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a b s t r a c t

Bayesian Networks (BNs) are probabilistic, graphical models for representing complex dependency
structures. They have many applications in science and engineering. Their particularly powerful variant
– Non-Parametric BNs – are for the first time implemented as an open-access scriptable code, in the
form of a MATLAB toolbox ‘‘BANSHEE’’.1 The software allows for quantifying the BN, validating the
underlying assumptions of the model, visualizing the network and its corresponding rank correlation
matrix, and finally making inference with a BN based on existing or new evidence. We also include
in the toolbox, and discuss in the paper, some applied BN models published in most recent scientific
literature.

© 2020 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).

Code metadata

Current code version BANSHEE v1.0
Permanent link to code/repository used of this code version https://github.com/ElsevierSoftwareX/SOFTX_2020_243
Code Ocean compute capsule –
Legal Code License GNU General Public License
Code versioning system used none
Software code languages, tools, and services used MATLAB (including the Statistics and Machine Learning Toolbox)
Compilation requirements, operating environments & dependencies MATLAB (including the Statistics and Machine Learning Toolbox)
If available Link to developer documentation/manual https://github.com/ElsevierSoftwareX/SOFTX_2020_243
Support email for questions paprotny@gfz-potsdam.de

1. Motivation and significance

Bayesian Networks (BNs) are graphical, probabilistic mod-
ls for representing high-dimensional and complex dependency
tructures [1–4]. A BN consists of a directed acyclic graph (DAG),
n which nodes (representing random variables) are connected

∗ Corresponding author.
E-mail addresses: paprotny@gfz-potsdam.de (D. Paprotny),

.moralesnapoles@tudelft.nl (O. Morales-Nápoles), daniel.worm@tno.nl
D.T.H. Worm), E.Ragno@tudelft.nl (E. Ragno).
1 BANSHEE stands for ‘Bayesian Networks in Scholarly Endeavours’. However,
banshee is also, in Irish folklore, a female spirit whose appearance is a
arning about impending death. Bayesian Networks have been extensively used

n risk analysis in fields ranging from aviation safety through natural hazards to
uilding fire safety, hence they also warn against possible dangers, somewhat
imilarly to a banshee.

with arcs representing direct dependency between nodes. The
direct predecessors of a node are called parents, and the direct
successors are known as children. Each node with no parents has
a marginal distribution specified, while each child node is asso-
ciated with a conditional distribution. The strength of the depen-
dency between nodes is informed by the conditional distributions
in the BN [5,6].

BNs have been gaining popularity for several reasons. They
are flexible and are able to present the dependence structure
even for very large models. Different variants of BNs handle
various data types, while the quantitative information needed to
build a BN can be obtained both from data or through expert
judgement [5,7–11]. Here, we present a MATLAB toolbox ‘‘BAN-
SHEE’’ for a particular variant of BNs — non-parametric Bayesian
Networks (NPBNs). This type of BNs was introduced by Kurowica
and Cooke [12] and has a major advantage of using empirical
ttps://doi.org/10.1016/j.softx.2020.100588
352-7110/© 2020 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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non-parametric) marginal distributions of continuous variables.
o discretization assumptions or a particular parametric distri-
ution is therefore required for defining the continuous variables
though parametric distributions may still be used), eliminating
significant source of inaccuracies in BN models. For modelling

he dependency structure, copulas [13] are used in NPBNs.
The applications of NPBNs are numerous and diverse. One

f the first applications was in engineering, with often very
arge models applied to improve earth dam safety [9,10], avia-
ion safety [14] and infrastructure reliability [15]. Later, NPBNs
ere introduced in geosciences, in diverse subfields such as
ydrology [16], geomorphology [17], seismology [18] and vol-
anology [19]. In social sciences, they were used in such remote
pplications as public health [20] and climate-change mitigation
olicies [21]. A comprehensive review of NPBN applications was
rovided by Hanea et al. [5] and an up-to-date list of many papers
sing the method is available online [22].
However, an important limiting factor in making new analyses

ith NPBNs is software availability. At present, there is only
ne dedicated software solution for NPBNs, in the form of a
losed-source, proprietary package Uninet by LightTwist Soft-
are [22]. Our toolbox BANSHEE is the first implementation as
standalone, open-access code, which could allow researchers to
rovide transparent, reproducible results with NPBNs. BANSHEE
tself originates from MATLAB scripts [23,24] that were also used
y the authors to implement NPBNs in some recent publica-
ions [16,17,25]. While one of the main advantages of Uninet is
ts Graphical User interface (GUI) that makes it easier to con-
truct and experiment with the model, BANSHEE allows quickly
mbedding an NPBN model into MATLAB scripts through a set of
asy-to-use functions, including diagnostic tools for analysing the
PBN’s underlying assumptions.

. Software description

BANSHEE consists of a set of MATLAB functions. The soft-
are allows for quantifying the NPBN, analysing the underlying
ssumptions of the model, visualizing the network and its cor-
esponding rank correlation matrix, and finally making inference
ith a NPBN based on existing or new evidence. Examples are
rovided as standalone scripts. Real-world example applications
rom literature are included to better explain the method and
how the power of the toolbox.

.1. Software architecture

The most important component of the toolbox is the code
bn_rankcorr) implementing the NPBN method described by
Hanea et al. [5,26] and Kurowicka and Cooke [4]. As noted in the
introduction, NPBNs make no assumptions on the marginal dis-
tributions (i.e. distributions of the nodes). The arcs are associated
with one-parameter, conditional copulas [13]. Loosely, a bivariate
copula, or simply a copula for the purposes of this paper, is a joint
distribution with uniform margins in [0, 1]. Multivariate joint
istributions can be written in terms of the univariate marginal
istribution functions and a copula. For the bi-variate case one
an write H (x, y) = C(FX (x),GY (y)), where H (x, y) is a joint dis-
ribution with marginal distributions FX and GY . Therefore, C is a
opula taking values from I2 = ([0, 1] × [0, 1]). For copulas with
nly one parameter there is a one-to-one relation between the
arameter and Spearman’s rank correlation coefficient (Eq. (3)).
opulas allow the investigation of probabilistic dependence sep-
rately from the effect of the one-dimensional margins and hence
heir importance in the NPBN framework.

The (conditional) copulas are assigned to arcs according to
the (non-unique) ordering of the parent nodes. For a particu-
lar choice of copulas, dependency structure and a set of one-
dimensional marginal distributions, the joint distribution of the
NPBN is uniquely determined [26]. Any copula realizing all cor-
relations in [−1, 1] can be used, while the (conditional) indepen-
dent copula realizing all (conditional) independence relationships
encoded by the graph of the NPBN may be used. Here we im-
plement the NPBNs with the Gaussian (normal) copula, which
does not present tail dependence (or other asymmetries) between
variables. The joint density of a BN with n variables is factorized
as follows [5]:

f1,...,n (x1, . . . , xn) = f1(x1)
n∏

i=2

fi|Pa(i)
(
xi|xPa(i)

)
(1)

where Pa(i) is the set of parent nodes of Xi, with i = 1, . . . , n. In
case there are no parents, fXi|Pa(Xi) = fXi .

The BN’s structure (directed acyclic graph — DAG) is typically
expert knowledge-driven, therefore we do not include any au-
tomated way of deriving the DAG. The user defines the nodes
and arcs, together with the ordering of the parent nodes as a cell
array. An example DAG, as defined in BANSHEE, with three nodes
and two arcs is as follows:
P{1} = []; % first node, no parents
P{2} = 3; % second node (third node is the parent node)
P{3} = 1; % third node (first node is the parent node)
where P{i} is the ith node of the DAG. Empirical distributions from
the user’s data are assigned to the nodes. The usual estimator of
the cumulative probability distribution is applied here:

F̂ (x) =
1
n

n∑
i=1

1{xi≤x} (2)

where (xi, . . . , xn) are the samples of a random variable, 1{xi≤x} =

1 if {xi ≤ x} and zero otherwise. Once the DAG is defined and
the user’s data are provided, the NPBN rank correlation ma-
trix quantifying the dependency structure is estimated. As noted
above, a Gaussian copula parametrized by Spearman’s rank cor-
relation is applied here to define the correlation between two
connected nodes. Spearman’s correlation is Pearson’s product
moment correlation coefficient computed with the ranks of the
random variables. In such a specific case, the rank correlation of
two random variables (nodes) Xi and Xj is as follows:

r
(
Xi, Xj

)
= 12

∫ 1

0

∫ 1

0
Cθ (u, v) dudv − 3 (3)

where u, v are the margins of one-parameter bivariate copula Cθ .
The conditional Spearman’s rank correlation of Xi and Xj given
the random vector Z = z is the Spearman’s rank correlation
calculated in the conditional distribution of Xi and Xj given the
random vector Z1 = z1, . . . , Zk = zk . For each variable Xi with m
parents Pa1 (Xi) , . . . , Pam (Xi) the arc Paj (Xi) → Xi is associated
with the rank correlation:{
r
(
Xi, Paj (Xi)

)
, j = 1

r
(
Xi, Paj (Xi) |Pa1 (Xi) , . . . , Paj−1 (Xi)

)
, j = 2, . . . ,m

(4)

where the index j is in the non-unique sampling order. It is
worth noticing that the m parent nodes of Xi in Eq. (4) can be
permuted such that anyone can be the first parent, the second,
and so on until the mth index. The resulting correlation matri-
ces parametrizing the BN will in general differ according to the
selected sampling order unless the BN is given by a complete
(saturated) graph. Given a directed acyclic graph with n nodes
described by invertible distribution functions and the conditional
independence relationship between them modelled via the NPBN,
2
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he specification in Eq. (4) guarantees that the joint distribution
f the n variables (nodes) is uniquely determined. For details,
ee [5,26].
The BN rank correlation matrix is computed in BANSHEE using

n_rankcorr function, requiring a defined DAG (as a cell array)
nd an adequate number of variables (as a matrix). The function
tilizes as default a matrix of data that forms a set of actual
ecords, but includes an option to compute BN rank correlation
ithout such data, which will be discussed in Section 3.
The assumptions underlying the BN quantification can be

ested by measuring (1) the degree of agreement of the Gaussian
opula with the data (Cramer–von Mises statistic M) and (2) the
egree to which the chosen conditional independence statements
mplied by the BN agree with data (d-calibration score). In the
irst case, we use the sum of squared difference between the
mpirical and parametric copulas [27]. The Cramer–von Mises
tatistic M for a sample of length n is computed as follows:

n (u) = n
∑
|u|

{
Cθ̂n

(u) − B (u)
}2

, u ∈ [0, 1]2 (5)

where B (u) =
1
n

∑n
i=1 1(Ui ≤ u) is the empirical copula and

θ̂n
(u) is a parametric copula with parameter θ̂n estimated from

he sample. Notice that M is the sum of squared difference be-
tween the empirical copula and a particular parametric estimator.
Hence a low value of M is desired over a high value. This obser-
vation may be used as a rule of thumb for assessing goodness of
fit for copulas. Further details are given in [27].

The function cvm_statistic computes M for four copulas
(Gaussian, Gumbel, Clayton, Frank)2 and allows to visualize the
results. The second test, called d-calibration score [11], consists
in comparing the empirical correlation matrix (the data) with
both the BN rank correlation matrix and the empirical normal
rank correlation matrix (the model).Testing the distance between
empirical and normal matrices informs whether the joint dis-
tribution of the variables defined by the user can be assumed
to be Gaussian. This means that the Gaussian copula is a fair
choice for modelling the bivariate dependence structure between
variables. The distance between BN and normal matrices in-
forms the user if the assumption of a joint normal distribution
is valid for a particular non-saturated configuration of the NPBN.
The distance between empirical and BN matrices provides in-
formation on whether the BN chosen is a fair model for the
data. This is similar to the tests described by Hanea et al. [5].
The distance between matrices can be computed in different
ways, and the user can choose between four methods [11,28]
in the gaussian_distance function. The d-calibration score
ranges between 0 (the two matrices are different) and 1 (the two
matrices are similar).

Finally, inference can be made with the quantified BN using
the function inference. The function computes the uncertainty
distribution of nodes other than those that the user condition-
alized in, i.e. provided specific values (posterior evidence). Algo-
rithmically, the inference is done through sampling the NPBN; the
process is described in more detail by Hanea et al. [26].

2.2. Software functionalities

The toolbox contains five MATLAB functions, two standalone
MATLAB scripts with examples and three MATLAB functions im-
plementing published NPBN models (Table 1). The functions are

2 Those one-parameter copulas are implemented in standard MATLAB func-
ions. The user might expand the code with the two-parameter t copula that is
also available in MATLAB, while other copulas require custom code (e.g. Plackett
and Joe-Clayton copula functions from Andrew Patton’s copula toolbox for
MATLAB).

interconnected through a common input data structure. The user
can build a NPBN following a few steps: (1) upload a dataset of
interest (DATA); (2) define a DAG in PARENTCELL based on a prior
knowledge of the dependence between the variables; (3) run
the function bn_rankcorr to calculate the BN rank correlation
matrix R; (4) run the function inference, given R and DATA as
input, to obtain the joint distribution function of the variables and
the conditional distribution of a variable given the remaining. For
inference, the nodes to be conditionalized are specified by the
user together with the values of those nodes. The user can also
modify certain aspects of the calculation such as sampling size,
interpolation methods and type of output. The BN dependency
structure can be visualized with a separate bn_visualize func-
tion, which allows naming the variables e.g. for use in research
publications. The function bn_rankcorr and the two diagnostic
tools, gaussian_distance and cvm_statistic, all have an
option to generate a plot.

All functions are collected in the example script, which apart
from running the functions and generating all possible plots
(Fig. 1) includes detailed descriptions of each step of the proce-
dure. A second example, example_udrm implements a particular
example of a model where the (conditional) correlations between
variables are taken from an external source such as expert judge-
ment (Section 3). The real-life example models are discussed in
Section 4. All scripts are described in detail in the quick start
guide included in the toolbox.

3. Illustrative examples

Example 1
The first script, example, is constructed to predict the level

of personal safety (as indicated by variable ‘‘Safety’’) employing a
default MATLAB dataset cities. It contains data on nine quality-
of-life indicators in 329 cities in the United States. It should be
noted that the data are transformed to ranks in the procedure, so
there is no need for adjusting the input data e.g. through normal-
ization or logarithmic transformation. The variables in the DAG
(Fig. 1b) were identified by firstly creating an expert-knowledge
derived DAG, as is common in Bayesian Network models. Then,
bn_rankcorr function was applied to compute a BN rank corre-
lation matrix for the defined DAG (Fig. 1b). The model was then
iteratively modified to remove the least-correlated arcs between
nodes, until only significant and theoretically explainable variable
pairs remained. The final example model includes five nodes: four
explanatory variables – ‘‘Climate’’, ‘‘Economics’’, ‘‘Recreation’’ and
‘‘Arts’’, and one variable of interest – ‘‘Safety’’.

The validity of the Gaussian copula assumption is then tested.
The Cramer–von Mises statistic shows that the Gaussian copula
achieves best fit for the majority of variable pairs according
to cvm_statistic function (Fig. 1c). The d-calibration score
(gaussian_distance function) gives a mixed picture: the d-
calibration score of the empirical rank correlation matrix and the
empirical normal matrix (vertical red line in Fig. 1d – left panel)
falls outside the 90% confidence interval of the d-calibration score
of the normal rank correlation matrix (red circles, Fig. 1d – left
panel) estimated via bootstrapping. This means that the determi-
nant of the empirical rank correlation matrix is different than the
determinant of the normal empirical rank correlation matrix, and
so the Gaussian copula might not be the best choice for modelling
the bivariate dependences. However, the d-calibration score of
the BN’s rank correlation matrix and the empirical normal matrix
is well within the 90% confidence interval of the d-calibration
score of the empirical normal matrix (Fig. 1d – right panel). This
second d-calibration score is more important, as it shows that
the joint normal copula is valid for the particular (non-saturated)
BN structure. It should be noted that the d-calibration test is
3
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able 1
verview of function in the BANSHEE toolbox.
Code Operation Input Optional inputs Output

General functions

inference Conditionalizes a quantified
NPBN, making inference
based on evidence provided

NODES — definition of
nodes to be conditionalized;
VALUES — data for
conditionalizing the nodes;
R – NPBN rank correlation
matrix (generated with
‘bn_rankcorr’);
DATA — quantification of
the NPBN

OUTPUT — show the full
uncertainty distribution in
F, or only mean or median;
SAMPLESIZE — number of
samples drawn;
INTERP — interpolation
method used when
conditionalizing the NPBN

F – uncertainty distribution
(or mean/median depending
on the option chosen) of
the predictions

bn_rankcorr Computes NPBN rank
correlation matrix

PARENTCELL — definition
of the BN structure;
DATA — quantification of
the NPBN;
ISDATA — specifies type of
input data

PLOT — show plot;
NAMES — provide variable
names for the plot

R

gaussian_distance Computes d-calibration
score for the rank
correlation matrix

R;
DATA

SAMPLESIZE;
PLOT;
TYPE — choose calculation
method (Hellinger distance,
Symmetric Kullback–Leibler
divergence, Bhattacharyya
distance, Abou Moustafa et
al.’s ‘‘G’’ distance)

D_ERC, D_BNRC
— d-calibration scores
B_ERC, B_BNRC — 90%
confidence intervals of the
d-calibration of sampled
random normal
distributions

cvm_statistic Computes copula
goodness-of-fit for pairs of
variables in the NPBN using
Cramer–von Mises statistic.

DATA PLOT;
NAMES

M – results of the
Cramer–von Mises statistic

bn_visualize Visualizes the NPBN’s
structure

PARENTCELL;
R

NAMES (creates a plot with the
NPBN structure)

Examples

example Runs all general functions
with a default Matlab
dataset

– – (creates plots and outputs
from all functions)

example_udrm Runs an example
User-Defined Random
Model with an actual
research dataset from a
Weigh-in-Motion
experiment

– – (creates plots and outputs
from selected functions)

example_hydro_simulation The script applies the BN
model for extreme river
discharges with example
real-life data

– – (creates plots and outputs
from selected functions)

Real-world example models

predict_floor_space Estimates useful floor space
area of residential buildings

VALUES NODES;
OUTPUT

FSA — building useful floor
space area

predict_river_discharge Estimates annual maximum
of daily river discharges

VALUES NODES;
OUTPUT

QMAX — annual maximum
of river discharge

predict_coast_erosion Estimates storm-induced
erosion of a cliff coast

VALUES NODES;
OUTPUT

SHORE, BEACH, FOOT, CLIFF,
TOP — cliff erosion metrics

rather severe for large datasets [5]: the higher the number of
variables the lower is the determinant, which makes the compar-
ison between determinants numerically more difficult. Once the
NPBN has been built, predictions of the level of safety in cities (or
any other variable) given a combination of the remaining vari-
ables can be tested against observations, using the inference
unction.
xample 2
In a second example, example_udrm, a BN model without an

actual dataset – User-Defined Random Model (UDRM) – is built.
This example was created to allow implementation of BNs where
the (conditional) correlations are obtained through structured
expert judgement elicitation [8,11,29,30]. Indeed, BN models in
engineering often require such a method of quantification due to
lack of data [5,11]. The user should define the DAG, the marginal

on each arc. Based on these information, the BN rank correlation
matrix is calculated via the bn_rankcorr function. The ex-
ample_udrm script generates possible axle loads configurations
from the defined BN model to estimate the probability of the
vehicle weight accounting for (1) the type of vehicle (2-, 3-, 4-,
5- axle) and (2) the dependences existing between the axel loads
of a single vehicle. Running the example will allow to visualize
the correlation matrix and BN structure (Fig. S1). Moreover, the
code contains a section in which the dependence between the
axle loads is ignored (independent case). Fig S2 compares the
probability of the vehicle weight estimated based on observations
(blue dots), simulations from a dependent model (BN model —
red dots), and simulations from an independent model (green
dots). This plot highlights that considering the strong dependency
between the load on different axels of vehicles is important in
distribution at each node, and the (conditional) rank correlations investigating maximum traffic load on bridges or other stretches

4
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Fig. 1. Plots generated with the toolbox’s functions and default Matlab dataset cities: (a) BN structure (bn_visualize); (b) NPBN rank correlation matrix
(bn_rankcorr); (c) Cramer–von Mises statistic for all pairs of variables (cvm_statistic); (d) d-calibration score (gaussian_distance).

of roads, as opposed to considering them independent. It should
be noted that this example uses real-life data on vehicle axle
loads from Weigh-In-Motion traffic monitoring system in the
Netherlands [15,31]. It is an simplified version of the full, 705-
node model, which has been used to advise the Dutch Ministry
of Infrastructure and Environment.

4. Impact

The toolbox includes three real-life example models from the
authors’ recent geoscientific applications (Fig. S3). Each model
consists of a function script and a dataset containing the def-
inition of the DAG, marginal distributions on the nodes, and
a BN rank correlation matrix. The user only needs to specify
which nodes are to be conditionalized and provide their data on
the corresponding variables. The first model, predict_river_
discharge, estimates the value of maximum annual discharge
in European rivers [16]. This enables generating an annual time
series of extreme discharge in locations where river gauge mea-
surements are not available. Hydrological modelling of discharge
on a European scale is complex and very time-consuming, but
it has been shown that the NPBN model is an accurate and
efficient substitute [16]. The model was applied for the whole of
European river network using our MATLAB toolbox and served
as input for pan-European flood hazard modelling [32]. The user
can apply the model to any location and year providing e.g. the
value of catchment size, maximum daily precipitation during
the year or percentage of the catchment covered by lakes. Us-
age of the function is highlighted in the wrapper script exam-
ple_hydro_simulation.

Another model, predict_floor_space, was conceived as a
tool to substitute for missing information on the size of residen-
tial buildings [25]. Knowing how big is a house, especially its

height and useful floor space area, is fundamental for estimating
its exposure and vulnerability to natural hazards. As 3D models of
cities are still scarce [33], this NPBN model was constructed based
on OpenStreetMap building footprints combined with several
pan-European raster datasets. The model was applied using this
MATLAB toolbox to estimate exposure of residential buildings in
several case studies of past floods [34]. As with the model for
extreme discharges, only openly-available datasets are used as
explanatory variables, hence the user can easily collect data to
apply the model within Europe (they were not validated for other
countries so far).

The final example is a model of storm-induced coastal erosion
in Poland (predict_coast_erosion), which was created based
on field observations of cliff retreat in Poland and Germany [17].
The model reproduces the complex dependency structure of the
processes involved, as not only meteorological and hydrological
factors impact the cliff and the beach below it, but erosion in one
part of the profile triggers erosion in another part and so on. As
with the other models, MATLAB was used extensively in data pre-
and postprocessing, hence the implementation of NPBN code in
the same language enabled a quick embedding of the BN model
into the workflow.

5. Conclusions

BANSHEE is the first openly available tool for Non-Parametric
Bayesian Networks. As the examples contained in the toolbox
have highlighted, the actual and potential applications are nu-
merous. We hope that our toolbox (1) will increase the popularity
of NPBNs as a powerful statistical method, (2) will support re-

searchers committed to sharing their code and data openly and

5
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3) will enhance implementation of NPBN models beyond science
nd into engineering and administrative practice.
BANSHEE is intended to be developed further, especially with

mprovements to analytical and visualization tools. New applica-
le BN models will be added as part of ongoing and future paper
ubmissions, with novel BN flood damage models for the residen-
ial and commercial sectors expected to be added first [34,35].
inking our toolbox with a MATLAB toolbox for structured expert
udgement ANDURYL [36,37] is also envisioned.
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