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Linear Time-Varying Parameter Estimation:
Maximum A Posteriori Approach via

Semidefinite Programming
Sasan Vakili , Mohammad Khosravi , Peyman Mohajerin Esfahani ,

and Manuel Mazo Jr. , Senior Member, IEEE

Abstract—We study the problem of identifying a linear
time-varying output map from measurements and linear
time-varying system states, which are perturbed with
Gaussian observation noise and process uncertainty,
respectively. Employing a stochastic model as prior knowl-
edge for the parameters of the unknown output map,
we reconstruct their estimates from input/output pairs via
a Bayesian approach to optimize the posterior probabil-
ity density of the output map parameters. The resulting
problem is a non-convex optimization, for which we pro-
pose a tractable linear matrix inequalities approximation to
warm-start a first-order subsequent method. The efficacy
of our algorithm is shown experimentally against classi-
cal Expectation Maximization and Dual Kalman Smoother
approaches.

Index Terms—Estimation, identification, semidefinite
programming, linear matrix inequalities, optimization.

I. INTRODUCTION

BAYESIAN approaches for estimating characteristics of
dynamical systems have been a subject of studies for

decades and have recently received extensive attention [1], [2].
In systems theory, the significance of the Bayesian approach is
highlighted in state estimation of dynamical systems [3], [4],
e.g., through the celebrated recursive Kalman filter. The
Rauch-Tung-Striebel (RTS) Smoother counterparts [4], on the
other hand, are (offline) iterative non-causal algorithms incor-
porating future measurements into the current state estimation.

An alternative to Bayesian estimation, which requires a
prior distribution of the parameters of interest, is the min-
imax estimation approach, assuming instead the knowledge
of ambiguity sets. The least favourable uncertainty model
from this ambiguity set is then used for estimation [5], [6],
[7], [8]. Here, we focus instead on designing a classical
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smoother for a different problem: system parameters estima-
tion from input/output measurements via Bayesian estimation.
This problem arises in, e.g., robot mapping in unknown envi-
ronments, such as Autonomous Underwater Vehicles operating
in the deep sea where global positioning is expensive due to
low visibility and lack of radio communications.

Given unknown parameters with random states, applying
a Bayesian estimation framework leads to severe non-
convexities in the resulting optimization problem. As such,
iterative schemes are typically employed to overcome these
non-convexities. Assuming the parameters also follow a sta-
tistical formulation, two main types of smoother approaches,
Dual Kalman Smoother (DKS) and Expectation Maximization
(EM), are available in the literature [9].

Dual Kalman Smoothers (and filters) attempt to maximize
the joint probability space of parameters and state (conditioned
on input and output observations), iterating between estimating
the system states using the last parameters’ estimates followed
by estimating the parameters from the currently estimated
states. Although DKS is computationally efficient according
to its recursive structure, its estimation performance can be
significantly suboptimal due to the bilinearity between the
parameters and states. Unlike DKS, Expectation Maximization
learns the parameters of statistical models by maximizing the
posterior distribution of the parameters from the observed
data and their prior density function when incomplete data or
hidden variables exist [10], [11], [12].

Considering the states of a dynamical system as hidden
variables [13], [14], [15], EM estimates the parameters of a
dynamical system in two steps by integrating all possible
values of the states in which the model could have generated
the observations. The distribution over hidden variables is
maximized in the E-Step using the parameters estimates from
the previous iteration. Subsequently, the M-Step maximizes a
lower bound of the original cost by fixing the hidden variables
distribution to the one optimized in the E-Step. A closed-
form solution of the M-Step is provided in [14] for estimating
the parameters of linear time-invariant dynamical systems and
in [9, Ch. 6] for estimating the parameters of a Gaussian radial
basis function (RBF) approximator. Both solutions consider
the maximum likelihood case, where no prior exists for the
parameters.

Finding a closed-form expression for the parameters update
in the M-Step of a Maximum A Posteriori (MAP) smoothing
problem when the parameters are time-varying and in the pres-
ence of a priori knowledge is non-trivial. This challenge leads
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to a slow convergence of the EM algorithm utilizing com-
putationally demanding approaches to solve the optimization
in M-step, e.g., first-order methods. The slow convergence
of EM is shown experimentally in [16], and further analyses
in [17], [18] demonstrate the slow convergence rate of the
gradient variant of the EM algorithm for Gaussian Mixture
Models.

Alternatives to the iterative schemes can be found in the
parameter estimation problem of an elliptically contoured
distribution [19, P. 107], employing recent Conic Geometric
Optimization methods [20]. These methods, however, require
reformulating the MAP problem via techniques, such as those
proposed in [21, Sec. 3], which result in losing the output
map’s original structure. Retaining such a structure to leverage
the available a priori knowledge is essential to our problem.

In this letter, we consider systems with known linear
time-varying dynamics affected by process and measurement
Gaussian noise but with unknown time-varying output maps.
We propose a method to estimate the unknown parameters of
the output map having as a priori information a linear stochas-
tic system encoding the evolution of the parameters. We derive
an optimization problem applying a fully Bayesian approach,
maximizing the exact posterior distribution of the parameters
when unfolded over the whole time horizon. A tractable con-
servative approximation to the resulting optimization problem
is derived via semidefinite programming (SDP) using linear
matrix inequalities (LMIs) techniques. The solution from
this approximation then provides a warm-start for a first-
order quasi-Newton algorithm that enjoys a locally superlinear
convergence rate. This combination allows us to enjoy both the
computational advantage of DKS and outperform the statistical
performance of EM. We illustrate the efficacy and performance
of our proposed method in comparison with DKS and EM
through a Monte Carlo experiment with different signal-to-
noise ratios (SNRs) in Section V.

Notation: Throughout this letter, Z+, R and R
n×m denote

the set of positive integers, real numbers, and n by m real
matrices, respectively. We indicate diag(A1, . . . , Ak) as a
block diagonal matrix with diagonal entries of given matrices
A1, . . . , Ak. The symbol I denotes the identity matrix, and
tr is the trace operator. Given A ∈ R

m×n, a matrix with
columns a1, . . . , an ∈ R

m, we define vec(A) as the vector
[aT

1 , . . . , aT
n ]T ∈ R

mn. For a positive symmetric matrix A ∈
R

n×n, �(A) := (λi(A))n
i=1 indicates the vector of eigenvalues

of A in descending order, i.e., λi(A) is the ith largest eigenvalue
of A. A multivariate normal (Gaussian) distribution with mean
μ and covariance matrix � is denoted by N (μ,�), and the
symbol ∼ stands for “distributed according to”.

II. PROBLEM DEFINITION

Consider a discrete-time linear time-varying dynamical
system described by the process model:

xk+1 = Akxk + Bkuk + wk, k ∈ Z+, (1)

where k denotes the time index, xk ∈ R
nx is the vector of state

variables, Ak ∈ R
nx×nx is the state transition matrix, uk ∈ R

nu

is the vector of inputs, Bk ∈ R
nx×nu is the input matrix, and

wk ∈ R
nx is an independent realization at time k of the process

noise with Gaussian distribution N (0, �wk). The initial state
of system (1), denoted by x0, is also assumed to be drawn
from a Gaussian distribution N (μx0 , �x0). For k ∈ Z+, the

state of the system is observed at time instant k through a
perturbed linear time-varying map:

yk = Ckxk + vk, k ∈ Z+, (2)

where yk ∈ R
ny denotes the output measurements, Ck ∈

R
ny×nx is an unknown time-varying observation matrix, and

vk ∈ R
ny is the vector of measurement noise signals with

Gaussian distribution N (0, �vk). Let θk be the vector of all
parameters at each time index k:

θk := vec
(
CT

k

)
, (3)

which implies that Ck and θk uniquely characterize each other.
We introduce the following assumption, providing a form of
a priori information. This plays a role akin to that of a
regularizer in non-Bayesian techniques, such as in Supervised
Learning, where algorithms without such regularizers are
prone to overfitting.

Assumption 1 (Output Map Dynamics): The dynamics of
the output map are governed by the difference equation

θk+1 = θk + ηk, k ∈ Z+, (4)

where k denotes the time index, θk ∈ R
nynx is the vector of

parameters driven by the vector of process noise ηk ∈ R
nynx

with Gaussian distribution N (μηk , �ηk). Further, assume that
the initial parameter of system (4), denoted by θ0, is drawn
from the normal distribution N (μθ0 , �θ0).

Assumption 1 imposes a Gaussian random walk dynamics
on the evolution of the parameters, which is the minimal
structure and assumption on the variations of the parameters
because of the maximum entropy feature of the Gaussian
distributions. This assumption allows us to employ a stochastic
belief of a deterministic reality in the Bayesian viewpoint.

Let the inputs and outputs of system (1)-(2) be measured for
k = 0, . . . , nT , where (nT +1) ∈ Z+ denotes the length of the
measurement data. More precisely, the input-output trajectory
data is given by D = {(uk, yk) | k = 0, . . . , nT }. Additionally,
we assume:

Assumption 2 (Noise): The process, measurement, and out-
put map noise realizations, i.e., wk, vk and ηk, respectively, for
all k ∈ {0, . . . , nT }, are independent. Furthermore, the means
μx0 , μθ0 , μηk , and covariance matrices �x0 , �wk , �Vk, �θ0
and �ηk , for k ∈ {0, . . . , nT }, are known.

Remark 1 (A Priori Knowledge): While we assume μθ0 ,
μηk , �θ0 , and �ηk to be readily known, in practical applica-
tions, these parameters can be obtained through various means
depending on the context, e.g., employing prior knowledge of
the nominal model, empirically from previous experiments’
data, or employing a suitable hyperparameter estimation
method when μηk = μθ0 and �ηk = �θ0 , for k ∈ Z+.

Ultimately, the question is whether the observation
model (2) could be estimated. More precisely, we would like
to address the following problem:

Problem 1: Given the process and observation models (1)
and (2), input-output measurement data D, and under
Assumptions 1 and 2, estimate the unknown time-varying
observation matrices Ck in an efficient and tractable way.

To address the problem 1, we develop a MAP approach in
the next section, followed by a tractable reformulation using
LMI techniques in Section IV.

III. MAXIMUM A POSTERIORI ESTIMATION

In this section, we propose a Bayesian method for estimat-
ing the unknown observation matrices C0, . . . , CnT . The three
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main elements in Bayesian estimation methods are a prior
density function, an observation model, and a loss function,
which we briefly explain for solving our problem with the
MAP approach.

A. Lifted Process and Observation Model
Let us represent the process model (1) in the following lifted

matrix form:

x = A(u + wx), (5)

where x = [
xT

0 , . . . , xT
nT

]T includes the system states
over the entire horizon up to time nT , while the input
vector is modified to include the initial state u =[
μT

x0
, (B0u0)

T , . . . , (BnT −1unT −1)
T
]T

, and the noise vector
consists of the uncertainty of the initial state and process
noises wx = [

wT
x0

, wT
0 , . . . , wT

nT −1

]T
with wx0 ∼ N (0, �x0).

Given that the process noises and initial state uncertainty
are uncorrelated from Assumption 2, we can specify wx in
terms of a multivariate normal distribution N (0, �wx) in which
�wx = diag(�x0, �w0 , . . . , �wnT −1). The lifted transition
matrix A has the lower triangular form:

A =

⎡

⎢⎢⎢⎢
⎣

I

A0 I

A1A0 A1 I

...
...

. . .
. . .

AnT −1 . . . A0 AnT −1 . . . A1 . . . AnT −1 I

⎤

⎥⎥⎥⎥
⎦

.

Similarly, the observation model (2) for the entire trajectory
can be expressed as:

y = Cx + v, (6)

where y = [
yT

0 , . . . , yT
nT

]T is the vector of all measurements,
v ∼ N (0, �v) is the vector of all measurement noise
realizations with �v = diag(�v0, �v1 , . . . , �vnT

), and C is the
lifted observation matrix:

C = diag
(
C0, C1, . . . , CnT

)
.

Finally, we describe the dynamics of the output map parame-
ters θ for the entire trajectory as:

θ = μθ + wθ , (7)

where θ = [
θT

0 , . . . , θT
nT

]T , and μθ results from the summa-
tion of the biases of the initial parameter and the noise: μθ =[
μT

θ0
, μT

θ0
+ μT

η0
, . . . , μT

θ0
+∑nT −1

i=0 μT
ηi

]T
. Similarly, the noise

signal wθ results from the integration over the entire horizon
including the uncertainty of the initial parameter as: wθ = Dη,
where η = [

ηT
θ0

, ηT
0 , . . . , ηT

nT −1

]T
and ηθ0 ∼ N (0, �θ0), with

D =

⎡

⎢⎢
⎣

I

I I

...
...

. . .

I I . . . I

⎤

⎥⎥
⎦.

Since the parameters are assumed to be independent
(Assumption 2), we have wθ ∼ N (0, �wθ ), �wθ =
D�ηDT, with �η = diag(�θ0, �η0 , . . . , �ηnT −1). Ultimately,
the model (7) is used to specify the prior density function.

In what follows, we represent C as C(θ) to emphasize
the dependence of C on θ according to (3). Consequently,
substituting x in (6) with the expression from (5) results in

the observation model, with unknown C(θ), describing the
measurements y as a function of the applied inputs u:

y = C(θ)Au + wy(θ), (8)

where wy(θ) = C(θ)Awx + v. Also, from Assumption 2:

wy(θ)|θ ∼ N
(
0, �wy(θ)

)
,

where �wy(θ) = C(θ)A�wxAT C(θ)T + �v. This model
is used later to specify the conditional probability density
function of the measurements. Note that wy(θ)|θ is conditioned
on knowing the parameters and remains Gaussian with the
derived covariance since both noise sources, wx and v, are
Gaussian and independent.

B. MAP Loss Function
In MAP estimation, one aims to find an estimate θ̂ for

the parameters by minimizing the cost function [22]: E[1 −
1

θ :
∥
∥∥θ−θ̂

∥
∥∥∞≤ε

(θ)], where θ is the vector of random variables,

1(.) is an indicator function, and ε is a small scalar. It is further
shown in [23, Chapter 4] that minimizing the expectation
of such a loss function implies maximizing the conditional
probability density of θ given the vector of observations and
inputs, i.e.,

θ̂ = argmaxθ p(θ |y, u), (9)

where θ̂ is the estimate of the true parameter θ . The following
lemma formalizes this first step to compute the MAP estima-
tion.

Lemma 1 (MAP Optimization Problem): Let us define the
function J : Rnynx(nT +1) → R as

J (θ) := logdet
(
�wy(θ)

)

+∥∥y − C(θ)Au
∥∥2

�−1
wy (θ)

+ ∥∥θ − μθ

∥∥2
�−1

wθ

.(10)

The MAP estimation (9) is equivalent to:

θ̂ = argmin
θ

J (θ). (11)

Proof: Using Bayes’ rule, the MAP estimation (9) can be
reformulated as

max
θ

p(θ |y, u) = max
θ

p(y|θ, u)p(θ |u)

p(y|u)
. (12)

We first note that the denominator of (12) does not depend
on θ and, hence, can be neglected without changing the
optimizer. Moreover, we note that the dynamics of θ in (4)
(or equivalently in the lifted form in (7)) do not depend on
the input sequence of u (i.e., p(θ |u) = p(θ)). Next, using a
straightforward computation, one can derive the probability
density functions p(θ) and p(y|θ, u). Specifically, from (7),
we know that the variable θ is Gaussian with the probability
density function

p(θ) =
exp

(
− 1

2 (θ − μθ)
T �−1

wθ
(θ − μθ)

)

√
(2π)(nT +1)nynx det

(
�wθ

) .

Similarly, we know from (8) that given θ and the input
sequence u, the output sequence y is also Gaussian with the
conditional probability density function

p(y|θ, u) =
exp

(
− 1

2 (y − C(θ)Au)T �−1
wy

(θ)(y − C(θ)Au)
)

√
(2π)(nT +1)ny det

(
�wy(θ)

) .
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Finally, applying the monotonically increasing function log
and observing that all terms in the denominators except
det(�wy(θ)) are constant, we arrive at the minimization
problem of the function J defined in (11).

In the next section, we propose a tractable conservative
approximation using LMI techniques to tackle the non-convex
objective function J (θ) defined in (10).

Remark 2 (Robust Estimation): Alternatively, a robust min-
imax estimation formulation similar to [8] could be employed.
This approach, however, requires finding an ambiguity set to
approximate non-Gaussian observation uncertainties due to the
multiplication of Gaussian variables in wy(θ).

IV. PROPOSED SOLUTION

The optimization problem (11) is non-convex not only
because of the weight �−1

wy
(θ), being quadratic in the

parameters θ , in the second term but also because of the
log-determinant operator in the first term. A typical approach
is to use first-order algorithms to find a solution due to
the mentioned non-convexities. These algorithms, however,
only guarantee convergence to a local optimum. Therefore,
selecting an appropriate initial starting point is crucial to the
obtained quality of the solution. We propose to solve the
problem in two steps: first, we perform a convex relaxation
of (11) into a set of LMIs, which we use to compute an initial
approximate minimizer; next, we employ this approximate
minimizer to initialize (warm-start) a first-order optimization
method, e.g., steepest descent [24] or quasi-Newton algo-
rithms [25], to solve (11) thus refining our initial minimizer
estimate.

Theorem 1 (LMI Conservative Approximation): Consider
the following LMIs:

min
S,θ,γ,β

tr(S − I) + γ + β

s.t.

[−�−1
wx

AT C(θ)T

C(θ)A �v − S

]
� 0,

[ −S (y − C(θ)Au)

(y − C(θ)Au)T − γ

]
� 0,

[ −�wθ (θ − μθ)

(θ − μθ)
T − β

]
� 0. (13)

Then, the optimal value of the nonlinear program (11) is
upper bounded by J∗ +‖y−C(θ∗)Au‖2

�−1
wy (θ∗)−S∗−1 , where J∗

and (S∗, θ∗) are the optimal value and the optimizer of (13),
respectively.

Proof: Consider a matrix S � 0 upper bounding the
covariance matrix �wy(θ) � 0 as

�wy(θ) = C(θ)A�wxAT C(θ)T + �v � S. (14)

Thus, λi(�wy(θ)) ≤ λi(S), for i = 1, . . . , ny(nT + 1), which
implies that

logdet
(
�wy(θ)

) ≤ logdet(S).

Since logdet(S) = ∑ny(nT +1)

i=1 log λi(S) and tr(S) =
∑ny(nT +1)

i=1 λi(S), we also have

logdet
(
�wy(θ)

) ≤ logdet(S) ≤ tr(S − I).

Using the Schur complement, one can see that (14) is equiv-
alent to the following linear matrix inequality

⎡

⎣
−�−1

wx
AT C(θ)T

C(θ)A �v − S

⎤

⎦ � 0.

Similarly, considering γ ≥ 0 and β ≥ 0 such that

(y − C(θ)Au)T S−1(y − C(θ)Au)

≤ (y − C(θ)Au)T �wy(θ)−1(y − C(θ)Au) ≤ γ, (15)

and

(θ − μθ)
T �−1

wθ
(θ − μθ) ≤ β, (16)

we can apply again the Schur complement to the inequalities
in (15) and (16) to obtain the last two LMIs in (13). Finally,
replacing the terms in the cost function J (θ) in (10) with their
bounds and including the corresponding LMIs as constraints
arrives at the LMIs (13). Note further that by definition,
we have

J∗ + ∥∥y − C
(
θ∗)Au

∥∥2
�−1

wy (θ∗)−S∗−1

= J
(
θ∗)+ tr

(
S∗ − I

)− logdet
(
�wy(θ

∗)
) ≥ J

(
θ∗), (17)

where the function J (θ∗) is defined in (10), and the last
inequality follows from (14).

The tightness of the inequality in (17) mainly depends on
the gap between log det(S) and tr(S − I) since log det(S) is
bounded from above by tr(S − I), which is negligible when
λi(S) ≈ 1, for i = 1, . . . , ny(nT + 1). One may employ
a suitable matrix W to scale the eigenvalues of S, replace
log det(S) with log det(WSW)−2 log det(W) and approximate
log det(WSW) with tr(WSW − I). Furthermore, the closeness
of J∗ and J (θ∗) in (17) is proportional to the fitness quality
of the measurements and whether S∗ is close to the covariance
matrix accordingly.

In addition, Theorem 1 provides an approximation of (11),
producing an initial near-optimal solution. As indicated earlier,
we propose to employ this solution to warm-start a local (non-
convex) optimizer. Due to its fast convergence, we propose
to employ, as a refining optimizer, the BFGS algorithm [25,
Ch. 6], a variant of quasi-Newton methods. The BFGS algo-
rithm approximates the Hessian matrix for its search directions
relying on an analytical expression of the gradient ∇θJ (θ).
The gradient of the cost function (10) with respect to the
parameters θ

∇θJ (θ) =
[

∂J
∂θ1

, . . . ,
∂J

∂θnynx(nT +1)

]T

(18)

can be easily derived applying the chain rule:

∂J
∂θijk

= 2tr
[(

A�wx AT C(θ)T �wy(θ)−1
)

Cij
k (θ)

−
(

A�wx AT C(θ)T �wy(θ)−1

× (y − C(θ)Au)(y − C(θ)Au)T �wy(θ)−1
)

Cij
k (θ)

−
(

Au(y − C(θ)Au)T �wy(θ)−1
)

Cij
k (θ)

+
(
(θ − μθ)

T �−1
wθ

)
θ ijk
]
,

where Cij
k (θ) is the single-entry matrix of C(θ) with the block

matrix of Ck(θ) having 1 at index (i, j) and zero elsewhere,
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and θ ijk is the single-entry vector of θ with 1 at index ijk and
zero elsewhere.

The LMIs (13) initializes the original non-convex problem
with a locally optimal solution. Thus, the computational
complexity of the proposed method consists of the well-known
computational complexity of solving the SDP problems [26],
i.e., a one-time solution of (13), and the computation of the
gradient (18) per iteration of the first-order method:

O
(

n3
x(nT + 1)3 + n2

x(nT + 1)2

2
+ nyn2

x(nT + 1)2

+nxn2
y(nT + 1)3 + (

ny

)3
(nT + 1)3

)

,

which is O(n3
T ) when nx, ny � nT .

V. NUMERICAL EXAMPLE

In this section, we provide a numerical example to verify the
efficacy and performance of the proposed method: employing
the LMIs (13) to warm-start the solution of (11) via the BFGS
optimizer. Additionally, we compare the resulting solution
with the estimates obtained from EM and DKS algorithms.
To have a fair comparison, we also employ the same BFGS
optimizer for the M-Step of the EM estimation.

We demonstrate our solution on the following system:

xk+1 =
[

0.7 0.25 0
0 0.5 0
0 0.25 0.7

]

xk +
[

0
1
1

]

(3.5 + cos(2k)) + wk,

with μx0 = [
1, 0.5, 2

]T . The observation is a
two-dimensional model, i.e., the number of measurements
per time instant is ny = 2. The system has sampled input
and measurement pairs in D every 100 milliseconds for 10
seconds, i.e., nT = 100. Thus, the number of parameters to
be estimated is nynx(nT + 1) = 606. The noise covariance of
process, observation and output map dynamics, �wk , �vk and
�ηk , are assumed to remain constant across the entire horizon.
Moreover, the initial state and parameter noise covariance are
similar to the noise covariance of process and output map
dynamics, respectively (i.e., �x0 = �wk and �θ0 = �ηk).
The output map noise biases μηk are generated such that
μ1,ηk = 5 + e−0.6k cos(0.4k), μ2,ηk = 1.5 + e−0.6k sin(0.025k),
μ3,ηk = 2, μ4,ηk = 5 + e−0.6k cos(0.4k), μ5,ηk = 1.5 +
e−0.6k sin(0.025k), and μ6,ηk = 2. The initial parameter bias,
μθ0 , is derived from μη0 by setting k = 0, and the DKS
and EM algorithms’ initialization is according to these noise
bias values. We examine the performance of our algorithm,
SDP-GD, compared with EM and DKS on four scenarios
generated by employing High/Low SNRs for the process and
observation noise, particularly 30 and 10 dB, and High/Low
parameter variation of:

High : �ηk = diag(2.17, 0.076, 1.19, 1.38, 0.87, 1.27)

Low : �ηk = diag(6.9, 0.2, 3.8, 4.4, 2.8, 4) · 10−2.

Combined results from 100 experiments for each of the four
scenarios, keeping the same ground-truth realization in each
scenario, are illustrated in Figures 1 and 2. The figures
demonstrate the median (vertical dotted lines) and distribution
across experiments based on the mean squared error (MSE),
i.e., MSE = 1

nT +1

∑nT
k=0 ‖θk − θ̂k‖2

2. One can observe how the
DKS underperforms compared to the EM and our SDP-GD

Fig. 1. The Mean Squared Error of the three methods in high noise of
�η and two different SNRs for 100 experiments.

Fig. 2. The Mean Squared Error of the three methods in low noise of
�η and two different SNRs for 100 experiments.

TABLE I
THE AVERAGE COMPUTATION PERFORMANCE
ON ALL SCENARIOS FOR 100 EXPERIMENTS

solutions in more challenging scenarios where the process-
observation model noise is high or in the presence of High
parameter variation.

The average and standard deviation of the computation time
of each method across 100 experiments are reported in Table I.
We performed all the experiments on a cluster node with
384G memory and 40 CPU cores (2 Intel Xeon Gold 6148 @
2.40GHz). The elapsed execution times confirm our hypothesis
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that EM is computationally more expensive than the other
alternatives.

The performance of EM and DKS algorithms highly
depends on the initialization, while in contrast, our proposed
solution takes advantage of a warm-start initializer obtained
from solving a convexified approximation of the original
optimization problem. This initialization helps converge to
a better local optimum faster than the EM algorithm. In
addition, the M-step of the EM algorithm, in this problem,
does not hold a closed-form solution, which results in utilizing
a first-order method. This gradient M-Step also plays a part
in the general slowness of the EM algorithm. Our algorithm,
however, requires a one-time execution of the set of LMIs
followed by an iterative quasi-Newton method with a super-
linear convergence rate. Hence, it provides the best of both
worlds, i.e., better estimations than EM and DKS with less
computation time than EM.

VI. CONCLUSION

We have introduced a method for estimating an unknown
output map of a linear time-varying system by employing
a stochastic characterization of the evolution of the output
map parameters, which serves as a priori information for
MAP estimation. The derived MAP optimization problem
is solved by relaxing the optimization as a set of LMIs,
whose solution provides a warm-start for a gradient descent
algorithm. Compared with standard approaches to solve this
problem, namely EM and DKS, we showed experimentally the
superiority of our method in estimation performance and lower
computational demands compared to EM. Future work will
explore the incorporation of other types of a priori knowledge
on the output map, the development of efficient causal filters
following similar approaches, the minimax formulation for
robust estimation, considering noise models with more general
structures, and introducing methods for efficient design of the
control input.
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