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looked like a big Sudoku in the first place, but has appeared to be an
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the right data to get started, so the idea had to be converted into a pro-
posal with a strong framework to get to an academic research project.
From the moment Lori got involved and brought some fundamental
methodologies to approach the problem, the kick-off was a fact.

The constant awareness of both developing an academic supported
model, but also keeping in mind that this was the first step of a poten-
tial commercial product, was very challenging and kept me motivated.
The fact that I needed to learn Java in order to create a model which
estimated air cargo flows took some time, but was rewarding in the
end. After a year of programming, calibrating, validating and analyz-
ing, Java is still not my best friend, but the model and I can get along
pretty well.

I like to thank Daniel for his daily support and his industry knowl-
edge which helped me to put the enormous amount of data into
the right perspective. Further, I like to thank Bruno for the guidance
during this research and the clear and critical feedback during the
meetings, and Lori for all the help and the enthusiasm he brought into
this project.

After exactly ten years of studying in which I planned and executed
my learning curve pretty steep but gradually, I’m very proud to deliver
this Master research. The developed Air Cargo Flow Model has, from
my point of view, some high potential from both an academic as a
commercial perspective.

Lars Meijs
August 2017
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S U M M A RY

introduction

Where a relatively small part (less than 1%) by volume of world trade
is represented by air transport, the orientation towards high value
products results in a share of almost 35% of international trade in
value. But where data of the amount of trade between countries is
highly available, the actual routing of those traded goods is not known
at the moment. This means that up until today it is unknown for
airlines, airports, forwarders and other important stakeholders how
trade between countries have been flown.

This research includes the development of a model to estimate
yearly air cargo flows over the global air transport network by using
country-to-country air trade data. The novelty in this model lies in the
fact that this is the first model in academic literature that estimates
air cargo flows in such a detailed airport-to-airport level. Both on the
demand side of the model as on the supply side very granular data
is used. O/D air trade data on country-to-country level is the main
demand input, where route choices are based on scheduled flight
services reported by the airline, serve as supply input.

model framework

The model includes a total of three building blocks which form the
framework. For each O/D country pair a choice set of routes by a
shortest path algorithm from airport to airport, based on actual sched-
uled airline services. The possibility of intermediate transshipments
and trucking connections are included. By using a path size logit
model together with a generalized cost function, the route choice
probabilities are calculated and applied to the O/D trade data for the
distribution of the flows. The airport impedance parameter Ap and
the scaling parameter µ are introduced for calibration purposes. The
scaling parameter µ determines the impact that the cost differentials
have on the percentage of trade assigned to each alternative. The
parameter Ap includes all relevant, measurable and hidden service
characteristics of airports, such as fuel costs, airport charges, handling
costs, congestion costs, etc.
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model data & calibration

The model uses actual air trade data between two countries on the
demand side, and scheduled airline services on the supply side. Other
network data used in the model are: county nodes which captures
the weighted average location of all air freight moving to, or from the
country; Road Feeder Services to allow the model to also use airports
from neighbouring airports to import/export trade. The main net-
work attributes of time and costs for transhipment and transportation
are presented in the model parameters which were obtained from
academic literature and industry analysis.

Calibration of the model includes the adaption of the scale param-
eter µ and the airport impedance parameter Ap. The main objective
of this calibration is to minimize the absolute difference between the
observed throughput reported by ACI and the modeled throughput
estimated by the model. Validation of the model will be done by using
BTS data and the Seabury Cargo Capacity Database.

us - brazil

The US-BR case study had the purpose to prove the capabilities of the
model to reproduce air cargo flows from airport to airport and yearly
airport throughput. First, a detour factor an capacity share analysis
was performed from which we could conclude that potential interfer-
ence of O/D trade is minimized within the trade market between the
US regions and Brazil. Therefore it could be used as a proper case
study.

Secondly, the case study was set-up, which includes six US and
six Brazilian airports and a service network to distribute the trade
between those countries. For calibration purposes, assumptions had
to be made to determine the observed throughput data for the twelve
airports. After calibration, validation analysis showed that the model
is able to reproduce the airport throughput very accurate, with a
R-squared of 95%. Also the air cargo flows between the airports are
estimated rather accurately.

Furthermore, verification of the model has proven that the model is
robust when parameters are changed. From this we could conclude
that the model is able to estimate air cargo flows with an acceptable
accuracy and can be used to apply on a global scale.
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full world

The Full World model is a model which estimates global air cargo
flows based on O/D trade data. First, a set of airports, countries
and flight services was created by defining three selection criteria.
Those selection criteria created a set of 318 airports, representing
148 countries and a network consisting out of +7,500 distinct flight
routes. With this it captured 96% of network capacity, 99% of airport
throughput and 98% of air trade and was able to estimate the air cargo
flows on a global scale within one minute. After converging of the
model due to calibration, it resulted in a fit which explains 88% of the
amount of variation between airport throughput volumes. With this
high R-squared value, we could conclude that the model is able to
reproduce airport throughput rather accurately.

By analyzing the correlation graph which presented the modeled
throughput compared with the observed throughput, we identified
four group of airports, namely, top 20 airports, integrator airports,
’island’ airports and overestimated airports. We also discussed the
airports which are located near the assumed cargo center of gravity.

Most of the conclusions drawn from this analysis are due to two
main factors, namely, the use of the shortest path algorithm and the
method of calibration. By using the shortest path algorithm, only one
route between an airport pair will be added to the choice set. This
narrows down the amount of possibilities to distribute the flows and
will capture transshipment and island airports to a lesser extend. The
number of direct routes and available airports for the distribution of
trade is a determining factor in the current model to reproduce airport
throughput when a shortest path algorithm is used. The calibration
method of minimizing the sum of absolute gaps between observed and
modeled airport throughput forces the model to focus on the more
larger airports, for the most efficient approach. This results in a general
overestimation of smaller airports, because NSGA-II also minimizes
the difference between observed and modeled transshipments. Because
in the current model only for the top 14 the (estimated) observed
transshipment is inserted, the calibration will be forced towards a
value of zero for the rest of the airports, which may not be the case.
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conclusion & recommendation

The development of the Air Cargo Flow Model including the research
from this report is the accomplishment of the main objective of this
project. The work presented give airlines and other stakeholders in
the aviation industry sufficient insight into the now largely unknown
air traffic flows of the competitive air cargo market. This helps them
to understand the behavior of competitor airlines, balance the capacity
and for route development in order to increase the profitability. On top
of that, it will also help them with market analysis, pricing strategies
and new route analysis to improve their network.

Further research, which now becomes available by the introduction
of this version of an air cargo flow model, will allow us to study the
current and future state of air cargo flows on a global scale. Recom-
mendations in order to improve and extend the model are mainly
focused on two topics. Firstly, including the k-shortest path algorithm
to make the allocation of flows more realistic and to increase the relia-
bility of the calibration process. Secondly, adding capacity constrains
on routes or trade lanes to improve the quality of the model.

Lastly, further research into the airport impedance parameters is
recommended. Especially when the model is extended with the k-
shortest path and a capacity constrain, the quality of the Ap-values
will increase. There can be investigated if and how they are related to
each other and how the correlation is between airport characteristics
known from public data and the assigned impedance value by the
model.
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1
I N T R O D U C T I O N

The air cargo industry plays an import role in world trade, doubling
the volume flow every 10 years since 1970 (Chang and Yeh, 2007).
According to Boeing and Airbus, this trend is expected to continue
over the next 20 years with an annual average growth rate between
4% and 6% (Boeing, 2014; Airbus, 2015). Although a relatively small
part (less than 1%) by volume of world trade is represented by air
transport, the orientation towards high value products results in a
share of almost 35% of international trade in value (IATA, 2015). On
top of that, between 1995 and 2004 air cargo transport has grown
about 50% faster than passenger transport (Wong et al., 2009). As a
result, many passenger carriers place strategic emphasis on the growth
of cargo business along their passenger route networks (Zhang et al.,
2004).

The ongoing competition between airlines force them to manage
their air cargo operations efficiently and focus on strategic decisions to
stay flexible for unexpected changes. Those challenges resulted in an
increasing amount of research on air cargo operations since 1990 (Feng
et al., 2015). One of those challenging problems is the imbalance of
cargo capacity. This occurs, for example, when trade goods are being
produced in country A and consumed in country B. The air cargo
would be in this case “unidirectional” in terms of demand. Flying the
aircraft back to country A with an empty hold would result in high
operating costs and a weak competitive position.

Unfortunately, the actual routing of trade flows are not available at a
global scale. This means that up until today it is unknown for airlines,
airports, forwarders and other important stakeholders in the aviation
industry how trade between countries have been flown. Every single
stakeholder has the isolated view of its operations but there is still a
lack of understanding on the global flows. Among other reasons, this
can be explained by the complexity of air cargo modelling compared to
passengers or vehicles in urban networks for example. On top of that,
most real-world problems are lacking in having the right data, both
for input to run the models as to validate their results (Jourquin and
Beuthe, 1996; Jourquin, 2005; Maia and Couto, 2013). Other research
do manage to model air freight but are missing level of granularity
on the demand and the supply side (Heinitz and Meincke, 2013; ITF,
2015; Newton, 2009).

In the world were data-driven decision making emerged as a key
approach to solving problems arising, it is hard to believe that air
cargo stakeholders do not have sufficient insight into the competitive

1



2 introduction

cargo traffic flows to make the right strategic decisions. Available data
sets in air transport published as aggregated high-level figures from
countries, airports and airlines, together can serve as valuable pieces
to solve the puzzle of estimating those air cargo traffic flows.

1.1 research objective & research questions

Based on the aforementioned research problems stated, the main ob-
jective of this research is formulated as follows:

To contribute to the development of a model which estimates the air
cargo flow per flight leg, flown by a certain airline and equipment,
on a worldwide basis by providing a best-fit model which generates
low-level estimates by combining and allocating high-level figures,
on yearly basis.

The main research question is formulated as follows:

How can the air cargo flow per flight leg on a worldwide basis be
estimated from aggregated traffic data?

This main research question is sub-divided into a set of central
questions. By answering these questions the problem will be clarified
and a model can be developed. The questions are formulated as
follows:

1. Which data regarding air cargo transport is available in order
to estimate air cargo flows?
Because we noticed during the literature study that in order
to take some first steps in developing an air cargo flow model
which estimates at a certain detail, one needs accurate input data.
This is true for both the supply side as for the demand side. The
right data has to be found to meet these requirements and to
serve the main research question.

2. Which solution technique will be used to estimate the air
cargo flow on a flight leg basis?
The estimation of air cargo flows on a global scale with granu-
lar input data is never reported in current academic literature.
Therefore techniques filtered out from the literature review will
be used to develop a new model.

3. How and which data should be used in order to test the model
on its quality? The output itself of the to be developed model
alone will not give enough information about the quality of the
model. Therefore calibration is needed to perform verification
and validation in a later stadium of the project. Case studies will
be developed and be analyzed.
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4. Which steps have to be taken to develop the model further?
Because this research will be the first step in the development of
an air cargo flow model, possible improvements and extensions
can be recommended for further research.

1.2 research scope

The model which will be presented in this research will be a simpli-
fied representation of reality. Several details are omitted to achieve
this simplification. To define the purpose of the model including its
boundaries, a certain scope is created. The scope of this research is
formulated by some model characteristics and is based on Sun and
Wang, (2015).

1. Scale The research considers international air freight transport
on the global level. The definition of air freight included traded
commodities that use this particular mode of transport, thus
leaving air mail outside of the scope.

2. Objective The model assumes that flows are allocated to an air
transportation network from a profit maximization approach
from the forwarder.

3. Modes Besides the air freight transportation mode, also Road
Feeder Services are included in the model.

4. Commodity The model will only consider air trade as a whole
and will not consider a split into commodities. It will be mea-
sured in yearly metric tonnes.

5. Network Resources The model will not take network capac-
ity into consideration. Links and nodes are assumed to have
unlimited capacity.

6. Data Assumption The model will be assumed as a deterministic
model with fixed value of certain data (i.e. distance, demand,
cost).

7. Perspective The perspective of the forwarders will be used. This
because they have the knowledge of the main trade route alter-
natives between the countries by using the different transport
modes.

1.3 research relevance

The research in this thesis has the purpose to have both scientific and
a real-world contribution. The following subsections describe these
contributions respectively.
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1.3.1 Scientific contribution

The main contribution of this thesis scientifically is in the field of
modelling freight transport, specifically in air freight. The developed
model in this thesis fills the gaps identified in the research area of
modelling global air freight transport.

The novelty of this work is in the fact that it uses actual air trade
data between two countries on the demand side, and scheduled airline
services on the supply side. Due this combination and to the fact
that the estimated flows are calibrated against observed traffic data,
the model is unique it its field of air freight transport modelling.
The granular demand and supply data used, allowed us to create an
accurate model, while it is still applicable on a global scale.

1.3.2 Industry contribution

The models and results produced by this research are intended to
support market analysis processes of different aviation stakeholders
which deal with problems related to air freight transport. We have
identified several of those stakeholders that may utilize the results of
this research and the way they can benefit from this research.

Airlines

Each airline is very much aware of their operation performance in
terms of the amount of FTKs they fly and the O/D markets they offer
on their flights. However, this is an isolated view because airlines do
not have the insight on how the competition is performing on the
same route. Neither that they have an understanding of how many
tonnes of air traded goods flow on specific routes. This information
could be very helpful when making decisions regarding opening new
routes or even with complete network changes.

Airports

Also airports are dealing with an isolated view on air cargo perfor-
mance. They know to which regions they connect to in terms of airline
services, but lack in having the information about what or how the
competition is doing. An airport is highly interested in being a well
connected node within a network which contains interesting trade
markets in order to increase their performance. To attract new markets
to connect to, it will be very valuable to have insight into trade routes
and competing nodes nearby.

Forwarders

A forwarder, who arranges the shipping from point A to point B,
wants to have the most complete overview of route options to deliver
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the shipment as cheap and fast as possible. Forwarders constantly face
challenges because of a fast rate of change in those options. Mode
choices can change because of competition between rail, ocean and air
transport shipping but also competition between forwarders creates
uncertainty. Unfortunately a global insight in optimal routes to trans-
port goods from one city to the other is not available at the moment.

All of these challenges, which are dealt with on a management
and/or strategic level within the stakeholders company, will be coped
with in the model presented in this research or in future model exten-
sions.

1.4 research structure

Chapter 2 includes the literature study of this research project, focused
on the topic of estimating traffic flows. All relevant foundings from
academic literature provide a solid basis to developed a new air cargo
traffic estimation model.

Chapter 3 presents the framework of the model. First, the require-
ments are stated, then the assumptions of the model are defined
coming from the requirements. Secondly, the building blocks which
form the framework, are explained.

Chapter 4 explains the data and parameters used to run the model.
Also the calibration methodology is described.

Chapter 5 includes a case study where trade is distributed from the
U.S. regions towards Brazil. The purpose of this is to illustrate the
capabilities of the model to reproduce air cargo flows from airport to
airport and yearly airport throughput. On top of that, before applying
the model on a global scale, some validation and verification checks
are performed to ensure the ability and robustness of the model.

Chapter 6 includes the Full World model where trade is distributed
on a global scale. This chapter contributes to literature of global air
freight transport modelling.

Chapter 7 presents the conclusions along with several recommenda-
tions for future improvements of the model.





2
F R E I G H T T R A N S P O RT M O D E L L I N G :
S TAT E - O F - T H E - A RT

This chapter includes the literature study of this research project,
focused on the topic of estimating traffic flows. All relevant foundings
from academic literature provide a solid basis to developed a new air
cargo traffic estimation model.

To get insight into possible techniques which can be used to estimate
flows on a global scale, the main objective of this literature review is to
give an overview of the relevant in different fields of research where
aggregated data is used to estimate its dis-aggregated figures. Firstly
the commonly used four-stage model will be explained with the focus
on traffic assignment in freight transport. Secondly we will focus more
on estimation models which are able to perform on a global scale since
this the aim of our research scope.

2.1 transport modelling

Since 1950 the basic concepts of estimating route and link flows in
transport modelling have found their evolution in research. It has been
widely used in all kind of transportation networks, from urban traffic
to freight distribution networks.

The traffic estimation process to predict route and link flows, tradi-
tionally follows four sequential stages: trip generation, trip distribution,
modal split and traffic assignment. This four-stage model has been rec-
ognized as a standard in transport modelling. Some studies in freight
transport even added a fifth stage just before the assigning the traffic,
to identify and incorporate elements that influence and shape the
route choice (Tavasszy, 2006). The output for each stage in the model
is used as an input for the stage that follows, and the link and route
flows from the last stage are used as feedback for the framework
previous stages (Figure 1).

Within the trip generation stage, the amount of trips between an
origin (trip production) and destination (trip attraction) at each zone
in a network are determined. Next comes the step of trip distribution,
were the generated trips are connected to form an origin-destination
(O/D) matrix to see how the trips are distributed. In the third step, the
demand for each O/D-pair is partitioned into different travel modes.
The traffic assignment is the fourth and last step of the traditional
modelling methodology. Flows from the O/D matrix will be assigned
onto routes and links of the transport network.

7



8 freight transport modelling : state-of-the-art

Trip generation

Trip distribution

Modal split

Trip assignment

Total travel demand

Total O/D matrix

O/D matrix per travel mode

Route & link flows

Figure 1: The traditional four-stage model (Ortuzar and Willumsen, 2011)

In our case we have aggregated data of trade between the true ori-
gin and final destination country, which will serve as an O/D matrix.
Because the available trade figures representing air trade, the modal
split stage is not applicable to our problem.

Therefore, in our search to the traffic flows in the air cargo network,
we will focus in this section on the literature review on the different
solution techniques for traffic assignment in the domain of transport
modelling. This final step to estimate flows within a network is a well
researched part in transport modelling since its output gives the most
detailed and valuable information for strategic and tactical decisions.
The main aim of this chapter is to give an overview of the different
solution techniques which are used in previous research regarding the
traffic assignment problem. Because the available aggregated figures
do not vary in space and time, dynamic assignment techniques will
not be discussed.

2.1.1 Traffic Assignment

As shortly discussed above, the major aim of the traffic assignment
process is to estimate the volume of traffic on the links of the network.
The basic inputs required for assignment are (Patriksson, 1994):

• an O/D matrix expressing estimated demand.

• a network, consisting of nodes, links and routes.

• principles or route selection rules thought to be relevant to the
problem in question.
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The output of the procedure depends on the developed model but
it always includes the following:

• estimation of the link flows.

• performance of the link in terms of costs.

With those output a broad scope of a specific transportation sys-
tem can be evaluated which forms the basis of strategic operational
decisions or assessments in the various characteristics of the network.

2.1.2 History of Traffic Assignment

The fundamentals of traffic assignment evolved shortly after the end of
World War II, when vehicle movements between zones became avail-
able for use in determining traffic loads on proposed new routes. At
that time it was assumed that the flows on the links were independent
of travel time and costs1, which resulted in the allocation of all vehicles
on a origin-destination route, or no vehicles on that origin-destination
pair (Campbell, 1950). This technique is commonly known as shortest
path or All-or-nothing (AoN) assignment.

A few years later it was noticed that the assumption used for the
AoN assignment was very unnatural and it would be more realistic
if the assignment technique would recognize that travel times and
costs will increase with the flows on the links. Wardrop was the first
who implemented the assumption that the travelers are minimizing
their individual travel cost, known as the user equilibrium principle, or
that they would choose their routes to minimize the travel time in the
total transportation system, the so called system optimum. These two
principles are still widely used in academic literature and are know as
the two Wardrop principles (Wardrop, 1952).

In 1956 two important events took place for the advancement in
traffic assignment. Firstly, Beckmann used nonlinear optimization and
showed that the two Wardrop principles corresponds to the solution of
convex nonlinear optimization problems subject to flow conservation
constraints (Beckmann and Winston, 1956). Secondly, Frank and Wolfe
published a paper for the solution of convex, quadratic optmization
problems by using an iterative algorithm (Frank and Wolfe, 1956). It
is still seen as one of the most major improvements on the standard
iterative method and is as of present day serves as a standard code in
transportation planning packages to solve traffic assignment problems.

Now that new traffic assignment techniques included that the link
flows were dependent of time and costs, it was still a simplified model

1 the term ’costs’ is mostly represented in literature by travel distances or fixed travel
times
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because the costs are deterministic, which means that they are fixed.
This limits the user to make cognitive decisions and therefore it can
be assumed that it will always take the best path in a network, which
is not behaviorally sound when more alternatives are possible.This
critic which can be found in literature introduces the motivation for
stochastic models.

In stochastic models, user costs are considered as random variables
which emphasizes the variability in drivers’ perceptions of costs. The
technique developed by Burrell in the sixties has been widely used
for many years (Burrell, 1968). He used an uniform distribution of
costs for each link in the network for a more realistic distribution than
the AoN technique. Also Dial described a method based on a loading
algorithm which splits trips between all possible exit nodes to create
efficient paths (Dial, 1977).

When in a stochastic model the links are restrained in terms of
capacity, the models developed seek an equilibrium condition where
each user chooses the route with the minimum ’perceived’ travel cost.
This is therefore called: Stochastic User Equilibrium and was firstly
introduced by Daganzo (Daganzo and Sheffi, 1977).

From this short description of historic evolvement in traffic assign-
ment, two main factors can be filtered out, namely: the individual
perception of the traveler and the possible congestion effects which can
make some routes less attractive. These two factors define the classes
where the considerable number and variety of traffic assignment mod-
els in present literature are in. The classic assignment techniques can
therefore be classified as given in Table 1.

capacity constraint? deterministic stochastic

No All-or-Nothing Pure stochastic

Dial’s, Burrell’s

Yes Wardrop’s Stochastic

equilibrium user equilibrium

Table 1: Classification of Traffic Assignment techniques (Ortuzar and Willum-
sen, 2011) - adapted

In the following parts of this section we will further discuss the four
big groups presented in the table. Because the literature available on
the traffic assignment in air cargo networks is very limited, this litera-
ture study will broaden its scope by firstly reviewing basic techniques
used in traffic modelling and after that exploring evolvement of those



2.1 transport modelling 11

techniques in freight transport. In the last section of this chapter the
different techniques will be discussed to see if can be of additional
value for our research.

Traffic Assignment in Freight Modelling

In deterministic traffic assignment, it is considered that each user has
the same perception of costs. No randomness is included so that the
route choice decisions are uniquely based on the lowest generalized
costs. These generalized costs can represent a lot of factors, like travel
time, travel distance, fuel costs or congestion. The aim of the traffic
assignment problem is to minimize these costs.

The most simple and basic traffic assignment technique is the ’All-
or-Nothing’ (AoN) assignment, which already was shortly discussed
in the previous section. When the available links in the network are
not restrained by capacity, all users consider the same attributes to
choose their route and also perceive and weight them in the same way,
the AoN technique can assign the network. In this method the trips
from any origin to any destination are loaded onto a single, minimum
cost, link between them as given in the general notation for this type
of traffic assignment shown in formula 1

x(i) = ∑ x(j) (1)

where x is the volume assigned to a link between nodes i and j
when this link represents the route with the minimum costs (e.g. mini-
mum travel time, shortest distance between nodes). The assignment is
complete if the total volume has been assigned to a unique link.

Campbell started with the AoN assigent method and applied it in
an urban transportation study (Campbell, 1950). After that, this tech-
nique is not used very often in freight models. Most of the literature is
focussed on assigment of trucks, or jointly with passenger traffic, since
freight traffic usally is only a small part of total traffic. However, a few
models are worth mentioning regarding the AoN traffic assignment
for freight modelling.

Jourquin used the AoN assignment when introducing a model
for freight moving, loading and unloading, to analyze a multimodal
freight transportation policy in Europe. The proposed optimization
algorithm aimed to minimize the total transportation costs which was
one of the techniques used to develop the NO/DUS software (Jourquin
and Beuthe, 1996).
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More recently, an article is published where the developed model
assigned the intermodal cargo using the AoN technique (Maia and
Couto, 2013). All traffic used the least costly path and using different
transportation modes as a part of a freight traffic assignment model
for multimodal (road and rail) networks.

Also Cascetta (Cascetta and Vitillo, 2013) developed a freight de-
mand model for Europe which uses fixed costs for the road, rail and
sea modes. By using fixed costs for the traffic assignment problem it
implies the all-or-nothing technique.

The shortest route problem is a more advanced version of the AoN
technique and is based on an algorithm developed in operations re-
search. Through a network with fixed travel times (or costs or distance)
on the links, it will find the route with the lowest travel time(Dijkstra,
1959). Southworth showed that this technique can still be used to
generate routes to construct a multimodal network for international
freight (Southworth, 2000). It covered five million origin- to destination
freight shipments reported as part of a 1997 United States commodity
flow survey.

If stochastic effects are ignored and one concentrates on capacity
restraint to assign trips on a network, other methods will apply. As
described before, models which take into account capacity restraint
(or congestion) recognize that travel times and costs will increase with
the flows on the links. Models in this category try to reach a point of
equilibrium when no user is able to reduce their transport costs by
choosing a different route. This was firstly outlined by Wardrop’s first
principle (Wardrop, 1952):

Under congested conditions drivers will choose routes until no one
can reduce their costs by switching to another path

This is also known as the user equilibrium (UE). The general notation
for the UE traffic assignment can be given as shown in formula 2

Minimize Z = ∑
a

∫ x

0
ta(xa)dx, (2)

subject to ∑
k

f rs
k =qrs , ∀ r, s

xa =∑
r

∑
s

∑
k

δrs
a,k f rs

k , ∀ a

f rs
k ≥ 0 , ∀ k, r, s

xa ≥ 0 , a ε A
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where k is the path, xa equilibrium flows in link a, ta travel time on
link a, f sk

r the flow on path k connecting O-D pair r− s, qrs the trip
rate between r and s and δrs

a,k is a definitional constraint and is given
by:

δrs
a,k =

 1 if a link a belongs to path k,

0 otherwise

Wardrop also proposed an alternative way which is usually referred
to as Wardrop’s second principle:

Drivers will choose routes in such a way that the total (average)
costs are minimized

This is also known as the system optimum (SO).The general notation
for the SO traffic assignment can be given as shown in formula 3

Minimize Z = ∑
a

ta(xa)dx, (3)

subject to ∑
k

f rs
k =qrs , ∀ r, s

xa =∑
r

∑
s

∑
k

δrs
a,k f rs

k , ∀ a

f rs
k ≥ 0 , ∀ k, r, s

xa ≥ 0 , a ε A

Most of the traffic assignment techniques in this category are evolved
from those equilibrium principles. Beckmann demonstrated that the
UE can be formulated mathematically as a convex-optimization prob-
lem subjected to flow conservation constraints (Beckmann and Win-
ston, 1956). Continuing in the research to optimization programming
techniques, in the same year the most common algorithm for Traffic
Assignment problems was developed, namely: the Frank and Wolf
(FW) algorithm (Frank and Wolfe, 1956). This technique is based on
nonlinear optimization and in each iteration of the algorithm, the lin-
earized objective function is solved by assigning all traffic to minimum
cost routes. The main advantage of the FW algorithm is the relatively
small memory requirement because only total link flows need to be
stored to evaluate the objective function. The disadvantage is the slow
convergence rate when the optimal solution is approached. Therefore
the papers of LeBlanc et al. became very popular because first he
used the FW algorithm to solve a large scale network equilibrium
assignment and in addition he significantly improved the convergence
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rate (LeBlanc and Pierskalla, 1975)(LeBlanc et al., 1985).

At the end of the nineties, there also came some first development in
the deterministic, congested freight traffic assignment models. STAN,
an network assignment method for the strategic analysis and planning
of national rail freight transport systems, was developed in Canada
(Crainic and Leal, 1990)(Guelat and Crainic, 1990), making use of
an equilibrium assignment technique. This research, based on the
Wardrop equilibrium, proofed that the technique is suited for net-
works with capacity limits. Cost penalties were given when traffic was
close to the capacity.

In stochastic traffic assignment, it is considered that each user has
perception of costs and they try to minimize a certain composite
measure (distance, time, costs). To better simulate the behavior of an
user, stochastic models introduce a certain randomness in the route
choice to highlight the fact that drivers normally do not have the
perfect information about network conditions.

As discussed in previous section, in a deterministic case without
congestion the traffic assignment uses the all-or-nothing or shortest path
technique. In stochastic models the routes will be distributed accord-
ing to probability calculations to determine which route is chosen. In
this way, contrarily to the all-or-nothing assignment, it ensures that not
all the traffic will be allocated to the route with the least generalized
costs. In literature this field of traffic assignment research is known
as the stochastic network loading problem. In general, two methods can
be distinguished in this field, namely: simulation-based methods and
proportion-based methods (Ortuzar and Willumsen, 2011).

Burell used a Monte Carlo simulation to introduce variability in
perceived costs and to create a distribution model(Burrell, 1968). The
advantage of this simulation approach is that is reduces the number
of second-best routes to be considered, which is one of the main prob-
lems compared to the deterministic case. For the proportion-based
methods, the algorithm of Dial (Dial, 1977) has been seen as the basic
approach. His algorithm is based on a multinomial logistic curve and
calculates the percentage of trips realized from an origin to a destina-
tion through a specific route.

Both basic approaches were evaluated by Daganzo, which concluded
that Dial’s algorithm assigns too much traffic to sets of routes which
overlap heavily and is therefore not adequate to use(Daganzo and
Sheffi, 1977). The shortcoming of Burrell’s method is that it samples
link travel times only once for each origin which results in varying
results from execution to execution. Despite the serious deficiencies
associated to those models, there are still a few papers in literature
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who use the proposed basics to model freight transport (Jourquin,
2005) (Tsamboulas, 2007).

From the table presented earlier in this section we have now dis-
cussed three of the four classification groups. In the pure stochastic
assignment technique routes were spread between origin and des-
tination because of perceived routes costs. In the deterministic UE
technique an equilibrium was reached because of capacity constraints.
In realistic networks it is expected that a combination of both tech-
niques will take place.

Where Daganzo critically evaluated the traffic assignment tech-
niques when there is no (or light) congestion, he also introduces the
Stochastic User Equilibrium (SUE)(Daganzo and Sheffi, 1977). It is de-
fined as the state in which no user can improve his/her perceived
travel time by unilaterally changing routes. With this approach the
model assumes that drivers perception of costs on any given route are
not identical and that trips between each O/D pair are divided among
the routes with the most cheapest route attracting most trips.

The SUE problem is well covered in literature when applying on
urban networks (Sheffi, 1985)(Thomas, 1991)(Patriksson, 1994)(Bell,
1995). However, SUE used in freight traffic assignment problems is,
according to our best knowledge, very limited. (Maia and Couto, 2013)
is the only one who describes a freight traffic assignment model which
includes both stochasticity and capacity constraints. A stochastic multi-
flow technique is combined with the AoN assignment to distribute
general and intermodal cargo into the network. The capacity con-
straints are implemented in the model by gradually introduce traffic
in the network. The mix of techniques applied in this study resulted
in a SUE model which is simple an fast to run as well as it produced
satisfactory results when used on a fictitious network.

2.2 global freight modelling

In the research scope in the previous chapter we stated that we want to
create a model which considers international air freight transport on
the global level. Therefore, in this section of the literature review, we
focus on freight models which are able to estimate flows on a global
scale.

Worldnet is one of the few models in literature which tried to map
air cargo flows on a global scale, with its research within the sixth
framework programme called Worldwide Cargo Flows (Newton, 2009).
Worldnet employs a top down approach and uses multimodal assign-
ment and uses Eurostat COMEXT trade data, UN COMTRADE trade
data and Eurostat transport data as main inputs. The main outputs
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are an extended freight origin-destination database for the year 2005,
extended road and rail networks, and new maritime and air-cargo
networks. Despite the effort of the Worldnet modellers, there is a clear
lack of data both on the demand as on the supply side, which the
authors also highlight themselves.

Heinitz and Meincke, 2013 uses a multi step, twofold capacity-
restrained itinerary-based demand assignment algorithm to predict
global airfreight flows. Main inputs for this model are period timeta-
bles on a sample week basis, including all scheduled air cargo services
on the supply side and on the demand side it used an estimated
weekly demand figure based on IATA quantity structures and pub-
lished airport and airline statistics. This model is not useful to apply
on a yearly level because it tries to bridge the gap between a macroe-
conomic approach to predictions of cargo volumes on the one hand
and network-oriented analyses on the other.

Another model which is able to perform on a global scale is the
ITF international freight model, which projects international freight
transport activity and related CO2 emissions on alternative world sce-
narios (ITF, 2015). It uses a shortest path algorithm to estimate trade
tonne-km between each production/consumption centroid for each
transport mode. With underlying trade projection which includes a
regional aggregation of 26 zones the input data is not very granular.
A trade value mode share model is used to split the O/D trade into
different transport modes and a weight model converts the value of
the traded goods into weight.

The final freight model which is able to perform flow estimations
on a global scale is the World Container Model (Tavasszy et al., 2011).
The model considers more than 400 major ports, 237 countries, and
more than 800 shipping lines. It is built on multinomial logit theory for
explaining the mode and route choice behaviour of the shippers across
alternative routes for each origin and destination. As the Worldnet
model, the origin and destination demand matrix data is obtained
based on international trade statistics (COMTRADE) and two Euro-
pean statistics database (EUROSTAT). The model includes import,
export and transshipment flows of containers at ports, as well as
hinterland flows and is able to reproduce maritime flows rather ac-
curately. The methodology and features included in this model seem
very promising to serve as fundamental building blocks for the current
research into the estimation of air cargo flows from O/D trade data.
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M O D E L F R A M E W O R K

This chapter explains the fundamental aspects of building the model.
First, the requirements of the model are stated, then assumptions are
defined coming from those. Lastly the model blocks which form the
structure are presented.

3.1 requirements

Before creating a structure of model, it is important to firstly define the
model requirements. We stated the following five model requirements:

• Global - The air trade market is in such a way interconnected
that if this problem can be approached from a global level it will
be of the most value. Therefore the model should in the end be
able to estimate worldwide flows where it captures close to 100%
of the air trade market.

• Feasibility - In order to make the model practical and usable for
(future) market analysis purposes, computational feasibility is
one of the model requirements. There model should be easy to
run within a few minutes.

• Data input - The data input, needed to run the model and to
produce results, should be available on a global level.

• Calibration - Calibration of the model should be possible by
using observed data which is reported on a global scale and is
related to the air transport network and the trade which flows
through that.

• Output - The model should estimate air cargo flows from airport
to airport which will be the main output.

All five requirements will be taken into consideration when the
model is specified and developed in the next phases of this research.

3.2 assumptions

In order to cope with the requirements stated in the previous section,
the complexity of modelling air cargo is narrowed down by some
assumptions. The following main assumptions are used in our model:

• The Value of Time (VOT) is the same for all traded goods and is
an average monetary value (USD/ton/day).

17
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• The model will not take cargo capacity into consideration. Links
and nodes are assumed to have unlimited capacity.

• Air Trade is transported with Wide Body (WB) freight, passenger,
and Narrow Body (NB) aircraft

• International Freight Handled reported by airports includes
the airport throughput which accounts for the air trade flowed
through the airport.

The context around those assumptions will become more clear along
the report.

3.3 model structure

The presented model is an air freight traffic assignment model, made
for the estimation of air cargo flows on a yearly basis. The framework
of the model is based on the World Container Model (WCM), which is
an existing strategic network choice model for global container flows
(Tavasszy et al., 2011). The model considers more than 400 major ports,
237 countries, and more than 800 shipping lines.

Figure 2 presents the general framework of the Air Cargo Flow
Model. The blue highlighted trapezium shaped blocks represent the
two main inputs of the model, namely demand and supply. On the
demand side O/D Air Trade Data is used, which means that input
demand data only refers to air transport demand. A mode split is
therefore not needed in this model. On the supply side, the input
consists of a physical network and a service network which together
form the Transport Network of the model. The service network includes
scheduled flight routes reported by airlines. Apart from this, the model
also includes the possibility to use Road Feeder Services which makes
it multimodal. These main data inputs are described in more detail in
Chapter 4.

For each of the O/D country pairs from the Air Trade Data a choice
set is created with possible routes. After this a route choice model deter-
mines the trade share of each route. In the end, flow assignment assures
that air cargo flows are assigned between the airports and aggregated
on airport level. Calibration of the model will be based on the total
absolute difference between observed and estimated throughput on an
airport level. After this, the choice set can be recreated for each O/D
pair. When the model is clearly converging, the model is calibrated
and ready to be used.
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O/D Air Trade Data

Transport Network
− Physical Network
− Service Network

Choice set
generation

Route choice model Calibration

Flow assignment

Converged?

Model calibrated (Ready to be used)

no

yes

Air Cargo Flow Model (ACFM)

Figure 2: General framework of the model

3.4 model blocks

In this section, the building blocks which form the model framework
are explained in more detail. These components of the framework are
using the data inputs which will be explained in the next chapter.

3.4.1 Multimodal

In order to combine the physical network, including air transport and
RFS, with the service network, a super network approach is used to
allow a simultaneous choice of mode of transport and route, including
transshipment points (Sheffi, 1985). The transshipment links represent
the possibility of modal change between the different modes and
contain the informations regarding the costs and times required. The
multimodal super network is illustrated in Figure 3.
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Figure 3: Sketch of the combined air transport and RFS network

3.4.2 Choice set generation

The choice set of the routes are generated by using a shortest path
algorithm based on generalized costs for each available origin airport
towards each available destination airport within an O/D country pair.
This means that the choice set of each O/D pair is equal to the number
of available airports at origin country multiplied by the number of
available airports at destination country.

A small example of a choice set generation is illustrated in Figure
4, where the O/D country pair is origin country O and destination
country D. The available airports of country O are airport A, but also
airport B in neighbouring Country X may be used and can be reached
with trucking possibilities. From, in this specific case, 2 airports the
model creates a route towards the 2 available destination airports in
country D, airport E and F. A route consists of a sequence of different
air transport service-links with the possibility to transship or transfer
at an airport. For each airport pair only the route which is known as
the shortest path in terms of generalized costs, is added to the choice
set. The total choice set of routes possible to use for the trade between
Country O and Country D is presented in Table 2. In this example
it is assumed that the direct flight option is the cheapest in terms of
generalized costs, and therefore chosen as the shortest path.

3.4.3 Route choice model

To determine the routes taken by traded goods between two coun-
tries, we assume that route choices are made by profit maximizing
forwarders who have knowledge of the main routing alternatives over
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Figure 4: Example of routes between an O/D country pair

o/d pair

available airports

service link

trade import

shortest path

A - E A - E X

A - B - E

A - F A - F X

A - B - F

B - E B - E X

B - A - E

B - F B - E X

B - A - F

Table 2: Total choice set of O/D country pair

air. The basis for the route choice model is a logit route choice model
where the probabilities depend on route specific generalized costs
(Ben-Akiva and Bierlaire, 1999). The logit model does not take into
account the path overlap between alternative routes. An overlapping
service link makes it less attractive and therefore it should be taken
into account while choosing the best route. This is done by adding
the path size overlap variable (Hoogendoorn-Lanser et al., 2005). The
route probability is given by:

Pr =
e−µ(Cr+lnSr)

∑hεCS e−µ(Ch+lnSr)
(4)

where Pr, the choice probability of route r; Ch, generalized costs of
route N; CS, the choice set; µ, logit scale parameter. This last parameter
will be used for calibration, which will be discussed in Chapter 4. The
path size overlap variable is defined as:

Sr = ∑
aεΓ

(za)

(zr)

1
Nah

(5)
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where Sr, degree of path overlap; a, link in route r; Γr, set of links in
route r; za, length of link a; zr length of route r, Nah, number of times
link a is found in alternative routes generated within the choice set.
The generalized cost function per route r is given by the following
equation:

Cr = ∑
pεr

Ap + ∑
lεr

cl + α · (∑
pεr

Tp + ∑
lεr

tl) (6)

where Cr, costs of route r; p, airports used by the route; l, links
used by the route, Ap, airport impedance parameter for airport p;
cl , total cost of transportation over link l; α, value of transport time
(USD/day/ton); Tp, time spent during transshipment at airport p; tl ,
time spent during transportation over link l.

Two values are unknowns and need to be estimated, namely, the
airport impedance parameter Ap and the scaling parameter µ. The
scaling parameter µ determines the impact that the cost differentials
have on the percentage of trade assigned to each alternative. The
parameter Ap includes all relevant, measurable and hidden service
characteristics of airports, such as fuel costs, airport charges, handling
costs, congestion costs, etc. As part of the route costs it is stated in
USD/ton. The value of time (α) denotes the average preference for the
shippers for either a faster (and thus more expensive) or a slower (and
thus cheaper) transport option. The α for freight was inferred from an
earlier study on value of freight (Jong et al., 2014), which is equal to
4, 075 USD/ton/day.

3.4.4 Flow Assignment

After the different possible routes are generated, the logit route choice
probabilities are calculated for the alternatives within the choice set.
To distribute the flows over the links in the network, the probabilities
are multiplied with the O/D trade reported. Flows will be aggregated
on an airport level, which determines the calculated throughput for
the airports in the model.

3.5 summary

This chapter has described the requirements of the model and the
assumptions which are made. It also presented the model framework
including several model blocks which together are responsible for
producing an estimated value of air cargo flows. Each step is described
with the support of examples, figures and formulas. In the next chapter
the input data of the model is described which feed the model blocks.
Also the data and method to calibrate the model is discussed.
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M O D E L D ATA & C A L I B R AT I O N

This chapter describes all the data which is used as input for the model
and/or for supporting analysis. It also contains the explanation of the
calibration methodology and the data used for that.

4.1 air trade data

The main input data for the model on the demand side were ob-
tained from one main source, namely the Seabury Global Trade Database
(Seabury Consulting, 2014b). The trade database captures historical
global air trade between more than 200 countries. The primary data
sources for the global trade database are custom offices. Each month,
raw data is directly sourced from 45 individual countries’ customs/s-
tatistics offices representing around 97% of worldwide international
trade by weight. The remaining data is sourced indirectly by UN
Comtrade data (22 countries) which is available on a yearly basis and
enables to include the coverage of countries which are not directly
reporting (see Appendix A). Hereby the U.S. and China are reporting
their trade on a more granular level so they are further split up into
different regions, 6 and 4 respectively (Figure 5).

For each trade lane, which is between true origin and destination
country, data is available for 2,000 commodities such as laptops, cell
phones or footwear. Apart from historical analysis, a five year fore-
casting module enables to forecast air trade per trade land for 70 key
industries. The true origin and destination country together form an
O/D pair which will be used in the model. Data is reported both in
Air Value (in USD) and in Air Weight (in metric tonnes) on a monthly
basis from 2006 onwards. Yearly air weight from the year 2014 was
used as an input for this model. The year of 2014 is chosen because
this is the latest year internal Seabury data and external data could be
combined to be able to create a model which could be created on a
global scale. As stated in the scope, within current research we do not
consider commodities but take air trade as a whole.

4.2 network data

On the supply side of the model an transport network is generated.
This network is the combination of input data about country nodes,
airports, the air transport network and the trucking network.
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Figure 5: U.S. and China split up into regions from reporting trade data

4.2.1 Country nodes

In order to connect the O/D Air Trade Data from country to country
with the Transport Network, country data has to be loaded into the
model. Hereby a number of simplifications has been applied. First, the
multimodal super network is connected to every country of origin or
destination by a single centroid. Hereby we assume that this location
captures the weighted average location of all air freight moving to, or
from the country, the so called cargo center of gravity (CG). In most
cases this centroid is the capital city of the respective country. This as-
sumption is true in most cases with some exceptions. Within Germany,
for example, the biggest cargo airports in terms of throughput are
Frankfurt (FRA), Leipzig (LEJ) and Cologne (CGN). From this one can
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be assumed that the CG would be near FRA instead near the capital of
Berlin (Figure 6). A total overview of the exception cases are presented
in Table 3.

For the regions of the U.S. and China, the location of the centroid is
based on the same assumption as used for the countries. This resulted
that those U.S. and China region centroids laying at the largest airport
of each region in terms of yearly airport throughput. Only for US
North West, Seattle (SEA) is chosen instead of the larger airport of
Anchorage (ANC), which is mainly used for transpacific stop-overs
(Figure 7).

Figure 6: Main cargo airports of Germany

4.2.2 Airports and Air Transport Network

The supply side of the model consists of the transport network. This
includes the physical network and the network of air transport and
trucking possibilities. The airports incorporated into the model are
based on airports associated with Seabury airport data. For the air
transport network, the model is using scheduled flight services pro-
vided by Innovata (Innovata). An extract sample is presented in Table
4. The data includes full route codes with multiple stops, performed
by a certain carrier, flown by a specific body type (NB = Narrow Body,
WB = Wide Body) and configuration (Pax = passenger, Frt = freighter).

For the model, WB passenger and freighter services, and NB freighter
services are used, because we can assume that those aircraft are the
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country

capital

city

airports which have

biggest influence on cg

cg

Germany Berlin FRA, LEJ, CGN ±20km North of
Frankfurt

Italy Rome MXP, FCO, BGY ±70km South-East of
Milaan

Turkey Ankara IST Istanbul

Brazil Brasilia GRU, VCP São Paolo

Canada Ottawa YYZ horizontal center of
Canada

Vietnam Hanoi HAN, SGN vertical center of
Vietnam

Kazakhstan Astana ALA Almaty

Iraq Bagdad EBL Erbil

Morocco Rabat CMN Cassablanca

Tanzania Dodoma DAR Dar es Salaam

Table 3: Overview of the exception cases where the country capital is not the
cargo CG

main providers of transporting international trade worldwide. Inte-
grator and charter services are not included in this scheduled flight
service dataset.

year carrier flightno. full route code body type config

2014 KL 701 AMS - EZE - SCL WB Pax

2014 DL 281 ATL - SEA - HKG WB Pax

2014 EK 4993 DXB - FRA - ATL WB Frt

... ... ... ... ... ...

Table 4: Extract sample of flight route data (Innovata, 2014)

4.2.3 Road Feeder Services

As an addition to the transport network, also continental transport in
the form of Road Feeder Services (RFS) is considered in the model.
Because there can be assumed that the trade of goods will not only
use the airports within the origin and destination country, alternative
route options will be captured by adding the possibility of using
airports of neighbouring countries. Those airports can be used with
the creation of a simplified continental trucking network of links was
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Figure 7: Centroids of the U.S. and China regions

created. Airports are included if they are within a radius of 1,000 km
from one of the airports from the origin or destination country (and
within the airport set of the model) of the specific O/D pair for which
the choice set is generated. An example can be seen in Figure 8, were
the available airports are presented for Germany. This means that the
choice set of routes will be expanded with the shortest path from these
available airports towards the available airports for the destination
country.

4.3 model parameters

The main network attributes are times and costs for transhipment
and transportation. Over the whole network average level of trans-
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Figure 8: Available airports for Germany which can be reached with trucking

portation costs and speeds are used. The speeds and tariffs used in
the model are presented in Table 5. As discussed in Chapter 3, the
multimodal transport network only considers air transport and truck-
ing. Rail transportation is left out of the scope of this model. The
Air Transport speed is an average obtained from the individual flight
duration’s reported by Innovata for the scheduled flight services. The
Air Transport Cost is a computed average from published IATA Air
Freight Yield figures (IATA, 2014). Both the trucking speed and costs
are taken from an earlier study on the movement of containers, which
besides a maritime network also included trucking options (Tavasszy
et al., 2011). Because trucking facilities and quality of the network can
be different per continent, trucking costs in Oceania, Asia and Africa
are multiplied by 2, 3 and 4, respectively. Costs in Europe and America
will not be multiplied. Furthermore, transshipment time of 18 hours
is used in the model. This includes the loading and unloading time of
the cargo, the customs clearance and warehousing (Ohasi, 2005).

air

transport

road transport/

trucking

Speed (km/hr) 750 42

Tariff (USD/km/tonnes) 0.175 0.057

Table 5: Description of the characteristics for the services used.
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4.4 calibration

To increase the fitting of the model, the model will be calibrated
against observed airport throughput data. The main objective of this
exercise is to minimize the absolute difference between the modeled
airport throughput and the observed, or reported, airport throughput.

4.4.1 Calibration data

Airports Council International (ACI) is the global trade representative
of the world’s airport authorities and yearly reports airport traffic
statistics in the ACI World Airport Traffic Reports (ACI, 2014). Amongst
other data, this reports include the amount of international handled
freight per airport. Here we assume that when trade is transported
via air and therefore taking off and landing at airports are included in
this number. This international handled freight, or observed airport
throughput, is used for the calibration of the model. Unfortunately,
the amount of transshipped freight is not available in the ACI reports.
Therefore transshipment data is taken from public data sources.

4.4.2 Model fitting

As described in Chapter 3, two values are introduced for model fit-
ting purposes, namely (1) the scale parameter µ and (2) the airport
impedance parameter Ap. The main objective of this calibration is to
minimize the absolute difference between the observed throughput
reported by ACI and the modeled throughput estimated by the model.

µ calibration

First, the scale parameter µ is adapted and the absolute throughput
difference is calculated by running the model. In this stage, the Ap-
value of all airports is equal to zero. The µ value where the difference
is the lowest, gives an indication of the range were the model fitting
will be the most promising.

Ap calibration

Secondly, the airport impedance parameter Ap is modified for each
individual airport. To minimize both the difference in throughput
as in transshipment, a multi-objective optimization method NSGA-
II is used, which is a state of the art algorithm for solving multi-
objective optimization problems and is rooted in evolutionary theory
(Reed et al., 2007). Multiple solution points are used to explore the
solution space and find the best solutions for the two objectives. NSGA-
II uses crossover and mutation operators that mimic evolutionary
processes when searching the solution space. Together with a solution
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selection routine, the algorithm explores and exploits the solution
space efficiently (Crepinsek et al., 2013). The computation process is
carried out using a simulation-based optimization framework called
SIMEON (Halim and Seck, 2011).

To reduce the search space, boundaries will be set for the to be
assigned Ap-values. After the values are assigned to the airports and
the model is generating the choice set, calculates the route probability
and assigns the flows. Because the routes are generated with a shortest
path algorithm based on generalized costs, the route choice sets needed
to be created at each iteration step in the calibration process. After a
certain amount of evaluations the search procedure is stopped and
gives a set of non-dominated solutions. The solution which results in
the lowest absolute throughput difference is again used as input for a
new run of evaluations.

4.5 validation

In order to check if the model produces reasonable results in terms of
air cargo flows, the model is validated upon reported air traffic data
and air cargo capacity data.

4.5.1 Validation data

BTS data

The Bureau of Transportation Statistics (BTS) is part of the United
States Department of Transportation and reports transportation data,
which also includes air traffic related data. From this source we can
therefore gather domestic and international market data reported by
U.S. and foreign air carriers which contains reported carrier, origin
and destination and freight per flight (Transportation Statistics, 2014).

Capacity data

Besides the Trade Database, Seabury also offers other database prod-
ucts to its customers. The Capacity Database includes scheduled airport
to airport air cargo capacity data per airline, on top of the existing
Innovata schedules. This capacity data is available in tonnes, ATKs
(Available Ton Kilometers) and number of flights per week per route
(Seabury Consulting, 2014a). A sample extract of this capacity data is
given in Table 6.

4.5.2 Model quality

The process of validation to confirm that the model is capable of
reproducing the airport throughput and air cargo flows is performed
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carrier

aircraft

type

origin

airport

destination

airport

capacity

(tonnes)

CX Boeing B747-8F ANC HKG 13,121

SQ Boeing B747-400F SIN HKG 5,481

CK Boeing B777-200LRF LAX PVG 2,913

QR Boeing B777-300ER DOH BKK 2,306

EY Boeing B777-200LRF AUH PVG 1,964

CX Airbus A330-300 HKG TPE 1,295

AA Boeing B777-200ER MIA EZE 1,283

JL Boeing B767-300ER HND KMQ 1,216

AF Boeing B747-400F CDG MEX 2,043

DL Airbus A330-300 SEA NRT 427

JL Boeing B787-8 NRT BKK 1,126

... ... ... ... ...

Table 6: Extract sample of capacity data (January 2014)

with the data explained above. In order to proof that the model is
capable to capture reality a smaller case study is created. After we
can confirm that the output of the model correlates with the observed
validation data, we proceed by applying it on a global scale.

4.6 summary

This chapter has described all the data used for model. The O/D air
trade data is presented for the demand side and the network data is
presented for the supply side. The parameters which mainly attribute
to the time and cost calculation in the model are given. Furthermore,
the calibration methodology is described in detail with the supporting
data. Lastly, the validation of the model is shortly discussed.
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U S - B R A Z I L

Before applying the model on a global scale, we want to perform
some validation and verification checks to ensure the ability and
robustness of the model. Therefore, first a case study is set-up where
trade is distributed from the U.S. regions (US) towards Brazil (BR).
The purpose of this is to illustrate the capabilities of the model to
reproduce two specific outputs, namely (1) air cargo flows from airport
to airport and (2) yearly airport throughput.

5.1 set-up

In order to perform validation and verification checks on the model
the US-BR analyse needs a set-up. Hereby we have to make some
assumptions. In this US-BR case we assume that:

1. The majority of O/D trade between US regions and Brazil is
transported via direct flights

2. The interference of O/D trade trade towards Brazil from other
countries than the US on the US-BR trade lanes, is very low.
Interference is defined as the possibility that the routing of air
trade imports towards Brazil from other countries will flow via
the US.

The combination of those two assumptions would mean that air
cargo flows from US airports towards BR airports only consists of
trade between the US regions and Brazil. In that case, the US-BR
could be seen as an isolated trade market which is suitable for further
analysis and to prove the capabilities of the model before going global.
To support the assumptions, a detour analysis and a capacity share
analysis is done.

5.1.1 Detour analysis

The stated assumptions are firstly supported by a data analysis whereby
the detour factor is calculated between the main trade regions of Brazil
and Brazil. The detour factor of a route is equal to the indirect great
circle distance divided by the direct great circle distance between two
airports. The use of detour factors for analyzing airline networks in
terms of connectivity or for network design problems has been done
before (Boonekamp and Burghouwt, 2016; Kuby and Gray, 1993). Re-
sults from the detour analysis is presented in Table 7. In this table the
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origin regions of the Brazilian trade import are shown including the
percentage of total Brazilian imports which they are accountable for.
Detour factors are computed from the main airport of the countries
within the regions, with a stopover at an US airport. Guarulhos Inter-
national Airport, the main airport of Brazil located at São Paolo, is
used as destination airport. The detour factor range is presented in
the last column. For example, the direct route from Amsterdam (AMS)
to São Paolo has a distance of 9,752 km. The indirect option via the US
is the most optimum via New York (JFK) which has a flight distance
of 13,500 km. This together results in a detour factor of 1.38.

From the table one can notice that the majority of Brazilian air trade
import from European countries, which account for 33% of Brazil total
imports, can be assumed to be flown directly. Detour factors for flights
between Europe and Brazil with a stop in the US are around 1.50.
This means that flight related costs, which is included in the model
in terms of flight distance, will be multiplied 1.50 times, which will
decrease the attractiveness of these options. When a maximum direct
flight distance for a commercial flight of 14,500 km is applied, the
Europe region is well within this range (Calder, 2017). On top of that,
research shows that forwarders prefer direct routings over indirect
routings (Chu, 2014). So it is highly unlikely that there is interference
with the O/D air trade between US and Brazil coming from Europe.
The same holds for trade from Middle East & South Asia (MESA)
region with detour factors between 1.40 and 1.60.

Possible interference comes particularly from Asia Pacific (APAC)
countries like South Korea, Japan and China, which account for 31.5%
of Brazil total imports. Because of the flight distance, trade from those
countries towards Brazil are forced to have a 1-stop flight. A stop at
US grounds ranges between detour factors of 1.00 (NRT - JFK - GRU)
and 1.44 (SIN - JFK - GRU).

This detour analysis strengthen the previously stated assumption
to some extend, but did not ruled out completely the interference on
US-BR trade lanes. Especially the APAC region has to be investigated
in more detail.

5.1.2 Inbound capacity analysis

A second part of the analysis to support the two assumptions is based
on the inbound cargo capacity share towards Brazil. For this, the
Seabury Cargo Capacity Database is used (see Section 4.5.1). Results
from this analysis are presented in Table 8, where again the origin
regions for the trade towards Brazil are shown in the first column.
North America accounts for 38% of all WB passenger and freighter,
and NB freighter capacity directly towards Brazil. This high figure
strengthens the first assumption where was stated that the majority of
O/D trade between US and BR is transported via direct flights. Also
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origin

region

% of br

trade import

detour factor

range (via us)

Europe 32.9% 1.38 - 1.55

Asia Pacific 31.5% 1.00 - 1.44

North America 27.0% N/A

Latin America 5.8% N/A

MESA 2.5% 1.40 - 1.60

Africa 0.3% N/A

Table 7: Detour factor ranges for O/D trade market towards Brazil

the fact that the direct capacity share from European countries is high,
confirms the high detour factors from previous section.

In order to strengthen the second assumption about the low inter-
ference of O/D trade trade towards Brazil from other countries than
the US, we shift our focus towards the indirect capacity share towards
Brazil, which is presented in the third column. Europe and Asia Pacific
account for 9% and 3% of total inbound cargo capacity of Brazil. And
because only 1.2% and 2% of this is from scheduled airline services
which is routed via the US, there can be concluded that the capacity to-
wards Brazil from Asia Pacific countries with a stop in the US is minor.

From both data analysis, we can conclude that potential interference
of O/D trade is does exists but is minimized within the trade market
between the US regions and Brazil and therefore can be used as a
proper case study to check if the model is able to reproduce yearly
airport throughput and air cargo flows in an accurate way.

5.1.3 US-BR Case study

The set-up of this case study includes six airports in the US, six airports
in Brazil and more than 2,000 scheduled flight services. Domestic
routes within the US and Brazil and international flights departing
in the US and arriving in Brazil are included. For each US region
the largest airport in terms of airport throughput has been chosen.
Only for US North West SEA airport is chosen instead of the larger
ANC airport, because ANC airport is mainly used for transpacific
stop-overs. For Brazil the six biggest airports in terms of international
Wide Body capacity is chosen. The centroid for Brazil is relocated
from the capital city Brasilia to the city of São Paolo, because this
location captures more the cargo CG of Brazil (see subsection 4.2.1)
Trucking between the US regions and within Brazil is allowed, as well
as transshipments at the available airports in the set. A geographical
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origin Capacity share via us

region direct indirect (carrier)

Europe 33% 9% 1.2% via MIA
(Centurion)

Asia Pacific 0% 3% 2% via ANC,
LAX or MIA

(Korean)

North America 38% 0% -

Latin America 9% 0% -

MESA 4% 1% 0%

Africa 2% 0% -

Table 8: Direct and indirect capacity share for O/D trade market towards
Brazil

map of this case study is presented in Figure 9. The trade data between
the US regions and Brazil is presented in Table 9.

origin

country

destination

country

trade

(tonnes)

US South East Brazil 87,489

US North East Brazil 12,481

US South Central Brazil 8,734

US South West Brazil 6,021

US North Central Brazil 3,825

US North West Brazil 1,161

Table 9: Trade data from US regions towards Brazil

5.2 calibration

For model fitting purposes, the scale parameter µ and the airport
impedance parameter Ap are adapted. In order to calibrate the model,
observed throughput is needed for the 12 airports. But as mentioned
before, ACI only reports observed airport throughput as yearly totals
without a split from which region the throughput is coming from. This
data does not hold for this case study where we only consider trade
leaving the six US airports and arriving at the six Brazilian airports.
Therefore we have to determine the observed airport throughput in
another way.
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Figure 9: Geographical map of the US-BR case study including 12 airports

5.2.1 Airport throughput

For the US airports we use the reported trade from the US region
where the airport is the centroid of, as throughput figure. For example,
JFK airport is the centroid of US North East, so US North East - Brazil
trade will be used as throughput for this particular airport. To support
this assumption all flights from the US region are allocated to the
main airport. This means that a BOS - GRU flight will be changed to a
JFK - GRU flight.

For the Brazilian airports we again use capacity data from the
Seabury Air Cargo Capacity Database. To determine the observed
throughput of the Brazilian airport in this case study we apply a fair
share calculation. This means that the inbound WB capacity share is
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used to calculate the share the Brazilian airports will have in terms of
throughput. The formula is stated as follows:

CapUS−BRi

CapBRtotal
=

TPUS−BRi

TPBRtotal
(7)

where CapUS−BRi , inbound WB capacity from the US to Brazilian
airport i; CapBRtotal , total inbound WB capacity Brazilian airports;
TPUS−BRi , Brazilian airport i throughput from US; TPBRtotal , total
throughput Brazilian airports. The only unknown in this formula
is the throughput of the Brazilian airports when only considering
US as an export country. Because observed throughput includes both
import as export data, the percentage of US-BR import is applied as a
last step. the The result of this calculation is presented in Figure 10.

Figure 10: Fair share calculation applied on Brazilian airports

Table 10 presents an overview of the twelve airports and the esti-
mated throughput. We can see that the totals are almost equal and
therefore we can conclude that seems like a fair estimation for this
case study. This because in such an isolated set-up, the US exports
should be rather equal to the BR imports.

5.2.2 µ calibration

After determining the ’observed’ airport throughput, the calibration
of the model can start. As described in subsection 4.4, the purpose
of the calibration is to minimize the difference between the observed
and calculated flows on an airport level. Firstly, the scale parameter µ

being adapted and the model performs the steps from the framework.
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airport throughput airport throughput

MIA 87,489 GRU 48,989

JFK 12,481 VCP 30,729

DFW 8,734 MAO 18,755

LAX 6,021 GIG 15,548

ORD 3,825 CWB 7,476

SEA 1,161 POA 3,419

Total 119,711 Total 124,915

Table 10: ’Observed’ airport throughput for the US-BR case study

After the flows are assigned the absolute throughput difference is
calculated. The result is presented in Figure 11. We have found an
optimal value of 0.0006.

The World Container Model found an optimal value of 0.0045 which
is 7.5 times higher. The reason for this is because the cost of the routes
in the choice set of our case study does vary to a higher extend than
in the maritime case. The direct flight routes towards GRU and VCP
are very attractive in terms of generalized costs compared to the other
options. To assure that there is some variance in the assignment of the
flows, the µ-value is lower to increase the impact of the generalized
costs on the distribution.

On top of that, the average size of a choice set in the WCM is lower
than in the US-BR case study. Where the amount of available ports per
country is between 1 and 25 in the WCM, with an average of 4 ports
per country, the U.S. regions and Brazil both have each 6 available
airports. More available (air)ports means a larger choice set and means
a lower µ-value to increase the variance within the set.

Another logit scale parameter value found in literature is in another
research about freight traffic assignment in a multimodal network
(Maia and Couto, 2013). Here they used a value of 0.1 and 0.5 for µ,
but the network they used was a relative simple one, with only five
centroids and a couple of road and rail links. For this reason, those
values are difficult to compare to the more complex case study we
created.

5.2.3 Ap calibration

After the calibration of the scale parameter, we proceed by adapting
the airport impedance parameter Ap. Lower and upper boundaries
for the parameter are set on 0 and 2, 000. Within these constraints,
the model has enough freedom to find impedance parameters for the
airports to fit the model. A total of 10 runs have been performed,
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Figure 11: Comparison of the absolute difference between observed and
calculated throughput for different scale parameter µ (logarithmic
scale)

whereby each run consisted of 10,000 iterations. As can be seen in
Figure 12, the algorithm converged very quickly in the first runs and
is flatting out after the third run. A minimum absolute throughput
difference of 34, 546 tonnes is obtained, which an improvement of
more than 10% compared to the difference before the Ap calibration.

5.3 results

Figure 13 shows the model output. The blue lines are proportional
to the volume of air traffic. The size of the pie charts visualize the
amount of throughput (dark grey) and transshipment (light grey) at
each airport. The map already shows the amount of transshipment
is minimum in this case. We utilize the java geo-visualization library
Unfolding (Nagel et al., 2013) to visualize the results of the model.

Table 11 presents the calibrated Ap-values for each airport in the
model. VCP, the airport which mainly serves Campinas, a municipality
in São Paulo, has the highest assigned airport impedance value, where
MAO, located approximately 2,700 km to the North West of São Paolo
has the lowest value. Hereby one has to keep in mind that a high
Ap-value for an airport means a high impedance and therefore a low
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Figure 12: Convergence in throughput difference after different calibration
runs

level of attractiveness, where a low Ap-value means a low impedance
and a high value of attractiveness.

airport

code

city country a p -value

VCP Campinas Brazil 1,954

CWB Curitiba Brazil 1,751

GIG Rio de Janeiro Brazil 1,736

GRU São Paulo Brazil 1,450

LAX Los Angeles US South West 1,370

JFK New York US North East 1,165

ORD Chicago US North Central 929

MIA Miami US South East 723

SEA Seattle US North West 356

DFW Dallas/Ft. Worth US South Central 146

POA Porto Alegre Brazil 83

MAO Manaus Brazil 16

Table 11: Main airports and countries captured by second filter
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Figure 13: Air cargo flows between the US and Brazil

5.4 analysis

In this section the results from the US-BR case study are analyzed.
First, in the validation part, the output is compared with observed
data in order to check to what extend the model is able to capture
reality. Both modeled airport throughput as airport to airport traffic
flows are compared with observed data. Secondly, in the verification
part, the model is tested on its robustness. A sensitivity analysis is
performed where some parameters are changed to see how the model
reacts.
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5.4.1 Validation

The results show that the model is very accurate in reproducing the
observed airport throughput in this US-BR case study. Figure 14 show
a coefficient of variation of 95% for the twelve airports in the model. To
analyze the correlation in an optimum way the Brazilian airports are
marked orange. One can clearly notice that especially the throughput
of the US airports is reproduced very accurately since they all are
located on the linear black line. Because the observed throughput for
the US airports is set equal to the trade of each region, it is maybe
more straightforward that the model is able to produce an accurate
throughput estimation. This despite the fact that we allowed the model
to use RFS towards the airports in the other regions. The Brazilian
airports show a correlation which is lower. The airport of GRU, located
at São Paolo, is slightly overestimated by the model, even as GIG,
the airport from Rio de Janeiro. VCP and POA are estimated very
accurately. The airport with the highest difference between observed
and estimated flows is Eduardo Gomes International Airport (MAO).
Even though, as a result of the calibration, the MAO airport has a low
Ap-value, the model is not able to reproduce the throughput for this
airport. The airport throughput is underestimated, which probably
has to do with the fact that this airport is the furthest away from
the centroid of Brazil which is located at São Paolo. This makes this
airport unattractive because of high trucking costs, compared to the
other five airports which are located more near centroid of Brazil.
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Figure 14: US-BR case study: Calibration result for modeled vs observed
airport throughputs (Brazilian airports in orange)

Besides the ability of reproducing airport throughput, we also want
to illustrate the capability of reproducing airport to airport flows.
To validate the estimated flows by the model with, BTS is used for
observed data, which can be seen in Figure 15. The correlation shows a
coefficient of variation of 72% for the 36 airport pairs (six times six) in
the model. One can see that especially for the air cargo traffic flows up
to 10,000 Tonnes there is some variation between the modeled flows
and the data from BTS. The more larger flows reported by BTS are
mostly originated in MIA, which is rather logical since we saw that
MIA is the major throughput airport to transport trade from the US
to Brazil. The flow between MIA and GRU is overestimated by the
model. This has probably something to do with the fact that the model
has difficulties with capturing the flow towards MAO and therefore
it will put these tonnes on the most attractive route. Related to that,
the route MIA-MAO is underestimated the most, which is in line with
the airport throughput we saw. The largest flow reported by the BTS
data between MIA and VCP is also underestimated. A more detailed
overview of the BTS reported traffic flows and the modeled ones are
presented in Table 12.
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Figure 15: US-BR case study: Calibration result for airport to airport flows

5.4.2 Verification

In this subsection the now calibrated and validated model is used as a
starting point. In order to check if the model if robust, we perform a
sensitivity analysis by changing some parameters.

Adapt airport impedance

Firstly the airport impedance of GRU is changed, where the current
value of 1, 450 is adapted. By decreasing the Ap-value, the airport will
become more attractive for the model to assign flows to. Therefore
the hypothesis is that the airport throughput will decrease when
increasing the value.

In Figure 16 the modeled for all the airports is presented when
changing the airport impedance of GRU over a range between 0 -
10, 000. The throughput of GRU is represented by the orange line. The
calibrated Ap-value is shown by the dotted line. The figure shows a
clear increasing trend when the impedance of this airport is decreased.
At a Ap-value of 0 the model puts more air cargo flows towards GRU,
where it increased from 55 tonnes with 44% to 79 tonnes. When the
impedance value is increased, the orange line gradually decreases,
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route

observed traffic

flows (tonnes)

estimated traffic

flows (tonnes)

MIA-VCP 31,482 24,003

MIA-GRU 23,096 34,900

MIA-MAO 14,550 80

JFK-GRU 11,543 6,108

MIA-GIG 9,859 12,328

DFW-GRU 4,816 6,674

LAX-GRU 4,665 3,902

MIA-CWB 4,328 11,819

ORD-GRU 3,464 2,925

JFK-GIG 2,901 2,203

DFW-GIG 2,847 2,337

MIA-POA 1,419 4,023

JFK-VCP 33 4,194

LAX-VCP 0 2,688

ORD-GIG 0 1,042

LAX-MAO 0 9

Table 12: Air cargo flows on routes from US regions towards Brazil (only
direct routes displayed)

which confirms the previously stated hypothesis. At the same time
the throughput of the other Brazilian airports increase because they
become relative more attractive for trade. The airports which mainly
increasing are presented by the blue lines. The throughput of MIA is
very stable in this analysis. Trade from this airport is flowing towards
Brazil via other routes than towards the main airport. The same holds
for the airports of JFK and LAX. For the US airport, the throughput
of ORD shows the biggest decline (-10%), which is displayed by the
red line. This airport has only two direct routes towards Brazil which
one of them now gets less attractive. All of the results presented and
discussed is a logical result of changing the impedance value of GRU.

Secondly the airport impedance of MIA is changed. Figure 17 shows
the result when the Ap-value is changed along a range from 0 - 10, 000.
The current value is 723, which is shown by the dotted line. When
running the model with this change we see that this the throughput of
MIA is decreasing when the impedance gets higher . Where air cargo
flows which usually used MIA as connecting airport to transport
trade to Brazil, are now a little bit shifted towards DWF and JFK.
However, the orange line is not as steep as we saw in the previous case.
Even when the impedance is set at 10, 000, MIA is still the third US
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Figure 16: Airport throughput estimation after adaption of Ap-value of GRU

airport in terms of throughput after JFK and DFW. The geographical
favorable position related to Brazil plays the most important role in
this. The Brazilian airports which are mainly dependent on MIA as
main throughput airport are the most affected, which is presented by
the red lines. GRU is on its turn, profits from this change, because it is
better connected with direct flights from the other US airports. All of
the results presented and discussed is a logical result of changing the
impedance value of MIA.

Adding a route

As a second part of the sensitivity analysis an airline service route
is added to the network. In the current model there is no direct con-
nection between US North West and Brazil. Trade from this region is
transported via one of the other regions with a domestic flight, where
it has to be transshipped at one of the other US airports. Therefore
we did not saw any direct estimated flow between SEA and Brazil in
section 5.4.1. To see how the output of the model will react on the
addition of a new route operated by a potential new airline in the
market, we add the route SEA-GRU to the service network.

After running the model the air cargo flows are assigned as pre-
sented in Table 13. On the added direct route SEA-GRU the model
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Figure 17: Airport throughput estimation after adaption of Ap-value of MIA

assigns a total of 1, 203 Tonnes. The model clearly captures the op-
portunity to use the direct service option to transport the trade. On
the routes LAX-GRU and LAX-VCP there is both a decrease of 10%
of assigned flow. From this we can conclude that in the standard
model, without the direct SEA-GRU route, trade from USNW was
mostly flown towards LAX. Other air cargo flows which decreased are
ORD-GRU and ORD-GIG, so also ORD was used as transshipment
airport to transport trade from Seattle to Brazil. The R-squared for
airport to airport flows remained at the value of 0.72.

Closing a route

In this exercise we will see how the model reacts when a route is
removed from the network. The route between New York (JFK) and
Viracopos (VCP) which accounts for almost 5, 000 Tonnes of yearly
trade between USNE and Brazil is closed.

After running the model the air cargo flows are assigned as pre-
sented in Table 14. Obviously, the model is not allocating trade on the
JFK-VCP route, which is now decreased to zero. Routes to GRU and
GIG from JFK are now increased by 45% in terms of tonnes of trade.
Those routes are increased by respectively 2, 800 and 1, 000 tonnes.
Allocation of the trade, which was previously on the JFK-VCP route,
on these routes can be seen as a reasonable result from the model
since the airports of GRU and GIG are closely located to GRU. The
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route Estimated traffic flows (Tonnes) change

before after (%)

MIA - GRU 34,900 34,899

MIA - VCP 24,003 24,009

MIA - GIG 12,328 12,328

MIA - CWB 11,819 11,814

DFW - GRU 6,674 6,628

JFK - GRU 6,108 6,107

JFK - VCP 4,194 4,193

MIA - POA 4,023 4,022

LAX - GRU 3,902 3,497 -10%

ORD - GRU 2,925 2,904

LAX - VCP 2,688 2,409 -10%

DFW - GIG 2,337 2,320

JFK - GIG 2,203 2,202

ORD - GIG 1,042 1,034

MIA - MAO 80 80

LAX - MAO 9 8

SEA - GRU - 1,203 -

Table 13: Air cargo flows on direct routes from US regions towards Brazil
when direct SEA-GRU service is added

R-squared for airport to airport flows increased to 0.74 because BTS
does not report air traffic flows on the removed JFK-VCP route.

Adapting α

The last exercise of the verification of the US-BR case study is the
adaption of α. Hereby we focus the analysis on the Brazilian airports
since this parameter is mainly influencing the costs of trucking trans-
port. Where the US airports are also the ’country’ centroid, trucking
will not be applicable that much. At Brazil, traded goods arriving at
one of the airports have to truck towards the country centroid which
is located in São Paolo. With a current value of 4, 750 USD/day/ton,
α will be adapted along a range from 1, 000 - 10, 000. Analysis before
1, 000 will not be analyzed because transport of goods will most likely
be performed via other modes of transport like rail and sea.

Figure 18 presents the modeled throughput while adapting α. A
low α means that the total costs of a route will be determined more by
distance. A high VOT means that the time it takes to transport goods
from A to B will be more valuable. Therefore, the more you move to
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route Estimated traffic flows (Tonnes) change

before after (%)

MIA - GRU 34,900 34,972

MIA - VCP 24,003 24,059

MIA - GIG 12,328 12,354

MIA - CWB 11,819 11,843

DFW - GRU 6,674 6,688

JFK - GRU 6,108 8,883 45%

JFK - VCP 4,194 -100% -

MIA - POA 4,023 4,031

LAX - GRU 3,902 3,902

ORD - GRU 2,925 3,069 5%

LAX - VCP 2,688 2,689

DFW - GIG 2,337 2,342

JFK - GIG 2,203 3,203 45%

ORD - GIG 1,042 1,093

MIA - MAO 80 81

LAX - MAO 9 9

Table 14: Air cargo flows on direct routes from US regions towards Brazil
when direct JFK-VCP service is removed

the left of the x-axis we call it a distance-led assignment, and the more
we move to the right we call a time-led assignment.

What has to be kept in mind when analyzing this graph is that the
adaption of α is done after the calibration of the model. This means
that the assigned impedance parameter values have more influence
on the route cost at lower values of α. This can immediately be seen at
the lines of the airports of Manaus (MAO) and Porto Alegre (POA),
which show a steep growth in attractiveness when the model is more
distance-led. During the model fitting especially those airports have
been assigned with a relative low impedance which makes them now
more attractive. For the same reason Campinas (VCP) decreases in
modeled throughput, because it have been assigned with the highest
impedance value after calibration. The airports of São Paolo (GRU)
and Campinas (VCP) increase the most when the model is more time-
led. The fact that both airports are located the closest to the centroid of
Brazil and therefore have relative low trucking costs, results that these
airports increase in attractiveness. They are also in the most favorable
position when in comes to direct routes from the U.S. airports.
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We can conclude that when taking into account that the modeled
throughput, apart from changing α, also is influenced by the Ap-values
of each airport, the graph presented shows a logical output.
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Figure 18: Airport throughput estimation after adaption of α

5.5 summary and conclusions

This chapter described the US-BR case study which had the purpose
to prove the capabilities of the model to reproduce air cargo flows
from airport to airport and yearly airport throughput. First, a detour
factor an capacity share analysis was performed from which we could
conclude that potential interference of O/D trade is minimized within
the trade market between the US regions and Brazil. Therefore it could
be used as a proper case study.

Secondly, the case study was set-up, which includes six US and
six Brazilian airports and a service network to distribute the trade
between those countries. For calibration purposes, assumptions had
to be made to determine the observed throughput data for the twelve
airports. After calibration, validation analysis showed that the model
is able to reproduce the airport throughput very accurate, with a
R-squared of 95%. Also the air cargo flows between the airports are
estimated rather accurately.

Furthermore, verification of the model has proven that the model is
robust when parameters are changed. From this we could conclude
that the model is able to estimate air cargo flows with an acceptable
accuracy and can be used to apply on a global scale.





6
F U L L W O R L D

After the proven capabilities of the model in the US-BR case study,
including the validation and verification, in this chapter the model is
applied on a global scale. The Full World model first needs a structured
set-up in order to capture the global air cargo market, which includes
total trade, airport throughput and network capacity. Secondly, the
model is calibrated and the results are analyzed.

6.1 set-up

In order to create a Full World model a set of airports, countries and
flight services is created which serve as the main input data of the
model. Taking all WB, passenger plus freighter operations, and NB
freighter operations in 2014 results in a set of +11,000 distinct flight
routes, 816 airports and 203 countries. Unfortunately the model gives
an out of memory error when the choice sets are generated. Therefore
the size of the set has to be decreased, while still capturing the (1)
air trade between countries, (2) airport throughput and (3) network
capacity. Hereby we noted some rules for the model:

• Trade between countries is only captured when both origin
country as the destination country are included in the set

• A country has to have an airport which can serve as a main
gateway for import and exporting air trade

• Network capacity of an airport includes all air cargo capacity,
inbound and outbound, flown by WB freight, passenger, and NB
freight scheduled services in 2014

A total of three selection criteria are created to set-up a combination
of airports and countries which can serve as a feasible input set for
the model to run on a global scale.

Selection 1 - Throughput > 5,000 Tonnes

The first selection created is a minimum threshold for the reported air-
port throughput. The threshold is set on 5, 000 Tonnes, which results
in a total amount of 282 airports. The criteria assures that almost all
the major airport, which serves as country gateways for international
global trade, are included in the set. To put this threshold into perspec-
tive, airports which report a throughput around 5,000 tonnes are for
example: PDX (Portland, USNW), 6, 384 Tonnes; GEO (Georgetown,

53
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Guyana), 6, 082 Tonnes; MPM (Maputo, Mozambique), 5, 165 Tonnes.
The 282 airports selected by this threshold capture already:

• 91% of network capacity

• 99% of airport throughput

• 96% of air trade

Selection 2 - Trade addition > 5,000 Tonnes

The second selection is based on a threshold of a minimum trade
addition of 5, 000 tonnes. This means that all airports, which are
located in a country which is not yet represented by set of 282 airports
and this country has a total trade (import + export) above 5, 000 tonnes,
will be added to the set. The main purpose of this selection of airports
is to add countries which are not represented by an airport yet, which
means that trade of that specific country is not captured yet. The top
10 of airports in terms of trade captured by this filter are shown in
Table 15. A total of 21 airports where added to the set. These airports
where not selected with the first criteria because, throughput is only
reported in totals (international + domestic), or is not reported at all .
Observed throughput for the latter case is based on historical data or
a capacity share.

airport

code

city country

trade captured

(tonnes)

network capacity

(tonnes)

DAC Dhaka Bangladesh 184,147 460,034

CPH Copenhagen Denmark 155,232 280,532

CCS Caracas Venezuela 78,359 195,488

LAD Luanda Angola 62,151 116,666

EBL Erbil Iraq 62,053 105,851

GUA Guatemala City Guatemala 60,160 63,663

GYD Baku Azerbaijan 47,736 292,918

KBL Kabul Afghanistan 25,034 53,365

TAS Tashkent Uzbekistan 23,763 81,432

MRU Port Louis Mauritius 21,133 115,560

Table 15: Top 10 airports in terms of trade captured by second selection

Selection 3 - Add connection airports

The third and final selection is applied is to capture the airports which
are located in a country which is already in the current set, but could
serve as an important connection airport in the global network. In
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terms of connectivity we mainly selected on the network capacity of
the airport. If reported, also the total throughput is used as a guideline
to investigate if airports could be added to the selection. Again, these
airports where not selected with the first selections because inter-
national throughput is not accurately reported on a yearly basis by
ACI or that there is no clear split between international and domestic
handled freight. Observed throughput is based on historical data or a
capacity share. Top 10 captured airports in terms of network capacity
by this selection are shown in Table 16. A total of 15 airports where
added to the set.

airport

code

country city

trade captured

(tonnes)

network capacity

(tonnes)

SYD Sydney Australia - 1,013,936

CGO Zhengzhou China North - 451,130

YVR Vancouver Canada - 384,454

CKG Chongqing China West - 270,947

CPT Cape Town South Africa - 133,267

DUB Dublin Irish Republic - 124,190

YYC Calgary Canada - 110,608

TSA Taipei Taiwan - 106,966

DLC Dailan China North - 84,641

MSP Minneapolis US North Central - 77,381

Table 16: Top 10 airports in terms of network capacity captured by third
selection

Those three selection criteria together create a set of 318 airports
representing 148 countries and a network consisting out of +7,500

distinct flight routes which capture:

• 96% of network capacity

• 99% of airport throughput

• 98% of air trade

With the generated set the model is able to run the Full World in
less than one minute without generating any errors.

6.2 calibration

In order to calibrate the model, observed airport throughput from
ACI is used. On top of that, to be able to use the multi-objective
optimization which also calibrates for transshipments per airport, we
would like to have the observed transshipments for each airport in



56 full world

the set. Unfortunately, this data is not included within the ACI data.
Therefore we decide to use public data sources and academic literature
to estimate yearly transshipment in tonnes for the top 14 cargo airports
in terms of yearly throughput. Those 14 airports represent almost 50%
of global airport throughput which will be a proper dataset to calibrate
the model. Table 17 shows the transshipment rates we found and the
related amount in tonnes.

airport

code

throughput

(tonnes)

transshipment

rate

transshipment

(tonnes)

HKG 4,376,349 54.0% 2,363,228

ICN 2,474,152 50.1% 1,239,550

DXB 2,367,574 85.0% 2,012,438

PVG 2,334,368 40.0% 933,747

TPE 2,072,602 58.5% 1,211,612

NRT 2,043,372 19.4% 396,414

FRA 2,007,318 1.5% 30,110

CDG 1,858,482 1.5% 27,877

SIN 1,843,800 50.0% 921,900

ANC 1,787,287 38.0% 679,169

MIA 1,739,005 44.0% 765,162

AMS 1,633,195 1.5% 24,498

LHR 1,497,701 1.5% 22,466

BKK 1,193,300 42.4% 505,817

Table 17: Transshipment in tonnes for the Top 14 cargo airports
(Air Cargo World, 2017; Chung, 2013; Emirates, 2017; FRA Air-
port, 2015; Ohasi, 2005; Miami International Airport, 2014; Seabury
Analysis)

6.2.1 µ calibration

As described in the US-BR case, firstly the scale parameter µ being
adapted. The result of the absolute throughput difference for different
values of µ is presented in Figure 19. An optimal value of 0.00015 is
found. This value differs from the µ found in the US-BR case study,
where the value was equal to 0.0006 . This d with the

What again can be noticed that the average size of a choice set in
the Full World model is larger than in the US-BR case study. The 148

countries in the model have an amount of available ports per country
between 1 and 56. This increase of choice sets again means a lower
µ-value to increase the variance within the set.
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Figure 19: Comparison of the absolute difference between observed and
calculated throughput for different scale parameter µ (logarithmic
scale)

6.2.2 Ap calibration

After the calibration of the scale parameter, we proceed by adapting
the airport impedance parameter Ap. Other than at the US-BR case,
this time we did not choose to start the calibration with only setting
lower and upper boundaries for Ap. In order to improve the process
of fitting the model, a normalized impedance parameter is calculated for
every airport by normalizing the accuracy of the modeled throughput
compared to the observed throughput. This is done with the following
formula:

Np =
TPRp −min(TPR)

max(TPR)−min(TPR)
(8)

where Np, the normalized impedance parameter of airport p; TPR,
the throughput ratio of airport p, which is defined as:

TPRp =
mTPp

oTPp
(9)

where mTPp, the modeled throughput of airport p; oTPp, the ob-
served throughput of airport p. The calculated Np value will scale the
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total airport set with values in between 0 and 1. In order to let the
value be able to be a proper part of the route choice and therefore be
able to differentiate the impedance values of the airports, the Np value
is multiplied by 5, 000. For comparison, a general transpacific route
(PVG - JFK) has around 2, 000 of distance-related costs and 15, 000
time-related costs.

Running the model with the calculated Np values already resulted
in a decrease of more than 10 million tonnes of absolute through-
put difference which is a decrease of 28 %. This first step of fitting
the model by changing the airport impedance parameter is clearly
shown in figure 20. After this, a total of 10 runs have been performed,
whereby each run consisted of 1,000 iterations. After the first run
the algorithm converged gradually towards the minimum obtained
absolute throughput difference of 26, 483, 719 tonnes, which an im-
provement of more than 31% compared to the value before the Ap

calibration.
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Figure 20: Convergence in throughput difference after different calibration
runs

6.3 results

Figure 21 shows the model output on a global scale. The blue lines
show the volume of air traffic of flows above 15, 000 tonnes a year. The
size of the pie charts visualize the amount of throughput (dark grey)
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and transshipment (light grey) at each airport. It is clearly shown
that part of the throughput of some large airports is made out of
transhipments, like for example at Tokyo (NRT), Paris (CDG) and
Hong Kong (HKG). The Transatlantic and Transpacific trade flows
are clearly represented. Furthermore, the connecting hubs of Dubai
(DXB) for the European - Asian market, Anchorage (ANC) for the
Transpacific market and Miami (MIA) for the North America - Latin
American market, are shown. On the map one can also see the inland
flows from Brazilian airports to/from Brasilia and the inland flows in
India to/from New Delhi. Because flows in some regions are below
15, 000 tonnes a year, those are not shown on the map (e.g. Africa,
islands).

Table 18 presents the top and bottom five calibrated Ap-values for
the airports in the model. HGH, an airport located near the city of
Shanghai in the China East region, has the highest assigned airport
impedance value, where a total of five airports have assigned the
lowest value of zero. A total overview of all the airports including
Ap-values can be found in Appendix B.
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Throughput (dark grey) 
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Figure 21: Global air cargo flows between countries (>15 K Tonnes/year)
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airport

code

city country a p -value

HGH Hangzhou China East 19,596

BEG Belgrade Serbia 13,481

PEW Peshawar Pakistan 11,253

HKT Phuket Thailand 11,125

NKG Nanjing China East 10,844

. . . . . . . . . . . .

FDF Fort-de-France Martinique 0

ANC Anchorage US North West 0

SIN Singapore Singapore 0

DXB Dubai United Arab Emirates 0

HKG Hong Kong Hong Kong 0

Table 18: Top and bottom 5 calibrated Ap-values per airport

6.4 analysis

After the model converged it resulted in a fit which explains 88% of
the amount of variation between airport throughput volumes (Figure
22). With this high R-squared value, we can conclude that the model
is able to reproduce airport throughput rather accurately. On the
correlation graph we can identify group of airports which have the
same characteristics. These airports will be discussed in the rest of this
section.

Top 20 airports

Top 20 airports in terms of observed throughput have also the highest
estimated throughput, as can be seen in the correlation graph. A
more detailed overview of the estimated throughput accuracy for
those airports is presented in Table 19. The majority of the TPR, the
parameter introduced in the previous section which represents the
modeled throughput divided by the observed throughput of an airport,
is within an accuracy range of 40%, with Los Angeles (LAX), New
York (JFK) and Chicago (ORD) even within 5%.

The airports of Anchorage (ANC) and Leipzig (LEJ) show the low-
est ratios. Both airports are known as hubs of integrator flights for
DHL, FedEx and UPS. A further analysis for these integrator hubs is
performed later in this section.

Other airports with a relative low TPR are the airports of Abu Dhabi
(AUH), Doha (DOH) and Singapore (SIN). Because both AUH and
DOH are located near Dubai International Airport (DXB), which is
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Figure 22: Full World: Calibration result for modeled vs observed airport
throughputs (Note: logaritmic scale)

number three in terms of total cargo throughput, it maybe experience
some competition in terms of attractiveness. SIN has a ratio of 0.49.
This has mainly to to with the low value of estimated transshipment
at the airport which is lower that 30% of the observed transshipment
figure. It seems that the model is not able to capture the transshipment
value of the airport of Singapore. The use of the shortest path algo-
rithm can be the reason for the underestimation of airports which are
connecting trade markets by transshipments. Also the fact that the fo-
cus of the calibration lay at the throughput and not the transshipments,
could be a factor.

Integrator hubs

Looking again at the airport throughput correlation graph, one can
notice a clear range of underestimated airports in the higher segment
in terms of observed throughput. Those four airports marked in green,
can be identified as the integrator hubs (ANC, LEJ, CGN, SDF). For
analyzing purposes, also other airports with known integrator activity
are marked green (EMA, BGY, ONT, VIT). Integrators, like DHL, FedEx
and UPS are the main visitors of these airports and so determine the
network capacity.

In Table 20 an overview is given of the eight airports including
the network capacity and amount of routes. As explained in section
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airport

code

city country

observed throughput

2014 (tonnes)
tpr

HKG Hong Kong Hong Kong 4,376,349 0.57

ICN Seoul South Korea 2,474,152 0.85

DXB Dubai UAE 2,367,574 0.65

PVG Shanghai China East 2,334,368 0.76

TPE Taipei Taiwan 2,072,602 0.92

NRT Tokyo Japan 2,043,372 0.67

FRA Frankfurt Germany 2,007,318 0.70

CDG Paris France 1,858,482 0.91

SIN Singapore Singapore 1,843,800 0.49

ANC Anchorage US North West 1,787,287 0.11

MIA Miami US South East 1,739,005 0.76

AMS Amsterdam Netherlands 1,633,195 0.73

LHR London United Kingdom 1,497,701 0.77

BKK Bangkok Thailand 1,193,300 0.69

LAX Los Angeles US South West 1,044,835 0.95

JFK New York US North East 1,002,569 0.98

DOH Doha Qatar 980,114 0.38

ORD Chicago US North Central 972,803 1.00

LEJ Leipzig/Halle Germany 840,987 0.16

AUH Abu Dhabi UAE 797,069 0.36

Table 19: TPR results for top 20 cargo airports

6.1, the calculated network capacity includes all air cargo capacity,
inbound and outbound, flown by WB freight, passenger, and NB
freight scheduled services in 2014. This does not include charter and
integrator flights because they are not in the service data used from
Innovata. This is the reason why the integrator hubs have such a low
capacity and a relative low amount of routes in the model. The airport
of Memphis (MEM), home to the FedEx Express global hub, is not
even selected in the set-up stage because it is not included in one of
the routes.

In order to compare the network capacity and amount of routes,
comparable airports in terms of observed throughput are also listed
in the table and are highlighted in blue. It is clearly shown that those
airports where the presence of integrator operations is less dominant
have a higher network capacity and amount of routes.

A relative low amount of route options means that the probability
that those airports are used for trade flows will decrease. This is the
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main reason why those airport are underestimated in general. The
reason why Ontario (ONT) and Vitoria (VIT) are exceptions in this
case is because they are not that big in terms of observed throughput
and thereby easier to estimate.

The missing network capacity as a result of the lacking of charter
and integrator data also play an important role in terms of connectivity
where ANC for example, is one of the main connector airports for
transpacific trade. The absence of integrator and charter routes can
therefore also effect other modeled throughput.

airport

code

observed tp

(tonnes)

network capacity

(tonnes)
routes integrator(s) tpr

ANC 1,787,287 1,872,944 151 UPS, FedEx,
DHL

0.11

AMS 1,633,195 2,002,438 314 - 0.73

ORD 972,803 1,641,058 221 - 1.00

LEJ 840,987 88,053 14 DHL 0.16

CGN 722,584 33,306 12 UPS, FedEx 0.13

MXP 457,424 725,355 175 - 0.57

SDF 428,599 40 2 UPS 0.15

EMA 234,242 29,232 19 DHL 0.30

BGY 113,946 582 1 DHL 0.31

ONT 41,872 48 2 UPS 0.99

VIT 32,816 28 2 DHL 0.81

Table 20: TPR results for integrator hubs

’Island’ airports

Airports which also are underestimated by the model but are in
the lower segment in terms of observed airport throughput can be
identified as ’island’ airports, which are mapped in Figure 23. A more
detailed overview of the throughput ratio is presented in Table 21.
The reason of this underestimation for this specific group can be
found in the fact that these airports do not have the advantage of RFS
towards available airports in neighbouring countries. This results in
less options for traded goods to reach or depart the islands. Another
reason is the use of the shortest path algorithm. The probability that
the route IST - MLE - CMB (Istanbul - Maledives - Colombo) will be
added to the choice set is lower than the direct option IST - CMB.

Airport which are located on an island but are not very underesti-
mated (TPR > 0.60) by the model form the exemptions in this group.
The majority of these airport are profiting from an geographical po-
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sition which makes them attractive for transshipments. For example,
the main airport of Iceland in Reykjavik (KEF), has a throughput
ratio of 0.64 but this island is located on a favorable location on the
transatlantic route between Europe and North America.

Figure 23: ’Island’ airports: low throughput airports which are underesti-
mated by the model

Overestimated airports

As presented in the correlation graph, most of the dots are located
above the black 45 degree line and therefore are overestimated by the
model. This automatically means that those airports have a TPR value
of more than one. Where TPR values of the overestimated airports
range till 15.01, in this section the airports with a TPR value above
4.00 are discussed (Table 22). What can be noticed from the 16 airports
which are above this threshold is that most of them are located in
the US or China, two countries which are represented in the top
when looking at total trade (Figure 24). Also Japan and Korea are
accounting for a big part of imports and exports of global traded
goods. A second observation from this table is that the overestimated
airports are relatively small in terms of observed throughput, with
more than half of them below 10, 000 tonnes.

There seems to be a relation between the available airports of a
country, so airports within its country plus the ones which can be
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airport

code

city country

observed tp

2014 (tonnes)
tpr

FDF Fort-de-France Martinique 9,913 0.01

PTP Pointe A Pitre Guadeloupe 10,996 0.02

GUM Guam Guam 12,359 0.06

RUN Saint Denis Reunion 26,503 0.08

BWN Bandar Seri Begawan Brunei Darussalam 28,425 0.19

MLE Male Maldives 71,658 0.24

BGI Bridgetown Barbados 19,380 0.25

STI Santiago Dominican Republic 13,522 0.30

SEZ Mahe Island Seychelles 8,124 0.39

KIN Kingston Jamaica 10,224 0.40

POS Port Of Spain Trinidad & Tobago 43,948 0.41

CMB Colombo Sri Lanka 208,673 0.43

PPT Tahiti French Polynesia 12,328 0.44

MLA Malta Malta 14,170 0.46

SDQ Santo Domingo Dominican Republic 55,753 0.47

PUJ Punta Cana Dominican Republic 21,532 0.48

KEF Reykjavik Iceland 41,669 0.64

MRU Mauritius Mauritius 21,133 1.14

LCA Larnaca Cyprus 25,738 1.31

SSG Malabo Equatorial Guinea 5,695 1.44

MBJ Montego Bay Jamaica 6,143 1.80

Table 21: TPR results for ’island’ airports (lowest on top)

reached via RFS, and the amount of overestimated airports (Table 23).
Where for example Germany, which has a second position in terms
of total trade, has no overestimated airports with a TPR higher than
4.00. Besides the nine airports Germany has within its own borders,
due to the trucking possibility, it has an extra of 44 other European
airports to distribute its trade. This is probably an advantage for the
fitting of the model of assigning an impedance value which results in
properly reproducing the airport throughput.

The two above observations from above combined is a logical result
if the current methodology of the model is being followed. Trade
will be distributed along the shortest paths which are linked to the
available airports of the O/D countries. If the amount of available
airports is relatively low and the trade importing and/or exporting
the country is relatively high, the distribution is facing overestimation
problems. As an addition to that, minimizing the sum of absolute
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difference between observed and modeled airport throughput forces
the model to focus on the more larger airports, to get to the most
optimal result. Minimizing a relative big difference (for the large
airports) results in a higher convergence than minimizing a relative
small difference (for the small airports). Overestimation is a result
from that method, because overestimating smaller airports will less
’harm’ the absolute throughput difference than underestimating larger
airports.

Figure 24: Overestimated airports: low throughput airports which are over-
estimated by the model

CG exception airports

The last group of airports to be discussed is not highlighted in the
correlation graph but which is worth analyzing, are the CG exception
airports. In section 4.2.1 the assumption that the cargo center of gravity
(CG) lies at the capital city of a country was discussed. Here we
presented a total of ten country exceptions were big cargo airports in
terms of throughput would move that GC away from the capital city.
Hereby the hypothesis is that those airports which are located near the
GC but are not the main airport of the country in terms of throughput
will be overestimated. In table 24 is shown what the TPR value is of
the airports which are not the main gateways of the country in terms
of throughput, but are located near the centroid of the country. For
six of the ten countries the throughput is too low to pass the selection
criteria in the set-up of the Full World model. The other four show a
clear overestimation with Berlin (TXL), the main international airport
of Berlin, with the highest TPR. Moving the CG of those airports will
result in a better estimation of airport throughput.



6.4 analysis 67

airport

code

city country

observed tp

2014 (tonnes)
tpr

WUH Wuhan China North 9,727 15.01

SJC San Jose US South West 5,502 13.20

SHA Shanghai China East 8,256 10.91

PDX Portland US North West 6,384 9.97

PUS Busan South Korea 10,397 9.22

XIY Xi’an China West 13,378 7.11

LAS Las Vegas US South West 6,799 7.08

TPA Tampa US South East 5,006 6.61

KMQ Komatsu Japan 9,416 5.37

MFM Macau Macau 28,769 5.13

IND Indianapolis US North Central 32,045 5.03

CLT Charlotte US South East 25,479 4.73

AUS Austin US South Central 8,605 4.72

MID Merida Mexico 6,975 4.58

SHE Shenyang China North 19,969 4.56

DTW Detroit US North Central 75,810 4.30

Table 22: TPR results for overestimated airports (TPR > 4.00, highest on top)

Lars
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rank

total trade

country

available

airports

tpr > 4.00

1 China East 21 1

2 Germany 53 0

3 Japan 21 1

4 US North Central 15 2

5 China South 17 0

6 US South East 18 2

7 US North East 14 0

8 South Korea 17 1

9 United Kingdom 40 0

10 India 18 0

11 China North 26 2

12 Netherlands 47 0

13 US South Central 4 1

14 US South West 7 2

15 Italy 46 0

Table 23: Relation between main trade countries and their available airports
in the model to distribute trade

country

capital

city

airport code

near capital

tpr

Germany Berlin TXL 3.46

Italy Rome FCO 1.04

Turkey Ankara ESB 2.36

Vietnam Hanoi HAN 1.27

Brazil Brasilia BSB -

Canada Ottawa YOW -

Kazakhstan Astana AST -

Iraq Bagdad SDA -

Morocco Rabat RBA -

Tanzania Dodoma DOD -

Table 24: TPR results for airports near GC of exception countries
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6.5 summary and conclusions

This chapter described the Full World model, a model which estimates
global air cargo flows based on O/D trade data. First, a set of airports,
countries and flight services was created by defining three selection
criteria. Those selection criteria created a set of 318 airports, repre-
senting 148 countries and a network consisting out of +7,500 distinct
flight routes. With this it captured 96% of network capacity, 99% of
airport throughput and 98% of air trade and was able to estimate the
air cargo flows on a global scale within one minute.

After converging of the model due to calibration, it resulted in a
fit which explains 88% of the amount of variation between airport
throughput volumes. With this high R-squared value, we could con-
clude that the model is able to reproduce airport throughput rather
accurately.

Correlation analysis

By analyzing the correlation graph which presented the modeled
throughput compared with the observed throughput, we identified
four group of airports, namely, top 20 airports, integrator airports,
’island’ airports and overestimated airports. We also discussed the
airports which are located near the assumed cargo center of gravity.
We can draw the following conclusions for those groups:

• Top 20 air cargo airports are rather accurately reproduced in
terms of throughput, but underestimated in general. Because the
focus in this model was less towards the amount of transship-
ments, which is an important part of the throughput for those
airports, this can be part of the reason why.

• Integrator airports are typically underestimated. This is mainly
related with the fact that integrator and charter services are not
included in the scheduled airline service schedule which is used
as main input for the supply side of the model.

• ‘Island’ airports are generally underestimated because they are
not attractive in terms of hinterland flows. The potential of RFS
to distribute flows from or towards neighbour countries is very
low because they are geographically isolated.

• Overestimated airports are generally be found in countries
where the amount of available airports is relatively low and
the trade importing and/or exporting the country is relatively
high. The smaller the airport, the easier the overestimation by
the model.
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• CG exception airports are overestimated. Moving the CG of
those countries towards a more realistic location will result in a
better estimation of the airport throughput.

Shortest path & Calibration method

Most of the conclusions stated above are due to two main factors,
namely (1) the use of the shortest path algorithm and (2) the method
of calibration.

By using the shortest path algorithm, only one route between an
airport pair will be added to the choice set. This narrows down the
amount of possibilities to distribute the flows and will capture trans-
shipment and island airports to a lesser extend. The number of direct
routes and available airports for the distribution of trade is a deter-
mining factor in the current model to reproduce airport throughput
when a shortest path algorithm is used.

The calibration method of minimizing the sum of absolute gaps
between observed and modeled airport throughput forces the model
to focus on the more larger airports, for the most efficient approach.
This results in a general overestimation of smaller airports, because
NSGA-II also minimizes the difference between observed and mod-
eled transshipments. Because in the current model only for the top 14

the (estimated) observed transshipment is inserted, the calibration will
be forced towards a value of zero for the rest of the airports, which
may not be the case.

In general we can conclude that, despite the fact that the model is
able to produce airport throughput in a rather accurate way, some
quick wins can be gained by making adaptions in the model and/or
calibration method.



7
C O N C L U S I O N A N D R E C O M M E N D AT I O N

This chapter concludes the research performed in this report. The
first section provides answers on the research questions posted at the
start of the report. The second section shows the recommendation for
further study.

7.1 conclusions

The research question defined in Chapter 1.1 is: How can the air cargo
flow per flight leg on a worldwide basis be estimated from aggregated traffic
data? To answer this main research question a set of four sub questions
were answered first, which are stated below.

1. Which data regarding air cargo transport is available in order to esti-
mate air cargo flows?
Seabury Consulting was the perfect partner in order to fulfill
the need of an accurate and granular input of data. The Seabury
Global Trade Database covers approximately 99% of world trade
transported via air, which serves as ideal data for the demand
side to estimate air cargo flows. On the supply side, the flight
schedules from Innovata was used, with the only disadvantage
that is does not include integrator and charter operations.

2. Which solution technique will be used to estimate the air cargo flow on
a flight leg basis?
The fundamentals of the methodology used in the World Con-
tainer Model served as a solution technique to estimate the
global air cargo flows. The methodology used was also very
suitable from the perspective of the available demand data and
supply data. On top of that, the academic research done with
the WCM strengthens the fact that it is a proven method which
can be used on a global scale.

The model determines for each O/D country pair a choice set of
routes by a shortest path algorithm from airport to airport, based
on actual scheduled airline services. The possibility of interme-
diate transshipments and trucking connections are included.
By using a path size logit model together with a generalized
cost function, the route choice probabilities are calculated and
applied to the O/D trade data for the distribution of the flows.

71
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3. How and which data should be used in order to test the model on
its quality? The international handled freight per airport from
ACI was available. This observed throughput was the main data
source of calibrating the model and to improve the quality of
the model. Furthermore, BTS and Seabury’s Cargo Capacity
Database where used for analyzing and validation purposes.

4. Which steps have to be taken to develop the model further? The main
objective of this research, ’contribute to the development of a model
which estimates the air cargo flows’ is accomplished. This work
gives possibilities for future research on a number of topics.
Possible improvements and extensions are recommended in the
next section.

Based on the answers on the sub questions, the main research
question can be answered. The answer is practically the Air Cargo
Flow model itself including the methodology described in this report.

The novelty in this model lies in the fact that this is the first model
in academic literature that estimates air cargo flows in such a detailed
airport-to-airport level. Both on the demand side of the model as
on the supply side very granular data is used. O/D air trade data
on country-to-country level is the main demand input, where route
choices are based on scheduled flight services reported by the airline,
serve as supply input.

The work presented give airlines and other stakeholders in the
aviation industry sufficient insight into the now largely unknown air
traffic flows of the competitive air cargo market. This helps them to
understand the behavior of competitor airlines, balance the capacity
and for route development in order to increase the profitability. On top
of that, it will also help them with market analysis, pricing strategies
and new route analysis to improve their network.

7.2 recommendations

This first step in the development of a model which estimates air cargo
flows on a global scale, creates numerous opportunities to extend
and improve the model, but also for research which is more airport
focused. This further research, which now becomes available by the
introduction of this version of an unique air cargo flow model, will
allow us to study the current and future state of air cargo flows on a
global scale.

• k-shortest path This research include the shortest path algorithm
which creates limitations in how realistic the model is at the
moment. Including the k-shortest path algorithm will make the
allocation of flows more realistic and will increase the reliability
of the calibration process.
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• Capacity \ Frequency Links and nodes are assumed to have
unlimited capacity in this model. The unconstrained network
capacity might lead to overestimating the capacity of those links
and nodes. A certain flight route, for instance, might be un-
able to satisfy the whole freight flow as showed in the model.
The addition of capacity constrains on routes or trade lanes
will improve the quality of the model. Adding flight frequency
to capture route attractiveness can also be an option to avoid
overestimation.

• Integrator & charter operations Flight services used in the
model does not include charter and integrator flights. This leads
to a relative low network capacity and amount of routes for
typical integrator hubs, resulting in the fact that the model is
not able to reproduce the airport throughput for these airports.
Unfortunately, sufficient data about the flight services of inte-
grator and charter carriers is not available, but including these
will improve the estimated throughput of integrator hubs and
indirectly the airports connected to those.

• Transshipment data This model does only include airport trans-
shipment data for the top 14 cargo airports. Including transship-
ment data for all the airports in the model will be beneficial for
the accuracy of the estimation of airport throughput. Especially
when using the multi-objective optimization which minimizes
the difference between observed and modeled throughput but
also transshipments.

• Metropolitan airports The overestimation of the the relative
smaller airports in terms of observed throughput can possibly
be solved by creating so called ’metropolitan airports’, which
group airports within a certain area together. By doing this, the
output data will be less granular but the objective of estimating
air cargo flows on a global scale, can still be accomplished.

All of the recommendations stated above will be subject for future
research in order to improve the quality of the model. Besides this,
further research into the airport impedance parameters assigned after
calibration is also recommended. Especially when the model is ex-
tended with the k-shortest path and a capacity constrain, the quality
of the Ap-values will increase. All relevant, measurable and hidden
service characteristics of airports, such as fuel costs, airport charges,
handling costs, congestion costs, etc. are included in this parameter
and can be investigated if and how they are related to each other. On
top of that, one can do research into the correlation between airport
characteristics known from previous research and public data, and the
assigned impedance value by the model.
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A
A P P E N D I X A : G L O B A L T R A D E D ATA B A S E

asia & oceania americas europe

China Brazil Austria Lithuania

Japan Chile Belgium Luxembourg

Korea Canada Bulgaria Malta

Hong Kong Canada Cyprus Netherlands

Taiwan USA Czech Republic Norway

Philippines Colombia Denmark Poland

Indonesia Estonia Portugal

Malaysia Finland Romania

Singapore France Slovakia

New Zealand Germany Slovenia

Australia Greece Spain

Hungary Sweden

Ireland Switzerland

Italy United Kingdom

Latvia

Table 25: Direct sourcing countries for the Trade Database

asia mesa americas africa europe

Mongolia Egypt Argentina Kenya Russia

Thailand India Bolivia South Africa

Vietnam Israel Costa Rica

Pakistan Cuba

Saudi Arabia Ecuador

Turkey Mexico

U.A.E. Panama

Peru

Venezuela

Table 26: Indirect sourcing countries for the Trade Database
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B
A P P E N D I X B : A I R P O RT I M P E D A N C E

airport

code

city country a p -value

ABJ Abidjan Ivory Coast 458

ACC Accra Ghana 240

ADD Addis Ababa Ethiopia 61

ADL Adelaide Australia 2,148

AGT Ciudad del Este Paraguay 995

AKL Auckland New Zealand 336

ALA Almaty Kazakhstan 435

ALG Algiers Algeria 704

AMD Ahmedabad India 407

AMM Amman Jordan 1,766

AMS Amsterdam Netherlands 7

ANC Anchorage US North West 0

ARN Stockholm Sweden 739

ASB Ashgabat Turkmenistan 261

ASU Asuncion Paraguay 335

ATH Athens Greece 959

ATL Atlanta US South East 1,887

AUH Abu Dhabi United Arab Emirates 32

AUS Austin US South Central 9,407

BAH Bahrain Bahrain 180

BAQ Barranquilla Colombia 1,598

BCN Barcelona Spain 359

BEG Belgrade Serbia 13,481

BEY Beirut Lebanon 1,717

BFI Seattle US North West 4,968

BGI Bridgetown Barbados 441

BGY Milan Italy 131

BHX Birmingham United Kingdom 6,000

Table 27: Overview Ap-values per airport (1/10)
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airport

code

airport name

country

name

a p -value

BKK Bangkok Thailand 11

BKO Bamako Mali 1,051

BLQ Bologna Italy 240

BLR Bengaluru India 43

BNE Brisbane Australia 764

BOD Bordeaux France 7,000

BOG Bogota Colombia 50

BOJ Burgas Bulgaria 2,000

BOM Mumbai India 71

BOS Boston US North East 112

BRU Brussels Belgium 290

BSL Basel/Mulhouse Switzerland 597

BUD Budapest Hungary 58

BWN Bandar Seri Begawan Brunei Darussalam 27

BZV Brazzaville Rep. of the Congo 2,084

CAI Cairo Egypt 162

CAN Guangzhou China South 378

CCJ Kozhikode India 581

CCS Caracas Venezuela 43

CCU Kolkata India 1,874

CDG Paris France 10

CEB Cebu Philippines 1,760

CGK Jakarta Indonesia 132

CGN Cologne/Bonn Germany 41

CGO Zhengzhou China North 442

CHC Christchurch New Zealand 834

CKG Chongqing China West 9,244

CKY Conakry Guinea 541

CLO Cali Colombia 3,000

CLT Charlotte US South East 4,109

CMB Colombo Sri Lanka 153

CMN Casablanca Morocco 1,670

CNS Cairns Australia 7,546

Overview Ap-values per airport (2/10)
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airport

code

airport name

country

name

a p -value

COK Kochi India 219

COO Cotonou Benin 1,961

CPH Copenhagen Denmark 266

CPT Cape Town South Africa 576

CRK Angeles/Mabalacat Philippines 500

CTS Sapporo Japan 7,339

CTU Chengdu China West 890

CUN Cancun Mexico 9,927

CVG Cincinnati US North Central 797

CWB Curitiba Brazil 1,131

DAC Dhaka Bangladesh 139

DAR Dar Es Salaam Tanzania 421

DEL Delhi India 150

DEN Denver US North Central 1,410

DFW Dallas US South Central 1,393

DKR Dakar Senegal 232

DLA Douala Cameroon 82

DLC Dalian China North 5,244

DME Moscow Russia 661

DMK Bangkok Thailand 10,000

DMM Dammam Saudi Arabia 542

DOH Doha Qatar 59

DPS Denpasar-Bali Indonesia 1,045

DTW Detroit US North Central 1,583

DUB Dublin Irish Republic 360

DUR Durban South Africa 4,138

DUS Duesseldorf Germany 810

DWC Dubai United Arab Emirates 12

DXB Dubai United Arab Emirates 0

EBB Entebbe Uganda 185

EBL Erbil Iraq 107

EDI Edinburgh United Kingdom 6,235

EDL Eldoret Kenya 2,806

Overview Ap-values per airport (3/10)



86 Bibliography

airport

code

airport name

country

name

a p -value

EMA Nottingham United Kingdom 109

ESB Ankara Turkey 9,677

EVN Yerevan Armenia 2,602

EWR New York US North East 5,887

EZE Buenos Aires Argentina 73

FCO Rome Italy 488

FDF Fort-de-France Martinique 0

FIH Kinshasa Dem. Rep. of the Congo (Zaire) 852

FOC Fuzhou China South 6,718

FRA Frankfurt Germany 10

FRU Bishkek Kyrgyzstan 964

FUK Fukuoka Japan 1,505

GDL Guadalajara Mexico 132

GEO Georgetown Guyana 903

GIG Rio De Janeiro Brazil 184

GLA Glasgow United Kingdom 1,862

GMP Seoul South Korea 6,743

GOT Gothenburg Sweden 1,960

GRU Sao Paulo Brazil 87

GUA Guatemala City Guatemala 919

GUM Guam Guam 15

GVA Geneva Switzerland 5,077

GYD Baku Azerbaijan 1,961

GYE Guayaquil Ecuador 819

HAM Hamburg Germany 391

HAN Hanoi Vietnam 999

HEL Helsinki Finland 334

HGH Hangzhou China East 19,596

HHN Frankfurt Germany 149

HKG Hong Kong Hong Kong 0

HKT Phuket Thailand 11,125

HND Tokyo Japan 1,379

HNL Honolulu US North West 105

Overview Ap-values per airport (4/10)



Bibliography 87

airport

code

airport name

country

name

a p -value

HRE Harare Zimbabwe 1,113

HYD Hyderabad India 549

IAD Washington US North East 369

IAH Houston US South Central 799

ICN Seoul South Korea 72

IFN Esfahan Iran 183

IKA Tehran Iran 608

IND Indianapolis US North Central 808

ISB Islamabad Pakistan 3,569

IST Istanbul Turkey 305

JED Jeddah Saudi Arabia 194

JFK New York US North East 516

JNB Johannesburg South Africa 92

KAN Kano Nigeria 408

KBL Kabul Afghanistan 610

KBP Kiev Ukraine 754

KEF Reykjavik Iceland 1,622

KGL Kigali Rwanda 506

KHH Kaohsiung Taiwan 5,246

KHI Karachi Pakistan 226

KIN Kingston Jamaica 201

KIX Osaka Japan 689

KMG Kunming China West 5,209

KMQ Komatsu Japan 8,058

KRT Khartoum Sudan 322

KTM Kathmandu Nepal 3,277

KTW Katowice Poland 564

KUL Kuala Lumpur Malaysia 50

KWI Kuwait Kuwait 438

LAD Luanda Angola 645

LAS Las Vegas US South West 7,825

LAX Los Angeles US South West 25

LBU Labuan Malaysia 1,638

Overview Ap-values per airport (5/10)
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airport

code

airport name

country

name

a p -value

LBV Libreville Gabon 1,169

LCA Larnaca Cyprus 81

LCK Columbus US North Central 9,819

LED St Petersburg Russia 6,972

LEJ Leipzig/Halle Germany 48

LFW Lome Togo 379

LGG Liege Belgium 125

LGW London United Kingdom 2,238

LHE Lahore Pakistan 842

LHR London United Kingdom 10

LIM Lima Peru 264

LIS Lisbon Portugal 123

LOS Lagos Nigeria 172

LPA Gran Canaria Spain 1,136

LTN London United Kingdom 2,462

LUN Lusaka Zambia 3,489

LUX Luxembourg Luxembourg 178

LYS Lyon France 2,077

MAA Chennai India 55

MAD Madrid Spain 632

MAN Manchester United Kingdom 2,198

MAO Manaus Brazil 85

MBJ Montego Bay Jamaica 219

MCO Orlando US South East 8,134

MCT Muscat Oman 307

MDE Medellin Colombia 1,184

MED Madinah Saudi Arabia 3,210

MEL Melbourne Australia 155

MEX Mexico City Mexico 20

MFM Macau Macau 2,004

MGA Managua Nicaragua 171

MHD Mashhad Iran 70

MIA Miami US South East 258

Overview Ap-values per airport (6/10)
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airport

code

airport name

country

name

a p -value

MID Merida Mexico 1,500

MLA Malta Malta 212

MLE Male Maldives 146

MMX Malmo Sweden 599

MNL Manila Philippines 159

MPM Maputo Mozambique 7,705

MRS Marseille France 652

MRU Mauritius Mauritius 1,245

MSE Manston-Kent United Kingdom 8,096

MSP Minneapolis/Saint Paul US North Central 3,153

MST Maastricht Netherlands 447

MTY Monterrey Mexico 2,000

MUC Munich Germany 510

MVD Montevideo Uruguay 2,071

MXP Milan Italy 187

NBO Nairobi Kenya 100

NCE Nice France 5,851

NDJ N’Djamena Chad 304

NGO Nagoya Japan 3,324

NKG Nanjing China East 10,844

NRT Tokyo Japan 7

NTE Nantes France 5,998

OAK Oakland US South West 2,006

OKA Okinawa Japan 67

ONT Ontario US South West 274

OPO Porto Portugal 39

ORD Chicago US North Central 551

ORY Paris France 281

OSL Oslo Norway 344

OTP Bucharest Romania 181

OUA Ouagadougou Burkina Faso 1,287

OVB Novosibirsk Russia 1,069

PBM Paramaribo Surinam 211

Overview Ap-values per airport (7/10)
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airport

code

airport name

country

name

a p -value

PDX Portland US North West 5,790

PEK Beijing China North 1,643

PEN Penang Malaysia 1,418

PER Perth Australia 68

PEW Peshawar Pakistan 11,253

PHC Port Harcourt Nigeria 1,117

PHL Philadelphia US North East 762

PIK Glasgow United Kingdom 3,687

PNH Phnom Penh Cambodia 342

PNR Pointe-Noire Rep. of the Congo 133

POA Porto Alegre Brazil 9,983

POM Port Moresby Papua New Guinea 404

POS Port Of Spain Trinidad & Tobago 43

PPT Tahiti French Polynesia 71

PRG Prague Czech Republic 520

PTP Pointe A Pitre Guadeloupe 1

PTY Panama City Panama 292

PUJ Punta Cana Dominican Republic 2,187

PUS Busan South Korea 7,935

PVG Shanghai China East 41

RGN Yangon Myanmar 1,422

RIX Riga Latvia 1,012

RUH Riyadh Saudi Arabia 5

RUN Saint Denis de la Reunion Reunion 11

SAH Sana’a Yemen 210

SAL San Salvador El Salvador 128

SAN San Diego US South West 9,546

SAP San Pedro Sula Honduras 1,238

SAW Istanbul Turkey 1,539

SCL Santiago Chile 111

SDF Louisville US North Central 257

SDQ Santo Domingo Dominican Republic 19

SEA Seattle US North West 310

Overview Ap-values per airport (8/10)
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airport

code

airport name

country

name

a p -value

SEZ Mahe Island Seychelles 71

SFO San Francisco US South West 1,629

SGN Ho Chi Minh City Vietnam 364

SHA Shanghai China East 7,793

SHE Shenyang China North 2,621

SHJ Sharjah United Arab Emirates 106

SIN Singapore Singapore 0

SJC San Jose US South West 4,369

SJO San Jose Costa Rica 661

SNN Shannon Irish Republic 2,091

SOF Sofia Bulgaria 959

SQQ Siauliai Lithuania 875

SSA Salvador Brazil 5,828

SSG Malabo Equatorial Guinea 714

STI Santiago Dominican Republic 54

STN London United Kingdom 1,937

STR Stuttgart Germany 6,005

SUB Surabaya Indonesia 197

SVO Moscow Russia 1,099

SVX Yekaterinburg Russia 651

SYD Sydney Australia 831

SYZ Shiraz Iran 760

SZB Kuala Lumpur Malaysia 9,941

SZX Shenzhen China South 221

TAO Qingdao China North 590

TAS Tashkent Uzbekistan 2,033

TBS Tbilisi Georgia 1,926

THR Tehran Iran 728

TLL Tallinn Estonia 317

TLS Toulouse France 356

TLV Tel Aviv-Yafo Israel 594

TNR Antananarivo Madagascar 957

TPA Tampa US South East 6,385

Overview Ap-values per airport (9/10)
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airport

code

airport name

country

name

a p -value

TPE Taipei Taiwan 82

TRV Thiruvananthapuram India 64

TSA Taipei Taiwan 285

TSN Tianjin China North 938

TUN Tunis Tunisia 2,072

TXL Berlin Germany 1,231

TZX Trabzon Turkey 247

UIO Quito Ecuador 131

URC Urumqi China West 472

VBS Verona Italy 5,999

VCE Venice Italy 1,172

VCP Sao Paulo Brazil 117

VIE Vienna Austria 726

VIT Vitoria Spain 350

VKO Moscow Russia 8,295

VVI Santa Cruz Bolivia 1,336

WAW Warsaw Poland 209

WDH Windhoek Namibia 207

WUH Wuhan China North 6,324

XIY Xi’an China West 4,358

XMN Xiamen China South 2,535

YVR Vancouver Canada 587

YYC Calgary Canada 393

YYZ Toronto Canada 1,691

ZAZ Zaragoza Spain 83

ZRH Zurich Switzerland 580

Overview Ap-values per airport (10/10)


