
Machine Learning Techniques for Moment
Tensor Estimation

THESIS MSC. APPLIED GEOPHYSICS

Rosalie Verwijs | August 2021

A Master Thesis for the Applied Geophysics program by the IDEA league:

Delft University of Technology
Swiss Federal Institute of Technology

Rheinisch-Westfälische Technische Hochschule Aachen

Examination Committee

Dr. Ir. F.C. Vossepoel,
Dr. E. Ruigrok,

H.A. Diab Montero,
Dr. Ir. D.S. Draganov,
Dr. C. Schmelzbach

TU Delft
Utrecht University, KNMI

TU Delft
TU Delft

ETH Zürich

the 6th of August, 2021

Abstract

As a result of the gas extraction in Groningen (the Netherlands) the amount of earthquakes have increased over
the past decades. Understanding the induced seismicity in the Zeerijp area is important for the population living
in this relatively densely populated region, but also essential to the Dutch governement and the operator of the
field; the Nederlandse Aardolie Maatschappij (NAM). One way of gaining the knowledge on the dynamics of the
fault systems in the area is by, for example, a full waveform inversion f recorded seismic data that gives us the
moment tensor describing the earthquake mechanism. A drawback of this method is that it is computationally
expensive and time intensive. In this thesis two different machine learning techniques are investigated that can
lead to a faster estimation of the moment tensor. We find that, when using time traces that are modelled from the
1D velocity model of the area, there is a difference in sensitivity of the network to the individual moment tensor
components. Besides that, using a feed forward neural network generally yields a better performance, but does
not give us the associated uncertainties of the network. This is in contrast with the mixture density network, which
performs slightly worse than the feed forward network, but it does give us the involved uncertainties when the
algorithm makes the predictions. Adding different levels of Gaussian noise to the data gave us a first insight as to
how the precision of the moment tensor estimations would change. It was found that a mixture density network
has a more stable prediction when estimating low signal-to-noise ratio data. No test with real data from the Zeerijp
area is done, however, we can conclude from our results that the estimation of the moment tensors in this region
should be possible with the use of machine learning techniques.

i

Contents

Abstract i

Contents iii

List of Figures v

List of Tables vi

1 Introduction 1

2 Theoretical Background 4
2.1 The Zeerijp Area . 4
2.2 Signal to Noise Ratio . 7
2.3 The Moment Tensor . 8

3 Methods 12
3.1 Synthetic Data . 13
3.2 Artificial Neural Networks . 20

3.2.1 Theory . 21
3.2.1.1 Explained Variance Score . 23

3.2.2 Hyperparameters and Strategies . 24
3.2.2.1 Activation Function . 25
3.2.2.2 Learning Rate . 26
3.2.2.3 Optimizer . 27
3.2.2.4 Loss Function and Scalers . 28
3.2.2.5 Epochs and Batch Size . 28
3.2.2.6 Mixture of Gaussians . 28

3.2.3 Mixture Density Network . 29
3.3 Feed Forward Neural Network vs. Mixture Density Network . 32

4 Results 34
4.1 Feed Forward Neural Network . 35

4.1.1 Homogeneous Model . 35
4.1.2 Heterogeneous Model . 40
4.1.3 Noise . 45

4.2 Mixture Density Network . 46
4.2.1 Homogeneous Model . 47
4.2.2 Heterogeneous Model . 50
4.2.3 Noise . 55

5 Discussion 56

6 Conclusion 60

7 Outlook 62

A Trace Analysis 65
A.1 Velocity Model . 65
A.2 Source Specific Changes . 66
A.3 Receiver Specific Changes . 72

ii

CONTENTS CONTENTS

B Neural Network Configurations 75
B.1 FFNN . 75
B.2 MDN . 81

iii

List of Figures

1.1 Number of Earthquakes in the Groningen Gas Field area over the past thirty years 1

2.1 Faults, Stations, and the Zeerijp Area . 5
2.2 Tectonic Phases of the Groningen Gas Field Area . 6
2.3 A Geological Cross-Section of the Groningen Gas Field Area compared to the 1D velocity model

used in this thesis . 7
2.4 Relation between magnitude, recording stations, and signal to noise ratio of several events 8
2.5 Visual explaining Strike, Dip, and Slip . 9
2.6 Visualization and decomposition of the Moment Tensor . 10
2.7 A Hudson Plot . 10
2.8 A visualization of a normal fault with its corresponding beachball 11

3.1 Creating the Synthetic Data . 13
3.2 The two velocity models used in this thesis for the generation of the synthetic data 14
3.3 Flowchart forward modelling with Pyrocko . 15
3.4 Time section for all stations recording one event . 16
3.5 Comparison of five traces corresponding to two slightly different and two completely different

source mechanism . 17
3.5 Comparison of five traces corresponding to two slightly different and two completely different

source mechanism . 18
3.6 Comparison of three different, simple source models and two velocity models 20
3.7 Visual explaining how the a time trace is separated to prepare it as input for a neural network . . . 22
3.8 Adding bias to a network . 22
3.9 The process of back propagation . 23
3.10 Verifying the performance of a Neural Network; two ways . 24
3.11 Four different activation functions . 26
3.12 Picking the right learning rate . 27
3.13 Explanation of an Unimodal and Multimodal problem . 30
3.14 Explanation of the output of a mixture density network . 31
3.15 Computational cost versus the complexity of the network . 33
3.16 Overview of the models to be tested by the neural network . 33

4.1 Renaming of the MT components . 34
4.2 Influence of the input data scaler used to train a network; homogeneous model, FFNN 36
4.3 Influence of the target scaler used to train a network; homogeneous model, FFNN 37
4.4 Influence of the amount of hidden layers and neurons used to train a network; homogeneous

model, FFNN . 38
4.5 Influence of the type of regularizer used to train a network; homogeneous model, FFNN 39
4.6 Influence of the type of regularizer used to train a network; heterogeneous model, no noise, FFNN 40
4.7 Influence of the type of regularizer used to train a network, showing the performance per individual

MT component; heterogeneous model, no noise, FFNN . 41
4.8 Influence of the right combination of hyperparameters and strategies used to train a network:

heterogeneous model, no noise, FFNN . 42
4.9 Results of the prediction of the moment tensor components, where each moment tensor compo-

nents is estimated by an unique network; heterogeneous model, no noise, FFNN 43
4.10 Influence of the activation function on the performance of the network: heterogeneous model, no

noise, FFNN . 45
4.11 Influence of the noise on the performance of the network: heterogeneous model, no noise, FFNN . 46
4.12 Output of a mixture density network . 47
4.13 Investigation of the uncertainties the network has whilst predicting the moment tensor of a larger

data set by looking at the probability density function that is the output of the mixture density
network (bad prediction); homogeneous model, MDN . 48

iv

LIST OF FIGURES LIST OF FIGURES

4.14 Investigation of the uncertainties the network has whilst predicting the moment tensor of a larger
data set by looking at the mean, variances and weights (good prediction); homogeneous model,
MDN . 49

4.15 Investigation of the uncertainties the network with varying activation functions has whilst pre-
dicting the moment tensor of a larger data set by looking at the outputted means, variances, and
weigths; heterogeneous model, no noise, MDN . 51

4.16 Comparison of the weighted estimated means using an all-in-one- or individual network approach
for the estimation of the moment tensor components; heterogeneous model, no noise, MDN 53

4.17 Comparison of a MDN estimating MT6 regarding the sigmoidal activation function with and with-
out weights applied; heterogeneous model, no noise . 54

4.18 Comparison of the EVS for MT1 and MT6 using an individual- or all-in-one network; heteroge-
neous model, no noise, MDN . 54

4.19 Influence of the noise on the performance of the network: heterogeneous model, noise, MDN . . . 55

5.1 Scaling the input data (Pt.2) . 57
5.2 Distribution of train and test labels for MT1 and MT6 . 58
5.3 Scree plot for two different data sets . 59

6.1 Comparison of the MDN and FFNN best performing networks 61

A.1 Comparison of all four velocity models used by Kühn et al. (2020) 66
A.2 Changes in response; Strike, E-component . 67
A.3 Changes in response; Strike, N-component . 67
A.4 Changes in response; Strike, Z-component . 68
A.5 Changes in response; Dip, E-component . 68
A.6 Changes in response; Dip, N-component . 69
A.7 Changes in response; Dip, Z-component . 69
A.8 Changes in response; Rake, E-component . 70
A.9 Changes in response; Rake, N-component . 70
A.10 Changes in response; Rake, Z-component . 71
A.11 Changes in response; Receiver depth, E-component . 72
A.12 Changes in response; Receiver depth, N-component . 73
A.13 Changes in response; Receiver depth, Z-component . 74

v

List of Tables

3.1 Settings for the generation of the synthetic data set. 14
3.2 Parameters and their influence on the response of a certain focal mechanism 19
3.3 Summary of Hyperparameters and strategies . 29
3.4 Computer specifications . 32

4.1 Network architecture of the net used to evaluate the performance of the algorithm with changing
input and target scalers; homogeneous model, FFNN . 35

4.2 Network architecture of the net used to evaluate the performance of the algorithm with changing
size of train data; homogeneous model, FFNN . 38

4.3 Network architecture of the net used to evaluate the performance of the algorithm with changing
regularizer; homogeneous model, FFNN . 39

4.4 Network architecture of the net used to evaluate the performance of the algorithm with changing
strategy and hyperparameters; heterogeneous model, no noise, FFNN 42

4.5 Network architecture of the net used to evaluate the performance of the algorithm with changing
strategy and hyperparameters; heterogeneous model, no noise, FFNN 43

4.6 Network architecture of the net used to evaluate the performance of the algorithm with changing
activation function; heterogeneous model, no noise, FFNN . 44

4.7 Network architecture of the net used to evaluate the performance of the algorithm with changing
activation function; heterogeneous model, no noise, MDN . 50

4.8 Network architecture of the net used to evaluate the performance of the algorithm estimating the
MT components individually and all-in-one; heterogeneous model, no noise, MDN 52

B.1 Combinations of hyperparameters tested, FFNN . 75
B.2 Combinations of hyperparameters tested, MDN . 81

vi

Chapter 1
Introduction

With the size of nine hundred square kilometers, the Groningen Gas field is the largest on shore natural gas field
in Europe. Situated in the Netherlands, it occupies almost a third of a province where around half a million people
live. In earlier times, when the gas field was discovered, it created a lot of job opportunities for the inhabitants
in the north of the Netherlands. Next to that it caused the rapid transition from coal to the much cleaner gas
for a substantial percentage of the dutch households ((Historiek 2019)). All seemed good, until the nineties,
when small earthquakes started occurring in the area of the Groningen gas field. Slowly, but steadily, the amount
of earthquakes per year increased, see Figure 1.1. The government did not immediately take action, until the
earthquake in Huizinge. This event happened in 2012 and had a magnitude of 3.6, which was the last straw for
the province of Groningen. It was also after this event that the already existing network of seismometers that
monitored the area of the gas field was expanded with 69 new stations. These stations have different levels of
sensors in order to increase the hypocentre accuracy and to give a better understanding of the source mechanism
(Dost et al. 2017). And it is this last objective that is of particular interest to us.

So what makes investigating the Groningen area so interesting? First of all, it is important to realize that when the
field was discovered, it was the biggest onshore gas field in the world. Nowadays, the field still ranks among the
top ten, however, it is a very well researched area since it was the biggest for quite a time. Another point of interest
is, is that with the decline of the gas production, one has come to realize that the field is much more complex than
initially thought (de Jager & Visser 2017). Add this complexity up to the fact that the gas field is situated in a
(especially compared to larger onshore gas fields) urban area, it makes for a pretty interesting case. Even though
a majority of the events taking place in this area belong to the category of micro earthquakes, i.e., earthquakes
with a magnitude smaller than 2.0, some of these events can cause significant damage. Previous research on
the Groningen Gas Field on how to monitor and better understand the seismicity in this area has been done. As
mentioned earlier, the expansion of the seismic network can lead to more knowledge on the source mechanism of
each event that is taking place.

Figure 1.1: Number of earthquakes in the Area of the Groningen Gas Field. On the horizontal axis the year is
displayed, the vertical axis shows the amount of earthquakes, and the color indicates the magnitude of the events.
Source: (KNMI 2020)

The source mechanism tells us the fault displacement during an earthquake. One of the ways of representing the
source mechanism is by the moment tensor. To understand this, it is first important to know how an earthquake can

1

CHAPTER 1. INTRODUCTION

exist in the first place. See it like this; Before the event happens, the rocks surrounding the fault will experience a
significant increase in shear stress. The stress will cause a rise in elastic strain energy. In the area of the Groningen
Gas Field there already are faults present in the underground. Meaning that if the stored energy overcomes the
friction on the already existing faults, an earthquake will occur. The two parts of rock slide along the fault and the
stored energy will be released in the form of for example seismic waves. The amount of energy released is related
to the magnitude of the event; the more energy, the higher the magnitude. The moment tensor is a representation
of the forces acting on the system at hand and can be derived from a seismogram. For example: the first inversions
of the moment tensor proved to be computationally expensive (Willacy et al. 2019a). By using a full-waveform
probabilistic optimization and the use of the Pyrocko package (Developers n.d.), (Dost et al. 2020) made it possible
to retrieve the source mechanism (by means of the moment tensor) of thirteen events with a magnitude bigger than
2.0. Despite having quite some knowledge already on the specific area in Groningen, there is still an important
part missing. Most commonly these source mechanism inversions are executed for larger magnitude events. This
is done, because the signals are more clear, i.e. there is less noise visible in the data, which will make the result of
the inversion more reliable.

The case of the Groningen gas field is a little bit different however. Here, we are not dealing with natural seismicity,
as described above, but with induced seismicity. By taking out the gas, the pore pressure in the rock declines,
leading to compaction. This is called poroelastic stressing and describes how the changes in stress caused by the
declined fluid pressure can cause deformations of the rock, in this case the compaction of the reservoir (Buijze
et al. 2017). The already present natural faults located within and around the reservoir are reactivated, resulting
in the induced seismicity (Bourne et al. 2014). When the build-up stress overcomes the friction, kinetic-, heat-,
and seismic wave energy are released. These three together form the earthquake. The seismic waves (body- and
surface waves) travel through the earth and it is this energy that is recorded by the stations in the area. In order to
get a better understanding of the induced seismicity, it could be valuable to study the micro earthquakes as well.
For example, in their study, (Eyre et al. 2019), clearly show that the investigation of micro earthquakes could lead
to a better prediction of larger, more damaging events. This is easier said then done, because the geology of the
Groningen Gas field area is pretty complex, yet again showing why this problem is so interesting.

As some sort of follow up on the paper by (Dost et al. 2020) what we would like to do is find a way that makes
estimating the source mechanism of each event in the Groningen Gas field area easier and computationally less
expensive. As is mentioned by (Dost et al. 2020) is that their work was already an attempt to decrease the
computational cost of finding the source mechanism of the events in Groningen. Instead of using finite difference
modeling (as done by (Willacy et al. 2019b)) they proposed using a full-waveform probabilistic optimization
method. For this method they only use the vertical and transverse components to predict the location, depth, and
moment tensor solution of several events. The results give a detailed fault-slip model, however, the means of
obtaining this accurate model takes time and a lot of parameter testing. This thesis will look at the possibilities
of finding the source mechanism by the means of a neural network. Neural networks have become increasingly
popular over the past years, since they provide a computationally lighter means of doing, for example, simulations
that would normally have been a lot more intensive. Estimation of the moment tensor using a machine learning
technique has been done before, successfully, but all using different techniques. For example (Binder 2018) shows
that using a simple feed forward neural network, the moment tensors of microseismic synthetic data modelled
using a simple velocity model, can be accurately predicted. (Käufl 2015) uses a mixture density network to
not only predict the moment tensor, but also fault location and the magnitude of events in different regions in
California. (Kuang et al. 2021) proof that with a more complex network (their own defined FMNet) the focal
mechanism of the earthquakes in the Ridgecrest area with magnitudes greater than 5.5 can be predicted accurately.
(Steinberg et al. 2021) takes this even further by combining a convolutional neural network with the theory of
mixture density networks and test the performance of their algorithm also on the Ridgecrest data, but only using
events that have magnitudes between Mw 2.7 and 5.5. These studies illustrate the complexity of the use of machine
learning for moment tensor inversion, and form a good starting point of this thesis. The main goal of this study is
as follows:

What architecture and which type of neural network can predict the moment tensor of the earthquakes in the
Zeerijp region of the Groningen Gas Field area? And how can we assess the precission of these results?

In Chapter 2 the Zeerijp Area will be introduced. Zeerijp is only a small part of the area of the Groningen Gas Field,
however, this particular region is of interest to us, because of the larger faults and the high seismicity. Here, we
will also talk about the geology in the area, and why we can already predict how this might affect the performance
of our neural network later on (Section 2.1). The second part of the same chapter, Section 2.3, will give a short
review of how we will define the source mechanism of each event. First, we will talk about strike, dip, and slip,
after which we will see that, in order to get a better representation of the source mechanism of an earthquake, it is

2

CHAPTER 1. INTRODUCTION

much more convenient to use the moment tensor representation. Since the ultimate goal is to see if we can apply
machine learning techniques to the data from the Zeerijp area, it is good to first check if the data in this area can
be considered good enough for the network to even distinguish the independent moment tensor components. We
can check this by looking at the signal-to-noise ratio in the area (Section 2.2). The second Chapter will dive into
the methods used during this research. It will start with a look at how a change in source mechanism changes
the response of the receivers measuring each event. Section 3.1 compares the different velocity models, source
specific-, and receiver specific settings when a slight change in the source mechanism is made. Furthermore it
will underpin the choices that have been made when making the different synthetic data sets, elaborating the
importance of starting simple, then slowly building up to more complex data sets. After analysing the synthetic
data an intro to neural networks will be given, especially the feed forward type of neural network. We will look
at a standard classification case and expand this idea to regression problems. However, it is also in this section
(Section 3.2) that we will find out why a conventional, i.e., a feed forward neural network will not completely
suffice for our goals. Seeing that a conventional neural network only predicts the output values, there is no way
of checking the uncertainties that the network faces when making its predictions. To evaluate the confidence of
the algorithm we can switch to a different type of networks, namely mixture density networks. The theory behind
this specific type of network and the differences with a more conventional network will be explained in Section
3.2.3. Please note that this thesis mainly focuses on the use of feed forward networks, and not, for example,
convolutional neural networks, or other types. It is not that these types of networks could not achieve good results
as well, on the contrary, take for example the paper by (Kuang et al. 2021), or (Steinberg et al. 2021), however,
due to the time limit of this thesis it was decided to stick to feed forward types of networks. The results of both the
feed forward- and mixture density networks are shown and discussed in Chapter 4. Following these outcomes a
Discussion on the previous chapter is made, then the Conclusion will shortly summarize the findings of this thesis,
and the Outlook will give some recommendations for future research.

3

Chapter 2
Theoretical Background

The Zeerijp area is a region in the province of Groningen (northern Netherlands) where a major part of the earth-
quakes caused by the Groningen Gas field takes place. It is vital to understand the geology and the importance of
investigating this area to also understand the choices later made in this thesis. Following this a short analysis of
the signal-to-noise ratio in the Zeerijp area will be given. This is done to investigate if the actual Zeerijp data will
be of good enough quality to be analyzed by a neural network. After this introduction to the Zeerijp area and its
real data, a refresher on the moment tensor, green’s functions, and some of the usual ways to obtain these moment
tensors is given.

2.1 The Zeerijp Area
Zeerijp is a small region in the province of Groningen in the northern part of the Netherlands. The area of interest
is a mere 56 square kilometers, however, the geophone coverage is pretty high. As can be seen in Figure 2.1 the
amount of stations covering a region of approximately 600 square kilometers sums up to thirty-seven. This came
to be due to the big event in Huizinge in 2012. Since then the network has been expanded, nowadays containing
seventy-nine stations in total. As said, Figure 2.1 shows the Zeerijp Area, bounded by the black box. The inverted
orange triangles denote the borehole stations that each contain four receivers at different depths with intervals of
fifty meters in between them. The blue lines outline the faults in the region, and it is these lines that cause trouble.
As was explained in the Introduction a result of the gas production in Groningen is the induced seismicity in the
area. Here, the majority of the faults are normal faults. Since the objective of this thesis is to investigate how well
we can estimate the faulting mechanism from the response that we measure each time an earthquake takes place, it
is important to also understand the geology of the area, because the response of the earth is formed by the geology
in the surrounding region.

4

2.1. THE ZEERIJP AREA CHAPTER 2. THEORETICAL BACKGROUND

6.60 6.65 6.70 6.75 6.80 6.85 6.90
Longitude

53.25

53.30

53.35

53.40

53.45

53.50

La
tit

ud
e

Zeerijp Area
Fault
Station

Figure 2.1: The Zeerijp area (black box) and all stations (inverted light orange triangles) within a range of fifteen
kilometers of the borders of the region of interest. The light blue lines show the faults in the area, the grey and
blue background display land and sea respectively.

The sediments that are related to the the Groningen gas field (Upper Permian Rotliegend) are deposited in a very
big basin that stretches from UK to Poland. This Upper Rotliegend group shows itself as a sequence of red beds
in the dutch underground. During the Carboniferous period (some 363 million years ago) major erosion took
place in the region, resulting in temperature differences within the underground of the Groningen area itself that
have not been explained (de Jager & Visser 2017). It was during this time also that coal seams were deposited.
Following the period of erosion, rift basins started to form, something which has not been encountered in the rest
of the Netherlands. These basins were filled with a mix of volcanic rock. Regional subsidence caused by thermal
activity caused the deposition of the first Rotliegend sediments, following by the Upper Permian Zechstein and
Lower Triasssic Buntsandstein sediments. During the Triassic period Pangaea started to break up and this led to a
movement of the Zechstein salt. This lasted well into the Late Triassic period, forming big salt walls and domes,
possibly triggered by the active faulting in the area at that time. The active faulting was driven even more by
the further breaking up of Pangaea, resulting in the many fault blocks that can now be observed in seismic data
(de Jager & Visser 2017). Moving into the Late Jurassic to Early Cretaceous period, it is believed that the initial
development of gas took place during this time, which also denotes the main time period where all pre-existing
faults were reactivated. However, as (de Jager & Visser 2017) state it in their research, the complex history of the
Groningen Gas field area makes it hard to exactly say how and when the reservoir was actually charged. Apart
from this, the initial gas pressures are fairly constant over the entire field. The sealing of the gas is formed by the
Zechstein salt, closing off fractures and faults.

When the field was first discovered, the reservoir was called the Slochtern formation, named after the discovering
well. Overlaying this reservoir rock are the Ten Boer and Ameland Memeber claystone layers. These layers form
a barrier to the gas flow outside the Slochtern formation. From the coal seams formed during the Carbonifereous
time the gas has moved up and is being contained by the thick salt and anhydrite Zeichstein layers, forming the
seal that traps the gas. An overview of the main tectonic phases can be found in Figure 2.2.

5

2.1. THE ZEERIJP AREA CHAPTER 2. THEORETICAL BACKGROUND

Figure 2.2: An overview of the nature and timing of several tectonic phases that formed the Slochtern formation,
by (de Jager & Visser 2017).

Now that we know the tectonic history of the area of the Groningen Gas Field, we can look more into the geology
of the Groningen Gas Field. Figure 2.3a shows that the Slochtern formation is mainly situated at a depth of 3000
meters. Above this we can spot the Ten Boer layer, and overlying the clay is the thick Zechstein formation. It is
this layer that makes the Zeerijp area so interesting to us. The Zeerijp area is a region that needs to be monitored
closely, because of the large population living at the surface. Be that as it may, another reason for this region being
so interesting is the presence of the Zechstein formation. The imaging of salts is a very though process; often
they are associated with weak reflections, forming some kind of blind spot into our seismic sections. But, the
presence of a salt layer can hint at a possible reservoir trap, which was the initial impulse of boring wells in the
province of Groningen. This brings us back to the increasing earthquakes due to the induced seismicity triggered
by the pressure changes in the subsurface and the importance of understanding the faulting mechanism better. It is
namely this Zechstein formation that makes it all a bit harder. Salt is notorious for deteriorating seismic signals in
the earth. This is due to the high velocity contrast and impedance that can be found at the boundary between the
salt and surrounding rock, which in turn causes very complex travel paths of the seismic waves. The same applies
to the response of the earth that is picked up by the borehole stations over the area when an earthquake occurs.
An example of the increasing complexity is shown in more detail in Chapter 3.1. The velocity model used for this

6

2.2. SIGNAL TO NOISE RATIO CHAPTER 2. THEORETICAL BACKGROUND

(a) Geological Cross-Section

0 2 4 6 8 10
S- and P-wave Velocities in Km/s

0.0

0.5

1.0

1.5

2.0

2.5

3.0

De
pt
h
in
 K
m

Locally averaged 1D Velocity Model
P-wave
S-wave

(b) 1D Velocity Model

Figure 2.3: A cross-section of the geology in the Groningen Gas Field Area from South-East (SE) to North-
West(NW) (Figure 2.3a). The abbreviated wells at the surface indicate the locations of these wells along the
cross-section. As is seen is that the reservoir rock is mostly located around the 3000 meter mark in the subsurface.
Just above the Slochtern formation we can find the Ten Boer clay layer. Overlaying the clay is the thick layer of
Zechstein salts and anhydrites. By: (Vlek 2018). This cross-section can be compared to the velocity model in this
thesis (Figure 2.3b). It is seen that the locally averaged 1D velocity model (Romijn 2017a) closely follows the
geology of middle part of the geological cross-section.

thesis is based on the velocity model by (Romijn 2017a), i.e., we will be using a locally averaged 1D model. In his
paper, (Romijn 2017a) describes how the Zechstein formation consists of so called anhydrite/carbonate floaters.
These floaters change in thickness, some containing discontinuities, throughout the whole area. Since we will
only use a locally averaged 1D velocity model, we cannot simulate the effect of these floaters into our data set,
however, the multiple salt layers adding to the complexity will be visible in the velocity model.
A comparison of the velocity model to the cross-section is shown in Figure 2.3a. Here, we can clearly see the thick
Chalk and Lower cretaceous layer, the thin Trias layer around 2000m depths, and the big Zechstein formation from
2000m to 3000m depth. The reservoir (indicated by the bright green layer in Figure 2.3a) with the overlying Ten
Boer layer can also be distinguished in the locally average 1D velocity model.

2.2 Signal to Noise Ratio
The first question that might arise when we start investigating the Zeerijp area is; will the data from this area
actually be ’good’ enough to be able to use it for our goal, namely, estimating the moment tensor? One way to
find this out is by looking at the signal-to-noise ratio (SNR). This ratio compares the level of a desired signal to
the amount of noise in a trace. Noise is evidently present in any trace we have of the Zeerijp area. It can be caused
by cars driving past, the motion of the waves from the coast that is close by, or animals rambling around in the
fields. Obtaining the SNR of a trace goes as follows, first by using the next equation:

SNdB = 10log10

(
Sw

Nw

)
, (2.1)

where Sw is the signal window of the trace, and Nw the corresponding noise window. The signal window is defined
such that it starts when the seismic event is recorded by the geophone. All data in this time window is squared and
summed. The noise window is a window of the same duration as the signal window, but then measured before the
event has taken place. The dataset used for this analysis can be downloaded from the KNMI Dataportal. This is
an online database with seismic recordings up to 10 years back of the Groningen Gas Field area.

Since one of the objectives of this thesis is to look if also micro earthquake data can be used to find the moment
tensor via machine learning techniques, the SNR analysis has been mostly done on these lower magnitude event
data. To define what is meant by good, we can thus look at this SNR data. If the SNR is lower than 5, we could
say the data will not be clear enough, i.e., there will be too much noise present in the traces for the network to
distinguish between noise or signal. Looking at the Zeerijp area, we know that the region has a good coverage

7

http://rdsa.knmi.nl/dataportal/

2.3. THE MOMENT TENSOR CHAPTER 2. THEORETICAL BACKGROUND

with a total of seventy-nine stations (2). This is for example visible in Figure 2.4. Here, the red line denotes the
lower SNR limit that we can use to obtain a moment tensor from a trace. From the scaling of the horizontal axis
one could already notice that there are a lot more lower magnitude events in this figure than higher magnitude
events. Since this data is a downloadable data set (KNMI Dataportal) it only shows how important it is to also
look at the question of training the neural network with lower magnitude data. The next thing we can observe is
that the station coverage of the Groningen Gas field area is pretty good. From magnitudes bigger than 0.6 on, it
shows that the SNR of the data is generally above the lower limit SNR line, at least for stations at close range. A
more extensive research on the SNR has been done in (Verwijs 2021). To, quickly, summarize the outcomes of
that research:

• Of the three component data, the E-component generally gives the largest SNR.

• Of the four station depth levels (0, 50, 150, 200m) the deepest level has data with the best SNR.

• Of the different bandpass filters tested, it became evident that a wider bandpass (1-10Hz) gives a better
SNR for lower magnitude data, however, for the larger magnitude data, a bandpass filter of 1-4Hz is more
suitable.

• In general all events with a magnitude equal to or larger than 0.79 should produce data with a suffiecient
enough SNR.

Figure 2.4: The SNR for data a specific magnitude. The color of the boxplot indicates the number of stations that
have recorded the event and the red line at SNR=5 denotes the minimum SNR needed for an accurate result. As
can be seen from this figure, is that even lower magnitude data has a pretty decent SNR. This is due to the good
coverage in the area.

2.3 The Moment Tensor
If an earthquake occurs we can record the ground motion as a function of time due to this event. A natural
earthquake is caused by movement along a fault. This can be strike-slip-, normal-, or reverse faulting. Before the
event happens, the rocks surrounding the fault will experience a significant increase in shear stress. The stress will
cause a build up of elastic strain energy. If the stored energy overcomes the friction on the already existing faults,
an earthquake will occur. The two parts of rock slide along the fault and the stored energy will be released in the
form of for example seismic waves. The amount of energy released is related to the magnitude of the event; the
more energy, the higher the magnitude. The energy released cause the ground to shake, which in turn makes it able
for us to record the earthquake. What can we obtain from these seismograms? Next to the magnitude, we could
also obtain the location of the earthquake, if more seismograms from different stations in the area are combined.

8

http://rdsa.knmi.nl/dataportal/

2.3. THE MOMENT TENSOR CHAPTER 2. THEORETICAL BACKGROUND

It is also possible to obtain more physical properties of the earthquake, namely the faulting mechanism. The
movement along a fault that causes the earthquake can for example be described by the following three parameters:
the strike, dip, and rake. Each of these parameters explain a different property of the earthquake. Figure 2.5 shows
how the strike describes the orientation of the fault with respect to North, the dip the angle of the slope of the fault,
and the rake the displacement of the fault with respect to the foot wall. Yet, are these three parameters enough
to describe the complete motion? Strike, dip, and rake can explain simple faulting mechanism pretty well, but in
real life these systems look a bit more complex. It is therefore necessary that we use another system, for example
the moment tensor. This representation depicts the seismic sources based on a system of forces (Dahm & Krüger
2014). The moment tensor is used to define the size, and motion of the source. If there is an area with high seismic
activity, all moment tensors can help analyze the fault system. For example the analysis can be focused on the
determination of type of fault. Moment tensor representations are mostly used for earthquakes, but can also be
helpful for landslides, explosions and so on (Cox & Allen 2009) (Alvizuri & Tape 2018).

Figure 2.5: Strike, dip, and rake that explain the faulting.

A moment tensor representation can be derived using the waveforms recorded by the stations and via a mathe-
matical description of the travel path of the seismic waves through the earth. The description of the travel path is
called a Green’s Function. Since in this thesis a precomputed data base of the Green’s Functions for the Zeerijp
area will be used, we will not go into detail on what exactly these functions are and how they work. If the reader
is interested to learn more about Green’s Functions, I would like to refer them to either (Wapenaar & Snieder
2007) for a gentler introduction, or (Wapenaar et al. 2010) for a more detailed explanation. Having obtained the
computed Green’s Functions, we can use forward modelling to create synthetic data, or we can obtain the moment
tensor representation from recorded waveforms by, for example, using a full-waveform inversion. This can be
done in the time domain, but also in the frequency domain. This does not mean that performing a full-waveform
inversion to obtain the moment tensor representation is easy done. The first ideas were proposed some forty years
ago (Tarantola 1984), and are still being improved today.

The moment tensor is a 3x3 matrix that is symmetric and thus has six independent components (Figure 2.6). The
components on the diagonal describe volumetric changes, like dilatation or compression, and the off-diagonal
components describe the rotational forces, like for example the shear stresses. These components combined make
up the force couples that act at the source (Vavrycuk 2014). Therefore the moment tensor can represent any
event, from a simple isotropic explosion to a very complicated seismic source, like the earthquakes in Groningen.
To be able to find the type of source that is described by the obtained moment tensor, the latter needs to be
decomposed. One possibility is to decompose the moment tensor into the isotropic- MISO, double-couple- (DC)
MDC, and compensated linear vector dipole (CLVD) MCLV D components. The isotropic component and the DC
component both represent a physical system, but this does not make the moment tensor mathematically correct
yet. Therefore the CLVD component needs to be introduced (Knopoff & Randall 1970). It mostly accounts for the
noise or assumptions being made, thus a small CLVD component can also be seen as a way to verify the accuracy
of the model (Dahm & Krüger 2014).

9

2.3. THE MOMENT TENSOR CHAPTER 2. THEORETICAL BACKGROUND

Figure 2.6: Moment tensor: visualization and decomposition into six independent components. On the diagonal
the linear vector dipoles are shown, the other elements show force couples.

The isotropic component of the moment tensor represents an explosion or implosion. The DC represents shear
faulting. To visualize the decomposition, a Hudson source type plot can be used, see Figure 2.7. In this Figure the
CLVD, ISO and DC components are plotted into one system, which makes it easy to see the relative proportions
of the components to each other. For example, in the Hudson plot, pure isotropic sources can be found at only two
points in the diagram; the upper- and lower most points on the diagram. In other words, the deviatoric tensor (the
CLVD and DC components) is zero, and this event is pure isotropic.

Figure 2.7: A Hudson plot visualizing the moment tensor decomposition (Tierney 2019)

From the solution to the moment tensor the focal mechanism can be derived. The focal mechanism describes the
source in terms of strike, dip, and rake and can be visualized by ’beach balls’. Beach balls consist of white and

10

2.3. THE MOMENT TENSOR CHAPTER 2. THEORETICAL BACKGROUND

black planes within a sphere that indicate the motion and type of fault. Here, the black and white planes represent
the first arrival of the P-waves that are recorded. Simply said, if the source causes a push on the rock in a certain
direction, there will be a compression. This compression causes the P-wave to arrive at the sensor with a positive
sign. This compression is indicated by the black planes in the beach ball plot. If the rock undergoes dilatation, the
first arrivals will be of negative sign. These P-waves are indicated by a white plane. In the area of the Groningen
Gas Field normal faulting occurs (Figure 2.8a). The beach ball representing this type of fault is shown in Figure
2.8b. From the way the construction of a beach ball is described it can already be derived what factors influence
the moment tensor inversion. If there is too much noise, the arrival of the waves will be less distinguishable, and
if the different azimuths and take-off angles from the source are not recorded clearly, the reliability of the moment
tensor will go down.

Retrieving the focal mechanisms of past earthquakes can give us more insight into the tectonic stress field of an
area. Obtaining the moment tensor for several events can help understanding the induced seismicity in the the
Zeerijp area better. Considering that the relation between the extraction of the gas and the seismicity itself is
still not understood well enough, modelling a good fault map would immensely contribute to the monitoring and
earthquake prediction of the Groningen Gas Field area. Not only is this of importance to the population in this
area, who have suffered damages to private properties due to this increase in induced seismicity, but it is also of
importance to the state and the industry, concerning the economical consequences.

(a) A Normal Fault (b) Beach ball corresponding
to a normal fault

Figure 2.8: The induced seismicity in the Groningen Gas Field is a result of normal faulting (Figure 2.8a), the
moment tensor corresponding to this type of fault can be represented by the beach ball shown in Figure 2.8b

:

11

Chapter 3
Methods

In seismology, we can describe any physical earthquake source with moment tensors. We know how to obtain
them from a seismogram, and how they can help us understand source mechanism. But is, for example, the full
waveform inversion technique described in Chapter 2 the most optimal way of obtaining the moment tensor? Yes,
it can be a pretty accurate method, but taking into account the computational power needed in order to obtain the
focal mechanism is very high. Should there be some other way to be able to obtain these moment tensors with less
computational power and/or time? One way is by using machine learning techniques, which have been around for
quite some time now. Yes, for the estimation of moment tensors, it is quite a new topic. For example, (Binder
2018) shows that the moment tensors of micro seismic events can be detected from p-wave amplitudes. Another
paper, by (Steinberg et al. 2021) shows that the moment tensor can be retrieved from just images of the amplitudes
of the time traces that are categorized per event.
Machine learning is an overarching concept that encompasses different techniques. There are many subcategories
under the term Machine learning, of which one is the (artificial) neural network. This neural network can learn
from a set of data, after which it should be able to, for example, classify new data into its correct categories.

In this chapter we will first talk about the making of the synthetic data set. Having a representative data set is
important for the network to be able to learn well. How to find the fine line between a data set that is too generic
or too biased is discussed in the second section. Here, we will also discuss the different data sets used to find the
answer to the question if it is possible to estimate the moment tensor components from time traces using a neural
network. An overview of this section is visualized in Figure 3.1. Following this flowchart, the generation of the
synthetic data set will be explained.
Having the data set ready, we dive more into the theory behind neural networks. What are they exactly and how
do they work? Which parameters are important to consider when setting up such a network, and what triggers the
network to learn or not to learn? Section 3.2 will elaborate on the feed forward network, also called the multilayer
perceptron. As we will see is that this type of network will predict the moment tensor, however there will be no
way of verifying the how certain the network is when making its predictions. This is where the mixutre density
network comes into play (Section 3.2.3).
Having explained the conventional feed forward neural network, and the more advanced mixture density network,
we can look at the differences between these two algorithms in terms of complexity and time intensity (Section
3.3). Can they complement each other and how have they been used before regarding moment tensor estimations?
It is in this last section that we will explain the reason of using both the feed forward- and mixture density network
on the basis of past research done on this subject.

12

3.1. SYNTHETIC DATA CHAPTER 3. METHODS

Figure 3.1: First, the moment tensor components (MT components), location, magnitude, and depth are defined
for the event that is to be simulated. Then, all of this information, for each seperate event, is saved into a csv file.
This csv file is then read by the pyrocko module, that in turn uses the precomputed Green’s Functions to simulate
the response of the earth based on the velocity model corresponding to the Green’s Function Database.

3.1 Synthetic Data
Looking back at Figure 1.1 it can be seen that over the past five years alone over four hundred earthquakes have
taken place in the area of the Groningen Gas Field. We could use this data to train our network, however most
of these events were micro events, and thus do not have a very high SNR. Next to that, using real data would
also not allow us to investigate the effect of difference factors like source location, type of model, type of faulting
mechanism, and noise on the performance of our network. It is therefore that we propose to use synthetic data
first to test the precision of the moment tensor prediction.
For the input of the network we are using the data from seismometers. These seismometers provide us a seis-
mogram, which shows the ground motion at the specific location of the seismometer. To generate the synthetic
data set, the python package Pyrocko (Developers n.d.) is used. One of the applications that is very useful is its
online Green’s function database that contains the velocity models plus corresponding Green’s Function for the
Groningen Gas Field area (https://greens-mill.pyrocko.org/). The two Green’s Function databases used
for this particular thesis are as follows:

1. ’N3Dmean_bu f f er10km_Q_ER_50m’ data set. This set contains the Green’s Functions for the locally
averaged 1D velocity model in the Groningen Gas field area. It has been modelled with the QSEIS backbend
and allows earthquake sources with a depth range of 1000 to 4000 meters. The receiver depths can range
from 50 to 200 meters, and the maximum distance from source to receiver is fifteen kilometers.

2. ’Gron_homo’ data set. This set contains a homogeneous velocity model specifically for the Groningen Gas
Field area. The source and receiver specific settings are the same as for the locally averaged 1D model.

The velocity models of both data sets can be found in Figure 3.2. From these velocity models the Green’s func-
tions have already been computed, therefore there was not need to calculate them before generating the data set.
Following the findings from (Kühn et al. 2020) and (Dost et al. 2020) the subsequent settings found in Table 3.1
were considered when generating the data set. See Figure 2.1 for the area in which the earthquakes are simulated
(within the black box), the exact positions of the earthquakes following the existing faults in the area (the blue
lines), and the position of the receivers (inverted yellow triangles).

13

https://greens-mill.pyrocko.org/

3.1. SYNTHETIC DATA CHAPTER 3. METHODS

Parameter Setting
Maximum distance from source to receiver 15 km

Start time -0.5 seconds before start of event
End time +9.5 seconds after start of event

Sample rate 25 Hz
Bandpass filter 1-4Hz
Source Depth 3 km

Source Magnitude 4
Recording receivers per event 13

Depth of receivers 200 m
Number of events 10.000

Table 3.1: Settings for the generation of the synthetic data set.

With the parameters from Table 3.1 two data sets can be created. One uses the homogeneous velocity model as
shown in Figure 3.2a, and the other is based on the heterogeneous velocity model shown in Figure 3.2b. Table 3.1
might give rise to some questions on the similarity of the data set with regards to the real life events in the Zeerijp
area. I would like to address some of the problems faced, and why certain simplifications had to be made to the
data set.

0 2 4 6 8 10
S- and P-wave Velocities in Km/s

0

1

2

3

4

5

De
pt
h
in
 K
m

Homogeneous Velocity Model
P-wave
S-wave

(a) Homogeneous Model

0 2 4 6 8 10
S- and P-wave Velocities in Km/s

0

1

2

3

4

5

De
pt

h
in

 K
m

Locally averaged 1D Velocity Model
P-wave
S-wave

(b) heterogeneous Model

Figure 3.2: The two velocity models used for the Green’s Function Database used in this thesis that is specific to
the Groningen Gas Field area. On the left the P- and S-wave velocity of the homogeneous model is shown over a
depth of 10 km, and on the right the heterogeneous model containing the salt layers is shown.

Table 3.1 shows that one magnitude was used for the complete data set. The reasoning behind keeping this
magnitude constant is due to simplification of the data set. This also means that the choice of bandpass filter
has to be picked accordingly. As one might remember, earlier in this chapter (Section 2.2) it was stated that
lower magnitude data has a higher SNR with a broader bandpass filter. However, since it was decided to fix the
magnitude of every event to 4, the bandpass filter was changed to 1-4 Hz.
According to the testing (Kühn et al. 2020) did for their inversions a receiver depth of 100 or 150 meters should
yield better resolution and a combination of different receiver depths even more so. However, also with the
outcomes of the SNR analysis done in the earlier stage of this thesis, it was decided to only generate data for the
200m depth stations. The depth of the sources is also fixed to a single depth. This is mainly because in reality all
faults in this area are situated around a depth level of three kilometer, but again, it also to simplify the problem in
order to see if it will benefit the learning done by the neural network.

Looking at other papers on estimating the moment tensor using some form of machine learning, it is seen that
most time windows used are not longer than four seconds (Steinberg et al. 2021), (Kuang et al. 2021). In this
thesis a time window of ten seconds is used. The locally averaged 1D model causes some interesting responses
(Figure 3.6). This makes it harder to determine where the important inf on the traces arrives and where the coda

14

3.1. SYNTHETIC DATA CHAPTER 3. METHODS

starts. To be on the safe side a time window of ten seconds was set. Another reason for this larger time window
is the correlation found by (Käufl 2015), where it was seen that with a longer time window, the network proved to
be able to extract more information on the focal mechanism from the signals corresponding to the subsurface of
the Groningen Gas Field area.

Each source is generated from an unique, random moment tensor, location, depth, and magnitude. The individual
moment tensor components range from -1 to 1, the location is drawn randomly from a csv file with all fault
locations in the Zeerijp area. From the moment tensor the source response is calculated using the python package
Pyrocko for all stations that are within the specified radius of five kilometers of the Zeerijp area (totalling to an
amount of 13 receivers), see Figure 3.3. For each earthquake simulated the source location and six independent
moment tensor components are saved. These will later be used to help train the neural network. An example of
one such an event is shown in Figure 3.4. Here, one can clearly see how the response arrives delayed as a function
of distance from the source.

Figure 3.3: Flowchart forward modelling with Pyrocko, source: (Developers n.d.).

15

3.1. SYNTHETIC DATA CHAPTER 3. METHODS

(a) Channel E

(b) Channel N

(c) Channel Z

Figure 3.4: Response of synthetic event 1 for all receivers within the predefined Zeerijp area. From top to bottom,
the E, N, and Z channel responses filtered with a bandpass filter of 1-4Hz. Note that with increasing distance, the
first arrival also delays. 16

3.1. SYNTHETIC DATA CHAPTER 3. METHODS

It is important to have a representative synthetic data set. This means that the representative data set defines data
that is not too biased, but also not too different keeping in mind the earthquakes that are taking place in the Zeerijp
area. For example, a data set with around ten thousand synthetic earthquakes could be a good start according
to (Binder 2018), however, if this data set only represents five different source mechanism, whereas we want to
estimate a much wider range of faults, it could not be called a representative data set. (Dost et al. 2020) found
already thirteen different moment tensors for the area of the Groningen Gas Field. Biasing our complete data set
towards these thirteen events could be a strategy, but it would also mean that we do not consider other types of
faulting mechanisms anymore. It is therefore key to find a good compromise. How can we find this fine line? It
might be best to first look at how a change in the moment tensor influences our traces.

The traces in Figure 3.5 were made using a 1D averaged velocity model from the 3D velocity model by (Romijn
2017b) (Figure 3.2b). This velocity model is based on the subsurface found in the Groningen Gas Field area. The
figure shows us an E-component trace from a station that is 4.2 kilometers away from the source, and the source
mechanism having a strike of 147, dip of 64, and a rake of -92 (yellow trace). If we make just a slight change
to the source type, the trace does not change that much (green trace). For comparison, the blue trace shows the
difference between the yellow and green traces. Figure 3.5b on the other hand shows how big the change in strike
resulting in a visible difference between two traces.

0 2 4 6 8 10 12
Time

−0.5

0.0

0.5
Difference between the trace with Strike 147 and 144: E-component

Difference
Strike: 147
Strike: 144

0 2 4 6 8 10 12
Time

−0.5

0.0

0.5
Difference between the trace with Strike 147 and 150: E-component

Difference
Strike: 147
Strike: 150

(a) Small change in strike

Figure 3.5: Figure 3.5a: Two traces, yellow and green, from slightly different sources of which the difference
between the two is plotted (blue line). The upper figure shows a reduction in strike from 147 (yellow trace) to
144 (green trace). This change does not yield that much difference in the corresponding traces. The difference
between the two traces is visualized with the blue line. The same can be said for an increase in strike (lower
figure). Figure 3.5b: Two traces, yellow and green, from different sources of which the difference between the
two traces is plotted (blue line). The upper figure shows a reduction in strike from 147 (yellow trace) to 60 (green
trace). This change does yield difference in the corresponding traces. This difference between the two traces is
visualized with the blue line. increasing the strike to 180 also shows a change in trace, however it is less obvious
as with the previous change.

17

3.1. SYNTHETIC DATA CHAPTER 3. METHODS

0 2 4 6 8 10 12
Time

−1

0

1

Difference between the trace with Strike 147 and 60: E-component
Difference
Strike: 147
Strike: 60

0 2 4 6 8 10 12
Time

−0.5

0.0

0.5
Difference between the trace with Strike 147 and 180: E-component

Difference
Strike: 147
Strike: 180

(b) Large change in strike

Figure 3.5: Figure 3.5a: Two traces, yellow and green, from slightly different sources of which the difference
between the two is plotted (blue line). The upper figure shows a reduction in strike from 147 (yellow trace) to
144 (green trace). This change does not yield that much difference in the corresponding traces. The difference
between the two traces is visualized with the blue line. The same can be said for an increase in strike (lower
figure). Figure 3.5b: Two traces, yellow and green, from different sources of which the difference between the
two traces is plotted (blue line). The upper figure shows a reduction in strike from 147 (yellow trace) to 60 (green
trace). This change does yield difference in the corresponding traces. This difference between the two traces is
visualized with the blue line. increasing the strike to 180 also shows a change in trace, however it is less obvious
as with the previous change.

This sort of analysis can be done for all components and a short overview of the outcomes can be seen in Table 3.2.
The Table contains three main categories; velocity models, source specific changes, and receiver specific changes.
In the first category, velocity models, it is seen that three velocity models are compared to each other. These three
models are the models used (Kühn et al. 2020) in their paper to analyse which velocity model will work best for
the inversion of the data and represent the area in Groningen the best. They can be found in the Appendix (Figure
A.1). The first type of velocity models are the ones derived from the available 3D model for this specific area
(Romijn 2017a), which in total accounts to seventeen 1D velocity models. The second type of velocity model is
the model from the KNMI. This model has a constantly increasing P-wave velocity and describes only big layers,
therefore merging smaller layers together. The third model follows the local velocity model better, however it
contains two thin anhydrite layers that cause high velocity perturbations (Kraaijpoel & Dost 2013).

A nice example of the difference between a homogeneous velocity model, and the velocity model that will be
used for this thesis (the locally averaged 1D velocity model, see Figure 3.2b), is shown in Figure 3.6. We can
see three different, simple source mechanism displayed. The homogeneous model (the green traces) show a very
’clean’ trace, in comparison to the response for the locally averaged 1D model (blue traces). This is what we
would expect. A homogeneous model does not contain contrasting impedances, since there are no layers defined
in the model. The locally averaged model, however, has the Zechstein formation modelled into it, which we know
contains salt. This should make the response a lot more difficult to interpret, something we can recognize by
looking at the difference between the middle and lower row of traces in Figure 3.2.

For the second category, the source specific parameters, it is seen that especially the depth of the source causes
notable changes to the traces. The change in depth, however, is not a factor that is investigated in this particular
thesis in relation to the moment tensor estimation. As can be seen in Figure 2.3a the reservoir rock is mainly
situated around the 3000 meters depth mark throughout the whole cross-section.
One could ask why the influence of the magnitude moment of the event has not been investigated. It is simply

18

3.1. SYNTHETIC DATA CHAPTER 3. METHODS

because a change in magnitude moment will only result into a change in amplitude.

The receiver specific parameters show that whatever setting is changed, there will always be a notable change in
the response. This is pretty logical, since the farther away or closer to the earthquake the station will be placed,
the fainter or stronger the signal will be. Here, I have only looked at distance of the stations to the source location
(instead of the longitude and latitude), since, to keep the data set as realistic, only the real locations of the stations
in the Zeerijp area will be used during the generation of the synthetic data set. For a more extensive analysis of
parameters and the changes they cause, see Appendix A. Trace Analysis.

Parameter N-
component

E-
Component

Z-
Component

Velocity model (3 mod-
els)

+ + +

Source Specific
Strike ∼ ∼ −
Dip ∼ + +
Rake ∼ ∼ −
Depth* + ++ +
Longitude + ∼ −
Latitude + ∼ −

Receiver Specific
Depth + + +
Distance + + +

Table 3.2: Three categories (Velocity model, source specific-, and receiver specific settings) shows how much a
response is changed by a small alteration of one parameter. Here, a − denotes no change visible, a ∼ a little bit
of change, and a + or ++ a notable change or significant change respectively. A more extensive analysis can be
found in Appendix A.

19

3.2. ARTIFICIAL NEURAL NETWORKS CHAPTER 3. METHODS

DC Source CLVD Source ISO Source

0 5 10
Time

−10

0

10

He
te
ro
ge

ne
ou

s

0 5 10
Time

−10

0

10

0 5 10
Time

−10

0

10

0 5 10
Time

−10

0

10

Ho
m
og

en
eo

us

0 5 10
Time

−10

0

10

0 5 10
Time

−10

0

10

E-Component Traces

Figure 3.6: Three different, simple source mechanism and two different velocity models. Next to showing how
the source mechanism influences a seismic trace, it also shows how the complexity of a velocity model affects the
response. In this case we can see a clear increase in complexity for the locally averaged model (blue traces) in
comparison to the response of the homogeneous velocity model (green traces).

From our previous analysis differentiation between two responses of almost identical source mechanism proved to
be hard. Training with a bigger data set will make the possibility larger that traces will look more like each other,
since moment tensor components only vary in the range -1 to 1. As is also the case when using full waveform
inversion to obtain the moment tensor, we need a certain azimuthal coverage that will ensure there is enough in-
formation on each event, making sure the network can differentiate between different fault mechanisms. This can
be achieved by letting the network analyze multiple station data at once.

3.2 Artificial Neural Networks
Around the fifties of the last century the first ideas for a neural network were proposed. This concept was taken
by other scientist and elaborated on, however, it did not take long before the idea of a neural net was forgotten
again. It turned out that they did not work as well as was hoped for. Roughly one decade ago neural networks
have made their return in science, and more and more research using these algorithms is performed nowadays.
The term neural network can mean a variety of types of networks. In this thesis we will only look at the type of
feed forward neural networks, or a multilayer perceptron. First, we will start of with a gentle introduction to the
theory of a feed forward neural network, where, among other things, we will lightly touch the subject of back
propagation as well. After this introduction, an explanation of the different hyperparameters and strategies that
can be set and employed when training with such an algorithm are given.

20

3.2. ARTIFICIAL NEURAL NETWORKS CHAPTER 3. METHODS

3.2.1 Theory
The easiest way of understanding how a neural network learns is by seeing it as a kid who is learning how to
multiply. Through looking at a lot of the basic tables, it learns which multiplication leads to which answer, in
the end, making him or her able to do all multiplications she or he an come up with, without supervision of, for
example, a peer or adult. This is also where the neural in the name comes from. The whole model is loosely
based on the concept of neurons in a human brain that, wired together, can learn multiple things. Inside a neural
network multiple layers can exist, where each layer contains a certain amount of neurons. These layers within the
network is what we call hidden layers. Each of the neurons learn specific mathematical functions that, when used
all together, should be able to give us the desired output. We know how the model updates itself (more about this
later), however, we do not know what the network learns exactly. As defined in Section 3.1 we chose a specific
time window because we think the network will learn most from these first arrivals. This is a form of feature
selection and can help someone training a network obtain a better accuracy. However, it is still hard to know what
precisely triggers the network to learn from the data what we want it to learn. If training with a convolutional
neural network (CNN), it would be a bit easier to see what the network is actually learning from the data we feed
it. A CNN is a type of network that learns filters in the hidden layers, which are applied to images fed to the input
layer to predict the output value. In the simple case of a CNN that estimates if a picture shows a cat or dog, we
could visualize what kind of filter each hidden layer learns. An example of such a filter is a filter that picks out
pointed or rounded ears, thus, first, giving a clear idea of what the network learns, but, secondly, also providing a
good way of distinguishing between the two classes, namely a cat or a dog.

Finding out what exactly a feed forward neural network learns is more difficult to visualize, since it learns a bunch
of linear functions. The parameters inside this function that are learned is what we call the weights and biases of,
for example, a neuron. How this works is as follows: say we want a trained network that can give you the location
of the source when you use a single time trace from a certain receiver as the input (visualized in Figure 3.7). Then,
if we start feeding it random time traces, the network will try to learn the locations from it. When it is finished
training, we can feed it a traces that the algorithm has not seen before. If we record a trace, it will have a sample
rate, for example 25Hz. This means that we measure the earth’s response each 0.04 seconds. Every time shot
that we record can be seen as one input neuron of the neural network, meaning that if we have a traces with one
hundred amplitudes (that shown together will form a wavelet), we need to construct a network that has a hundred
neurons as input. The neurons of the input layer are all connected to each neuron of the first hidden layer, where
the different neurons will all multiply the output from the input layer with a learned parameter. This parameter is
what we call the weight of the neuron. Intuitively we think the network will learn the location of the earthquake
partly by how long it takes for the first signals to arrive at the station. So, for example, if the time trace we are
using is ten seconds long, and the signal only starts after the first three seconds have passed, we hope that the
network will pick up how long it takes for the first p-waves to arrive and relate this to the distance to the source.

21

3.2. ARTIFICIAL NEURAL NETWORKS CHAPTER 3. METHODS

0

-0.02

Latitude

Longitude

Input Layer Hidden Layer Output Layer

y = Activation(weight1*input1 + bias)

Figure 3.7: A time trace is recorded with a certain sampling rate. For each sample recorded, one input neuron to
the neural network is created. The input layer forwards the data to the hidden layer, where it is used in a linear
function, of which the output is transformed and prepared for the output layer. The output layer contains for each
output an output neuron, in this case giving us the predicted values for the latitude and longitude.

But what if the first arrivals are not strong enough to be picked up by the network or are so weak that they will
not survive the chain of multiplications and neurons it will have to go through, becoming weaker with each pass?
It will mean that important signal will be lost. It is therefore that we add a certain bias, to be able to overcome a
certain threshold before one neuron can activate another neuron, see Figure 3.8.
After adding the bias we have the ’final’ product of our input with the neurons in the first hidden layers. As said
before, each mathematical function inside the neurons can predict only a linear function, since the weights and
biases of each neuron are linear. An activation function introduces the non-linearity to the network and enables it
to learn almost any function there is. It takes an input, and via a transformation (a non-linear function) it gives the
output. Examples of such an activation function can be found in Figure 3.11.

Figure 3.8: In the upper figure we see a neuron that produces an output that does not meet a certain threshold to
activate the neuron in the next layer, however, this link between the two neurons might be an important link for
the network later on. By adding a bias to the neuron, we can see, in the lower figure, that now the output of the
neuron does overcome the threshold and consequently activates the neuron in the next layer.

22

3.2. ARTIFICIAL NEURAL NETWORKS CHAPTER 3. METHODS

Knowing how the architecture of a simple feed forward neural network can look like, we might ask ourselves how
the networks learns. As said before, we do not know what exactly the network picks up, but we do know how it
updates itself. The parameters inside the network, i.e., the weights and biases, are updated using back propagation.
First, how does the network know if it predicted something that makes sense? For each training sample we feed
to the network, we have a corresponding label that tells us what the network’s output should be. If we go back to
the example used before, where we were trying the network to learn the location of a source from a single trace,
the first ever sample we feed it will probably give a very bad prediction. Comparing this prediction of the location
to the actual location, we can calculate the loss between the two. The definition of the actual loss function, but
also its shape varies on what type of problem you are dealing with. In the end we want to minimize this error
between the predicted and true values as much as possible, because it will give us an indication that the network
is performing well. It is therefore vital to tweak the right parameters to optimize the learning.
In the case of a single hidden layer network, the algorithm only needs to look at how to change the mathematical
formulas in this one layer, however, when dealing with multiple hidden layers, this process becomes increasingly
more complex. This updating of each single neuron, that is then related to another neuron is what we like to call
back propagation. Figure 3.9 gives a feel of how the back propagation method works. When the network processes
a sample, like in Figure 3.7, it will at the end check how much the predicted sample differs from the true value.
Then, all links between neurons, and the neuron specific parameters themselves will be updated accordingly. This
is done via the gradient. The gradient of the loss function with respect to the biases en weights of all individual
neurons in a network are computed, which in turn tells the network how these weights and biases of each single
neuron should be adjusted to reduce the error. The parameters can be updated a little, a lot, positively, or negatively.
If, wishing to know more about the theory behind back propagation, I would kindly refer the reader to (Bishop
2006), which is a great book that explains all there is about machine learning in more detail.

Latitude: 52.7340 53.3960

6.6929

True Values

Longitude: 6.6929

Figure 3.9: Once a sample has propagated through and been transformed by the network, arriving at the last layer
the estimated output will be assessed by computing the error between the true and predicted value. If there is an
error, the network will update itself by making changes to parameters in the algorithm via a backwards motion.
This means that the network will adjust the parameters in a motion form right to left in this figure. Here, the back
propagation can be a small or big change, positively or negatively.

3.2.1.1 Explained Variance Score

How do we verify the accuracy of the algorithm? The term accuracy is mostly used when dealing with a classifi-
cation problem. In this thesis, facing a regression problem, the validation of the performance of the network is a
little bit different. Usually a way of verifying if the network is trained well is by plotting the predicted values of
the test set against the target values that correspond to the input of the predicted values (Figure 3.10) (EVS). This
way we can visually check the performance of the network. Despite this visualization it can still be pretty difficult
to assess the accuracy of the network. Up to some degree it is certainly possible to say if a network predict very
poor, medium, or very good, but what about everything in between? A solution to this problem is by (among other
techniques as well) using the explained variance score. This score gives scores in the range of minus infinity to

23

3.2. ARTIFICIAL NEURAL NETWORKS CHAPTER 3. METHODS

one, with the latter being most desirable, since it indicates that the input is perfectly predicted by the algorithm.
The formula to calculate this score is

explained_variance = 1− Var{y− ŷ}
Var{y}

, (3.1)

with y being the true values of the input, ŷ the predicted values, and Var the variance. This score explains how
much of the variance is accounted for in the prediction of the neural network when the input are the previously
unseen samples. For classification problems the measure of the performance is the accuracy of the model. We can
either have one class or another, and how good the network is at classifying each sample results into the accuracy
of the model. This is a simple score that feels very intuitive; given class A, there is a ninety percent change of the
network guessing the class right. A regression problem cannot make use of this type of accuracy, since we want to
predict continuous values. So, even if we reach an explained variance score of almost 0.9, i.e., a very ’good’ score,
this is not synonymous to the accuracy of the network, meaning we cannot say that the prediction of this network
should be taken with a ten percent error margin. An example of this is shown in Figure 3.10. Here, we see two
models, both with a different explained variance score. Looking at the model with the EVS of 0.925, and how the
true versus predicted values cluster around the desired, black linear line, we could say, yes, the error margin of
our predictions could very well be around eight percent. But, using this same concept on the model with an EVS
of 0.713 we see this will not work, since for some parts of the model (for example in the range of true values -10
to 0) the error margin is not symmetric. This uncertainty can be investigated more by the use of mixture density
networks, which we will talk about in Section 3.2.3.

10 5 0 5 10
True Values

10.0

7.5

5.0

2.5

0.0

2.5

5.0

7.5

10.0

Pr
ed

ict
ed

 V
al

ue
s

EVS: 0.713

(a)

10 5 0 5 10
True Values

10.0

7.5

5.0

2.5

0.0

2.5

5.0

7.5

10.0

Pr
ed

ict
ed

 V
al

ue
s

EVS: 0.925

(b)

Figure 3.10: Verifying the performance of a neural network for a regression problem can be done two ways. The
first is by visualizing the target versus the predicted values, the second one by using the explained variance score.
In both the left and right figure the true versus predicted values are plotted for a toy problem. We can make use of
the explained variance score, in this plot shown as ’EVS’. A score of 1 is the highest possible and at the same time
the most desirable result, meaning that the network can explain the variation in the data perfectly, and the further
off from this value (lower than one, or even negative) indicates a poor performing network.

3.2.2 Hyperparameters and Strategies
We now have fed the first sample to our network. It did not predict that well, one of the locations was off (Figure
3.9), so what can we change now in order to make it predict the location better with the next sample? There are
multiple hyperparameters and strategies that can be changed, and these changes also indirectly influence other
settings in the network. Next to the network architecture, it is vital to pre-process the data set. For example,
scaling the input data can work as some form as regularization, thus making it possible for the network to learn
better.
We will distinguish between two sorts of parameters that we can change while improving the neural net; the
hyperparameters and the strategies. With hyperparameters we mean all parameters that are used to control the

24

3.2. ARTIFICIAL NEURAL NETWORKS CHAPTER 3. METHODS

learning process. Strictly talking, a parameter, in the case of a neural network, is a value that is learned during
training, for example the bias of a neuron. Strategy in this case means every method in which we can constrain
the model from overfitting. This can be through regularization, scaling of the input and target data, or by choosing
a different optimizer. It is important to understand that the strategies are not perse single, numerical values (like
hyperparameters), but are more some sort of technique that help us fine tune the network.

The hyperparameters are parameters that influence the learning process. Under this category we define the number
of hidden layers and neurons in a network, but also the activation function used, the learning rate, momentum of
the learning, the amount of epochs for which the network is trained, or the batch size. Within this section, all
strategies and hyperparameters changed during this thesis to optimize the learning process of the network are
elaborated on. Table 3.3 at the end of the section provides an overview of all hyperparameters and strategies
discussed.

3.2.2.1 Activation Function

Take for example the activation function, which has already been mentioned in the previous section, it is a func-
tion that helps training the network by transforming the output of a certain node to a new, bounded range. The
activation functions are mostly non-linear, thus capturing the non-linearity of our model. This is very important,
since our problem is non-linear as well. There are different type of activation functions, each of them correspond-
ing to a certain problem. Take for example a sigmoid activation function (Figure 3.11a). This type of activation
function works very well for classification problems, since a majority of the input will be mapped to either a value
of 1 or 0. The equation for the sigmoid activation function is as follows

σ(x) =
1

1+ e−x . (3.2)

The next activation function is the Rectified Linear Unit (ReLU)function (Figure 3.11b). This function is mostly
used in deep learning, and computes a lot faster than for example the sigmoid activation fuction. The ReLU
function is two linear functions combined to one non-linear function,

{
0 if x≤ 0,
x if x≥ 0.

(3.3)

On of the problems when using the ReLU is the effect of the dying ReLU problem. This might happen when
the learning rate is too big. This causes neurons to only output negative values, thus causing the ReLU activation
function to transform all these outputs to zeros. One way of countering this problem is by selecting a SELU
activation function, instead of the ReLU function. Here, SELU stands for Scaled Exponential Linear Unit, and it
is a variation on the ReLU function first proposed by (Klambauer et al. 2017), who showed that using a SELU
function will self-normalize the network. This means that the vanishing gradient problem will disappear. The
SELU function is shown in Figure 3.11c and is defined as follows, with scale and α pre-defined constants,

{
scale∗ x if x > 0,
scale∗al pha∗ (ex−1) if x≥ 0.

(3.4)

Very similar to the SELU is the Exponential Linear Unit (ELU). This activation function solves the same problems
as the SELU function, however, the equation does not contain the scale parameter,

{
x if x > 0,
al pha∗ (ex−1) if x≥ 0.

(3.5)

25

3.2. ARTIFICIAL NEURAL NETWORKS CHAPTER 3. METHODS

10.0 7.5 5.0 2.5 0.0 2.5 5.0 7.5 10.0
Input

0.2

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Ou
tp

ut

Sigmoid Activation Function

(a) Sigmoid Activation Function

10.0 7.5 5.0 2.5 0.0 2.5 5.0 7.5 10.0
Input

0

2

4

6

8

10

Ou
tp

ut

Relu Activation Function

(b) ReLU Activation Function

10.0 7.5 5.0 2.5 0.0 2.5 5.0 7.5 10.0
Input

2

0

2

4

6

8

10

Ou
tp

ut

Selu Activation Function

(c) SELU Activation Function

10.0 7.5 5.0 2.5 0.0 2.5 5.0 7.5 10.0
Input

2

0

2

4

6

8

10

Ou
tp

ut

Elu Activation Function

(d) ELU Activation Function

Figure 3.11: Four different activation functions, please note the changing output axis per activation function. The
sigmoid activation is used for classification problems, the ReLU activation is mostly used for regression problems,
and the SELU and ELU activations are found to work best for most problems in this thesis.

3.2.2.2 Learning Rate

The next hyperparameter that is important when tuning the network is the learning rate, and the related momen-
tum. In the previous section the concept of back propagation was explained. After the error between the true and
predicted output is calculated the learning rate controls how much should be changed to the model, before the
process starts over. Setting the right learning rate can be tricky, since a lot of times we are dealing with global or
local minima. The loss function that we use is in the network to minimize the error between the true and predicted
values tries to find a minimum, however, it is not always the case that there is only one minimum possible. We
could for example set the learning rate to a really low value. As a consequence we will find the global minimum,
however, the time it will take to get there can take very long. On the other hand, by setting a higher learning rate,
and thus effectively shortening the time of training, we could overshoot the global minimum and find only a local
minimum, or worse, not find a minimum at all.
This concept is visualized in Figure 3.12. In both the simple and more complex case, the red arrows show how
choosing a learning rate that is too big can cause the network to either not converge, or converge to a local mini-
mum. The latter can also happen when picking a learning rate that is too small, i.e., the green arrows show how a
too small learning rate will also converge to a local minimum, instead of the global minimum.

26

3.2. ARTIFICIAL NEURAL NETWORKS CHAPTER 3. METHODS

(a) One Minimum (b) Multiple Minima

Figure 3.12: On the left hand side we have a simple parabolic function that only has one minimum. The red arrows
show that picking a learning rate that is too big, can cause the network to never find the minimum. The same is
shown on the right, where a more complex function contains two local minima, and one global minimum. The
red arrow shows how a too big learning rate, or a too small learning rate (green arrows) can make the network
converge to a local minima instead of the desired global minimum.

3.2.2.3 Optimizer

Related to the learning rate is the momentum. In this thesis two different optimizers have been tested; the Adam
(Adaptive Moment Estimation) algorithm and the SGD (Stochastic Gradient Descent) algorithm. The former does
not make use of a momentum, but the latter does.

• The SGD algorithm keeps the learning rate fixed throughout the whole training process, next to it being
pretty inefficient for finding the global minimum, this also creates a high variance and oscillations. It can
be thought of as the too big learning rate overshooting the minimum in Figure 3.12a. The ideal path would
be to just follow the parabola until it reaches the minimum. In reality this will not happen and the path
will have more of a zigzag structure, like the red arrows in the Figure. The momentum counters softens
this zigzagging effect and keeps the learning process on track towards the global minimum by taking into
account the previous step the learning process has taken in order to find the right direction (taking into
account the exponentially weighted average). The SGD algorithm keeps the learning rate fixed throughout
each cycle of training. In order to understand how the Adam optimization works, we need to first look at a
different algorithm, namely the Root Mean Square Propagation (RMSprop) optimization.

• The RMSprop algorithm has the seem objective as the SGD method, namely dampening the oscillations
and speeding up the convergence of the model. The difference lies in the method used to do achieve this
goal. By computing an exponential moving average of the square of a gradient separately for each parameter
we are training in the network, we can achieve the same goal as the momentum does, i.e., taking the past
gradients into account when updating our model. The difference lies in the next step, where our step size
with the newly calculated gradient is adjusted. This step size is now changed due to the exponential average
we calculated in the previous step, by dividing the two by each other. This updates the initial learning rate
and prevents the big zigzag pattern. Furthermore, when the model gets close to converging RMSprop will
slow down the learning rate by performing simulated annealing.

• What the Adam optimizer does, is that it combines the SGD and RMSprop method into a new algorithm.
If, for example, faced a problem with multiple local minima, as shown in Figure 3.12b, it will ensure there
is minimum oscillation when using a gradient descent to find the global minimum, whilst at the same time
ensuring the step-size is big enough to not get stuck in a local minimum. This gives the Adam algorithm a
much higher performance, and also makes for a faster convergence of the model.

One might ask, why do we need to investigate the performance of the network with the SGD optimizer when,
clearly, the Adam algorithm has so many advantages? Following the paper by (Wilson et al. 2017) they found
that, when using adaptive gradient methods (like Adam), it is often the case that the network might give a very
high prediction accuracy when training the network, however, when using a completely new test data set, it could
perform very poor. This in contrast to the SGD method, which showed to have a much more robust generalization.

27

3.2. ARTIFICIAL NEURAL NETWORKS CHAPTER 3. METHODS

3.2.2.4 Loss Function and Scalers

The loss function is another strategy that can be used to make the network learn better. Since changing this strategy
only applies to the feed forward neural networks (Section 3.2.3, it was decided to not include it in this thesis, since
no comparison could be made. What we will investigate is the scaler used on the input and output data. Since the
area we are training the network for is relatively small, some closer by stations will always dominate the input we
give to the network, simply because the amplitudes will always be very high compared to the other, further away
stations. This, and also the fact that not every earthquake will result in the same range of recorded amplitudes,
might confuse the network. It is therefore important to scale the data beforehand. There are several built-in
functions from the package Scikit-learn that could help us with these transformations. Examples of such built-in
scalers are the MinMax scaler, and the Standard scaler. The former rescales the data to a certain range defined by
us, and the latter removes the mean of the data and scales by the unit variance. Another possibility of scaling is
by taking the maximum amplitude of each event that is fed to the network, and dividing the rest of the recording
of this event by the maximum amplitude. This way information on the magnitude of the event is lost, but other
information is not.

3.2.2.5 Epochs and Batch Size

Each network is trained for a certain amount of epochs. Here, an epoch means one cycle in which the network
’sees’ the complete training data set once. If we were to feed to complete data set at once to the network, compute
the errors, and only then accordingly update the network, we would get a very generic update, which will probably
does not do much for the convergence of our model. If we feed the samples one by one, calculating the error, and
subsequently update the model per single sample, it would take a very long time for the network to converge. It is
therefore more practical to feed the complete training set as batches to the network. If the batch size is small, the
model will take longer to learn, but might be more accurate in the end, and if the batch size is too big, the network
will learn nothing specific. Again, it is a fine line that we need to find in order to make all hyperparameters work
together to get the best trained neural network possible.

3.2.2.6 Mixture of Gaussians

All hyperparameters and strategies, except for the loss function, described in Section 3.2.2 also apply to a mixture
density network. We still have to check the activation function, number of hidden layers, neurons, the batch size,
learning rate etc. The only thing that has changed with this switch of type of network is how we define the output of
each prediction. As will be discussed in the next section (Section 3.2.3), our network does not predict the moment
tensor values anymore, instead it describes the mean, variance, and weight of a specified number of Gaussians that
together form a probability density function. The number of Gaussians set for the network to learn is therefore
an added hyperparameter. Here, the rule is that too little mixtures will give a incomplete description of the data,
whereas learning too many Gaussians to describe the probability density function, could lead to unnecessarily
long run times. Despite being computationally more intensive, selecting a high number of Gaussians does not
necessarily contribute to a poorer performance of the network. The Gaussians that contribute little to the overall
probability density function will be set to almost zero via the weights that are assigned to each individual Gaussian
by the algorithm.

28

3.2. ARTIFICIAL NEURAL NETWORKS CHAPTER 3. METHODS

Category Parameter What does it do?
Hyperparameters

Network Structure Number of Hidden Layers
Number of neurons per layer
Activation function Used to introduce non-linearity to

the network.

Training Algorithm Learning rate How quickly the network updates
the model

Momentum Only applies when using SGD
Number of Epochs How many times the complete data

set is used to train the network
Batch Size The number of samples fed to the

network each run within an epoch
Strategies

Regularization Dropout Technique to avoid over fitting by
for excluding random neurons dur-
ing training

L1/L2 regularization Penalizing neurons with a too great
of a weight

Scaling MinMax scaler Rescaling the data within a certain
range

Standard scaler Scaling to unit variance
Custom Scaler Scaling the complete input by the

maximum amplitude
Optimization ADAM Updates model parameters using a

stochastic gradient descent method
that is based on estimations of the
first- and second order moments

SGD Gradient descent optimizer

Table 3.3: A summary on the hyperparameters and strategies to be tried and tuned for a neural network. They are
sorted per category, and, if needed, a short description of what the parameter defines is also given.

3.2.3 Mixture Density Network
A neural network aims to learn an underlying pattern that maps the input to the output target of our data set. Most
of the time we see that a certain input x yields to a certain y within some range; we are dealing with an unimodal
problem. But, what if, to simply put it, given a certain x, there are two y’s possible that are not close to each
other (hence, we are dealing with a multimodal problem)? Let us consider Figure 3.13. The left figure shows a
wave-shaped function that can be mapped by a simple neural network. This forward problem should be easily
learned by the neural network that was described in the previous section. However, if we take the inverse problem,
the network will have a lot more trouble learning the s-shape (Figure 3.13b). What will happen is that the network
will not know how to learn the underlying pattern anymore, since we are now dealing with a multimodal problem.
It will therefore converge to the mean of the data set. This problem can be countered by using a mixture density
network, as is shown in Figure 3.13b.

29

3.2. ARTIFICIAL NEURAL NETWORKS CHAPTER 3. METHODS

10.0 7.5 5.0 2.5 0.0 2.5 5.0 7.5 10.0
True Values

10

5

0

5

10

Pr
ed

ict
ed

 V
al

ue
s

True Value
Approximated Value

(a) Unimodal Problem

10 5 0 5 10
True Values

15

10

5

0

5

10

15

Pr
ed

ict
ed

 V
al

ue
s

True Value
Approximated Value

(b) Multimodal Problem

Figure 3.13: In Figure 3.13a a sine function is approximated by a neural network by feeding a certain x to the
network that then predicts the y value. The network can anticipate the underlying pattern pretty well. If we
approach the inverse problem of Figure 3.13a, we would obtain Figure 3.13b. In Figure 3.13a a certain value of
x would have one value of y possible, within a certain range. Now, however, we see that a certain value of x
can yield multiple values for y. This confuses the neural network, and instead of trying to predict the underlying
pattern, it will converge to the mean of the data set.

As said before, if a conventional neural network tries to learn the function visualized in Figure 3.13b it will
converge to the mean of the data set. Or, to be more specific, it will learn the conditional average as a function
of our input, and the average variance (thus, the range around the true values as observed in 3.13a) of the data.
Obtaining these averages of a certain function will work for most cases, however, here we would need a bit more
information on the distribution of the function in order to make some educated guess. As (Bishop 1994) puts it
in his paper on mixture density networks; a conventional neural network solving a certain classification problem
works very well, but as soon as we are trying to predict continuous problems (solve a regression problem), the
conditional average that we learn will be very limited. Next to that, we do not know anything about the uncertainty
with which a prediction is made. It is therefore in this paper that Bishop proposes the first ideas on mixture density
networks and the theory behind it.
To give a simpler version of how the theory works, let us consider first again the conventional neural network. We
could estimate the conditional average of the data set and its average variance. These two parameters allow us to
construct a probability density function for each of the output values of the network with the given input. Note
that the average variance here is a non changing value for the complete distribution of the data set and that with
the conditional average only one Gaussian-shaped probability density function will be estimated. So what if we
were to replace this Gaussian distribution with a mixture model? With this we mean that instead of using only one
Gaussian, we let a finite number of Gaussian make up the probability density function. This can be written in the
form

p(ttt|xxx) =
m

∑
i=1

αi(xxx)φi(ttt|xxx) (3.6)

Here, α represents the mixing coefficient of each individual component in the mixture (with a total of m), and φ

representing the conditional density function with output target t for an input x. As said before, the distribution of
the probability is taken to be Gaussian. We can therefore represent the conditional density φ as a kernel function
of the Gaussian form

30

3.2. ARTIFICIAL NEURAL NETWORKS CHAPTER 3. METHODS

φi(ttt|xxx) =
1

(2π)c/2σi(xxx)c
exp{−‖t

tt−µµµ i(xxx)‖2

2σi(xxx)2 } (3.7)

with µ representing the mean of each Gaussian, and σ the variance. Both Equation 3.6 and 3.7 do not need the
target output t to be independent of each other. This is in contrast with the single Gaussian representation that we
see with a conventional neural network.

(Binder 2018) states that the problem at hand should be solvable by using a simple feed forward neural network,
i.e., there is no indication that our problem is mutlimodal. So, why are we then looking into the mixture density
networks? It is because they can give us more insight into the uncertainty of each prediction made by the network.
By not only evaluating the variance score of the network, but also looking at the probability distribution for each
event we put into the network, we could make a pretty accurate estimate of the uncertainty. To illustrate this, let
us go back to the toy example that we looked at in the beginning of this section. As we can see, the network has
made a pretty good prediction on the actual shape of the function we are trying to map, but what is the uncertainty
when making these decisions? Let us consider Figure 3.14, where the probability density function of two test
samples fed to the trained network from Figure 3.13a is given. In Figure 3.14a the network is very sure of its own
prediction, however, Figure 3.14b shows that given a different value for the input, the network has some more
issues being accurate.

10 5 0 5 10
Output Range

0

1

2

3

4

5

6

7

8

Pr
ob

ab
ilit

y

Output PDF test sample 2, x-input: 0.5

(a) Good prediction

10 5 0 5 10
Output Range

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

Pr
ob

ab
ilit

y

Output PDF test sample 2, x-input: -8.5

(b) Less sure prediction

Figure 3.14: In Figure 3.13a a sine function is approximated by a mixture density network. If we were to make a
new test set, i.e., generate some new input x that is fed to the network, which in turn predicts the optimal output y,
the mixture density network will not only give us the best predicted value, but also the uncertainity of its choice.
This is for example shown in Figure 3.14a, where the network is fairly sure that given an input of 0.5, the output
should be 0. However, if we feed the network an input of 8.5, it still shows us what the best prediction for the
output would be (the purple Gaussian), however, looking at the other two Gaussians drawn left of the middle
Gaussian (green and pink Gaussian), it is seen that there is some chance that the output could actually be different.

The Feed Forward Neural Netowrk (FFNN) gives us the six Moment Tensor (MT) components as an output.
This is contrary to the Mixture Density Network (MDN) network, where we will obtain the means, weights, and
variances of the probability distribution function (PDF) from which we can draw the best possible prediction. To
train the network, however, our input for the training labels, i.e., the true values of the moment tensor, is the same
as for the input of the FFNN. How do we account for this change in output, but not of input values? If we make
some minor changes to the loss function, this problem could be easily solved. By constructing a mixture model
from the output of the network, the logarithmic probability mass function can be constructed that relates to the
true values of the input. The outcome of this is then used as a means of updating the network.

31

3.3. FEED FORWARD NEURAL NETWORK VS. MIXTURE DENSITY NETWORKCHAPTER 3. METHODS

3.3 Feed Forward Neural Network vs. Mixture Density Network
In Section 3.2.1 we talked about the general theory that forms the basis for the FFNN and the MDN. Section 3.2.3
explained the difference of a MDN to a FFNN, but did not really elaborate on how these two separate types of
network can complement, or compete against each other. We could ask: Why not only use a MDN always? It
gives an estimation of the moment tensor and also the associated uncertainties that come with each prediction. A
short review of the literature can give us a first answer to this question.

• (Binder 2018) solves the problem, using a simple model, testing the performance only with a FFNN, which
is fast to train, and does not cost to much computational power, but, it does not give us any information on
the uncertainity of each prediction.

• (Steinberg et al. 2021) proposes the use of a Bayesian Neural Network to assess the uncertainties in the
networks prediction. Using 128 CPUs the creation of the synthetic data, and the training of the network
took them three months.

• (Kuang et al. 2021) makes use of a more complex network structure that uses as training labels three Gaus-
sian probability distributions that represent the strike, slip and dip of the corresponding input, thus taking
it a step further than (Steinberg et al. 2021), where the training labels are the focal mechanisms itself. This
FMNet takes around 5 hours to train, using four GPUs of NVIDIA Tesla V100.

• In his dissertation, (Käufl 2015) not only estimates the focal mechanism of each event, but also the depth,
location, logarithmic magnitude, and the half-duration correlated to the size of the event, using a mixture
density network that follows the network architecture of a simple feed forward neural network. Depending
on the type of network training(i.e., the length of the time window used), the CPU hours needed to construct
a good predicting network varies between a 100 and 10000 hours.

On the one hand we have the paper by (Binder 2018) that tells us a network should be trainable with not too many
resources, whereas on the other hand we have the papers by (Steinberg et al. 2021), (Kuang et al. 2021), and (Käufl
2015), that all advocate for the MDN, however, the network will take a longer time to train and is computationally
more expensive, see Figure 3.15. Feeling that the gap in computational resources needed and the difficulty of
the network is too big between the latter and former three papers, it was decided to try out how the prediction
precision of both the FFNN and MDN would differ, if using the exact same model to train the algorithms. Do they
need different network architectures to perform better, is there a big contrast in computational time needed to train
the network, and does one network perform better than the other one?
Training the network is done on the Lisa cluster computer. This server has four types of CPU’s, of which we
only used two, assigned by availability. For specifications see Table 3.4. This brings us to the way we will test
the differences between the FFNN and the MDN. For each network type, three types of models will be tested; a
homogeneous model without noise with fixed source location, a heterogeneous model without noise with varying
source location, and the same heterogeneous model with varying source location with added Gaussian noise. An
overview of these three models can be found in Figure 3.16.

CPU
Intel® Xeon® Gold 6130 Processor Intel® Xeon® Silver 4110 Processor

Processor Base Frequency 2.10 GHz 2.10 GHz
Memory 96 GB UPI 10.4 GT/s 96 GB UPI 9.6 GT/s

Cores 16 16

Table 3.4: Two types of CPUs used for this thesis

32

3.3. FEED FORWARD NEURAL NETWORK VS. MIXTURE DENSITY NETWORKCHAPTER 3. METHODS

Figure 3.15: A rough estimation of the computational cost versus the network complexity of the four different
papers discussed in the text. It is seen that there is a gap of research that investigated both the MDN and FFNN
network with simpler network architectures.

Homogeneous
Data Set

Heterogeneous
Data Set

No Noise No Noise Noise

One
Source

Location

Fixed
Magnitude

Fixed
Depth

Random
Moment
Tensor

Components

Varying
Source

Location

Fixed
Magnitude

Fixed
Depth

Random
Moment
Tensor

Components

Previous
Settings

Gaussian
Noise

Figure 3.16: Overview of the models to be tested by the neural network.

33

Chapter 4
Results

In this Chapter we will walk through the process of finding the right type of neural network, the changes made to
the data set in order make the problem more complex, and to learn more about the hyper parameters and how to
fine tune them. To give a short refresher on the hyperparameters and strategies tested in this thesis, we refer the
reader to Table 3.3 in Section 3.2.2.
As we progress through this chapter, it will become evident that there is not a lot of difference between the accuracy
of the individual moment tensor component predictions for the simpler data sets, however, when using the more
complex data sets (the heterogeneous velocity model) we will see that some settings will work better for prediction
of some components than others. The moment tensor contains nine components, of which six are independent.
From now on, if the term ’first moment tensor component’ or ’MT1’ is used, we mean the mnn or Mxx component
of the moment tensor. An overview of this renaming can be found in Figure 4.1. The diagonal components of
the moment tensor represent the linear vector dipoles, i.e., it represents the tensile or compressive faulting. As
(Steinberg et al. 2021) mentions, when testing a model that contains errors, it is exactly the CLVD and isotropic
components that give rise to the highest uncertainties for their network. (Kuang et al. 2021) reports errors in the
rake angle of up to twenty degrees, together with a low prediction probability. Both of these papers use strike, dip,
and rake angles as labels. This thesis will deal only with the six independent moment tensor components, since it
was more convenient in relation with the creation of the synthetic data set, but also because it gives the possibility
to investigate the full moment tensor earthquakes. However, as (Dahm & Krüger 2014) mentions, the isotropic
component, given certain data, might be difficult to resolve.

Figure 4.1: Renaming of the MT components. Here, MT1 to MT3 represent volumetric changes, or the isotropic
component of a source. If only this diagonal contained non-zero values, the corresponding source would be a pure
explosion (positive values) or implosion (negative values). MT4 to MT6 represent the force couples with moment.
These off diagonal components are associated with rotational movement of the source.

34

4.1. FEED FORWARD NEURAL NETWORK CHAPTER 4. RESULTS

4.1 Feed Forward Neural Network
The accuracy and efficiency of using a multi-layer perceptron to estimate the six moment tensor components was
investigated using different data sets. Two different models are used to understand the impact of feeding the neural
network with data sets of different sizes and heterogeneity. The initial process of fine tuning the hyperparameters
was identical for each data set tried. After gathering info on which settings or strategies work best for each type of
data, the amount of data needed to obtain satisfying results will be investigated as well. As we will see, is that each
change to the data set, may it be the velocity model, or the amount of data used to train the network, will yield
a different combination of hyperparameters that makes the algorithm perform best. The results in this chapter
describe the performance of the neural network on a data set that it has never seen before. This is the so-called
test set, and will be kept apart from the train set until the learning of the algorithm has converged. For example, in
this thesis a data set of 10.000 earthquakes is used to investigate the prediction of the moment tensor. This means
that eighty percent of this data is used to train and validate the network, and the remaining twenty percent is used
to test the trained network.
The feed forward net only outputs the estimated moment tensor values. It therefore does not tell us anything on the
uncertainty of its prediction. With so many parameters to be fine tuned and predicted, it is sometimes easy to lose
the overview. It is for this reason that only a selection of the results will be shown here, the rest can be found in the
Appendix B. Mainly the results for one of the moment tensor components will be shown, unless stated otherwise.

4.1.1 Homogeneous Model
The first data set considers using a homogeneous velocity model as shown in Figure 3.2a. This particular data set
has a fixed magnitude, depth, and source location, in order to evaluate the first performances of the neural network.

First, we will evaluate how scaling the input and target values of the data set could benefit the learning of the net-
work. Four options of scaling the input data are shown in Figure 4.2, namely using no scaler, a MinMax scaler, a
standard scaler, and scaling based on the maximum amplitude. What each of these scalers exaclty do is explained
in Chapter 3, Section 3.2.2. The main idea behind standardizing, i.e. scaling, the data is to ignore outliers. The
MinMax scaler and standard scaler both remove the mean of each sample that is to be scaled, and dividing their
features by the standard deviation of the data set. The data set used in this thesis is uniformely distributed, which
could in theory cause problems with the scalers, since they perform better with a Gaussian distribution.
Sometimes, it also lends itself when a scaler is applied to the target values used during the training to correct the
network. An example of how the scaling of the target values influences the performance, we refer the reader to
Figure 4.3. It is seen that for the homogeneous data set, the network does not perform better or worse with a
changing scaler, except for a scaling of zero to one. Figure 4.3b might seem like something went wrong when
rescaling the predicted moment tensor components back to the initial range of negative one to positive one, how-
ever, if we look at the explained variance score of this data set, we can see that that is very low as well. Since the
same scaler does seem to work for more complex models, it is not exactly clear as to why it performs so poorly
on the simpler model.

Hyperparameter / Strategy Value / Type
Number of hidden layers 1
Number of neurons per layer 100
Activation Function elu
Learning Rate 0.001
Batch Size 750
Regularization Dropout (0.05)
Initialization -
Scaler Input scaler varies

Target values scaler varies
Optimization ADAM
Size data set Varying

Table 4.1: Network architecture of the net used to evaluate the performance of the algorithm with changing input
and targer scalers. Results can be found in Figure 4.2 or 4.3.

35

4.1. FEED FORWARD NEURAL NETWORK CHAPTER 4. RESULTS

1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00
True Values

1.0

0.5

0.0

0.5

1.0
Pr

ed
ict

ed
 V

al
ue

s
No Scaler. MT1 EVS: 0.955

(a)

1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00
True Values

1.0

0.5

0.0

0.5

1.0

Pr
ed

ict
ed

 V
al

ue
s

MinMax Scaler. MT1 EVS: 0.0

(b)

1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00
True Values

1.0

0.5

0.0

0.5

1.0

Pr
ed

ict
ed

 V
al

ue
s

Standard Scaler. MT1 EVS: -2.164

(c)

1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00
True Values

1.0

0.5

0.0

0.5

1.0

Pr
ed

ict
ed

 V
al

ue
s

Maximum Amplitude. MT1 EVS: 0.915

(d)

Figure 4.2: The performance of a network when only changing input data scaler used to train the algorithm
measured by visualizing the true versus predicted values of the test set and the explained variance score (EVS).
The four plots show the explained variance score for the first moment tensor, where each blue dot depicts a test
sample. We see that the MinMax- and Standard Scaler make the network predict very poor. It is seen that using no
scaler on the input data might work the best in case of the homogeneous model. The black linear line denotes the
trend a perfect predictor should have; each predicted value being exactly the same as the true value. The network
architecture for this particular problem can be found in Table 4.1.

36

4.1. FEED FORWARD NEURAL NETWORK CHAPTER 4. RESULTS

1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00
True Values

1.0

0.5

0.0

0.5

1.0

Pr
ed

ict
ed

 V
al

ue
s

No Scaler. MT1 EVS: 0.955

(a)

1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00
True Values

1.0

0.5

0.0

0.5

1.0

Pr
ed

ict
ed

 V
al

ue
s

Scaled [0,1]. MT1 EVS: 0.001

(b)

1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00
True Values

1.0

0.5

0.0

0.5

1.0
Pr

ed
ict

ed
 V

al
ue

s
Scaled [0,2pi]. MT1 EVS: 0.957

(c)

Figure 4.3: The performance of a network when only changing the target scaler used to train the algorithm mea-
sured by visualizing the true versus predicted values of the test set and the explained variance score (EVS). The
four plots show the explained variance score for the first moment tensor, where each blue dot depicts a test sample.
In the case of a homogeneous model we see that there is not really a scaler needed for the network to predict the
moment tensor components accurately. The black linear line denotes the trend a perfect predictor should have;
each predicted value being exactly the same as the true value. The network architecture for this particular problem
can be found in Table 4.1.

Another point of interest to show is how the amount of hidden layers, and the number of hidden neurons used can
influence the performance of our network. Our input layer is quite large (over 9000 neurons big), and compressing
it to a much smaller size of neurons for the first hidden layer might feel like stacking the data, as is done in signal
processing. In some ways this is true; we force the network to only extract the most important features and
translate this to the moment tensor. We can see in Figure 4.4a that using too little neurons in the hidden layer gives
an unsatisfactory result, especially if we compare the outcome to Figure 4.4b. This means that we the number of
important features we allow the network to extract are too little for the algorithm to make sense out of it. Then,
if we add an extra hidden layer to the network architecture, we can see that the network can explain the variance
even better (Figure 4.4c). By setting the first hidden layer to have less neurons than the second, the network will
only extract the most important features of the input data, before it ’rebuilds’ these features to a bigger set of
neurons in the second layer. This second layer can then elaborate on what these specific features mean exactly to
the prediction of the moment tensor, thus yielding a higher EVS.
In the case of data set based on the homogeneous velocity model using too little neurons in the hidden layer
luckily does not show that much difference yet, but still it is noteworthy to keep in mind how the amount of
neurons influences the performance of our network.

37

4.1. FEED FORWARD NEURAL NETWORK CHAPTER 4. RESULTS

Hyperparameter / Strategy Value / Type
Number of hidden layers Varying
Number of neurons per layer Varying
Activation Function elu
Learning Rate 0.001
Batch Size 750
Regularization Dropout (0.05)
Initialization -
Scaler Input divided by maximum amplitude

Target values scaled from [0,2pi]
Optimization ADAM
Size data set 10.000

Table 4.2: Network architecture of the net used to evaluate the performance of the algorithm with changing size
of train data. Results can be found in Figure 4.4.

1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00
True Values

1.0

0.5

0.0

0.5

1.0

Pr
ed

ict
ed

 V
al

ue
s

H.L: 1, Neurons: 6. MT1 EVS: 0.844

(a)

1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00
True Values

1.0

0.5

0.0

0.5

1.0

Pr
ed

ict
ed

 V
al

ue
s

H.L: 1, Neurons: 350. MT1 EVS: 0.958

(b)

1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00
True Values

1.0

0.5

0.0

0.5

1.0

Pr
ed

ict
ed

 V
al

ue
s

H.L: 2, Neurons: 50, 150. MT1 EVS: 0.966

(c)

1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00
True Values

1.0

0.5

0.0

0.5

1.0

Pr
ed

ict
ed

 V
al

ue
s

H.L: 2, Neurons: 100, 150. MT1 EVS: 0.965

(d)

Figure 4.4: The performance of a network when only changing the amount of hidden layers and/or neurons used
to train the algorithm measured by visualizing the true versus predicted values of the test set and the explained
variance score (EVS). The four plots show the explained variance score for the first moment tensor, where each
blue dot depicts a test sample. As can be seen is that the explained variance score almost reaches the maximum of
one in some of the figures (Figure 4.4b, 4.4c, and 4.4d). This is vary favorable, since it means that there is little
difference between the predicted and true values. The black linear line denotes the trend a perfect predictor should
have; each predicted value being exactly the same as the true value. As can be seen is that the blue dots follow
this line pretty closely. The network architecture for this particular problem can be found in Table 4.2.

Lastly, let us take a look at the influence of the different regularizers we can use to constrain overfitting on the
train data. Figure 4.5 shows that there is almost no difference between the regularizer used for this problem. This
should not be that surprising, since we are still dealing with a homogeneous data set that does not contain any noise
at all. Regularization is mostly only needed when noise is present in a data set, when the data is complex, or when
there the training set is not sufficient enough to represent the whole problem. In the last case the regularization
would counter the overfitting of the network on the unrepresentative data set.

38

4.1. FEED FORWARD NEURAL NETWORK CHAPTER 4. RESULTS

Hyperparameter / Strategy Value / Type
Number of hidden layers 1
Number of neurons per layer 100
Activation Function elu
Learning Rate 0.001
Batch Size 750
Regularization Varying
Initialization -
Scaler Input divided by maximum amplitude

Target values scaled from [0,2pi]
Optimization ADAM
Size data set 10.000

Table 4.3: Network architecture of the net used to evaluate the performance of the algorithm with changing
regularizers. Results can be found in Figure 4.5.

1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00
True Values

1.0

0.5

0.0

0.5

1.0

Pr
ed

ict
ed

 V
al

ue
s

No Regularization. MT1 EVS: 0.953

(a)

1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00
True Values

1.0

0.5

0.0

0.5

1.0

Pr
ed

ict
ed

 V
al

ue
s

Dropout (0.05). MT1 EVS: 0.952

(b)

1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00
True Values

1.0

0.5

0.0

0.5

1.0

Pr
ed

ict
ed

 V
al

ue
s

Dropout (0.3). MT1 EVS: 0.907

(c)

1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00
True Values

1.0

0.5

0.0

0.5

1.0

Pr
ed

ict
ed

 V
al

ue
s

L1 Regularizer (0.001). MT1 EVS: 0.934

(d)

1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00
True Values

1.0

0.5

0.0

0.5

1.0

Pr
ed

ict
ed

 V
al

ue
s

L2 Regularizer (0.001). MT1 EVS: 0.953

(e)

1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00
True Values

1.0

0.5

0.0

0.5

1.0

Pr
ed

ict
ed

 V
al

ue
s

L1L2 Regularizer (2x 0.001). MT1 EVS: 0.943

(f)

Figure 4.5: The performance of a network when only changing the type of regularizer used to train the algorithm
measured by visualizing the true versus predicted values of the test set and the explained variance score (EVS).
The six plots show the explained variance score for the first moment tensor, where each blue dot depicts a test
sample. The black linear line denotes the trend a perfect predictor should have; each predicted value being exactly
the same as the true value. As can be seen is that the blue dots follow this line pretty closely, even when no
regularization is used. The network architecture for this particular problem can be found in Table 4.3.

39

4.1. FEED FORWARD NEURAL NETWORK CHAPTER 4. RESULTS

4.1.2 Heterogeneous Model
An early conclusion that can be made from the previous section is that the feed forward network can predict the
moment tensor components pretty well with explained variance scores going up to 0.96 given the simple model.
Of course we do not know yet the uncertainty that is related to these predictions; we will find this out in Section
4.2.1. Let us first look at how the accuracy of our predictions change when we switch to a more complex model,
namely the locally averaged 1D model of the Groningen subsurface (as shown in Figure 3.2b), but leave the noise
out. It is already with this data set that we will see that the network does not predict each moment tensor with
the same accuracy anymore and the we need to make use of a scaler to get reliable results. If we take the same
network architecture from Table 4.3 to test how the different regularizers influence the accuracy of the network
and would only look at the explained variance score of the first moment tensor component, we could say that
the network is not predicting that well. However, looking at, for example, the prediction of all moment tensor
components using the best performing regularizer of Figure 4.6 (Figure 4.6f), a different light can be shed on the
accuracy of the predictions. It is in Figure 4.7 that we can see how the network has a different EVS when it comes
to the individual moment tensor components.

1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00
True Values

1.0

0.5

0.0

0.5

1.0

Pr
ed

ict
ed

 V
al

ue
s

No Regularization. MT1 EVS: 0.272

(a)

1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00
True Values

1.0

0.5

0.0

0.5

1.0

Pr
ed

ict
ed

 V
al

ue
s

Dropout (0.05). MT1 EVS: 0.349

(b)

1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00
True Values

1.0

0.5

0.0

0.5

1.0

Pr
ed

ict
ed

 V
al

ue
s

Dropout (0.3). MT1 EVS: 0.488

(c)

1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00
True Values

1.0

0.5

0.0

0.5

1.0

Pr
ed

ict
ed

 V
al

ue
s

L1 Regularizer (0.001). MT1 EVS: 0.58

(d)

1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00
True Values

1.0

0.5

0.0

0.5

1.0

Pr
ed

ict
ed

 V
al

ue
s

L2 Regularizer (0.001). MT1 EVS: 0.382

(e)

1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00
True Values

1.0

0.5

0.0

0.5

1.0

Pr
ed

ict
ed

 V
al

ue
s

L1L2 Regularizer (2x 0.001). MT1 EVS: 0.603

(f)

Figure 4.6: The performance of a network when only changing the type of regularizer used to train the algorithm
measured by visualizing the true versus predicted values of the test set and the explained variance score (EVS). The
six plots show the explained variance score for the first moment tensor, where each blue dot depicts a test sample.
The black linear line denotes the trend a perfect predictor should have; each predicted value being exactly the same
as the true value. Contrary to the case were the homogeneous data set is used, regularization is definitely needed
in order to train the network. Figure 4.6f shows the highest explained variance score of all types of regularization
tested in this figure. This score is still not a very good score. The network architecture for this particular problem
can be found in Table 4.3.

40

4.1. FEED FORWARD NEURAL NETWORK CHAPTER 4. RESULTS

1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00
True Values

1.0

0.5

0.0

0.5

1.0
Pr

ed
ict

ed
 V

al
ue

s
MT1 EVS: 0.578

(a)

1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00
True Values

1.0

0.5

0.0

0.5

1.0

Pr
ed

ict
ed

 V
al

ue
s

MT2 EVS: 0.625

(b)

1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00
True Values

1.0

0.5

0.0

0.5

1.0

Pr
ed

ict
ed

 V
al

ue
s

MT3 EVS: 0.768

(c)

1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00
True Values

1.0

0.5

0.0

0.5

1.0

Pr
ed

ict
ed

 V
al

ue
s

MT4 EVS: 0.697

(d)

1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00
True Values

1.0

0.5

0.0

0.5

1.0

Pr
ed

ict
ed

 V
al

ue
s

MT5 EVS: 0.827

(e)

1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00
True Values

1.0

0.5

0.0

0.5

1.0

Pr
ed

ict
ed

 V
al

ue
s

MT6 EVS: 0.83

(f)

Figure 4.7: The performance of a network when using a L1L2 (2x 0.001) regularizer to train the algorithm mea-
sured by visualizing the true versus predicted values of the test set and the explained variance score (EVS). The
six plots show the explained variance score for each individual moment tensors component, where each blue dot
depicts a test sample. The black linear line denotes the trend a perfect predictor should have; each predicted value
being exactly the same as the true value. As can be seen is that the blue dots follow this line more closely for
some components than others. Especially moment tensor components five and six show a good predictability. The
network architecture for this particular problem can be found in Table 4.3.

If we look at the above results, we can see that the predictions for the first three moment tensor components are a
lot poorer than the other predictions. A possible explanation could be that another combination of hyperparameters
and strategies in the network’s architecture might lead to a more even accuracy of prediction for the moment tensor
components. We can test this via Figure 4.8a, which shows the EVS and true versus predicted values for the first
moment tensor component of the best performing network of Figure 4.6. Figure 4.8b shows the performance on
the first moment tensor component of a network with the architecture shown in Table 4.4. The network with a
dropout performed not so well in Figure 4.6, however, with slight changes to the network’s architecture we can
get a EVS that is a bit better than that of the network with the L1_L2 regularizer.

41

4.1. FEED FORWARD NEURAL NETWORK CHAPTER 4. RESULTS

Hyperparameter / Strategy Value / Type
Number of hidden layers 1
Number of neurons per layer 50
Activation Function elu
Learning Rate 0.001
Batch Size 750
Regularization Dropout (0.05)
Initialization -
Scaler Input divided by maximum amplitude

Target values scaled from [0,2pi]
Optimization ADAM
Size data set 10.000

Table 4.4: Network architecture of the net used to evaluate the performance of the algorithm with changing
regularizers. Results can be found in Figure 4.8b.

1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00
True Values

1.0

0.5

0.0

0.5

1.0

Pr
ed

ict
ed

 V
al

ue
s

MT1 EVS: 0.578

(a) L1_L2 (2x 0.001) regularizer

1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00
True Values

1.0

0.5

0.0

0.5

1.0

Pr
ed

ict
ed

 V
al

ue
s

MT1 EVS: 0.657

(b) Dropout (0.05) regularizer

Figure 4.8: The performance of a network when using a L1L2 (2x 0.001) regularizer to train the algorithm mea-
sured by visualizing the true versus predicted values of the test set and the explained variance score (EVS), set
against the same performance when using a dropout rate and a different network architecture. The two plots show
the explained variance score for the first moment tensor component, where each blue dot depicts a test sample.
The black linear line denotes the trend a perfect predictor should have; each predicted value being exactly the
same as the true value. The network architecture for Figure 4.8a can be found in Table 4.3, for Figure 4.8b refer
to 4.4.

In spite of having shown that different architectures for our algorithm can lead to a slightly better performance, the
EVS is still pretty poor. Interestingly, this poor EVS is again only valid for the first, second, and third components,
whereas the fourth, fifth, and sixth moment tensor components give accuracies equal to those in Figure 4.7. There
might be another explanation of this behaviour, namely that we need to design six separate networks that each
are tailored to their own individual moment tensor component. Although using a different type of network (a
MDN) (Käufl 2015) also reports that independently estimating the desired outputs, can lead to differences in
network architecture and better performances overall. Figure 4.9 tries to show this. As can be seen is that even
with different network architectures, the network still performs poor on especially the first, second, and fourth
moment tensor components. If we look back at the definition of the moment tensor components and what forces
they describe (Figure 2.6 and Figure 4.1), observe that moment tensor components one to three all represent the
diagonal tensor components. These represent volumetric changes, whereas the off-diagonal components speak for
the rotational effects (moment tensor components three through six). It might be that the network has a harder
time detecting these volumetric forces, since they might change the trace less.

42

4.1. FEED FORWARD NEURAL NETWORK CHAPTER 4. RESULTS

Hyperparameter / Strategy MT1 MT2 MT3 MT4 MT5 MT6
Number of hidden layers 1
Number of neurons per layer 100 100 100 100 300 200
Activation Function elu
Learning Rate 0.001
Batch Size 1500 500 1500 250 1500 1500
Regularization Dropout (0.15)
Initialization -
Scaler Input divided by maximum amplitude

Target values scaled from [0,2pi]
Optimization ADAM
Size data set 10.000

Table 4.5: Network architecture of the net used to evaluate the performance of the algorithm with changing
regularizers. Results can be found in Figure 4.9.

1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00
True Values

1.0

0.5

0.0

0.5

1.0

Pr
ed

ict
ed

 V
al

ue
s

MT1 EVS: 0.681

(a)

1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00
True Values

1.0

0.5

0.0

0.5

1.0

Pr
ed

ict
ed

 V
al

ue
s

MT2 EVS: 0.691

(b)

1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00
True Values

1.0

0.5

0.0

0.5

1.0

Pr
ed

ict
ed

 V
al

ue
s

MT3 EVS: 0.79

(c)

1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00
True Values

1.0

0.5

0.0

0.5

1.0

Pr
ed

ict
ed

 V
al

ue
s

MT4 EVS: 0.716

(d)

1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00
True Values

1.0

0.5

0.0

0.5

1.0

Pr
ed

ict
ed

 V
al

ue
s

MT5 EVS: 0.83

(e)

1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00
True Values

1.0

0.5

0.0

0.5

1.0

Pr
ed

ict
ed

 V
al

ue
s

MT6 EVS: 0.835

(f)

Figure 4.9: Results of the prediction of the moment tensor components, where each moment tensor components
is estimated by an unique network visualized by the true versus predicted values of the test set and the explained
variance score (EVS). The six plots show the explained variance score for each individual moment tensors compo-
nent, where each blue dot depicts a test sample. The black linear line denotes the trend a perfect predictor should
have; each predicted value being exactly the same as the true value. As can be seen is that the blue dots follow
this line more closely for some components than others. Especially moment tensor components five and six show
a good predictability. The network architecture for this particular problem can be found in Table 4.5.

43

4.1. FEED FORWARD NEURAL NETWORK CHAPTER 4. RESULTS

Lastly, we present the effect of a changing activation function has on the performance of the network, see Figure
4.10. Here, a mix of the four different activation functions explained in Chapter 3 will be shown; the elu, selu, and
relu activation functions, mostly used for regression problems, but also the effect of using a sigmoid activation
function, which is more tailored to classification problems. This is mostly valid for the activation function in the
output layer, and for regression problems we always use a linear function as the output activation function. Still, it
is uncommon to use a sigmoidal activation function in the hidden layers of a network, since it has this problem of
vanishing gradients. The vanishing gradient can be explained by looking at the derivative of the sigmoid, which
translates a big change in data to a very small gradient, making it possible to vanish. An explanation of the good
performance of the sigmoid function might be that the changes in the traces are not that big anyways, thus causing
the sigmoidal activation function working in the favor of the training on the network. The activation function used
so far (the elu function) performs a lot poorer compared of the other activation functions shown in Figure 4.10.
Again, this is another proof of having multiple optimal combinations of strategies and hyperparameters that can
cause the network to perform a lot better. But, in general, it was seen that networks that make use of the sigmoidal
or selu activation function perform slightly better than others.

Hyperparameter / Strategy Value / Type
Number of hidden layers 1
Number of neurons per layer 50
Activation Function varying
Learning Rate 0.001
Batch Size 750
Regularization Dropout (0.2)
Initialization -
Scaler Input divided by maximum amplitude

Target values scaled from [0,2pi]
Optimization ADAM
Size data set 10.000

Table 4.6: Network architecture of the net used to evaluate the performance of the algorithm with changing
activation funcion. Results can be found in Figure 4.10.

44

4.1. FEED FORWARD NEURAL NETWORK CHAPTER 4. RESULTS

1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00
True Values

1.0

0.5

0.0

0.5

1.0
Pr

ed
ict

ed
 V

al
ue

s
Activation: relu. MT1 EVS: 0.474

(a) Relu Activation

1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00
True Values

1.0

0.5

0.0

0.5

1.0

Pr
ed

ict
ed

 V
al

ue
s

Activation: elu. MT1 EVS: 0.227

(b) Elu Activation

1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00
True Values

1.0

0.5

0.0

0.5

1.0

Pr
ed

ict
ed

 V
al

ue
s

Activation: selu. MT1 EVS: 0.575

(c) Selu Activation

1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00
True Values

1.0

0.5

0.0

0.5

1.0

Pr
ed

ict
ed

 V
al

ue
s

Activation: sigmoid. MT1 EVS: 0.673

(d) Sigmoid Activation

Figure 4.10: Influence of the activation function on the performance of the network whilst predicting the moment
tensor components, visualized by the true versus predicted values of the test set and the explained variance score
(EVS). The four plots show the explained variance score for the first moment tensors component, where each blue
dot depicts a test sample. The black linear line denotes the trend a perfect predictor should have; each predicted
value being exactly the same as the true value. As can be seen is that the blue dots follow this line more closely
for especially the sigmoidal activation function. At the same time, the EVS for this activation function is clearly
higher than for the other activation functions. The network architecture for this particular problem can be found
in Table 4.6.

4.1.3 Noise
To make the data set more complex and more realistic, as a last step we have added Gaussian noise to the seismic
traces that form the input to the neural network. This added Gaussian noise has a mean of zero and changing
standard deviation, which is explained in SNR for each data set in the upcoming figures. From the previous
section the best performing network architecture has been picked, and tested on data sets with varying SNR. Here,
it was decided to check if the approach of an all-in-one network, or the individual networks made a change to the
EVS. We can conclude from Figure 4.11 that this is the case. Especially for the data sets with lower SNR, we can
see a more stable prediction of the individual MT components when only one network. This is, again, in contrast
with what we would have expected from the literature. It might be due to the fact that the type of network we are
using here is different, and that the FFNN does not predict better with separate networks.

45

4.2. MIXTURE DENSITY NETWORK CHAPTER 4. RESULTS

2 4 6 8 10 12
SNR

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00
EV

S

Changing EVS for FFNN, all-in-one network
MT1
MT2
MT3
MT4
MT5
MT6

(a) All-in-One Network

2 4 6 8 10 12
SNR

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

EV
S

Changing EVS for FFNN, seperate networks
MT1
MT2
MT3
MT4
MT5
MT6

(b) Separate Networks

Figure 4.11: Influence of the noise on the performance of the network whilst predicting the moment tensor compo-
nents. This figure shows the relation between the mean of the SNR of the heterogeneous data set (horizontal axis),
with the EVS (vertical axis). It is seen that the the all-in-one network predicts the moment tensor components
better than when the MT components would have been estimated separately. The network architecture for this
particular problem can be found in Table 4.6.

4.2 Mixture Density Network
Now that we have seen how the network’s performance changes due to the use of a more complex model, we can
asses the uncertainty that is made with each prediction. In this chapter selected results of the different configuration
settings will be shown. As was described in Section 3.2.3, is that the mixture density network gives us a mixture
of Gaussians as an output, together forming the probability density function of which the network chooses the
best possible answer. If we choose the mixture of Gaussians to be sixty (which, after careful selection was found
to work best for this thesis), then, for each sample that we feed to the network, we obtain 60*6 means, variances,
and weights. Since we estimated all six individual moment tensor components with a single network, we obtain
for each output dimension sixty different means and variances, thus 360 means and 360 variances in total. This
is in contrast with the amount of weights the network gives us, which totals to a number of sixty. The reason for
this is, again, that we are estimating all moment tensor components with a single network. Thus, meaning that,
for example, the sixth Gaussian of each output component will get the same weight in the end, irregardless of the
fact that the sixth mixture of the the first component might describe this component better than the sixth mixture
of another moment tensor component. This concept is explained in Figure 4.12.
We still make use of the true versus predicted plots in combination with the explained variance score, but now, as
an addition, we also assess the uncertainty made with each prediction by looking at the, by the network, estimated
mean, its variances, and weights. The set up of this section will closely follow that of the previous section,
however, as derived from the network, in some cases the predictions or explained variance score might turn out a
bit lower or higher than it did for the feed forward network. This could be explained by the change of loss function
that had to be made, in order to set up the mixture density network the right way (Section 3.2.3). The type of loss
function used to train the network can improve its performance, but, since changing this hyperparameter only
applies to the feed forward neural networks, it was decided to not include it in this thesis. Another reason is that
each network updates its weights, biases, and activations in a different way, which is beyond the control of the
user. This way no network will ever be exactly the same.

46

4.2. MIXTURE DENSITY NETWORK CHAPTER 4. RESULTS

Figure 4.12: If a sample is fed to a trained network, it will be transformed by the neurons in the hidden layer to
give a good estimation of the moment tensor. For a mixture density network, the output is a bit different; instead
of the moment tensor components, we obtain the means, variances, and weights that correspond to each mixture
that tries to describe the the moment tensor components. In this Figure we can see the output we will obtain if
we feed only one sample to the network. For the means and the variances this means we will retrieve six (as in
six moment tensor components) times m (the amount of mixtures) individual means and variances, and for the
weights we will get a total of m weights.

4.2.1 Homogeneous Model
From Section 4.1.1 our results suggest that a change to either a hyperparameter or strategy does not change a lot
to the performance of the network itself in the case of the simplest model, i.e., the homogeneous model. The only
exceptions are those for the type of input (4.2) or output scaler (Figure 4.3) applied to the data. To give a better
understanding as to what the difference between the FFNN and MDN is exactly, we will look at the uncertainties
of a poor performing network with one of a good performing network. This is done by looking at the output that
the network gives us, before we pick the best possible predictions, namely the mean, variance, and corresponding
weight of each sample and Gaussian. Figure 4.13a shows the prediction of the network and the EVS of the same
architecture as shown in Figure 4.2b, but in addition we can now also investigate the uncertainty the model has
when predicting the moment tensor values. First, let us look only at the means we obtain from the trained network.
As is seen in Figure 4.13b it looks like the network using the mixture density architecture will give a different sort
of output than that of a feed forward neural network (Figure 4.13a). This is confirmed as well in Figure 4.13c.
The estimated means are in a really big range, and applying the weights to these means does nothing to reduce
this range (Figure 4.13d).

47

4.2. MIXTURE DENSITY NETWORK CHAPTER 4. RESULTS

1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00
True Values

1.0

0.5

0.0

0.5

1.0
Pr

ed
ict

ed
 V

al
ue

s
MinMax Scaler. MT1 EVS: 0.0

(a) Result FFNN

1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00
True Values

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

Pr
ed

ict
ed

 V
al

ue
s

Scaler: MinMax Scaler. MT1 EVS: -4430.607

(b) Result MDN

(c) Mean (d) Mean with weigths and variances

Figure 4.13: The performance of a network when using a data set of 50.000 earthquakes to train the algorithm.
Figure 4.13a shows the performance measured by visualizing the true versus predicted values of the test set and the
explained variance score (EVS) of the feed forward neural network as shown in Figure 4.2b. Figure 4.13b shows
the same assessment of the network, but then from the predictions of the mixture density network. Each sample
fed to the network will produce, for the amount of mixtures defined, a mean, variance and weight. Figures 4.13c
and 4.13d show how the original output (means, weights, and variances) influence the accuracy of the prediction,
with the former having no weights applied to each mixture, and the latter having the weights and variances applied.
In these two figures, the black linear line depicts the perfect case in which the network estimates each component
precisely. The network architecture for this particular problem can be found in Table 4.3.

On the other hand, Figure 4.14 shows the performance of the network with the same architecture as Figure 4.4c.
The results for the EVS and the prediction of the first moment tensor components are pretty much equal. If we
now look at the estimated means that the network gives us for each sample (Figure 4.14c), it seems like it is not in
accordance with Figure 4.13b at all; there is a pretty wide range and we cannot really distinguish a trend around the
black linear line in the figure. This is also not resolved when we apply the weighted variances to each estimation
of the mean. Figure 4.13d still shows the same uncertainties for predictions.

48

4.2. MIXTURE DENSITY NETWORK CHAPTER 4. RESULTS

1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00
True Values

1.0

0.5

0.0

0.5

1.0
Pr

ed
ict

ed
 V

al
ue

s
H.L: 2, Neurons: 50, 150. MT1 EVS: 0.966

(a) Result FFNN

1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00
True Values

1.0

0.5

0.0

0.5

1.0

Pr
ed

ict
ed

 V
al

ue
s

H.L: 2, Neurons: 50, 150. MT1 EVS: 0.904

(b) Result MDN

(c) Mean (d) Mean with weigthed variances

Figure 4.14: The performance of a network when using a data set of 10.000 earthquakes to train the algorithm.
Figure 4.14a shows the performance measured by visualizing the true versus predicted values of the test set and the
explained variance score (EVS) of the feed forward neural network as shown in Figure 4.4c. Figure 4.14b shows
the same assessment of the network, but then from the predictions of the mixture density network. Each sample
fed to the network will produce, for the amount of mixtures defined, a mean, variance and weight. Figures 4.14c
and 4.14d show how the original output (means, weights, and variances) influence the accuracy of the prediction,
with the former having no weights applied to each mixture, and the latter having the weights and variances applied.
In these two figures, the black linear line depicts the perfect case in which the network estimates each component
precisely. The network architecture for this particular problem can be found in Table 4.2.

49

4.2. MIXTURE DENSITY NETWORK CHAPTER 4. RESULTS

4.2.2 Heterogeneous Model
As we knew from the homogeneous model using the feed forward architecture, the model predicts well irregardless
of the hyperparameter settings or strategies used (except for the scalers on input and output data). It is much
more interesting to look at the heterogeneous model, since it is here that we saw that the network became more
uncertain for the simpler case. The maximim amplitude scaler is used for every result shown in this section,
because due to the increased complexity of the data, using no scaler is not giving good results anymore. Let us
look first at the different activation functions. As was seen in Figure 4.10d, the sigmoid performed best out of the
four proposed activation functions. Table 4.7 shows the network architecture of the comparison of the different
activation functions made in Figure 4.15. Figure 4.15 itself shows the weighted means and variances for the first
and sixth moment tensor components, firstly, to show a bit more in depth analysis of the accuracy of the network,
but, also, to highlight, again, the differences in uncertainties the network shows us when predicting each moment
tensor component. Next to the visible sigmoidal shape of the predicted values seen for MT6, it is interesting
to note that amongst the four types of activation functions there are not that big differences in precision of the
estimated moment tensor components anymore. Notable is the estimation of MT1 using a sigmoidal activation
compared to the other activations. Figure 4.15g shows an almost converging value of the predicted values giving
any type of input. This is in contrast with the estimation of MT6 (Figure 4.15h), where a nice trend along the
linear reference line is seen.

Hyperparameter / Strategy Value / Type
Number of hidden layers 2
Number of neurons per layer 50, 200
Activation Function varying
Learning Rate 0.001
Batch Size 750
Regularization Dropout (0.05)
Initialization -
Scaler Input divided by maximum amplitude

Target values scaled from [0,2pi]
Optimization ADAM
Size data set 10.000

Table 4.7: Network architecture of the net used to evaluate the performance of the algorithm with changing
activation function. Results can be found in Figure 4.15.

50

4.2. MIXTURE DENSITY NETWORK CHAPTER 4. RESULTS

(a) Relu Activation MT1 (b) Relu Activation MT6

(c) Elu Activation MT1 (d) Elu Activation MT6

(e) Selu Activation MT1 (f) Selu Activation MT6

(g) Sigmoid Activation MT1 (h) Sigmoid Activation MT6

Figure 4.15: The network architecture for this particular problem can be found in Table 4.7.

Section 4.1.2 hinted at the possibility of a network performing better when only the individual moment tensor
components where estimated by the network. It was later seen that this assumption did not held in the case of
a feed forward network. We can try and see if this changes for the mixture density network. As (Käufl 2015)
states in his dissertation, estimating each separate moment tensor component with a different individual network,
should in the end yield better results. Figure 4.16 shows the comparison of four separate networks with the same
architecture estimating four different moment tensor components, and the results of one network, with the same
architecture as the four individual algorithms, estimating the weighted means of the four moment tensor compo-
nents at the same time.
One of the first things that stands out is the shape of the sigmoidal activation function we can recognize, espe-
cially in Figure 4.16h. Unfortunately it is also this activation function that, especially when using the individual
networks, limit the range of our predictions of which Figure 4.16b and Figure 4.16f are good examples. In these

51

4.2. MIXTURE DENSITY NETWORK CHAPTER 4. RESULTS

figures it is seen that values just under the range of the true moment tensor components are cut off. A reason for
this anomaly was not directly found. In fact, the architecture for the two types of network is the same in each
figure, but repeated six times for each moment tensor component in the case of the right side of Figure 4.16. To
really see how this cut-off, especially at the upper bound of the positive values looks like without the weights
applied see Figure 4.17.

Hyperparameter / Strategy Value / Type
Number of hidden layers 2
Number of neurons per layer 50, 200
Activation Function Sigmoid
Learning Rate 0.0005
Batch Size 1500
Regularization Dropout (0.2)
Initialization -
Scaler Input divided by maximum amplitude

Target values scaled from [0,2pi]
Optimization ADAM
Size data set 10.000

Table 4.8: Network architecture of the net used to evaluate the performance of the algorithm estimating the MT
components individually and all-in-one. Results can be found in Figure 4.16.

52

4.2. MIXTURE DENSITY NETWORK CHAPTER 4. RESULTS

(a) One Network (b) Individual Network

(c) One Network (d) Individual Network

(e) One Network (f) Individual Network

(g) One Network (h) Individual Network

Figure 4.16: Comparison of the weighted estimated means using an all-in-one- or individual network approach
for the estimation of the moment tensor components. The figures on the left side show the estimated, weighted
means for MT1, MT3, MT4, and MT6 from one single network (the all-in-one network). We can see that the
estimated means are pretty certain, and that they follow the black reference line. The figures on the right show the
estimated, weighted means for MT1, MT3, MT4, and MT6, where each MT component was estimated by its own
network. Here, all the individual algorithms have the same network as the all-in-one network. It is seen that for
some components the network is less sure of its own prediction (for example MT1 and MT4). Next to this, the
shape of the sigmoid activation function used for this particular problem is clearly seen in the figures on the right
side. The network architecture for this particular problem can be found in Table 4.8.

53

4.2. MIXTURE DENSITY NETWORK CHAPTER 4. RESULTS

(a) No weights applied (b) Weights applied

Figure 4.17: Comparing the result of Figure 4.16h, where the weights are applied to the estimated means of the
network estimating only MT6, to the same estimated means without the weights applied. It is seen that there is a
cut-off of the predicted values at the upper limit, whereas the lower limit seems to form a linear dipping boundary.

Overall we could say the the uncertainty of the networks prediction is less when estimating all moment tensor
components using only one network, however the estimation of the first moment tensor component could be an
exception. In Figure 4.16a there is a linear trend visible, however comparing this trend in Figure 4.16b one could
argue that the latter might be a bit better at predicting the MT components.
To verify this, let us look at the actual predicted values that we draw from the distributions obtained and showed in
Figure 4.18. Figure 4.18 shows the EVS for the first moment tensor component of the all-in-one network (Figure
4.18a) and of the individual network (Figure 4.18b). From this Figure we can conclude that indeed, MT1 is
better estimated by the individual network in terms of the explained variance score, and, also from the true versus
predicted plot, we see a better estimation for the individual network. This is in contrast with Figures 4.18c and
4.18d, where the individual network only performs slightly better. Keeping in mind that using different network
architectures for estimating the individual MT components in Section 4.1.2 also did not improve the EVS that
much, we can ask ourselves why we should even look into individualizing the estimation of the different MT
components. In the next Section, we will see that adding Gaussian noise to our data in combination with the
separate networks makes the network perform better for lower SNR.

1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00
True Values

1.0

0.5

0.0

0.5

1.0

Pr
ed

ict
ed

 V
al

ue
s

 MT1 EVS: -0.311

(a) One Network

1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00
True Values

1.0

0.5

0.0

0.5

1.0

Pr
ed

ict
ed

 V
al

ue
s

MT1 EVS: 0.241

(b) Individual Network

1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00
True Values

1.0

0.5

0.0

0.5

1.0

Pr
ed

ict
ed

 V
al

ue
s

 MT5 EVS: 0.816

(c) One Network

1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00
True Values

1.0

0.5

0.0

0.5

1.0

Pr
ed

ict
ed

 V
al

ue
s

MT6 EVS: 0.838

(d) Individual Network

Figure 4.18: Comparison of the EVS for MT1 and MT6 using an individual- or all-in-one network. The first
moment tensor component benefits more from the individual network in terms of EVS and precision than the sixth
moment tensor component does. Figure 4.18c and 4.18d do not seem to differ that much from each other.

54

4.2. MIXTURE DENSITY NETWORK CHAPTER 4. RESULTS

4.2.3 Noise
In contrast to Section 4.1.3, using a MDN we see that the network performs better with lower SNR if seperate
networks are used to estimate the MT components (Figure 4.19. This is also in line with (Käufl 2015). Another
advantage of using separate networks, is that we can construct the joint PDFs to evaluate the trade-off of the
individual moment tensor components.

2 4 6 8 10 12
SNR

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

EV
S

Changing EVS for MDN, all-in-one network
MT1
MT2
MT3
MT4
MT5
MT6

(a) All-in-One Network

2 4 6 8 10 12
SNR

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

EV
S

Changing EVS for MDN, seperate networks
MT1
MT2
MT3
MT4
MT5
MT6

(b) Separate Networks

Figure 4.19: Influence of the noise on the performance of the network whilst predicting the moment tensor com-
ponents, The network architecture for this particular problem can be found in Table 4.6.

55

Chapter 5
Discussion

There are a few things that should be addressed in this section. The order of the outcomes discussed is loosely
following the occurrence of these results in the previous section. As an extra point of discussion we also show
how the amount of data influences the performance of the network at the end of this section.

Scalers

Figure 4.2 shows how four different scalers yield different results with respect to the performance of the network.
It was seen that, only for the homogeneous model, no big differences were found between using no scaler or a
scaler that scales by the maximum amplitude in an event. This is an interesting result, since not scaling the input
data could lead to an unstable learning process, or even convergence to a certain mean. That this does not happen
for the case were the network is trained on samples that are modelled using a homogeneous velocity model is
striking. An explanation for this could be that since the magnitude of all events are fixed and the model is not
complex, there are no big outliers in the data set, which means that a scaler does not necessarily needs to be
applied. However, for a more complex model (and especially when a range of magnitudes is considered in future
work), a scaler does need to be applied.
The two more commonly used scalers for neural networks, namely the MinMax- and Standard scaler, result into
a very poor performing network for our case. The reason why these scalers perform so poorly is quickly found
if we look at how exactly the scalers transform the input to the network. Figure 5.1 shows the input of one event
unscaled, and the transformation it has undergone after being scaled by the three scalers investigated in this thesis.

0 50 100 150 200 250
Time Samples

0

20

St
at

io
ns

 (E
NZ

) Network Input: Not Scaled

0.5

0.0

0.5

1.0

(a) No Scaler

0 50 100 150 200 250
Time Samples

0

20

St
at

io
ns

 (E
NZ

) Network Input: MinMax Scaler

0.0

0.2

0.4

0.6

0.8

1.0

(b) MinMax Scaler

56

CHAPTER 5. DISCUSSION

0 50 100 150 200 250
Time Samples

0

20

St
at

io
ns

 (E
NZ

) Network Input: Standard Scaler

4

2

0

2

4

(c) Mean

0 50 100 150 200 250
Time Samples

0

20

St
at

io
ns

 (E
NZ

) Network Input: Maximum Amplitude

0.5

0.0

0.5

1.0

(d) Maximum Amplitude Scaler

Figure 5.1: Part 2: What effect does a scaler have on the input data? In these four figures we can see the unscaled
input of one event (Figure 5.1a), and the scaled input after using the MinMax scaler (Figure 5.1b), the Standard
scaler (Figure 5.1c), and after scaling by the biggest amplitude in the event (Figure 5.1d). On the horizontal axis
we see the time samples, where each time sample has an interval of 0.04 seconds. On the vertical axis the ENZ
component data of each of the 13 stations is plotted underneath each other.

Figure 5.1a and 5.1d seem to be identical, however, this is mostly due to the amplitude information being kept.
The MinMax scaler (Figure 5.1b) clearly shows that something is going wrong while scaling the data. We think
that the scaler scales the output per time sample, instead of globally. The linear lines that appear in the plot must
be present already in the synthetic data, possibly with very small amplitudes, which normally will not be seen.
It is due to the extreme scaling that boosts these nearly zero amplitudes that the vertical lines become more pro-
nounced. Figure 5.1c shows the output of the standard scaler. It does not look as bad as Figure 5.1b, however, we
can see that some of the three component data shows oscillation in the first time samples, and that the data from
the later time samples is really emphasized by this scaler. This is undesirable, since we expect to get the most
information on the moment tensor components from the first time samples.
By scaling each event by its maximum amplitude we will remove information on the magnitude of each earth-
quake. This could form a problem when the difference in SNR is big between the individual events.

Sensitivity of the MT components with complex data

Normally, when there is a difference in sensitivity of the network to different output neurons, we would say that the
output neuron with the lowest sensitivity, i.e., the highest errors, is underrepresented in the data set. In our case this
is not true, and we can show this by plotting the distribution of the MT1 and MT6 components of the train and test
set (Figure 5.2). Apart from that our results showed that only when switching to a more complex data set a shift
in the sensitivity of the network to some of the MT components was seen. Generally the off-diagonal components
are still well resolved, but the diagonal components, especially MT1 and MT2, show a performance that is a lot
poorer than with a less complex model. An explanation for this could be that these diagonal components represent
volumetric changes, or, the ISO component. With a pure isotropic source, the amplitudes in the time traces will
be the same for every azimuth and take-off angle. For a homogeneous model this uniformly distributed amplitude
is nicely picked out by the network. When switching to a more complex data set, we are adding an extra layer of
difficulty via the Green’s Functions that correspond to the heterogeneous model. It seems that the combination of
this addition, the different take-off angles, and azimuths makes it harder for the network to accurately predict the
isotropic components.

57

CHAPTER 5. DISCUSSION

1.0 0.5 0.0 0.5 1.0
Input Range

0

50

100

150

200

250

300

350

400

450
Co

un
t

Distribution Train Labels MT1
Train
Test

(a) MT1

1.0 0.5 0.0 0.5 1.0
Input Range

0

50

100

150

200

250

300

350

400

450

Co
un

t

Distribution Train Labels MT6
Train
Test

(b) MT6

Figure 5.2: Distribution of train and test labels for MT1 and MT6

Activation Function

Training the algorithm with a FFNN shows that the sigmoidal activation function works best. Considering that
this particular function often causes vanishing gradients, it should be unusual that it works in the case of moment
tensor estimation. One reason why it could work, is because the maximum amplitudes for each event themselves
do not differ that much from each other, due to the fixed magnitude and the small area of investigation. By dividing
every event by almost the same maximum amplitude only very small differences between the data samples could
occur. The vanishing gradient is caused by the small range in which the sigmoid function transforms the output
of the neuron, causing the gradient to become very small, which in turns leads to the model not updating the
neurons anymore. This most often happens when a data set contains a lot of different data. This is not the case
in our data set, which could explain why the sigmoidal activation function works well. Interestingly, it is also
the sigmoidal function that is often used for probability estimation. Yet, when we look at the performance of the
sigmoid activation function in combination with the MDN, it is seen that this particular function does not yield the
best performance anymore, especially with regard to MT1. A better recommendation for the MDN network could
be, for example, the Selu activation function.

Since we know that the diagonal components do not cause a lot of changes to the traces, and the range of MT1
components is uniformly distributed, it is not very probable that we are dealing with a vanishing gradient due to
the sigmoid activation function, even though the converging of the predicted values might indicate otherwise.

FFNN or MDN

Following the results, there are not big differences between the approach of using a FFNN or MDN. They both
roughly predict the moment tensor with the same precision, and in terms of computational cost there is also not
a lot of difference. From a perspective of wanting to know the uncertainty of the network’s prediction, a MDN
would definitely be the better option. That leaves us with the question of estimating all MT components in one
network or predicting them separately. For a FFNN it showed that predicting the MT components separately
actually does not improve, or maybe even worsen in the case of a model with noise, the precision of the predicted
moment tensor. From the first tests with separate and all-in-one networks for the MDN we could draw the same
conclusion, yet when we switched to a more complex model, i.e., with noise, this changed. Here, it was seen that
the network was more stable when dealing with data containing a lower SNR. If this thesis is to be expanded to real
data from the Zeerijp area, which often contains lower SNR due to the micro earthquakes, separately estimating
the MT components would definitely be of more interest.

58

CHAPTER 5. DISCUSSION

Amount of Data

How much data is needed to accurately train the network? The choice of training with 10.000 earthquakes sounds
arbitrary, and in some ways it is. This amount of data is mainly based on the fact that (Binder 2018) found that with
a train set of 10.000 earthquakes, the network trains nicely, but it also has to do with the storage space available
on the server, and the computational effort (it takes around 90 CPU hours to generate this data set). To investigate
if less data could be used for future research it was decided to perform a singular value decomposition (SVD) on
the features in the heterogeneous data set that contains no noise. Here, we assume that the amount of non-zero
singular values corresponds to the amount of data we theoretically would need to obtain a good performance of
the network. We make this assumption as follows. The matrix with the singular values on the diagonal will have
the size of the smallest dimension, in this case it is the input to our network, namely thirteen stations times three
component data multiplied by the number of time samples (251), which totals to 9789 values. If we find the case
where the amount of non-zero singular values is equal to the size of the diagonal of this matrix, it would mean
that every event in the data set represents an unique feature. Of course, one could argue that also the amount of
stations recording the event and the length of the time traces play a role here, which is true, however this could
be a whole other research on its own. To elaborate on this; changing the stations or length of the time trace alters
the scree plot. Changing the data size does not change the singular value itself, only the dimension of the singular
values will differ. In other words, the amount of singular values is cut off at the dimension of the data set chosen.

We can therefore say that, with the amount of stations and the length of the time window fixed, if we look at Figure
5.3a it is clearly seen that the network could be trained with less data. If we execute the same decomposition for
the data set containing noise, we can see that in fact the estimate of 10.000 earthquakes is very accurate. From
Figure 5.3a we could deduce that a no noise, heterogeneous network could be trained with less than 1000 samples.
If we add noise to this same data set (which will account for a SNR of roughly 7 over the complete data set) the
amount of non-zero singular values increases to a mere 8000, see Figure 5.3b. This means that in order for the
network to converge on the former data set, we need at least 8000 training samples.

0
98

3
19

66
29

49
39

32
49

15
58

98
68

81
78

64
88

47

SVs

10 3

10 2

10 1

100

Scree Plot, No Noise

(a) Heterogeneous model, no noise

0
98

3
19

66
29

49
39

32
49

15
58

98
68

81
78

64
88

47

SVs

10 3

10 2

10 1

100
Scree Plot, SNR: 7

(b) Heterogeneous model, with noise

Figure 5.3: Scree plot showing the singular values for the heterogeneous data set containing no noise (left), and
the same data set containing noise (right). It is seen that with the added complexity of noise to the model, the
amount of non-zero singular values increases.

59

Chapter 6
Conclusion

What architecture and which type of neural network can predict the moment tensor of the earthquakes in the
Zeerijp region of the Groningen Gas Field area? And how can we assess the precision of these results?

To answer the first question: both the FFNN and MDN type of neural networks can predict the moment tensor, and
there are several combinations of hyperparameters in the network architecture that can achieve this. This makes
finding the right network to obtain the solution to the moment tensor a non-unique problem; there is no one right
way. The main reason for comparing the FFNN and MDN was to see if there really is that much difference in
precision and computational cost. From our results we can conclude that yes, the two networks need different
hyperparameters and strategies in order to train well, but in terms of computational cost there is actually not that
much difference. In fact, the computational costs, at its most, round up to around 100 CPU hours for a more
complex model. Of course, using, for example, more data, would contribute to longer training times, but overall
the network trains fast.

The second question was answered by considering data with different complexity. We can conclude that the more
complex the data set is, the more uncertainty the network experiences predicting the moment tensor, in particular
for MT1 and MT2 (they represent volumetric changes, which are harder to discern in the input data). That the
estimation of the MT becomes more uncertain with a complexer data was what we expected, the differences in
sensitivities not. The uncertainty of each network was assessed by the use of the EVS score, and the output of the
MDN network. Predicting the moment tensor components individually shows a slight increase in the precision of
the estimations (for the heterogeneous MDN case, this is not necessarily the case for the FFNN) and an overall
more stable network for lower SNR, however, if we look at the weighted estimates means (so the uncertainty of
the network) it still shows that not each MT component can be predicted with the same precision.

A final comparison of one of the better performing networks using either the FFNN or MDN type of network
is shown in Figure 6.1. In this Figure only the data sets without noise are shown, where all components are
estimated by one network. From this plot it is clearly seen that the FFNN, in terms of EVS, will always give
a better estimation of the MT, irregardless of the type of data set used. However, knowing that the MDN also
provides us with the related uncertainties of these predictions, and gives a more stable prediction when adding
Gaussian noise to the data, it might be better to continue future research with this type of data.

60

CHAPTER 6. CONCLUSION

Figure 6.1: Comparison of the best performing MDN and FFNN for the homogeneous- and heterogeneous data
set containing no noise.

61

Chapter 7
Outlook

The results obtained in this thesis indicate that it should be very possible to build a neural network that can estimate
the moment tensor components of the earthquakes taking place in the Zeerijp area located in the Groningen Gas
Field. For future research there are a few recommendations

1. Vary the magnitude in the data set; the networks trained in this thesis were all focused on earthquakes
with a fixed magnitude. From our results the scaler that transforms the data by the maximum amplitude
measured in the response of an event works best. One of the side effects of this scaler is that all magnitude
info between the events are lost. It might be that a data set with varying magnitude will not have a big effect
on the precision of the network, but it is worth looking into, since it will make the training set more realistic.

2. Add measured noise to the data set. Noise in the Zeerijp area is cyclic. An advantage of using this noise
instead of Gaussian noise while training could be that the network learns the cyclic noise, thus picking up
smaller changes in amplitude caused by micro earthquakes. These micro events form the vast majority of
the earthquakes happening in the area, thus it is important for the network to also recognize the moment
tensor from the corresponding traces.

3. Analyze the most common fault mechanism in the Zeerijp area to bias the data set more towards the region
of interest. The data set used in this thesis is biased towards the Zeerijp area in the sense that it contains
the actual receiver and fault locations in the region, but the moment tensors are completely random. By
adding more synthetic events with a Zeerijp representative moment tensor (normal faulting), the network
could perform better when fed real data.

4. Investigate separating the prediction of MT components over several networks; By constructing joint prob-
ability distributions between various MT components we can not only obtain more information on the
uncertainty of the predictions and the trade off between the components, but we can also try more advanced
network architectures for the diagonal MT components in the hope of increasing the EVS.

5. Add more output parameters to increase the performance of the network. Including to the output of
the network the strike, dip, and rake during training, we think that the low sensitivity for the diagonal
components could be compensated for, since we would have an extra means of obtaining information on
the focal mechanism. Since the moment tensor already contains the information regarding the strike, dip,
and rake, this might seem unnecessary to add as extra output parameters. Yet, if the network proves being
able to better predict the strike, dip, and rake angles, it could complement the lower sensitivity to MT1 and
MT2, thus improving the overall performance of the algorithm.

6. Change the velocity model to investigate the impact of the salt layer on the complexity of the time signals.
It is known that anhydrite layers transforms the response of the earth and generally make it harder to discern
any useful information from the trace. By using the same 1D velocity model, but leaving out the salt layers,
we could see the effect of the anhydrite on the performance of the network.

Including point one to three, a network can be trained that will be robust enough to be tested on the real data from
the Zeerijp area. The fifth and sixth points are mainly to improve the low sensitivity of the network to the first two
MT components, which in turn could also aid the performance of the network when tested on real data.

62

Bibliography

Alvizuri, C. & Tape, C. (2018), ‘Full moment tensor analysis of nuclear explosions in north korea’, Seismological
Research Letters 89(6), 2139–2151.

Binder, G. (2018), ‘Neural networks for moment-tensor inversion of surface microseismic data’, SEG Technical
Program Expanded Abstracts pp. 2917–2921.

Bishop, C. M. (1994), ‘Mixture density networks’.

Bishop, C. M. (2006), Pattern Recognition and Machine Learning (Information Science and Statistics), Springer-
Verlag, Berlin, Heidelberg.

Bourne, S., Oates, S., van Elk, J. & Doornhof, D. (2014), ‘A seismological model for earthquakes induced by fluid
extraction from a subsurface reservoir’, Journal of Geophysical Research Solid Earth 119(12), 8991–9015.

Buijze, L., van den Bogert, P., Wassing, B., Orlic, B. & ten Veen, J. (2017), ‘Fault reactivation mechanisms
and dynamic rupture modelling of depletion-induced seismic events in a rotliegend gas reservoir’, Netherlands
Journal of Geosciences 96(5), s131–s148.

Cox, S. C. & Allen, S. K. (2009), ‘Vampire rock avalanches of january 2008 and 2003, southern alps, new zealand’,
Landslides 6(2), 161–166.

Dahm, T. & Krüger, F. (2014), ‘Moment tensor inversion and moment tensor interpretation’.

de Jager, J. & Visser, C. (2017), ‘Geology of the groningen field – an overview’, Netherlands Journal of Geo-
sciences 96(5), s3–s15.

Developers, T. P. (n.d.), ‘Pyrocko: A versatile seismology toolkit for Python.’.
URL: http://pyrocko.org

Dost, B., Ruigrok, E. & Spetzler, J. (2017), ‘Development of seismicity and probabilistic hazard assessment for
the groningen gas field’, Netherlands Journal of Geosciences 96(5), s235–s245.

Dost, B., van Stiphout, A., Kühn, D., Kortekaas, M., Ruigrok, E. & Heimann, S. (2020), ‘Probabilistic moment
tensor inversion for hydrocarbon-induced seismicity in the groningen gas field, the netherlands, part 2: Appli-
cation’, Bulletin of the Seismological Society of America 110, 2112–2123.

Eyre, T. S., Eaton, D. W., Zecevic, M., D’Amico, D. & Kolos, D. (2019), ‘Microseismicity reveals fault activation
before mw 4.1 hydraulic-fracturing induced earthquake’, Geophysical Journal International 218(1), 534–546.

Historiek (2019), ‘Gaswinning in groningen; geschiedenis, gevolgen en toekomst’, https://historiek.net/
gaswinning-in-groningen-geschiedenis-gevolgen/74692/. Accessed: 30-06-2021.

Käufl, P. J. (2015), Rapid probabilistic source inversion using pattern recognition, PhD thesis, Utrecht University.

Klambauer, G., Unterthiner, T., Mayr, A. & Hochreiter, S. (2017), ‘Self-normalizing neural networks’, CoRR
abs/1706.02515.
URL: http://arxiv.org/abs/1706.02515

KNMI (2020), ‘Moment tensors – a practical guide’.
URL: https://www.knmi.nl/kennis-en-datacentrum/uitleg/aardbevingen-door-gaswinning

Knopoff, L. & Randall, M. (1970), ‘The compensated linear-vector dipole: A possible mechanism for deep earth-
quakes’, Journal of Geophysical Research 75(26), 4957–4963.

Kraaijpoel, D. & Dost, B. (2013), ‘Implications of salt-related propagation and mode conversion effects on the
analysis of induced seismicity’, Journal of Seismology 17(1), 95–107.

Kuang, W., Yuan, C. & Zhang, J. (2021), ‘Real-time determination of earthquake focal mechanism via deep
learning’, Nature Communications 12.

Kühn, D., Heimann, S., Isken, M. P.and Ruigrok, E. & Dost, B. (2020), ‘Probabilistic moment tensor inversion for
hydrocarbon-induced seismicity in the groningen gas field, the netherlands, part 1: Testing’, 110(5), 2095–2111.

63

https://historiek.net/gaswinning-in-groningen-geschiedenis-gevolgen/74692/
https://historiek.net/gaswinning-in-groningen-geschiedenis-gevolgen/74692/

BIBLIOGRAPHY BIBLIOGRAPHY

Romijn, R. (2017a), ‘Groningen Velocity Model 2017 - Groningen full elastic velocity model September 2017’.
URL: https://nam-feitenencijfers.data-app.nl/download/rapport/9a5751d9-2ff5-4b6a-9c25-
e37e76976bc1?open=true

Romijn, R. (2017b), ‘Groningen velocity model 2017 – groningen full elastic velocity model,’, NAM Report p. 12.

Steinberg, A., Vasyura-Bathke, H., Gaebler, P., Ohrnberger, M. & Ceranna, L. (2021), ‘Estimation of seismic
moment tensors using variational inference machine learning’, Earth and Space Science Open Archive p. 22.
URL: https://doi.org/10.1002/essoar.10506663.1

Tarantola, A. (1984), ‘Inversion of seismic reflection data in the acoustic approximation’, Geophysics 49, 1259–
1266.

Tierney, S. (2019), ‘Moment tensors – a practical guide’.
URL: https://mxrap.com/moment-tensors-a-practical-guide/

Vavrycuk, V. (2014), ‘Moment tensor decompositions revisited’, Journal of Seismology 19.

Verwijs, R. (2021), ‘An intro to moment tensor inversions’. Research Module part of a course at the RWTH
Aachen as preperation for the Master thesis.

Vlek, C. (2018), ‘Induced earthquakes from long-term gas extraction in groningen, the netherlands: Statistical
analysis and prognosis for acceptable-risk regulation: Induced earthquakes from long-term gas extraction in
groningen’, Risk Analysis 38.

Wapenaar, K., Draganov, D., Snieder, R., Campman, X. & Verdel, A. (2010), ‘Tutorial on seismic interferometry:
Part 1 — basic principles and applications’, GEOPHYSICS 75, 75A195–75A209.

Wapenaar, K. & Snieder, R. (2007), ‘From order to disorder to order: A philosophical view on seismic interfer-
ometry’, EG Technical Program Expanded Abstracts pp. 2683–2687.

Willacy, C., Dedem, E., Minisini, S., Li, J., Blokland, J., Das, I. & Droujinine, A. (2019a), ‘Full-waveform event
location and moment tensor inversion for induced seismicity’, GEOPHYSICS 84.

Willacy, C., Dedem, E., Minisini, S., Li, J., Blokland, J., Das, I. & Droujinine, A. (2019b), ‘Full-waveform event
location and moment tensor inversion for induced seismicity’, GEOPHYSICS 84.

Wilson, A., Roelofs, R., Stern, M., Srebro, N. & Recht, B. (2017), ‘The marginal value of adaptive gradient
methods in machine learning’.
URL: https://arxiv.org/abs/1705.08292

64

Chapter A
Trace Analysis

Table 3.2 showed how much a response is changed by a small alteration of one parameter for three different
categories (Velocity model, source specific-, and receiver specific settings). In this chapter we will elaborate a bit
more on the analysis behind this table, however still only show a selection of the results.

A.1 Velocity Model
In the first category (velocity model) four different models were tested. These velocity models are used by Kühn
et al. (2020) to test the performance of their inversion, where they found that the locally averaged 1D velocity
model works best. Taking over this recommendation for the thesis, it is only the 1D model, and the homogeneous
model that are showed in Chapter 3. In this chapter we would like to show the reader the other two velocity models
as well. In Figure A.1, it is seen that the model by the KNMI (the NN model, Figure A.1d) averages layers to big
blocks. The model by Kraaijpoel & Dost (2013) shows similarities to the locally averaged 1D model, but it is here
that the two thin anhydrite layers are missing. The NN model could therefore be interesting to test the effect of
the salt layers on the performance of the network itself.

65

A.2. SOURCE SPECIFIC CHANGES APPENDIX A. TRACE ANALYSIS

0 2 4 6 8 10
S- and P-wave Velocities in Km/s

0

1

2

3

4

5

De
pt

h
in

 K
m

Locally averaged 1D Velocity Model
P-wave
S-wave

(a) Locally Averaged 1D Model

0 2 4 6 8 10
S- and P-wave Velocities in Km/s

0

1

2

3

4

5

De
pt
h
in
 K
m

Homogeneous Velocity Model
P-wave
S-wave

(b) Homogeneous Model

0 2 4 6 8 10
S- and P-wave Velocities in Km/s

0

1

2

3

4

5

De
pt
h
in
 K
m

KD Velocity Model
P-wave
S-wave

(c) KD Model

0 2 4 6 8 10
S- and P-wave Velocities in Km/s

0

1

2

3

4

5

De
pt
h
in
 K
m

NN Velocity Model
P-wave
S-wave

(d) NN Model

Figure A.1: Comparison of all four velocity models used by Kühn et al. (2020). If we take the 1D model as
reference to the actual geology in the Zeerijp area, it is seen that especially the NN is an averaged model that very
loosely follows the 1D model.

A.2 Source Specific Changes
By changing strike, dip, and rake for each of the three components we can investigate the influence they have on
the signal. Strike specific changes are shown in Figures A.2 to A.4, dip in Figures A.5 to A.7, and rake Figures
A.8 to A.10.

A small change in strike seems to not change the signal of the E-component a lot, whereas a positive change shows
a big change for the N-component, but a negative adjustment does not. The Z-components stays pretty much the
same. This is logical, since a change in strike does not necessarily affects the vertical ground motion. This change
for the Z-component is seen when the dip or rake is altered. We could say that the response of the earth is least
sensitive to a change in strike, and more so to the changes in dip and rake.

66

A.2. SOURCE SPECIFIC CHANGES APPENDIX A. TRACE ANALYSIS

Figure A.2: Difference between two traces(green and orange), where the only difference is a small positive or
negative change in the strike. The change is shown with by blue line.

Figure A.3: Difference between two traces(green and orange), where the only difference is a small positive or
negative change in the strike. The change is shown with by blue line.

67

A.2. SOURCE SPECIFIC CHANGES APPENDIX A. TRACE ANALYSIS

Figure A.4: Difference between two traces(green and orange), where the only difference is a small positive or
negative change in the strike. The change is shown with by blue line.

Figure A.5: Difference between two traces(green and orange), where the only difference is a small positive or
negative change in the dip. The change is shown with by blue line.

68

A.2. SOURCE SPECIFIC CHANGES APPENDIX A. TRACE ANALYSIS

Figure A.6: Difference between two traces(green and orange), where the only difference is a small positive or
negative change in the dip. The change is shown with by blue line.

Figure A.7: Difference between two traces(green and orange), where the only difference is a small positive or
negative change in the dip. The change is shown with by blue line.

69

A.2. SOURCE SPECIFIC CHANGES APPENDIX A. TRACE ANALYSIS

Figure A.8: Difference between two traces(green and orange), where the only difference is a small positive or
negative change in the rake. The change is shown with by blue line.

Figure A.9: Difference between two traces(green and orange), where the only difference is a small positive or
negative change in the rake. The change is shown with by blue line.

70

A.2. SOURCE SPECIFIC CHANGES APPENDIX A. TRACE ANALYSIS

Figure A.10: Difference between two traces(green and orange), where the only difference is a small positive or
negative change in the rake. The change is shown with by blue line.

71

A.3. RECEIVER SPECIFIC CHANGES APPENDIX A. TRACE ANALYSIS

A.3 Receiver Specific Changes
From their research, Kühn et al. (2020) concludes that the 150m depth receiver data works best for their inversion
method. To see how much a signal changes due to these varying receiver depths, see Figures A.11 to A.13.
Interestingly it is the N component that reacts most to the change in receiver depth. The Z-component also shows
some changes, but it is not as strong as with the N-component data.

Figure A.11: Difference between two traces(green and orange), where the only difference is the depth of the
receiver. The change is shown with by blue line.

72

A.3. RECEIVER SPECIFIC CHANGES APPENDIX A. TRACE ANALYSIS

Figure A.12: Difference between two traces(green and orange), where the only difference is the depth of the
receiver. The change is shown with by blue line.

73

A.3. RECEIVER SPECIFIC CHANGES APPENDIX A. TRACE ANALYSIS

Figure A.13: Difference between two traces(green and orange), where the only difference is the depth of the
receiver. The change is shown with by blue line.

74

Chapter B
Neural Network Configurations

This chapter shows all simulations done in order to investigate the trade-off between different hyperparameters in a FFNN (Table B.1) and MDN (Table B.2). The performance
of the network is described by the overall EVS. This means that, instead of looking at the EVS score individually per MT component, the total EVS over all components has
been calculated by the network. A consequence of this form of assessing the performance is that some combinations of hyperparameters in the network architecture might seem
to not work (mostly for the heterogenous model). In reality this lower EVS score is caused by the inequality of sensitivity to the individual MT components.

B.1 FFNN

Table B.1: Network architectures tried for the hyperparameter finetuning of the problem presented in this thesis. This particular table shows the configuration set up and overall
EVS scores for the FFNN. The overall EVS score includes the different performances of all independent MT components. This means that sometimes the overall EVS looks
pretty bad, but in fact it is mainly the poor performing diagonal MT components that bring the overall score down.

Data
Total

Learning
Rate Optimizer

Neurons
First
Hidden
Layer

Neurons
Second
Hidden
Layer

Mixtures Regulizer
Regulizer
Rate Dropout

Dropout
Rate

Activation
Function

Batch
Size

Input
Scaled

Output
Scaled

hom/
het

Overall
EVS

10000 0,01 ADAM 50 no yes 0,25 elu 750 1/max [0,2pi] hom 0,8212
10000 0,005 ADAM 50 no yes 0,25 elu 750 1/max [0,2pi] hom 0,9120
10000 0,001 ADAM 50 no yes 0,25 elu 750 1/max [0,2pi] hom 0,8977
10000 0,0005 ADAM 50 no yes 0,25 elu 750 1/max [0,2pi] hom 0,8999
10000 0,0001 ADAM 50 no yes 0,25 elu 750 1/max [0,2pi] hom 0,8966
10000 0,001 ADAM 50 no yes 0,25 elu 250 1/max [0,2pi] hom 0,9123
10000 0,001 ADAM 50 no yes 0,25 elu 500 1/max [0,2pi] hom 0,8980
10000 0,001 ADAM 50 no yes 0,25 elu 1000 1/max [0,2pi] hom 0,8969
10000 0,001 ADAM 50 no yes 0,25 elu 1250 1/max [0,2pi] hom 0,8858
10000 0,001 ADAM 50 no yes 0,25 elu 1500 1/max [0,2pi] hom 0,8914
10000 0,001 ADAM 6 no yes 0,25 elu 750 1/max [0,2pi] hom 0,5754
10000 0,001 ADAM 12 no yes 0,25 elu 750 1/max [0,2pi] hom 0,8203
10000 0,001 ADAM 18 no yes 0,25 elu 750 1/max [0,2pi] hom 0,8458

75

B
.1.

FFN
N

A
PPE

N
D

IX
B

.
N

E
U

R
A

L
N

E
T

W
O

R
K

C
O

N
FIG

U
R

A
T

IO
N

S

Table B.1 continued from previous page

Data
Total

Learning
Rate Optimizer

Neurons
First
Hidden
Layer

Neurons
Second
Hidden
Layer

Mixtures Regulizer
Regulizer
Rate Dropout

Dropout
Rate

Activation
Function

Batch
Size

Input
Scaled

Output
Scaled

hom/
het

Overall
EVS

10000 0,001 ADAM 30 no yes 0,25 elu 750 1/max [0,2pi] hom 0,8924
10000 0,001 ADAM 100 no yes 0,25 elu 750 1/max [0,2pi] hom 0,9050
10000 0,001 ADAM 150 no yes 0,25 elu 750 1/max [0,2pi] hom 0,9171
10000 0,001 ADAM 200 no yes 0,25 elu 750 1/max [0,2pi] hom 0,9118
10000 0,001 ADAM 250 no yes 0,25 elu 750 1/max [0,2pi] hom 0,9341
10000 0,001 ADAM 300 no yes 0,25 elu 750 1/max [0,2pi] hom 0,9518
10000 0,001 ADAM 350 no yes 0,25 elu 750 1/max [0,2pi] hom 0,9516
10000 0,001 ADAM 50 no yes 0,25 elu 750 1/max [0,2pi] hom 0,8994
10000 0,001 ADAM 50 no yes 0,25 elu 750 1/max [0,2pi] hom 0,8930
10000 0,001 ADAM 50 no yes 0,25 elu 750 1/max [0,2pi] hom -11,0000
10000 0,001 ADAM 50 no yes 0,25 elu 750 1/max [0,2pi] hom 0,8896
10000 0,001 ADAM 50 no yes 0,25 elu 750 1/max [0,2pi] hom -45,0000
10000 0,001 ADAM 50 no yes 0,01 elu 750 1/max [0,2pi] hom 0,9491
10000 0,001 ADAM 50 no yes 0,05 elu 750 1/max [0,2pi] hom 0,9387
10000 0,001 ADAM 50 no yes 0,1 elu 750 1/max [0,2pi] hom 0,9236
10000 0,001 ADAM 50 no yes 0,15 elu 750 1/max [0,2pi] hom 0,9042
10000 0,001 ADAM 50 no yes 0,2 elu 750 1/max [0,2pi] hom 0,9004
10000 0,001 ADAM 50 no yes 0,2 relu 750 1/max [0,2pi] hom 0,9076
10000 0,001 ADAM 50 no yes 0,2 sofmtax 750 1/max [0,2pi] hom 0,1717
10000 0,001 ADAM 50 no yes 0,2 sigmoid 750 1/max [0,2pi] hom 0,9447
10000 0,001 ADAM 50 no yes 0,2 tanh 750 1/max [0,2pi] hom 0,9443
10000 0,001 ADAM 50 no yes 0,2 selu 750 1/max [0,2pi] hom 0,9001
10000 0,001 ADAM 50 L1 0,0100 no elu 750 1/max [0,2pi] hom 0,9143
10000 0,001 ADAM 50 L1 0,0500 no elu 750 1/max [0,2pi] hom 0,9069
10000 0,001 ADAM 50 L1 0,0010 no elu 750 1/max [0,2pi] hom 0,9202
10000 0,001 ADAM 50 L2 0,0100 no elu 750 1/max [0,2pi] hom 0,9432
10000 0,001 ADAM 50 L2 0,0500 no elu 750 1/max [0,2pi] hom 0,9149
10000 0,001 ADAM 50 L2 0,0010 no elu 750 1/max [0,2pi] hom 0,9470

10000 0,001 ADAM 50 L1_L2
0,0100
0,0100 no elu 750 1/max [0,2pi] hom 0,9154

10000 0,001 ADAM 50 L1_L2
0,0100
0,0500 no elu 750 1/max [0,2pi] hom 0,9043

76

B
.1.

FFN
N

A
PPE

N
D

IX
B

.
N

E
U

R
A

L
N

E
T

W
O

R
K

C
O

N
FIG

U
R

A
T

IO
N

S

Table B.1 continued from previous page

Data
Total

Learning
Rate Optimizer

Neurons
First
Hidden
Layer

Neurons
Second
Hidden
Layer

Mixtures Regulizer
Regulizer
Rate Dropout

Dropout
Rate

Activation
Function

Batch
Size

Input
Scaled

Output
Scaled

hom/
het

Overall
EVS

10000 0,001 ADAM 50 L1_L2
0,0100
0,0050 no elu 750 1/max [0,2pi] hom 0,9133

10000 0,001 ADAM 50 L1_L2
0,0500
0,0100 no elu 750 1/max [0,2pi] hom 0,9076

10000 0,001 ADAM 50 L1_L2
0,0050
0,0100 no elu 750 1/max [0,2pi] hom 0,9122

10000 0,001 ADAM 50 L1_L2
0,0010
0,0010 no elu 750 1/max [0,2pi] hom 0,9417

10000 0,001 ADAM 50 20 no yes 0.05 elu 750 1/max [0,2pi] hom 0,9488
10000 0,001 ADAM 50 50 no yes 0.05 elu 750 1/max [0,2pi] hom 0,9599
10000 0,001 ADAM 50 100 no yes 0.05 elu 750 1/max [0,2pi] hom 0,9607
10000 0,001 ADAM 50 150 no yes 0.05 elu 750 1/max [0,2pi] hom 0,9628
10000 0,001 ADAM 50 200 no yes 0.05 elu 750 1/max [0,2pi] hom 0,9643
10000 0,001 ADAM 100 20 no yes 0.05 elu 750 1/max [0,2pi] hom 0,9471
10000 0,001 ADAM 100 50 no yes 0.05 elu 750 1/max [0,2pi] hom 0,9601
10000 0,001 ADAM 100 100 no yes 0.05 elu 750 1/max [0,2pi] hom 0,9649
10000 0,001 ADAM 100 150 no yes 0.05 elu 750 1/max [0,2pi] hom 0,9650
10000 0,001 ADAM 100 200 no yes 0.05 elu 750 1/max [0,2pi] hom 0,9643
10000 0,01 SGD 50 no yes 0.05 elu 750 1/max [0,2pi] hom 0,9157
10000 0,005 SGD 50 no yes 0.05 elu 750 1/max [0,2pi] hom 0,9140
10000 0,001 SGD 50 no yes 0.05 elu 750 1/max [0,2pi] hom 0,9100
10000 0,0005 SGD 50 no yes 0.05 elu 750 1/max [0,2pi] hom 0,9079
10000 0,0001 SGD 50 no yes 0.05 elu 750 1/max [0,2pi] hom 0,8719

10000 0,01
SGD
(0.2) 50 no yes 0.05 elu 750 1/max [0,2pi] hom 0,9103

10000 0,01
SGD
(0.4) 50 no yes 0.05 elu 750 1/max [0,2pi] hom 0,9113

10000 0,01
SGD
(0.6) 50 no yes 0.05 elu 750 1/max [0,2pi] hom 0,9104

10000 0,01
SGD
(0.8) 50 no yes 0.05 elu 750 1/max [0,2pi] hom 0,9170

10000 0,01
SGD
(0.99) 50 no yes 0.05 elu 750 1/max [0,2pi] hom 0,9500

77

B
.1.

FFN
N

A
PPE

N
D

IX
B

.
N

E
U

R
A

L
N

E
T

W
O

R
K

C
O

N
FIG

U
R

A
T

IO
N

S

Table B.1 continued from previous page

Data
Total

Learning
Rate Optimizer

Neurons
First
Hidden
Layer

Neurons
Second
Hidden
Layer

Mixtures Regulizer
Regulizer
Rate Dropout

Dropout
Rate

Activation
Function

Batch
Size

Input
Scaled

Output
Scaled

hom/
het

Overall
EVS

10000 0,01 ADAM 50 no yes 0,25 elu 750 yes [0,2pi] inhom -4,4066
10000 0,005 ADAM 50 no yes 0,25 elu 750 1/max [0,2pi] inhom 0,3724
10000 0,001 ADAM 50 no yes 0,25 elu 750 1/max [0,2pi] inhom 0,5501
10000 0,0005 ADAM 50 no yes 0,25 elu 750 1/max [0,2pi] inhom 0,6635
10000 0,0001 ADAM 50 no yes 0,25 elu 750 1/max [0,2pi] inhom 0,7586
10000 0,000050 ADAM 50 no yes 0,25 elu 750 1/max [0,2pi] inhom 0,7415
10000 0,000010 ADAM 50 no yes 0,25 elu 750 1/max [0,2pi] inhom 0,6996
10000 0,000005 ADAM 50 no yes 0,25 elu 750 1/max [0,2pi] inhom 0,7074
10000 0,000001 ADAM 50 no yes 0,25 elu 750 1/max [0,2pi] inhom 0,5395
10000 0,001 ADAM 50 no yes 0,25 elu 250 1/max [0,2pi] inhom 0,7167
10000 0,001 ADAM 50 no yes 0,25 elu 500 1/max [0,2pi] inhom 0,7138
10000 0,001 ADAM 50 no yes 0,25 elu 1000 1/max [0,2pi] inhom 0,5694
10000 0,001 ADAM 50 no yes 0,25 elu 1250 1/max [0,2pi] inhom 0,2680
10000 0,001 ADAM 50 no yes 0,25 elu 1500 1/max [0,2pi] inhom 0,7150
10000 0,001 ADAM 6 no yes 0,25 elu 750 1/max [0,2pi] inhom 0,4411
10000 0,001 ADAM 12 no yes 0,25 elu 750 1/max [0,2pi] inhom 0,3378
10000 0,001 ADAM 18 no yes 0,25 elu 750 1/max [0,2pi] inhom 0,6924
10000 0,001 ADAM 30 no yes 0,25 elu 750 1/max [0,2pi] inhom 0,6380
10000 0,001 ADAM 100 no yes 0,25 elu 750 1/max [0,2pi] inhom 0,7182
10000 0,001 ADAM 150 no yes 0,25 elu 750 1/max [0,2pi] inhom 0,6852
10000 0,001 ADAM 200 no yes 0,25 elu 750 1/max [0,2pi] inhom 0,6844
10000 0,001 ADAM 250 no yes 0,25 elu 750 1/max [0,2pi] inhom 0,6776
10000 0,001 ADAM 300 no yes 0,25 elu 750 1/max [0,2pi] inhom 0,6717
10000 0,001 ADAM 350 no yes 0,25 elu 750 1/max [0,2pi] inhom 0,6693
10000 0,001 ADAM 50 no yes 0,25 elu 750 1/max [0,2pi] inhom 0,6622
10000 0,001 ADAM 50 no yes 0,25 elu 750 1/max [0,2pi] inhom 0,7144
10000 0,001 ADAM 50 no yes 0,25 elu 750 1/max [0,2pi] inhom -0,9046
10000 0,001 ADAM 50 no yes 0,25 elu 750 1/max [0,2pi] inhom 0,6873
10000 0,001 ADAM 50 no yes 0,25 elu 750 1/max [0,2pi] inhom -5,1733
10000 0,001 ADAM 50 no yes 0,01 elu 750 1/max [0,2pi] inhom 0,6006
10000 0,001 ADAM 50 no yes 0,05 elu 750 1/max [0,2pi] inhom 0,6330
10000 0,001 ADAM 50 no yes 0,1 elu 750 1/max [0,2pi] inhom 0,6594

78

B
.1.

FFN
N

A
PPE

N
D

IX
B

.
N

E
U

R
A

L
N

E
T

W
O

R
K

C
O

N
FIG

U
R

A
T

IO
N

S

Table B.1 continued from previous page

Data
Total

Learning
Rate Optimizer

Neurons
First
Hidden
Layer

Neurons
Second
Hidden
Layer

Mixtures Regulizer
Regulizer
Rate Dropout

Dropout
Rate

Activation
Function

Batch
Size

Input
Scaled

Output
Scaled

hom/
het

Overall
EVS

10000 0,001 ADAM 50 no yes 0,15 elu 750 1/max [0,2pi] inhom 0,7026
10000 0,001 ADAM 50 no yes 0,2 elu 750 1/max [0,2pi] inhom 0,4885
10000 0,001 ADAM 50 no yes 0,2 relu 750 1/max [0,2pi] inhom 0,6604
10000 0,001 ADAM 50 no yes 0,2 sofmtax 750 1/max [0,2pi] inhom 0,0196
10000 0,001 ADAM 50 no yes 0,2 sigmoid 750 1/max [0,2pi] inhom 0,8083
10000 0,001 ADAM 50 no yes 0,2 tanh 750 1/max [0,2pi] inhom 0,7545
10000 0,001 ADAM 50 no yes 0,2 selu 750 1/max [0,2pi] inhom 0,7436
10000 0,001 ADAM 50 L1 0,0100 no elu 750 1/max [0,2pi] inhom 0,7320
10000 0,001 ADAM 50 L1 0,0500 no elu 750 1/max [0,2pi] inhom 0,6281
10000 0,001 ADAM 50 L1 0,0010 no elu 750 1/max [0,2pi] inhom 0,7327
10000 0,001 ADAM 50 L2 0,0100 no elu 750 1/max [0,2pi] inhom 0,7054
10000 0,001 ADAM 50 L2 0,0500 no elu 750 1/max [0,2pi] inhom 0,7520
10000 0,001 ADAM 50 L2 0,0010 no elu 750 1/max [0,2pi] inhom 0,6645

10000 0,001 ADAM 50 L1_L2
0,0100
0,0100 no elu 750 1/max [0,2pi] inhom 0,7365

10000 0,001 ADAM 50 L1_L2
0,0100
0,0500 no elu 750 1/max [0,2pi] inhom 0,7187

10000 0,001 ADAM 50 L1_L2
0,0100
0,0050 no elu 750 1/max [0,2pi] inhom 0,7271

10000 0,001 ADAM 50 L1_L2
0,0500
0,0100 no elu 750 1/max [0,2pi] inhom 0,6876

10000 0,001 ADAM 50 L1_L2
0,0050
0,0100 no elu 750 1/max [0,2pi] inhom 0,7345

10000 0,001 ADAM 50 L1_L2
0,0010
0,0010 no elu 750 1/max [0,2pi] inhom 0,7241

10000 0,001 ADAM 50 20 no yes 0.05 elu 750 1/max [0,2pi] inhom 0,7991
10000 0,001 ADAM 50 50 no yes 0.05 elu 750 1/max [0,2pi] inhom 0,8105
10000 0,001 ADAM 50 100 no yes 0.05 elu 750 1/max [0,2pi] inhom 0,8111
10000 0,001 ADAM 50 150 no yes 0.05 elu 750 1/max [0,2pi] inhom 0,8244
10000 0,001 ADAM 50 200 no yes 0.05 elu 750 1/max [0,2pi] inhom 0,8083
10000 0,001 ADAM 100 20 no yes 0.05 elu 750 1/max [0,2pi] inhom 0,7671
10000 0,001 ADAM 100 50 no yes 0.05 elu 750 1/max [0,2pi] inhom 0,7816

79

B
.1.

FFN
N

A
PPE

N
D

IX
B

.
N

E
U

R
A

L
N

E
T

W
O

R
K

C
O

N
FIG

U
R

A
T

IO
N

S

Table B.1 continued from previous page

Data
Total

Learning
Rate Optimizer

Neurons
First
Hidden
Layer

Neurons
Second
Hidden
Layer

Mixtures Regulizer
Regulizer
Rate Dropout

Dropout
Rate

Activation
Function

Batch
Size

Input
Scaled

Output
Scaled

hom/
het

Overall
EVS

10000 0,001 ADAM 100 100 no yes 0.05 elu 750 1/max [0,2pi] inhom 0,7879
10000 0,001 ADAM 100 150 no yes 0.05 elu 750 1/max [0,2pi] inhom 0,8105
10000 0,001 ADAM 100 200 no yes 0.05 elu 750 1/max [0,2pi] inhom 0,8133
10000 0,01 SGD 50 no yes 0.05 elu 750 1/max [0,2pi] inhom 0,6858
10000 0,005 SGD 50 no yes 0.05 elu 750 1/max [0,2pi] inhom 0,6452
10000 0,001 SGD 50 no yes 0.05 elu 750 1/max [0,2pi] inhom 0,4287
10000 0,0005 SGD 50 no yes 0.05 elu 750 1/max [0,2pi] inhom 0,3313
10000 0,0001 SGD 50 no yes 0.05 elu 750 1/max [0,2pi] inhom 0,1552

10000 0,01
SGD
(0.2) 50 no yes 0.05 elu 750 1/max [0,2pi] inhom 0,4658

10000 0,01
SGD
(0.4) 50 no yes 0.05 elu 750 1/max [0,2pi] inhom 0,5101

10000 0,01
SGD
(0.6) 50 no yes 0.05 elu 750 1/max [0,2pi] inhom 0,5637

10000 0,01
SGD
(0.8) 50 no yes 0.05 elu 750 1/max [0,2pi] inhom 0,6436

10000 0,01
SGD
(0.99) 50 no yes 0.05 elu 750 1/max [0,2pi] inhom 0,7369

80

B
.2.

M
D

N
A

PPE
N

D
IX

B
.

N
E

U
R

A
L

N
E

T
W

O
R

K
C

O
N

FIG
U

R
A

T
IO

N
S

B.2 MDN

Table B.2: Network architectures tried for the hyperparameter finetuning of the problem presented in this thesis. This particular table shows the configuration set up and overall
EVS scores for the MDN. The overall EVS score includes the different performances of all independent MT components. This means that sometimes the overall EVS looks
pretty bad, but in fact it is mainly the poor performing diagonal MT components that bring the overall score down.

Data
Total

Learning
Rate Optimizer

Neurons
First
Hidden
Layer

Neurons
Second
Hidden
Layer

Mixtures Regulizer
Regulizer
Rate Dropout

Dropout
Rate

Activation
Function

Batch
Size

Input
Scaled

Output
Scaled

hom/
het

Overall
EVS

10000 0,01 ADAM 50 1000 no yes 0,25 elu 750 1/max [0,2pi] hom -14.991
10000 0,005 ADAM 50 60 no yes 0,25 elu 750 1/max [0,2pi] hom 0,6942
10000 0,001 ADAM 50 60 no yes 0,25 elu 750 1/max [0,2pi] hom 0,7860
10000 0,0005 ADAM 50 60 no yes 0,25 elu 750 1/max [0,2pi] hom 0,7837
10000 0,0001 ADAM 50 60 no yes 0,25 elu 750 1/max [0,2pi] hom 0,7232
10000 0,001 ADAM 50 60 no yes 0,25 elu 250 1/max [0,2pi] hom 0,7961
10000 0,001 ADAM 50 60 no yes 0,25 elu 500 1/max [0,2pi] hom 0,7747
10000 0,001 ADAM 50 60 no yes 0,25 elu 1000 1/max [0,2pi] hom 0,7703
10000 0,001 ADAM 50 60 no yes 0,25 elu 1250 1/max [0,2pi] hom 0,7317
10000 0,001 ADAM 50 60 no yes 0,25 elu 1500 1/max [0,2pi] hom 0,7764
10000 0,001 ADAM 6 60 no yes 0,25 elu 750 1/max [0,2pi] hom 0,7636
10000 0,001 ADAM 12 60 no yes 0,25 elu 750 1/max [0,2pi] hom 0,5953
10000 0,001 ADAM 18 60 no yes 0,25 elu 750 1/max [0,2pi] hom 0,6579
10000 0,001 ADAM 30 60 no yes 0,25 elu 750 1/max [0,2pi] hom 0,7216
10000 0,001 ADAM 100 60 no yes 0,25 elu 750 1/max [0,2pi] hom 0,8458
10000 0,001 ADAM 150 60 no yes 0,25 elu 750 1/max [0,2pi] hom 0,8557
10000 0,001 ADAM 200 60 no yes 0,25 elu 750 1/max [0,2pi] hom 0,8773
10000 0,001 ADAM 250 60 no yes 0,25 elu 750 1/max [0,2pi] hom 0,8792
10000 0,001 ADAM 300 60 no yes 0,25 elu 750 1/max [0,2pi] hom 0,8866
10000 0,001 ADAM 350 60 no yes 0,25 elu 750 1/max [0,2pi] hom 0,8811
10000 0,001 ADAM 50 6 no yes 0,25 elu 750 1/max [0,2pi] hom -605
10000 0,001 ADAM 50 12 no yes 0,25 elu 750 1/max [0,2pi] hom -604
10000 0,001 ADAM 50 18 no yes 0,25 elu 750 1/max [0,2pi] hom 0,7912
10000 0,001 ADAM 50 30 no yes 0,25 elu 750 1/max [0,2pi] hom 0,7900
10000 0,001 ADAM 50 100 no yes 0,25 elu 750 1/max [0,2pi] hom 0,7536
10000 0,001 ADAM 50 60 no yes 0,01 elu 750 1/max [0,2pi] hom 0,8602
10000 0,001 ADAM 50 60 no yes 0,05 elu 750 1/max [0,2pi] hom 0,8802

81

B
.2.

M
D

N
A

PPE
N

D
IX

B
.

N
E

U
R

A
L

N
E

T
W

O
R

K
C

O
N

FIG
U

R
A

T
IO

N
S

Table B.2 continued from previous page

Data
Total

Learning
Rate Optimizer

Neurons
First
Hidden
Layer

Neurons
Second
Hidden
Layer

Mixtures Regulizer
Regulizer
Rate Dropout

Dropout
Rate

Activation
Function

Batch
Size

Input
Scaled

Output
Scaled

hom/
het

Overall
EVS

10000 0,001 ADAM 50 60 no yes 0,1 elu 750 1/max [0,2pi] hom 0,8465
10000 0,001 ADAM 50 60 no yes 0,15 elu 750 1/max [0,2pi] hom 0,7907
10000 0,001 ADAM 50 60 no yes 0,2 elu 750 1/max [0,2pi] hom 0,7729
10000 0,001 ADAM 50 60 no yes 0,2 relu 750 1/max [0,2pi] hom 0,7842
10000 0,001 ADAM 50 60 no yes 0,2 sofmtax 750 1/max [0,2pi] hom -0,6686
10000 0,001 ADAM 50 60 no yes 0,2 sigmoid 750 1/max [0,2pi] hom 0,8216
10000 0,001 ADAM 50 60 no yes 0,2 tanh 750 1/max [0,2pi] hom 0,7040
10000 0,001 ADAM 50 60 no yes 0,2 selu 750 1/max [0,2pi] hom 0,8256
10000 0,001 ADAM 50 60 L1 0,0100 no elu 750 1/max [0,2pi] hom 0,8812
10000 0,001 ADAM 50 60 L1 0,0500 no elu 750 1/max [0,2pi] hom 0,8656
10000 0,001 ADAM 50 60 L1 0,0010 no elu 750 1/max [0,2pi] hom 0,8856
10000 0,001 ADAM 50 60 L2 0,0100 no elu 750 1/max [0,2pi] hom 0,8610
10000 0,001 ADAM 50 60 L2 0,0500 no elu 750 1/max [0,2pi] hom 0,8450
10000 0,001 ADAM 50 60 L2 0,0010 no elu 750 1/max [0,2pi] hom 0,8724

10000 0,001 ADAM 50 60 L1_L2
0,0100
0,0100 no elu 750 1/max [0,2pi] hom 0,8804

10000 0,001 ADAM 50 60 L1_L2
0,0100
0,0500 no elu 750 1/max [0,2pi] hom 0,8817

10000 0,001 ADAM 50 60 L1_L2
0,0100
0,0050 no elu 750 1/max [0,2pi] hom 0,8880

10000 0,001 ADAM 50 60 L1_L2
0,0500
0.0100 no elu 750 1/max [0,2pi] hom 0,8837

10000 0,001 ADAM 50 60 L1_L2
0,0050
0,0100 no elu 750 1/max [0,2pi] hom 0,8878

10000 0,001 ADAM 50 60 L1_L2
0,0010
0,0010 no elu 750 1/max [0,2pi] hom 0,8809

10000 0,001 ADAM 50 20 60 no yes 0.05 elu 750 1/max [0,2pi] hom 0,8459
10000 0,001 ADAM 50 50 60 no yes 0.05 elu 750 1/max [0,2pi] hom 0,8925
10000 0,001 ADAM 50 100 60 no yes 0.05 elu 750 1/max [0,2pi] hom 0,9098
10000 0,001 ADAM 50 150 60 no yes 0.05 elu 750 1/max [0,2pi] hom 0,9082
10000 0,001 ADAM 50 200 60 no yes 0.05 elu 750 1/max [0,2pi] hom 0,9056
10000 0,001 ADAM 100 20 60 no yes 0.05 elu 750 1/max [0,2pi] hom 0,8893

82

B
.2.

M
D

N
A

PPE
N

D
IX

B
.

N
E

U
R

A
L

N
E

T
W

O
R

K
C

O
N

FIG
U

R
A

T
IO

N
S

Table B.2 continued from previous page

Data
Total

Learning
Rate Optimizer

Neurons
First
Hidden
Layer

Neurons
Second
Hidden
Layer

Mixtures Regulizer
Regulizer
Rate Dropout

Dropout
Rate

Activation
Function

Batch
Size

Input
Scaled

Output
Scaled

hom/
het

Overall
EVS

10000 0,001 ADAM 100 50 60 no yes 0.05 elu 750 1/max [0,2pi] hom 0,8975
10000 0,001 ADAM 100 100 60 no yes 0.05 elu 750 1/max [0,2pi] hom 0,9208
10000 0,001 ADAM 100 150 60 no yes 0.05 elu 750 1/max [0,2pi] hom 0,9143
10000 0,001 ADAM 100 200 60 no yes 0.05 elu 750 1/max [0,2pi] hom 0,9200
10000 0,01 SGD 50 60 no yes 0.05 elu 750 1/max [0,2pi] hom 0,8097
10000 0,005 SGD 50 60 no yes 0.05 elu 750 1/max [0,2pi] hom 0,8090
10000 0,001 SGD 50 60 no yes 0.05 elu 750 1/max [0,2pi] hom 0,7416
10000 0,0005 SGD 50 60 no yes 0.05 elu 750 1/max [0,2pi] hom 0,7715
10000 0,0001 SGD 50 60 no yes 0.05 elu 750 1/max [0,2pi] hom -0,6325

10000 0,01
SGD
(0.2) 50 60 no yes 0.05 elu 750 1/max [0,2pi] hom 0,7997

10000 0,01
SGD
(0.4) 50 60 no yes 0.05 elu 750 1/max [0,2pi] hom 0,8126

10000 0,01
SGD
(0.6) 50 60 no yes 0.05 elu 750 1/max [0,2pi] hom 0,7986

10000 0,01
SGD
(0.8) 50 60 no yes 0.05 elu 750 1/max [0,2pi] hom 0,8491

10000 0,01
SGD
(0.99) 50 60 no yes 0.05 elu 750 1/max [0,2pi] hom 0,8333

10000 0,01 ADAM 50 1000 no yes 0,25 elu 750 yes [0,2pi] inhom -4.062
10000 0,005 ADAM 50 60 no yes 0,25 elu 750 1/max [0,2pi] inhom -0,2292
10000 0,001 ADAM 50 60 no yes 0,25 elu 750 1/max [0,2pi] inhom 0,5639
10000 0,0005 ADAM 50 60 no yes 0,25 elu 750 1/max [0,2pi] inhom 0,6040
10000 0,0001 ADAM 50 60 no yes 0,25 elu 750 1/max [0,2pi] inhom 0,4708
10000 0,001 ADAM 50 60 no yes 0,25 elu 250 1/max [0,2pi] inhom 0,4025
10000 0,001 ADAM 50 60 no yes 0,25 elu 500 1/max [0,2pi] inhom 0,5079
10000 0,001 ADAM 50 60 no yes 0,25 elu 1000 1/max [0,2pi] inhom 0,4441
10000 0,001 ADAM 50 60 no yes 0,25 elu 1250 1/max [0,2pi] inhom 0,5129
10000 0,001 ADAM 50 60 no yes 0,25 elu 1500 1/max [0,2pi] inhom 0,6212
10000 0,001 ADAM 6 60 no yes 0,25 elu 750 1/max [0,2pi] inhom -0,1107
10000 0,001 ADAM 12 60 no yes 0,25 elu 750 1/max [0,2pi] inhom 0,0656
10000 0,001 ADAM 18 60 no yes 0,25 elu 750 1/max [0,2pi] inhom 0,2810

83

B
.2.

M
D

N
A

PPE
N

D
IX

B
.

N
E

U
R

A
L

N
E

T
W

O
R

K
C

O
N

FIG
U

R
A

T
IO

N
S

Table B.2 continued from previous page

Data
Total

Learning
Rate Optimizer

Neurons
First
Hidden
Layer

Neurons
Second
Hidden
Layer

Mixtures Regulizer
Regulizer
Rate Dropout

Dropout
Rate

Activation
Function

Batch
Size

Input
Scaled

Output
Scaled

hom/
het

Overall
EVS

10000 0,001 ADAM 30 60 no yes 0,25 elu 750 1/max [0,2pi] inhom 0,3887
10000 0,001 ADAM 100 60 no yes 0,25 elu 750 1/max [0,2pi] inhom 0,5297
10000 0,001 ADAM 150 60 no yes 0,25 elu 750 1/max [0,2pi] inhom 0,5491
10000 0,001 ADAM 200 60 no yes 0,25 elu 750 1/max [0,2pi] inhom 0,5059
10000 0,001 ADAM 250 60 no yes 0,25 elu 750 1/max [0,2pi] inhom 0,4554
10000 0,001 ADAM 300 60 no yes 0,25 elu 750 1/max [0,2pi] inhom 0,4377
10000 0,001 ADAM 350 60 no yes 0,25 elu 750 1/max [0,2pi] inhom 0,5147
10000 0,001 ADAM 50 6 no yes 0,25 elu 750 1/max [0,2pi] inhom -84,0000
10000 0,001 ADAM 50 12 no yes 0,25 elu 750 1/max [0,2pi] inhom -67,0000
10000 0,001 ADAM 50 18 no yes 0,25 elu 750 1/max [0,2pi] inhom 0,4998
10000 0,001 ADAM 50 30 no yes 0,25 elu 750 1/max [0,2pi] inhom 0,4667
10000 0,001 ADAM 50 100 no yes 0,25 elu 750 1/max [0,2pi] inhom 0,4511
10000 0,001 ADAM 50 60 no yes 0,01 elu 750 1/max [0,2pi] inhom 0,2524
10000 0,001 ADAM 50 60 no yes 0,05 elu 750 1/max [0,2pi] inhom 0,4132
10000 0,001 ADAM 50 60 no yes 0,1 elu 750 1/max [0,2pi] inhom 0,5362
10000 0,001 ADAM 50 60 no yes 0,15 elu 750 1/max [0,2pi] inhom 0,4654
10000 0,001 ADAM 50 60 no yes 0,2 elu 750 1/max [0,2pi] inhom 0,5701
10000 0,001 ADAM 50 60 no yes 0,2 relu 750 1/max [0,2pi] inhom 0,4605
10000 0,001 ADAM 50 60 no yes 0,2 sofmtax 750 1/max [0,2pi] inhom -0,9187
10000 0,001 ADAM 50 60 no yes 0,2 sigmoid 750 1/max [0,2pi] inhom 0,5351
10000 0,001 ADAM 50 60 no yes 0,2 tanh 750 1/max [0,2pi] inhom 0,0874
10000 0,001 ADAM 50 60 no yes 0,2 selu 750 1/max [0,2pi] inhom 0,5268
10000 0,001 ADAM 50 60 L1 0,0100 no elu 750 1/max [0,2pi] inhom 0,1829
10000 0,001 ADAM 50 60 L1 0,0500 no elu 750 1/max [0,2pi] inhom 0,0560
10000 0,001 ADAM 50 60 L1 0,0010 no elu 750 1/max [0,2pi] inhom 0,0818
10000 0,001 ADAM 50 60 L2 0,0100 no elu 750 1/max [0,2pi] inhom 0,2682
10000 0,001 ADAM 50 60 L2 0,0500 no elu 750 1/max [0,2pi] inhom 0,3194
10000 0,001 ADAM 50 60 L2 0,0010 no elu 750 1/max [0,2pi] inhom 0,2631

10000 0,001 ADAM 50 60 L1_L2
0,0100
0,0100 no elu 750 1/max [0,2pi] inhom 0,0489

10000 0,001 ADAM 50 60 L1_L2
0,0100
0,0500 no elu 750 1/max [0,2pi] inhom 0,1457

84

B
.2.

M
D

N
A

PPE
N

D
IX

B
.

N
E

U
R

A
L

N
E

T
W

O
R

K
C

O
N

FIG
U

R
A

T
IO

N
S

Table B.2 continued from previous page

Data
Total

Learning
Rate Optimizer

Neurons
First
Hidden
Layer

Neurons
Second
Hidden
Layer

Mixtures Regulizer
Regulizer
Rate Dropout

Dropout
Rate

Activation
Function

Batch
Size

Input
Scaled

Output
Scaled

hom/
het

Overall
EVS

10000 0,001 ADAM 50 60 L1_L2
0,0100
0,0050 no elu 750 1/max [0,2pi] inhom 0,0714

10000 0,001 ADAM 50 60 L1_L2
0,0500
0,0100 no elu 750 1/max [0,2pi] inhom 0,0937

10000 0,001 ADAM 50 60 L1_L2
0,0050
0,0100 no elu 750 1/max [0,2pi] inhom 0,0109

10000 0,001 ADAM 50 60 L1_L2
0,0010
0,0010 no elu 750 1/max [0,2pi] inhom 0,2202

100000 0,001 ADAM 100 60 no yes 0.05 elu 750 1/max [0,2pi] inhom -0,7253
10000 0,001 ADAM 50 20 60 no yes 0.05 elu 750 1/max [0,2pi] inhom 0,5521
10000 0,001 ADAM 50 50 60 no yes 0.05 elu 750 1/max [0,2pi] inhom 0,6165
10000 0,001 ADAM 50 100 60 no yes 0.05 elu 750 1/max [0,2pi] inhom 0,6208
10000 0,001 ADAM 50 150 60 no yes 0.05 elu 750 1/max [0,2pi] inhom 0,6273
10000 0,001 ADAM 50 200 60 no yes 0.05 elu 750 1/max [0,2pi] inhom 0,6500
10000 0,001 ADAM 100 20 60 no yes 0.05 elu 750 1/max [0,2pi] inhom 0,4057
10000 0,001 ADAM 100 50 60 no yes 0.05 elu 750 1/max [0,2pi] inhom 0,4992
10000 0,001 ADAM 100 100 60 no yes 0.05 elu 750 1/max [0,2pi] inhom 0,5395
10000 0,001 ADAM 100 150 60 no yes 0.05 elu 750 1/max [0,2pi] inhom 0,5570
10000 0,001 ADAM 100 200 60 no yes 0.05 elu 750 1/max [0,2pi] inhom 0,5921
10000 0,01 SGD 50 60 no yes 0.05 elu 750 1/max [0,2pi] inhom 0,1935
10000 0,005 SGD 50 60 no yes 0.05 elu 750 1/max [0,2pi] inhom 0,1301
10000 0,001 SGD 50 60 no yes 0.05 elu 750 1/max [0,2pi] inhom -0,1461
10000 0,0005 SGD 50 60 no yes 0.05 elu 750 1/max [0,2pi] inhom -0,5136
10000 0,0001 SGD 50 60 no yes 0.05 elu 750 1/max [0,2pi] inhom -0,9598

10000 0,01
SGD
(0.2) 50 60 no yes 0.05 elu 750 1/max [0,2pi] inhom -0,0277

10000 0,01
SGD
(0.4) 50 60 no yes 0.05 elu 750 1/max [0,2pi] inhom 0,1038

10000 0,01
SGD
(0.6) 50 60 no yes 0.05 elu 750 1/max [0,2pi] inhom 0,1713

10000 0,01
SGD
(0.8) 50 60 no yes 0.05 elu 750 1/max [0,2pi] inhom 0,2027

85

B
.2.

M
D

N
A

PPE
N

D
IX

B
.

N
E

U
R

A
L

N
E

T
W

O
R

K
C

O
N

FIG
U

R
A

T
IO

N
S

Table B.2 continued from previous page

Data
Total

Learning
Rate Optimizer

Neurons
First
Hidden
Layer

Neurons
Second
Hidden
Layer

Mixtures Regulizer
Regulizer
Rate Dropout

Dropout
Rate

Activation
Function

Batch
Size

Input
Scaled

Output
Scaled

hom/
het

Overall
EVS

10000 0,01
SGD
(0.99) 50 60 no yes 0.05 elu 750 1/max [0,2pi] inhom 0,3772

86

	Abstract
	Contents
	List of Figures
	List of Tables
	Introduction
	Theoretical Background
	The Zeerijp Area
	Signal to Noise Ratio
	The Moment Tensor

	Methods
	Synthetic Data
	Artificial Neural Networks
	Theory
	Explained Variance Score

	Hyperparameters and Strategies
	Activation Function
	Learning Rate
	Optimizer
	Loss Function and Scalers
	Epochs and Batch Size
	Mixture of Gaussians

	Mixture Density Network

	Feed Forward Neural Network vs. Mixture Density Network

	Results
	Feed Forward Neural Network
	Homogeneous Model
	Heterogeneous Model
	Noise

	Mixture Density Network
	Homogeneous Model
	Heterogeneous Model
	Noise

	Discussion
	Conclusion
	Outlook
	Trace Analysis
	Velocity Model
	Source Specific Changes
	Receiver Specific Changes

	Neural Network Configurations
	FFNN
	MDN

