normal distribution algorithm that uses
reinforcement learning as its learning mechanism and ends with an empirical comparison between the
proposed algorithm and existing manually-engineered MBEAs. The last chapter presents the conclu-
sions of the thesis and ends with a discussion of the thesis as a whole.
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2
Evolutionary algorithms

2.1 Black-box optimization

Black-box optimization, sometimes also called derivative-free optimization, is concerned with the opti-
mization of objective functions for which the structure is not (or insufficiently) known. In particular,
no gradient information about the objective is a priori available nor can it be requested directly. To
formalize this sort of objective we define the concept of a black-box function.

Definition 2.1: Black-box function

Given a dimensionality d ∈ N, a black-box function is a function f : Rd → R such that, for any
x ∈ Rd
• f(x) ∈ R can be calculated (or evaluated);
• no gradient information is known about f in x;
• no assumptions can be made about the analytic form of f .

A black-box function is named as such since it is often approached as an actual black-box that takes an
input and returns an output without any knowledge about the internal workings, this is sometimes also
called an oracle in mathematical optimization. Black-box functions are encountered in optimization in
a myriad of professional fields such as engineering, medicine, economics and operations research [31].
These functions often arise due to the complexity of the underlying processes they describe, which
are either unknown or too costly to model adequately. Examples of black-boxes include proprietary
simulation software, and numerically approximated mathematical models [8]. The task of, given a
black-box function, finding a solution in its domain that has a high function value, is called a black-box
optimization problem.

Definition 2.2: Black-box optimization problem

Given a black-box function f : Rd → R, the corresponding black-box optimization problem is
finding x∗ ∈ Rd such that

f(x∗) ≈ sup
x∈Rd

f(x), (2.1)

where we assume that the supremum of f on Rd is finite. In the context of the black-box
optimization problem, f is called the objective function.
Notation: we will often address a black-box optimization problem simply as “optimization
problem” or “problem”.

Practical applications will often require repeated optimization of problems that are closely related. For
example, in the case of proprietary simulation software, a particular application can require to optimize
the parameters of a simulation given different settings. In this case the underlying model is constant
throughout all optimizations and only the settings change. We call sets of problems that are related in
this way black-box optimization problem classes.
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Definition 2.3: Black-box optimization problem classes

Given a dimensionality d ∈ N, a black-box optimization problem class is defined by its function
set

F = {(f : Rd → R) : f is a black-box function}, (2.2)

in the sense that any black-box problem in the black-box problem class has its objective function
in the function set.
Throughout this work we will assume that there exists a certain distribution over the function
set, sampling a function according to this distribution is denoted by f ∼ F .
Notation: We will often abbreviate “black-box optimization problem class” by “optimization
problem class” or “problem class.”

Note that if a problem class results from a practical application, the distribution over the function class
is induced by the natural occurrence of functions according to the application. In the case of artificially
generated problem classes, the distribution will have to be specified.

2.2 Evolutionary algorithms

If we consider the natural world, and the Darwinian process of evolution in particular, it can be formu-
lated as a black-box optimization problem over all possible organisms. The objective of that problem
will encode something along the lines of “The ability of an organism to survive and multiply in its
environment”, which is often called the fitness of the organism [28]. In order to optimize this objective,
natural selection maintains a population of organisms. As time progresses, some individuals in the
population will pass away due to their inability to survive in their environment (i.e. their low fitness).
The remaining organisms will reproduce, creating new individuals that share the traits of their parents.
During reproduction there is a slight chance that some of the traits of a new individual are mutated,
possibly developing new traits that were, up until that point, not present in the population. By repeat-
ing this process over multiple generations, traits that lead to high fitness survive in the population, while
other traits go extinct. This increases the overall fitness of the population, and thereby approximates
an optimal solution of the underlying optimization problem, insofar such a solution exists.

Evolutionary algorithms (EAs) are approximate optimization algorithms that are inspired by this con-
cept of natural evolution. EAs are generally population-based, meaning that, just like natural evolution,
they maintain a population of feasible solutions of the problem at hand [28]. At the start of the algorithm
a population is generated, often by randomly sampling solutions according to an initial distribution.
Consequently, the value of the objective function, also called the fitness, of each solution, also called
individual, in the population is evaluated. After generating the initial population and evaluating its fit-
ness, an EA will generally consist of five processes it will execute iteratively until a predefined stopping
criterion is met. These processes, in order, are:

Selection A subset of individuals in the population is selected, which will often be referred to as
parents. The selection is based on the current population and the fitness of the individuals in it.
The selected individuals will usually, but not necessarily, be the individuals with highest fitness
in the population. The process that selects the individuals is called the selection operator. The
selection operator is analogous to the passing away of organisms due to their inability to survive
in their environment in natural evolution.

Recombination The parents are used as a basis to form new feasible solutions to the optimization
problem at hand. This is done by combining properties of different parents, and thereby creating
new individuals, in order to exploit the preferable traits of the parents. The process that re-
combines the selected individuals into new individuals is called the recombination operator. The
recombination operator is analogous to the reproducing of the surviving organisms in natural
evolution. The sharing of properties with the selected individuals is inspired by the genetic code
being passed from the surviving organisms to their offspring. The new solutions created by the
recombination operator will often be referred to as offspring.
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Figure 2.1: Schematic summary of the general EA framework.

Mutation After recombination, a fraction of the offspring is randomly altered by a mutation operator.
By mutating a fraction of the offspring we enable the exploration of properties that were not
previously present in the population which helps prevent premature convergence to local optima.
The mutation operator is analogous to the mutation that happens randomly in nature.

Evaluation After mutation, the fitness of the offspring individuals is evaluated.

Replacement After evaluation, the offspring are ready to enter the population. This is done by
the replacement operator. Common replacement operators will either replace the whole existing
population with the offspring, or use another selection operator to select individuals from the
existing population and the offspring to form the new population. A popular and relatively easy
method to ensure that the maximum fitness of the population is monotonically increasing, copies
the highest fitness individual from the existing population to the new population. An EA that
uses this kind of strategy is said to be elitist.

The general framework of EAs introduced here is schematically summarized in Figure 2.1. In modern
EAs, the operators are not always individually distinguishable since they are sometimes combined in
a single operator or step of the algorithm. This is especially true for the recombination and mutation
operators. The processes as outlined above will however almost always be conceptually present [28].

2.3 Estimation of distribution algorithms

Traditionally, EAs use manually-engineered operators based on heuristics developed after considerable
analysis of the problem at hand. These heuristics are typically static with respect to the information
collected during optimization. Therefore, the operators are not able to react to the locally encountered
structures in the fitness landscape (the unknown graph of the fitness function), which can be detrimental
for optimization problems that express fundamentally different local structures at different locations
of the fitness landscape[6]. An example of such an objective function is the 2-dimensional Rosenbrock
function,

f(x1, x2) = (a− x1)
2

+ b
(
x2 − x2

1

)2
(2.3)

which, for b � 1, consists of a relatively easy structure outside of the x2 = x2
1 valley, while the valley

itself is generally considered much more difficult due to its steep walls and relatively small gradient
in the valley. This often results in ill-equipped optimizers easily finding the valley, but once there,
continuously zig-zagging from one wall to the other instead of following the gradient of the valley.

In order to address these issues, more recent works have been dedicated to so-called Model-based evo-
lutionary algorithms (MBEAs). These MBEAs replace the static heuristics of traditional EAs with
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machine-learning models. The models are then trained on the data that is collected throughout op-
timization in the form of populations and the fitness of the individuals in them. By learning from
observations about the current fitness landscape, MBEAs can adapt their behavior while optimizing,
and therefore be more effective in multifaceted objective functions like the Rosenbrock function [6].

A subclass of MBEAs is the class of Estimation of Distribution Algorithms (EDAs). These algorithms
build a model of the distribution of high fitness individuals. Typically, EDAs maintain a population
distribution over the solution space, D : Rd → R≥0, which is used to sample the population from. After
evaluating the fitness of the individuals in the population, the population distribution, D, is adjusted to
incorporate the newly gained information about the fitness landscape. How the distribution is adjusted
based on the new information is governed by an update rule that is (generally) static throughout the
optimization process [6]. Such update rules are often based on maximum likelihood estimates and
heuristics resulting from extensive analysis of the distribution [4, 12, 31]. The general pseudocode of
an EDA is presented in Algorithm 1, where f is the objective function, Npop is the population size,
D0 is the initial population distribution, and updateModel is the aforementioned update rule for the
distribution. Note that the selection, recombination and mutation operators from the EA framework are
combined in the UpdateModel and population sample step. Examples of well-known and widely used
EDAs include CMA-ES [12], AMaLGaM [4] and NES [31], which constitute the current state-of-the-art
real-valued evolutionary algorithms.

Algorithm 1: Estimation of distribution algorithm

Input: f,Npop,D0, updateModel
1 D ← D0 ; // init the initial distribution

2 while stopping criterion not met do

3 P ← (xi ∼ D)
Npop

i=1 ; // sample population

4 F ← (f(xi))
Npop

i=1 ; // evaluate fitness

5 D ←updateModel(P, F,D); // Update population distribution

6 return P ;

2.4 Estimation of normal distribution algorithm

A class of EDAs that has shown to be especially popular for real-value black-box optimization is the
class of Estimation of Normal Distribution Algorithms (ENDAs). As the name suggests ENDAs are
EDAs that use the multivariate normal distribution as their population distribution. Arguments often
provided to use the normal distribution as population distribution include:

Maximum entropy The normal distribution is the highest entropy distribution with finite variance
over the Euclidean space. That means that, given a particular mean and covariance matrix, the
normal distribution makes the least assumptions about the shape of the distribution as possible.
It therefore ensures that we do not neglect a particular set of solutions while optimizing [12].

Stability The normal distribution is the only stable distribution with finite variance [10], i.e. the
sum of two normally distributed random variables is again normally distributed, which generally
simplifies the analysis of the distribution and the algorithms that use it.

Efficient approximation To estimate the parameters of a d-dimensional normal distribution with full
covariance matrix, we have to estimate the mean vector, which contains d parameters, and the
covariance matrix, which contains 1

2d
2 + 1

2d parameters since it is a symmetric matrix. The total
number of parameters to estimate is therefore 3

2d+ 1
2d

2, which grows quadratically, and not expo-
nentially, with the dimension [3]. Hence distribution has efficient space-complexity. Additionally,
the maximum-likelihood estimators of the mean vector and covariance matrix, given a dataset,
are well-studied and known to have a computational complexity quadratic in the dimension and
linear in the size of the dataset.
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Intuitive parameters The parameters of the normal distribution are intuitive. The mean directly
encodes the location of the distribution, in the sense that the mean is equal to the mode of the
distribution, and the distribution is symmetric around the mean. The covariance matrix directly
encodes the shape of the distribution, in the sense that the shape and orientation of the iso-density
ellipsoid is uniquely determined by the covariance matrix. This interpretability of the parameters
significantly increases the ability to develop heuristics for the update rules of ENDAs.

To replace the distribution D in Algorithm 1 with a normal distribution, we use the standard parame-
terization of the normal distribution, the mean and covariance matrix, and alter the parameters based
on the information about the fitness landscape that is collected during the execution of the algorithm.
Concretely, an ENDA maintains a mean vector, µ ∈ Rd, and a covariance matrix, Σ ∈ Rd×d. At every
time step (or generation) of the ENDA, a new population of Npop ∈ N individuals is sampled from the
normal distribution with mean, µ, and covariance matrix, Σ,

P = {xi ∼ N (µ,Σ)}Npop

i=1 . (2.4)

After the population has been sampled, the fitness of the individuals in the population is calculated
and stored in a fitness vector,

F = (f(xi))
Npop

i=1 (2.5)

To enable the algorithm to make decisions based on all information the algorithm has collected, the
algorithm maintains a history and adds the population, fitness vector, mean vector and covariance
matrix to it in every time-step,

H = H|| (µ,Σ, P, F ) ∈ H (2.6)

where H is the set of all possible histories and || denotes the concatenation of two sequences. The
history is then passed on to the mean function, µ̂ : H → Rd, which calculates a new mean. The new
mean together with the history is then passed to the covariance function, Σ̂ : H × Rd → Rd×d, which
calculates a new covariance matrix. The new mean and covariance matrix are then used to sample a
new population and this cycle continues until a predefined stopping criterion is met. The pseudo-code
for a general ENDA is presented in Algorithm 2.

Contribution

The behavior of an ENDA is, to a great extent, defined by the mean and covariance function. Just
like the update rule of EDAs, the traditional ENDAs generally use carefully manually-engineered
mean and covariance functions based on maximum-likelihood estimates and heuristics found after
extensive analysis of ENDAs and the normal distribution. Much like the step from traditional
EAs to MBEAs, our work proposes to take the next step from MBEAs to self-learning MBEAs.
In particular, we propose the use of machine learning techniques to learn update rules for ENDAs
that are specialized to a particular class of black-box optimization problems. In this way we aim
to develop self-learning ENDAs that, by optimizing different problems in the same problem class,
learn which structures are prevalent in the problem class and how to navigate those structures
efficiently.
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Algorithm 2: Estimation of normal distribution algorithm

Input: f, n, µ̂, Σ̂, µ(0),Σ(0)

1 µ← µ(0) ; // init mean

2 Σ← Σ(0) ; // init covariance

3 H ← (); // init history

4 while stopping criterion not met do
5 P ← (xi ∼ N (µ,Σ))ni=1; // sample population

6 F ← (f(xi))
n
i=1; // evaluate fitness

7 H ← H||(µ,Σ, P, F ); // extend history

8 µ← µ̂(H); // calculate new mean

9 Σ← Σ̂(H,µ); // calculate new covariance

10 return P ;

8



3
Machine learning

As the name suggests, machine learning is the field of research that studies systems (or machines),
often called agents, that “learn” [21]. Learning in this context means improving the performance of the
agent based on observations it has made about its environment. More concretely, consider an agent
that receives a sequence of inputs, which could be scalars or vectors, but also images or text files. These
inputs yield some information about the environment of the agent, since they originated from that
environment. The process of distilling those inputs down to the essence of information it contains, and
using that to improve the performance of the agent on its predefined task, is the subject of study in
machine learning. This is done by combining ideas from statistics, computer science, cognitive science,
mathematical optimization and many other fields in science and mathematics [11].

3.1 Self-learning ENDA

The goal of this thesis is to use machine learning techniques to develop a self-learning ENDA, which
we define to be an ENDA that improves its ability to quickly find high fitness solutions by altering
its behavior based on previous optimizations of functions in the problem class at hand. As remarked
in Section 2.4, the behavior of an ENDA is almost completely governed by the mean and covariance
function. Hence, to develop a self-learning ENDA it is sufficient to create a self-learning mean and
covariance function. Therefore the goal of developing self-learning ENDAs can be reformulated to
finding a mean and covariance function that maximizes the ability to construct high fitness solutions
based on the previous optimization of objective functions. This work will disregard the covariance
function in order to focus on the application of machine learning techniques without the inherent
difficulties of the covariance function, which include:

Governs exploration The covariance matrix controls the shape of the normal distribution [12], there-
fore the covariance function controls the exploration vs exploitation behavior of the algorithm.
Since it is not a priori known what a good exploration strategy is, it is not directly evident what
a desired behavior constitutes or what a good performance measure is to base learning on.

Positive definiteness The covariance matrix of a (non-degenerate) normal distribution should be
positive definite [10]. Therefore the covariance function should map the history to the space
of positive definite matrices. This makes optimization over the space of covariance functions
especially difficult.

Non-intuitive metrics Lastly, the standard Euclidean metric of positive definite matrices does not
correspond well to the intuitive metric on covariance matrices with respect to their resultant
normal distributions. More concretely, given two covariance matrices

Σ1 =

[
0.01 0

0 1

]
and Σ2 =

[
1

√
0.99√

0.99 1

]
, (3.1)

then Σ1 and Σ2 are equidistant to the identity matrix with respect to the Euclidean metric.
However the iso-density ellipsoids of the corresponding normal distributions around 0, depicted
in Figure 3.1, show that Σ2 is intuitively closer to I than Σ1, when we consider the resultant
distributions. Therefore, to properly optimize over the set of covariance functions, a proper
metric should first be decided upon, which we leave for further research.
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Figure 3.1: Iso-density ellipsoids of normal distributions with mean 0 and different covariance matrices indicated
by the legend and (3.1).

3.2 Paradigms of machine learning

Machine learning can be roughly subdivided in three paradigms: unsupervised learning, supervised
learning and reinforcement learning. The main component that separates these paradigms is the type
of feedback the agent receives in addition to the input sequence [21].

In unsupervised learning, the agent receives no feedback in addition to the inputs. It is therefore mostly
concerned with learning patterns in the input sequence as provided. Typical tasks in unsupervised
learning include clustering and dimensionality reduction. Also, distribution estimation, the central part
of EDAs, is considered to be a form of unsupervised learning [11].

On the other end of the spectrum we have supervised learning. In supervised learning the agent is
given a sequence of desired outputs corresponding to the input sequence. The agent is then tasked
with learning a mapping that, according to some performance measure, generalizes the given data set
of input and desired output pairs best. Typical tasks for supervised learning include classification and
regression [21].

In reinforcement learning the agent learns by interacting with its environment. After an input from the
environment, often reflecting the state of the environment, the agent responds with an action. Based
on the action, the state of the environment changes and the environment reacts with a scalar feedback,
called a reward. The task of the agent is to find a behavior - a mapping from states to actions - such
that the future reward is maximized [21]. Reinforcement learning is most well-known for its recent
advances in the game of Go [26] and its applications in robotics [15].

Since we are looking to create a self-learning mean function, which is a mapping from the history
space to d-dimension Euclidean space, unsupervised learning is not evidently applicable in this case.
Additionally, we have a natural feedback in the form of the population fitness, which makes either
supervised learning or reinforcement learning more suitable due to their ability to incorporate feedback
in learning. The rest of this chapter will introduce the basic concepts of these paradigms and how they
can be applied to the mean function.

3.3 Supervised learning

As stated earlier, supervised learning considers the task of learning a mapping that generalizes a given
dataset of input-output pairs, also known as regression in mathematics. In particular, given some
dataset of input-output pairs (xi, yi)

N
i=1 ⊆ (X × Y )N where X and Y are sets and yi was generated

by an unknown function y = g(x), the task is to find a function ĝ : X → Y that approximates g.
Generally1, the method used to solve this starts out by considering a parameterized function ĝ(0) :

1We only give a quick introduction here, for a more complete overview the reader is advised to read chapter 18 of
“Artificial Intelligence: A Modern Approach” by Stuart Russel and Peter Norvig.
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RD(0) ×X → Y , which we will assume to be a neural network (see Appendix A for an introduction in
neural networks). We also subdivide the data in a training set, (xi, yi)

K
i=1, and a test set, (xi, yi)

N
i=K+1,

where K ∈ {1, . . . , N − 1}. Then, by solving

θ(t) = arg min
θ∈RD(t)

1

K

K∑
i=1

L(ĝ(t)(θ, xi), yi), (3.2)

for t = 0 and with a loss function L : Y ×Y → R that is appropriate for the underlying problem, we can
find the parameter vector θ(0) that gives the best fit of ĝ(0) to the training set. By now considering the
loss on the test set, 1

N−K
∑N
i=K+1 L(ĝ(0)(θ(0), xi), yi), we can find out if we are overfitting or underfitting.

Namely, if the test set loss is significantly higher than the training set loss, we are overfitting to the
training data. If the test set loss is approximately equal or lower than the training set loss we are
possibly underfitting. Another sign of underfitting is a relatively large training loss. By then altering

the parameterization to a new parameterization g(1) : RD(1) × X → Y we can counter the under-
or overfitting behavior. In particular, when overfitting the number of parameters should generally be
decreased, when underfitting, the number of parameters should generally be increased. After changing
the parameterization, (3.2) is solved again for the new parameterization to get the best fit parameters.
By repeating this process, we can find a parameterization that is neither overfitting nor underfitting
the training data, hence it generalizes as best as possible given the type of parameterization used, such
as a neural network [21].

3.3.1 Direct supervised learning

To apply this methodology to the mean function, suppose we have some dataset of “good” examples
mapping histories to means, (Hi, µ

∗
i )
N
i=1. Then, by the algorithm described above we can find a mean

function µ̂∗ : H → Rd, such that µ̂∗ generalizes the data with respect to, for example, the Euclidean
distance loss

L : Rd × Rd → R, (x, y) 7→ ||x− y||22. (3.3)

Let us assume we can find such a µ̂∗. A major drawback from this approach is that the resultant
function will never have a significantly better performance than the mechanism with which the dataset
is created. Since “good” behavior of a mean function is not a priori known, it is furthermore difficult (if
not outright impossible) to devise a good dataset. We can record the optimization history of existing
algorithms that show good performance, but then the resulting mean function will never be better than
its source and the algorithm can only specialize on a specific optimization problem class insofar the
source algorithm is specialized on that problem class. Hence, supervised learning in its purest form
does not allow us to create self-learning mean functions. It could however be used to find good starting
parameters for a parameterized mean function, by cloning an existing algorithm, in order to speed up
another self-learning mechanism.

3.3.2 Indirect supervised learning

Another methodology that is closely related to supervised learning is an idea proposed by Andrychowicz
et al. in order to learn optimization steps in gradient descent algorithms [1]. The paper considers the
problem of finding x∗ = arg min f(x) where f : Rd → R and the gradient ∇f : Rd → Rd is known.
Standard gradient descent uses

x(t+1) = x(t) − α · ∇f(x(t)) (3.4)

to find the minimizer, where α > 0 is the step-size (or learning rate in machine learning). The paper
proposes

x(t+1) = x(t) + g(∇f(x(t)), θ) (3.5)

where g : Rd ×Rn → Rd is modeled as a recurrent neural network (RNN) and θ ∈ Rn is the parameter
vector of the network. The parameter vector θ is adjusted so as to minimize

L(θ) = Ef

[
T∑
t=1

f(x(t))

]
(3.6)
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where the objective function f is sampled from a predefined problem class and T ∈ N is the horizon.

Then L(θ) is minimized by noting that f(x(t)) = f(x(0) +
∑t
τ=0 g(∇f(x(τ)), θ)) and hence by the chain

rule

∇θf(x(t)) = ∇xf(x)|x=x(t) ·
t−1∑
τ=0

∇θg
(
∇f(x(τ)), θ

)
. (3.7)

This enables us to use a stochastic gradient descent type approach. The expected value is approxi-
mated by repeatedly sampling an objective function from the problem class and applying (3.5) until a
predefined stopping criterion is met. Based on the realized trajectory, (3.6) is minimized using gradient
descent and (3.7).

Andrychowicz et al. show that this approach outperforms existing manually-engineered stochastic
gradient descent algorithms on quadratic functions and machine learning tasks. However, there is no
evident way to adjust this approach to work with the ENDA framework since, per definition of black-
box problems, the gradient of the objective function is unknown, which is heavily relied on in both
calculating the optimization step as the learning step used to update the optimizer itself.

3.4 Reinforcement learning

Reinforcement learning considers an agent repeatedly interacting with an environment over the course
of several episodes. At the start of every interaction the environment is in some state that is passed
to the agent. The agent responds with an action according to its policy, which is roughly a mapping
from states to actions. The state is changed by the action in an, to the agent, a priori unknown way.
Based on the “goodness” of the new state, the environment then returns a scalar reward to the agent.
By interacting repeatedly with the environment in this way the agent can change its policy so as to
maximize its expected future reward. To allow the agent to optimize its behavior, it has to explore
different behaviors, therefore the policy generally is stochastic.

To apply this formalism to the mean function, we can consider the rest of the algorithm, including
the current fitness function, to be the part of the environment. The state of the environment then
becomes the history of the algorithm while the action is the new mean. As a result, the reinforcement
learning agent directly encodes the mean function, and an interaction is a single time-step in the ENDA
framework. To make the policy adjustable and stochastic, we can use a parameterized distribution
based on a neural network, which is often used in reinforcement learning [18]. Lastly, to specify to
the agent that we want to maximize the fitness function, we will have to design an appropriate reward
signal. This reward signal however finds its natural analog in the average population fitness of the
current population, since the population fitness is exactly what we want to optimize.

This approach has its downsides. For example, by the already significant complexity of a reinforce-
ment learning agent, the resulting ENDA will become even more complex. Also, due to the inherent
stochasticity of the policy, the resulting mean function will be stochastic, which will almost certainly
lead to suboptimal optimization paths. However, relative to unsupervised and supervised learning,
reinforcement learning is the best fit as a machine learning paradigm to develop a self-learning mean
function, because it directly learns a mapping. Taking the reward function to be the average popula-
tion reward ensures that the agent maximizes the population fitness. And lastly, since the paradigm is
based on trial-and-error learning, there is no need for a gradient of the objective function in the learning
mechanism, which enables us to train the resulting ENDA on black-box optimization problem classes.
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4
Reinforcement learning in continuous

spaces
In order to develop a self-learning mean-function based on reinforcement learning (RL), as suggested
in Chapter 3, we first consider the basics of RL. This chapter introduces the basics of RL and goes
on to highlight the results of the field of particular interest to this work. This chapter will not be a
complete overview of RL. For a more complete introduction the interested reader is advised to read
”Reinforcement learning: An introduction” by Richard S. Sutton and Andrew G. Barto [29], which
large parts of this chapter are based on.

Reinforcement learning (RL) is based on the concept of learning by interaction. The basic idea is easily
explained by considering training a dog to fetch a ball. Dogs are, to the best of our knowledge, born with
little prior knowledge about how to fetch a ball. Furthermore, our ability as humans to communicate
complex concepts to a dog is fairly limited. Hence, we are in a situation that we want the dog to learn
to fetch the ball, but we cannot simply explain the dog our intentions. We do however know that dogs
like certain treats. A solution is to throw the ball and when the dog fetches the ball, give it a treat.
That way the “good” behavior of fetching the ball when thrown is reinforced as the dog is rewarded
with a treat since, we assume, the dog wants to maximize the amount of treats it gets. This way we
can let the dog solve a certain problem, fetching the ball, without us having to explicitly explain step
by step how it should do that, which would be near impossible. Reinforcement learning is the paradigm
of machine learning that develops a computational approach to this concept of learning by doing.

4.1 Mathematical model

To approach learning by interaction from a computational point of view, reinforcement learning con-
siders a formalism called the agent-environment interface. Based on that interface the dynamics of the
problem is modelled using Markov decision processes which enable structured analysis of the problem.
Both the agent-environment interface and the concept of Markov decision processes are introduced in
this section.

4.1.1 Agent-environment interface

In RL the problem of learning by interaction, such as the dog example sketched above, can be captured
by the agent-environment interface. In this interface the entity that learns and makes decisions is
called the agent. The things that influence the agent or that the agent can interact with constitute
the environment. In the case of our dog, we can consider the dog to be the agent and everything else,
including us ourselves, to be the environment.

The agent can interact with the environment via an action. Actions can be anything, for example we
could describe some of the actions of our dog as walk, jump, turn x degrees right/left, pick-up and drop.
Now the idea is that the agent will, at every time-step, choose an appropriate action to achieve some
goal. However, without any input, the agent has no idea what the effects of its actions are. Nature
solved this by giving the dogs eyes and ears to observe the state of its environment. To drive the agent
toward some desired goal, the environment presents a scalar reward to the agent after every interaction.
The agent is programmed to maximize the expected future reward by changing its behavior accordingly.
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In the case of our dog the reward is a treat that it will get after correctly achieving the desired goal,
fetching the ball. The agent will interact with the environment for a preset number of interactions, or
until some criterion for termination is met. One period of consecutive interactions is called an episode.
In the case of our dog we can define an episode to be a single stretch of time in which we train the dog
consisting of multiple ball throws. We can however also define a single throw to be an episode. This
illustrates that the definition of an episode in some cases can be quite ambiguous. In general however
an episode should contain multiple interactions. In RL the distinction between episodes is generally
made in the idea that every episode is a new instance of the environment, which generally means having
different initial conditions. The agent-environment interface is summarized in Figure 4.1.

It is important to realize that this interface merely formalizes the interaction between the agent and
the environment. To do anything useful with it we still have to model the dynamics of the problem, i.e.
how the environment processes the actions it receives from the agent to update its state, and how the
agent decides which action to take when it observes a certain state.

.

Agent

Action

Environment

Observation

Reward

Figure 4.1: A schematic representation of the agent-environment interface.

4.1.2 Markov decision processes

The agent-environment interface as described in Section 4.1.1 formalizes the interaction between the
agent and the environment, but does not describe the dynamics of either. To model the dynamics
of both, we use a formalization of stochastic control processes closely related to Markov chains called
Markov decision processes (MDPs). However, before we introduce MDPs we first have to do some
mathematical groundwork in the form of definitions.

We start with the formal definitions of the states and actions introduced in the previous subsection,
and the spaces they live in. With an eye on our application, optimization in finite-dimension Euclidean
space, we have to ensure that our model can handle such spaces.

Definition 4.1: State space

A state space is a finite-dimensional Euclidean space S. We call an element ξ ∈ S a state.

Definition 4.2: Action space

An action space is a finite-dimensional Euclidean space A. We call an element α ∈ A an action.

Using the state and action spaces we define the reward as a function of (state, action, state)-tuples. To
see that all three arguments are necessary, consider someone selling a car. She starts in a state has car,
after the action try to sell car, she either sold the car, landing her in a state has no car, or she
did not, keeping her in has car. If she sells the car she gets a reward, money. If she does not sell the
car she gets no reward. In this case the resulting state is essential to calculate the reward. The action
cannot be left out either since the action crash car can leave her with the same initial and resulting
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state while never giving her a reward. Leaving the initial state out would also not work since, if she is
in the state has no car the action try to sell car will never result in a reward.

Definition 4.3: Reward function

Given a state space, S, and an action space, A, a reward function is a function R : S×A×S → R.

Now that we properly defined the structures introduced in Section 4.1.1, we can start to introduce the
dynamics, starting with the dynamics of the environment. Since the exact dynamics of an environment
are assumed to be either unknown or too complex to approach deterministically, we assume the dynamics
to be stochastic. The stochasticity allows us to use statistical information about underlying processes to
model them without the need of fully understanding them in the fine detail necessary for a deterministic
model.

At the start of an episode, the environment is in an initial state, this state does not however have to
be constant over all episodes of the environment. We will model this non-constant dynamic using an
initial state distribution.

Definition 4.4: State distribution

Given a state space, S, a state distribution is defined by a probability density function ρ : S →
R≥0.

To complete the dynamics of the environment we should define how the state of the environment changes
after the agent performs an action. Since the new state is dependent on both the previous state and
the action performed, the new state is sampled from a probability distribution that changes depending
on the current state and action, we call such a function a state-action transition kernel.

Definition 4.5: State-action transition kernel

Given a state space, S, and an action space, A, a state-action transition kernel is a function
P : S ×A×S → R≥0, such that for all ξ, α ∈ S ×A, the map (ξ′) 7→ P (ξ, α, ξ′) is a probability
density function.

Using all previous definitions in this subsection we are now able to define a mathematical object that
completely defines the environment, the Markov decision process.

Definition 4.6: Markov decision process (MDP)

Given a state space, S, an action space, A, an initial state distribution, ρ0, a state-action
transition kernel, P , and a reward function, R, the 5-tuple (S,A, ρ0, P,R) is called a Markov
decision process.

Note that by itself this definition does not achieve much, it is merely a collection of mathematical
objects. That is to be expected however since the MDP only encodes the environment, which still needs
an agent to interact with. Specifically, we still need to model how the agent chooses an action based
on an observation. This is formalized by a policy, a distribution over the action space that changes
depending on the current state. The policy is stochastic to make the coming analysis possible, intuitively
the stochasticity allows the agent to explore different behaviors and through that exploration converge
to the best one.
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Definition 4.7: Policy

Given an MDP, (S,A, ρ0, P,R), a policy is a function π : S ×A → R≥0, such that for all ξ ∈ S,
the map (α) 7→ π(ξ, α) is a probability density function.
Notation: Given an MDP, let Π denote the set of all possible policies.

By combining the model of the environment, the MDP, and the model of the agent, the policy, we
can complete the underlying interaction model and fully define the dynamics of our model. Combining
these two gives rise to a stochastic sequence of environment states and agent actions, governed by the
MDP and the policy. Additionally, the reward function of the MDP then, based on the sequence of
states and actions, defines a stochastic sequence of rewards that scores the performance of the agent at
every time-step.

Definition 4.8: Equipped MDP

Given an MDP, (S,A, ρ0, P,R), and a policy, π, we can equip the MDP with the policy π, giving
rise to two stochastic processes, the state process {x(t)}∞t=0 and the action process {a(t)}∞t=0

governed by

x(0) ∼ ρ0(•), (4.1)

∀t ∈ Z≥0, a(t) ∼ π(x(t), •), (4.2)

∀t ∈ N, x(t) ∼ P (x(t−1), a(t−1), •). (4.3)

These processes in itself give rise to the reward process, {r(t)}∞t=0, governed by

∀t ∈ Z≥0, r(t) = R(x(t), a(t), x(t+1)). (4.4)

Notation: We will denote the expected value operator under the assumption that the MDP is
equipped with policy π by Eπ. Also, the term “state” is overloaded by the element of a state
space ξ ∈ S and a random variable that is a state x ∈ S. The same holds for the term “action”
where α ∈ A is an element and a ∈ A is a random variable.

For notational convenience we introduce the concept of a episodic trajectory, which is the sequence of
stochastic states and actions due to an equipped MDP truncated after a certain time-step.

Definition 4.9: Trajectory

Given an MDP, (S,A, ρ0, P,R), equipped with a policy, π, and some trajectory length t ∈ N,
the tuple of random variables

zt = (x(0), a(0), x(1), . . . , x(t)) ∈ (S ×A)t × S = Zt (4.5)

is called a trajectory of length t and Zt is the trajectory space. Here {x(t)}∞t=0 and {a(t)}∞t=0 are
the state and action processes, respectively, due to the equipped MDP.

Now that we fully defined the dynamics of our interaction model we can start to look at the goal of our
analysis. Definition 4.8 defines the dynamics of our model for a given policy, but as we said earlier the
goal of the agent is to find a policy that maximizes the reward obtained in an episode. Reinforcement
learning normally considers the discounted return as the quantity to maximize.
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Definition 4.10: Discounted return

Given a discount factor γ ∈ [0, 1], an episode length T ∈ N, an MDP, (S,A, ρ0, P,R), equipped
with a policy, π. Let ZT be the trajectory space of the trajectory resulting from the episode,
then the discounted return is the function

GT : ZT → R, (ξ0, α0, . . . , ξT ) 7→
T−1∑
t=0

γtR(ξt, αt, ξt+1). (4.6)

Given an MDP and an episode length T we can now define the goal of an agent as finding a policy
π∗ ∈ Π such that

∀π ∈ Π, J(π) ≤ J(π∗) where J : Π→ R, (π) 7→ Eπ [GT (zT )] . (4.7)

where zT is the trajectory resulting from an episode.

4.2 Actor-Critic methods

Actor-critic methods are the basis of most algorithms for continuous reinforcement learning. An actor-
critic algorithm generally consists of an actor, that is the policy that decides which actions to take in
a particular state, and a critic, that tells the agent how good the chosen action was. Then the actor
is changed based on the critic using a fundamental theorem in reinforcement learning called the policy
gradient theorem.

4.2.1 Policy gradient theorem

In order for the agent to find a policy that maximizes the discounted return, it is convenient to param-
eterize the optimization domain by using a parameterized policy. Parameterization of the policy space
allows the agent to use continuous optimization to approximate optimization over the allowed policies.

Definition 4.11: Parameterized policy

Given an MDP, (S,A, ρ0, P,R), and a parameter dimension D ∈ N, a parameterized policy is a
function π : RD × S ×A → R≥0 such that:

1. for all θ ∈ RD, the map (ξ, α) 7→ π(θ, ξ, α) is a policy;
2. for all ξ, α ∈ S ×A, the map (θ) 7→ π(θ, ξ, α) is continuous.

Notation: We will often denote a parameterized policy with parameter vector θ ∈ RD as
πθ : S ×A → R≥0, (ξ, α) 7→ π(θ, ξ, α).

Using a parameterized policy, we can approximate (4.7) by finding θ∗ ∈ Rd such that

θ∗ = arg max
θ∈RD

J(πθ). (4.8)

Note however that by optimizing over the parameter space instead of the policies themselves, the agent
generally optimizes over a subset of policies, this can potentially limit the performance of the resultant
policy.

To find θ∗ in (4.8), one of the many flavors of gradient ascent1 is often used, which, in its simplest form,
is described by the iterative formula,

θ ← θ + β · ∇θJ(πθ) (4.9)

1Readers interested in which optimizers are often used in ML how they work are advised to read http://ruder.io/

optimizing-gradient-descent/index.html
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where β > 0 is often called the learning rate or step size. To apply gradient ascent we need to be able
to calculate ∇θJ(πθ) for arbitrary values of θ ∈ RD. This is difficult because J(πθ) is an expected value
dependent on probabilities which in itself are again dependent on θ. Therefore, to calculate ∇θJ(πθ)
we need the policy gradient theorem proposed by Sutton et al. [30].

Theorem 4.12: Policy gradient theorem

Given a discount factor γ ∈ [0, 1), an MDP, (S,A, ρ0, P,R), equipped with a parameterized
policy, π, and an episode length T ∈ N,

∇θJ(θ) = Eπθ

[
T−1∑
τ=0

∇θ log
(
π
(
θ, x(τ), a(τ)

)) T−1∑
t=τ

γtR
(
x(t), a(t), x(t+1)

)]
(4.10)

Sketch of proof. (based on [23]) First off, for any t ∈ [T ] define Zt : RD × Zt → R≥0 to be the
probability density function of the trajectory of the first t time-steps. Now by linearity of the
expected value operator and the gradient operator,

∇θJ(θ) = ∇θEπθ [GT (zT )],

= ∇θEπθ

[
T−1∑
t=0

γtR
(
x(t), a(t), x(t+1)

)]
,

=

T−1∑
t=0

γt∇θEπθ
[
R
(
x(t), a(t), x(t+1)

)]
.

Take any t ∈ [T − 1], note that since R
(
x(t), a(t), x(t+1)

)
is only dependent on the trajectory up

until x(t+1) we have

Eπθ
[
R
(
x(t), a(t), x(t+1)

)]
=

∫
ζ=(ξ0,α0,...,ξt+1)∈Zt+1

R(ξt, αt, ξt+1)Zt+1 (θ, ζ) dζ

Taking the gradient on both sides yields

∇θEπθ
[
R
(
x(t), a(t), x(t+1)

)]
= ∇θ

∫
ζ∈Zt+1

R(ξt, αt, ξt+1)Zt+1 (θ, ζ) dζ,

=

∫
ζ∈Zt+1

R(ξt, αt, ξt+1)
∇θZt+1 (θ, ζ)

Zt+1 (θ, ζ)
Zt+1 (θ, ζ) dζ,

=

∫
ζ∈Zt+1

R(ξt, αt, ξt+1)(∇θ log (Zt+1 (θ, ζ))Zt+1 (θ, ζ) dζ,

= Eπθ
[
R
(
x(t), a(t), x(t+1)

)
∇θ log

(
Zt+1

(
θ, z(t+1)

))]
.

Per definition of the equipped MDP we have

Zt+1 : (θ, (ξ(0), α(0), ξ(1), . . . , ξ(t+1))) 7→ ρ+ 0(ξ(0))π(θ, ξ0, α0)P (ξ0, α0, ξ1) . . . P (ξt, αt, ξt+1)
(4.11)

hence

log(Zt+1(θ, z(t+1))) = log
(
ρ0

(
x(0)

))
+

t∑
τ=0

(
log
(
π
(
θ, x(τ), a(τ)

))
+ log

(
P
(
x(τ), a(τ), x(τ+1)

)))
(4.12)

again taking the gradient on both sides and using the fact that the gradient is a linear operator
we get

∇θ log
(
Zt+1

(
θ, z(t+1)

))
=

t∑
τ=0

∇θ log
(
π
(
θ, x(τ), a(τ)

))
. (4.13)
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Finally resulting in

∇θJ(θ) =

T−1∑
t=0

γtEπθ

[
R
(
x(t), a(t), x(t+1)

) t∑
τ=0

∇θ log
(
π
(
θ, x(τ), a(τ)

))]

= Eπθ

[
T−1∑
τ=0

∇θ log
(
π
(
θ, x(τ), a(τ)

)) T−1∑
t=τ

γtR
(
x(t), a(t), x(t+1)

)]
,

where the last equality is due to swapping the sums and changing the limits accordingly.

The most beautiful thing about this theorem is that the policy gradient turns out to be independent
from the dynamics of the environment. This is convenient because the dynamics of the environment
are unknown to the agent. Additionally, the resulting gradient is quite intuitive. To see that, note
that the logarithm is monotone increasing. So if the log of the probability increases, the probability
itself increases. The factor

∑T−1
t=τ γ

tR
(
x(t), a(t), x(t+1)

)
is the discounted return received after choosing

action a(t), hence it is an estimation of the “goodness” of picking action a(t) in state x(t). Since the
gradient log probability of choosing a(t) in state x(t) is multiplied by the “goodness” of that choice, a
high “goodness” will increase the probability of picking that action while a negative “goodness” will
decrease that probability.

Approximation

Since we do not know the exact dynamics of the environment, we cannot calculate the expected value of
(4.10) exactly. Hence, we will have to approximate the gradient using sampling. To that end, suppose
the agent interacted with the environment for N ∈ N episodes, resulting in N realized trajectories

∀k ∈ [N ] : ẑ
(k)
T =

(
x̂(0,k), â(0,k), . . . , x̂(T,k)

)
(4.14)

where the hat denotes a realization of the random variable and the double superscript, for example in
x̂(t,k), denotes that the quantity is from interaction t in episode k. Then by taking the average of (4.9)
over the N realized trajectories we get

∇θJ(θ) ≈ 1

N

N∑
k=1

(
T−1∑
τ=0

∇θ log
(
π
(
θ, x̂(τ,k), â(τ,k)

)) T−1∑
t=τ

γtR
(
x̂(t,k), â(t,k), x̂(t+1,k)

))
(4.15)

Note that this estimate becomes increasingly accurate as N →∞.

4.2.2 Advantage estimation

Though the estimator in (4.15) theoretically works we can use a so-called baseline to reduce the variance
of the estimate.

Definition 4.13: Baseline

Given a state space, S, a baseline is a function b : S → R. Where it is important that the
baseline is only dependent on the states.

The variance of the gradient estimate can then be reduced by subtracting an appropriate baseline, b,
from the discounted return received after choosing action a(t), resulting in

∇θJ(θ) = Eπθ

[
T−1∑
τ=0

∇θ log
(
π
(
θ, x(τ), a(τ)

))(T−1∑
t=τ

γtR
(
x(t), a(t), x(t+1)

)
− b

(
x(τ)

))]
. (4.16)
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Using the linearity of the expected value operator in combination with Theorem 4.12 and Theorem 4.14,
it can trivially be shown that (4.16) holds.

Theorem 4.14: Baseline bias

Given an MDP, (S,A, ρ0, P,R), equipped with a parameterized policy, πθ, a baseline, b, and an
episode length T ∈ N, the following holds

∀τ ∈ {0, . . . , T − 1} : Eπθ
[
∇θ log

(
π
(
θ, x(τ), a(τ)

))
b
(
x(τ)

)]
= 0 (4.17)

Sketch of proof. Take τ ∈ {0, . . . , T − 1} arbitrarily, then denoting the trajectory with length τ
by zτ yields

Eπθ
[
∇θ log

(
π
(
θ, x(τ), a(τ)

))
b
(
x(τ)

)]
= Eπθ

[
Eπθ

[
∇θ log

(
π
(
θ, x(τ), a(τ)

))
b
(
x(τ)

)∣∣∣zτ]] ,
= Eπθ

[
b
(
x(τ)

)
Eπθ

[
∇θ log

(
π
(
θ, x(τ), a(τ)

))∣∣∣zτ]] ,
where the last equality holds since under the condition that zτ is known, x(τ) is also known so
it can be taken outside of the conditional expectation. Now focussing on the inner expectation,
and since zτ is assumed known we can say that there exists some ξ ∈ S such that x(τ) = ξ, we
get

Eπθ
[
∇θ log

(
π
(
θ, x(τ), a(τ)

))∣∣∣zτ] = Eπθ
[
∇θ log

(
π
(
θ, x(τ), a(τ)

))∣∣∣x(τ) = ξ
]
,

=

∫
α∈A
∇θ log (π (θ, ξ, α))π(θ, ξ, α) dα,

=

∫
α∈A
∇θπ(θ, ξ, α) dα,

= ∇θ1 = 0.

Altogether, we get

Eπθ
[
∇θ log

(
π
(
θ, x(τ), a(τ)

))
b
(
x(τ)

)]
= Eπθ

[
b
(
x(τ)

)
· 0
]

= 0 (4.18)

The next step is to find a baseline that maximally reduces the variance of the policy gradient estimate.
A near optimal baseline is the state-value function [23].

Definition 4.15: State-value function

Given a discount factor γ ∈ [0, 1), an MDP, (S,A, ρ0, P,R), equipped with a policy, π, and an
episode length T , the state-value function for policy π at time step τ ∈ {0, . . . , T} is defined as

V (τ)
π : S → R, (ξ) 7→ Eπ

[
T−1∑
t=τ

γtR
(
x(t), a(t), x(t+1)

)∣∣∣∣∣x(t) = ξ

]
. (4.19)

An interpretation of the state-value function, V
(τ)
π (ξ), is the expected discounted return after encoun-

tering some state ξ ∈ S at time step τ following policy π.

To get an intuition why using the value function as baseline works so well, suppose that we know V
(τ)
πθ

and consider the quantity

A(τ) =

T−1∑
t=τ

γtR
(
x̂(t), â(t), x̂(t+1)

)
− V (τ)

πθ
(x̂(τ)) (4.20)
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called the advantage, for some realized trajectory ẑT = (x̂(0), â(0), . . . , x̂(T )). The first term in (4.20)
is the realized discounted return achieved by the agent after choosing action â(τ) at time step τ , an
estimate of how good the agent actually performed after choosing that action. The second term is the
discounted return that the agent is expected to achieve after being in state x̂(τ) at time step τ . Hence,
the advantage is an estimate of the difference in discounted return (i.e. performance), achieved after
x̂(τ) at time step τ , due to choosing the action a(τ). Or simply put, the advantage tells us whether
choosing a(τ) yields a better (or worse) than expected discounted return.

In general however V
(τ)
πθ is not known. Therefore, to calculate the advantage, the value function is often

approximated by continually fitting a parameterized function V̂ : RDV × S → R to the trajectories
already collected for the policy gradient update.

It is common practice to, given a new set of realized trajectories, first update the policy based on
that data and afterwards update the approximate value function. Such an approach ensures that the
approximate value function is not correlated to the current data, which could bias the gradient estimate.

Given a realized trajectory zT = (x(0), a(0), . . . , x(T )), the analysis above results in the policy gradient
estimator

ĝ =

T−1∑
τ=0

Â(τ)∇θ log
(
π
(
θ, x(τ), a(τ)

))
, (4.21)

where

Â(τ) =

T−1∑
t=τ

γtR
(
x̂(t), â(t), x̂(t+1)

)
− V̂ (φ, x̂(τ)) (4.22)

and φ ∈ RDV is the current state-value function parameter vector.

4.3 Proximal policy optimization (PPO)

Policy gradient methods, as defined above, have two inherent difficulties [25]. First, since the policy
parameters change after a single gradient ascent step and the sampled data is only valid for the current
policy parameters, we can only do a single gradient step per sample. This significantly limits the amount
of information that can be extracted from the collected data, which leads to a bad sample efficiency. To
extract more information from the collected data we should consider that, since we have the gradient of
the objective at the current policy, we have a first-order approximation of the objective which is valid
in some neighborhood of the current policy. Using this first-order approximation to optimize over a
subset of policies that are in some sense “close” to the current policy, we can do multiple optimization
steps based on the collected data, significantly improving sample efficiency.

The second difficulty concerns the use of the gradient itself. Since we take the gradient of the objective
with respect to the policy parameters, we implicitly use the Euclidean norm of the parameter space
in that gradient, as it is the standard norm of the Euclidean space. So in parameterizing the policy
we implicitly changed the “natural metric” of the optimization domain. As an effect, much like the
non-intuitive metrics of the covariance matrix in Section 3.1, two policies that are intuitively close do
not have to be close in parameter space. This discrepancy between policy space and parameter space
can lead to a relatively small gradient step having radical effects on the policy. To avoid this we have
to ensure that the policy resulting from an optimization step is in some way intuitively “close” to the
previous policy.

To resolve these issues we first consider Trust region policy optimization (TRPO) that optimizes a
surrogate-model of the discounted cumulative reward in a predefined “trusted”-region to optimize the
policy with respect to J , which allows us to do multiple optimization steps while ensuring that the new
policy remains in a neighborhood of the previous policy. The new objective is then used instead of the
policy gradient described in (4.21) to obtain what is known as the Proximal policy optimization (PPO)
algorithm as introduced by Schulman et al. [25].
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4.3.1 Trust region policy optimization (TRPO)

Trust Region Policy Optimization (TRPO) is the most well-known trust-region method in RL. As
the name suggests, TRPO maximizes J in a “trusted region” around the current policy πθold , where
θold ∈ RD is the current policy parameter vector. Before we get into what a “trusted region” is, we
have to consider which objective to optimize in the trusted region, since we cannot directly optimize
J as we cannot calculate the expected value directly. For the policy gradient method we derived that
we could use gradient ascent in combination with the estimated policy gradient in (4.21), in order to
maximize J(πθ). Since we collected the data used to calculate Â(τ) under policy πθold the gradient in
(4.21) also has to be calculated in θold. Now by noticing that

∇θ log
(
π
(
θ, x̂(τ), â(τ)

))∣∣∣
θold

=
∇θπ

(
θ, x̂(τ), â(τ)

)∣∣
θold

π
(
θold, x̂(τ), â(τ)

) , (4.23)

we can rewrite the policy gradient approximator in (4.21) as

ĝθold =

T−1∑
τ=0

Â(τ)
∇θπ

(
θ, x̂(τ), â(τ)

)∣∣
θold

π
(
θold, x̂(τ), â(τ)

) . (4.24)

Since Â(τ) is constant with respect to θ and the gradient operator is linear, we can rewrite (4.24) as

ĝθold = ∇θ
T−1∑
τ=0

Â(τ) π
(
θ, x̂(τ), â(τ)

)
π
(
θold, x̂(τ), â(τ)

) ∣∣∣∣∣
θold

(4.25)

By disregarding the gradient we obtain the objective function

LTRPO
θold

(θ) =

T−1∑
τ=0

Â(τ) π
(
θ, x̂(τ), â(τ)

)
π
(
θold, x̂(τ), â(τ)

) , (4.26)

which is an importance sampling estimator of J(πθ) with respect to the sampling policy πθold . As a
result, we can optimize (4.26) as long as we stay in a neighborhood of πθold .

To define a neighborhood of πθold let us define the Kullback-Leibler divergence (KL-divergence).

Definition 4.16: Kullback-Leibler divergence

Let p, q be two probability densities over the same continuous random variable, then the
Kullback-Leibler divergence is defined as

KL[p||q] =

∫
x

p(x) log

(
p(x)

q(x)

)
dx (4.27)

To get a thorough intuitive understanding of what the Kullback-Leibler divergence is, the reader is
advised to read the Medium post by Marko Cotra on this subject2, which will be summarized here.
First of all, it is important to note that the KL-divergence is not a distance metric since it is not
commutative, i.e. generally for distributions p and q, KL[p||q] 6= KL[q||p]. However intuitively, given
two distributions p and q the KL-divergence from p to q, KL[p||q], is a measure for how well p can be
distinguished from q when you sample from p. So the better we can distinguish p from q, the “further
away” p is from q. In particular, if p = q then and only then KL[p||q] = 0, which is a very useful
property when comparing two distributions.

In TRPO the KL-divergence is used to define the trusted region around πθold . Introducing a constraint
on the KL-divergence for every encountered state in a realized trajectory yields an optimization problem

2The post can be found at https://medium.com/@cotra.marko/making-sense-of-the-kullback-leibler-kl-divergence-b0d57ee10e0a
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with many constraints, which is technically difficult to solve. Therefore TRPO constraints the allowed
average KL-divergence over states encountered in a realized trajectory, zT = (x(0), a(0), . . . , x(T )),

1

T

T−1∑
τ=0

KL
[
πθold

(
x̂(τ), •

)∣∣∣∣∣∣πθ (x̂(τ), •
)]
. (4.28)

Putting it all together, TRPO optimizes the policy based on a trajectory ẑT = (x̂(0), â(0), . . . , x̂(T ))
sampled under policy πθold , solving the constrained optimization problem

maxθ∈RD
∑T−1
τ=0 Â

(τ) π(θ,x̂(τ),â(τ))
π(θold,x̂(τ),â(τ))

s.t. 1
T

∑T−1
τ=0 KL

[
πθold

(
x̂(τ), •

)∣∣∣∣πθ (x̂(τ), •
)]
≤ δKL

(4.29)

where δKL > 0 is a hyper parameter that specifies the “size” of the neighborhood of feasible solutions.
This problem can efficiently be approximately solved using the conjugate gradient method, after making
linear approximation to the objective and quadratic approximation to the constraint [25]. After solving
(4.29), the value function approximator used to calculate the advantages is updated based on the
trajectory and a new trajectory is sampled under the new policy. Again, (4.29) is solved with new
trajectory and this process continues until some termination criterion is met.

TRPO is known as a very data efficient and robust method. Schulman et al. show that TRPO tends
to give monotonic improvement on a wide variety of RL-tasks [24]. However, the resulting algorithm
is relatively complicated since it has to solve (4.29) at every policy optimization step. Also, the agent
cannot use parameter sharing between the approximate value function and the policy, which is often
convenient to speed up training. In order to overcome these difficulties, Schulman et al. introduced
Proximal Policy Optimization, an algorithm, inspired by TRPO and based on gradient ascent, that is
simpler to implement, allows for parameter sharing, and empirically shows better sample efficiency.

4.3.2 Clipped objective

PPO uses the trust-region idea from TRPO and encodes it in a new objective in such a way that
it can be optimized using first-order optimization techniques, such as gradient ascent. Just like with
TRPO, suppose we have a current parameterized policy πθold under which we sampled a trajectory
ẑT = (x̂(0), â(0), . . . , x̂(T )), and let τ ∈ {0, . . . , T − 1}, then we would like a way to ensure a new policy
πθ does not differ too much from πθold , just like with TRPO. To that end we introduce the probability
ratio at time step τ ,

ψτ : RD → R, (θ) 7→
πθ
(
x̂(τ), â(τ)

)
πθold

(
x̂(τ), â(τ)

) , (4.30)

which is an indication of how much πθ differs from πθold in the point (x̂(τ), â(τ)). In particular, if
ψτ (θ) ≈ 1 then πθ is approximately equal to πθold in (x̂(τ), â(τ)). Therefore, to keep πθ from differing
too much we are looking to penalize policies that move ψτ (θ) far away from 1.

Looking at the objective in (4.29) we see

LTRPO(θ) =

T−1∑
τ=0

Â(τ) π
(
θ, x̂(τ), â(τ)

)
π
(
θold, x̂(τ), â(τ)

) =

T−1∑
τ=0

Â(τ)ψτ (θ). (4.31)

If we focus on a single term, LTRPO
τ (θ) = Â(τ)ψτ (θ), we observe that the objective encourages to

increase ψτ (θ) when Â(τ) > 0, and decrease ψτ (θ) when Â(τ) < 0. Just like with TRPO we would like
to optimize this objective without changing the policy too much, or without moving the probability
ratio, ψτ (θ), too far from 1. To that end, consider the clipped objective

LCLIP
τ (θ) = Â(τ)clip(ψτ (θ), 1− ε, 1 + ε), (4.32)

where ε > 0 is a hyper parameter. The clipped objective is a modified version of the TRPO objective
where the probability ratio is clipped. By clipping the probability ratio we remove the incentive to
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move ψτ (θ) outside of [1− ε, 1 + ε]. In particular, if during optimization ψτ (θ) is not in [1− ε, 1 + ε] we
have ∇θLCLIP

τ (θ) = 0 and, since we use first order optimization techniques, the optimization will stop.
Now in order to make the PPO objective a lower bound of the (unclipped) TRPO objective we take
the minimum of the clipped objective and the TRPO objective,

LPPO
τ (θ) = min

(
Â(τ)ψτ (θ), Â(τ)clip(ψτ (θ), 1− ε, 1 + ε)

)
≤ LTRPO

τ (θ). (4.33)

Note that locally around θold we have LPPO
τ (θ) ≈ LTRPO

τ (θ), which holds with equality if ψτ (θ) ∈
[1−ε, 1+ε]. However, when θ moves away from θold to increase LTRPO

τ (θ), LPPO
τ (θ) will (at some point)

become constant, no longer incentivizing θ to move away from θold, keeping πθ in the neighborhood of
πθold .

By taking the sum over all time steps in the trajectory we get the total PPO objective,

LPPO(θ) =

T−1∑
τ=0

LPPO
τ (θ) =

T−1∑
τ=0

min
(
Â(τ)ψτ (θ), Â(τ)clip(ψτ (θ), 1− ε, 1 + ε)

)
(4.34)

which is the central component of PPO itself.

4.3.3 Algorithm

Combining the PPO objective in (4.34) with a slightly altered version of the policy gradient algorithms,
we get the PPO algorithm, which is outlined in pseudocode in Algorithm 3. Here we use the fact that
the PPO objective does not incentivize the optimizer to move θ far away from θold to justify taking
multiple, Nepoch ∈ N, gradient ascent steps on the same sampled trajectory, with little risk of θ leaving
the neighborhood of θold. That theoretically allows us to extract more information from the trajectory
than vanilla policy gradient methods. Note that PPO has no hard constraints like TRPO, therefore it
is possible for θ to leave the neighborhood of θold. However the relaxation of constraints introduced in
PPO enables us to use simple optimization techniques such as gradient ascent, significantly decreasing
the complexity of the algorithm as a whole with relative to TRPO.

Algorithm 3: Proximal Policy Optimization

1 Initialize θ, φ ; // init policy and value function parameters

2 while stopping criterion not met do
3 θold ← θ;
4 ẑT ← sample in new instance of MDP under πθ ; // Sample trajectory

5 Â(0), . . . , Â(T−1) ← calculate advantage according to (4.22) ; // calculate advantages

6 for i = 1, . . . , Nepoch do
7 θ ← θ + β · ∇θLPPO(θ) ; // Optimize policy

8 φ← update value function according to φ ; // Update value function
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5
Learning the mean function

To apply the formalism of reinforcement learning to the mean function, µ̂, we will consider the rest of
the algorithm, including the current fitness function f , to be the environment. The history, H(t) ∈ H,
is the state, the new mean, µ(t+1) ∈ Rd, is the action, and an interaction is a single time-step in
the Estimation of Normal Distribution Algorithm (ENDA) framework, as defined in Section 2.4. To
make the policy adjustable and stochastic, we will use a parameterized distribution based on a neural
network, which is further detailed in Section 5.1. However, since neural networks cannot have domains
with variable dimensionality1, we cannot pass the history directly to the policy. Therefore the history
will be transformed to a constant dimensionality space by a preprocessor, ξ̂ : H → Rmin , before being
passed to the policy. Consequently, the action, a ∈ Rmout , sampled from the policy will have to be
passed through a post processor, ρ̂ : H × Rmout → Rd, to obtain the new mean, µ(t+1). The pre- and
postprocessor allow the policy to operate in a space that is different from the solution space, which we
call the agent space. This enables us to introduce invariances to the agent space, potentially leading
to better generalization and faster learning. This notion and the design of the agent space will be
further explored in Section 5.2. As a consequence of the pre- and post processor, the policy will be a
parametrized distribution over the preprocessed histories and the actions, π : RD ×Rmin ×Rmout → R,
where D is the number of parameters of the policy. Lastly, to specify to the agent that we want to
maximize the fitness function, we will have to design an appropriate reward function, r̂ : H → R. In
addition to specifying the goal, a properly designed reward function can also guide the agent to that
goal. The details of the reward function design are presented in Section 5.3. The self-learning mean
function as outlined here is schematically summarized in Figure 5.1.

To maximize the expected discounted cumulative reward we use Proximal Policy Optimization (PPO),
as introduced in Section 4.3 [25]. In this chapter we will approach PPO as a black box, altering the
policy parameters so as to maximize the expected future reward. This makes the resulting framework
easily adaptable to advances in the field of RL that could yield better performing algorithms.

To specialize the resulting mean function to a particular problem class, F , as defined in Definition 2.3,
we start with a random policy parameter vector θ ∈ RD and repeatedly sample a function, f ∼ F .
We run the ENDA with the mean function, as specified above, on each sampled fitness function in

1We disregard the use of RNN encoders as described in [14]

RL-agent

ξ̂
preproc.

ρ̂
post proc.

r̂
reward fn.

µ(t+1)

r(t)

π
policyξ(t) a(t) B

learn
buffer

Rest of
ENDA

H(t) H(t+1)

Figure 5.1: A schematic representation of the mean function.
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turn. During execution of the ENDA, the RL-Agent will accumulate the preprocessed states, actions
and rewards in a queue like buffer, B, of predefined size M ∈ N. Every N ∈ N interactions, the agent
updates the parameter vector θ based on all interactions in the buffer. Afterwards, the execution of the
ENDA is continued with the updated policy parameters. When the buffer is full the oldest interaction
in the buffer will be replaced by the new interaction.

Algorithm 4 presents the pseudocode of an RL-based self-learning ENDA with the reinforcement learn-
ing mean function (light grey shading) and the training loop (dark grey shading) as introduced above.
Without the dark shaded region and by replacing the light shaded region with an arbitrary mean func-
tion, Algorithm 4 represents the standard ENDA framework. To accommodate real world applications,
the function sampling at line 6 can be replaced by another process that provides objective functions.
To avoid overfitting, the objective functions should be a good representation of the function class un-
der investigation. The rest of the section will detail the implementation of the policy, pre- and post
processor and reward function.

Algorithm 4: RL-based self-learning ENDA

Input: n, µ(0),Σ(0), Σ̂,F , π, ξ̂, ρ̂, r̂,M,N, Tmax

1 θ ← randomInit(); // init policy parameters

2 B ←Queue(max len = M); // init buffer

3 tRL ← 0;
4 tlearn ← 0;
5 while tRL < Tmax do
6 f ∼ F ; // sample function from class

7 µ← µ(0);

8 Σ← Σ(0);
9 H ← ();

10 tEA ← 0;
11 while EA stopping criterion is not met do
12 P ← (xi ∼ N (µ,Σ))ni=1; // sample population

13 F ← (f(xi))
n
i=1; // evaluate fitness

14 H ← H||(µ,Σ, F, P ); // append history

15 if tEA > 0 then
16 r ← r̂(H, a); // calculate reward

17 B ← B.put(ξ, a, r); // add interaction to buffer

18 tlearn = tlearn + 1;
19 if tlearn == N then
20 θ ← learn(π, θ,B); // update params.

21 tlearn ← 0

22 ξ ← ξ̂(H); // preproc. history

23 a ∼ π(θ, ξ); // sample action from policy

24 µ← ρ̂(H, a); // postproc. action

25 Σ← Σ̂(H); // calculate new covariance

26 tEA ← t+ 1;

27 tRL ← tRL + 1;

28 return θ;

5.1 The policy

The policy is the parametrized distribution from which an action is sampled based on the preprocessed
history. Since the optimization task is unbounded and continuous in nature, we use a Gaussian policy.
This entails that the policy distribution is a multivariate normal with its mean and covariance matrix
calculated by a function approximator. To avoid the difficulties of learning a valid (i.e. positive definite)
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full covariance matrix, we will assume a diagonal covariance matrix for the policy distribution. As a
consequence, the policy cannot efficiently explore correlations in the agent space. However, if the agent
space is properly normalized, which will be discussed in Section 5.2, this effect can become negligible.
In accordance with existing literature, the function approximator is a neural network [18]. This allows
approximation of non-linear continuous functions while having an analytic gradient through backpropa-
gation, which is necessary to apply gradient ascent in the PPO algorithm. The network topology in this
work consists of a series of fully connected hidden layers, leading into two parallel fully connected layers
of size mout of which the outputs are the mean and log variances of the exploration distribution. A
schematic representation of the policy and general network topology is given in Figure 5.2. It is crucial
to understand that the exploration distribution is part of the mean function and therefore different from
the population distribution of the main ENDA framework.

. . .ξ

Neural network

N (µa,Σa)
exploration
distribution

µa

log(diag(Σa))

a

Figure 5.2: A schematic representation of the policy of SL-ENDA.

5.2 The pre- and post processor

The preprocessor, ξ̂ : H → Rmin , embeds the history space in min-dimensional Euclidean space. The
main reason to use a preprocessor instead of feeding the history directly to the RL-agent, is to keep the
dimensionality of the policy domain constant. This is necessary because the neural network used in the
policy can only handle a domain of constant dimensionality. As an additional benefit of using such an
embedding, it allows the agent to operate in a different space than the solution space. We will call this
space the agent space. Such a transformation to an agent space can be used for normalization, which
can increase the numerical stability of the learning process of the RL-agent [17], as well as to force
invariances on the resulting mean function, which extends the validity region of the algorithm [12], and
lastly, to reflect prior knowledge about the function class it will be used on, for example by inverting a
known rotation or elongated axis. Throughout we will call a preprocessed history an observation.

The constant dimensionality of the observation is realized by selecting the k ∈ N most recent populations
and fitness vectors in the history and basing the observation on those. We will generally assume k ≥ 2 in
order to preserve a temporal component in the observation. The selected populations and fitness vectors
are then individually transformed to the agent space using a solution transformation νsol : H×Rd → Rd
and a fitness transformation νfit : H × R → R, respectively, which we will define later. The final
preprocessor is then defined as

ξ̂
(
H(t)

)
= Flatten

(((
νsol

(
H(t), xi

))
xi∈P (τ)

,
(
νfit

(
H(t), F

(τ)
i

))Npop

i=1

)t
τ=max(t−k,0)

)
, (5.1)

where we assume t ≥ k otherwise the observation is padded with zeros in order to achieve the necessary
dimensionality of min = (Npop + 1) · d · k and Flatten is the operator that deterministically turns the
mathematical structure given to it in a vector of all its values.

The post processor, ρ̂, is used to transform the action of the agent back from the agent space to the
solution space. This can be realized by taking the inverse of the solution transformation, νsol, with
respect to the second argument. However, in order to do this we have to ensure that such an inverse is
properly defined while constructing the solution transformation.

The rest of this section will define the fitness transformation in the first subsection and define two
solution transformations in the second subsection.
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5.2.1 Fitness transformation

Since the latest fitness vector generally contains the most information about the current situation of
the ENDA, we will use that fitness vector as basis for normalization. Thereby ensuring that the latest
fitness vector is properly normalized in the observation. By virtue of the black-box setting we can
assume nothing about the objective function, apart from the assumption that it attains a maximum on
Rd and is defined on the whole of Rd, we therefore use a standard normalization technique for scalar
data and define the fitness transformation as

∀H(t) ∈ H, y ∈ R, νfit(H
(t), y) =

(
y − F (t)

std
(
F (t)

))Npop

i=1

, (5.2)

where F
(t)

is the average of F (t) and std(F (t)) is the standard deviation of F (t).

5.2.2 Solution transformation

Just like the fitness transformation we use the latest population as a basis for normalization. Before
defining the solution transformations let us first introduce the desirable properties of these transforma-
tions:

Translation invariance In order for the agent to generalize well, we would like it to act the same
on an objective function that is translated in the solution space as on its original. So given an
objective function f : Rd → R and a vector a ∈ Rd we would like the agent to act the same on
f as on (x) 7→ f(x + a). We can impose this using the solution transformation by interpreting
the translation of the objective function as a translation of the solution space. Hence we call a
solution transformation νsol translation invariant if for any a ∈ Rd, H(t) ∈ H,and x ∈ Rd,

νsol

((
µ(t′) + a,Σ(t′), P (t′) + a, F (t′)

)t
t′=0

, x+ a

)
= νsol

(
H(t), x

)
(5.3)

holds, where P (t′) + a = (xi + a)xi∈P (t′) .

Scale invariance In order for the agent to generalize well we would like it to act the same on an
objective function that is scaled in the solution space as on its original. So given an objective
function f : Rd → R and a scalar α > 0 we would like the agent to act the same on f as on
(x) 7→ f(α · x). Again, we can impose this using the solution transformation by interpreting
the scaling of the objective function as a scaling of the solution space. Hence we call a solution
transformation νsol scale invariant if for any α > 0, H(t) ∈ H and x ∈ Rd,

νsol

((
αµ(t′), α2Σ(t′), αP (t′), F (t′)

)t
t′=0

, αx

)
= νsol

(
H(t), x

)
(5.4)

holds, where αP (t′) = (αxi)xi∈P (t′) .

Rotation invariance In order for the agent to generalize well we would like it to act the same on an
objective function that is rotated in the solution space as on its original. So given an objective
function f : Rd → R and a rotation matrix A ∈ SO(d), where SO(d) is the d-dimensional special
orthogonal group, we would like the agent to act the same on f as on (x) 7→ f(Ax). Again, we
can impose this using the solution transformation by interpreting the rotation of the objective
function as a rotation of the solution space. Hence we call a solution transformation νsol rotation
invariant if for any A ∈ SO(d), H(t) ∈ H and x ∈ Rd,

νsol

((
Aµ(t′), AΣ(t′)AT , AP (t′), F (t′)

)t
t′=0

, Ax

)
= νsol

(
H(t), x

)
(5.5)

holds, where AP (t′) = (Axi)xi∈P (t′) .
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Invertability As stated earlier, the inverse of the solution transformation in the second argument must
exist to transform the action from the agent to the solution space. To that end, we call a solution
transformation, νsol, invertible if there exists a mapping ν−1

sol : H × Rd → Rd such that for any
x ∈ Rd and H ∈ H,

ν−1
sol (H, νsol (H,x)) = x. (5.6)

We will consider two transformations in this work, the first is the translation and scale invariant (TSI)
transformation and the second is the translation, rotation and scale invariant (TRSI) transformation.

Translation and scale invariant transformation (TSI)

The translation and scale invariant transformation is defined as

∀x ∈ Rd, t ∈ N, H(t) ∈ H νTSI
sol

(
H(t), x

)
=
x− µ(t)√
λ

(t)
max

, (5.7)

where µ(t) is the mean at time-step t and λ
(t)
max is the maximal eigenvalue of the covariance matrix at

time-step t.

To show that this transformation is indeed translation invariant we simply take arbitrary a, x ∈ Rd,
H(t) ∈ H and show,

νTSI
sol

((
µ(t′) + a,Σ(t′), P (t′) + a, F (t′)

)t
t′=0

, x+ a

)
=
x+ a− (µ(t) + a)√

λ
(t)
max

,

=
x− (µ(t))√

λ
(t)
max

,

= νTSI
sol

(
H(t), x

)
,

where we used the fact that the covariance matrices are not influenced by translation and hence the
maximum eigenvalue of the covariance function isn’t either.

Showing scale invariance can also be done by simply following the definition. Take α > 0, x ∈ Rd
and H(t) ∈ H then for any matrix M ∈ Rd×d with maximum eigenvalue λmax we have α2λmax is the
maximum eigenvalue of α2M , which is a well-known result of linear algebra. Using this result we can
show that (5.4) holds,

νTSI
sol

((
αµ(t′), α2Σ(t′), αP (t′), F (t′)

)t
t′=0

, αx

)
=
αx− αµ(t)√
α2λ

(t)
max

=
α

α

x− µ(t)√
λ

(t)
max

= νTSI
sol

(
H(t), x

)
.

Lastly, let us define

∀x ∈ Rd, t ∈ N, H(t) ∈ H,
(
νTSI

sol

)−1
(
H(t), x

)
=

√
λ

(t)
max · x+ µ(t), (5.8)

and take x ∈ Rd arbitrarily, then

(
νTSI

sol

)−1
(
H(t), νTSI

sol

(
H(t), x

))
=

√
λ

(t)
max · x+ µ(t) − µ(t)√

λ
(t)
max

=

√
λ

(t)
max · x√
λ

(t)
max

= x (5.9)

which proves that νTSI
sol is invertible with inverse

(
νTSI

sol

)−1
. All in all, this leads us to conclude that νTSI

sol

is a translation and scale invariant solution transformation.
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Translation, rotation and scale invariant transformation (TRSI)

The translation, rotation and scale invariant transformation uses the last mean, µ(t) and the Cholesky

decomposition of the covariance matrix, L(t)
(
L(t)

)T
= Σ(t), to transform the individuals in the popu-

lation back to the space where the last population is standard normally distributed,

∀x ∈ Rd, t ∈ N, H(t) ∈ H, νTRSI
sol (H(t), x) =

(
L(t)

)−1 (
x− µ(t)

)
. (5.10)

Note that the proof for translation invariance is completely analogous to the TSI-transformation, hence
we will not repeat it here. To proof rotation invariance take A ∈ SO(d), x ∈ Rd and H(t) ∈ H arbitrarily,
then note that we can write AΣ(t′)AT = AL(t′)(AL(t′))T which defines a Cholesky decomposition of
AΣ(t′)AT . Hence we find

νTRSI
sol

((
Aµ(t′), AΣ(t′)AT , AP (t′), F (t′)

)t
t′=0

, Ax

)
=
(
AL(t′)

)−1 (
Ax−Aµ(t)

)
=

((
L(t)

)−1

A−1

)(
A
(
x− µ(t)

))
=
(
L(t)

)−1 (
x− µ(t)

)
= νTRSI

sol

(
H(t), x

)
which proves that νTRSI

sol is rotation invariant.

For scale invariance note that for any α > 0 we have α2Σ(t′) = αL(t′)(αL(t′))T and (αL(t′))−1 =
α−1(αL(t′))−1, then actually proving (5.4) goes analogous to the TSI-transformation.

Now define
∀x ∈ Rd,

(
νTRSI

sol

)−1
(H(t), x) = L(t)x+ µ(t), (5.11)

and take x ∈ Rd arbitrarily, then(
νTRSI

sol

)−1
(
H(t), νTRSI

sol

(
H(t), x

))
= L(t)

(
L(t)

)−1 (
x− µ(t)

)
+ µ(t) = x− µ(t) + µ(t) = x (5.12)

which proves that νTRSI
sol is invertible with inverse

(
νTRSI

sol

)−1
. Which, all in all, leads us to conclude

that νTRSI
sol is a translation, rotation and scale invariant solution transformation.

5.3 The reward function

In order for the agent to learn something, it needs to known when something good has happened and
when something bad has happened [21]. This kind of feedback is called a reward and is the signal that
drives the agent to prefer certain policies over other policies. In other words, a reward signal defines
the goal of a reinforcement learning problem [29]. Additionally, the reward signal can be used to guide
the agent to its goal. For example, in a game of chess the most natural reward signal would be received
at the end of match and look something like +1 when the opponent is checkmated, 0 on a draw and
−1 when the opponent checkmates the agent. Such a reward signal would only inform the agent about
its goal, forcing it to play a whole match before knowing whether the actions it took were good. In
contrast, professional chess engines usually use an evaluation function that maps board positions to an
estimate of the likelihood of that position leading to a win. Using a good evaluation function as the
reward function guides the agent toward a winning board position, by rewarding the agent when it is
approaching a winning position, not only when that position is reached. Adjusting the reward function
in order to guide the agent to its goal is often called reward shaping in the RL literature and is very
important for creating environments that can be “solved” efficiently [19].

To align the goals of the agent with the goals of the ENDA we should analyze what those goals are. The
primary goal of an ENDA, “Find the highest fitness solution in the solution space of the optimization
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problem at hand”, follows directly from the underlying optimization problem. A secondary goal is more
grounded in the realm of practicality and the fact that we do not have infinite resources to optimize
the objective, which leads us to introduce the secondary goal “Spend the least amount of evaluations of
the objective functions in order to find the highest fitness solution”. We make the common assumption
in black-box optimization that objective function evaluations are a more limited resource than the
computational resources needed to execute a step in the ENDA.

Reformulating the goals of the ENDA in context of the mean function, which is necessary to devise
a reward function for the agent, yields “Find a mean that, given a history, maximizes the expected
maximum fitness of the individuals in the resulting population”. Note that this goal does not directly
encode the primary goal of an ENDA. However given the fact that the mean function has no direct
influence over the covariance matrix, it uses all degrees of freedom it has to find a population that
contains the highest fitness individual it can. Also, since the history contains all data collected about
the optimization problem at hand and this reformulation tries to find the highest fitness individual at
every time step, this goal encourages the mean function to find the highest fitness solution as quickly,
and therefore2 in as few objective function evaluations as possible. To simplify the coming analysis, we
replace the expected maximum fitness of the population with the expected fitness of an individual in
the population. The goal can now mathematically be formulated as, given a particular history H ∈ H,
find µ∗ ∈ Rd such that

µ∗ = arg max
µ∈Rd

J
(
µ, Σ̂(H,µ)

)
, where J(µ,Σ) = E [f(x)|x ∼ N (µ,Σ)] (5.13)

and Σ̂ is the (predefined) covariance function of the ENDA, which is unknown to the agent. Hence we
will want to find a reward function r : H → R such that finding a mean function µ̂∗ : H → Rd that
maximizes the expected reward maximizes J(µ, Σ̂(H,µ).

Now that we examined the role of a reward function and the goal that is to be achieved by the
agent, we can propose reward functions that achieve this goal. The rest of this section will pro-
pose three different reward functions and analyze their theoretical characteristics. We will assume
we are currently at time step t ∈ N in the execution of the ENDA, and we therefore have access to
H(t) = (µ(τ),Σ(τ), P (τ), F (τ))τ∈[t].

5.3.1 Fitness reward

Since the average population fitness, F
(t)

, is the maximum likelihood estimate of J(µ,Σ), it is natural
to define the reward function as

rfitness(H
(t)) = F

(t)
:=

1

Npop

∑
i∈[Npop]

F
(t)
i . (5.14)

We call this reward the fitness reward.

A property of rfitness is that the reward is of the same scale as the fitness. That, however, is not
preferable since a problem class can contain scaled versions of problems. A scale variant reward could
theoretically skew the policy to be more performant on large scale objective functions, since a large
scale objective function has a larger potential gain of reward. Another property of rfitness is translation
variance with respect to the objective function. Hence an objective function that is translated by a
constant positive scalar will result in a systemically higher reward than the original objective function.
This is undesired since it makes the agent more likely to reinforce any behavior it displays on positively
translated objective functions and disregard any behavior it displays on negatively translated objective
functions. To accommodate for scale and translation invariance, the fitness reward should be normalized.

2We assume that the population size is a constant throughout any run of the ENDA
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5.3.2 Normalized fitness reward

The normalized fitness reward is a normalized version of the fitness reward, designed to address the
scale and translation variance of the fitness reward. In the ideal case where fmin = minx∈Rd f(x) and
fmax = maxx∈Rd f(x) exist, are known and are finite, the reward could be normalized in the standard
way,

rnorm. fitness(H) =
rfitness (H)− fmin

fmax − fmin
. (5.15)

Note that the transformation is merely a translation and a scaling of the range with respect to rfitness,
not changing the position of the maximum. Therefore we would expect rfitness and rnorm. fitness to result
in the same policy, since the systemic reward scale should theoretically not influence the RL algorithm.

Sadly, we do not in general know fmax, and fmin often does not even exist. One way to solve these
difficulties is to calculate the rewards in retrospect. Say the algorithm was used to optimize a particular
objective function f resulting in a total history

H(T ) =
(
µ(t),Σ(t), P (t), F (t)

)
t∈[T ]

, (5.16)

where T ∈ N is the total number of iterations in EA time. Then for any t ∈ [T ] we can define the
reward

r
(t)
retrospect(H

(T )) =
rfitness

(
H(t)

)
−minτ∈[T ] mini∈[Npop] F

(τ)
i

maxτ∈[T ] maxi∈[Npop] F
(τ)
i −minτ∈[T ] mini∈[Npop] F

(τ)
i

, (5.17)

leaving the reward a scalar between 0 and 1. Note however that this breaks the requirement that the
reward at time-step t is a function of H(t) as it now needs all fitness vectors in H(T ). Hence, using this
reward theoretically breaks the foundational assumptions of the RL theory as described in Chapter 4.
We will therefore disregard it and leave the effects of using this reward for further research.

In order to adhere to the predefined framework, we will consider the estimated maximum and minimum
to be a functions of H(t). In particular we will estimate the maximum with the maximum fitness value
encountered until the previous time step,

f̂max,delay

(
H(t)

)
= max
τ∈[t−1]

max
i∈[Npop]

F
(τ)
i . (5.18)

The current fitness vector is not included in the maximum to ensure that improving the current maxi-
mum is encouraged over remaining at the current maximum. If the current fitness vector was used in
the approximation of the maximum, any improvement of the maximum would result in a reward close
to 1 but never higher.

The minimum is estimated by the maximum of three terms:

Initial minimum The initial minimum uses the minimal fitness of the initial population, or

f̂min,init

(
H(t)

)
= min
i∈[Npop]

F
(0)
i . (5.19)

This approach introduces a constant baseline that cannot be influenced by the agent, thereby
assuring that it cannot be exploited. Taking the overall minimum fitness up until time-step
t would allow the agent to make one move to a low fitness area resulting in a low minimum,
significantly improving the rest of the received rewards by normalization.

Decaying minimum The decaying minimum interpolates exponentially between the current overall
minimum and current overall maximum, or mathematically

f̂min,decay

(
H(t)

)
= βt · min

τ∈[t−1]
min

i∈[Npop]
F

(τ)
i + (1− βt) · max

τ∈[t−1]
max

i∈[Npop]
F

(τ)
i , (5.20)

where β ∈ [0, 1] is the decaying factor. Again the current fitness vector is disregarded for rea-
sons analog to the maximum estimator. The exponential decay encourages the agent to stay
increasingly closer to the current maximum, allowing early exploration and punishing late stage
divergence.
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Window minimum The window minimum uses the minimum fitness of the last k ∈ [t−1] populations,

f̂min,window

(
H(t)

)
= min
τ∈{t−k,...,t−1}

min
i∈[Npop]

F
(τ)
i . (5.21)

Using a window allows the minimum to stay relatively close to the fitness of the current population,
ensuring that the change in fitness stays significant with respect to the normalization.

The estimated minimum value can then be written as

f̂min

(
H(t)

)
= max

(
f̂min,init

(
H(t)

)
, f̂min,decay

(
H(t)

)
, f̂min,window

(
H(t)

))
, (5.22)

letting us define the normalized fitness reward as

rnorm. fitness(H) =
rfitness (H)− f̂min

(
H(t)

)
f̂max,delay

(
H(t)

)
− f̂min

(
H(t)

) . (5.23)

As we set out, the normalized fitness reward trivially is translation and scale invariant with respect to the
objective function. However, due to the lack of knowledge about the structure of the black-box objective
functions, the normalization constants have to be estimated using data collected during optimization.
This makes for seemingly ad-hoc minimum and maximum estimates without much rigorous reasoning.
Especially the three minimum terms are a product of much trial-and-error based empirical research.
This raises the question whether, by looking at ratios of steps in fitness value throughout optimization,
we can derive a reward signal that normalizes itself without the need for ad-hoc estimators.

5.3.3 Differential reward

The differential reward, defined as

rdiff(H(t)) =
F

(t) − F (t−1)

fmax − F
(t)

. (5.24)

looks at the improvement in average population fitness since the previous time-step (numerator), relative
to an estimation of the current error (denominator). To derive the differential reward let us consider
the mean function goal, (5.13), and define the (theoretically) maximum achievable goal,

Jmax := sup
µ∈Rd,Σ∈PDd

J(µ,Σ) = max
x∈Rd

f(x) =: fmax (5.25)

where the supremum is necessary since we cannot achieve a deterministic distribution with positive
definite matrices, so the maximum does not have to exist, and the second equality holds when f is
continuous. We can now rewrite (5.13) as a minimization of the error, the distance from the current
value to its maximum,

µ∗ = arg min
µ∈Rd

Jmax − J
(
µ, Σ̂(µ)

)
, (5.26)

which per definition of Jmax has optimal value at least 0. For notational convenience let us now introduce
a short hand notation

∀t ∈ [T ], J (t) = J
(
µ(t), Σ̂

(
µ(t)
))
≈ F (t)

(5.27)

where T is the number of time-steps the ENDA is ran, µ(t) is the mean of the population of the ENDA
at time-step t and Σ̂ is the covariance function of the ENDA. Note that the approximation goes to
equality as Npop →∞. Since we are minimizing in (5.26) we would like

Jmax − J (t−1) > Jmax − J (t) (5.28)

to hold for every time-step t, and in particular we would like to maximize

ψ
(
H(t)

)
=
Jmax − J (t−1)

Jmax − J (t)
. (5.29)
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We can interpret ψ(H(t)) as the relative loss of error in the last time-step, in the sense that the
numerator denotes the error of the previous population and the denominator denotes the error of the
current population. Another intuition can be gained by considering the final error of the ENDA,

Jmax − J (T ) =
Jmax − J (T−1)

ψ(H(T ))
=

Jmax − J (T−2)

ψ(H(T−1)) · ψ(H(T ))
= · · · = Jmax − J (0)∏T

t=1 ψ
(
H(t)

) , (5.30)

hence the final error of the ENDA can be minimized by maximizing ψ(H(t)) for each t ∈ [T ].

At this point an attentive reader could note that (given that we can estimate Jmax) ψ defines a reward
function that is different from the differential reward and would be correct. To find the differential
reward we need the observation that ψ has the bias that the reward is always positive, which given a
good value function (see Section 4.2.2) should be countered but is still better to avoid. To that end we
use the simple trick of adding 0 = J (t) − J (t) to the numerator yielding

ψ
(
H(t)

)
=
Jmax − J (t−1)

Jmax − J (t)
=
Jmax + J (t) − J (t) − J (t−1)

Jmax − J (t)
= 1 +

J (t) − J (t−1)

Jmax − J (t)
≈ 1 + rdiff(H(t)). (5.31)

We can therefore conclude that maximizing ψ is equivalent to maximizing rdiff since they differ by a
constant.

Since fmax is not generally known beforehand, we need to substitute it with a known quantity before
we can use (5.24) as a reward function. Contrary to the estimate used in Section 5.3.2, we need to make

sure the approximation of fmax is always bigger than F
(t)

. This is necessary to ensure the denominator
is positive, which is an assumption we used to get from (5.28) to (5.29).

The most natural choice for fmax is the highest fitness encountered. Assuming f does not contain a
plateau, is sufficiently smooth and n ≥ 2 we find

∀µ ∈ Rd,Σ � 0 : P

[
max

i∈[Npop]
f(xi) >

1

Npop

n∑
i=1

f(xi) | x1, . . . , xNpop
∼ N (µ,Σ)

]
= 1. (5.32)

Hence we know that
f̂max,diff(H(t)) = max

τ∈t
max

i∈[Npop]
F

(τ)
i > F

(t)
, (5.33)

which qualifies f̂max,diff(H(t)) as a substitute for fmax, and we will use it as such for the differential
reward.

5.4 Experiments

In this section we empirically compare the performance of the introduced self-learning MBEA (SL-
ENDA) to that of AMaLGaM [4] and CMA-ES [12]. To get a good grasp on the potential of self-
learning MBEAs we first empirically select the most performant reward function and agent space from
the functions and spaces proposed in Section 5.3 and Section 5.2, respectively. We start however with
a description of the experimental set-up.

5.4.1 Experimental set-up

During experimentation a covariance function based on AMaLGaM is used, where the anticipated mean
shift is replaced by an additional mean-shift term in the covariance function much like the rank-one
update found in CMA-ES to make it fit in the ENDA framework. The population size for all tested
algorithms is set to Npop = 20 + 10 ·d, which is larger than the recommended population size, but since
we are establishing feasibility, we leave parameter tuning for further work.

The Proximal Policy Optimization (PPO) algorithm is used for the reinforcement learning agent since
it is a well-known algorithm with good performance for continuous state/action agent [25]. The policy
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is a multivariate normal distribution with a diagonal covariance matrix. The parameters for the policy
distribution are parameterized using a neural network consisting of 2 fully connected layers, each with
128 units and ELU activation [7], leading into 2 parallel layers of d units resulting in the mean and log
standard deviation vectors for the normal distribution of the policy. In preliminary experiments this
network was found to work, but thorough exploration of other network topologies is encouraged for
further research.

Problem classes

To train the agent, function classes have to be defined to sample objective functions from. All function
classes have a base function fb : Rd → R, that define the underlying properties of the class. The
base functions tested in this paper are the sphere (f1), ellipsoidal (f2) and Rosenbrock (f8) function as
specified in the BBOB 2010 noiseless function definition [13]. The sphere function is used as a baseline
to compare optimal convergence rates. The ellipsoidal function tests performance on ill-conditioned
and (when rotated) non-separable functions. Lastly, the Rosenbrock function tests performance on
non-convex unimodal functions with considerable local structure. All base functions are translated such
that their optimum is located in ~0 ∈ Rd.

For any b ∈ {1, 2, 8} the function set based on fb is defined as

Fb =
{

(x) 7→ −fb(Rx+ a) : R ∈ SO(d), a ∈ B(~0, 100)
}
, (5.34)

where the minus is added to account for maximization with ENDAs and minimization in BBOB, SO(d)
is the d-dimensional special orthogonal group, also called the rotation group, and B(~0, 100) ⊂ Rd is the
ball of radius 100 around the origin. Functions are sampled from Fb by uniformly sampling a and R
from B(~0, 100) and SO(d), respectively.

Evaluation

After training on the function class for a, per experiment specified, number of sampled functions, the
resulting ENDA is evaluated on a predefined set of 1000 functions sampled from the class. To keep the
ENDA static during evaluation learning is disabled by ignoring lines 1-6, 15-21 and 27-28 in Algorithm 4.

We define the runtime as the number of objective function evaluations to reach an average population
fitness, F , such that the precision, (maxx∈Rd f(x))−F , is smaller than some ε > 0 as central measure of
performance and call it the runtime. The algorithms are initialized with mean ~0 ∈ Rd and the identity
matrix as covariance matrix. Optimization of an objective function, i.e. an EA run, is terminated when
a threshold precision εmax � ε is reached or after 1000 generations, i.e. this describes the stopping
criterion on line 11 of Algorithm 4.

The implementation in Python 3.6 used to produce the results in this section is publicly available.3

PPO was implemented using the Tensorflow library and based on the OpenAI baselines library [9]. All
experiments were performed on a 64-core (4 x 16-core AMD Opteron(tm) Processor 6386 SE) server
running Fedora 28.

5.4.2 Reward function analysis

As stated earlier, the definition of the reward function is one of the most crucial parts of an environment.
Not only does it specify to the agent what its goal is, a good reward also guides the agent towards that
goal, significantly improving sample efficiency and the stability of the learning process.

Figure 5.3 shows the performance of SL-ENDA equipped with the differential, fitness and normalized
fitness reward, as introduced in Section 5.3, after training on 103, 104 and 105 functions (left to right),
sampled from the 2-dimensional Rosenbrock function class. The vertical axis indicates runtime (number

3https://github.com/realtwister/LearnedEvolution
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Figure 5.3: Runtime until precision is achieved by SL-ENDA equipped with differential, fitness and normalized
fitness reward on the 2-dimensional Rosenbrock function class. The vertical axis indicates runtime (number
of fitness function evaluations) until the precision on the horizontal axis is first achieved. The lines mark an
average over 1000 sampled functions and the shaded area is the corresponding 99% confidence interval. The
lines are terminated on the highest precision that was achieved for at least 10% of the sampled functions.

of fitness function evaluations) until the precision on the horizontal axis is first achieved. The lines
mark an average over 1000 sampled functions and the shaded area is the corresponding 99% confidence
interval. The lines are terminated on the highest precision that was achieved for at least 10% of the
sampled functions. The TRSI agent space is used throughout the experiment.

After 1000 functions, although all three rewards show comparable convergence speeds, the differential
reward on average achieves a higher precision. This indicates that all three reward functions specify a
similar goal early on, achieving high precision. However, the differential reward more efficiently guides
the agent to such high precision achieving behavior. This can be observed by the fitness reward only
achieving a precision of 10−2 after training on 104 functions. Superior guidance can also be concluded
from the fact that the differential reward is mostly converged after 104 functions, which can be observed
from the nearly identical curves at the 104 and 105 training functions mark. Additionally, the behavior
learned under the differential reward shows a higher convergence speed than both the fitness and the
normalized fitness reward. We can therefore conclude that the differential reward outperforms both the
fitness and normalized fitness reward.

5.4.3 Agent space analysis

To find the most performant agent space we compare the use of TRSI- and TSI-space, as introduced
in Section 5.2. The experimental procedure is comparable to the reward function comparison in the
previous section. The algorithm is equipped with the differential reward function throughout this
experiment.

Figure 5.4 shows that the TRSI-space results in a highest precision of at least 10−7 after training on
only 103 functions while the highest achieved precision with TSI-space is 10−2, which is achieved after
training on 105 functions. The faster convergence in RL-time confirms that the addition of invariances,
such as the rotation invariance in the TRSI-space, can significantly decrease the number of functions
needed to learn a policy that achieves high precision. Additionally, Figure 5.4 does not indicate any
penalty with regards to EA-time convergence speed as a result of the introduced rotational invariance.
Based on these results we conclude that the use of TRSI-space leads to the best performance and we
will therefore use it throughout the rest of the thesis.
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function class after learning for 103, 104 and 105 functions. The vertical axis indicates runtime (number of
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average over 1000 sampled functions and the shaded area is the corresponding 99% confidence interval. The
lines are terminated on the highest precision that was achieved for at least 10% of the sampled functions.
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Figure 5.5: Comparison of runtime scalability w.r.t. problem dimension of SL-ENDA, CMA-ES and AMaL-
GaM for function classes Sphere (a), Ellipsoid (b) and Rosenbrock (c). Plots show runtime (number of fitness
function evaluations) until fmax − F < 10−4 versus the problem dimensionality in log-log scaling. Markers and
shaded interval denote the mean and 99% confidence interval over 1000 sampled functions per dimensionality,
respectively. Grid lines show linear (dashed) and quadratic (dotted) scaling.

5.4.4 Performance comparison with existing algorithms

Following the BBOB standard we consider the runtime complexity with respect to the dimensionality of
the problem as performance measure to compare SL-ENDA to AMaLGaM and CMA-ES. To keep the
comparison as transparent as possible, both AMaLGaM and CMA-ES were implemented in the ENDA
framework. For the implementation of AMaLGaM, Bosman et al. [4] was followed as closely as possible.
The only major deviation from the source is the replacement of the anticipated mean-shift, which cannot
be implemented in the ENDA framework, by an additional mean-shift term in the covariance function
much like the rank-one update found in CMA-ES. For the implementation of CMA-ES the GECCO
2013 CMA-ES tutorial slides4 were used as source and could directly be implemented in the ENDA
framework without alterations.

Figure 5.5 shows the runtime until precision 10−4 is reached by the three algorithms on the sphere
(a), ellipsoid (b) and Rosenbrock (c) function class, as described above, for problem dimensionality
d ∈ {2, 3, 4, 5, 10}. The figures show the runtime averaged over 1000 sampled functions. The 99%
confidence interval is given by the shaded area. SL-ENDA was trained on 2 · 105 functions uniformly

4http://www.cmap.polytechnique.fr/~nikolaus.hansen/gecco2013-CMA-ES-tutorial.pdf
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sampled from the function class it is evaluated on.

On all three function classes and for all tested dimensionalities SL-ENDA is able to find the optimum
and achieve at least 10−4 precision. On average the implementations of both AMaLGaM and CMA-ES
have a lower runtime. This result however, is not statistically significant for AMaLGaM in the tested
dimensionalities. The fact that for all three function classes SL-ENDA achieves comparable, same order
of magnitude, runtime as AMaLGaM and in some cases CMA-ES, shows that self-learning MBEAs can,
tabula rasa, learn optimization behavior that comes near that of existing, broadly used algorithms.

SL-ENDAs perceived scalability on both sphere and ellipsoid is polynomial, between linear and quadratic.
This is slightly worse than the perceived linear scalability of AMaLGaM. It is important to note that the
population size, n = 20+10·d, is not the advised population size for either AMaLGaM or CMA-ES. This
can explain the unexpected scalability behavior of CMA-ES with respect to AMaLGaM. In additional
experiments, not shown here, with the recommended population size of CMA-ES, n = 4+ b3 · ln(d)c, its
expected linear scalability on the sphere function was observed. Considering Rosenbrock, the perceived
scalability of SL-ENDA is non-polynomial. A possible explanation for this behavior is the relatively high
constant term in the population size, which could result in a relatively high runtime on low-dimensional
functions. Disregarding the result for the 2-dimensional case would yield an approximate quadratic
scalability. Altogether, SL-ENDA is truly outperformed here, scalability-wise, by both CMA-ES and
AMaLGaM.
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6
Discussion and conclusions

6.1 Discussion

The results in this thesis show that the proposed algorithm, SL-ENDA, is able to improve its optimiza-
tion behavior on a problem class based on earlier optimization of problems in that class. Though the
comparison with AMaLGaM and CMA-ES shows that the resulting algorithm has performance and
scalability that comes close (same order of magnitude) to the existing manually-engineered algorithms,
this was only shown for the problem classes induced by the sphere, ellipsoidal and Rosenbrock func-
tions. To make truly quantitative statements about SL-ENDA, benchmarking, on for example BBOB,
is advised. This will also enable more complete comparisons with existing algorithms. Furthermore,
the performance of SL-ENDA on multi-modal and noisy functions is, at the time of writing, an open
question, which could be answered by the aforementioned benchmarking. Additionally, it is important
to thoroughly investigate the impact of parameters such as population size, reinforcement learning al-
gorithm and neural network topology on the learning time and final performance of learned algorithms,
to better understand the potential of this new technique.

One could argue that the RL-agent in SL-ENDA could simply learn to calculate a weighted average of the
individuals in the current population, which would in principle be sufficient. For example, AMaLGaM
does this by taking the average over selected solutions. Though the neural network is technically able
to approximate such a weighted average, the results suggest that this does not happen since that would
imply that SL-ENDA would share or transcend the performance of AMaLGaM, which it does not. The
exact reason for this result is not known at time of writing, however the author suspects it is an effect
of the precision based convergence criterion. In particular, when the algorithm achieves a predefined
precision the episode is terminated, which means the agent stops receiving a reward. Since the agent
tries to maximize the expected cumulative discounted reward, the agent will try to stretch the episode
for as long as it keeps receiving positive reward. This could lead to suboptimal final policies that stretch
the episode length by not improving the precision as much as technically possible at every step. If this
is the case this could be prevented by awarding a reward, larger than the expected reward that is
obtained by stretching the episode, when the convergence criterion is met. When using such a reward
strategy, extra care should be taken that the agent cannot force premature convergence to obtain the
large reward. Further research is necessary to support this theory.

It would be very interesting to look at the learned optimization behavior of self-learning MBEAs, both to
understand their inner workings and to uncover potential new insights in black-box optimization itself.
Such analyses could for example entail the qualitative comparison of the optimization paths of SL-ENDA
and existing algorithms on the same objective function, as well as the effect of different reward functions
and agent spaces on such paths. Additionally, both quantitative and qualitative analyses should be used
to investigate the generalization of self-learned specialized algorithms to objective function classes they
were not trained on. This could lead to insights in shared underlying structures of different function
classes and the degree to which the developed self-learning algorithms are able to specialize.

This work shows that self-learning EAs can be designed and, given the observed ultimate performance
even in the restricted setting of this first thesis on this topic, are a potentially powerful new technique.
It should however be clear that the work reported here is a proof-of-principle, showing what the key
components are and the importance of their proper design (e.g. TSI-space vs. TRSI-space and differen-
tial reward vs. normalized fitness reward). An important next step in this space is the development of
a reinforcement-learning-based covariance function. To develop such a function, the highly constrained
and high-dimensional space of positive definite matrices has to be explored. Additionally, the difference
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between the Euclidean distance of positive definite matrices and the “natural” distance measure of co-
variance matrices with respect to probability, as described in [31], have to be taken into account. Lastly,
we have to take into account that the reward function is possibly much less trivial for the covariance
function, since the main goal of the covariance matrix is to manage the exploration vs. exploitation
trade off, which is not easily captured in a scalar feedback signal.

As seen in the comparison of the agent spaces, a particular choice of space can significantly impact
the learning time of the agent. It is therefore promising to investigate the application of self-learning
embeddings, such as for example a recurrent neural network embedding [14], to embed the optimization
history for algorithms such as SL-ENDA. Such embeddings also open the door to population-size and
dimension-agnostic algorithms. It is the belief of the author that the introduction of recurrent neural
network modules in the policy neural network can significantly improve the performance of SL-ENDA,
since it introduces a (short-term) memory to the system which further enables the agent to use infor-
mation from earlier populations. This belief is strengthened by the successful use of RNN modules in
[1, 5].

Another area in which this work can be extended upon, is pretraining the policy of the agent by
supervised learning on optimization paths generated by existing algorithms. Preliminary testing that
we did in the context of this thesis showed that this technique can lead to significant learning time
reduction. It should however be noted that pretraining has the potential to reduce final performance,
as shown by Silver et al. [26].

Alternatively, the need for an agent space due to the neural network policy can also be circumvented
altogether by using a more straightforward parameterized policy. For example, a linear combination
of the individuals in the current population where the weights are learned parameters. In addition
to avoiding the need for an agent space, such a simple parameterization can assist in understanding
what the algorithm “learns” and what the effects of different reward functions are, since it is eas-
ily inspectable due to the limited number and interpretability of parameters. Note however that by
simplifying the parametrization, the subset of policies that the agent is able optimize over is shrunk,
potentially decreasing the performance of the resulting algorithm.

As an alternative to SL-ENDA, we could parameterize the mean function and, using a black-box op-
timization method, maximize a performance measure, like the reward function, over a set of functions
sampled from the problem class. In theory this would be a more “pure” approach to optimizing the be-
havior of the ENDA, since we can then directly optimize the performance measure under consideration.
Such an approach does, however, not allow behavior optimization to proceed on a per ENDA-generation
basis, which makes it far less sample efficient but potentially more robust to multi-modal functions.
Salimans et al. showed that using classic evolution strategies on general RL benchmarks can match the
performance of conventional RL-algorithms [22]. This approach was found to be highly parallelizable,
but it needed at least three times as much data to achieve matching performance. Applying the ideas
of Salimans et al. to self-learning ENDAs is left for further research.

Finally, we note that throughout this thesis, due to its natural fit, reinforcement learning was used as
main machine learning paradigm. However, there are ways, unexplored in this thesis, to apply other
paradigms to MBEAs. A good example is the indirect supervised learning approach introduced by
Chen et al. [5]. The approach uses the chain-rule in combination with the gradient of the objective
function and back propagation, to calculate a parameter update of a neural network that encodes
the optimization step of a direct-search optimization scheme. The approach could be adapted, by for
example approximating the gradient numerically, to train the mean function of self-learning MBEAs.
This example shows that there are many unexplored ways to apply machine learning to MBEAs, adding
to its attractiveness as a new topic for research.

6.2 Conclusions

In this thesis, we set out to develop a self-learning model-based evolutionary algorithm that can im-
prove its ability to optimize different problems in a class of optimization problems based on previous
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optimization attempts of problems in that class. A review of the three paradigms of machine learn-
ing: unsupervised learning, supervised learning and reinforcement learning, showed that reinforcement
learning has the most theoretical potential to be used in a self-learning model-based evolutionary al-
gorithm due to the natural duality between average population fitness, in EAs, and reward signal, in
RL. Unsupervised learning was altogether found to be unsuitable due to its inability to directly learn
a mapping. Supervised learning can theoretically be applied to an ENDA but is either only able to
clone the behavior of an existing algorithm, or is dependent on the gradient of the objective function for
its learning. We were successful in developing a proof-of-principle framework that uses reinforcement
learning to learn to adapt the mean of an estimation of normal distribution algorithm to achieve efficient
optimization. (Research Q1)

We have shown empirically that both the choice of agent space and the choice of reward function can
have a significant impact on the performance of the algorithm. In case of the agent space, the results
show that the addition of imposed invariances on the mean function can lead to significant decreases in
reinforcement learning training time. The results for the reward function indicate that a proper choice
of reward function can significantly increase the optimization convergence speed, as well as decrease the
training time necessary to obtain a good performing estimation of normal distribution algorithm.

We furthermore empirically found that self-learning model-based evolutionary algorithms can yield
algorithms that, on unimodal noiseless functions, have performance and scalability that comes close to
that of existing, broadly-used and carefully manually-engineered algorithms, such as AMaLGaM and
CMA-ES. (Research Q2)

41



Bibliography
[1] M. Andrychowicz, M. Denil, S. Gomez, M. W. Hoffman, D. Pfau, T. Schaul, B. Shillingford, and

N. De Freitas. Learning to learn by gradient descent by gradient descent. Advances in Neural
Information Processing Systems, pages 3981–3989, 2016.

[2] C. Audet and W. Hare. Derivative-Free and Blackbox Optimization (Springer Series in Operations
Research and Financial Engineering). Springer, 2017.

[3] P. A. N. Bosman. Design and application of iterated density-estimation evolutionary algorithms.
Ph.D. Dissertation, Utrecht University, 2003.

[4] P. A. N. Bosman, J. Grahl, and D. Thierens. Benchmarking parameter-free amalgam on functions
with and without noise. Evolutionary Computation, 21:445–469, 2013.

[5] Y. Chen, M. W. Hoffman, S. G. Colmenarejo, M. Denil, T. P. Lillicrap, M. Botvinick, and N. de Fre-
itas. Learning to learn without gradient descent by gradient descent. In Proceedings of the 34th
International Conference on Machine Learning-Volume 70, pages 748–756, 2017.

[6] R. Cheng, C. He, Y. Jin, and X. Yao. Model-based evolutionary algorithms: a short survey.
Complex & Intelligent Systems, 4(4):283–292, aug 2018.

[7] D. Clevert, T. Unterthiner, and S. Hochreiter. Fast and accurate deep network learning by expo-
nential linear units (elus). CoRR, abs/1511.07289, 2015.

[8] A. R. Conn, K. Scheinberg, and L. N. Vicente. Introduction to Derivative-Free Optimization (MPS-
SIAM Series on Optimization). Society for Industrial and Applied Mathematics, 2009.

[9] P. Dhariwal, C. Hesse, O. Klimov, A. Nichol, M. Plappert, A. Radford, J. Schulman, S. Sidor,
Y. Wu, and P. Zhokhov. Openai baselines. https://github.com/openai/baselines, 2017.

[10] R. Durrett. Probability: Theory and Examples (Cambridge Series in Statistical and Probabilistic
Mathematics). Cambridge University Press, 2010.

[11] Z. Ghahramani. Unsupervised Learning, pages 72–112. Springer Berlin Heidelberg, Berlin, Heidel-
berg, 2004.

[12] N. Hansen. The cma evolution strategy: A tutorial. arXiv preprint arXiv:1604.00772, 2016.

[13] N. Hansen, S. Finck, R. Ros, and A. Auger. Real-parameter black-box optimization benchmarking
2010: Presentation of the noiseless functions. Technical report, INRIA, 2010.

[14] Y. Keneshloo, T. Shi, C. K. Reddy, and N. Ramakrishnan. Deep reinforcement learning for sequence
to sequence models. arXiv preprint arXiv:1805.09461, 2018.

[15] J. Kober, J. A. Bagnell, and J. Peters. Reinforcement learning in robotics: A survey. The Inter-
national Journal of Robotics Research, 32(11):1238–1274, 2013.

[16] K. Li and J. Malik. Learning to Optimize. arXiv preprint arXiv:1606.01885, Jun 2016.

[17] T. P. Lillicrap, J. J. Hunt, A. Pritzel, N. Heess, T. Erez, Y. Tassa, D. Silver, and D. Wierstra.
Continuous control with deep reinforcement learning. arXiv preprint arXiv:1509.02971, 2015.

[18] V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G. Bellemare, A. Graves, M. Ried-
miller, A. K. Fidjeland, G. Ostrovski, et al. Human-level control through deep reinforcement
learning. Nature, 518:529–533, 2015.

42

https://github.com/openai/baselines


[19] A. Y. Ng, D. Harada, and S. J. Russell. Policy invariance under reward transformations: Theory
and application to reward shaping. In Proceedings of the Sixteenth International Conference on
Machine Learning, ICML ’99, pages 278–287, San Francisco, CA, USA, 1999. Morgan Kaufmann
Publishers Inc.

[20] L. M. Rios and N. V. Sahinidis. Derivative-free optimization: a review of algorithms and comparison
of software implementations. Journal of Global Optimization, 56(3):1247–1293, jul 2012.

[21] S. Russell and P. Norvig. Artificial Intelligence: A Modern Approach. Prentice Hall Press, Upper
Saddle River, NJ, USA, 3rd edition, 2009.

[22] T. Salimans, J. Ho, X. Chen, S. Sidor, and I. Sutskever. Evolution strategies as a scalable alternative
to reinforcement learning. arXiv preprint arXiv:1703.03864, 2017.

[23] J. Schulman. Optimizing expectations: From deep reinforcement learning to stochastic computation
graphs. PhD thesis, Ph.D. Dissertation, UC Berkeley, 2016.

[24] J. Schulman, S. Levine, P. Moritz, M. I. Jordan, and P. Abbeel. Trust Region Policy Optimization.
arXiv e-prints, page arXiv:1502.05477, Feb 2015.

[25] J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov. Proximal policy optimization
algorithms. arXiv preprint arXiv:1707.06347, 2017.

[26] D. Silver, J. Schrittwieser, K. Simonyan, I. Antonoglou, A. Huang, A. Guez, T. Hubert, L. Baker,
M. Lai, A. Bolton, Y. Chen, T. Lillicrap, F. Hui, L. Sifre, G. van den Driessche, T. Graepel, and
D. Hassabis. Mastering the game of Go without human knowledge. Nature, 550:354–359, 2017.

[27] S. Smit and A. Eiben. Comparing parameter tuning methods for evolutionary algorithms. In 2009
IEEE Congress on Evolutionary Computation. IEEE, may 2009.

[28] J. Smith and A. E. Eiben. Introduction to Evolutionary Computing (Natural Computing Series).
Springer, 2013.

[29] R. S. Sutton and A. G. Barto. Reinforcement Learning: An Introduction. The MIT Press, second
edition, 2018.

[30] R. S. Sutton, D. McAllester, S. Singh, and Y. Mansour. Policy gradient methods for reinforcement
learning with function approximation. In Proceedings of the 12th International Conference on
Neural Information Processing Systems, NIPS’99, pages 1057–1063, Cambridge, MA, USA, 1999.
MIT Press.

[31] D. Wierstra, T. Schaul, T. Glasmachers, Y. Sun, J. Peters, and J. Schmidhuber. Natural evolution
strategies. Journal of Machine Learning Research, 15:949–980, 2014.

43



Index
action, 13, 14

process, 16
space, 14

advantage, 21
agent, 13
agent space, 25, 27

baseline, 19
black-box

function, 3
optimization problem, 3
optimization problem class, 4

covariance matrix, 7

differential reward, 33
discount factor, 17
discounted return, 17

elitist, 5
environment, 13
episode, 14
episode length, 17
Estimation of Distribution Algorithms, 6
evolutionary algorithm, 4

fitness, 4
fitness reward, 31
fitness vector, 7
function set, 4

history, 7

invertible, 29

Kullback-Leibler divergence, 22

learning rate, 18

machine learning, 9
Markov decision process, 15

equipped, 16
mean vector, 7
Model-based evolutionary algorithms, 5

mutation operator, 5

normalized fitness reward, 32

objective function, 3
observation, 27
offspring, 4

parents, 4
policy, 16

parameterized, 17
policy gradient theorem, 18
population, 4, 7
population distribution, 6
post processor, 25
preprocessor, 25

recombination operator, 4
reinforcement learning, 10
replacement operator, 5
reward, 13, 30

function, 15
process, 16

reward shaping, 30
rotation invariant, 28

scale invariant, 28
selection operator, 4
state, 13, 14

-value function, 20
distribution, 15
process, 16
space, 14

state-action transition kernel, 15
supervised learning, 10

trajectory, 16
translation and scale invariant transformation,

29
translation invariant, 28
translation, rotation and scale invariant trans-

formation, 30

unsupervised learning, 10

44



A
Artificial neural networks

Throughout this work the term “neural network” is used to denote, what is more formally known as,
an artificial neural network. This appendix presents a short introduction into artificial neural networks
loosely based on Chapter 6 of “Deep Learning” by Goodfellow et al.. Since we only use so-called
feedforward networks in this thesis, this appendix will be limited to such networks and we will use the
terms “neural network” and “feedforward network” interchangeably.

A neural network is a function f : Rdin → Rdout , where D ∈ N is the number of parameters, din ∈ N is
the domain dimensionality and dout ∈ N is the dimensionality of the range. These functions are called
networks because they are often represented by a composition of multiple parameterized functions, the
order of composition is generally described by a directed graph. When this graph is acyclic we speak
of a feedforward network. For example, we can have three parameterized functions,

i ∈ [3] : h(i) : RD
(i)

× Rd
(i)

→ Rd
(i+1)

D(i), d(i), d(4) ∈ N, (A.1)

connected in a chain such that

f : RD
(1)

×RD
(2)

×RD
(3)

×Rd
(1)

→ Rd
(4)

, (θ(1), θ(2), θ(3), x) 7→ h(3)(θ(3), h(2)(θ(2), h(1)(θ(1), x))). (A.2)

We call h(1) the first layer, h(2) the second layer, and so forth. The last layer (h(3) in this case) is also
called the output layer and all non-output layers (h(1) and h(2) in this case) are often called hidden
layers.

These functions are called neural networks because the idea to use a composition of relative functions
to estimate a complex function is loosely inspired on neuroscience. In this interpretation each layer
consists of multiple units, each outputting a scalar value, that act in parallel on the same data. Each
unit then acts as a neuron that takes many inputs from the previous layer and returns a scalar value
representing some information about the input. For example, in image recognition the each unit in the
first layer might indicate whether there exists an edge in a particular orientation at a particular position
in the input image. The units in the second layer can then, based on the edge information, recognize
lines with particular positions and orientations. Based on these lines the third layer can then, for
example, recognize which particular digit is written in the image. These intermediate representations of
the input data are called features. Since the features resulting of each layer are based on the features of
the preceding layer, features of later layers are able to describe more complex properties of the input1.

In the image recognition example sketched above, the features are interpretable by human spectators.
This has the advantage that we, as researchers, can interpret what the function “calculates”. However,
it severely limits the resulting function in the sense that it can never use relations present in the input
that are unknown to humans. To avoid this limitation the individual layers are parameterized, allowing
them to represent different features based on the chosen parameters. The resulting total function f can
then be approached as a “normal” parameterized function, where the parameters of the function are
the parameters of all layers combined. In particular, if the gradient of the individual layers is known
we can repeatedly use the chain rule to calculate the analytical gradient of f with respect to any of its
parameters, this process is often referred to as backpropagation.

1This idea is very intuitively visualized in the Tensorflow playground (http://playground.tensorflow.org)
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Figure A.1: Plot of ELU-function as defined in (A.6) for x ∈ [−5, 5].

A.1 Layer types

Having explained the layered nature of a neural network and its interpretation, we are left with defining
the layers themselves. We will do this by considering the limitations of linear layers and extending them
to so-called fully-connected layers.

A.1.1 Linear layer

Given that a layer is a parameterized function,

h(i) : RD
(i)

× Rd
(i)

→ Rd
(i+1)

, (A.3)

it is natural to start with a linear function,

h(i) :
(
Rd

(i)×d(i+1)

× Rd
(i+1)

)
× Rd

(i)

→ Rd
(i+1)

, ((A(i), b(i)), x) 7→ A(i)x+ b(i). (A.4)

In this case every feature is a affine combination of the features of the previous resulting from the
previous layer. Note however that the composition of two linear functions is again a linear function.
Hence, using linear layers would result in a linear final function, which would totally nullify the layered
nature of a neural network.

A.2 Fully-connected layer

In order to avoid the nullification of the layeredness that resulted from the linear layer, we have to
introduce non-linearity in the layer. Most neural networks do this using an affine transformation, as

with the linear layer, followed by a fixed nonlinear element-wise function g(i) : Rd(i) → Rd(i) , which is
called an activation function. Concretely, the new layer, called a fully-connected layer, is defined as

h(i) :
(
Rd

(i)×d(i+1)

× Rd
(i+1)

)
× Rd

(i)

→ Rd
(i+1)

,
((
A(i), b(i)

)
, x
)
7→ g(i)

(
A(i)x+ b(i)

)
. (A.5)

As activation function we use the so-called Exponential Linear Units (ELUs) in this thesis. The ELU
function is a scalar function defined as

gELU : R→ R, (x) 7→

{
x if x > 0,

α (exp(x)− 1) if x ≤ 0
, (A.6)

where α > 0 is a hyper parameter which is normally chosen to be 1, in this case the ELU function is
continuously differentiable [7]. The ELU-function is plotted in Figure A.1. To use the ELU-function as
activation function, as in (A.5), it is applied element-wise to the result of the affine transformation.
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