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A screw based methodology for instantaneous dynamic balance

J.J. de Jong®*, J. van Dijk?, J.L. Herder®

“Laboratory of Precision Engineering, University of Twente, PO Box 217, 7500 AE Enschede, The Netherlands
b Department of Precision and Microsystems Engineering, Delft University of Technology, Mekelweg 2, 2628 CD DELFT, The Netherlands

Abstract

Fast-moving industrial robots exert large varying reaction forces and moments on their base frame, inducing vibra-
tions, wear and accuracy degeneration. These shaking forces and moments can be eliminated by a specific design of
the mass distribution of the robot links, resulting in a dynamically balanced mechanism. Obtaining the conditions for
dynamic balance proves to be a hurdle even for simple planar parallel mechanisms due to the required inclusion and
inspection of the kinematic relations. In this paper, a screw theory based methodology is presented, which gives and
solves the necessary instantaneous dynamic balance conditions for planar and spatial mechanisms in an uniform and
geometrical manner. Instantaneous dynamic balance yields a pose in which robot accelerations induce no shaking
forces and moments. This is interpreted as an intersection point of multiple reactionless paths. This method is applied
to a 2-DOF planar mechanism, named the Fuga I, for which it resulted in two perpendicularly intersecting reaction-
less paths, intersecting in the middle of the workspace. Experiments on this demonstrator validated the instantaneous
dynamic balance by showing a reduction of approximately 95% of the peak-to-peak shaking forces and moments over
the intersecting reactionless paths.

Keywords: Dynamic balance, screw theory, parallel manipulator, spatial mechanisms, five-bar mechanism,
reactionless path, experimental validation

1. Introduction

Industrial manipulators moving with high speeds and accelerations induce strong shaking forces and shaking
moments at the base frame, causing disturbing vibrations in the frame and the surroundings [1]. These disrupting
shaking forces and shaking moments can be eliminated by design of robot kinematics and inertial parameters, i.e.
the mass, center of mass (COM), and moments of inertia (MOI) [2} 3], resulting in a dynamically balanced robot.
When only the shaking forces are canceled the system is said to be force balanced, and moment balanced when the
shaking moments are canceled [4]. Since the shaking forces and moments are the derivatives of the linear and angular
momentum, dynamic balance is obtained when the linear and angular momentum are constant (or zero in practice)
[S]1.

Commonly, force balance is considered prior to moment balance and is obtained by choice of counter-masses
[6,[7]. Consecutively, moment balance is achieved by addition of reaction wheels [8]], counter-mechanisms [9,[10] or
idler loops [[L1]], potentially leading to unfavorable complexity, additional mass and higher motor torques [4]].

Fortunately, some parallel mechanisms, such the kite type and the anti-parallelogram type 4R planar four-bar,
permit a dynamically balanced design without the need of additional counter-mechanisms [[12]. Yet, the process to
find these designs relies on manipulation and factorization of the dynamic balancing conditions, i.e the momentum
equations, in minimal coordinates. The intrinsic complexity of the loop closure equations makes this manual pro-
cess increasingly difficult for higher-DOF and spatial mechanisms. Therefore, Gosselin et al. partially automated
the factorization process through toric geometry [13]], and later algebraic geometry [14]. These algebraic methods
still require some case-by-case treatment, and are yet to be extended to multi-DOF mechanisms. Furthermore, the
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algebraic nature of the balance procedure hinders the derivation of intuition, which is desired from a designers point
of view.

Synthesis methods partly overcome the inspection of equations through stacking and recombination of dynami-
cally balanced elements. Ricard et al. [12]], and later Wu et al. [15], used the dynamic balanced four-bar linkage as
a building block for multi-DOF, planar and spatial, dynamic balanced mechanisms, resulting in rather complex struc-
tures with unfavorable mass to payload ratios [[16]. Van der Wijk et al. developed Fishers principal vector method of
describing human motion [17] into a synthesis method, which produces inherently force balance mechanisms [18]].
Based on this method, the 3-DOF over-actuated DUAL V was presented [19]. Dynamic balance was achieved over
two perpendicular paths by mirror symmetry of the design. Although this synthesis methodology yields new dy-
namically balanced mechanisms, it does not cover all the possible solutions [20], and is currently confined to planar
linkages.

Alternatively, dynamically balanced behavior can be enforced by limiting the robot motion to reactionless paths
[21) 22]], or trajectories [23]. These methods are less restrictive on the choice of inertial parameters and enable
‘dynamic balance when needed’. For example, during the traveling phase of a pick and place robot, when accuracy
is not essential, the robot can follow any trajectory but just before and during the pick or placement phase the robot
follows a reactionless path, in order to let vibrations die out and enable an accurate motion. Currently, only for specific
kinematic structures it is known how to shape these reactionless paths by design of the robot [21} [19].

In pursuit of an intuitive method that yields all force and moment balanced design for arbitrary, planar or spatial
linkages, we propose to use screw theory. In this paper, a screw theory based method is presented that yields instanta-
neous dynamic balance for arbitrary mechanisms. Instantaneous dynamic balance is a pose in which the accelerations
of the robot will not induce shaking forces and moments. We will show that such an instantaneous pose is the in-
tersection of multiple reactionless paths. This enables the design of reactionless paths by choice of this pose. The
method relies on an unified, geometric interpretation of the angular and linear momentum, leading to a set of feasi-
bility bounds on the selection of the dynamic balance solution. The validity of this method will be shown by design,
construction and measurement of an experimental demonstrator named the Fuga I, which is completely force balanced
over the whole workspace and moment balanced along two perpendicular paths, which intersect in the middle of the
workspace.

The paper is organized as follows: Firstly, the screw theory with its application to rigid body dynamics will be
recapitulated. The dynamic balance conditions are given in the screw theory framework. Secondly, the dynamic
balance conditions are solved in two steps; A) on mechanism level — posing conditions on a specific number of the
bodies, and B) on body level — solving these conditions to obtain a range of inertial parameters for these bodies.
Thirdly, this method is applied to a five-bar demonstrator, and validated by both simulations and experiments. This
paper is a generalization of the method presented in [24]], which was confined to planar mechanisms consisting of
revolute joints.

2. Screw based dynamic balancing method

Screw theory [25] provides a unified geometrical interpretation of the instantaneous spatial motion — termed twist
— of a rigid body and of the force and torque — termed wrench — acting on this body. On one hand, screw theory
leans on Mozzi-Chasles’ theorem, which states that all rigid body motion can be interpreted as a rotation around an
axis in space and a translation along that axis. Similarly, for forces and moments, Poinsot’s theorem states that the
sum of forces and moments acting on a body can be represented by a force along a line in space and a torque around
that line. These spatial interpretations are termed screws. On the other hand, screw theory draws on Lie’s theory of
exponential mappings and manifolds — which can be interpreted as the configuration space of connected rigid bodies.
This states that the admissible twists lie on the tangent space of this manifold. These screws are therefore differential
and instantaneous properties. Screw theory has been applied to a wide variety of modeling and design problems
including singularity analysis [26l], kinematic synthesis methods [27]], and robot dynamics [28,129,|30]]. The extension
of screw theory to a dynamic balancing procedure for multi-DOF, closed-loop mechanisms has not been attempted.

2.1. Screw theory
The angular and linear velocity, respectively w and v together form the twist t of a body. The twist is interpreted
as the rotation around an instantaneous axis in the direction of w, passing through point r, and a translation along this
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Figure 1: A geometrical representation of the momentum h generated by a twist t and body with a COM at c.

axis, called the pitch A, (Fig. T)). Therefore v is the velocity of the point passing through the origin

t:[‘:} vV=r,Xw+ 4w (1

From a given twist the axis location and the pitch can be computed as

WXV viw

" e O Y Jal?

in which ¢, is the free variable along the twist axis. The equation of the pitch gives rise to two special cases if 1)

Ay = 0 orif 2) A, = co. The first occurs when w and v are perpendicular. This is interpreted as a pure rotation. The

latter happens when w = 0 and v # 0 and is seen as a pure translation. Later in the balancing process, these special
cases require special attention.

Similarly, the linear and angular momentum — respectively denoted with p, and & — form a screw, the ‘momentum’

wrench (Fig. 1))

@)

h:[i] =1 Xp+A4p 3

This momentum wrench h can be interpreted as a linear momentum in the direction of p, passing through point r;, and
an angular momentum around this axis, here called the momentum pitch 4

X T
p f+5hP Ap = ¢ l;
lIpll lIpll

in which 9y, is the free variable along the wrench axis. It should be noted that the twist and wrench are dual properties.
The screw axis of the twist is formed by its ‘rotative’ component, the angular velocity. Conversely, for the wrench its
‘translative’ part, the linear momentum or force, determines the screw axis. Therefore, a wrench is often denoted as a
co-screw. Two special cases occur on the momentum wrench; if 1) the linear and angular momentum are perpendicular
(4, = 0) or if 2) the momentum wrench is a pure angular momentum (1, = o).

The momentum wrench is formed by the product of a body’s mass matrix M and its twist

“

r, =

h =Mt &)



The body’s mass matrix is formed by the mass integral over all points r in the bodies volume V. This gives rise to
a matrix build up with m as the body’s mass, ¢ the location of the COM and G the angular inertia matrix expressed
around the COM

_ [ [-IexPP ]

M—f‘; rx] I dm (6)
_[G - mlex]*  mlex]
‘[ —m[ci] l, )

In here [ax] denotes the skew symmetric matrix of a 3-vector. The angular inertia matrix G is parameterized by three
moments of inertia g, gy, and g, and three products of inertia gy, g«., and g,,. Altogether, the body’s mass matrix
is determined by 10 inertial parameters. The angular inertia matrix can be diagonalized G = diag(g) by rotating it
along its principal axes. Here g = [g1, 2, g3] denotes the vector of principal moments of inertia

8xx  8xy 8az
G=|gy &y 8x:|= R'GPR (8)
8x: 8y: 8z

This rotation matrix R can be found by eigenvalue decomposition. It should be noted eight orientations result in a
diagonal inertia matrix, i.e. for each octant one. For simplicity sake we choose a sorted inertia vector. From the
integral form of the mass matrix and the positivity of mass, it can be deducted that the principal moments
of inertia must be non-negative, and form a triangle inequality. Therefore we get the following set of inequality
conditions on the mass and inertia of a body

m=0 )
g>0 (10)
82+8 28 (11)
81282283 (12)

The lower limits on in these conditions are formed by theoretical objects such as infinitely slender, flat, or perfectly
axisymmetric objects.

2.2. Dynamic balance conditions in screw theory

Dynamic balance is obtained when the sum of the momentum wrenches of all n, bodies in the mechanism equate
to zero for all motions. In the current notation this reads

ih,’:iM[t[ =0 (13)
i=1 i=1

For a closed-loop mechanism the body twists (t;) are not independent as they are related through the differential loop-
closure constraints. For each of the ny degrees of freedom (DOF) of the mechanism, a unique twist is associated
to each body t;. ;- This unit twist (denoted with a hat) is defined as the twist of body i generated by a unit velocity
actuation of DOF j. The actual body twist (t;) is formed by the weighted sum over the input velocities g; of these unit
twists

ng
ti=> g (14)

=1
Substituting this back into the balancing condition of [Eq. (I13)] we can find the dynamic balancing conditions for each

of the ng DOFs
b= M =0 (15)



in which h;, j 1s the unit momentum wrench of body i as a consequence of unit velocity of DOF j. Combination of
these balance conditions using [Eq. (14)|provides a condition on the momentum wrench basis (Mp)

h=[2P by - 20 By, |a=Meq=0 (16)

Since this should hold for all possible joint velocity, 6 X nq instantaneous dynamic balance conditions are obtained for
the spatial case and 3 X nq for the planar case.
Mg =0 a7

In the remainder of this section these equations are solved for the inertial parameters in the mass matrix to yield
dynamic balance in the pose of inspection.

2.3. Approach to solve dynamic balance conditions

The instantaneous dynamic balance method presented here consists of two steps. In step A, the dynamic balance
conditions are solved on mechanism level by requiring a specific relation between the twist and momentum
wrench for ny bodies. In step B, this twist-momentum relation is solved to find the corresponding mass matrix of
these ny bodies. In both steps, special cases are identified and treated. In order ensure that feasible inertia parameters
(Eq. 9) - [Eq. (IT)) are found in step B, a detailed description of the attainable momentum (momentum span) a
function the inertial parameters and twist is given. Therefore, in the next paragraphs the description of the two steps
is interleaved with a screw based interpretation of the momentum span.

2.4. Step A. Dynamic balance solution on mechanism level

The 6 X ngy dynamic balancing conditions are solved by uniquely associating a momentum wrench
and a twist to ny mass matrices. This is done by splitting the mechanism in a proximal and distal set of bodies and
joints. The first set is a collection of ng joints and bodies closest to base. These joints will function as the input
coordinates or DOFs of the mechanism. The second set are the remaining‘distal’ bodies and dependent joints. The
inertial parameters of the ny proximal bodies, directly connected to the input joints, will be determined as a function
of the inertial parameters of the distal part. In this hierarchical balancing procedure the total momentum wrench
generated by actuation of the most distal input joints is determined first. For this motion to be dynamically balanced,
the momentum generated by the body connected to this input joint (j) should be equal and opposite to the momentum
generated by the distal part of the mechanism

= > by =hy; =M, (18)

i#]

As the proximal input joints and connected bodies are kept fixed, only the inertial parameters of the distal bodies show
up in the left side of this equation. The inertial parameters (M) for this input body can be computed via equations
which are presented later. After this first mass matrix is solved, the approach is repeated for the second most distal
link and so on, until all inertial parameters of the nq proximal bodies are determined. As the choice of input joints is
not unique, a variety of sequences can be used as long as no passive joints are in between the input joints and the base.
Also, it is required that the chosen parameterization does not result in a singular configuration of the mechanism.

2.5. Intermezzo: Screw theory interpretation of momentum span

Before the mass matrices M; are extracted from we need to know which momentum wrenches are
admissible for any twist-mass matrix combination. Later on this relation is inverted to find mass matrix for a given
momentum wrench and twist. Moreover, we wish to know how to ensure that feasibility bounds (Eq. (9)]-[Eq. (IT)) are
respected by the solution. Furthermore, special cases need to be identified to see if additional conditions are required.
In the first part, the twist-momentum relation is interpreted in a screw theory manner, following the work of Selig et
al. [31]. In the second part, a detailed study of the angular momentum span is conducted to ensure the feasibility
bounds on the moments of inertia.



Using[Eq. (3)]and[Eq. (7)| the expression for the linear and angular momentum becomes

p=-meXw+my (19)
= m(r, — ¢) X © + mA,w (20)
E=Gw+cxp 21

Following the interpretation of [31]], a plane is constructed through the twist t and the COM c, the t-c-plane (Fig. I)).
The point where the momentum wrench passes through this t-c-plane is termed r;. In their paper, following the
work of Ball [25], Selig et al. show that this point is simultaneously the shortest distance point between t and h. The
corresponding shortest distance point on the twist axis is r,s. Without any moment of inertia, i.e. when the body is
a point mass, the momentum wrench passes through ¢. With increased angular momentum the line moves further
away from t and c¢. The exact extent of the angular momentum span will be studied later in this section. The linear
momentum vector is not normal to the t-c-plane due to the influence of the twist pitch (Eq. (20)).
In the general finite twist pitch case, the momentum pitch is found to be

_€'p 4w Gow+w'[c-1x]|Gw
lIpl? ml|w|(7 +I5)

A (22)

in here /. is the distance between the COM and the twist axis.

2.5.1. Special cases

Special cases for the momentum occur when 1) the momentum pitch is zero, or 2) when the momentum pitch is
infinite. The combination of twist and the mass of the body for which these special conditions occur are given here.
We exclude trivial cases such as m = 0.

1. The zero pitch momentum (4, = 0) occurs when p L . The momentum pitch (Eq. (22)) is zero when the twist
pitch has a specific relation with the angular velocity
w'[e-rX|Gw

e (23)

Furthermore, when the twist pitch is infinite (4, = o), [Eq. (21)|and[Eq. (19)|reduce to

p =mv E=cxp 24)

such that in p L &, resulting in a zero momentum pitch.

2. An infinite pitch momentum (1), = co) appears when [|p|| = 0. From[Eq. (20)]it is deduced that this is only the
case when the body is in pure rotation (4, = 0) around the COM (/. = 0).

This means that an infinite pitch twist will always result in a zero pitch momentum and furthermore, an infinite pitch
momentum can only be generated by a zero pitch twist. Refer to[Table T|for an overview of the conditions.

2.5.2. Angular momentum span
The angular momentum span is required to completely define the momentum limits for a given body. For brevity
reasons, we group the influence of the COM on the angular momentum

§.=€f-cxp=Gow (25)

Now, we are interested to see what values for £, can be obtained for any given angular velocity, principal moments of
inertia and orientations of the body
£, =R'G’Rw (26)

Without loss of generality we choose w along the global z-axis and R with three consecutive rotations according
the z-x-z convention

R = R:(¢1)R($2)R (¢3) 27
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Since w is invariant for R, we have for the angular momentum the following product of matrices

&= RI($3)R[(92)R] (4)GR.($1)R($2)w (28)
Which after expansion this becomes:

81— &
2
The effect of the angles is on the angular momentum depicted in From the previous equation it follows that
angular momentum &, lies on circle — parameterized by 2¢; — which, in turn, lies on a plane passing through gzw. The
angle of the plane with the y-axis is given by ¢,. The size and center of the circle scale with sin(¢,). This whole figure
is rotated by ¢3 around the n,-axis. This means that, for all orientations, the angular momentum &, will be contained
inside a sphere with two spherical cavities. These three spheres touch at g;w, g, and g3w. From this interpretation,

three bounds on &, can be deducted, which are respected for any orientation of the body

£, = g + sin(g)RT (3R] (¢ + 5) - ((82 . )w 88 Ry<2¢1)w) 29)

i€ = 1/2(1 + g3)wll < 1/2(g1 - g3) (30)
i€ = 1/2(81 + g2)wll = 1/2(g1 - g2) (€29}
i€ —1/2(82 + g3)wll = 1/2(g2 - g3) (32)

This also gives a critical maximal value for the principal moments of inertia, such that a given £, lies on the surface
of one of the spheres. The cosine law yields the maximal moment of inertia:

£ (gw-§.)

crit = 33

81 < gt w0 (02w —£) (33)
ch(g,%w B f()

crit = T, 34

82 < 82, o (g0 - £,) (34)
E(giw=¢§)

= crit — ———, . < 35

83 < G3crit W @o—£) (35)

When the principal moments of inertia are chosen equal, i.e. g; = g, or g» = g3, the angular momentum span collapses
to the surface of a sphere. In case all principal moments of inertia are equal, i.e. g; = g» = g3, the angular momentum
span collapses to a point on the w-axis.

Since the principal moments of inertia are all positive, for all bodies and orientations the absolute angle between
the momentum and the angular velocity (6) will be smaller than 7/2, therefore

w'é, = |lwllliéllcos(®) > 0 (36)

2.6. Step B. Dynamic balance solution on body level

Now that we have a geometric interpretation of the momentum span, we will extract the inertial parameters from
the 6 X ny instantaneous dynamic balance condition of For each of the nq bodies we have to satisfy 6
dynamic balance conditions, for which we can use 10 parameters. This means that in general we can choose 4
parameters (within bounds) and solve for the remaining 6 parameters. We will do this in three steps. First, the force
balance conditions are solved. Second, the moment balance solution are obtained. Third, the special cases such as the
planar case are discussed.

2.6.1. Force balance
In connection with [Eq. (I8)| the force balance is found by extracting the mass and COM from[Eq. (19)|
lw'p _ |wx](mv -p)

m=—— =V ew (37)
A llwl? mi|w]?

For brevity reasons the subscripts of [Eq. (18)|are omitted. It can be seen that mass is completely fixed and the COM
must lie on a line parametrized by a variable a allong w. For a positive mass (m > 0) it is required that w™p and A,
have the same sign.




Figure 2: For all orientations of a body, the angular momentum &, generated by angular velocity w will lie inside a sphere with two spherical
cavities, of which the dimensions and position are determined by the bodies principal moments of inertia g1, g2, and g3. Here the orientation of the
body is parameterized by ¢1, ¢, and ¢3 (currently ¢3 = 0) around local n,, n,, and n; axes.

2.6.2. Moment balance

Moment balance imposes three conditions with 6 inertial parameters to be determined. We solve this
undetermined set of equations by selecting the principal moments of inertia (g) and solving for the orientation of the
body (R in[Eq. (8)). An equally valid approach would be to choose an orientation and then solve for the principal
moments of inertia. However, in that case the incorporation of the feasibility constraints (Eq. (10)] and [Eq. (11)) is
much harder. It should be noted that &, depends on ¢ and therefore on the choice of a.

To solve the moment balance, firstly a local frame will be aligned with the principal axis of inertia. Secondly, the
angular velocity as expressed in this local frame (wP) will be determined. Thirdly, the rotation matrix — mapping the
global to the local angular velocity wP = Rw — will be extracted.

For the local angular velocity vector there hold three conditions

lwl* = [P (38)
w'E, = ()G’ (39
.17 = (0P)T(GP)*wP (40)

This can be rewritten as matrix-vector relation on the element-wise quadratic of the local angular velocity denoted
with (wP)°?

|l .
wE =1 g g7 ()7 (1)
€I
which leads to a solution of the local angular velocity vector as
) II II2
@)?=1 g ¢ (42)
Ilfcll2
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Figure 3: The four types of bounds on the selection of the principal moments of inertia in the balancing process. (a) positive principal moments of
inertia g > 0, (b) The triangle inequality g; < g; + g, (c) the sorting condition g > g> > g3 (d) critical principal moments of inertia (Eq. (33)]-

for a given w and £,

This matrix inversion can be done as long as all principal moments of inertia are different g; # g» # g3. In the next sec-
tion, equal principal moments of inertia will be investigated. Eight distinct solutions for wP = diag([+1, +1, £1]) v/(wP)*2
are found, each corresponding to an octant. The positivity conditions (wP)°?> > 0 are satisfied as long as g is chosen
such that the angular momentum limits [Eq. (30)]- [Eq. are satisfied.

The rotation matrix (R) can be found between the local and global angular velocity vector by recognizing that the
following system of equations must hold

R[w r- A7) Xfc] = [wp GPwP w; x Gpwp] (43)
RA =B (44)

which can be inverted if w and €, are not co-linear, yielding
R=BA™' (45)

In this approach the principal moments of inertias are free to choose. However, we saw that for the resulting
(wP)*? to be positive, g must be selected such that [Eq. (30)| - [Eq. (32) are respected. Furthermore, also the positive
definiteness of the moment of inertia matrix (Eq. (10)) must be respected in addition to the triangle inequality [Eq. (1T)]
and the sorting condition [Eq. (12)] These constraints can easily be incorporated by limiting the choice of g. Giving a
total set of 9 limiting conditions of the choice of g. In a graphical interpretation of these conditions can found.

Now to summarize, feasible instantaneous dynamic balance solutions can be found as long as 1) the twist pitch A,
and w"p have the same sign, and 2) "¢, > 0. In genera,l there are four parameters to choose within bounds: @ on
the COM and g on the moment of inertia matrix.

2.6.3. Special conditions

In several special conditions this general solution requires additional conditions. Firstly, when the principal mo-
ments of inertia are chosen equal and the inverse in does not exist. Secondly, when w and &, are collinear
and the inverse in[Eq. (45)|does not exist. Thirdly, when the pitches of the twist or momentum wrench are either zero
or infinite. Fourthly and lastly, in the planar case the out of plane components can be ignored leading to a reduced
solution space.

1) In case an axisymmetric body is chosen such that g; = g, or go = g3 the solution to wP in gains a
freedom, allowing for different orientations of the body without changing the corresponding moment of inertia matrix.
In that case, the values of the equal (g = g.) principal moments of inertia cannot be chosen freely as £, should lie on

the surface of a sphere (Eq. (33)|-[Eq. (33)) and therewith determining the remaining moment of inertia (g,)
‘f: (gu(i) - fc)
78T o - £) (“0)

9



Table 1: For several special cases the general conditions (G.C.) of [Eq. (37)[and |Eq. (45)|do not hold. Either the combination of twist and wrench
are not possible (N.P.) or require additional conditions. Additional parameter freedom is denoted with a ¢.

| 1] = (0, ) |4 =0 || = o0
|4 = (0, 00) G.C. wlp, m= N.P.
[Ax] =0 G.C. wlp m=y vilp, G=¢
|[Ap| = o0 N.P. p=0, m= N.P.

Equal principal moments of inertia g; = g» = g3 can only be chosen if &, and w are co-linear, then R is a free
choice that does not change the inertia matrix. For the g;’s the following condition must hold

_ gl

llell

81 =82=83

(47)

2) In general, when €, and w are co-linear, both should be aligned along one of the principal axis, fixing only the
corresponding principal moment of inertia. The other principal moments of inertia and the orientation around that
principal axis are free to choose.

3) In previous sections several special cases of the twist and momentum wrench are identified. For the dynamic
balance some of these require special attention. We have seen that both the twist and the required momentum wrench
can be finite, infinite or zero pitched (co-) screws. This leads to 9 cases as shown in table Based on twist pitch
and momentum pitch equations, respectively [Eq. (2)] and [Eq. (22)] we discuss 3 conditions, from which the whole
table can be deducted.

e In the limit case 4, = 0, the body is in pure rotation. Therefore w and p should be perpendicular. This leaves m
in|Eq. (37)|indeterminate and free to choose.

e In the limit case A, = oo the body is in pure translation (w = 0). Therefore, this requires v || p. This bounds ¢ to
line due to ¢ = ¢ X p in[Eq. (2T)] The balancing equations become

X
[Vl lIpll

Therefore & and p should be perpendicular, requiring A, = 0. Other values for 4, are not possible. Therefore,
G is free to choose.

ap (48)

e The limit case A, = oo occurs only when p = 0. This places ¢ = r, + aw on the twist axis. Therefore, it requires
A; = 0. Other values for A, are not possible in this case.

4) In the planar case we can ignore the out of plane parts and we are left with a single inertia value g. We have
two cases either 4, = 0, in which m is indeterminate, or A, = co, in which g is indeterminate. In the first case [Eq. (20)]

and are solved by

c=r - l“’_Xp’ (49)
m |lw|?
o (E-r,xp) 1 |pl?
_ _1 50
llwll? m |lwl? .

In the second case A, = oo the body is in pure translation and we require v || p, refer to Therefore, similar
to the spatial case m and ¢ are determined according to[Eq. (48)|and g is undetermined.

All these special conditions impose additional requirements on t and h. When following the hierarchical dynamic
balancing procedure, as presented in this paper, these additional constraints are inherited over to the bodies higher in
the chain, limiting their choice of mass distribution.
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Figure 4: The kinematics of the SR planar five-bar mechanism. The solid arrows indicate axis of rotation of moving bodies due to actuation of g;
and fixation of ¢3. For body 2, the axis of rotation lies at ry 1.

2.6.4. Global dynamic balance

With this a dynamic balancing procedure is available, which yields instantaneous dynamic balance for any type
of mechanisms as long as the differential kinematics are known. As discussed earlier this instantaneous property only
hold in the pose of inspection. Outside this particular pose the dynamic balance is not necessarily maintained. To
obtain global dynamic balance, the previously derived dynamic balance solutions should be valid for all possible poses
and motions. The homogenization of this step is outside the scope of this paper.

2.6.5. Reactionless paths

When a multi-DOF system with sufficient DOFs is partially balanced, for example only the shaking forces are
canceled, a subset of the DOF can be used to generate full dynamic balance [21, 22]. If these partially balanced
mechanisms are placed in a instantaneously dynamically balanced pose, locally the full mobility can be used. This
means that in these poses, multiple reactionless paths meet.

These paths are computed, similar to [22], by choosing the coordinate velocities on the null-space of the momen-

tum basis[Eq. (T6)]

q € ker(Mp) (51)

By numerically integrating these null-space velocities, dynamically balanced paths are computed. In general, this My
matrix is full rank and does not possess a null-space, however in the case the system is partially balanced and has
more DOF than unbalanced directions, a null-space appears, which can be used to find such reactionless paths. Since
conservation of angular momentum is a non-holonomic condition [32], a closed form description of the reactionless
paths is in general not possible. In the instantaneously dynamically balanced poses, the momentum basis (M) is
a null matrix, locally allowing for the full mobility to be used. Therefore, in these poses the shaking wrench is not
influenced by the joint accelerations.

3. Design of a dynamically balanced five-bar mechanism

3.1. Kinematics and dynamics

To illustrate the presented instantaneous dynamic balancing methodology, and to show that instantaneous dynamic
balance results in intersecting reactionless paths, we apply the method to a 2-DOF planar SR mechanism. This five-bar
mechanism is parameterized as two serial chains with revolute joints at 0, till 04, joined together at the end-effector
0s, as shown in The distance between the base joints o; and o3 is length /y. The length of the four moving
bodies are /; till /4. For later use in the differential kinematics, auxiliary angles ;; between body i and body j are used.
To each body, a mass m;, and a moment of inertia g; are associated. The center of mass ¢; of each body is defined by
a distance d; and an angle ;.
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ry3 @

Figure 5: A graphical representation of the instantaneous dynamic balance procedure of a SR planar five-bar. Left shows that the momentum
wrenches of the bodies (straight arrows) due to the actuation of the first DOF (joint g1) sum to zero. Right shows the zero sum of the momentum
wrenches for the second DOF, the actuation of joint g3.

For instantaneous dynamic balance, only the differential kinematics are required. The loop closure equations are
assumed to be satisfied, and not discussed here. According to the hierarchical balancing procedure, as described in
previous sections, the two base joints g; and g3 are chosen as the input joints. For each of the DOFs the mechanism
will act as a four-bar mechanism. We will only apply this procedure for the first DOF (q;). The second DOF (g3) can
be treated similarly. The angular velocity of the input link is the unit vector perpendicular to the plane of the robot
@1, = n;. The twist of the bodies due unit velocity of joint 1 become

~ _ nz 2 _ &)2,1
t = 0 xn.|’ t = £ Xd)z,1]’ (52)
. |0 s | @
6 = [0] ty) = 04 X 6)4,1] (53)
in which the angular velocities of link 2 and 4 are
[y si [y si
(;)2,1 _ _]s1n(ﬁ]4)n 6)4’1 _ _]Slll(ﬁlz)n (54)

~ bsin(Ba) Ly sin(Ba)
The instantaneous center of rotation of body r;; is on the intersection of the line through o; and 0, and the line

through 04 and o5

ry; =0y + (01 —07) (55)

Iy sin(B14)

Similar conditions can be derived for the second DOF, the rotation of base joint 3, yielding f2,3, f3,3, and f4,3.

3.2. Dynamic balance conditions of a five-bar

Instantaneous dynamic balance is obtained by inspecting the two DOFs of the mechanism independently. In[Fig. 3|
this procedure is depicted graphically. For instantaneous dynamic balance of the first DOF, the momentum of the two
distal bodies 2 and 4 should be equated to that of the proximal body 1

hy=—-hy; —hy, (56)
Such that the linear and angular momentum generated by body 1 becomes

Py =—Do1 —Day (57)
§11= —3:2,1 —‘.‘::4,1 (58)

12



with the linear and angular momentum (Eq. (20) and [Eq. (21)) of the distal bodies as

Py = ma(ry1 — ) X @ (59)
Pay = ma(04 — €4) X D4 (60)
&r1 = —g2bn1 — 2 X Py (61)
34,1 = —g4@41 — €4 X Py g (62)

This allows us to derive the moment of inertia and COM of base links 1 and 3 as function the inertial parameters of
links 2 and 4 and a choice of mass using[Eq. (49)|and[Eq. (50)] For link 1 we have

n, X P, +Psq)

¢ o+ (P21 + P4y , 63)
my

(1P +f’4,1||2

my

gr=n] (01X Py +Py) — &1 —&4y) - (64)
For link 3 similar conditions hold.

This means that the inertial parameters of link 2 and 4 and the masses of link 1 and 3 can be chosen freely as long
as the resulting moments of inertia are positive. This positivity is ensured if the required momentum lines flu and
1A13,3 pass counter-clock wise around their revolute joints. Already the solutions to six dynamic balance conditions are
found; four force balance and two moment balance conditions.

3.2.1. Global force balance
From literature it is known that six constraints should be satisfied to obtain global force balance [7]]. Since four
force balance conditions are found in the previous section, only two additional constraints are required for global
force. These are
m2l4
dy = —d Ya=T+y2 (65)
m412
Global moment balance of the five-bar mechanism is not possible without negative moments of inertia or counter
rotations. This can be deducted from special kinematic conditions required for the dynamic balance of the four-bar
mechanism [12]].

3.2.2. Reactionless paths

Now that global force balance is established for the five-bar mechanism, one of the DOFs can be used to render
moment balance, i.e. counteract the unbalance of the other DOF. In each pose we therefore have at least one dy-
namically balanced motion freedom. This motion freedom is computed using the null space operation (Eq. (51)) and
plotted for a grid of end-effector positions (Fig. 6). Numerical integration of this null-space operation yields reaction-
less paths. In the points where the instantaneous dynamic balance conditions are satisfied (here in [0, 0]), multiple of
these reactionless paths meet, locally allowing a two DOF dynamically balanced motion.

3.3. Design of demonstrator

Based on the previous dynamic balance properties a force balanced five-bar mechanism is designed with two
intersecting reactionless paths to demonstrate the existence of instantaneous dynamic balance on a 6-axis force/torque
sensor. The present dynamic balance conditions (Eq. (64)|and[Eq. (65)) place conditions on ¢;,¢3, €4, g1, and g3. This
leaves a design freedom on kinematic parameters (I - /4) and the remaining inertial parameters (m; - my, ¢, g> and
g4). These parameters can be chosen freely as long as all the masses and moments of inertia are positive. Here we
aim to show that the current method opens a larger design freedom while with comparable reactionless paths as two
mirror symmetrically connected dyads [33] or the DUAL V [19].

Therefore, the final design of the robot is chosen based on the following aspects: 1) The reactionless paths should
be perpendicular and as straight as possible. 2) The mechanism must be constructible e.g. links should have sufficient
stiffness. 3) Workspace should be sufficiently large. 4) Motor torques should be minimal. 5) The demonstrator should
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Table 2: The kinematic and inertial parameters of the Fuga I.

Name Symbol Value Unit
Base width lo 400 mm
Upper arm length I, 1 190 mm
Lower arm length b, 1y 180 mm
COM upper arm di, ds 69 mm
COM lower arm d>, d; 140 mm

COM angle upper arm 7y, y3 150 deg
COM angle lower arm  y3, y4 90 deg

Mass upper arm my,m3  0.66 kg
Mass lower arm my, My 0.21 kg
MOI upper arm g1, 83 146 gm?
MOI lower arm g2, 84 1.66 ¢ m?

y(m)

-0.3 -0.2 -0.1 0 0.1 0.2 0.3
x(m)

Figure 6: The resulting dynamically balanced mechanism the traces of reactionless paths. Path 1 and 2 are reactionless paths. Path 3 is the non
moment balanced path. The dashed line denotes the workspace boundary. (For interpretation of the references to colour in this figure legend, the
reader is referred to the web version of this article.)

fit on a 6-DOF force/torque sensor. 6) The center of mass of all links should be in a single plane to avoid out of plane
torques.

Finally, an symmetric M shape design of the five-bar mechanism has been selected. The base joints are 400 mm
apart. The upper arms and the lower arms have a length of 190 mm and 180 mm, respectively. Refer to
for the other dimensions and design parameters. This gives the mechanism a singularity free workspace of with a
minimal diameter of approximately 380 mm. The instantaneously dynamically balanced pose lies in the middle of the
workspace. The first reactionless path is along the symmetry line and the second is approximately along the base links
(Fig. 6). This second reactionless path is an approximate straight line with a deviation +/- 0.5% (0.9 mm deviation
over a stroke of 200 mm). The exotically shaped upper arms are used for sufficient stiffness while providing the
required moments of inertia. Direct drive brushless motors of Maxon EC-flat 90 are used. These have a peak torque
of 7.4 Nm and a moment of inertia of 3060 g cm?. A joint-space PID+ controller with computed torque control is
used to steer the robot[Fig. 7] shows the final design of the mechanism.
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Figure 7: The 2-DOF dynamically balanced robot Fuga I mounted on a 6-DOF force/torque sensor (outlined) to measure the shaking forces and
moments during motion.

4. Evaluation of a dynamically balanced five-bar mechanism

4.1. Evaluation approach

To evaluate the instantaneous dynamic balance of this demonstrator, the shaking forces and moments were mea-
sured over three paths , which all intersect in the instantaneously dynamically balanced pose. The first two paths are
the reactionless paths and the third is a non-moment balanced path. As shown in [Fig. 6 the first path is over the
x-axis, the symmetry line of the mechanism. The second path is over the y-axis. The third and unbalanced motion is
a diagonal over the workspace. To show that in the this pose the shaking moments are not affected by accelerations, a
second order motion profile is chosen such that the joint accelerations switch in this pose. These paths have an equal
length of 200 mm and the traveling time is 0.4 s. This gives a maximum end-effector velocity and acceleration of 1
m/s and 5 m/s?, respectively. The shaking forces in the plane (x- and y-direction) and the shaking moment out of plane
(z-direction) will be reported for these motions.

As the measurement setup and the mechanism showed an eigenfrequency around 27 Hz, a lowpass filter with a
cut-off of 10 Hz was applied to the force/torque measurements.

The mechanism is modeled in a multibody dynamics software. The measured joint angles are fed into this model
to simulate and explain the resulting force and moment measurements. Firstly, this gives an estimation of the bearing
forces at the base. In the perfectly force balanced case these forces completely cancel out. Therefore, the measured
residual shaking forces are compared to the modeled internal forces for reference. Secondly, the modeled shaking
moments are a measure for the shaking moments caused by path deviations. The difference between the modeled and
the measured shaking moments gives a measure for construction and measurement errors.

4.2. Results

shows the shaking moments and forces as measured for the three paths. The peak-to-peak shaking moment
for the two reactionless paths are 0.06 and 0.04 Nm respectively, for the unbalanced path this is 0.80 Nm. This
corresponds to a reduction of 93% and 95% of the shaking moment with respect to the unbalanced path. The difference
between the measured and modeled shaking moment is maximally 0.04, 0.02 and 0.10 Nm for the three paths. In
addition, the third trajectory shows instantaneous dynamic balance in the center of the workspace. In this pose, the
switch of accelerations does not affect the shaking moments, as indicated by the arrows.
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Figure 8: x- and y- position of the end effector (top row), controller error in end-effector coordinates (middle row) and used motor torque (bottom
row) for the three trajectories followed to evaluate force and moment balance. Trajectory 1 and 2 follow the two reactionless paths through the
center of the workspace. Trajectory 3 follows the a non-moment balanced diagonal.
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Figure 9: The shaking forces (top and middle) and moments (bottom) measured during the three trajectories are denoted with a thick solid line.
For comparison the estimated bearing forces (top and middle) are given in thin solid and dashed lines. In the bottom row the estimated shaking
moment based on the actual motion is shown with a dashed line. The arrows indicate where the acceleration switch.
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The shaking forces for the three paths have a peak-to-peak value of 0.26, 0.11 and 0.04 N respectively. When
comparing these shaking forces to the estimated bearing forces, which are 5.93, 4.51, and 2.58 N, it shows that
approximately 96, 98, and 99 % of the forces in the system cancel out.

shows that the paths could be followed up to an end-effector accuracy of 2 mm. This corresponds to 1% of
the length of the path. This is computed by transforming the measured joint space error to the end-effector error under
the assumption of perfect rigidity.

From the difference between the measured and the modeled shaking moments it is deduced that for the two reac-
tionless paths 23% and 57% of the residual unbalance can be explained by controller inaccuracies causing the robot to
deviate from the reactionless path. Other causes for the difference between measured and modeled shaking moments
can be internal vibrations, production tolerances and inaccuracies. High frequency internal vibrations required low
pass filtering of the force/torque sensor signal to eliminate the measured high frequency vibration. It is expected that
this filtering influences the comparison between measured and modeled shaking forces and moments.

5. Discussion

Instantaneous dynamic balance can be found when the momentum wrenches in a mechanism sum to zero for all
instantaneous velocities. By following a specific sequence through the chains, unique and solvable constraints are
placed on the proximal part of the mechanism. From these conditions, the mass, COM and inertia matrix can be
deduced for all cases. The remaining variables are the COM location along w axis and principal moments of inertia g.
This fixes the mass, COM, and the orientation of the body. The positivity of mass and inertia, the triangle inequality
put bounds on the choice of inertia matrices. This required that A, should have same sign as w"p and that "€, > 0. In
several special cases, additional requirements on t and h are to be satisfied (Table T)). These requirements are inherited
over to bodies higher in the chain, limiting the choice of their inertial parameters. By satisfying these bounds, the
mechanism can be constructed in theory. In practice, however, additional constraints on stiffness, shape, etc. will
further limit the choice of inertial parameters.

The instantaneous dynamic balance conditions can be found for any robot and do not require the solution or
inspection of the loop closure equations. It merely relies on the differential kinematics, which are readily available
through screw theory.

To extend the instantaneous dynamic balance to global dynamic balance, additional conditions are to be met. It
requires not only that the momentum is zero in a certain pose, but also in all other poses. Harmonizing this step is
beyond the scope of this paper.

The Fuga I was constructed to demonstrate that the presented method results in instantaneous dynamic balance.
Although its unusual mass distribution is not likely to be used in industry, its dynamic balanced paths are comparable
to that of the DUAL V [19]], yet is achieved through a design with two instead of four motors. Also, the COM does
not have to lie on the line through the pivots, and the upper and lower link lengths can differ. This shows that with
this method, novel dynamic balance solutions can found for mechanisms with reactionless paths, and that the location
of their intersection points can be chosen freely. The shape of the reactionless paths is determined by the remaining
parameters, the choice of which is outside the scope of this paper. Here an iterative approach was adopted, which
resulted in perpendicular, approximate straight paths.

The dynamic balance measures as reported here are dependent on the cycle time, motion profiles and the choice
of paths. Due to the velocity dependent terms in the shaking forces and moments and hence in the dynamic balance
measures. Here, the worst and best trajectories possible for this setup are compared. These are therefore regarded as
representative of the robot.

6. Conclusion

For the first time screw theory has been applied to derive a subset of the dynamic balance conditions for any planar
or spatial, single or multi-DOF mechanism in a general, geometrical manner, without requiring tedious manipulation
of equations.

The presented screw-based dynamic balance method provides and solves six conditions per DOF in spatial case,
and three per DOF in the planar case. These conditions yield instantaneous dynamic balance, which is a prerequisite
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for global dynamic balance. This is interpreted as pose, in which multiple reactionless paths intersect. The freedom
and bounds on the choice of masses, centers of mass, and moments of inertia where interpreted in a geometric manner.

This method is applied to a planar five-bar mechanism and gave six instantaneous dynamic balance conditions;
four out of six conditions for global force balance and two conditions on instantaneous moment balance. The mech-
anism was designed such that two reactionless paths intersect in the middle of the workspace and are approximately
perpendicular straight lines. Measurements and simulations showed that the shaking forces where at least 96% lower
then the internal bearing forces, indicating force balance. The measurements also confirmed the existence of two
intersecting reactionless paths. When comparing the non-moment balanced paths with the two reactionless paths a
shaking moment reduction in the order of 95 % was achieved. This shows the existence of a instantaneously dynami-
cally balanced pose in the middle of the workspace.
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