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Abstract: We present efficient multi-flow entanglement routing in Quantum Tree Net-
work (QTN) with sublinear overhead, congestion-free operations, and error correction, out-
performing conventional mesh networks. © 2024 The Author(s)

1. Introduction

Quantum networks (QNs) have emerged as a promising solution for transmitting quantum states over long dis-
tances, enabling various applications in quantum information science and technology . These networks distribute
entanglement between remote quantum systems, allowing for communication, resource sharing, blind quantum
computing, and distributed sensing [1]. The efficient distribution of entanglement, known as entanglement rout-
ing, is a central research goal in QNs.

In a QN, entanglement is distributed to two dedicated end nodes by generating short-distance entanglement and
performing entanglement swapping over the path connecting them. Intermediate nodes in the network perform
various tasks, including heralded entanglement generation [2], storing quantum states until a success signal is
received, selecting entangled qubits, and recovering fidelities using purification or quantum error correction [3].
Quantum networks operated as above are close to the circuit-switched network, where the channel usage of one
party blocks the use by others.

Current and near-future quantum networks are memory-limited and pose congestion challenges in circuit-
switched networks, where the number of entanglement routing paths exceeds the available qubits in a router.
To address this, we aim to develop scalable quantum networks that support simultaneous multi-flow entanglement
routing. Scalable networks should meet three conditions: (1) enable error-corrected entanglement flow propor-
tional to the number of users, (2) operate without congestion, and (3) require sublinear quantum memories per end
node.

In this work, we propose a quantum tree network (QTN) that satisfies these conditions and overcomes the
limitations of conventional mesh networks. The QTN architecture allows for optimal entanglement routing without
the need for time-consuming multipath-finding algorithms [4].
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Fig. 1. (a) Quantum mesh network with congested nodes highlighted in red. (b) Architectural view
of QTN with node size and edge width representing allocated qubits. (c) k-ary quantum tree network
(k = 4) with labeled layers and repeater chains for inter-layer connections. (d) Quantum router ar-
chitecture utilizing broker-client qubits for robust and scalable entanglement distribution. All-to-all
intranode connectivity is assumed.
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Fig. 2. (a) The resource overhead of quantum tree networks (QTNs) for user numbers. J = 1 QTNs
with k£ = 4,8, and 12 deployed on a 2D surface exhibit lower overheads (red, orange, and yellow
markers), while J = 2 encoded QTN shows a faster scaling but smaller overheads (green markers).
Deploying QTNs with square-lattice end nodes (blue and purple markers) leads to faster scaling and
larger overhead. (b) The resource overheads are presented in terms of qubits per user per elementary
link length squared. Larger k QTN (orange and yellow) scale better with N compared to smaller k
QTNs (red), and square lattice QTNs (blue and purple) scale better than surface-covering QTNs (red
and green). Small k, surface-covering QTNs are more suitable for dense networks with aggregated
users, while large &, square lattice QTNs are preferable for sparse networks.

2. Architecture and overhead

The QTN architecture is based on a hierarchical tree structure, where end nodes are the leaves of a tree (Fig. 1). The
communication between end nodes is facilitated through routers located at internal nodes of the tree. This hierar-
chical arrangement allows for efficient and scalable entanglement routing in quantum networks. A key advantage
of the QTN architecture is its scalability. The overhead, defined as the qubit-per-node ratio, scales sublinearly
with the number of end nodes. Specifically, the overhead scaling for any k-ary tree is given by & (Nlogk % -log, N ) ,
where N represents the number of end nodes and a; denotes the growth rate of channel length as we move from
the leaves to the root node.

We examine the resource overhead of a deployed quantum tree network (QTN). The resource overheads for
different QTN configurations are plotted in Figure 2. QTNs with larger k values and square lattice configurations
exhibit better scaling with N. Surface-covering QTNs with smaller k values are more suitable for dense networks,
while square lattice QTNs with larger k values are better for sparse networks. The exponent J in the analysis
represents the encoding rate, which influences the resource scaling for error correction. The resource overhead of
the error-corrected QTNs can be expressed as ~ &' (N'°&% - (log, N)’). The specific value of J depends on the
error correction code used. For example, for the linear-scaling CSS codes, J = 1, and for the 2D surface code,
J=2.

Note: An expanded version of the manuscript is available on ArXiv [5].
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